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The generel purpose of the work, reported here is to obtain the best possible
fergible signal processing algorithms for estimating from radar data character-
istics and trajectory parameters of bodies moving in the air.\ g

W

By analyzing the characteristics of a family of projectiles, a set of approxi-
mate simplified dynamics equations is obtained (Section 2) that can be used for
extrapolation and backtracking with radar determinable parameters. The formulation
includes terms which account for both drag and drift. Tentgtive numerical results
indicate small resultsut backtracking errors due to drift but somewhat larger errcrs
due to drag, especinily when the projectile's velocity passes thru mach 1 during the
observation period. °

In Section 3, formulation is developed which can be programmed to determine the
effects of random radar errors on trajectory estimation and backtrackii.g accuracy.

Section 4 presents the formulation necessary for constructing an exter.ied Kalma#
filter and smoother algorithm for extracting pertinent state vectors and trajectory
parameters from radar date. Specific inputs required and relationships are given in
form suitable for programming.

Six appendices are anluded, giving some of the mathematical details, describing
modifications and other experience with the delfled point-mass dynamics program, an
a glossary of the main symbols used.
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ABSTRACT

The general purpose of the work reported here is to obtain the best
possible feasible signal processing algorithms for estimating from radar
data characteristics and trajectory parameters of bodies moving in the
air.

By analyzing the characteristics of 2 family of projectiles, a set
of epproximate simplified dynamics equations is obtained (Section 2)
that can be used for exirepolation and backiracking with radar determin-
able parameters. The formulation includes terms which account for both
drag and drift. Tentative numerical results indicate small resultant
backtracking errors due to drift but somewhat larger errcrs due to drag,
especially when the projectile's velocity passes thru mach 1 during the
observation period. o

In Section 3, formulation is developed which can be programmed to
determine the effects of random radar errors on trajectory estimeition
and backtracking accuracy.

Section 4 presents the formulation necessary for constructing an
extended Kalman filter and smoother algorithm for extracting pertinent
state vectors and trajectory parameters from radar data. Specific in-
puts required and relationships are given in form suitable for programm-
ing.

Six appendices are included, giving some of “he mathematical de-
tails, describing modifications and other experience with the modified
point-mass dynamics program, and & glossary of the main symbols used.
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FOREWORD

This report describes work done frem 1 August 1971 through 31 October 1971
at the Moore School of Electrical Engineering, University of Pennsylvania, under
contract number DAAROT-T1-C-0212 with U. S. Army Electronics Command for re-
search entitled "The Estimation of Trajectories from Radar Data'. The cognizant
technical personnel at USA ECOM are Dr. Ieonard Hatkin, head of the Radar Techni-

cal Area and Mr. Duane Sheppard, CSTA and SI Laboratory, Evans Area Fort Monmouth,
N.J. 07703.
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1.0, INTPObUCTLOA°. Yo

)

As indicated in the previous Quarterly Progress Report, this work is con~
cerned yith the general sjgnal processing probXem of estimating characteristics
and trajectory parameters of & body moving in the air from noisy radar observa-
tions. + . : :

The mein thrust durink this last quarter hes been the adaptation of a BRL
program supplied to us by USAECOM: +to provide trajectory datas for a suiteble
femily of ballistic pnoaectlleo » to calculate simulated radar coordinate dete
that can result from different geometrical conflguratlons, and to form the
basis of "simplifiéd dynamics” equations to be' used in filter-smoothing algorithm
design and for backtracking simuletion and evaluation. 1

. 1 - )

Additional results have been obtained concerned with evalustion of irreduc-
ible estimation errors dué to radar measurement errors and the development of
the necessary formulation for tne optimal smootting, filtering, and backiracking

,algorithms fer the estimationlof necessary trajectory parameters.

1
1 v R ) H
)

1.1 Summary, main results:

: ) '
Section 2.0 to follow 'describés the development of simpl}fled-dynamics equa~
tions, thdt are suitasble for approximate trajectory celculations in terms of
measurable parameters. Starting with the BRL modified point-mass equations and &
repregsentative set of projectile characteristics, simplified expressions for drag

* force and for drift for'ce were evolved. For drag a universal:coefficient curve

t

was calculated that together with a projectile variable scale parsmeter that must
be estimated enabled the approximate drag force, to be calculated. For drift, a
normalized parameter dffferential equatlon wnth a universal curve coefficient
was postulated requiring an initial ‘value estimation from the date. Magnus force
was ‘assumed negligible. In Section 2, the necessary formulation is develcped and
a get of tests are described which indicate the effectiveness of the simplified-
dynamics 'equations in backtracking aiong the trajectory to the launch point. It
is shown that drift force errors are effectively accounted for but drag forces
still lead to errors that rre’ perhaps larger than desirable. Associsted with
this section are Appendix A, giving the BRL Modified point mass equations, Appen-
dix B showing ‘the Universal Aerodynamic Functions evolved for drag and drift
force effects and Appendix ¢ commenting on the computstional aspects of' the work.
] . : '

Section 3.0 presents the formulation mecessary to Qetermine theoretical
limitetions: on accuracy of trajectory paresmeter esiimates (lauwnch-point state
end aerodynamic parameters) due to random rad.r noise errnvs. Associated with
this section is Appendix D which gives the formulation reguired for transforme-
tions between raedar-centered ard gun-centered coordinate systems. Formulstion
to account for radar bias errors will be presented in & subsequent report.

* Section 4.0 presents the general filter- smoother algorithm developed to
estimate trajectory parameters from the noisy radar data. Following the ex-
tended Kelman filter techniqne an. augmented time-varying state-vector is

] anthaien




defined having eight components consisting of target position ana velocity vector
compsnents as well as drag and drift parameters. The formuletion is set up for
calculating optimel estimaves of present value (filter) and initial value
(smoother) of the augmented state vector updated on & quasi-real time basis.
Initial work assumes availability of rader deta for off-line processing but once
algorithms are efficiently progremmed, the feesibilify of true real-time pro-
cessing will be assessed. Provision is made for use of simulation as well &s
analytical techniques for performance and fezsibility evaluation of the algorithms
developed. Resulis are presented in & form convenient for programming. Specific
definition of matrix elements required is given in Apoendix E. A detailed theore-
ical development will be presented in the next quarteriy report.

Conclusions end plans are described in Section 5.
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2.0 SIMPLIFIED~DYNAMICS EQUATIONS.

BRL (Ballistics Research Lsbcratory) Report No. 1314., Reference 1], pre-
sents the modified point-mess equations used in computing firing tebles. These
equations are described briefly in Appendix A,

Ja order to compute backward in time from the observed projeciile positions
to the launch point, some equations governing the projectile motion must be used.
If the projectile type and its ar~rodynamic characteristics were known, the modi-
fied point-mass equations could be used for computing backward along the trajec~
tory. Under the conditions of interest in the present study, nothing is known
about the projectile except what is deduced from its observed behavior. It is
assumed in the present study thet the accuracy and reproducibility requirements
on artillery fire must result in generally similar aerodynamic characteristics
for all artillery shells, so that the 105mm, 155mm, 175mm, and 8 inch projec-
tiles ~~ called for brevity the standard projectiles -~ have characteristics
generally similer to any effective artillery shell. In particular it is assumed
that the standard projectiles can be imbedded, in a sense made specific below in
connection with equotions (5) and (12), in the family of all projectiles, the
different members of the family differing from one &another only in numerical
values of certain parsmeters.

Casual exemination of the point-mass equations in Appendix A shows that the
trajectory is affected by three aevodynamic forces, causing drag, drit't, and the
Megnus effect, in addition to gravity end the Coriolis "force". Among them they
involve seven functions of M¥ech number and at least five constants, thaet can vary
from projectile to projectile. To determine all these functions and constents
from observation of the behavior of an unknovm projectile would require accura-
cies in and durations of rader observations far in excess of what is achievable.
The present study assumes that it will be enough to estimate, from the observed
projectile behavior, the principal (zero-yaw) component of the drag acceleration
end the drift acceleration. The conditions under which this assumption is valid
are discussed in 2.4 below. In all previous work of which the writers are aware,
only the zero-yaw drag acceleration has been estimated.

2.1 Drag acceleration. The direction of the drag force is in the direction
opposite to that of the instantaneous velocity. Its magnitude is, for the four
standard projectiles,

(P/Ci)KDi(M;;éh . i ; 1:2:3:# | .h (53 .

In equation (1) KDi(M) is & function of Mach number characteristic of the pro-

Jectile, p is the density ot the air mass, and v is the projectile air speed.
The ballistic coefficient Ci is an empirical constant approximately equal to

ratio m/d2 but generally also & function of firing charge.* Examination of the
four KDi(M) functions, which are illustrated in Appendix B (actually the ratios

Km/ci are plotted for nominal values of ci)’ shows that the functions are

*
BRL data for the standard projectiles indicate that for the 155mm, 175mm, eand
8 inch shells C; is a function of charge; C, is also & function of quadrany

elevation for the 155mm projectile.
..3...
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A

approximately proportional, i.e. {he retio of any 4o functions, or drag curves,
is a constent nezrly independent of' Mach nuwber. It is this characteristic of
the functions Km that hes simplified the problem of estimating the drag effects

for an unknown projectile. It permits the selection of a function f{D(M) , Which

will be devoted as the wniversal drag function, that is independent of projec-
tile. The universal curve has the property that the ratio

(ks (0)/C /R (M) 1= 1,2,3,k (2)

is nearly constant with Mach number, and can thersfore be approximated by &
constant

e; = (K (M)/e, )/K(m) . (3)

Substituting equation 3 into equation (1), we have that the drag acceleration
for the standerd projectiles is approximately

pC ich(M)va . (1)

The assumption mentioned abovec that the four standard missiles can be imbedded
in the family of all projectiles means, with respect to zero-yaw drag accelera-
tion, that for any projectile the drag acceleration will be representable by

o (1)v° (5)

where the value of ¢ is to be estimated from the observed projectile motlion.
The function KD(M) is selected as described in 2.3 below.

2.2 Irift acceleration. It can be seen from Appendix A that the vector accel-
eration due to drift is

-(ay, GONA®) (x X ) (6)

for the i*® gtandard projectile, with K, (M) a fuaction of Mach number, N the

spin angular velocity, v the vector of proaectile velocity relative to the

ground. As indicated in the appendix, the coefficient ai is & function of

-

—

X
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several physical parameters characteristic of the projectile and the so called
i3 "1ift factor" £, a scale factor function of the fixing charge.

v

The spin angular velocity is governed by the expression

= -b,pK,. (M)v N (1)

where b, is again & projectile characteristic constant and KAi(M) another func~
tion of Mach number. Evaluation of the constents b, in (7), using dete not
snhown in Reference [l] but given in BRL date associated with the computer pro-
grans for the modified point-mass computations, shows that the values for the
four standard projectiles are 0.0255, 0.0193, 0.0166, and 0.0157 £i2/pound.
Similer evaluation of the functions KAi(M) shows that the same function is given

by BRL for three of the four projectiles; it's value is 0.007 (dimensionless) at
8 M = 0 and it falls smoothly to about half the value at M = 2.5. For the 8-inch
> projectile, the value is given &s 0.005, constant with Mach number.

R

Clearly the situation is less favorable for (7) than for the drag accelera-
tion, with regerd to embedding the four standard projectiles in some general

4 functional form with smsll relative errors of approximation. Fortunately the
drift effects are smaller than the drag effects to start with, and larger rela-
tive errors are tolerable. the simplified~dynamics eguations it is assumed
that .

o e e o

V= -0. 020pK , (M)vN (8)

is 4 tolerable universel approximation to (7), with KA(M) taken as the function
KAi(M) for the 105mm, 155mm, and 175mm projectiles.

The expression (6) may be written

-(ai/ci)(ciKi(M)‘N/va)(x X’:{;) 'i =‘ l;a,é,h (9)

where, a3 explained in 2.3 below, & function IE(M) and four constants ci are used

(these ci's are unrelated to the ci's of (3) and (4); they merely serve an ana-

—————
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logous purpose) such that for each i = 1,2,3,4%, K(Y) epproximates e, K, (M) as

closely as possible. Again, the relebive accuracy will be poor by comparison
with the relative accuracies achieved for the drag approximaticns, but as will
be seen in 2.4 below the use of the drift terms in the simplified-dynamics equa~
tions gives results considerably better then does ignoring the drift.

The drift acceleration cen now be teken as

~(ay/e; O W/ (g X 3) i=1,2.3) 10)

where e.i/c. is a single paremeter and K(M) a universal function; and where XN is

given by (é). As in the passage from (k) to (5), we could imbed the values of
the parameter

ri = ai/ci (ZL'L)

in a family of paremeter velues, and for the case of an wnknown projectile esti-
mate the value of r from observed drift acceleration effects assumed to be
governed by an expression

~eR(M) (N2 (g X 1) (12)

together with (8), in which only r needs to be estimated. However, although

(8) through (12) are useful for exhibiting the underlying reasoning, it is

more convenient in the computations to define a new variable s(t) to be estimat-
ed, as part of the state vector, than to estimate the parameter r.

Iet

s(t) = rN(t) = an(t)/c (13)
by definition. Then (8) becomes
s = -0.0200K, (1)vs (1)

6
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x) -

and the drift acceleration (12) becomes
- (/PR (5 % §) (15)

Equation (14) end expression (15) in the simplified-dynamics equations replace
(7) and (6) of the modified point-mass equations.

2.3 Choice of universal functions. In passing from.(9) to (10), it is necessary
to find a function K(M) and four constants c;s 1 =1,2,3 »%, so that each of four
given functions Ki(M) is approximated by ciK(M). Below is described the basis
for choosing the universal function K(M) and the four constants c,. The same

problem occurs in passing from (3) to (4), with C.I{m(M) given instead of Ki(M),
i = 1’2’3,1’. +

One way to achieve the desired result is to minimize

"

S = § J‘Mawi(m){ci}'c(m) - Ki(M)}adM (16)

where (Ma’Mb) is the range of interest of M and wi(M) is any set of weighting

functions that permit assigning importance to certein i » to certain subranges

of M, or both. In what follows, all integrals are over (Ma’Mb) and all sums
are over i. :

For & given set (cl,... ,cu) s the K(M) that minimizes (16) must satisfy

S(K(M) + 6K(M))= S(I-{(M;) - (x7)

for an arbitrary small veriation 6K(M) » by the reasoning basic to the calculus
of variations. To first-order effects, (17) implies

J2 ey (M) (e 8R00)) (e R QM) - K, (M) a = 0 (18)

which can hold for arbitrary smell 6K(M) only if

T




Eciwi(M)(cil-((M) - Ki(M)) =0
or

K@) = zciwi(m)xi(m)/zciwi(m) (20)

or if X(M) is fixed, the c's that minimize must satisfy as/aci = 0,
i = 1,2,3,)"’, or

2fw, RO (e, R(M) - ()M = 0 =123 ()

from which

¢; = fur, (ORGOK, (W)aw/f, () (R(M)°au i = 12,36 (22)

By applying (20) and (22) alternately, since eech application reduczs S,
one can find a succession of ci's and functions K(M) until successive changes

T in"S are as small as desired. However there is no unique Solution to the problem

as stated ubove, because for any real k;fo, multiplication of each ¢ by k and
division of K(MS by k leaves S unchanged. It is convenient to make the solution
unique. This is done by using the following computation procedure:

(a) Take an arbitrary £(M) to begin with -- for example Kl(M).

(v) Use (22), with £(M) in place of K(M), to compute & set of c's.

(c) Normelize the c's by dividing esch by their mean, so that the normalized c's
will satisfy Zci = 4,

(d) Using the normalized c's, \:ise (20) to compute K(M).
(e) Use (22), and normalize as in (c), to compute & new set of c's.

(£) Repeat (d) and (e) until the changes in an iteration are satisfectorily small.

*
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"“The above procedure was used with the ’;i’i(M) = 1 for all M and i in order %o
determine the universal drag function I-(D(M) and the corresponding four counstants
c; The nominal ballistic coefficients for the 155mm; 175um, and 8 inch projec-

tiles and the correct single value for the 105wxm projectile given in Appendix B
were asgumed for the computation. It shouid be noted that the above choice of
welghting functions although an obvious one, is quite arbitrary. Other choices
could huve been made, possibly in order to shape the universal curve fo minimize
drag computation errors in the transonic region for specific expected target pro-
Jectiles.

Only one cycle of the procedwre was used for determining the universal drift
function K(M) and the associated constants r;. Justified by our assumptior that

large relative inaccuracies are acceptable in drift, wi(M) was taken to be the
Dirac delta function 5(M~M°) with ¥ = 0.8 for all i. As was previously indicated,
the computations were scaled by the nominal 1ift coefficients of Appendix B.

2.4 Test of the simplified-dynamics equations. One limiting factor in the per-
formance of the system studied by Project RATRAN is the amoung of error incurred
in using the simpliried-dynamics equations for the backward integration along
the trajectory. To measure the amount of this error, it is intended to use the
modified point-mass equations to compute & trajectory up to some point (x,¥,z,t),
and then to use the simplified-dynamics equations for computing backward, as
these equations will be used in practice for computing the estimated launch
point. The difference in x and z coordinates between the point on the backward
trajectory at which y = 0 and the starting point for the forward trajectory com-
putation is the error due to the use of the simplified-dynamics equations, plus
numerical errors in computation; the effects of the latter are estimated by an
auxiliary computation in which the modified point-mass equations are used in *the

_ backward computation as well as in the forward computation.

In the backward computation, the correct parameter value ¢, is used in the

drag computations and the correct starting value is used for s(t), the drift
variable. In both cases the constants were properly scaled to account for the
differences between the nominal drag and lift cocfficients of Appendix B and

true values for the particular projectile cases considered. There will be errors,
in practice, in the estiuutes of c, and s(t), but these errors are not chargeable
to use of the simplified dynamics equations.

The forward-backward computation test on the simplified-dynamics equations

has been performed for several trajectories; results are shown in Table 1. Char-
acteristics of the test trajectories used are shown in Figure l.

0=
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ERRORS IN BACKTRACKING TO LAUNCE POINT

. BRI EQUATIONS SIMPLIFIED DYNAMICS SIMPLIFIED DYNAMICS
INITIAL {QUADRANT |TIME AT |[HEIGHT AT |DRIFT AT .
GUN |VEZLOCITY |ELEVATION |REVERSAL|REVERSAL |REVERSAL IRCIUDING DRAG Anp DRIFT | INCLUDING DRAG ONLY
oYPE | (M/SEC) | (MILS) (SEC) (M) (M) ERROR IN X(MYERROR IN Z(MYERROR IN X(M)ERROR IN Z(MIERROR IN X(M)ERROR IN |
175 | 914.4 860 10 5400.488| 14.967 0. 066 ~0.170 1.059 ~-3.184 1.636 ~12.8¢
20 8888.957| 57.935 0.131 -0, 564 11.418 ~10.571 4419 ~-58.52:
30 11064 .48% | 128.932 0.671 -1.075 40.234 -17.616 48,826 -147. 74
4o 12139.016 | 229.%533 1..432 -1.628 92,829 -15.644 111.479 -284. ¢4
155 | 563.9 601 10 2134.808| 14.105 ~0.053 -0.223 -3.27h -0.136 ~-0.1456 -16.59
20 2883.896| 55.764 0.182 ~-0.489 -18.177 -3.737 ~22.057 -68.84;
30 2634.535| 125.134 ~0.271 -0.828 36.317 -3.533 48.561 -154. 84
40 1466.620] 21.7.963 2.326 -1.207 166.655 -2.210 183.672 -255. I
105 | 302.0 600 10 1112.902 8.807 0. 026 -0.046 2.200 0.137 2.620 -8.9%:
20 1190.328| 37.579 0. 054 -0.165 13. 40 1.122 15.169 -2, 15
30 329.441( 84.uh5 -0. 058 -0.358 16.561 1. 777 20.891 -91.53.
105 | 465.0 W7 10 1257.613 9.785 0. 064 ~0. 107 -16.109 1.075 -14.588 ~10. 83
20 1335.0641 40.980 o.470 -0.312 -21.103 0.607 ~17.620 ~50. 84
30 497.600| 93.142 0.59% ~-0.642 ~57. 007 -0.860 -50.439 -115. 58
155 |h63.3 | 468 10 1272.378| 13.602 -0.019 ~0.158 -16.778 ~0.926 -16.776 ~-1h4. 54
20 1405.706| 52.675 0.217 -0.3u8 19.k02 -2.400 23.480 -57. 14
30 591.172| 134.7h1 0. 727 ~0.659 98.879 -1.886 106.314 -122, 82
155 |268.2 390 10 483.199| 10.315 0.036 ~0. Oliks L. 777 0.570 5.543 -10.3§;
TABLE 1 BACKTRACKING ERRORS FOR A SELECTION OF TRAJECTORIES




Wy s o

d 39TI040508X] 289l JO “OTISTISOBAGYD T HENDIL

(SUIIN) FONVISIT TYNIGNLIDNOT

. 000'LT 000°9T COOST O0C™HT "000ET 000°ZT 000°TT 000°0T 0006 .000°8 [000°L  000°9 C00‘G  000°% 000‘E 10002

v“ ~

!

‘ 000°T
q

* 1 1 i { . i L { { j i i !

098 Of

*033 02

* . *3ag 0€
{

a8 oOT

298 02

3g o€

bsEor

- 000°¢€E
. 000°H

'3
L 000G

( suTTIN)

GIDITH

- 000°CT

-~ 000°TT

. 0002t




The table summarizes the resulis of three kinds of computations. In 21l
three, the BRL modified point-mass crogram was used to compute trajectories %o
some preselected time, the "time at reversal. From the state parameters at
the time of reversali, three backtrecking computations were mede, proceeding
backward in time to zero elevation. The three differ as follows. In the case
of most interest, the backward computation used the simplified dynamics equa-
tions; the results are given in the columns headed “simplified dynemics includ-
ing drag and arift". Magnus effects were not included in the backward computa-
tions. In order to show what would happen if no drift effects are included,
drift force was set equal to zero in enother set of backward computations,
reported under "simplified dynamics including drag only". Finelly, to estimate
errcrs due to numerical round-off, a third set was made using the complete BRL
equations; the results ere shown under "BRL equations”.

The tables show that, for the trajectories tried, {(a) the effects of com-
putational errors are negligible, (b) drift is the principal source of error if
only drag ¢ffects are included in the backward computations, and (¢) arift error
effects can be reduced to amounts small by comparison with dreg error effects,
ingofar as errors in the simplified-dynamics equations are concerned. (Whether
the filter can estimate the drift-variable well enough to take advantage of the
situation remsins to be seen).

For the trajectories so far tested, the errors due 1o the use of the simpli-
fied dynamics equations are below 25 meters in estimated launch point for all
trajectories in which the radar observations can be made within 20 second of

firing.




3.0 ZIRREDUCIBLE LAUNCH-POINT ESTIMATION ERRORS DUE TO RANDOM RADAR ERRORS.

3.1 Purpose. On the ass.mption that the simplified-dynamics equations represent
the true behavior of the projectile, this section describes how to compute the co-
variance matrix of the error in launch-point estimation for least squares estima-
tors. The simplified-dynamics equations are defined, and the errors incurred in
their use discussed, in section 2. For the purposes of this secfion, it is enough
to say that they involve a dr&g variable and & drift parsmeter to be estimated.

It is assumed here that the only source of error is the random radar errors.
Bias radar errors will be investigated sepsrately. The errors in launch-point
estimation here studied will depend only on the covariance matrix of the radar
errors, the trajectory-radar gecmetry, and the schedule of radar observations.
They are sampling errors, in the sense that if enough independent radar observa-
tions could be made, the errors in launch-point estimation due to the rader
errors could be made &s small as desired.

This section, then, tells how to compute the performence of the best possible
(least-squares) signal-processing algorithms in coping with random radar errors,
in deducing what needs to be known about the projectile and its trajectory. Iater,
when the performence of individual algorithms (e.g., Kalmsn filters) is investi-
gated, the results of the computations described below will provide limits on the
performence of the algorithms. The limits could be reached if the covariance
matrix of the radar errors is known and if enough radar observations could be made
and if computation time and computer memory were not limited. Comparison vetween
the limiting performance here considered and actual algorithm performaence will be
used in guiding decisions on whether to accept performence of a particuler algorithm
or to seek improvement at the cost of computer capacity.

3.2 OQutline »f method. The following is well-known If there are N observed
column-vectors (radar observetions)

+°'1':l{ k=l’ooo,N (23)

¥ 2
L

where Iy is a true value and each 0r is a zero-meen normally-distributed error

vector independent of the others, and if there is to be estimated a vector v
(augmented initial state vector) that satisfies

=AY K s Lyees,N (e4)
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for given matrices Ak’ then the meximum-likelihood estimator for v is
: R

6_ Igﬂ T IN .
E*S;{%{R‘&.{k: i : . ' (25)'

where the superscripis I and T denote respectively the inverse and transnose
opveretions,

Lep]

]
M
?’H

I . .
e Rk A ' : [(26)

and

; T
Rk = Eiﬁik 5,

is the covariance matrix for the errors in Iy
Under the assumption that the errors or Ty and the errors 5v that they cause

in v, are small, the RATRAN launch point estlmatlon problem can be identified '
with the linear problem Just described as follows. The vecfor v has eight com-
ponents: the coordinates in gun~axes x o’ Yo and 25 = 0 and the velogity com-

ponents % o’ y , and z at the time to of launch a constant parameter ¢ character-
istic of the projectile, end & drift parameter { o’ the initial value of, a variable

used in the simplified-dynamics equations for drlft computations. For notational
convenience these eight numbers are denoted also by ViseessVg respectively. ' The

vector Ek of rader observations at time tk has either three or four components,

depending on whether doppler 1s not or is used, the othef three being'tpq range
end two angles. (Four different radar types will be considered: range-g-f angd,
range-azimuth-elevation, each with and without doppler.) Then

Ak = (alj(k)) ) i " (28)=
where ‘ ! ) !

aij(k) = bri(k)/avj, ‘ ‘ (é9)
. ; \
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the, change in the ith rader coordinate at time t, die to sméll.uqit change in the
* Jth component of the initial augmented state vectTor v.

: ! 4
Equation(25) implies that

- E(67 6“T1 = st : (30)
. §

: : i g
. 1s the covariance matrix for the error

(o
)<>
1
j<>
[}

i<

‘ , (31)
i
in the maximum—likelihood estimator v.s By the' assumptions of normallty and
linearity, v is also the least—squares estimator.

T Since the purpose of RATRAN 1s not to estimate v at a partlcular value t =
of time, with respect to the rader observation tlmes, but rather'at a partlcular
valye z = 0 of projectile altitude -- and in general the'two conditions will not
concur -- v is adjusted by .

xL =% v %o xo/zo
v A A " /e : (32)
; YL, = Yo 7 % Yol %o
! ] , : I
or ! , :
| ; | | !xL ) _ .
. EW (33)
1 . ’ \yL x
with \
1 : !
\ .;’1 k /5. 0 0,0 0 ©
L= R ) : (34)
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Because the adjustment (32), is small, the true value of L mey be used, and fou
convenience will be used, in the computations here described, in place of the
estimated value that would bave 1o be used in the &actual radar system. '

:
i
)
'
I
.
!
i
N
{
}
H
i

The covariance matrix for the error launch-point estimate, using least-
squares estimation, is therefore

~ 2 A “3
'16 g
B g, EOXL§&
P = S A A IR - ak S )
n sn a2
8% 6 26
E X0V E ¥y,

The computation of P is the subject of the remainder of this section.

3.3 Inputs to the computations. Each computetion of P is for the following in~
puts: A projectile trajectory, requiring specification of the projectile and its
initial velocity vector; the position of the gun and its direction of fire rela-
tive to the radar; the cheoices with regard to the radar -~ namely the use of
doppler, the choice of anguler coordinates, the radar altitude, and (only if range-
o~-A 1s used) the antenna array tilt angle; the covariance metrices Rk for the
ran.om radar errors; and the set of observation times tk'

The projectile trajectories will be computed using the BRL modified point- ‘
mass computer progrem as adepted for the simplified-dynamics equations. The drag
paraneter v7 = ¢ and the initial value vg = Co of the drift variaeble must be

specified. The gun coordinates z , x_ relative to the radar (y is vcrticel end x

torward, as explained in Appendix D), and the azimuth firing angle A2 in the
rectilinear radar-axes system must be glven; these numbers are specified as though
the earth were flaf, but the itrajectory and the rader coordinates are computed for
a spherical eartn. The covariance matrices Rk will be specified either as constant

or as & function of' radar coordinates, never as time functions as might have been
inferred from the definition relative to the observation times tk. The computer

program will provide for the possibility that the elements R are to be computed
from the rader coordinates at the time t . The matrices R, will be Jhopy-l, if

doppler is used; if doppler is not used, the computations are simplified as dis-
cussed in 3.5.3 below. The choice of observation times tk that the program will
be able to accomodate is discussed in 3.5.1.

3.4 values for radar error covariances. Inputs to this analysis progrem re-
presenting the variances of the random radar estimation errors can be described
as follows. YLogical system operation will consist of & sequence of independent
"looks" at each target, each look consisting of & burst of radar pulses during
which range, two angles, end range rate may be estimated. Aside from bias errors,

«16- .




which will be handled separately in this study, the different messurement errors
can be considered to be independent random variebles with zero mean values being
effectively independent &lso from look to look. The following formulas will be
applicable to this end (see for example Skolnik Laj], Chapter 10).

+0 2 Range error variance (36)

o 2 = — 0.2 Angle error variance (37)
8] 2(2E/N ) a 3

YA o)

2
2 A 2 . 8
op = + 0} Range rate error variance (38)
2 C
by (2E/No)

In the above expressions, 2E/No is effectively signal-to-noise ratio deter-
mined by transmitted power, antenna gein and target range and crecss section; A is
the wavelength of the transmitted signal; C is the velocity of light; v. is the
effective bandwidth of the transmitted signal; v, is the effective aper%ure
dimension of the radar antenna; Yo is the effective duration of the coherent

signal used for doppler estimation; UR2’ 002, 0§2 are the non-range-~dependent
c c C

components of measurement error variances, due to (unavoidable) system imperfec-
tions.

A convenient simplification is to make a preliminary set of calculations
with a nominal system at a aominal range R_, then make use of the fact that
EE/N° varies inversely as raage to the fouflth pover so that

28/n_ = (28/n)_ (8 fR)" (39)

Then eguations (36), (37), and (38) simplify as follows:




N3

2 2 L 2 .
0 =0 (R/R)" +ap {%o0)
(o] C
0,% = oea(a/no)“ + 0. (41) |
o] C
0’.2 — U.Q(R/R )h 3 6.2 u
R 7R WRS T (h2)

2 2 .
where Op 2 Gy end oé are variances of errors due to thermal noise, calculated at
o o
the nominal range Ro.

The ebove quantities are then used as the mein-diegonal elements of the
matrix Rk referred to in sectior. 3.3 above; all off-diagonal elements being :

Zero.

3.5 Details of the computations. Iet k be arbitrary but tixed, so that it need

!
nnt be exhibited in the nctation. Then (28) and (29) mey be expressed, using nota- o
t.on common in control theory, by

a® = arl/ay, (43)

Let u=w = u(t, ) be the vector whose elements are the values at time t, of the

rrojectile coordinates xk, yk, zk and their time-derivatives in the gun-axes
system.

31‘1:‘ = (5 ¥ 7y By ) (k)

e i W o VTt kTN 5 . s bt

Clearly u is determined by v, for given tk, and r is determined by u, and so

3" /v = (3u"/av) (3" /au) 5)

-18-
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or A = CB where
B = ag?/azg o = ag?/ag

in the notetion of (43).

(u6)

The- 6-by-8 matrix B is independent of the type or location of the radsr, ex-
pressing only the relation between the initial augmented state vector of the pro-
Jectile and a later state vector. The elements of B will be computed and stored.
The computation of the elements bij of B require nine executions of the program

for computing trajectories. One of the nine is called the reference trajectory.
The reference trajectory begins with the nominal initial conditions. In each of
the other eight, one of the eight components VyseeesVg of the initial augmented

state vector is perturbed
V. V‘.+5V =l.-.8
J-v J J 'j ] 3
For each k, the values of

bij = bij(tk) 1= 1y...46

are given by

(47)

bij = (1/6v3)(perturbed u, - reference ul) (48)

1

with the right-hand side evaluated at time t
constants, to be determined by preliminary trials not defined here in deteil,
their purpose being to determine values Ov. for which the differences between

perturbed and unperturbed u-values are above the round-off error noise level,
but are smell enough for (48) tc approximate a partial derivative., Forty-
wight b's will be computed and stored for each k.

__ = o e ey e o o R ) g s e B4

K The perturbations 6v5 are input




In eddition to the 48 matrix elements bi‘ » there will also be stored the six
vector elements u(tk) of (44), as computed f3# the reference trajectory, for use

in computing the elements

cij(k) = ci;j(tk)’ K= Lyee.,N (49)

of Ck’ as expleined below. Each trajectory thus requires storing 54N numbers.

The matrices Ck will not be stored between runs. They will be computed as
needed, from input constants end the values of the vectors B(tk) = 5{ The

first step in the computation of each Ck is the computation of the pio:jectile
position vector

*rk x(tk
W= ¥y | =M y(tk) + d (50)
\Zrk z(tk

in a right-handed rectilinear coordinate system with origin at the rader.” In (50) ,
the radar coordinate system has the y-axis along the vertical at the radar, posi-
tive upward, and the x-axis along the nominal forward (zero-ezimuth) rader direc-
tion. The values of x(tk) ’ y(tk) and z(tk) , three of the six elements of the

previously-stored vector oY are the components of the projectile position vector

in the right-handed rectilinear system that the trajectory computations use. This
system has its origin at the gun end its y-axis positive upward along the local
vertical, and its xy-plane contains the initial-velocity vector. M is the 3-by-3
matrix of the rotation needed to meke the gun and radar axes parallel, and d is the
position vector of the gun in the rectilinear rader axes system. M and d are com-
puted in terms of input constants as follows:

M= (my)s 153 = 1,2,3 (51)

T

& = (4 4, d3) (52)
1/2

g = (zge + xga) (53)

*See Appendix D for a simplified discussion of the coordinate conversion used.
-20=
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C3 = -xgg (514)

S3 = -z gjg (55)

€l = (S3) sinA2 + (C3) cosh2 (56)

S1 = -(S3) cosA2+ (C3) sinA2 (57)

sh = g/R, (58)

where R is the radius of the earth.

o = 1 - (1/2)(sh)? (59)
my, = (C1)(e3)(ck) ~ (s1)(s3) (60)
my, = - (C3)(sk) (61)
mpy = - (s1)(c3)(ck) - (c1)(s3) (62)
myy = (C1)(Sk) (63)
My, = Cb (64)
myg = - (S1)(sk) (65)
myy = (C1)(S3)(Ck) + (S2)(C3) (66)
myy = - (S3)(Sk) (67)
myy = - (51)(s3)(ch) + (c1)(c3) (68)
4 = x, (69)

R




d, = -&{sk)/2 - b (70)

dy =2, (11)

In (71), h is the altitude of the rader (in excess of the eltitude of the gun).

The matrix M, with components given by (60) through (68), is also used to
compute

xrk‘ x(tk
W, = ?fk =M 3(tk) (72)
\ rk 2(%, )
The vectors Ek and ik are used to compute the radar range at time tk
1/2
T
= (i ) (73)
the direction cosines
5 = x, /v, (74)
6 = rk Tk ' (75)
CT = Zox/Tx ? (76)
the range rate
o= (05)k, + (C6)y, + (CT)2, (17)

and the ratios

22




B = 5, /5, (78)

09 = ¥ /%y (79)
C10 = ‘zrk/ik (80)

By definition (see figs. 1 and 2)

o = arc cos{(C5)cosy + (C6)siny} (81e)
where v is the antenna array tilt angle.

g = arc cos(CT) (62s)

The purpose of (50) through (82a) is the computation of c, (tk), 1= 1y000,4,
J=15.00,6; k = 1,...,N, where ¢, ; is the partial derivative of the ith rader co-
ordinate with respect to the jth component of g(tk) as defined by (h4). If the

first element of r is taken to be the range r and the fowrth to be the range rate
*, in both the range-o-f case and the range-azimuth-elevation case, then the first
and fourth ruws of C will be the same in the two cases. They are given by

€y = (83)
Cip = c6 (84)
Cyg = CT (85)
Cy = €15 = Gy = © (86)
Cyy = Gyp = Gz = © | - (87)
Gy, = €8 (88)
Oyg = €9 , (89)




~ -5 L

In the range-q-p case,

?-g = (zy o By B

(90)

(91a)

Equations (81la) and (82a) give ¢ and B. Performing the partial differentiations

with respect to the uj‘s gives

Cpy = [-((06)F + (c7)%)eosy + (c5)(cB)sinv} /ENON
Cyp = L(05)(cB)cosy - ((c5)° + (c7)P)siny] /pENON
Cp3 = (c7)((C5)cosy + (C6)siny)/DENOM

C ) = Che = C g = 0

2 25 2
where
1/2
: 2 2
DENOM = {(xrkelnv - y}kcosv) +2 "

Cgy = (¢5)(c7)/RHO
Cap = (¢6){cT)/RHO

C

33 ~1/RHO

C3y = O35 = C36 = 0

where

2
RHO = {xrk * Vo }

2l

(SRa)

(93a)

(Ske)

(%)

(96)

(978)
(98a)
(998}

(100)

(101)




In the range-szimuth-elevation case,

T - .
5 = (v 42, EG 7,)
where

: Az, = arc tan (Zrk/xrk)

EL, = arc sin (yfk/rk)

Performing the partial differentiations gives
2 2
Cpy = "2/ (X0 +27)

022 =0

2 2
Cog = ¥pp/ (K + 20 )

Coy = Cos = Cgg = 0
C3l = yfk/rk
C3p = l/rk

2 2
C33 = Yy zrk/rk(xrk gy )

Cqy, = C35 = C36 = 0

(91b)

(81v)

(32v)

(92b)
(930)
(9hn}

(%)

(970)
(98v)
(99b)

(100)

3.5.1 The »bservation times tk' As has been said, there will be first computed
and stored 43 elements of B, and six of w for time tyyeeestyse-est . The matrix

(2€)

(102)

ot e b
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%
T LT I 7T
s~ AT RL A /2 + (3/7) jt‘; AT R A at + AR A [2, (103)

vwhere the integral has been equated to its trapezoidal-sum approximetion. Equa-
tion (103) shows that the number n of the observations need nct be carefully
selected, because for given end-points tl and tn,(103) can be used over & range

of intermediate spacirngs T, as long as they are small enough to warrant tne
integral-sum %pproximation. Since there is no reason to expect rapid chenges in
the product A'(t)RI(t)A(s), it seems safe to tske the values of t, perhaps 1/2

second apart, for the purpose of storing the elements of Bk and %o and to use

b
the stored values for computing the integral in(103), sfter whnich(203) may be
used with arbitrary 7 to compute S for other observation rates, by means of

arey _ 2T oI T I
u('r)_AlRl Al/a +A R An/e

+ (v/0){s(z.) - &7 By Ay /2 - AT RT A /2] (10%)

where T is the spacing of interest and To is the spacing used in the stored values,
50 that S(TO) is given by (26). OFf course the end-points t, and tn must be the same
for the two spacings To and 7.

1

The values of tl and tn will be selected after some preliminary investigationm,

for each trajectory, on the earliest time the projectile will be visible to the
radar and the latest time for which the accumulated errors in the simplified-
dynanmics equations are of tolerable magnitudes.

3.5.2 TInversion of the matrix S. From (34) and (35) it is clear that only the
first three rows and columns of ST are of interest. If the 8-by-8 maetrix S is
partitioned

S = (105)

-26-
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where Sl is 3-by-3; S2 is 3-by-5, and S3 is 5-by-5, its inverse has in its upper-
lefi-hand corner the matrix

(106)

The computation of (105) requires a 5-by~5 inversion and a 3-by-3 inversion, in
place of an 8-by-8 inversion for the entire metrix S. The use of (106) is pre-
ferable. Then

r~ o AP
P=1LS; L (207)
replaces (35), with
1 -0 .
2 xo/yb 0
L = . (108)
0 -zo/yo 1

3.5.3 Effect of not using doppler. If doppler is not used, the computations are
considerably simplified. The matrices have the following dimensions:

With doppier ' Without doppler
s, st 8 8 8 8
A L 8 3 8
R, R- 4 4 3 3
B 6 8 3 8
C L 6 3 3

In particular, only the first three rows of B need be computed and stored,
if it is known that doppler will not be used. It is intended to use the full

PR




system, as described above for the case in which doppler is used, &t least for thle
first few trajectories studied, to assess roughly the value of using doppler. If
doppler is found not to be of great walue, it is intended to omit it from wmost of
the computations for economy, and perhaps later to restore it for studying its
effects on the best filters fouqd. If doppler is omitted, so are équations (77),
(78% (79)s (80); (87), (88), (89), &nd (90), and i = 4;5,6 in (41). ‘

z i

' '

3.5.4 Summary of the computations. The sequence of computatiohs is as follows.
First, preliminary investigetions are needed to establish the values of dv_,

J = 10..,8, in (48) and of tysee0 5t Tor each trejectory. — J

The values of u _, (44), are computed for the reference trajectory and the
matrices B, defined in (46) and computed by (48}, are determined and stored.

The matrix M and the vector d are computed, by (51) through (71), for the
gun-rader geometry. M and § are used in (72)through (80), togethner with the
stored values of w _, Jo determine the projectile state-vector in & rectilinear,!
radar-centered coordinate system. - ;.

Thea (81) through (100}, with the a-version of equations (81), (82), (91);
(92), (93), (96), (97), and (98), give the matrices Cye for the range-q-g radar

coordinate system. The sawe equations, using the b-version, gives the matrices
Ck for the range-azimuth-elevatioh coordinate system. In both cuses, !’Lk= CkBk :

gives the matrics A needed in (e6). ;

Then for the spacing 7 = tk R of radar o‘.;serva‘éions, (26) gives the

matrix S; (104) is used for any other evenly-spaced radar observations. Finall'kr
(105) through (108) give the covariance matrix P of the least squares launch-
point estimator.

P
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4.0 FILTER-SMOOTHER DESIGN

4.1 Introduction.

This section will be devoted to a discussion of the non-

"linear filtering?smoothlng algorithm for estimating instantaneous state vari-

ables thet will be 1mplemented by the University in the next quarter.

The

first subsection ‘contains a short m&thematlcal description of the algorithms

to be employed.

The second will desdribe the basic problem formuistion.

This

will include 8 discussion of the equations of motion, state variables, and co-

verianced matrices.
concepts and future plans. .

4.2 EBstimation Equations.

,JFinally the third subsectlon will describe implementation

The nonllne ar fllter/smoother'speelfles estimates

of a given past state and the current n-dimensional state of a dynamical

system observed discretely in the

presence of additive Gaussman white noise.

The system 1s assymed to be descrlbed by the stochastic vector differential

equation

! g dx, = f(xt,t)dt + g(xt,t)dét

H i
i

{209)

L

. | ..
where;ﬁt represents a Brownian motion process with covariénce matrix

1 The corrupted m-d1mens1onal (m<
state by the expression

B h(x,) vy
1
I }
where !
i 1
| Xy = xt,!t =t, .
and ' '

(110)

)

!
n) measurement vector z, is related to the

|
! ) ¢

, : (111)

Lo, o (113)




An a priori estimate of the state x with covariance cov(x e ) is also assumed
givene

The elgorithm is composed of a set of discretized exirepolation equations
and a set of estimate updete equations. The extrapolation equations Gescribe
the behavior of the current state estimate x, and the associated covarience

matrices between observation samples. The update equations determine improved
estimates of - he current state and the prescribed previous state xk(k <4).

These estimates and modificetions to the covariance matrices reflect the new
information availeble in Zye

We shall denote the best estlmaue of state xk based on a realization of
measurenents Zy —{zl,...,zzs as kklz. The conditional coveriance will be de-

noted by cov(xk,xklzz) el —

-

The extrapolation equations for

t, =t + 40t

2 L1

are given as follows

2
2 2 2 W £(% t, o) ~
PR IRIPRAL R PR LI b al BTV Rl R PR U] (12k)

- - . T ~ $
cov! ,xz|zz_l) = ézlz-l °°V(‘z-1'xz-1lzz-1)§z|z-1+ g(xznllz-l’tzml)Qz-l

(3, by it (1)
cov(x %, 12, 1) = covlx,x, |2, 1)°m 1 (116)

Py 112-1 is the nXm Jacobien matrix of the £+ , t) vector function with
elements

[Fz-llz-Ji'J = Of (x,t)

3 =% a1 (117)




2p18-1

I+06F, 3, (1:8)

Q_; =Bt Qft, ) (119)

where I is the nXn identity matrix.

Defining the gain term

-1
T ] T
S, = ¥ (Hz cov(xz,xglzz_l)ﬂn + Rz) (120)
g oot 12
[Hp jbod =55 . (221),
: J X=Xp10. 7

We have for the update equations

A

Bae = Faan * oovnlZ, )8, Gy - bEy ) (23)

cav(xﬂ,lezz) cov(xz,lezz_l)(l - 5, H, cov(xz,xz|zz_l)) (12k)

cov(xk,lezz) = cov(xk,lezz_l)(x - 3, H covkxz,lezz_l)) (125)

e s e s

An expression for updating the approximate covariance
for the smoothed estimate also exists. The expression is however, not required
for implementing equation 123, Its utility is restricted to that of evaluating
the quality of the estimate. Since algorithm evaluation will be an importent
rart of the project, we include the equation

-3 -
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cov(xk,xklzz) = cov(x&,:&ilzz_l) - .cov(xk,lezz_l)sz H, covT(xk,xzizz_l). (126)

The algorithm is initiated by the given a priori information

= X (127)

»~
%
olo = %o

and
cov(xo ,xolzo) = ccv(xo ,xo) (128)

4.3 Equations of Motion. We assume he rader to be located at en altitude ho and
at laditude p on & rotating spherical earth as illustrated in Figure 2, A moving

x_ « North
g
yg - Iocal vertical

2 - East
g

Fig 2 Radar Iocation

et 2 e




Cartesisn coordinate system x ,yg,zg will be defined centered at this site such
that the xg axis points north vud the yg axis points up along the local verticle.

Figure 3 illusiretes a second coordinate system x 19092,

'\ Ya
X

/(" Radar faces ¢ radius
7 f - from north

y = Tilt angle

Fig 3 Radar Centered Coordinate Systems

obtained from the first by & rotation -¢ in azimuth and v in clevation. 1In
this system the X, axis is normel to the radar face pointing outwards and the

' and z, axes are in the plane of the face.

The simplified dynamic equations of motion in the x WAL coordinate

system are
s ™ ;—V - r;r - - 1.}0{ - -
¥ Xr yr 82 ~ Vzr & r rgx
Ypl=w»¢C KD(M)V Vor -3 K(#) Vor & = Vyr & [F ROV, : (129)
2

e V L]

zZ, Vor Ver gy - Vyr %x | “r | 34J
- L - - - - "

drag drift coriolis  gravity




and
§ = =00k pK, (M)VS. (130)
where
- 2 2 2 .2 2
h=h +x,siny +y, cosy +(’.°r cosy +y. siny +2.°)
2(Re + ho) :
Re = Radius of the earth
< 2
g, = -9.80665 [1-. 0006 cos 2u] (Re/(Re +h))
g, = g lsiny +{x (1 -3 sin%y) + V('3 stuveosy)}/(R, 40 )] -

g, = 8[cosy + {x_(- 3 sinveosy) + y,(1 - 3 cos™)}/(R, +h )]

g, =8, 2,/(R, +h).

The skew symmetric corioulis matrix is defined by the upper off-diagonal
terms

Uyg = 0 siné cosp cos®sinycosp - cosysing
0 cos?cosycosy + sinysing
0

(131)

and the projetile velocity relative to the air is given by the vector (of
magnitude V):

~34-

H1
e
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}'cr - Ws(cos AZ cosy cos? + sin AZ cosy sind)

ﬁ<:

V=5~ Ws(—cos AZ siny cos? - sin AZ siny sind)
Ve = &, - W_(cos AZ sin? - sin AZ cos?) ' (132)

where Ws is the magnitude of wind and AZ its azimuth direction (measured
clockwise from north).
Atmospheric data are assumed available in the look-up formet (as a function

of h) prescribed for the BRL pointmass program. The universal gerodynamic
curves are described by piecewise fourth order polynomials of mach number*

n
2
1
=

RD(M) 3

K (M)

H
]
=3

X e (133)

KA(M) =5 CH

4.k gtate Variables. As indicated in the previous quarterly report, the un-
known aerodynamic parameters will be treated as additional state variables to
be identified by the estimation equations 122 and 123. Included in the simpli-
fied dynamics (eq, 129) are two such parameters C and S. The varisble S is the
product of two unknowns, an assumed locally constant drift parameter r similar
to C and the projectile spin rate.

The state vector Xy is defined by the expressions

Xl=xr
Xy = ¥,
X3=Zr

* - -
See Appendix B for plots of KD(M) and K(M) as well as the coefficients 8,

J
b i and ¢, «35«




D3

X, = yf
x5='r
Xg = .r
X? =C
X8 = 5

And from the equations of motion we obtain

%,
X5
X5
£(x) = DLV + ne(vygz -, gy) + 2wR(U12
531vy + DP-(VZgx -V, g, )+ av.nR(U21
DLV + DQ(V?gy - v& gx)i'Eﬂ%JUls
0
D3 Xg
vhere
DL =-p X, X(u)v
® = - X I"CD(M)'/V"g

- .00%p EA(M)V

~36~

(134)
-
x5 + Ul3 X6) + gx
Xl# + U23 X6) + gy (135)
Xu + 032 Xs) +g,
4
(136)

k.
| = ey
ey

e et 4




The components of the Jacobian metrix ¥ are given in Appendix E.

The X2 yr, Zr coordinate system was orginally selected because the phased

array r%far neasurements are defined directly in this system as is illustrated
in pig. 4.

%

/ir.

-

Fig 4 Observation Vector

In state varisble notation these measurements (including optional doppler rate
informetion) are

- . - /2
/R (xlal + x22 + x32)
hix) ={a | = cos-l(xl/R) (237)
B8 cos-l(XS/R)
RJ (xl X, + %, x5 + x3 x8)/RJ

Again the Jacobian matrix Hz components are given in Appendix E.




4.5 Covariance Terms. In rader tracking applications the Brownien motion
precess B"'o in equation 1 is used to represent random atmospheric effects and

arrors due to modelling approximetions. Of the latter, the most significant
is the assumption that C and r are constant functions of mach number. This is
particularly true for the drift constant, however as illustrated in Figs a
constant C is also not an especially good approximation for KDi(M)/KD(M) in

the region about machn 1.

Although it has been shown that a best Q mstrix. for filiter implementesion
must be determined experimentally, order of magnitude estimates for Qi;l; and

Q).5 mey be determined as follows. We assume that et any time t for perticular
shell j C has been estimated such that

C = KDJ(M)/'KD(M). (138)

Then at time t+ft due to the change in mach number (and thus the true value
of the ratio of equation (138) there will be an error €. introduced in C

JD
given by the expression

€p = % 55 <x%d(m)fx‘,§(m)) (239)
-ht ¥ S [KDJ W)/ () | (40)
Vs
ot b [ 2 M) - €d K () |
) L & p, ¢ 500 (141)

Recalling the assumption

KDiM) - ozh o b (142)
9

‘We obtain

-38-
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{T - j hog ."l o
€. _ = Of v=mzemen T (a . - Da.). Ml (11'3)
JD Vs KD(M) 1,4 i i3 )

where we approximete

v =lo ICDJ(M)VE-!-gl (144)

Rather obviously the development for the drift coefficient will be very similar
to the above. By compuiing (for nominal p, V., and QE) error terms for drag

and drift as a function of mach number for the given standard shells and then
averaging the results; the following tentative g(x) 8x5 and Q'5X5 matrices were

determined
B 0016 1
. 0016
Q! = At . 0026 (45)
Q
3 S5
aamed
o ]
0
0
glx) =1 1 (146)
1
1
1
D3 X
e 3 8 -
where
10™2 LAk <M; MS.T
%, = l0-(3.3.63!-; - 12.34M) 7 <M 1.0l
10° (29.46% +.28.58) .01 <M< 1.1
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000196 L.I0<M; M5 .83

20”3382 - 11.666M) B3<Ms .% (247)

S5

:Lo’(mM - 1.2 9% <MsS 1.10

4.6 Implementation. The filter/smocther will be simulated using data gener-
ated by the programs described above in Section 2 of this report for a number
of nominal projectile trajectories. The past state to be estimated by fixed
poin’ smoothing will be that which would correspond to Xo’ the first point of

the tracked portion of the trajectory. Experiments will be conducted as to
the viabhility of using algorithm generated covariance matrices for error evalua-
tion studies. Convergence properties of the algorithms relative to given @
matrices and higher order expansions (perticulerly h(x)) will be considered.

~40-
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5.0 CONCLUSIONS AND PIANS FOR FUTURE WORK. As pointed out in Section 2 ebove,
a set of simplified-dynamics eguations has been obtained and progremmed with
corrections for both drag and drift. Tentative numericel resulits obiained so
far indicate that these equations approximate rather well the effects of drift
keeping the recultant lateral errors quite small. The drag term, however leads
to longitudinal errors that are disappointingly large. This effect is most pro~
nounced for cases where the point at which backtracking beglns occurs. after the
projectile'’s velocity has crossed the mach 1 region. This appears to indicate
that satisfactory results cen only be obtained in such cases when it is possible
to obtain valid tracks of the target while it is still going at speeds greater
than mach 1. Work remaining to complete this effort must include & systemetic
investigation of the lateral and longitudinel errors to be expected in backtrack-
ing for a comprehensive set of trajectories. Also, additional thought will be
applied ‘o possible refinement of the drag correction so as to decrease tne long-~
itudinal errors to an acceptable value. '

In Secebion 3 the formulation necessary to determine the magnitudes of irre-'
ducible errors due to radar ouservation noise has been developed and the necessary

programming is underway. The purpose of this progrim is to determine the theoreti-~ -

cel accuracies attainable in launch-point estimation, on the assumptions that the
simplified-dynamics equations are correct. That is,'it finds the minimal errors,
using best possible filtering and smoothing without limits on the amount of compu-.
tation required, that result from the existence of the radar noise. These minimal
errors resulting from radar noise of course add to the errors introduced by use of
the simplified-dynamics equations. This will include & deternination of whether

acceptable estimates can be made for the drift and drag parameters so as to permlt.

effective use of the simplified-dynamics equetions for backtracklng.
H
The work in Section 4 constitutes a detailed formal procedure for performing
the filtering and smoothing required tu estimate necessary inpufis for backtracking
from a set of radar observations. Work has begun to create a eomputer program for
the realization and evaluation of this algorithm. ! 1 ’
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Appendix A
Modified Point-Mass Equations

The equations here described are taken from Reference [IJ. The total
instaneous vector acceleration of the projectile's center of mass with re-
spect to the ground is

U = (dreg term) + (drift term) + (Magnus term)

+ (gravity term) + (Coriolis term).

The drag verm is
2, .\ 21
-(pd /m){KD + K (Qﬂé) jvy,
o) [0
the drift term is
2 2
(ed"/m)K v L @,
and the Magnus-effect Lerm is
3
(pd” /m)KNa(e, x v)

where p is the air density,
d is the projectile diameter,
m is the projectile mass,
’ s K., and are functions of Mach number characteristic
K> Ky s Kgp A K

of the projectile,

Q is the projectile yaw drag factor,
© % is the projectile 1lift factor,
N is the spin angular velocity,
v is the vector of projectile velocity with respect to air,

and ae is an approximation for the angle of repose.

Auxilis-y eguations are used for computing N end &,

=43«
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¥ = ( pal*/A)KANv

where A is the projectile's axial moment of inertie and KA is a function of
Mach number.

%e= (o - )y xa) - (vxg)
where g is the gravity vector,

a, = AKLN/ (pd3KL Ky w + pd5 Ko K Navz—‘:)

@ = mKTN/(deL Ky v + pd3 Kp X e )
and KM’ KT are functions of Mach number.

From data not given in Reference [JJ but used in the programs that com-
pute the modified point-mass equations for the 105mm, 155mm, 175mm and 8
inch projectiles, KT = 0, giving at once the simplification

.. 3, .
a, = -(AV/pdK v ) (v x 1)
and the drift acceleration term becomes
-(An/deMv2 )KLQ(X x é).

In 2.2, KL/KM is called K, (M) and Af/md is called 8.

Computation of the wrag coefficients Ky and Km(q,aé'2 ) indicate that for
ae < 2° the sum behaves o an order of magnitude as z{'Do alone. Since simule-
tions with the wodified point mass model indicate that angles of>2° occur only

in the vicinity of apogee and then only for QE's = 800 mils, it is agssumed that
the approximation )

3 dreg = (-p/C)K, VX
_is always valid.

bk
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Appendix B

Universal Aerodynanic Functionsg

This appendix includes ccefficlents for and plots of the universael drag and
drift functions employad in the estimation algorithms. For comparison, graphs
of ‘the nominal drag, K’Di(M)/Ci and drift aiKi(M) functions for the four standard
projectile types employed in our analysis are &lso included. It can easily be
seen that the universel ¢rift function tends to be & pcorer epproximation than
does the corresponding drag function.

The multiplying constants ¢y and T, deternined with the universal curves are
given along +ith their resrective nominel ballistic coefficients ¢y end 1ift
Taqtors 25 in Tabie B.1l. Computation of the eppropriate cs and rs for any part-

icular trajectory (charge and Q.E.) in the backtracking evaluation required the
Tfollowing scaling operations

c. = C, (¢ /C. )
. ltrue 1nom inom 1‘crue
and
T, =r. (&, Ji. )
ltrue lnom ltrue lnom
where the e true a.ndf,:L true are available from BRL data.
' o . Zoble B.1 e
Shell Drag Nominal Drift Nominel
Diameter oy Ballistic Coef. ri Lift Pactor
© 105 MM 1.38850 1.919 661707 .863
155 MM 1.07657 2.331 1.12855 .963
175 MM .69032. 3.10L «Th11013 1.009
8 1IN 8liks9 3.16 1.168419 .880

. The coefficients for alJl three aerodynamic fﬁﬂét’bné also given in this apypen-
dix as Table B.2 are for piecewise fourth order polynomials (of Mach number ) fits

to the respective curves. fThe particular coefficients are assumed valid between

the previous breek poirt mech number up to anid inclviing the value given in column
six of the particular row of ccefficient values.

format as is employed in the "aeropacks" of the BRL point mass progrem.

List of Figures

Fig B. 1
Fig B.2
Fig B.3
Fig B.4
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Universal Irag Curves
Zero-Yaw Drag Curves

Universal Irift Curve
Zero-Yaw Lwift Curves

All values are given in the same
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Appeadix €
Computer Program Development

The sterting point for this work was & FORTRAN program ;6 compute modified-
point-mass trajectories, produced at Ballistics Research ILaboratory and furn-
ished to Project RATRAN by USAECOM. In adepting this program to the Spectra-TO
Computer at the tMoore School several minor bugs were eliminated and several
features were added tc obtain desired results. A description of the mein pro-
grams in use is as follows.

F-1. PTMASS - a module composed of 9 subroutines which compubes the trajectory
of a shell and the corresppnding rader coordinates in either phased-srray
or range-azimuth-elevation form. This module includes the following sub-
routines: ‘

A. PTMASS - the mein calling program whican calls all of the others and which
reads in and stores the varieble data - corresponding to & particular tra-
jectory. This input deta includes the necessary variesbles for computetion
of the radar coordinates.

B. AEROBL - a subroutine called by PTMASS which reads the aeroballistic data
for a particular shell from a disk file, checks the data for errors, &nd
stores it for later use in computation of the aserodynamic coefficients XKDA,
KDO, KLO, KM, KF, KA, and KIA.

C. TRAJ - & subroutine called by PTMASS which computes the velocity and posi-
tion vectors of the trajectory at specific points in time, vusing a’'single-
step predictor-corrector type of numerical integration, and which &lso
computes the corresponding radar coordinates. It is possible to obtein
either phesed-array or range-azimuth-elevation radar coordinates by vary-
ing an input varisble. This subroutine will compute the trajectory until
one of the various "stop conditions" is satisfied. These stop conditions
include termination of computation when time, the x-coordinate of the
position vector, the range, the height of the up-leg, or the helght of
the down-leg have reached & given value, or &t the summit of the trajec-
tory. Other velues printed out at each time interval include mach number,
drag, 1lift, and megnus force.

D. COMPC - a subroutine called by PTMASS before TRAJ is called to compute the
trajectory. COMPC computes the ballistic coefficient ¢ as a function of
the gquadrant elevation.

E. COMPT - a subroutine called by PTMASS and TRAJ which computes the time of
flight correction as a function of wachine time,

F. COMIFS - a subroutine called by PIMASS which compules the fuze setting.
G. COMPL - & subroutine called by PTMASS before the trajectory is computed

which computes the lift factor as a function of the quadrant elevation.
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COMPNF -~ a subroutine called by PTMASS which computes the muzzle velocity
correction factor N if the standard weight of the projectile is different
from the actual weight.

COMPPT - a subroutine called by PTMASS which computes an adjustment to
the initial velocity if propellant temperature is not TO°.

BACK.PTMASS ~ a module of 1C subroutines which computes the trajectory of
& shell and has the option of stopping at any point in time and integrat-
ing backwards until height is zero using the simplified dynamics equations
for drag and drift. This module includes meny of the same roubtines as
PTMASS - those that are different are explained in further detail below.

AGAIN - the main executive which ca2lls all the others. AGAIN is ‘similar
to the routire PIMASS except that it does not have an insert allowing it
to read radar data. It also differs from PTMASS in thet it has & patch
which calls AEROBL to read in the universal aeroballistic pack for use
in backward integration.

AFROBL -~ same as before

AGAIN.TRAJ ~ a subroutine called by PIMASS to compute the trajectory. This

routine is similar to TRAJ except that it does not compute corresponding
radar coordinates &t each point of the trajectory.

BTRAJ -~ a subroutine called by PI'MASS which computes the trajectory back-
wards until height is zero using the simplified dynamics equations for
drag and drift.

COMPC ~ same as before

COMPT - seme as before

COMPFS - same as before

COMPL -~ same as before

COMPNF - satie as before

COMPPT - same as before

AGAIN,PIMASS ~ a module of 10 subroutines which computes the trajectory
of & shell until one of the various stop conditions is satisfied. This
program has the option of stopping at any point in time and integrating
backwards until height is zero using the standard BRL equations for drag,
drift, and magnus force. This capability was designed into the module as

a check on the backward computations of BACK,PTMASS with the simplified
dynsmics equations.

-52-




A. ACAIN ~ same as before

B. AFROBL -~ same as before

C. AGAIN.TRAJ - seme as before

D. AGAIN.BTRAJ - a subroutine called by PTMASS which computes the trajectery
hitaieiombdeinbicia S aaee . . - = v =
vacxwards until height is zero using the stendard ecquebaons for drag, drifi,

and megnus force.
E. COMPC ~ same as before
. COMPT - same as before

G. COMPFS ~ same &s before

H.  COMPL - same as before |
i
I. COMPNF ~ same as pefore

J. COMPPT ~ same as before i

F-It. Considerutions in implementing simplified drag and drift:

As originally designed; the program module AGAIN.PTMASS had the capability
of stopping computaticn of a trajectory at any point in time Lusing & stop code
of 4] and of integrating backwards until height was zero [using a stop code of
9]. It wonld have been easy to run the program with & stop code of L to some
point in time and then re-run the program using the final values of the velocity
and position vectors from the previous run as input to compute backwards with a
stop code of 9. This approach, however, would have been wasteful of computer
time end slower, &s the entire program would have to be reloaded to compute back-
wards, and the input velues for the second half of the run would have had to be
written to a disk file, or punched into cards. Instead the module was modified
so that upon reading a certain input card, the program automatically switches to
a subrvoutine which integrates backwards using the simplified dynamics equations,
taking the last values of the trajectory as a starting point.

The procedure is initiated by reading an A cerd in the input data. This
signals the program to read in the universal aeroballistic pack for that
perticular shell type. Then the subroutine BTRAJ is called to perform the
gackgard integration. The patch made to the program is showm below in lines

20-633.




c PROCEDURE FOR AN A CARD
C ' STORE NEW AEROBALLISTIC DATA

112 IDSET=8B(1)
c YEST READ NEW AEROPACK OR NOT

" IF({IDSET.EQ.32) GO TO 700
CALL AEROBL{IDSET)

3 5 GOTO 110

T PRINT HEADINGS
700 IF(TEST.EQ.O) GO TO 701
WRITE(64406)
GO TO 702

" 701 WRITE(6,405)
702 WRITE(64450) )
c COMPUTE THE BACKWARD TRAJECTORY WITH SIMPLIFIED EQUAT -
CALL BTRAJ{1,METRO)
GO 70 (43,113),1ER
113 GO070(95,109,108),IERR

The subroutine BTRAJ was created from the rout TRAJ which computes
trajectories under & variety of stop condition: A patch was uede just after
the eniry point to the routine which sets all the necessary variables to en-
able backward integration to take place (stop code = 9). Tt was necessary to
remove all statements which initialize the values of time, position, and
acceleration for the final values from the forward run were to be used. Since
these variables were all placed in the COMMON area of storage, the final values
were automatically passed in when the subroutine was entered. The patch that
. wes added to set the veriables is shown below in lines 44-52 of the listing:

DATA TOL/.0L/ . -
METR=METRO
GOT0(1000,2),J4TR

C. FIRST CALL PROCEDURE
c SET TIME TO FINAL VALUE FROM FORWARD RUN
1000 Ti=T ]

¢ c SET STOP CODE Y0 9
o 1STOP=9

C SET PRINY INTERVAL T3 -~1.0

- PINT=~1. ' S -
- C SET FINAL VALUE TO ZERO
Fv=0,

RECH=2.20§622622/NT

Other changes made to the program to implement simplified drag and drift
include a section to set up the constants used in the actuel computation of
drag and drift, as explained in another section of this report, and replace-
ment of the equations to compute the forces of drag, drift, and megnus force
with the nev equations as shown below:

ALPHA=SURT{ALPHS)
c FIND COMPONENTS OF UDOT--THE ACCELERATION
. C D1 IS DRAG
c D2 IS ORIFT
N ¥ D3 IS MAGNUS "FORTE
; 710 D1=«RHO%V%KDO%*DDD
. D2 = NR*KLO/VSQ o
D3=0,

1
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Appendix p . i
Coordinate Conversions : :
Project RATRAN has been using a computer prograwu writfén by BRL, for generat-

ing projectile trajectories by means of the modified point-mass equations. In
order to prepare for simulating the signal-processing filters to be designed,

there have been added instructions to the BRL program that compute the center-of- b

mass projectile coordinates in radar axes, concurrently wi ith the computeiions by

the original program of the position in gun-axes. This eppendix describes the
radar-axas computations. :

The gun-axes in the origina’ program are a right-hended rectilinear system .
with origin at the gun, the y-axis positive upwerd along the local vertical, aud
the initial velocity vector in the x-r pleane. The radar coordinatés of the center
of mass of the projectile are computed by rigid translations, and rotations of. co-
ordinate systems until the projectile positicn is expressed in a right-handed
rectilinear system with the origin at the radar, the y-axis positive upward slong
the local vertical, and the x-axis horizontal along the nominal zero- ~azimuth line |
of the radar. Then the rectilinear coordinates are transformed to range~(~-8 radar
coordinates and also to range-azimuth-elevation. The earth is assumed to be a

sphere of radius R. The rader elevation is not assumed to 'be the same as the gun
elevation. : !

- *

Three input constants, x , yg, and A2, define the gun-axis system with'respect

to the radar coordinates. These three constants are most easily explained on the
basis of a rlat earth. A2 is measured clockwise looking down, from a line through
the gun parallel to the radar x-axis, as shown in figure D-l. The position of the
gun in the radar rectilinear coordinate system is at z = x =y . {The ch01ce
of the symbols x , yé here and in the program annotations %s inconsistent with the

choice of axes, for historical reasons arising in the fact that information from
BRL, including computer programs, uses & vertical y-axis and 1nformation from ECOM,
in particular the gun location, uses a horizontel. y-axis. )

The first coordinate transformation is a rigid rotation about the vertical, to,
meke the gun x-y plane pass through the radar. The equations are

L (x2+y2)1/2. . | | .
g g ’ .

ClL = (-xggin A2 - ¥g00S A2)/d . S

= cos A2 -~ y sin A2)/d
( x8 yé )/

=55
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"
]

X, C% - Zo S}

[
1}

x Sl+z Cl .
.0 o - :

-

where y 3 y ’. zo are the coordlnates of the Drogectlle center of mass as produced

by the orlglnal BRL conputer progr?m.
i
Next there is a rigid rotation about the cencer of the earth, to meke the y-
axis pass through the radar; the, origin is also moved upwérd a dlstanee h, the
helght of the radar above the elevatlon of the gun. The equations are

J . :
LY

2 ! -

X, = xl(l - 85/2) - yo -4

-y /a
3 yg/
S3

_ o -xg/d

R
w
]

x2 C3 - 2 l§3 !

xas3 + 2,08 |

1

, ' ' ‘ 2
A N yo(1 - 0%/2) - 8af2 - n,
1

where h is the height of the radar above the altltude of the gun. The coordinates
of the' ceriter of mass of the projectile ipn the rectilinear radar-axes system are
’x3, Y. z3. The reason for hot explicitly performing the rotation through 6 in the

usual manner is to avoid the round-off error of subtracting nearly-equal quantities
of the ordér of R, the radius of the earth.

Concurrently with the conputatlon of X, ¥.» 2, there are computed their time
’derivagives, using the time derivativex xo, yo, and z prioduced by the original

! ! i \

i




BRL program:

and the range rate

are computed.

1
b
tn
d
+
NN
Q
]

Sde
|1}

3 x203 - zlS3

Ne
i}

x283 + le3

The radar range

1
2 2 2
r = (x3 +y3 +z3)

B =g &g 4y §y 4y 2g)/r

The phases-array radar angles are computed by

R
1

arc cos (x3/r)

ho:]
1}

arc cos(z3/r)

The azimuth and elevation angles are

AZ = arc tan(z3/x3)

EL = arc sin(y3/r)




- —

[ [ S T U

,‘/'
Radar 3

Position of Gun in Rectilinear
Radar Axes

(Note: the gun coordinates are called (x ,y ) as shown above, in the program

described in Appendix D. They are called (zg,xg) in section 2.)

Figure D-1
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Appendix E
Components of Jacobian Matrices

A, F Matrix

7/ \
;O 0 0 0 0
v/ 0 0 0
/ 0 o 0 1
\ By Fsp O TFy Fog Fog Fyp Fog |
Fer T2 Fo3 Ten Y5 Tes ey T
0 0 0 0 0 0 0 (0]
Yo Feo O Ta, Fgs Fgg Tgy Fag .
t bnl D~
T = e st (8, - VoB) ey
- aDl oD,
Fyp = !_Vx &t (Vygz - Vzgx) R
¢ 9D, 9D, - X
Ry = D+ Yy 57 57 (8, - V801§
) oD X
| 1 9D . -
Fus = Ve 57 t a7 (V8 = V8,0 ] ?;2 e, e,

~£9-

e A o bt o e R et s
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oD
= | 1..8 - 2
Fig =LV 37 T a (B, - V8 ’J 2o, - g,

Fig = Dy vx/x7
Fyg = Dp(Vy8, )/%g
51 =LV g-h( vs)aD]smv
oD
F S+ (Vg8 Vi) e feos”
Foy = [Vy :% * g‘x'lj"a' (V.8 - )] Tty - D,
- oD, D

- 2
56 © Lvy N T (v,&, - z)] Tt 2y + Doy

60~




) aDl BD2‘1
Fgo =1V, ST (ngy - Vygz) 31-1-.Jc°sy

X

_{ ] Ay
P = LV o+ 57 (il < Vg T ¥ ey + 20y

= | 2 - 12 .
F65 =iV vt (ngy vygx) .] v Dy8, * 2mU32 {

e o e s

e e




)
Fgp = Xg 35 cosY
Foy =(X i )X—’i
8y “1"83v /V

" en e mm m e e G G M W W o W B e Gm E G G M ey M M = @ m s e e e e = ™

D - - . -, OV
" dp(h)/on7 . ro +1" s
5 Dy =y * -00ke(h)_ I i e M) 5
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ﬁi -o(h) X ho,h(nl) a. Ml‘

BD2

W=-—v3- '13(1-2)1) Mi_l

oD
gTv‘)L = - .00k p(h) | LBy Z)(i41) c, Mlj

* -9 2

O p(m)/Oh "~ _ g 66473 x 107 - 460557 x 10-0h + 126345 x 10~k

oV *

5 = - 3.8 x 107 h S 11,000

0 h > 11, 000

¥ i
Assume U.S. Standard Atmosphere

e M ew w e e W @ s e M W @ @ W e w e I G e s W B v G @ e e e e e W o e e

B. H Matrix

PRI




H12=X2/R
H13=X3/R
[o2 2,2
Hy, = - /%, +X3/R
iy = % %
2 JU
Ra/X22+X32
X, X
S T
fo3 = 77 752 s x32
X, X

- 3.3
"31" 2 2 2
R/xl +x2

X3 X5
. H32=R2/Xi2 +xaa

Hag = /2.2 + 2,2/




By = \%, R - I'lej/ne
H.,=\X.R - RX,j/R°
e = \%5 %)
=1X e /2
By = \Xg R - RX5,/R
HM=xl/R

Hys = %/R

Hg = X3/R




Aggendix F

Glossary of Symbols
8, Projectile Yew angle of repose
a,B Radar angie measurements
AZ : Wind azimuth angle
c Unknown drag parameter
d Projectile diameter
Dl - p C K(MV
® -5 I—<D(M)/V2
D3 - .00% p KA*(M)V
f(xt,t) State variable equations of motion
FE-llﬂ—l Jacobian matrix Of (x)/dx
8, ) Sea level acceleration of gravity
8x’gy’gz Gravity vector components
a(x,t) Matrix function
Y Rader tilt engle -
h Target altitude
ho Radar site altitude
h(xz) Redar measurement vector
H, Jacobian matrix oh(x)/dx
Ki(M) Drift function
KDi(M) Drag function { Projectile i
KiA(M) Spin function
~66-~
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K(M), Kb(M), ﬁhﬁM) Universal functions

1 Projectile 1ift factor

m Projectile mass

M Mach no.= V/Vs

b Laditude of radar

N Projectile spin

®a Earth rotational rate

¢ Radar pointing angle (clockwise from north)

*e]2-1 = I8 Fy )0

Q : State noise covariance matrix
]

Q.t = Qt &G

T Unknown drift parameter

p Density of air

Re Radius of earth

R Target range

R Range rate

S = NXr

U Coriolis matrix
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sty e Gt

Projectile velocity (W.R.T. air)
Projectile velocity vector components
Speed of sound

Ground located Cartesiean coordinate system
Radar located Cartesian coordinate system
state vector

Bstinated shate vector

Radar measurement vector
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