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ibstract
Since Final Report DAJA37-53-C-1223, the following papers
(' have been published on work supported partially by this Contract: 3
(i) Interaction between point defects in metals, by N. H. March
and J. S. Rousseau, Crystal Lastice Defects, 2, 1-L6, 1971
; (ii) Partition function of a disordered system, by J. S. Rousgseau, /
. J. C. Stoddart and N H. March, J. Phys. C., L, IS9-I1, 1971 ,
* _ (i11) The Dirac and t ma’rices for spherically symmetric potentials, 3
by J. S. Rousseau, J. Phys. C., L, L351-I35h, 1971
} Furthermore, an invited paper was given at the Battelle i
7 Colloquium, Seattle last Summer on !Computer Simulation of Lattice j
g Defects® and will he published ir the Procesdings of that meeting. )
This is entitled i
tkanzaki forces and electr~n theoiy of relaxation round defects! §
{ by N. H, March and J. S. Rousseau. E
The substence of this latter paper is reported ia Part A of the g
, present report. \
: Part B coatinuss cur work, begun by Rousseau, Stoddart and ’

March (1970) and continued in (ii) above, on elcctron states in }

disordered systems, by considering spscifically the electrical g

i resistivity of liquid mstals in the strong, as weli as the weak :
scattering regime. While, for weak scattering, we regain the ﬁ
< Ziman formula, we expect our itheory also to apply to strong scatterers,
1%+ the 1iquid alkaline earth metals. -* Gf psrticular tstoreet j

E:
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here are the metals calvium and berium, for which electrical
transport measurements have become available very racently

(Van Zytveld, Enderby and Collings, 1972). These workers

conclude that no simple modiffcation of the pseudopotential theory
can explain their experiiwnts. We report in Part B thevefore

a basic theory which is capable of dealing with strong scattering
such as we encounter in these liouid metals. Calculations of

the single-centre scattering for calcium are in progress, in

crder to br.ng our theory based on the iaverse transport coefficients

into contact with experiment.
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PART A

Introduction

Especially in metals, there has been a gcod deal of interest
in the theory of ..arged defects; for example a vacancy iu Cu,
or Mg atams in dilute concentrations in Ii. So far, however, no
very careful account of the detailed relaxations of the lattice
round the defect or impurity site has been incorporated in such
electron theory calculations, though attempts have bee;n made to
include same account of relaxations by modifying the Friedel sum

rule, which is frequently used in defoct calculations to simulate
self-consistency.

Thu eleciron heory of defects in metals has proved to
make interesting predictions about, for axample, caarged defect
interactions, especially in polyvalent .etals, shich appear to
egree in general tems with experiment (see, for example, the

review by two of the present writers (March and Rous$eau 13970)).

But a substantial body of work also exists in which 2
markedly different philcsophy is adopted. Hers, relaxation
effects are studied &«s tne prime objective, usually on the basis
of pair forces. Unfortunately, such an approach often fails
to include a propar account of electron redistribution caused by
the introduction of defects or impurities into the lattice.

Though this is a serjous lixitation, neverthcelesa the approach has
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poectical merit in that it aliows local relaxations rcund defects
to be estimated, in & way which matches thess on to the correct,
lcng~-range lattice displacements given by elasticity theory, at
large distances fram the defect. Indeed, quite a body of work
ig now gvailable giving us gstimates of the displaced positions
of lattice atcms about a vacancy, or a divacancy, in & ramber of

metals.

Such calcuiations, macde with plausible pair forces, show
that even when a vacancy is created in g open body-centred cubic
structure like Na metal, the otomic movements are reclly quite
emall. This is a fortunste circumsiance and had been anticipated
by Xanzaki (1957; ses also Matsubara, 1952) in his method of
lattice statics. Hers; the idea 18 to simulate the effect of
a vacancy or impurity in a lattice by regarding the originally
perfect lattice as strained until it takes up the relaxed
configuration appropriate to the equilibrium atamic positions
sn the defsct lattics. Ooviously, external forces must be
appiied to held the other atoms in their displaced positions.
We shall refer to thess external forces as Kanzaki forces and
to the strained, but otherwise perfect, lattice as the Kanzaki
lattice. FKanzcki assumed that 211 the displacemsuts X,
say, fron the perfect lattice positions £, were sc small *hat

one reed work only to first-order in u :

Thus, cn the ore hand, we have the electron theory, in
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wilch a basic quantity characterizing the defect is the localized
charge it displaces (as 2 specific example to be referred to again
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later, see the calcula“ions of Stott, Baranovsky and March, 1970,
on the charge displaced rourd vacancies in close-packed polyvalent
metals) and, on the other, the method of lattice statics, with the

: strained Kanzaki lattice held in the relaxed final configuration
by external forces.

- : Though the prasent raport 1s concerned with the electronic

stracture of defects, the idea of the Kanzaki lattice will play
a central role in setting up the theory. Specifically, this

; alluws us to develop a means of treating the difference betwsen
’ the charge displaced by a giver defect potential in the unrelaxed
lettice ard that displaced by the same defect potential inserted

oo

in tne Kanzaki lattice. Some preliminary results for a2 vacancy

in Cu metal are referred to, by way of illustrating the approach.

LRI TR

It can be objected that, to set up the Kanzald latiice,
we mugt know the relaxations at the ovtset. This is truc, cond

we rmust use some storting es:imates such as those referred to

et s
L5 WY oort 5 GEFATI 'l
ol

above from pair pstential studies. However, once the charge

%
‘

displaced in the Kangald lattice by the defect potential is known,

W

we are in a position to calculate the electric fleld at the
ionic positions in the Xangaki la*tice, and hence frum the

Feymmants theorem, the Kanzakd forces. If these a»e not

- P
L o L ™
N7 BT T VD © PR K XA

. cotisistont with the original displacements R, , Kangakd'!s method \
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can then be usad to gsnerate a new set of displacements. The
new displaced charge must then be found. Clearly, we can, in

prineiple, iterate until a self-consistent result is obtairad.

Though, therefore, at least in principle, the theory
given here con solve the problem of the electron distribution round
a defect in a correctly relaxed lattice, thers are a mumber of
practical issues to be resolved, which will, almost certainly,
involve major elsctronic computation. Of these, a primse
problem is that, to obtain the electronic structure of a defect
centre, woe must have a great deal of iuformation about the perfect
lattice. We do not, as yet, have that information in a suitably
anlicit form for any metal but, as we shall show in section 3
below, a good deal of it, though not all, can be got fras woll
established methods in the band theory of perfect crystals. The
second difficulty resides in the fact that methods of solving
the prohlen of scattering off a defect potential in the
unrelaxed lettice are still troublesmme to apply. However, when
both the perfect crystal, and the defect potential, can be
constructed from muffin tin potentials, we have the rigourous
one-elictron theory of Beeby {(1967), while for three classes of non-
mffin $in defect potentials we have available the explicit
approxi. ationggiven by Stoddart, March and Stott (1959). A
third difficulty is that we do not know precisely what potential
to take to describe the defect. But at least, we can give
an oporational definition of what that potential must be and

wa do this in section L.
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We conclude this part of the report with a brief discussion

A
v

‘ of the way defect energstins might be studied within the present

i framework. 3
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A convenient starting point from which Lo explain the bagic

ingredients needed in the electron theory is to study how the

o
&
Phastnsbannsarsigam e corrrryat Wiwg oo vy vht K8y Pl 2O

electron density po(g) in the perfect crystal, which is accessitle
- to experiment via the intensities of X-ray scattsring at the Bragg
reflections, is changed when we strain the crystal to foim the

Kanzaki lattice, and we turn immediataly to the solution of this

s AP ARAATT € AT § 2NN a4 AmaiAD.

problem.

2. Electron dansity in Xanzakl lattice

We start with a perfect crystal, with atoms at lattice points

:u-.l.‘hl}.‘.\’.M(:ILL-ALW\C!—‘:.AJid\ PUUIVE NPT

5 We simply strain the lattice, introducing neither foraeign atoms, nor

vacancies.
The method we use to generate the electron density in this :
Kanzakl lattice is that used by Jones and Ma=ch (1970, referred ?
to subsequently as JM) in their theory of lattice dynsmics. The ﬁ
theory is immediately useful within the framework of the Kanzaki 1
"" method of lattice statics, provided only that the displacements ;
from the sites ¢ , sayu, , are sufficiently small so that we 3:
need work only to first-order in the displacements. This is a z
basic assumption of our approach, and it will have, of course, to i
,’ be checked for consistency in any appiication. As we stressed above,
howsver, even with a vacancy in an open structure, it is found in

: practice that relaxations are often quite o small fracticn of the

H
3
X
E]
3
H
]
3
F
%
%
-
%
x
H
&
4
b
H
M
3

1lsttice paramater, and the present apprecach should be widely applicuble.
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Let the change in electron density when the lattice is
'strained! bs p1(_1:). Then, to first-order in the displacements, the
theory cf JM allows us to write

A (r) = 2y, Rz - 2. {2.1)

The vector R satisfies ¢n integral equation given by JM which
involves knowledge of the exchange and correlation energy or ths
inhamogeneous gas of electrons in the crystal (see Appendix . for
some relevant details.) However, it is important to note that R(r)
evidently also determines tha gradient of the perfectly periodic
lattice densityp o(r) through

Vpo (r) --&2 2(z - &), (2.2)

Information about R(r) in Fourier transform is therefore
available at the lattice vectors K. Heve, in fact BK is
determined uniquely by the intensity of X-ray scattering at the

Bragg reflections, as discussed in JM. Ia particular

Be =1 K (2.3)

where Q( is the Fourier compotent at K of the charge density
P o (x).

Thus, it is clear that if we know, Jrom say a pair voteatial
study, a first spproximation to the gz’s and if, as discussed above,
these relaxations turn cut to be sufficiently amail, we can generate

I,
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4 the dersity P (r) + P;(z) at any point in the Kanzali lattize 5
from e knowledge of the quantity R characterietic >f the perfect ‘
lattice. 1
As an erample to illustrata this methcd, we shall consider f
'” in Appendix 3 some preliminary numerical rasults for R in Cu netal,
from which P 1(r) for a vacancy in Cu metel can be estimated vsing f
: the displacements u . calculated by Tewordt (1958). ;
1
Howsver, it is clear that, though P,(r) is a basic quantity
reeded in the theory, a gooa deal more irnformation is required in :
order to generalize the approaches of Beeby (1967) or Stoddart, i
March and Stott (1969) to deal with perturbations in the Kanzaki
lattice. We shail thevefors turn next to discuss the Green function ‘
or density matrix describing the Kanzaki lattice. The discussion
- of the density above is, of courss, a special case of this more N
;‘ general treatment. We want to emphasize though that the above |
discussion is exact to first-order in the displacements if the

s prope~ties of the perfect lattice, as sumarized in R(r), are

known.
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‘ 3. Green function and/or density matrix in Kanzald lattice 3
. We can, as we shoew beiow, set wp the Green function of the %
3 Kanzald lattice, from that of ths perfuct lattice, G O(_x: g'E) say; %
x the latter being constructed such that ths exact electron density i
3 P o (zzr Ef), with E, the Fermi snergy, is correctly incorporated. :}
. %
Below we shall work with the canonical density matrix x
: z
E C, {r r'B) for the perfect lattice, defined by ’%
3 cC (r ' = ! P ! -8 B (k) 2
vhere the Hlech wave functions ‘ka (r) and corresponding eigenvalues ;;:
Ey (k) are generated by the periodic potential VP(E) which gives ;3;
E £
b by definition the exact ground-state density in the perfect g
. : ]
3 unstrained lattice. If we take the laplace transform of Co ;
with respect to B, and call the transformed variable -E, then f
we regain the Green fuaction QO (z r! E) immediately, .so that i
b - 3
E whether we work tith C or G is purely a matter of mathematical %
; convapienca. §
: %;:
Following JM we can write for the strained lattice, a %
3 : perturbing potential AV(r) having the form i:
= 3
8 V(r) = Z% P(z ~2¢). (3.2)
3 ' ;
3 4 3
E Frun JN, (see 8180 Appendix 1) we know that %
2 z
i 3
“;: §-
P AT o kP A B o e TR R AR W Ty O IR R S F e T A T A e ] w'g
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B@) = [B@ Pz 2 (3.3)

¢ whore F i a one-body response function given by (cf Appendix 1) :2

3 o -

. omd oo r'E) 2 (z2'®) (3:L)
B JE L B) —

where P (r r'E) is the Dirac density patrix of the perfect lattice. 3

= Once the periodic potential V) is kmown, P &nd G, can be caloula*sd 5

2 purely fraa the Hloch functions ¥ . {z) @and the energles E vk j

“.¥i,

Y T
; T :

- It is clear from ( 3.3 ) that knowledge of the one-bc i
By
response function F(r r*) plus P(r) is equivalent to knowing R{r). 3
3 ]
B 3
To generate the density matrix in the Kanzaki laitice, we now E
‘ 3
g need to volve the Bioch equation §
HC = - 3C 3
2 o= (3.5) $
sharo o ;
. %
__; -t 2 —- :3.‘
- H=-5 ¥ +Vy(2) + &V(z)= H, + &V, (3.6) ;
: ;
subject to the usual delta function boundary condition C(r T, 6) 3
b = Ofr - .1:0) expressing the completeness of the aigenfunctions. E
5 But H_ gonerates the density matrix C, and AVis a perturbation, §
3 from eqn. ( 3.2 ), provided the p.;s are amall. Thus, we can E’
g write, to first-orderin AV (cf March, Young and Sampanthar, 1967) ;3
b 3
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Ckenzaxs (& L' B)= Cx {z ' B) (.7

5 AL B AP A Mt

r 8 r
=Colz z'8) = |~ a8, jax" o (2 2" - B,) &V(z")

Ld

Co(z" ' 8,)

shich deternmdnes the density matrix or Green function of the
Karzaki lattice in terms of ¢, and the perturbation AV, which

is in turn given by eqn. (3.2).

Eqn. ( 3,7 ) is the basic result then from which we
must build the solution for the defect lattice.
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3%
L. Soluiloa for defect ladtice %
g
g We now introduce the defect, and to be specific, we shsll §
E #
E assume w9 create a vacancy at the origin. Ilet us suppose that \%
the electron density Pp(z) = P (z) +P 4 (r) ir the Kanzeki ’%
3 lattice changes to P f(_r.), the density in the final stats containing g
E 1
3 - the relaxed vacancy. %
3 k.1 Operational definition of defect p-tential %
% ‘
2 We tacitly assumed atove that we could generate the exact g
- ¥
’ ground-statae density Po(_x;) , as obscrved say in X-ray scattering, §
9 ;
' from a one-body periodic potential Vp(_:g): i.e. g%
- z
— % g
c ) = b, (2) v, (z). (4.1) :
3 vie ;
(occupied) 5
3 ¢
2 &
3 This essentially fcllows from the considerations of Kohn and %
2 Hohenrberg (196L) and Kohn and Sham (1565). An cperatlonal é
procedure to construct Vp(_x:) fronm a given Po(g) has been %
i discussed rather fully by Beattie, Stoddart and March (1971). g
3 The same argument, in essence, now enables us to define %i
g p
operationally the defect potential. Weo wish to find a potential {‘E
S %
: vd(g) which, when added to the one-electron Homiltonian H in §
ean. ( 3.6 ), ylelds the exact final state density P f(3). 3

3
3
5
=
.'; -

¥
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We want to stress that Vd(_z;) is a potential to be added
to H, not to H. Thus, Vd(g_) 38 genereied in a system in which
- the ionic configurations differ only by the removal of the ion
‘ at the origin. If we had defined the defect potential as a

: charge fiom A, all the ions would have poved and Vd(_z_::) =would be
' a ruch siore camplex objact.

A Fer the vacancy, especially in polyvalent metals, we must
not expsot that the effect of V d(.1;) can ba treated as a perturbation.
3

E The Hloch equation ( 3,5 ) with H replaced by

A Ho=H + AV+V, () (k.2)
r;j can again be written as an integral equation

3 S (z'8) =Glrx'p) (1.5)
- " o _ ; n n,t

5

w.ore now the object Cf which is required appears also on the
right-hand side of eqn. ( 4.3 ). In principle, knowing G

: frem ogn. ( 3.7 ), we can obtain Cp from eqn. ( 4.3 ), with
3 ‘ an assumed defect potential. 1In practice, an iterative schenme

j (cf. Hilton, March and Curtis, 1957 ) would have to ba usad

and the procedure is certainly very lengthy and somewhat troublesoms.
¥We shall therefore consider below two approximate methods which

o allow us to solve (or in the second method to circumvent) the
integral equation 4.3 ).

o
E:
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The idea has already been mads plain. Physically, we
anticipate that the diagonal difference Colzr B) = Gz z g )

g A Cox can be useiully split into two parts, AC, = cu(?:f g)
- C, (r r B), where G, s the Bloch density ohtained by introducing
the defect potential iato the perfect lattice with HWoch density Co,
plus another term O C taking relaxation into account..

4.2 Correcticn to displaced charge as calculated in unrelaxed lattice

A rough approximation to estimate &C can be given as follows.
Write, with the assumption that Vd(g) varies slowly in space
(ef. eqn (3.1 ) )

CerB) =0 (zrp) eal®

T (L)
and -8V, (z)
c,lezB)=c,(zzp)e (k.5)
Thus we .have from the definitions given above
bCo =Gy e Vg - 1J (ko)
end - -V, (1.7)
Acuo = Co_.e d - J *

Therefore it follcws that




6 = [e"fvd -1 ] [c,{ -c o]

-l e=BVy
= [e 2 _y | 8,

(L.8)

Fere then; we have & rough, but quite practicable, way of
estimating the correction to ths displaced charge in the unrelaxed
lattice, due to relaxation, since 4 {"‘Ko is given explicitly

by eqn. (3.7 ).

In terms of densities, we could albermatively write

pe(z B) 2 pglz, E -V, (2) ) (1.9)

and

Py (2 E)

Pe (2, E -V, D)) (4.10)

We stress that we onlyr use these forms to estim te the correction
to the displaced chargs 4p, = ,ou(;: BE) - Po(.ll E} due to
relaxation. Then we have
Bprx = BPyo = 0P
= pglz, E - Vo(z) ) - py(z E)
- e lm B -V(2) ) +p, (2 E) (.12)

_ [az_;1 &V (2,)|F (Z 2y B - T(2) ) Pz, E)_.

E]
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which follows from the defimition of the rasponse function F. Hsre
: then is a firet approximation to correct the displaced charge in
E: *

E the unrelaxed lattice. Since & V(zq) is given by eqn. ( 3.2 ),
B it is clear that Op is8 0 (u 6)’ as requirsd.

E We want at this stage to comment further on the result
(111 ). Through the potential & V(r), determmined by perfect
lattice properties plus tho 4 's there is an obvicus link with

' lattice dynamical properties. The displaced charge Ap vo

due to V d(r) inzerted into the unralaxed lattice is to be

i

b sorrected by the zppropriate form ( 4.11): this reduces to

” zero, as it must, when Vd(?.') = 0.

§

Around the defact, however, we need to kmow F(r I, E)

2 Sy
P

§ited]

as a function of E, in order to evaluate eqn. {4.21 ). As
can be seen from eqn (3.4 ), this is a problem in band theory
which, for a given poriodic potential Vp(r), is soluble by
existing methods, though it will be an extensive computa%tional
task Information abaut the respense function F(r k21 E)
will lead to progress in the field of iattice defects; anctlier
bonus one could gain then would be to map out the anisotropy

PR R SN TN
P AP LI R A 0 e LT A
#

of the displaced charge due to a weak perturbatiovn, such ao

s
NG

that due to Be in Ii.

s . .
A —
LOHPRERG

* A more precise, but far more camplicated, way of correcting the

. \ displaced charge is given in Append!is: 1.
. ,
5. :
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Assuming that, for a muffin tin model, Apuo is found
from ths theory of Beeby, or for more general potentials from the
approximation cf Stoddaxu, March and Stott, it is clear that eqn.
(4.11 ) gives u3 an approximate method for estimating the effact
of relaxation. This thun constitutes a principal result of our

report.
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Actually, in the case when A V(r) does not vary too fast

in space, we can further simplify eqn. ( 4.11 ). In particular,
forp1(£ E) giver by

p(z®) = [az, &V(zy) Pz z; B) (4.12)

we can then write

ST E N I AV SR R IARIENS e et KT o I,

pq(z E)

8v(2) [az, Pz 2y B) (1.13)

The integral over b2 in egn. (L.13 ) can now be carried out,

to yleld

p4(z E) % - &V(z) % (2 E) = -aV(z) o (z BE) (L.1)

—
where © 0(5 E) is the local density of states in the perfect

lattice. This is just the quantity Beeby {(1967) calculated from
the KKB method,with the result

. 1
' v RS - .
o,z E) = %AIL.R:L(Q,RI,(;)% Im].;l} L G(m) N ®|  (4.15)

%&
L
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£ % is the t matrix for a single mufiin tir potential, whils all 3
3 b4
3 the structure dependence is in G(m)for whick Beeby gives explicit g
expressions. The integration in equ. (4.15 ) is over the i
' Brillouir zone of voiume ¢ , while BI,(-I:-) is as usual the radiai g
¢ wave function. Al the information needed in egqn. ( L4.15) 3
7;- is accessible through a XKR band structure calcuiation. E
= By comparing egn. ( L.l ), used at the Formi energy 3
& v;:
- E = Ef, w.th the semi-empirical procedurs based on eqn. ( 2.1 ), %
2 %
£ it will be iunteresting to see whether the approxmation (L.lh ) £
: H
gf is sufficiently accurate to allow A V(g) to be found explicitly. 8
: If so, we have, of courss, through eqn. (L4.1: ) the energy "’
"— ;;
dependence of p ,(z E) required in the evaluaticn of egqn. (L.11), %
which in t.e approximation equivalent to eqn. ( 4.1k ) becomes %
o 2 V(2) [0 (2 E, - V(2= o(z E,) o (4.16) !
. . - - s =" =T 3
Unfortunately, though numerical calculations are in progress, c
B 1
= results are not as yet available for p. %
- X
% later, when we have more knowledge of the basic response |
o %
: functions, refinement may be carried out via the method of ;:j
' ‘ Appendix 2, snould it prove necessary. ;
5 : 3
2 If wo oan make the epproximation that A V(r) is slowly P
b ; varying then we find eqn. ( L.1L ) and if we spply this at the E
P ; i
i Fermi level, we have evidently the app-oximate result 3
3
i
&
%
X
e n‘z«ﬁ
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= \ ( E) %
. Py (2 B) 2py(r Bp) o (2 E) (4.17) §
. Thus, in this approximation we simply scale the displaced charge g
g below the Fermi level E, in the Kanzaki lattice with tho locel i
density of states in ine perfect crystal. §
Using the first approximation for Op  that %
8p(zE) = p4{z B - V4 (z)) - p,(2 E) (4.33) g
3
z =
E we see that this takea the explicit formm ;;
# g
- g
3 8 (£ L) = p, (2E) {0 (2B - V,) - o (z E) ;
b - - Qo= a e 3
( B} c (r B (L.19) g
3 and hence, at the ermi level %
4 r) = rE c (B, -V.) -1 z
% (& Bp) :
: Thus, given the local density of states S, (r E) in the §
X 3
b perfect crystal, fram the band tusery calculation, thr defect z;
4 potential V,(r) and the displaced charge in the Kanzald lattice ’%
& 3
at the Fermi level, we can calculate the corresction to the chargs §
displaced by V4 in the unperturbed lattice. Of course, we have ;
A 3
- only circunvented the many-electron nature of the problem by using E
eqn. (2.1 ) with R (r) fuund empirically from the Bragg reflectior

intensities. We stress that wo can irclude both many-slectron

affects and many-body forces via tho preserce of p 1(3_) in the

L.
%&Mms&&wkwmmﬁm)xt’.*xww&'wdxrf
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result ( 4.20 ). But of course we are still involved in the

arren, arenth Hoay it A2 4 M Cr ne vt PNt 0}

assumption that Vd is slowly varying and we expect that refinement

of the theory will lead to a form 3

= :

o

£

Ths square bracket in eqn ( );.20 ) is a first approdmation to 3

the modified function f. %

; 4.3 Local density of states for Mz in Ii 3
~ {
3 3
Dr. J. E. Inglesfield (privata cammunication) has recently %
X
‘ made preliminary calculations of the local density of states O{rE) §
3 for Mg in I3 and w3 wish to conclude this section by mentioning 2
7 these results briefly. %
%

B2 3
The results are shown for two energlies % Er and Ef in Figs 3
1 and 2. The variable used is 1‘/1‘3: where r_ is the radius of
the Ii atomic cell (3.265 a.u.). The Formi onergy of Ii (0.173 3
'. a.u,) has baon used. ;
2 The dashed curves show the original local densitias of states s{
? for the pure materials, at eacch energy, while the 80lid cwrves show ;
E? - :
B tho local density of states for a Mg impurity in Ii. :
3 As Inglesfield has emphasized, soruthing like von Lave's
o i
E theorem 1s being recoverad as we approach the Fermi energy. §
3 ]
;
9 ‘
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It is quite clear that ..2 can use the local density of

I

o
P

states for Ii thus obtalnsd to calculate the function in the
square brackets in eqn.( 4.20 ). Salculations are currently

in progress, in conjunction with Drs. Bullough and Perrin, tc

R Ry

2 Y X7
X
%)
2
¥
L
i
¥
v
3\‘
N
i
i
1]
X
’ ‘ﬁqg
i
>
>
o
P b et A S e an b o v s B n b A TaE L BT

A

obtein © o(_:: E) from Beeby!'s method for I3, &8 wcll as the
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displaced chargs round an unrelaxed vacancy in this method.
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Eqn. ( 4.20 ) can then be used to correct for relaxation.
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5. Flectric fisld in Kanzaki lattice

Iet us now —onsider how we can calculate the forcss acting
on the ions in the Kanzald lattice from the electron theory developed
above. Again, to be specific, we will consider the monovacancy,

J
3
1
H
i
¥
2
3
¢
N
%
H

H
3
i

in which case a single atom has been removed from the origin. Clearly

in this defcct lattice, thore are no forces acting on the atoms,

since tho reilaxed cenfiguration is in equilibriuwm. This implies,
from Feymman's theorem, that the total electric field E (r) in

S ————

the relaxed defect lattice is.identically zero wlen r 2¢ +u, .
Otherwisse, there would be farces acting on the nuclel. This
elactric field is created by an elsctron densityp (r)+ p 1 (@)

+ 64(r), plus the fields of the muclei.

Now we put tack the atom at tae origin, in our vacancy

: oxample. The clectron density in this Kanzuki lattice is

; P 0(3) +P1 (r}. The elaectric field -EK » (x) =€ (r)

in this straiwved lactice is evidently determined by the electron
3 density %(3_'_) +P, (r) plus the nuclear configuration. 1t is

then clear that the resultant electric field acting at the
nuclei must be equivalent tc that due to the differerce bvetween

R Ql. o

tho electron densities in the Kanzokli lattice and in the relaxed

.} defect lattice and Lo the difference between the nuclea-

' configurations.

Immediutely, for the monovacancy, we see that tils field
. must be determined by the electrostatic potential due to the

Y
Eﬁ:
{1
Fean ' g g g N
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displaced electron charge round ths vacancy, plus that due to ’

: 1
- the abssnce of the ion at the c.:igin. This electron density is
given by 3.

P — pg = palz)

: - - a s | (5:2)

2 80 + [91 (z, Bp - Valz)) - o4z Df;]

and it is thie density, together with the field of the !absentt

1

ion, which determines the electric field at the dions in the '

Kanzaki lattice, and hence the Kanzakl forces. From our knowledge %

of potentials and displaced charges in free elsctron metals, it ‘3

seems that, at large r, by Tayler expending eqn. (4.16 ) in tems

of Vy, 8 will be both smsller. involving the product of A vir)

and Vd, and shorter range than Apuo » though this will have to

] be verificd by datailed numerical claculations. Thus at large r, i
, we rhall tentatively assume 80,16 to dominate in eqn. ( 5.1 ). ;
5.1 Some preliminary results from free electron model ;
‘ flowever, we can readily estimate the field due to this term <
4 806 and it is worth recording the result here by way of
7 I1lustration. We have, from the Polsson equation
< i
& !
4 2, _- (5.2)
3 V¢ =1Ux 8p, o i
vhere ¢ 4is the electrostatic potential. In the case wher i
bp uo is spherically symmetric, we find f
: % ag = /“ xtp  (r) r° ar (5.3)
= a o uo
§ = -Q (r) :
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where Q(r) is the total charge displaced inside a sphere of radius
r. Thus we find

@ = "-‘gfi-l ' (5.1)

Bence, the electric field in the Kanzaki lattice (neglecting
the P, tems in eqn. ( 5.1 ))is given by

e (r) = - Vo

" displaced charge

=r Qr) (5.5)
= T

Adding on the electric field of the ion, of resultant charge
72 equal to the valency, we find
e =zr [Q(r) - Z“ . (5.6)
T -

For free electrons, we know asymptotically that we have the
Friedel oscillations represented by

Apuo ~ Acos 2K, r

———t— (5.7)

r
where kf is the Fermi wave number.: Wo can therefore write for

the asymptotic form of Q(r) -2

*

The introduction of a phase shift, necessary for strong scattering,
is easily offected.
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Q(r) -2 ~ -/°° 89,4 4re? ar

r
00

= -U4x A[ cos t dt
2kf1‘ t

hx A Ci (Zkr r)

(5.8)

. .. . .
o ORI ¢ Bt v 1o AT PR T A S 8 v 1N S

where Ci(x) is the usual cosine integral, as shown. Hence we may

estimate of the Kanzaki forces as 2e E(r).

We want to emphasize that this is only a very crude example.

e (z) ~ r &= aci(x, ). (5.9) :

An estimate of A is readily available from the work of Stott, X
< _ Baranovsky and Mareh (197C). Some results for Q(r) in Cu are ;
shown in Fig 3. Hence, if we assume this alectric field, 3%
5 gvaluated at the atomic positions in the Kanzaki lattice, acts ‘fa
: :
on the resultant ionic charge Za at each site, we have a first 3
' 3
;

RISt A A sy 0 2y T B A Ered] s WAL

It will be nocessary to estimate the contribution due to p 1 ia A
equn. { 5.1 ) as well as to calculate Apuo beyond a fres-elsctron i
mcdel. In both calculations, we need the perfect lattice é
‘ solutions. Work i-. in progress to svaluate the displaced charge ,{
80,0 in Ii for a mono-vacancy in the unrelaxed lattice, from ?
‘i the theory of Beeby {1967), but results are not, as yet, available. ‘
Howevor, Harris (1968) has already successfully applied Beeby's :
‘ method to the impurity problem. Since the Beeby theory is based :
on the KKR method, the necessary response functions are already :
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contained in the KKR solutions for the perfect lattice. Thus
we have here a basis for a rather rrecise evaluation of the
displaced charge in the relaxed defoct lattice.

Once the electric field is known, the Kanzaki forces can be

found and Kanzald!s original method used to obtain a new get of
displacements.
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;
4 6. Xanzald forces and emergies of mono- and divacancy ‘:
- As a further illustration of thes present approach; let us
try to get the Kanzaki forces associated with a Hartree tmeatment
of a vacancy in a metal. Then we can write for the total energy “@
k- of the metal
A U=-3% /dz: [Vﬁ p(z r‘)l + zfdr as p (z) p(&)
= =k fz - 59
- + fda p(z) Vv () + & (6.1)
t The first tem ineqn. ( 6,7 ) is the kinetic erergy, the second :
is the classical electron-electron interaction energy, the third is "
‘ the intsraction energy of the conduction electrons with the ion
' cores, while @ nrepresants the core-core interaction energies. g
5 As the present writers have argued, the energy can ts written

‘ when the metal is deformsd, in tems of the components of the 5

3 displacement field as E
5 o £e'af %4 8 (6.2) ;
& £ 2! ap :

and if, at the same time, the lattice is subject to external _ources, :
' then the foliowing term
¢ _.\U . :
K= Z Fea “2a (6.3) ;
E must be added to eqn. ( .2 ) where F&a are the Kanzaki force
4 camponents. E
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If we assume the existence of a pseudoatam, then we can

write

i =
..Z F%‘E(a= Epseudoatom + jdE. A(r) LV(;_'_)- \V(g)_‘

= (6.4)
-/d-;r'_ o (z) ¥(2)

whers
¥(p) = ) ¥z - 2. (6.5)

Ly
It will clearly be of interest to see whsther the above

approximation to the Kanzaki forces gives results similar to those
of the previcus section, based on direct calculation of the
electric field at the ions.

The interest iu the above calculation resides in its possibls
extension to estima*e directly the effects of relaxation on the
divacancy binding euwsrgy. Unfortunately, it is then necessary
not only to know how the displaced charge round the two-centre
problem 1s related to that rcund the one-centre problem*, but
also it is necsssary to relate the positions of the relaxed
atomns round a monovacancy to thoss when the second vacancy is

brought up to the near-neighbour distance.

We want to conclude, because of the difficulty of this problenm,
by nointing out a possiole approach related again to calculating
the electric field E(r) in the final equilibrium configuration.

*Such a calculation for an impurity-vacancy ccmplex in a metal was
carried sut by Alfred and March {(1957). For a divacancy, it is
practicable to find the displaced charge from the model of Seeger and
Bross (3956).
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We have, for : system in equilibrium znder Coulamb

Yorces, with kinetic energy T and potential energy U,

27 + U = 0. (5.6)
But when forces are required to hold two defects at distance a,
we can write

2T+U--a% (6.7)
This equatior can be integrated with respect to a toyield, since
T+U=E

a® EB(a) = f "R U(R)@R. (6.8)
a

Thus; if the potential energy U(R) can be obtained as a function
of R, we cuuld obtain the interaction energy as a functior of
distance. Cortainly in a Hartree framework, the calculation of
U(R) is then a probiem in electrostatics, knowing the Ug 's

and the density po(r)+p1-(£)+p d(g_)in the final equilibrium state.

We want, however, to make the point that Rin equ. ( 6.8 )
3s really to bte restricted to lattice separations betwsen the

vacancies and is not therefore a continuous variable.

We conclude that, unless the use of pair potentials can be
Justified, which is unlikely round a divacancy in a polyvalent metal,
it is going to be of considsrable interest to map out the electric
field E (r) (zero at r =&+ 3, ) in tho final state, and find the
assuciated energy stored in the field. We suspect that ( o 7 )
ought eventuslly to be replaced by difference equations in an

exact formulation.
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We turn finally to discuss how the ensrgy in the Kanzaki }

lattice might be calculated within the present framework. |

3

let TK and UK be the kinetic and potential energies in the i
1 Kanzakl lattice, for a given separaticn R between the two vacancles. f

Then we can write

1 21, + U \’ 3
i‘ + s = = f
EORT L) B (69)
5 i
3 where the F /s are the Kanzaki forces. Naturally, those forces, :
’ and also the displacements u, depend o1 the separation R. g
. In one~bedy potentiai theory as used in this paper, where
3 an attempt is made to incorporate soms of the many-body effects ‘
into the potential, it seems best to rolate the tou. onergy to
% the potential energy since at least the classical part of this "
is calculable from the electron density plus the potential of the
'} nuclear framework. Thus we can write the above ecuation in the form
3 Eg(R) + Up(R) = -Z, (¢ + ). B, (6.10)
3 1
B Evidently, from the electron density and the electric field g(p)

we can calculate Ep(R) andBy( =), the difference giving us a
}: part of the relaxation emergy. Naturally E.( n ) involves :

crucially the displacements around a single vacancy, while EK(R)

involves those round a divacancy.

LN UV W T Y LN TS

Akt Lo RN L E

e




B G AF O  ERSRGR RSN R TR T TR AN X
VLR

If X-ray smcattering experiments could be refined to yield

not only the electron density po(r) in the perfect crystal, but
"_ the density around an impurity or an imperfection, band theory
, would allow the construction of the erystal potential Vp(r‘, and
3 the defect potential V,(r). Until such time as that becomes 3
possible, we isust use the best available methods, based on §
. . #‘
3 refinements of Slater p % exchange to construct these potentials 5
: E
s 80 as to incorporate at least soms part of the electron-slectron %ﬁ
3 interactions. g
= %
3 b
Knowing starting displacements w, , P,(zx) can be estimated 4
> semi-empirically from equ. ( 2.3 ) at the Fermi level. Further- g
5 2
4 more iis energy dependence is accessible through the approximate §
4 result ( 4.14 ) in terms of the local dencity of states in the 2
4 perfect crystal. The charge displaced in the Kanzaki lattice by i
the defect potential Vd(_x;) can then be estimated from that 3
displaced by V4 inserted in tha unrelaxed lattice, corrected by ;_“
= ‘ :
eqn. { 4.16 ). Thuis displaced chargs can then be ussd to find g
4 , 3
- . the Kanzaki forces and hence to calculate a new set of displacements. g
3 3
3 5
£ Finally, it is emphosised that, within the present framework, 5
5 2
- calculations of defect energies should be attemptea from the F
classical potential energy terms, plus, if necessary, estimates %
;f of the axchango energy from ths electron depsity. Ths kinetic f
:
5
&
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é ‘ energy should not be calculated, however, from the density matricas
¥ discussed in this roport, for these have incorrect off-diagonal
: olementa, though the diagonal elements agree w:th the correct

7 many-body density matrix.
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i
7. Introduction
A 3
)A’ E
In earlier reports (see also Rousseau, Stoddart ard March, ;
1970; 1971) we developed a density matrix theory of electron %
states in disordered systems and we applied it spacifically to %
; :

% calculate the electronic density of statas in liguid Be. Our §
21 %
conclusion was that the dip in the density or states in crystalline %
4 Be, resulting from the band overlap which explains itec metallic 3
&3 i“
4 cheracter, is only partially !filled in! on multing. We argued %
.' that, to describe this effect, w2 nceded a stroug scattering g
E 1
3 theory, and that was developed in our earlier wcrk. :
;
To bring such a theory into direct contact with e-veriment .%
is at present difficult. Aithough, in principle. photoamission ;
; experiments on liquid Be cught to reflect the density of states,
5 .
5 it is true at present that the most cirect contact with experiment ,3
» is through the electrical transport cosfficients. We therefors 3“
: develop here a theory of ths elsctrical resistivity. The ‘
' motivation for the present approach is provided by the theory of ;
g inverse transport coofficients, pioneered bty Edwarda (1955). 1
"} This theory is therefora discussed first, in iis genaral form, ‘
g and subsequently single-~ceatre appraximations to the density matrix d
3 are made, in order to make progress in the calculation of the ;
' resistivity. Finally, a method of calculating singie-centre ’
3

&
3
N
A
el
[
1
2
=2
2
&
-
=
z
%3
E,

density matrices from radial wave functions is presentid. Numerd.cal
"calculations based on this approach are in pregrass.
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8.  An exact formula for the electrical resistivity

The derivation which follows closely resembles Greenwood!s
(1958) treatment which led to an exact expression for the
conductivity. The final form for the resistivity bears a stropg .
resemblance to an expression obtained by Edwards (1965). We show
that Edwards! result nceds modifying, howover, in the .denouspator

term.

Consider a Hamiltonian

B(t) = 1 {‘(!s,aﬁsem)zrﬁa\)a_tg

2
2m i ox i3y, \1 az) } (8.1)

+ ®{x+ct,y,z)

where the vector potential {-eFt,0,0) corresponds to an electrie
field (F,0,0) and the potentials of the syitem, giving rise to
the totsl potential ¢ as

—_— (8.2}

are all moving with velocity (-¢,0,0). If c is small, then we

ray write
(x+ct) = &(x) + et 2 ¥(x) (8.3)
ox
znd so
H(t) = Ho(t) + ct 3 (8.4)
ax
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vwhere H is got by putting ¢ = 0 in (8.1) ; and is in fact equal
to the Hamiltonian used by Greenwood {(1958). He proves that

Hy(t) = exp(-ieFtx/h)H, (0)exp(1eFtx/h) (8.5)

and so from

H(t) = eJq:(-iethﬂx)H(O)exp(ieth/ﬁ) + ct fb' {8.6)

where &' =_. 93/8x,and H(O) is the Hamiltonian at t = O,
which is the Hamiltonian of the unperturbed system. Obviously,
H will have an eigenvalue equation of the tem

H(t)¥(t) = B(t)¥(t) (8.7
and if one takes

¢ !fn( t) = ¥ exp(—i.ethﬁl) (8.8)
? vhere \Vn e Wn(o), it can easily be seen that the eigenvalues in (8.7)
are equal to
? En(t) =E_+ ctéﬁn (8.9)
3 where
2 _— $ .0
g o = [dg ¥, (2) €' ¥p(r) (8.10)
‘ But ©' o 28 defined in (8.10) is just the expectation value
of the force on an electron in the state n in the absence of
“ any electric field, and hence is zero.
, The equation of motion for the density matrix o is
4 ith 3o = [8p] (8.11)
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Substituting this into the equation of motion for th: matrix <¢lements

of p, i.e.

= {m), vl ’
(nlg%lm) * (%% }pim)a(nypl o (8.12)

and using the standard resuli

(nl an) = -(m|gg|n)
dt (8.13)

&

we arrive at the result

fon = fn
(80311)
vhere f ) = f(En) » the Fermd function for energy E,, and

g, = -«ﬁ[eﬁ‘vnm + c@'mn} (g%)E G(En—Em) (8.15)
n

where we have written P = £ + g, and worked to first order in F

or ¢ throughout. Also, »

v =} Jar v ()8 v.r
r ¥, (£) 3 V. \2) (8.16)
i.e. v is the velocity matrix element.

The Hamiltonian which we have used (equation (8.1))
corrasponds to a physical situation where the coordinate exes
are translated with uniform velocily c down the electric field.
If we make ¢ equal to tha drift velocity, thien we are in a
position to calculate the force on an electron, which of course
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must vanish, siace a steady state has besti established Wy

and Hance

3 T : A
/ ...Z—/ pnm ] mn + ei‘z_hpnn =0 (8.17)

nn
for ¢ equal to the drift velocity. Nsglecting oacillating terms,

3 we got the resistivity R to bs

4 :
%

AR

2 2

% R = -g_él_ o! m2 (%) 5 (E.En) (8.18)
2 B
7 npe © B

[ T v (), 0]

Eqn (8.18) can be written in temms of the onorgy derivative of the Dirac

Ry et IRk s e

g3

matrix p' where

Rk Y 20
y; >
A s

3*
: *(pr'E) = . (D (2')6(E-E))
; p'(zr'E) > o DIV (') 6(B-E, 18.29)

w5RE

and the result is

R = K/(1+4%) (5.20)

o s L T S

1,
e

3823

vhere

AT
HE/ES

I

N = -27h ® 4E af dr, 2% 20 (r
, 25 / & j/’dr.1 r, .ﬁfzﬂ .._2(_2) (8 21)
o]

ox
% e

2
| o' (2.122 E)'

-"c- oo ko e
s R
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- 2 % 0 t ' :
D = 2dh /dE %[ ap,dr, %(;,2) o' (2 P)2 P (zo24E)

fump_ Jo 2 1
(8.22)

where 1 is the total volume, and Py the mean electron density.

L
1:
B
%

3

b (1965) finds, but the denomirator term D is different, in that it

: contains p'(x,r, E), whereas Edwards' result replaces this by

? G+(£1£2 E). It is not correct to say (as Edwards has done) that
G* contains termns involving [ E-Enl '1, which are related to the

virfal. Further, it is sasy to see that (8.22)ks real, whereas

V Edwards! denordnator would give rise co a complex resistivity.

=

4 The exact apression for the resistivity is given by (8.20) and

is the basic rasul: in this section. We proceed now with an

‘ analysis of this formula, to obtain a foum which is amenable to

"‘ numerical evaluation. From this point we work in atomic units

3 o Bone,

; 9. Representation for the Dirac matrix p'

The term N 1s, apart from multiplying factors, the same as Edwards

etk

L To enabl che ensemble average to be performed in equation

" it is useful to consider & representation for the Dirac matrix in the

& >
‘~ Iom,
[

3 p'(g"'i’;:.’E) = pg(x;E)ﬂ (1'*':.(.1.'.-31’ .’S’E)> (9.1)
i
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/]
3
where p o’ is the free particle matrix,
§
p! (x,B) = 9_12%@). (9.2) :
2%°x 5
‘ The dynamicai equation for p! is ?
T, 4 72 '( ‘—' ~ é
& T o' EnnE) = (B - ) $leart,) ' (2ennE)
a {(9.3) Z
4 and substitution of (9-1) into (9.3) leads to an equation for £ i
in the form, ’%
3
: l— 2 . ' :
4 . . N _ . _ :
3 L'%V£ (VEPO(X,B)) .V£ + ¢(rex-t ) ] £ (p-t,s % E) g
e g
F-(')(X,E) §
- O enregane |
+ ¢(£+£_:§a) - %L \V?-( B (E_"ﬁat.}.c.oE) } Vx ? (2"309£,E) =0 :
H oS S —
g b
(*a) 1+ £(z=t, X B} (9.h)

We now make the basic assumption that fir-t, x,E) is a localized

function in r-space, centred around the site ¥ . The last tem

i
"

in {9.L) is then obviously an overlap term between functions £

centred ou different sites. If the f!'s are sufficiently w#ell

AP A
S et
<} k3 42

localized we may neglect this term, and the resulting equation for

{ may be readily solved to give,
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£(z,x,E) = P1, (E"’E‘.}EaE) - Po (x,E) (9.5) 3
p lo] (X,E) g
Tae matrix P, 1is the 'local’ Dirac matrix dwtermined by the §
B &
local potential % representing one of the scattering centres, i
g
i
3 and satisfies, g
/-fs_ 72 4 ¢(r+x) - E) p! (r+x,r, B) = 0 'ﬁ
\= xR L == (9.6) :
‘, §
Mternatively, in terms «f wave-functions we have, i{;
k< a
2
- p', (2+x,z,E) =Z; )y (Do(EE ) 9D ;
] where the ’l"n satis<y the Schrddinger equation with potential ¢ E
o and eigenvalue E . 3
’. The final representation for P' is then given by (9.1) ;
with £ determined by (9.5).
& 3
4 10. The Ensemble Average %
: We focus attention first upon the numerator of the expression (8.20) E
3 for the rosistivity, lesving the denominator term for later g
:_’ investigation. To obtain the correct ensemble average for P ’E
g 2
. we must of course average both terms together, but this is likely 2
3 g
to prove difficult and will be postponed for the present. é
& p
: D %
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Substitution of (8.1) into the numerator N of (8.20)

glves after sums re-arrangement of factors,

2% 2
N> =

/
X a. a t 1 f -t.’ -t 9 E
3 Fﬁ\lil k *fop EHe B7h )>> a=B=0

oXP *3%, 5%

{ 8¢(g_1) + B a¢(r2)} -1 10.2)
x| 2

The major difficulty in the evaluation of the engemble
average in 12.1}4is lack of imowledge of the n-body ionic

correlation functions, only the two-bo~’y correlation function being
E reasonably well known.

We may obtain immediately the result for a random system
fram  (10.1) as in this case the correlation functiops.
arc of course kmoym oxactly. Wo obtain (scc .Rousseou, Stoddart

and March, 1970)

i ®p = 25 _ (et ) fag,az, (o' (2 o2, 02) ) Fo 2,2, B)
b 32n | [T E P 1R TR ) FRIZTERR) (20.3)

where

5
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gﬁ,
'v’r

L

AR okt A dente

~h2-

s A et o1

wa r

Fo (242, B) = [p [ax (e, Py V£2¢(£2-'é>> ke (4 %225 5o

T ev ey

X kL(22'§:£1 "?.(.’E)

+ pzfdzkvr1¢(g1-z)>km(g1.-§.,.2 -%,E)k; {z,~%,2,~%,E)

AR N L 1)

Py R

[ dl(V£2¢ (22.-1) \)kj_, (E«],.X’EZ-X’E ) XKL (?.2"252,1 -¥,E ):l'

x exp[p /d.)-{ [k1(21 °£’£g”£,E)kL(£2"£’£1 -x,B) -1] }
(10.k)

B R ARSI T AR sl o n

and
pi (2.1 ’:?.2 :E)

0l (2,-2p0E) (02)

kp,(zq28) =

(P NPT SRR

The ensemble averaga appropriate o a liquid metal may

a5 0L

also be perforrad on (10.1) ueing the approximate n-body ionic

TICTC P

correlat »n functions proposed by Rousseau, Steddart and March
(1970). However in this case the result is increased considerably

B in complexity and we can see no way of using it constructively

PLIESRTY

at the present time. This expression for the liquid metal

average < N> L takes the same general forn as the random

average result (10.3) with Fp replaced by a function of I;-Ip
which contains information about the ioric correlation throvgh
the two-body correlation function, if we use the approximations
'. proposed by Rousseau, Stoddart and March. Even if the exact

correlation functions were used to perform the average, the

N T U e DY g P L S U

i
]
x
3
I
:
3
5
3




A

IRV,

v - g A8y € LI
EXN RO T e PRRLIRY e e

T

ol

el

B B

s

xid

S} erconivagd b

2 BCSio Mo Socorertmpie

-b3-

result for < N> would retain the same structure as (10.3)
with FR replaced by a function involving these exact correlation
functions. However, even the crudest approximation to these
functions seems to lead to an intractable result for <N >

and we will consider here only the random average result (10.3).
We ;l>ropose later that an approximate account of structure can

be taken simply through the liquid structure factor s(q)

in a manner identical to that ir the usual pseudopotential
formlation (Ziman, 1961).

The Weak Scattering limit

To 0(¢2) the denominator in (8.20) does not
contribute and we obtain from (10.3) and (20.L)

R—--—- [dEf (E) jdr (p (__1 _2,E1> n( ) (r -r2,E)
(11.1)

whero

FR(Q) (_1.-1' »E) = p/dx /\V.T ¢(r x)) (V #(z, x)) (11.2)

If vo define the Fourier transfoma (£) vy

11.3)
o('-)—1)3/di‘c££$(f) (

(2x
and use

-ik(r,-z,)
P (2,=25HB) = 1_ /dge 5Ei2, 8(z= (5/,))

(13.L)
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then we obtain_

ip (z,-z,)
7P (24 2p08) = omy3 |22 R LT s

A4

£
R = R, / aa & 3 (@)} 2 (11.6)

€ o

This result is the well known Ziman formula for the resistivity
if we regard ¢ (q) as the Fourier transform of the pseudopoteniial
describing the interaction between an electron and a sirgle screened

ion. It may be shown that an equivalent result can be obtained

from the numerator N in the liquid metal case, the only change

i being the replaceme.t of ths potential part of (11.6) with

] s@i? (@ ‘2 wilere S(q) is the structure factor.

12. Definition of Pseudopotential

; The single ion potential cannot be rcgarded as a perturbation
and we require an evaluation of the complete term (10.3) . We

x work with the random average result which can be put into an

- interesting form if we define F(k,E) by.

4

: ik.(z,-z,)

i Fp(z,-z,,E) -..1;__3 ak e Fp(k,B). (12.1)
g (2x)-
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If we write ¥ in the form, %
3 i
~ 2 4
F,(k,E) = pk k 2.2 ¢
R\ ) =p AR(.) (1 ) ;;
5 then comparison with (11.5) and the derivation of the weak i
scattering result show: that if wa consider the numerator as “E“
.‘, giving the whole r«sistance then we have, 5
3 g
; R= ° / akf :é
o5 - 3 g
: de g~ A(a). (12.3) ¥
12%° p e?. o “r ;
E~ To sacond order in ¢ we have of course, £
2 - g2 §
2@ (g =Taf? (12.4) ;
: §
= but in the general case (10.))can be used to define AR(q). We .
obtain an equivalen* result for the liquid metal, the contribution z
3 of the numerator taldng exactly the same Jorm as (12.3) . However §
‘ in this case the appropriate transform JLL(q) depands on both the ;,
X, £
i 2
, local ionic potential ¢ and the ionic correlation fuactions. E
b £
We have therefore ths interesting result that if the num- %
c erator N is the dominant contribution then the resistance takes E
i— exactly the same form as the wezk scattering result (11.6) %
We may use AR(q) therefore to define a local 'pseudopotential! g
4 V(r) through i
o 12 | :
3 Ay (@) =]V(a) | (12.5) :
5 g
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in the usunl sense as that potential which gives the correct -
scattering phase shifts in Born approximation. 1In the liquid jﬁ’
natal taze 1t 1s obvious that this !pseudopotential! will depend
on the structure, although in a first approxdmation one may take ;
the potential V(r) from the random average result and include "
3
structure simply by use of AR(q)S(q) in place of Ap. A structure 7
tpseudopotential’ arises in the formulation of Rubio (1969) and
has been calculated by Ashcroft and Schaich (1970). However 3
e _ 3
2 Rubiots result for R is correct only to lowest order in (kf <) 1 i
where ¢ is the mean free path of an electron at the Fermi surrace.
& The theory presonted here is free fram such limitations. "
1 13. The Denominator Term £
= ;
The enremble average of D given by (8.22) can be performed 3
in a similar way to that of N. Haowev.r we use }ere the
g additional representation, 3
il ;
: t ¢ T_l' P %
3 op \L4 9L »E) - 3, (?_1.‘22_,E)§ | ni{r. -Ea,gz-‘_ba,E) 3
o, ox, o« @30 i
: where, again neglecting overlsp terms,
: o7 (2,2, 8) / @) (z,-x,.E) d
] ( E Pe (&4I,. 3
n(r, s, ,EB) = L ‘=1=2 = =2 E:
2 =2 ax ax B
& K 1 (13.2) ;
; The final result for the random avarags is
4 3
E
\ “‘
. E:
R ey
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3 <D>p=-2mlp [dE f'(E)./d£1id.g_2 ay ¥EL o1 (2, y,2,mE)
5 Pe’ oxy,

x 8p) (£,=Y.y~¥.B) (23.3)
ox,

where terms of higher order in p have been amitted. To obtain

: the correct ensemble average for R we nmst of course average both

N and D together. However a sufficiently good approximation will
probably be given by

3

: CEr=slr o (13.4)
E 1+< D >

The interesting possibility then arises that in certain circwa-

;‘ stances (if the scattering is sufficiently strong) we could get

1+ ¢<D> o 0, reprcsenting a transition to an insulating
state. However this point requires further investigation, end

- we will focus attention here on the contributim of N to the
registance.

1

1. Proposed Computatioi=l Schene

We propose a camputational scheme based upcr. she rssuat (12.3)

foir the resistance, but including the effect of structure through

o .
,l._»-r“\u He :'v‘u ‘—k"‘f{'”

the introduction of the liquid struoture factor S(q). Thus we

t have approximately, 3
' # An improved arproximation i8 <R> = <HN> - <ND > which 3
T35 :
5 reduces to (13.4) if <ND > = <N> <D > . :

e . xS
RXx, s - -
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/ dq g~ Ap(a) S(q) (1h.1)

T Pe o

in whiih therefore the random ensemble everage of N is used to

” cefine a 'pseudo-potential! according to (12.€ The structure ;
: enters through S(q) in a manner identical to that in ths standard
, pseudcpotential form for R. ‘
A further simplification is assumed in the formula
w for o resistance in the first calculations. We obtain AR(q) ]
from the Fourlexr transform of the first term only in (10.})
negiscting the effect of the exponential term. Thms using (10.5) ;
* we take
! ‘?
Frlzy-r,,B) = p /rdas (V£1 25(21,-5)) (v:£2¢(£2'?£)> (14.2) :

;

2 |

2
i PL (247%,1,7X,E) l

¢ e o "2
(co (z,-z,,E) )
5
- where A (q) is determined by (12.1) and (12.2) . Equetion (1b-2)

is just the term of O(p ) in an expansion of FR in powers of the :

lonic density. What we are essentially assuming is that the

'pseudopotantiall, which is defined in terms of A, by (12.5)
dogs Dol huve any sxplicit dapendencer oz the iopic daneity.

= We turn finally to discuss the single-centre scattering, defined ’

~ :
g through Py °
2 i

£
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15. Sinple centre scattering

The potential is assumed to be spherically symmetric.
15.1 The t-matrix Its integal equation is

8(x,3) = v(@)6lx) +[az v(®) 6y(x -2tz as.)

v(x) is the single centre potential and
x -
G, (zz') =-(4x) ! explaik | p—2'{ Mir-r 171 (15.2)

vhere k = E%, E>0, k = i(-E)%, E< 0. Dofirmdig a 2-sided Fourier

transform of ¢ thus:

' t(R?S) = /&x-. dx exp[iﬂoi-i QQX]t(é,I) (15‘3)
and
A t(x,y) = (2x) ™" [ap ag exp[~ip.x + ig.ylt(p,q) (15.1)
3 and appropriately transforming (15.1) tbe reeult is j
: t2) = vize) + (207 [k v(pK)o, 0Bk, (5.5)
2 friting . :
" t(p,q) = > t Y, (0
»q e(Pa)¥, ( p?p) Yon(020) (15.6) :
and «imilarly for ::: v(p~q) the individual tems in the expansicn
2 "of (15.5) are
e -3 [ :
t(pa) = v(pq) + (27)" fo xPax v(pk)5 (k) t{ka) (15.7)
3 +
E The suffix £ has been dropped for conveniance. G~ (k) can
; be written
: + 2.1 2 i
G =(k) = [B~x°] T1%6(E-Kk) (15.8) }
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j 16. Solution of the t matrix for continuum states (E>0)

Separate t into its real and imaginary parts:

: t(pa) = R(pa) + 1I(pa) (16.1)
Substituting (16.1) and (15.8) into (15.7) we get

5 o

R¥(pa) = v(pa)+(Lx) " “v(p/EWEIt (VEq)+[dk GGKE)H(kq) (16.2)
E - <]

3 - - o

T'(pa) = ~(4m) T (WEWE B (VEQ)+[ 8k GBI (kq) (16-3)
_ ) 4 ©

5 shere QpkE) = (27)™> v(pk)k® [E-4®] . Eouations (26.2) and (16.3)
‘ are of standard Fredholm type, and are sclved by determination

Q of the inverse kernel to G(pkE), which satisfies the following

-7 integral equation:

- e

7 F(pkB) = O(pkE) + j ak’ G(pk’E)F(k’KE) (26.4)

s 5

In tems of F, the solutions of (16.2) and (16.3) are

& . -

R*(pa) = o(pa) + w(p/EVE I(EQ)(UR) 2  (16.5)
*(pa) = -w(p/E) VE R(/Eq)(x)™> (16.6)

: where

o

&(pd) = v(pa) + | F(pkE) v(kq) (16.7)

: Eouations (16.5) and {16.67 can be gsepardted by putting p =VE in (16.6)
substituting into(16.5) and ther putting p = VE in {16.5) .

. This gives R(VEqQ) sulely in terms of ®, and this expression
j for R(VEq) can be substituted back into (16.6). The results ares:

4

[

>
3
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R*(pa) = w(pa)-(4m) ™ B w(p/EloivE)ulvEq)

[1 + (ux)™ Eo(vove) 2]~ (16.8)
*(ve) = ~(Un) 2 vE w(p/E)w(vEq)

[1 + %)™ owvove)?]! (e.9)

It is easily seen that R (pq) = R (pq), I (pa) = ~I'(pq).

17. The solution for p'(r r'E)

The double Potrier transforn of v(x) & (kéy) according to eqn (15.3)
is

v(p-g) = /ds_c exp[1(p-q) «x] v(x) (17.1)

Expanding both sides of equation (17.1) in spherical harmonies
it i8 casy to see ihat:

0

v(pa) = (4x)° / x° ax v(>.) 3 (px) j(ax) (27.2)
[o]

so v(pq) = v(qp). Expanding w(pq) in a perturbation series

by means of equations {16.7.) and (16.}4) it can be seen that every tem
is symmetric with -espect to interchange of p andi\q.. Hence,

because of equation (17.2).

o{pq) = {ap) (17.3)
Hance alsc, fram (36.8) and (16.9) R(pq) = R(qp), I(pq) = I(qp)-

The relation btetween the t matrix and. the Green function
is:
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(xy) = ¢ (.0 + fdad.x:‘ g (z,o)t(z,z')g 2’y
(27.k)

where G,is given by equation (15.3). Double Fourier transform of
ylelds:

6(pa) = (21)7 8(p-q)p ™" G4(p) + G5(p)4(2,2) G5(D)

\17.5)
Expanding(17.5)ir spherical harmomics using equation

the terms are:

6(pa) = (2r)° 8(p-2)p™ G (B) + G, (R)t(2A)G, (a)

(27.6)
Using the standard result that

7 (pae) = 1(2x)”" [6*(paE) ~ 6 (paE)] (17.7)
and substituting (15.8) apd {16.9) into (17.6), tho result is
70’ (paE) = (2x)° 8(p-a)p"? =6(B-p°)
2 - N “Ug 2]-4 x) 2
- Po(pEWEWEQ) 6(E-p7) 8(B-q) [1+(4x) "Bw(vB/E)] Ux)
-1
exl(pq) () B0 (p/E)o(VBVE ) ob/Ea )t +(um) ot )?] ]

A[5(E-pD) @-2) ™" + 8(B-a®) (E-pD) )

()2 B o) 0(vEQ) [+ (%) “Eatva/E) 2] [(B-p3(E-a) 17!
(17.8)

From the expansion of eqmtion(ls-hZapplied to pl) in spherical
harmonics it is seen that:
0
(2ﬂ)6(hﬂ)'zp‘(rr"ﬁ‘)= fpzdpqqu:l(zrh(qr’)p’(pqE)

° (17.9)
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Substituting {..7.8) into (17.9) there résults: :
3 p’(rr’E) = vEr ' [1+(ux) U rvavE)2]™! s(Er)s(er) ‘
where (17.10) {
1 S(Er) = J(vir)+(2x) " [pPapw(p/E) 3(pr) (B-0%) ™" r17.13)
- e
&
lé ‘E:
: and we have used equation (17.3). Thus the general form ofp’ i
;
; is a product of a function of r and a function of r!'. Defining :
- 0o
g 2
3 w(p/E) = (4=) / r? arw(nv/s)j(pr) » (17.12) :
substituting equation (17&.12) into (17.11) gives ths result
S(Br) = j(VEr) + /x?‘ <w(x/E)2x | ][padp 3(px) 3 () (B-p°)
E A 0 (17.13)
& The integral over p can be done by contours and the result is ;
£, o0

s@Er) = 30er)s v [ 2 ax 36/oe Inier JelwE)  Gr.10)

b o

3 where r¢ is the smaller of x and r, and r, ths greater. Comparing

i .

¢ (17.13) and (17.14) with the .usual expreasion for the phase shift, it is

sasily seen that

"' -2

3 tan n(B) = -(4x) © vVE W(VBVE) (17.15)

} 8. Ths solution for w(pq)

3 In coordinate space, equaiion (1é.l) becomes

b 2

,‘ F(rr’E) = G(rr’E) + / x2 ax G(rxE)F(xr'B) {18.1)

b fo)

’jﬂ
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vhero 1t is casily seen that

G(rr'E) = v(r)J(\/EP<-n(\/Er>) (18.2)
Defining a function H(r r'E) as:
H(rr'E) = P(rr'E) /v(r) (18.3)
auation {18.1) beeqmes
B(re'B) = VEIWER N (/Er ) + VB [ xanv(x)3(ar )" (vr,)
o

H(xr'E) (28.k)
which can be seen to be equivalent to the differential equation

1,4 .2 4+ E -¢{e*1) ~v(r) | H(rr'E) = d(r-r'
Lg g 24 _.(_? _.(_2_1

T T (28.5)
Thus H(rr'E) is the real part of the single particle Green

function in equatisn(17.4) and is the inverse kernel to
G(xrr'E) = j 6/Er<)n(\/‘.ﬂ;1§-) which solvaes the integral equation for
the radial wave function:

® 2 8.6
R(Er) = 3(/ur) % xZax H(rxB) v(x)j(Ex) *8:6)
UsZng equns (16.7) togother with eqn (17.11) it con be'secen that

w(/Er) = v(r) R(Er) (18.7)
Scbstituting (18.7) into (17.11) and (17.10) gives the result

S(Er) = R(Er) (18.8)
Together with equation (17.15) Axis beoonos

p'(rr'E) = 'x'1\/E coea'q(E) R(Br) R(Er') (18.9)
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19.Friedel sum rule and idempotency of Dirac matrix

The Dirac matrix is obtained from P' by an integration
over energy

E
p(z,z'E) =[ ae' p'(z,z',E) {29.1)
< o

It is idempctent, i.e.

ple,r'B) = iz plmaBe (e’ B (19.2)
and obeys the closure relation

p(z,z'y =) = 8(z-z') (15.3)
In equetion (19.1)only the continuun states are considered.

The bound state contribution, viz.

pplz,r') = Zji* (r) ¢,(z") (19.4)

must be added in before equation (19.3) 4s true. Here i rums
over allthe bound states of the system. If the scattering
potential is to be completely screenad at large distancer, then
the displaced charge must equal the net charge produciug the
potential, i.e.

[e= lotaz =) - po(mimED)] = 2 (29.5)

whore Ef is the energy of the highest occupied stats, and the

region of integration is large. Expanding equations (19.1) to (19.5)
ir spherical harmonics it is seen that
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p{rr'E) =[ ag* p' (r r'B) (19.6)
o

p(rr'E) =fx2u p (r2E)p(xr'E) (29.7)
)

(rr? 2

p(rr'ow) = r “6(r - r') ¢19.8)

2.4x Z (2€+41) j[R rzdr[p(rrEf\ - po(rrEf)] =2 (19.9)
4 it

x
(o]

The factor of 2 in equation(29.9)accounts for spin degeneracy.
The radial wave function for continuum states satisfies the

di ° atial equation

;‘2 r R(kr) {ka - v(r) —¢(&+1) :l r R(kr) = 0 (19.10)
r

2
where E = k~ and rR(kr) = O at r = 0. Multiplying(19.10) by

cos 7 (k), settinrg vn a similar equation for rR(k'r), subtract.ng,

integrating by parts glves

.
[[cosn(k')rR(k'r)] d_ [cosn(k)rR(kr)] - [cosn(k)rR(kr)
°

dr
d_[cosn(k') rR(k‘r)J
dr

= (k'z-kz) [R radr cosn(k)cosn(k' )R(kr)R(k'r)
° (19.11)
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The asymptotic form of R(kr) is
3 R{kr) = J(kr) - tamm(k) =(kr) (19.12)
-1 < :
Hence, substituting j( P)-* P cos [9'2(5*'1-)7‘], :
: a(p) = p " sinfp—4(£+1)x] and multiplying
e by cosn(k) gives the result ;
3 nds N(KR{ET) = (ke) ™" Sin(kr + (k) - $68) 7 » 0 (19.13)
Substituti on into(19.11) gives

12 R

] [ 752 '

3 r7ar cosn(k)cosn(k')k(kr)R(k'r) =

: I ST =N

A AT e AT T A R 3 AL e w3 b

sinf (k-k' JR+7(k)-n(k')] (19.14)
:
% - 4 .. 8in[(kek' IR + (k) (k') - &x]
= 2Kk (kK ) ’
§ vhich is the same thing as :

/erd.r cosn(k)cosn(k' )R {(kr)R(k'n) ;

y Y - e AL
U\ DS AT

o !
E . S, [:O(k-k' Yeos[n(k)-n(k")]
3 2kk' :
. -O(k+k’)cos[n(k)+n(k')-—&1c]:] + cos(k-k' )R ein[n(k}-n(k')] %
E: 2Kk (k')
(19.15) ;
& - cos(k+k')R sin[n(x)+n(-*)-er] ;
3 2Kkk* (k+k") !
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using the representation O(x) = £€im sin gx/Ax. .The

. g—m
rosult for free electrons ~btains by setting M = O.

Hence

R o
/ r ar[p"(rr'k)-p ! (rr'k)]
o .

=_1 ¢im sin[n(k)-n(k')] + an oscillating terme
k-k' (19.16)

21(2 k'-k

But since M(k') = n(k) + (k'-k) dnfdk and neglecting the
oscillatory temm: '

/R rParfpt{rr'k)p? (rr'k)] = .flll%k. =141 (9.9
dE L]

0 2k vE
Hence using (18.9) and {19.9) we obtaia the result

———

= ZJ‘(2G+1) 'q(Ef) =2 (19.18) |

which is just the Friedel sum rule. To prove that the solvtion (317.15)
produces an idempotent Dirac matrix, using(19.6) and (19.7We obtain

2

k
p(rr'E) = 1 / 2k d.k'2k"c21i{"co;.m(k')cosn(k")R(rk')
2Jo
x

R{r'k")
0
x [ x2ax cosn{k')cosn(k")R(xk' )R (xk")

o {19.19)

TR B PSP, S, % XA VS
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which is to be proved, if the solution is idempotent. The Q
g last factor in equation (19.19)is given by equation(39.15) Notice
3 first that the term in O (k'+k") does not contribute, since k¥
and k" are slways greater than O. Secondly, the osciliatory %
V terms also give zero contribution as R~ , since the integrands ;
: are smooth functions of k! and k". The only part where care ;
E is required 18 the vanishing denominator in i
9 cos(k=k')R sin[n(k)-n(k')] when k' > k ;
2kk". k-k' ’
Dut as (19.6) zu@ (1917) chkow, this gives rise to no difficulty. Hence ;
=, 3
% 0 39
/ xzdxcosn(k')cosn(k")R(xl:"R(xk") =X ” o6(k-k"') (19.20) i
and so the right hand side of equation(19.19) becomes
E kK o
: 1 / 2k'“ ax' cosn(k')cosn(k') R(rk')R(»'k') ]
i <l |
9 which is just p(rr'E), by equations (17.15)and (19-6). Adding
,; in the bound state contribution to P gives no difficulty, as
N this part is idempotent in itself, and integrals of products of ¢
-.3 and R vanish, as these functions are orthogenal. i
20. Proof of closure relation
Expand an arbitrary function V(r r!) in the function
” p'(xr'E) and the bound state wave functions ¢1(r) (we
. write ¢i(r) for the ¢th comonent of ¢i(£)’ for simplicity).
Then
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v xR 2 ;

¥(rr') = LC£¢1(r)¢i(r') 4 12 / 2kx“ax 2k'“ak*cosn(k)
1 x o ;

;

cosn. ' JR{kr)R(k'r')O(kk')  (20.1)

ow mltiply (20.1) by xt cosn(k")cosn(k" V)R(k"r)R(x"'r') ;

R AL e AT AT W8 e

and iutegrate over r,r!. We have x
B LY ;
% [ 23rr' 2ap! ¥(rr')cosn(k")cosn(k"  )R(k"r)R(k" ") /
: Q ;
¥ o ;
= 1.}/“ ok 2akzk *Zax ' v Zare ' ar 'R (kr) cosn(k)R (k" r) cosn(k") !
ki . r

x R(k'r')cosn(k'IR(X"'r')cosnik"") e(kk') (20.2) :

bacaus~ of the orthogonality of R and ¢ .  Because of equ. (19.12)
we have

[ :2<1rr 123p 1y (or' ) cosn(k"” )R (K"r ) cosn(k" ' )..(k" 'r")

PR RN SR R RS

° = o(x"x"’ ). (20.3)

AT IR AL PRI oo b s i ¥ ST T

[ CAARORE % A Al
LA REATR W AR S

Now set k'"=k"! gnd inteprate over k". We have then

B e )

/ wrzdrr'zdr’\k(rr’) 1 / oc,21{2(11( cosn (k)R (kr) cosn(k)R(xr")
=
°

o]

. .
ORI LRt

e PO
T, TG
Ab e e P B L o3 A e M

® 2
= 0O
But from 3
{co 2 - c 4. ® 2 2
rary(rr) = 1 v~ jm;dkak'dk'x =-
o) o 2k i

,. .
et o 5 e e pemioei
LR ST st Rk

‘ 8 'k~k')0(kk')
2 _ . (20.5)
« «;
E f r2ary(rr) = Z} Cy + 1[ 2k“ax6(kk)
3 % :
b o 1 o §

ator< S ete g Seing, scopk e “ o
o R R PR R RO LR o i pERES B o o Ay B AT - P N . e~
RN & = 5 3 TG e R PR AoV AR o i o LAl Sl SR 0t 2 e R T R N Y
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Comparing (20.4) and (20.5)we see that we must have

1 [ w2kzd.kcos'q(k)R(kr)cosn(k)R(kr')
0o

O(r-r!) - Y ¢1(r)¢i(1")
Z_Jj

r

(20.6)

i}

Hence the soiution given in equation (18.9) together with the bound
state contribution, satisfies the closu»e relation, as well es
idempoteucy and the Friodel sum rule.




62~

21. Sumary
Part A has reported a treatment of relaxations round point

defects in metals, using electron theory. Preliminary results
ara reported for g in ILi and for a vacancy in Qu, and further

work is in progress on applications of this theory.

In Part B, our earlisr work on elcctron states is extended
to dsal with the electrical resistivity of liquid metals where
there is strong electrcen scattering. The theory should be
appiicable to liquid metals like calcium and barium, which have
relatively high resistivity and numerical calculations ou calcium
are in 1rogress, usiag the metiiod outlined immediately above for
treating the single-centre scattering from a calcium ion.

Generalizaticns to liquid metal alloys are also under investigatien.
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fppondix 1

Relations between functions ¥, R and P characterizing

perfect lattice

Ve want to sumarize here some of the basic properties of
the functions F, R and P which, in principle, can be found fram
the theory of the rerfe;'z.t 2rystai. To obtain F, as stressed
above, is a one~body pro:blem, once the potential Vp(g) is knowm.
Or the cther hand, exact determinatinn of R and P is not possibie
at prese.t. as these q:;antities depend on the exchange and

correlation energy of an irhomogeneous election gas.

Proof of reiation ( 3.}, ) between response

function F and one-body Green function and density

matrix

As remarked above, the relatiou ( 3.}, ) was given by
Stoddart, March and Stott (1969). An elementary proof of this
will be sketched below.

Eqn. ( 3.7 ) gives us the change in the Bloch density
matrix C (r r' @ ) due to a change in poteniial AV, a change

we denote by 4C{r B8 ) on the diagonal.

Then we have immediately fron eqn. ( 3.7 ) that

ST N I
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g
AC(z B) = -fds‘ AV(.!:')/ g, C(z z'8 - 8y) c (x'z By)e
o

(a2.1}

DA SR BT

Yot L e+
Loy

We now compare this result with the density change OP (x E)
caused by the same change in potential. This, from eqn. (L4.11 )

NI

_vith V d(r) set equal to zero is

4

.
N AL

: f
B 8p(z ) = [dc' AV(z') F(z 2' B). (a1.2)

LRSI

R But we have the Laplace trensform relation bastween C and p
.3 (provided we add a positive potential energy to bring all

energies 2> 0)

DR

(TR

AC(xB) = B/ wAp (r B) e PE gr, (a1.3)
o

s

Integrating this equation by parts, we find

At i
piaaltesy)

" ac(r B) = fo e PE 3 #p(zE)aE (a1.4)
Y n dE

- = fd-ll' aV(z') ]rw eP* ap(p r' ) a8

2 °© OB

where the last line follows by differentiating eqn. ( Al.2 ) with

respect to E.

i
b
A
R
3
L5
8
"3
3
2,

It is clear then from eqns ( Al.l ) and (Al.L ) that
9F/@E can be related to the integral over g 4 of the preduct
of C 's displayed explicitly in egn. { Al.1 ), Substituting

e PR R Rt Rl e S R DT S o e Ty s N - . .
- PRI R PRy 2 G RUET S I B T e e e
= 2 < g o A N mn s . ..
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the explicit form ( 3.1 ) for C,, the B, integration is readily
accamplished. Similarly, the inverse laplace transform required
to obtain ZF/© E from equ. ( Al.L , is easily compleved. Hence,
using the explicit definitions of C  and Pye €an. (3.4 ) follows.

Integral equation for R

N T R Ay

The determination of R from first principles presents more

v ———
ESHL S A
\

difficulty; though a semi-empirical procedure can be deviged to

; obtain a useful ste-ting approximation (see Appendix 3). ‘
The argument sketched below follows the discussion of JM
and is given for completeness in that the potential AV(r) required ;
to generate tre Kanzalkd lattice depends on P through e¢n. (3.2 ). i
: The essential point is that we can write the change in the one- ,
body potential as we move the ions from & tof +u, as 4
; BV = BVe1ect ostatie +fU(;‘__§")p1.(Z‘.') ar'. (A1.5)

But p, 1s related to R (z) and we also have

Aot
R s SRt R R U APPSR

.
SESMAR A

O IR QRC AL e A

T/-@ (2 - e+ ) | o TRy
'

jz - 2"}

N

F.0

b2

E<

& i
.h~ :

1 + Y e fole ) 2 -0 ax (12.6)
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L N o

This can now be expanded to O(u ¢ ) to yield thu form (3.2 ) :
where

artrd A ASENSTL

P() = [EEDNE _Zez  fypp) R (2)ar!
lz -2 =

L

* (a1.7)

After same manipulation, the basic integral equation ( 3.3 )
of JM then follows.
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Appendix 2 H

Ak 6 SRR T

;
To avoid the troutlesome problem of solving eqn. ( 4.2 ) 1
_ by numerical iteration, we shall now argue as follows. With
« the defect potential Vd(r) introduced into the perfect lattice, a
l let us suppose that by the methods of Stoddart, March and Stott x
{ (1969) we have generated a density matrix C, where u stands for ﬁ
2 the unrelaxed defect lattice. Then we define E
800 = G- G (A2.1) ‘
" and

: BCpe = Cp = Gy (s2.2)

1t seems reasonable to assume that a useful starting point

for the caleculatim of Acfx would be Acao’ which, at least,

v IPTTIRT
RO, EDOALELTNER

includes the full effect of the defect potential V d(r), though
not, at first, the relaxations.

a3 P TRl § s $8 PRV 4 e Y TR ML i A PN ety B f I

AGPOL

It is now a simple matter to show, from the integral form
of the EKloch equation, that

8Cp = -/ B d31./dg_"{<°cfx(£ " B - By) * Cpplz £"B—31,)>
o]

SRt QTG S, 0

)

Yt
AR
e P aats 5 ke YR PU ST A2 UGy e a0 A s b

Vo) cele'z’ 8y)] (22.3)
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s o

vd(£||) CQ(E" £,' B1 ). (AZ.h)

3 Subtracting these, we have for the error 6C = AC K Acuo :

Z the result

g
5 = - ap /d.}‘_"[bc AC a+ C ]v ~u C -n ~'
/o ’ + 80,5 v O Wa(2")C(x" 2'8y) %
) (42.5)

Now we have also

Ueistinr © tav 13vaa Kae

wr .

A8 Cx = Co = Cgo (a2.6)

:, where A“Ko is O(u , ). Thus to O(ug ) we find

‘ r B
o3 = -[ s, jrdﬁ" [°C + Acxe}'d(?-") Colz" 2'8y) ,
o A2.7)

. If we further assume, as starting point, that 6C <1§\CKo 3
o then we have as the first approximation to corract the charge ‘
. 'displaced! by Vd(_l_‘1) in the unrelaxed crystal ,
; B
6C ~ = n u "ot :
3 C / a, [d;_ 8, V. (2") C (2" ' B,)
o (a2.8)
V: - P as " AC.__ V. (") AC (" r' 8,) i
. /7= uo 4 ‘= Ko ‘= = ¥4/ :
€3 i:

VO
Pot . tnna s v b s e S8 WRE L

‘&\
St
s

R A T ST A R, T T R e
A : 3
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"
4‘ ;
: :
3
5 Here then, is an expression to correct the displaced charge %
i
k- for the effects of relaxation, in terms of the properties of the ;
: unrelaxed crystal containing the defect potential Vd(g). d
To get a self-consistent theory, it is clear *hat eqn. ( }4.10 )
3 must be used to refine the displaced charge in the unrelaxed crystal. :
‘ If wo work with the Green function, the £ integratien in (}4.20 ) z
is immediately removed. 3
5 1
3 I+ may well be possible to calculate local changes around
-' the vacancy by making the additional approximation in eqn. (L4.10) x
that "d varies slowly in space. Then for the diagonal element §
‘ &(r r B) we find }’
6C(z £ B) =
.. - oo 18 ! ‘
¢ Va(z) / ap, fdg [ACKO (z 2" 8y)
{200 "z 8 -8 (2.9)
:
S 1t
- + AC\J.{\(2 B - 61 )}

In the main repsrt we give & rather eruder form of eqn. ( Az.9 )
Clearly, however, eqn. ( A2.7 ) provides a perfectly proper

R N T XY VSR PY Vo

starting point for refining the displaced charge calculated
in the unrelaxed lattice.

TRt i NI AR e 1 b

X
.o ]
\.t‘ H
3 i
F; -
A b
34 :
7
< 3
)
"o 2
T 1
b
e
&
5~/
&

N S S N T I SR B N v e L e



- (i'

- o
D TG S e

TRy

pAIE0 S

R

RIAST BT 4 SIS (R 0

PR e T

434

2

3 """"‘""'7 e PR

NETSES @?WQW"W‘&“"mé‘“mfmwww%*-mﬁﬁwf%wM-’-"*w“‘wv'*ﬁf'a‘fm\%\damvﬁzmm-m»ﬂwswm*»n?«e‘:mwsewwmm;%mw-Mm«m»uw“i}%
,

~70-

Appendix 3

Preliminzry estimate of P, (r), the charge 'displaced?

in the Kanzaki lattica, for vacancy in Cu

Since the evaluation of the displaced charge in the
presence of relaxation is, via eqn. ( 4.11 ), iniinately
related to the charge displaced in Kanzakli lattice, namely

Py (z), we have made scme preliminary estimates of this

quantity for a vacancy in Cu.

Evidently, to calculate p1(£) from eqn. ( 2.1 ),
we musi have information on the dlsplacements u 2 and the

response function R (r).

Tewordt (1958) has dealt with the problem of the
relaxations round a vacancy in Cu by matching local relaxations
around the vacancy, obtained using Born-Mayer pair potentials,
on to the long-range .elaxations which ecan be properly treated
by replacing the discrete crystal by a continuum. This approx-~
imation becumes valid outside a sufficiently large region
enclosing the defect or defect complex. For then the
cisplacements v, become small and vary slowly from atom to

aton.

We have used these displacements U, asgiven by

Tewordt (1.958), even though they will eventually need
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. refining to take account of the detailed nature of the
displaced charge round the vacant site as discussed in this
report. \
It only then remains to &t up a suitable approximation J
to R(zr) in eqn. ( 2.1 ). We already have the Fourier
‘ components _fgx at the reciprocal lattics vectors K through 5
: eqn. ( 2.3- ). Btterman, Chipman znd de Marco ((1961) é
have studied the X-ray scattering from Cu and we therefore have a
approximate estimates available of the px's. Following JN, :
we have made the assumption that we cau use the fom ( 2.3 )
:, for all k, smoothly interpolating totween the pK's at the i
reciprocal lattice vectors to obtain pk. Obvi;usly this i
L procadurg is not utique and eventually ;he integral ecuation
’ of J¥ (see Appendix 1) must be solved to find R(r). i
: The above assumption, as emphasized by JM, is equivalent

to ths assumption of pair foress, and we can then write R

as the gradient of a scalar density O(r), namely

o ool

R (z) = Vo(z) (A3.1)

vhere, from eqn. ( 2.2 ) it then follows that ;

p,fr) = Z o(z - £). (a3.2)

3 :
s Provided O(r) has the correct Fourler components at the
‘ reciprocal. lattice vectors, which is of course ensured by our ,
"}? procedurs to within the accuracy ¢f the experimental measurements, !

AL
-

¥




23 %

- I LT ey 2w N SO N M W0 St P vty St c

-2~

then egn. ( A3.2 ) will repri-duce the axact ground-state

charge density of the crystal.

Tne form of O used to fit the X-ray results of Batterman
at al is given (cf. Jones, March and Tucker, 1965} in Figs Al - A3.

Displaced charge in Cu metal

As an gxample, we shall compute the displaced charge in
Cu metal using Tewordt'!s displacemer.ts and making the prelim-
ibary approximation R= VO . We fit O the !'pseudoatom!
charge density to the X-ray scattering experimentsas showu. ..

in Figs Al and A2?.

Using the Hartree-Fock atom density as starting point,
the correction AC (k) required to fit the X-ray scattering
at the Bragg reflections is showm explicitly in Fig Al.

Tris is not unique; we have simply drawn a smooth curve
through the measurements, and, of course, eventually the
integral equation of Jones and March will have to be used to

find R(r). The Fourier transfors ‘Ac(r) 4s.shown in Fig42.

We then calculate

(A3.3}
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e N et o

for various directions in the crystal and the results are :

’ shown in Figs. A3-AS5. The very marked anisotropy <vidant i
there is a consequence of the fact that as we go out along
the< 111> direction we do not encounter an atom over the &
range shown. This then is a first estimate of the charge ,

displaced in the Kanzaiki lattice, strained to account for

the displacements round a vacancy in Cu.
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Appendix Iy

Relation between response function approach and elasticity

’ theory in long wavelength limit

{ The customary elasticity approach gives us the result

that, in response to a localized body force, which in k space,

‘ in the long waveiength limit gives us the Fourier transform

of the force F in the form

% F (k)= 1k A (Al.1)

where A measures the strength of the body-force, the

‘ displacements u, (r) teke the form

g, () =cz (Ak.2)

1 =

The multiplying ccastant in eqn. ( p).2 ) is determined in

~ Towordt!s method by matching to the 'discrete! displacements

f in the immp=diate neighbourhood of +ne defect. 7%

. It is evident in Ksnzaki's method that F and u are %

E rslated by the dynamical matrix Dyg  (k), which in turn, g

as JM discuss, is related to the response function R(r). §

' It then becomes clear that slasticity theory gives us rather %

direct information on the response function R(k) at smail 2

k, and, in particular relates the small k behaviour rather g

: directly to the elastic constants. This will be discussed 3

E quantitatively elsewhere by Claesson, Jones and March (to be §

f published) in connection with many-body forces in lattice :ﬁf

4 dynamizs. %

; 2
E




TR S T REA Y

R T T ey
S AT AT

» ";'. o

Eei gy TR T
o

Vi
b

&

3
¥
g

-

Vit

At

Ky -
s

o

AP G0
!

"

~75-

We want only to make one other point relating to
elasticity theory here, Cerresponding to the displacements

(A2 ), 4t 15 well known that there is a volure change
per defect g.ven by

AR = Lrey (AL.3}

where Y = 3(1 - 0)/(1 + 0), O voing Poisson's ratioc.
We.anticipato that eventuvally it may be nacessary to check

that the defect potential adopted obeys sume condition equivalert
to a Friedel sum :ule into which the volume changs ( 4k.3 )

is incorporated, as we indicated in tae Introduction. Our
microscopic theory is not yet sufficiently well developed to

give a precise understanding of this point, which is worth
further study.
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Captions for Figures

Fig. 1. Iocgl density of states O(x E) for Mg in Ii (solid
curve) for E = & Eg.  Dashed curves show local demsity of states

in pure Mg and pure Ii metal.

Fig. 2. As in Fig. 1 but for E = Ef(private communicatien from J.
Inglasfield).

Fig. 3. Total displaced sharge Q(r) inside sphere of radius
r in case of vacancies in w (2 = -1), Mg(Z = -2), A ¢ (2 = ~3)
and Pb {2 = -L).

This is needed to calculate electric field in Kanzaki
la“tice. Rgsults shown are from the work of Stott, Barancvsky

and March (1970; see also Mcrch and Stoddert (1968; p.551)).

2 2

&
Fig. A.l. A4O versus (h2 +k + <)% for M, used to fit X-ray

reswlts of Batterfan et 2l. Form is given by

11{3“&1}{ + AZK’ e 22K

A, = 3.2, a; = L.1L,A, = 0.0083, a, = 1.35.

so(K) = A

Fg. A.2. Ao (r) corresponding to  Ac (K) in Fig. A.1.

Fig. A.3. Charge density Po in Ca, together with displacud charge ‘;
in Kanzaid lattice when strained by a vacancy. Densities shown along

<100> direction.
Fig. A.L. Same as Fig. A.3. but along < 110> direction.

Fig. A.5. Same as Fig. A.3. and A.L. but along < 111> direction.
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