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Abstract

Since Final Report DAJA37-69-C-1223, the following papers

have been published on work supported partially by this Contract:

(i) Interaction between point defects in metals, by N. H. March

and J. S. Rousseau, Crystal Lattice Defects, 2, 1-46, 1972

(ii) Partition function of a disordered system, by J. S. ftusseau,

J. C. Stoddart and N H, March, J. Phys. C., 4., L59-l61, 1971

(iii) The Dirac and t matrices for spherically symmetric potentials,

by J. S. Rousseau, J. Phys. C.., 4, L351-L3541, 1971

Furthermore, an invited paper was given at the Battelle

Colloquiums, Seattle last Summer on 'Computer Simulation of Lattice

Defects' and will be published in the Proceedings of that meeting.

This is entitled

'Xanzaki forces and electr-n theory of relaxation round defects'

by N. H. March and J. S. Rousseau.

The substence of this latter paper is reported in Part A of the

present report.

Part B continues our work, begun by Rousseau, Stoddart and

March (1970) and contiaued in (ii) above, on elcctron states in

disordered systems, by considering specifically the electrical

resistivity of liquid metals in the strong, as well as the weak

scattering regime. While, for weak scattering, we regain the

Ziman formula, we expect our "heory also to apply to strong scatterers,

21k the liquid alkalin.n en-tZlaTmtals. ' pt Licular -:torvtt
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here are the metals calcium and baerium, for which electrical

transport measurements have become available very recently

(Van Zytveld, Enderby and Collings, 1972). These workers

conclude that no simple modification of the pseudopotential theory

can exp.ain their axperiiients. We report in Part B therefore

a basic theory uhich is capable of dealing with strong scattering

such as we encounter in these liquid metals. Calculations of

the single-centre scattering for calcium are in progress, in

order to br;,g our theory based on the inverse transport coefficients

into contact with experiment.

at

Z
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PART A

1. Introduction

Especialyr in metal3, there has been a good deal of interest

in the theory of ..- rged defects; for example a vacancy in

or Mg atoms in dilute concentrations in Mi. So far, however, no

very careful account of the detailed relaxations of the lattice

round the defect or impurity site has been incorporated in such

electron theory calculations, though att'mpts have been made to

include some account of relaxations by modifying the Friedel sum

rule, which is frequently used in defect calculations to simulate

self-consistency.

Thu electron cheory .%f defects in metals has proved to

make interesting predictions about, for example, ciarged defect

interactions, especially in polyvalent :4etals, 'Aiich appear to

agree in general terms with experiment (see, for example, the

review by two of the present write'rs (March and Rousseau 1970)).

But a mibstantial body of work also exists in which a

markedly different philosophy is adopted. Here, relaxation

effects are studied &s tne prime objective, usually on the basis

of pair forces. Unfortunately, such an approach often fails

to include a proper account of electron redistribution caused by

the introduction of defects or impurities into the lattice.

Though this is a serious limitation, nevertheless the approach has

Sl
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V.t&ctical merit in that it allows local relaxations round defects

to be estimated, in a way which matches these on to the correct,

long-range lattice displacementz given by elasticity theory, at

large distances from the defect. Indeed, quite a body of work

is now enailable giving us estimates of the displaced positions

of lattice atcms about a vacancy, or a divacancy, in a number of

metals.

Such calculations, made with plausible pair forces, show

that even when a vacancy in created in n open body-centred t'ubic

structure like Na metal, the o.tomic movements ar really quite

amall. This is a fortuncte circums!-ance and had been anticipated

by Kanzaki (1957; sea also Matsubara, 1952) in his method of

lattice statics. Here, the idea is to simulate the effect of

a vacancy or impurity in a lattice by regarding the originally

perfect lattice as strained until it takes up the relaxed

configutration appropriate to the equilibrium atcoic positions

in the defect lattics. Obviously, external forces must be

applied to hold the other atoms in their diplzaccd positions.

We slall refer to these external forces as Kanzakl forces and

to the strained, but other-ise perfect, lattice as the Kanzaki

lattice. Kanzaki assumed that all the displaceaentsu ,

saly, from the perfect lattice positions Z, were se small that

one t eed work only to first-oraer in 2 .

Thus, on the one hand, ,e have the electron theory, in



whdch a basic quantity characterizing the defect is the localized

charge it displaces (as a specific example to be referred to again

later, see the calculations of Stott, Baranovsky and March, 1970,

on the charge displaced round vacancies in close-packed pol-valent

metals) and, on the other, the method of lattice statics, uith the

strained Kanzuki lattice held in the relaxed Vinal configuration

by axternal forces.

4
Though the present report is coucerned with the electronic

stry-cture of defects, the idea of the Kanzaki lattice wi2!. play

a central role in setting up the theory. Specilically, this

allows ua to develop a means of treating the difference between

the charge di vplaced by a given. defect potential in the unrelaxed

lattice and that displaced by the same defect potential inserted

in tne Kanzaki lattice. Some p[mliminary results for a vacancy

in Ca metal are referred to, by way of illustrating the approach.

It can, be objected that, to set up the Kanzaki lattice.,

we nmust know the relaxatiot:n at the outset. This is truc, and

we must use some starting estimates such as those referred to

above from pair potential studies. However, once the ch•_rge

displaced in the Kanzald lattice by the defect potential is know,

we mre in a position to calculate the electric field at the

ionic positions in the .aXzaki lattice, and hence frum the

Fey~man's theorem, the Kanzaki forces. If these a-e not

corsistent with the original dislac.cients ue, Kanzakils method
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can then be used to generate a new set of displacements. The

new displaced charge must then be found. Clearly, we can, in

principle, iterate until a self-consistent result is obtai'id,

Though, therefore, at least in principle, the theory

given here cwn solve the problem of the electron distribution round

a defect in a correctly relaxed lattice, there are a mumber of

practical issues to be resolved, which will, almost certainly,

involve major electronic computation. Of these, a prime

problem is that, to obtain the electronic structure of a defect 9

centre, wa must have a great deal of i0formation about the perfect

lattice. We do not, as yet, have that information in a suitably

,plicit form for any metal but, as we shall show in section 3

below, a good deal of it, though not all, can be got fram well

established methods in the band theory of perfect crystals. The

second difficulty resides in the fact that methods of solving

the problem of scattering off a defect potential in tho

unrelaxed lattice are still troublesome to apply. However, when

both the perfect crystal, and the defect potential, can be

constructed from zraffin tin potentials, we have the rigourous

one-ei•ctron theory of Beeby %967), while for three classes of non-

muffin tin defect potentials we have available ths explicit

approx.d 'tionsgiven by Stoddart., March and Stott (1969). A

third difficulty is that we do not know precisely vhat potential

to take to dascribe the defect. But at least, we can give

an oporational definition of what that potential must. be and

wo do this in section 4..



We conclude this part of the report with a brief discussion

of the way defect energetics might be studied within the present

framework.

N
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A convenient starting point from which to explain the basic

ingredients needed in the electron theory is to study how the

electron density p o(r) in the perfect crystal, which is accessible

--to experiment via the intensities of X-ray scattering at the Bragg

reflections, is changed when we strain the crystal to foum the

Kanzaki lattice, and we turn imnedialy to the solution of this

problem.

2. Electron' •density in Kanzak. lattie

SWe start with a perfect crystal, with atoms at lattice points

We simply strain the lattice, introducing neither foreign atoms, nor

vacancies.

The method we use to generate the electron density in this

Kanzaki lattice is that used by Jones and March (1970, referred

to subsequently as JM) in their theory of lattice dynamics. The

theory is immediately useful within the framework of the Kaiziad

method of lattice statics, provided oray that the displacements

from the sites esayu 6  ,are sufficiently small so that we

need work only to first-order in the displacements. This is a

basic assumption of our approach, and it will have, of course, to

be checked for consistency in any application. As v. stressed above,

however, even with a vacancy in an Gpen structure, it is found in

practice that relaxations are often quite a small fraction of the

lattice paramater,? and the present approach should be widely applicable.
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Let the change in electron density when the lattice is

'strained, be p i(r). Then, to first-order in the displacements, the

theory of JM allows us to write

P (r) I (2.1)

The vector R satisfies i n integral equation given by JM which

involves knowledge of the erichange and correlation energy of" the

inhcmogeneous gas of electrons in the crystal (see Appendix . for

some relevant details.) However, it is important to note that •(r)

evidently also determines the gradient of the perfectly periodic

Lattice densityp 0 (r) through

Vpo (r) Z R(t- •) (2.2)

Information about R(r) in Fourier transform is therefore

available at the lattice vectors K. Here, in fact is

determined uniquely by the intensity of X-ray scattering at the

Bragg reflections, as discussed in JM. In particular

S-i K% (2.3)

where P is the Fourier compor.ent at K of the charge density

P

Thus., it is clear that if we know,, from~ say a pair noteatial

study, a first approximtion to the 4's and if, as discussed above,

these relaxations turn out to be sufficiently sma1l, we can generate
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the density P (r) + P at any point in the Kanzaki lattice

from a knowledge of the quantity R characterietic )f the perfect

lattice.

As an example to illustrate this method, we seall consider

in Appendix 3 some preliminary numerical results for R in Cu Letal,

from which P 1 (r) for a vacancy in Ca metal can be estimated using

the displacements ui clculated by Tewordt (1958).
I4

However, it is clear that, though P ir) is a basic quantity

needed in the theory, a gooa deal more information is required in

order to generalize the approaches of Beeby (1967) or Stoddart,

Ialrch and Stott (1969) to deal with perturbations in the Kanzaki

lattice. We shall the-efore turn next to discuss the Green function

or density matrix describing the Kanzaki lattice. The 0-scussion

of the density above is, of couras, a special case of this more

general treatment. We want to emphasize though that the above

discussion is exc'b to first-order in the displacements if the

prope-ties of the perfect lattice, as summarized in R1(r), are

known.
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3. Green function and/oi density matrix in Kanzald lattice

We can, as w shcw below, set 4N the Green function of the

Kanzaid lattice, from that of the perfct lattice, Go(r r'E) say,

the latter being constructed such that the exact electron density

P (rrEf), "Ath Ef the Fezrmi energy, is correctly incorporated.
0?

Below we shall work with the canonical density matrix

Co (r _, for the perfect lattice, defined by

C(r r') = (r') E (k)

/1JR ily *y e (3.1)

ihere the Bloch wave functions 'yk Cr) and corresponding eigenvalues

Ey (k) are generated by the periodic potential Vp(r) Adehch gives

by definition the exact ground-3tate density in the perfect

unstrained lattice. If we take the laplace transform of

with respect to P, and call the transformed variable -E, then

we regain the Green function G0 (orr E) immediately, .so that

whether we work ;ith C or G is puriLy a matter of mathematical

convamience.

Following J&I we can write for the strained lattice, a

perturbing potential A V(r) having the form •7

S(R All- (3.2)

Fz% JM, (see also Appendix 1 )we know that



-10-

11 = Q()) F(r r')dx' (3.3)

iieere F is a one-body response function given by (of Appendix 1)

a2ReFG (R RIB, (3elM r'F)
0 '-0

•eE = L° a•_': E• •••-ICo)

where P o(rE) is the Dirac density ratrix of the perfect lattice.

Once the periodic potential V is known, P and Go can be calcula*!d
P 0 .~

purely frcta the Bloch functLons *, () and the energies B yh

It is clear frm 3.3 ) that knowledge of the one-bc -

response function F(r r1) plus P(r) is equivalent to knowing R(r).

To generate t2%e density matrix in the Kanzaki lattice, we ncw

need to Luolve the Loch equation

H = - ac5)
where a1

H= - +V () + AV(Z)= o + AV, (3.6)

subject to the usual delta function boundary condition C(r , O)

- 6r - r1) expressing the ccmpleteness of the eigenfunctions.

But H generates the density matrix CO and A V is a pertrbation,

from oqn. ( 3.2 ), provided the s are small. Thus, we can

write, to first-orderin AV (cf March, Young and Sampanthar, 1967)



CKarnzaki • 'p, K( ,p 3?

C ( r jetC0(r r'0) - P. (r( _, _ ) AV(r,)

Cc.(r" .r".'•

•idch determines the density matrix or Green function of the

Karzaki lattice in tcrms of Uo and the perturbation tV, uhich

is in turn gv3n by eqn. (3.2).

Eqn. ( 3.7 ) is the basic result then from which we

must build the solution for the defect lattice.

-1*

jr 1p
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-. Solirun. for defect latticeIA
We now introduce the defect, and to be specific, we shall.

assume we create a vacancy at tie origin. Let us suppose that

the electron density PK(r) M P or) + P1 (r) in the Kanzaki

lattice chan&es to Pf(r), the density in the 1inal state containing

the relaxed vacancy.

4.1 OPerational definition of defect r'tentipl

43

We tacitly assumed above that we could generate the exact

ground-state density PQ(r), as obsoeved say in X-ray acaztering,

frm a one-body periodic potential V r): i.e.

p.-

(occupiedc

This essentially follows from the considerations of Kohn and

Hohenberg (1964) and Kohn and Sham (1565). An aperatLonal

procedure to construct V (r) from a given P (r) has been
P,0

discussed rather fully by Beattie, Stoddart and March (1971).

The same argument, in essence, now enables us to define

operationally the defect potential. W' wish to find a potential

Vd(r) ihich, when added to the one-electron Hamiltonian H in

eqn. ( 3.6 ), yields the exact• final state density Pf(r).

S&I
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We want to stress that Vd(G) is a potential to be added
to H, not to H.. Thus, Vd(_) is generpted in a system in which

the ionic configurations differ only by the removal of the ion

at the origin. If we had defined the defect potential as a

churge fi2m Re, all the ions would have roved and Vd(r) -4ould be

a ruuh miore coplex obj3ct.

Fcr the vacancy, especially in polyvalent metals, we must

not expeot that the effect of Vd(r) can be treated as a perturbation.

The Bloch equation ( 3.5 ) with H replaced by

Hf H AV + Vd (, (4.2)

can again be written as an integral equation

c (rr' ) - CQ(r r (4-3)

- ~ ~ e 4C'1 1 K f'P"t-f3 Vd(R")Cfrr )

ittooe now the object "f which is required appears also on the

righb-hand side of eqn. ( 4.3 ). In principle, knowing

fr- eqn. ( 3. ), we can obtain Cf frcm eqn. 4 1.3 ),with

an assumed defect potential. In practice, an iterative scheme

(cf. Hilton, March and Cartis, 196 7 ) would have to be used

and the procedure is certainly very lengthy and 3owewhat troublesome.

We shall therefore consider below two approodiate methods which

allow us to solve (or in the second method to circumvent) the

integral equation 41.3 ).
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The idea has already been made plain. Physically, we

anticipate tht the diagonal difference Cf(r r - Cj(r j : )

C. can be useul~ly split into two rartsa, &C~d CU(&: f

-Cý ¼ r 0 ), where Cu is the Hloch density obtained by introducing

the defect potentiol into the perfect lattice with otoh density Co,

plus another term 6 C taking relaxation into account..

• 4.2 Correcticn to dilacd' ,chare as calculated in unrelaxed latti

A rough approximation to estimate 60 can be gi7en as follows.

Writbe, with the aassmPtion that Vd(W) varies slowly in space

(of. eqn (3.1) )

r• =1 c• (rr •) ed~ h

- and -•Vd(r.) •

S~Thus we have from the doefinitions given above

A:• : = cK L-•vd- Ii (I.o)

-ijSACu Cy e C .7

Therefore it follmws that

A , C e&3dU(-

~i 'N -~-----and



6 = Le\ .- 1] [N~- C-

(4.8)

-= [e -Vd _.1 ACK..

Here then; we have a rough, but quite practicable, way of

estimatdng the correction to the displaced ciarge in the unrelaxed

lattice, due to relaxation, since A Co is given explicitly

by eqn. 3.7 )

In terms of densities, we could •ternative17 write

Pf(Z E) . p(-, -E v (Z) (4)9)

and

pu(- E) p p0 (1, E - Vd,)) (4.-o)

We stress that we onl•r use these forms to estinte the correction

to the displaced charge Apuo = pu(r- ) - po( E) due to

relaxation. Then we have

APfK - APuo 6p

f B E- Vd(M) KZE

S- R0 (g, B Vd(Z) ) + po(- i) (J.n)

S AV Q:, Q: M, E - ,ra(R) --(I R. )

'a 5
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which follows from the definition of the response functdon F. Hsre

then is a first approximation to correct the displaced charge inI *i

the unrelaxed lattice. Since V(r1 ) is given by eqn. ( 3.2 ),

it is elear that 6 is (u ), as required.

We want at this stage to comment further on the result

(4.11 )- Th-•ru,4 the potential A V(r), determined by perfect

lattice properties plus the 4 Is there is an obvious link with

lattice dynamical properties. The displa-ed charge Ap uo

due to Vd(r) in3erted into the unrelaxed lattice ia to be

torrected by the appropriate form ( 4.13): this reduces to

zero, as it must, when Vd(-) - 0.

Around the defect, however, we need to know F(r r 1 E)

as a fumction of E, in order to evaluate eqn. (4.-2 ). As

can be seen from eqn (3.4 ), this is a problem in band theory

wi-ch, for a given periodic potential V (r), is soluble by
p

existing methods, though it will be an extensive computational

task Information about the response function F(r r E)

will lead to progress in the field of lattice defects; another

bonus one could gain then would be to map out the inisotropy

of the displaced charge due to a weak perturbatiion, such so

that due to Be in Li.

* A more precise, but far more canplicated, way of correcting the

displaced ;!harge is given in AppenW.• 1.

"$,

S , 4
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Assuming that, for a muffin tin model, Ap is found
uo

frou the theory of Beeby., or for more general potentials from the

approximation of Stoddai-, March and Stott, it is clear that eqn.

(4.11 ) gives u. an approx!rmate method for estimating the effect

of relaxation. This thun constitutes a principal result of our

report.

Actually, in the case when A 7(r) does not vary too fast

in space, we can further simplify eqn. (4.11 ). In paaticular,

for p r•E )giverby

P1 (R C) = fax, AV(Z 1 ) P(rrZ1 E') -2

we can then write

PI(M E) AV() [d: 1 F(R E_1 B) (4.13)

The integral over r in eqn. (4.13 ) can now be carried out,

to yield

pl(E E) - AV(r) apo(r -) -- Av(r) %o(Z E) (4.14)

0-0
wkhere 0o(r E) in the local density of states in the perfect

lattice. This is Just the quantity Beeby (1967) calculated from

the KKR method,with the result

-1

o~,( B) IlR (~)~ I mi '4 iT- mGj(la) (4-15)
' J L4.1L)'t
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t is the t matrix for a single muffin tin potential, whle9 all

the structure dependence is in G(_!)for which Bee1y gives explicit

e.rpressions. The integration in eqn. (4.15 ) is over the

Brillouir. zone of volume - , while RL(r) is as usual the radlal

wave function. All the infornation needed in eqn. ( 4.15 )

is accessible through a KKR band structure calculation.

By comparing eqn. ( 4.14 ), used at the Fermi energy

E F f., wi.th the semi-empirical pronedure based on eqn. ( 2.1 ),

it will be interesting to oee whether the approximation (41 )

is suff• ciently accurate to allow- A V(!r) to be found explicitly.

If so, we have, of course, through eqn. (4.34 ) the energy

dependence of p 1 (r E) required in the evaluaticn of (qn. (4.11),

which in tie appro,.cmation equivalent to eqn. ( 4.14 ) becomes

6p - AV(r) (r E - (r))- o(r WfN).. (4.16)

Unfortunately, though numerical calculations are in progress,

results are not as yet available for p.

Later, when we have more knowledge of the basic response

functions, refinement -ay, be carried out via the method of

Appendix 2, should it prove necessary.

If we oan make the approximation that A V(r) is slowly

varying then we find eqn. ( 4.31t) and if we apply this at the

•Ierv level, we have evidently the approximate result



Pl. (!" ) pl(r Ef) nO(• i)

Thus, in this approximation we simply scale the displaced charge

below the Fermi level Ef in the Kanzaki !attice with the local

density of states in tne perfect crystal.

Using the first approximation for 6 p that

6p(iE) = p1 (Z B -Vd (n)) -W(r_ B) (P.:()

we see that this takeo the explicit fern

6P (Z_ B) P E [1 Z F-.. va ) - (_4 1)

and hence, at the rerei level

bp(W) = PlrBf) Io(rE -Vd) - .20)

oo (L Ef) •

Thus, given the local density of states o (r E) in the

perfect crystal, frm the band tieory calculation, thr. defect

potential Vd(r) and the displaced charge in the Kanzaki lattice

at the Fermi level, we can calculate the correction to the charge

displaced by Vd in the unperturbed lattice. Of course, 'e have

only circumvented the many-electron nature of the'problem by using

Gqn- ( 2.1 ) with R (r) fuund cmpirically from the Bragg reflectior.

iutensities. We stress that we can irclude both many-electron

effects and maW-body forces via tho preserco of p 1 (r) in the

* ~ ' ~ ~ ~~*
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result ( 4.20 ). But of course we are still involved in the

assumption that Vd is slowly varying and we expect that refinement

of the theory will lead toa form

6p (1) = p.(Z Ef) ii: EV Vd(l ()2]

Thi square bracket in eqn ( ).20) is a first approximation to

the modified function f.

4.3 Local density of states for Mg in UI

Dr. J. E. Inglesfield (privata cnmiunication) has recently

made preliminary calculations of the local density of states 0 (E)

for Mg in Li and v.- wish to conclude this section by mentioning

these results briefly.

The results are shown for two energies 2 and Ef in Figs

1 and 2. The variable used is r/r, where r. is the radius of

the Li atomic cell (3.265 a.u. ). The Fbrni onergy of Li (0.17-3

a.u.) has -bon ued.

The dashed curves show the original local densiti3s of states

for the pure materials, at each energy, hile the solid curves show

tho local density of states for a Mg impurity in Li.

As Inglesfield has emphasized, sr,?jthing like von Laue Is

theorem is being recovered as we approach the Ferni energy.



-21-

It is quite clear that ..3 can use the local density of
states for Li thus obtained to calculate the Panction in the

square brackets in eqn. ( 4.20 ). Olculations are currently

in progress, in conjunction with Drs. Bullough and Perrin, to

obtain a 0o(r E) from Beeby's method for Ii, as well as the

displaced charge round an unrelaxed vacancy in this method. 3

Eqn. (I4.20 ) can then be ueed to correct for relaxation.-. .
4.- p

i.

p

4.4
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5. F.ectric field in Kansaki lattice

Let us now consider how we can calculate the forces acting

on the ions in the Kanzld.• lattice from the electron theory developed

above. Again, to be specific, we will consider the monovacancy,

in which case a single atom has been removed from the origin. Mearly

in this defcct lattice, there are no forces acting on the atoms,

since the relad configuration is in equilibrium. This implies,

from Feynman's theorem, that the total electric field E (r) in

the relaxed defect lattice is. identically zero vl.en r - + u',

Otherwise, there would be forces acting on the nuclei. This

electric field is created by an electron densitypo(r) 0 + p

+ •dr) plus the fields of the nucloi.

Now vwe put back the atom at tae origin., in our vacancy

example. The electron density in this Kanz•a lattice is

P o(r) +PP (r). The electric field F_•zki (r) " e (r)

in this straived lactice is evidently determined by the electron

densi.ty Po(r) + P1 (E) plus the nuclear configuration. lt is

then clear that the resultant electric field acting at the

nuclei must be equivalent to that duo to the difference between

the electron densities in the Kanzaki lattice and in the rplanxed

defect lattice and id the difference between the nuclea'

configurations.

Tmediutely, for the nonovacancy, we see that this field

must be determined by 4he electrostatic potential due to the
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displaced electron charge round the vacancy, plus that due to[ the absence ",f the ion at the c.zgia. This electron density is

given by

". 0+ [p, (Z, B. - vA,_.) -(M)(_,r B.f)] --
U0 d

and it is thie density, together with the field of the 'absentt

ion, .-4ich determines the electric field at the -ions in the

Kanzaki lattice, and hence the Kanzadi forces. From our knowledge

of potentials and displaced charges in free electron metals, it

seems that, at large r, by Taylor expanding eqn. (4.16) in terms

of Vd, 8p will be both maller. involving the product of A Vt£r)

and Vd, and shorter range than Ap , though this wif have to

be verified by detailed numerical claculations. Thus at large _r,

we rhafl tentatively assume Ap to dodnate in eqn. C 5.1 )-
u0

5.1 Some preliminary results frco free electron model

However, ve can readily estimate the field due to tbis term

and it is worth recording the result here by way of

Illustration. We have, from the Poisson equation

2 =(5.2)

vitere € is the electrostatic potential. In the case vheL

AP is spherically symmetric, we finduo

2 2rr - = 4o 4 PUo (r) r • (5'3)
",= -Q (r)
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shere Q(r) is the total charge displaced inside a sphere of radius

r. Thus we find

dr r

Hence, the electric field in the Kanzaki lattice (neglecting

the P, temsin eqn. ( 5-1 ))i~sgiven by

W (_)

displaced charge

Sr Q(r) (5.5)
r F2

Adding on the electric field of the ion, of resultant charge

Z equal to the valency, we find

*~~I U~)=~~ -)z (5).6)
r

For free electrons, we know asymptotically that we have the

F-iedel oscillations represented by

Ap° Acos 2kf r
""" . 3.....L .(5-7)

vhero kf is the Fermi wave number.* WO can therefore write for

the asymptotic form of Q(r) -Z

'The introduction of a phase shift, necessary, for strong scattering,
is easily effected.

I~ ... .- -I "- il•• ' 1 ,*' - •' I * " --- , -In-*r -- -g- -- -- ~ - #
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- Ap 0 4r d
'6@O

r

-47C AT cos t dt (5"8)
J2kf r -- t

4 % A Ci (2k, r)

where Ci(x) is the usual cosine integral, as shown. Hence we may

write

C_ _) 'r 4$ x A Ci(2kf r). (59)

An estimate of A is readily available from the work of Stott,

Baranovsky and March (197C). Some results for Q(r) in Ch are

shown in Fig 3. Hence, if we assume this electric field,

evaluated at the atcoic positions in the Eanzaki lattice, acts

on the resultant ionic charge Ze at each site, we have a first

estimate of the Kanzaki forces as Ze E.(r).

We want to emphasize that this is only a very crude example.

It will be necessary to estimate the contribution due to p 1 ia

eqn. ( 5.1 ) as well as to calculate Apuo beyond a free-electron

model. In both calculations, we need the perfect lattice

solutions. Work i. in progress to evaluate the displaced charge

1Puo in Li for a mono-vacancy in the unrelaxed lattice, from

the theory of Beeby (1967), but results are not, as yet, available.

Howevor, Harris (1968) has already successfully applied Beeby t s

method to ths impurity problem. Since the Beeby theory is based

on the KKR method, the necessary response functions are already
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contained in the MIR solutions for the perfect lattice. 7hus

we have here a basis for a rather precise evaluation of the

displaced charge in the relaxed defect lattice.

Once the electric fie3ld is known, the Kanzaki forces can be
found and Manm'aki is original method used to obtain a new set of

displacements.

5-,

• i
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6. Kanzaki forces and energies of mono- and divacancy

As a further inustration of the present cppreachs let us

try to get the Kanzald forces associated with a Hartree treaaent

of a vacancy in a metal. Then we can write for the total energ

of the metal

u -•p(Z r') - + =d dý-" (R) p (e
u=J~[~r rt r++~~ ~~~

+ fdR p (R) 4(R) + (6.1)

The first term in eqn. ( 6.1 ) is the kinetic energy, the second

is the classical electron-electron interaction energy, the third is

the interaction energy of the conduction electrons with the ion

cores, whilo 0 represents the core-core interaction energies.

As the present writers have argued, the enorgy can be written

mhen the metal is deformed, in terms of the coronents of the

displacewnt field -s

U Uo + ½A44'aO• F• •,'VO(.2
0& (6.2)

and If, at the same time, the lattice is subject to external _.rces,

then the .following term

=. F, (6.3)

must be added to eqn. 6.2 )h;."e F are the Kanzaki force

ccaponents.
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If vs assume the existence of a pseudoatam, then we can

write

L-tc -Jd -. : *Z

where

4tr~r --(6.5)

It vi3i. clearly be of interest to see whether the above

approx1mation to the Eanzedi forces gives results similar to those

of the previous section, based on direct calculation of the

electric field at the ions.

The interest Wi the above calculation resides in its possibls

extension to estimal e directly the effects of relaxation on the

divacancy binding eergy. Unfortunately, it is then necessary

not only to know how the displaced charge round the two-centre

problem Is related to that round the one-centre problem, but

also it is necessary to relate the poasitions of the relaxed

atoms round a morsovacancy to those uhen the second vacancy is

brought up to the near-neighbour distance.

We want to conclude, because of the difficulty of this problem,

by pointing out a possible approach related again to calculating

the electric field E(r) in the final equilibriim configuration.
*Such a calculation for an impurity-vacancy coplex in a metal was

carried out by Alfred and March (1957). For a divacancy, it is
practicable to find the displaced charge from the model of Seeger and
Dross (1956).

I'÷
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We have, for i system in equilibrim under Coulomb

forces, with kinetic energy T and potential energy U,

2T + U - O.

Bat when forces are required to hold two defects at distance a,

we can write
2T + U a dE (6.7)

This equation can be integrated with respect to a toyield, since

T+U-E

a E(.) R rO U(R)dI. (6.8)

a
Thus, if the potential energy U(R) can be obtained as a functior,

of R, we cruld obtain the interaction energy as a functior of

distance. Certainly in a Haitree framewori, the calculation of

U(R) is then a probi.n in electro-statics, knowing the u• 's I
and the density po(r)+(l-(r)+pd(l)in the final equilibrium state.

We want, however, to make the point that R in eqL. ( 6.d )

1s really to be restricted to lattice separations between the,5

vacancies and is not therefore a continuous variable.

We conclude that, unless the use of pair potentials can be

Justified, which is unlikely round a divacanry in a polyvalent metal,

it is go• ng to be of considerable interest to map out the electric

fieldE (E ) (zero at r -+ ) in the final state, and find the

associated energy stored in the field. We suspect that ( o 7 )

ought eventually to be replaced by difference equations in an

exact formulation.

•2
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We turn finally to discuss how the enargy in the Kanzaki

lattice might be calculated within the present framework.

Let TK and UK be the kinetic and potential energies in the

Kanraki lattice, for a given separation R between the two vacancies.

Then we can write

(6.9)

there the F ý's are the Kanzaki forces. Naturally, those forces,

and also the displacements ý depend o2 the separation R.

In one-body potential theory as used in this paper, where

an attezpt is made to incorporate some of the many-body effects

into the potential, it seems best to relate the U.u-i energy to

the potential energy since at least the classical part of this

is calculable from the electron density plus the potential of the

nuclear framework. Thus we can write the above ecuation in the form

EK(R) + U (R) = • (•+ -). 6 (6.o)

Evidently, from the electron density and the electric field e(j)

we can calculate EN(R) andlt,( co), the difference giving us a

part of the relaxation energy. Naturally E,( •o) involves

crucually the displacuemnts around a single vacancy, while EK(R)

involdves those round a divacarcy.

'4&
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Tf X-ray scattering experiments could be refined to yield

not only the electron density p0 (r) in the perfect crystal, but

the density around an impurity or an imperfection, band theory

would allow the construction of the crystal potential V (r; and

the defect potential Vd(r). Until such time as that beccmee

possible, ve must use the best available methods, based on

refinements of Slater p exchanee to constrect these potentials

so as to incorporate at least some part of the electron-electron

interactions.

Knouing starting displacemnts IL. 3, p1 (X) can be estimated

semi-empirically frco eqn. ( 2.1 ) at the Fermi level. Further-

more its energy dependence is accessible through the approximate

result ( 4.114 ) in terms of the local den-ity of states in the

perfect crystal. The charge displaced in the Kanzaki lattice by

the defect potential Vd(r) can then be estimated from that

displaced by Vd inserted in the unrelaxed lattice, corrected by

eqn. ( 4.16 ). This displaced charge can then be used to find

the Kantaki forces and hence to calculate a ney set of displacements.

FinaLly, it is emphaised that, within the present framework,

calculations of defect energies should be attmpteca from the

classical potential energy terms, plus, if necessary, estimates

"of the exchango energy from th'j electron dewity. The kinetic

Vt

A.
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energy should not be calculated, however, from the density matridas

discussed in this roport, for these have incorrect off-diagonal

elements, though the diagonal elements agree w- th the correct

many-body density mtrix.

tE

o-4
I
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Part B

7. Introduction

In earlier reports (see also Rousseau, Stoddart and %arch,

1970; 1971) we developed a density matrix theory of electron

states in disordered systems and we applied it specificiLly to

calculate the electronic density of states in liquid Be. Our

conclusion was that the dip in the density of states in crystallne

Be, resulting from the band overlap which explains its metallic

character, is only partially 'filled in' on mi.lting. We argued

that, to describe this effect, we needed a stronig scattering

theory, and that was developed in our earlier wcrk.

To bring such a theory into direct contact with e-.yeriment

is at present difficult. Although, in principle. photoemission

"experiments on liquid Be ought to riflect the density of states,

it is true at present that the most (irect contact with experiment

is through the electrical transport coefficients. We therefore

develop here a theory of the electrical resistivity. The

motivation for the present approach is provided by the theory of

inverse transport coefficients, pioneered by Edwards (1965).

This theory is therefore discussed first, in its general form,

and subsequently single-cegitre approximations to the density matrix

are made, in order to make progress in the calculation of the

resistivity. Finally, a method of calculating single-centre

density matrices fran radial wave functions is presentX d. wumerical

calculations based on this approach are in progress.

4z
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8. An exact formula for the electrical resistivit

Mhe derivation which follows closely resembles Greenwood's

(1958) treatment which led to an exact expression for the

conductivity. The final form for the resistivity bea, s a strong.

resemblance to an expression obtained by Edwards (1965). We show

that Edwardst result noods modiifing, howover, in the .denold.nator

term.

Consider a Hamiltonian

im ayI \i

+ O(x+cty,z)

where the vector potential (-eFt,0,O) corresponds to an electric

field (FO,O) and the potentials of the system, giving rise to

the total potential 0 as

(8.2)

are all moving with velocity (-c,O,0). if c is small, then we

nay write

Six(X+Ct) z 1(X) + Ct a 0(x) (8.3)

and so

H(t) = 0o(t) + ct 8;0 (8.4)

•x£



where H0 is got by putting c - 0 in (8.3) , and is in fact equal

to the Hamiltonian used by Greenwood (1958). He proves that

o()-o (.e5 )

and so from

H(t) exp(-ie'Ft )H(O)exp(ieFtx/h) + ct 0 (8.6)

where .'k - 8a/8x,and H(O) is the Hamiltonian at t 0 O,

%hich ia the Hamiltonian of the unperturbed system. Obviously,

H will have an eigenvalue equation of the term

ff(t)T(t) : E(t)q(t) (8.7)

and if one takes

vn(t) = *n exp(-d.eFtxA) (8.8)Iwhere ()n = *(0), it can easily be seen that the eigenvalues in (8.7)

are equal to

Bn(t) =iEn + ct; 1  (8.9)

wherie

O .= Cn kr) V *n(() (8.10)

But nn as defined in (8.10) is just the expectation value

of the force on an electron in the state n in the absence of

any electric field, and hence is zero.

The equation of motion for the density matrix o is

i t = [j] (8.1)
dt
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Substituting this into the equation of motion for t-: iaatrix elements

of p ,i.e.

d p (nl~kli) + (Ani jP')4-(r'pj1 - (.2
dt dt dt

and using the standard re3ult

(mldi -mdnn' (8.13)

we arrive at the result

nn n
Swhere fn =f%'E, the Fermi function for energy En., and

n

where we have written P - f + g, and worked to first order in F

"or c throughout. Also,

--- r* (_)_e _mt)
r1M i-mn W (8.16)

ie.V is the velocity matrix element.

The Hamiltonian which we have used (equation (8.1))

corresponds to a physical situation vhere the coordinate exes

are translated with uniform velocity c down the electric field.

If we make c equal to the drift velocity, then we are in a

position to calculate the force on an electron, which of course

'4,

~ -



-37-

must Vanis~h, since a steadtr state has been established lgv

and Hence

L Pnm Of a0 (8.17)
n4m

for c equal to the drift velocity. Nsglecting oaciliating terms,

we get the resistivity R to be

R = _dN 6 '_-% (8.18)

rp e nmn

-1

"P "I n~ mfm

Eqn (8.18) can be ur-tten in terms of. the onorgy dorivativi of the Dirac

.natrix p' -,here

and the result is

R- N/(+D) (6.20)

where

N= - 2  foo d.E df r2.l A2 M (2C2 ) (8 21)
DfPe e, o E3 j axl- I x2

e 0 2

I p '(.Rr 2 E)

and
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D 2 tL-2
10 d.E jfId-=-" "r 2 ) 8x1-ZZ-

•znpe
(8.22)

where Q is the total volume, and Pe the mean electron density.

The term N is, apwrt from multiplying factors, the same as Edwards

(1965) finds, but the denomirator term D is different, in that it

contains P'(r1r2 E), whereas Edwards' result replaces this by

G+(_r1 2 E). It is not correct to say (as Edwards has done) that

G contains terms involving [ E-E " , which are related to the
n

virial. Further, it is easy to see that (8.22).s real, whereas

Edwards' denominator would give rise ýo a complex resistivity.

Ihe exact 3cpression for the resistivity is given by (8.20) and

is the basic resul; in this section. We proceed now with an

analysis of this formula, to obtain a fOiA which is amenable to

numerical ewvluation. From this point we work in atomic units

e 'm4 =ml.

9. Representation for the Dirac matrix p'

To enabl rche ensemble average to be performed in equation

it is useful to consider a representation for the Dirac matrix in the

form,

P, (+'X A) , (,,Bfl 1+f*(r-tiv
0i(

'4 i

o4
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where p o2 is the free particle matrix,

Pt (X,E)=an6/I) (9.2)0 22

The dynamical equation for p' is

X EI:C+_,r,E) (E = - O(R -,t)' P _.+z,,D)

a (9.3)

and substitution of (9.1) into (9.3) leads to an equation for f

in the form,

2

L X ,.0 j (a• -_t ,E)

V(r-f-t_)t PXE) )IV (r-t .,)

( )+ f !: tb , (9.4)

We now make the basic assumption that fr-_tx, x,E) is a localized

function in r-space, centred around the site t M The last term

in (9.4) is then obviously an overlap term between functions f

centred on different sites. If the f's are sufficiently wel

localized ue may neglect this term, and the resulting equation for

f may be readily solved to give,

44



f(LA,E) = L (-r+-XVR9E) -P 0 (x,E) (9-5)
P (x,)

The matrix PL is the 'local' Dirac matrix determined by the

local potential 1 representing one of the scattering centres,

and satisfies.

(- v• +,(r+x)- E p (r+-X__, E) =0Sx +L (9.6)

Alternatively, in terms of wave-functions we have,

{I
P (rXY~r) (Rý_X)(9-7)

vhere the *n satis^.y the Schr~dinger equation with potential

and eigenvalue E"n

The final representation for Pt is then given bj (9.1)

with f deterained by (9.5).

10. The Ensemble Averge

We focus attention first upon the numerator of the expression (8.20)

for the resistivity, leaving the denominator term for later

investigation. To obtain the correct ensemble average for P

we must of course average both terms together, but this is likely

to prove difficult and vinl be postponed for the present.



Substitution of (8.1) into the numerator N of (8.20)

gives after same re-arrangemnt of factors,

2x )2

44 -7 d ft(E 1dr dra 0(-P e. PR ( -_, (10.1)

x a. a E)~ rA.

where.

•Pl--xl' + ax2  J

The major difficulty in the evaluation of the ensemblee

average in (30,.1) 'is lack of knowledge of the n-body ionic

correlation functions, only the two-boy correlation function being

reasonably well known.

We may obtain immediately the result for a random system

frcn (10.1) as in this case the correlation functions.

aro of course knomn oxexctly. We obtain (&ec .Rausseau, Stoddart

and March, 1970)

-f [ 2  'F) (10.3)

C

vwhere

'7



-4( - (- 2 --x)} -xr) E

+ ~fx~r ~)k( i (.-z,r2-xE)k •(j'-z,.1 - zE)

and.

kL(zlGaE) = _.• (' ,~E) (lO.S)P( (r -r ,E)

R~ =1 -2Z-

The ensemble average appropriate •o a liquid metal may

_ also be perforvred on (10.1) using the approximate n-body ionic

correlat rn functions proposed by Rousseau, Stoddart and I•rch

(1970). Hoiwever in this case the result is increased con~siderably
i in complexity and we can see no way of using it constructively

at the present timo. This expression for the liquid metal

average < N> L takes the same general fozu, as the random

average result (10.3) with Y1R replaced by a function of r 1 -r2

%iihch contains information about the ionic correlation throi'gh

the two-body correlation function, if we use the approximation s

proposed by Rousseau, Stoddart and Mahrch. Even if the exact

correlation functions were used to perform the average, the
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result for < N > would retain the same structure as (10.3)

vith FR replaced by a function involving these exact correlation

functions. However, even the crudest approximation to these

functions seems to lead to an intractable result for < N >

and we will consider here only the random average result (10.3).

We propose later that an approximate account of structure car.

be taken simply through the liquid structure factor SC2 )

in a manner identical to that in the usual pseudopotential

formulation (Ziman, 1961).

11. The Weak Scattering Limit

To 0(' ) the denominator in (8.20) does not

contribute and we obtain from (10.3) and (O.04)

R= ýf f(E) idr~ d (2)(-rEY.
- 2 1 1 2 R(2 (r 1 -- 2 ,3p 11

vhero (11.1)

If re define the Fourier transform 0 (f) by

I• if.r~ (21.3)

and use

/_-ik -_)( kl)
So (• --•,) = f- e

(11. i)



then we obtain

y'

(22

and through
2kf

Tis result is the well known Ziman formula for the resistivity

if we regard • (q) as the Fourier transform of the pseudopoten-iaJl

describing the interaction between an electron and a single screened

ion. It may be shown that an equivalent result can be obtained

from the numerator N in the liquid metal case, the only change

being the replacemeat of the potential part of (11.6) with

S(q) j • (q) 12 wiwre s(q) is the structure factor.

12. Definition of Pseudopotential

The single ion potential cannot be rcgarded as a perturbation

and we require an evaluation of the complete term ('10-3) . We

work with the random average result which can be put into an

interesting form if we define F(k,E) by.

ef k -(r ,
S=I.3

j(()1

3 R(EE



If we write i" in the form,

P(119E) =pk2 A W~ (12.2)

then comparison with (11.5) and the derivation of the weak

scattering result shows that if wa consider the numerator as

giving the whole r- sistance then we have,

0 2kf

12%12 e 0

To second order in 0 we have of course,

A(2) IA Oqq= (12.4)

but in the general case (lO.4)can be used to define A (q). We

obtain an equivalena. result for the liquid metal, the contribution

of the numerator taeing exactly the same form as (12.3) . However

in this case the appropriate transform AL(q) dependri on both the

local ionic potential 0 and the ionic correlation fuactions.

We have therefore the interesting result that if the num-

erator N is the daiinant contribution then the resistance takes

exactly the same form as the weak scattering result (11.6)

We may use AR(q) therefore to define a local 'pseudopotential t

V(r) through

A, (ci) V lV~)1.)
(3P

• s.



in the usual sense as that potential which gives the correct

scattering phase shifts in Born approximatinn. In the liquid

metal =,cq it is obvious that this tpseudopotential' will depend

on the structure, although in a first approximation o. may take

the potential V(r) from the random average result and include

structure simply by use of A,(q)S(q) in place of AR. A structure j
'pseudopotential' arises in the formulation of Riibio (1969) and

has been calculated by Ashcroft and Schaich (1970). However

1abioln result for R is correct only to lowest order in (k

where 0 is the mean free path of an electron at the Fermi surface.

The theory presented here is free from such limitations.

13. The Denominator Term

"The ensemble average of D given by. (8.22) can be performed

in a similar way to that of N. Howev,.r we use .e re the

additional representation,

ap (r'r'E) aP- I(- E 'r -' r -t - - )

axl aXi a (3I8x 1  a. CC(13.1)

where, again neglecting overlap terms,

aa(r:',') k a FL J..2 r) ap/, (E- 1 2 .,E)
ax• ax1  (13.2)

The final result for the random average is
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R - j~r)J rdr a f) -47 -,~-,E

Pe 11Ox
4

X apL (-,r-,)(13.3)

axt

'Where terms of hipher order in p have been omitted. To obtain

the correct ensemble average for R we mist of course average both

N and D together. However a sufficiently good approximation will

probably be given by

< R,'>= < N__ _ >

p * (13.4)II+< D >

The interesting possibility then arises that in certain circma-

stances (if the scattering is sufficient~y strong) we could get

1 + <D > 0 0, reprosenting a trans--tion to an insulating

stute. Howev6r this point requires further investigation, end

we will focus attention here on the contribution of N to the

resistance.

I1. Proposed Computatiu.,i--l Scheme

We propose a cwiputational scheme based upor. vhe rssz.it (12.3)

fre" the resistance, but including the effect of structure throuffh

the introduction of the liquid structure factor S(q). Thus we

have approximately,

• An improved approximation is <P.> - < N > - <ND > whichS+ D>
reduces to (13.4) if <ND > - <N> <D >



R- dq. q3A (l) S (ql (214-1)

in wb~i' therefore the random ensemble average of N is used to

deffine a 'pseudo-potential' according to (1.) The structure

enters through S(q) in a manner identical to that in the standard

2 ~pseudcpotentiaJ. form for R.

A further simplification is assumed in the formula

for thie resistance in the first calculations. We obtain A,(q)

from the Fourier transform of the first~ term only in (10.4)

neglecting the effect of the exponential term. Thims using (10.5)

we take

R p2: fFd2 (42 -Z)~) lh

( p~(~rB2

where AR(q) is determined by(J.QA) and (12.2) * Equation (14.2)

is Just the term of 0( p) in an expansion of FR in powers of the

ionic density. Wihat we are essentially assuming is that the

tpseudopotantial I, which is defined in terms of AR by (12.5)

dose Wv be-t axry siplict dapendence- ou the ionic density.

we t'irn finally to discuss the single-centre scattering, defined

t~hrough PL
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15. Single centre scattering

The potential is assumed to be spherically syimetric.

15.1 Tho t-matrix Its integ,.-al equation is

S(.X_,_y) = v (20_) Q-y.) +fdz v (2s) G0 (A -Z_) t Z Iy.) (15 .1)

v(_x) is the singý.e centre potential and
+
±-(_-_') =44%) exp[lik - _ -(15.2)

where k -g E> 0, k = i(-E)½, E< 0. Defining a 2-sided Fourier

transform of t thus:

t(p,_) = ad exp~i2.x-i !.y]t(x,y) (15.3)

and
t(x,y) = (2x)- 6fd2 dq exp[-ip.x + iq.y]t(pq_) (15.)

and appropriately transforming (15.1) the r1eet is

= v(B-g) + (21)-3fdk v(R-k)G0(k)t(k,! ) (15.5)

Wlr iting
to =Z (p )Ym ( b)P p qY q (15.6)

and cmiJarly for ,:.: v("- 2 ) the individual terms in the expansion

-of (15.-5) a

t(pq) = v(pq) + (2m)- ok k v(pk)G0 (k)t (kq) (15.7)

The suffix 4 has been dropped for convenionco. Go- (k) can

be written

-G-±(k) = [E-k 2 -' -i7C6(E-k 2 ) (15.8)

-I.



16. ,Solution of the t matrix for continuum states (E>O)

Separate t into its real and imaginary parts:

t(pq) = R(pq) + iI(pq) (16.1)

Substituting (16.1) and (15.8) into (15.7) we get

R+(pq) = v(pq)t(4-)- V(PAheI+(w•)+/ •)t(k) (16.2)

00
I+(P ) = -(•)-•vC )\I/, R+(*CW•) + ft G(pk,)I (k) (16.3)

where •(A) - (2()' v(pk)k2  [-2] Equations (16.2) and (16.3)

are of standard Fadholm type, and are solved by deternination

of the inverse kernel to G(pkE), which satisfies the following

integral equation:

F (pkE) G G(pkZ2E) + ] dir' G(pk"DE)F(k'kB) (16.14)
0

In terms of F, the solutions of (16.2) and (16.3) are

R+(pq) = w(pq) + w(PMA) I(/a)(4-X) 2  (16.5)

I+(Pq) = -W(pvt) N& R(A.•) (4i)-2 (16.6)

where

*(P9) = v(P) + [ F(pkE) v(kq) (16.7)

Equations (16.5) and (16.6,cn bb separated by putting p -sVE in (16.6)

substituting into(16.5) and then putting p - V/E in (16.5)

7his gives R(,/Eq) sllely in terms of (0, and this expression

for R(V/Eq) can be substituted back into (16.6). The results arei
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R (•q) = w(pq)-(4n) 4 U W(A ( '(V"')W(Vtq)

[1 + (4% )• Ew(v )2j-1 (16.8)

z+ (P = -(470-2 v, W(pA)•w(,•q)

+[ . (4• )- (Vl)r2]_ (16.9)

"It is easily seen that R(pq) - ,+(pq), I'(pq) - -I+(pq).

17. The solution for p'(r r'E)

The double Fofrior transform of v(Z) 6 (ký)r) according to eqn (15.3)

s. = f a_ exp[i(-..q).X] v(x) (17.1)

Expanding both sides of equation (17.1) in spherical harmonics

it is easy to see ýhat:

v(pq) = (j)2 Jx 2  • •(.,),(px)j(,2x) (17.2)

0

so v(pq) " v(qp). Expanding w(pq) in a perturbation series

by means of equations (16.7.) and (16.4) it can be seon that every term

is symsetric with respect to interchhnge of p and'q.. Hence,

because of equation (17.2).

• q( ) = U)( qC•) (17.3)

H'nce also, frm (16.8) and (16.9) R(pq) " R(qp), I(pq) " I(qp)-

The relation between the t matrix and. the Green function

is:

-=.t



G(,x = % (2~z + fd~dt' % (xpr)t(Zr,')GO ( Vz)

(17. 4)

vliere Gojs given by equation (15.2). Double Fburier transform of

yields:

G(pq) =(21C)~ 6(p-q)p 2 G,(p) + GO(PWt(Pf) Gd(a)

(17-5~)

E~cpading(17.5)ir. spherical harmionics using equation

the terms are:

G~q)= 2)3 6(-)2 G %(p) + %6(p)t(pq)G0 (q)

Using thie standard reault th~at176

p' (pajp) =i(2'x) ' [G:+(pqE) G-G(pqE)1 (17.7)

and substituting (16.8) a~wl (16.9) into (17.6)., tiio result is

2 2 )6(E_ .2) [1+(4sC)'4Ew(VjE/E&)2 i -4-2

2 2 -1+ 6(B-q 2)k( 2-p2 1

(17.8)

Frum the expansion of equation(1S5ls1applied to P' in spherical

harmo~nics it is seen tWt:

00

7,) jp dr2 dqjfa)j(qr-!)p'(pqr)

0 (17-9)



Substituting (7.7.8) into (17.9) there rdsults:

,,(rr',E) =VV,ý-1[j+(4C)4E) rýV&A)2]-isCrs•

where (17.10)

s(Er) = J(vVr)+(2W)-3]p2aPw(PA)a(Pr)(EP
2  '17.1)

0

and we have used equation (17.3). Thus the general form of p'

is a product of a function of r and a function of rt. Defining
00

, ) = (470.)2 / r w a •)j(pr), .(37.12)

0
substituting equation (17.12) into (17.11)'gives the result

s(Er) J(vtr) +f &rw(•/A)22- jp dp j(px)j(r x )(E-p•f-

oo (17.13)0
The integral over p can be done by contours and the result is

S(fBr) = J(vt-r)+vt J x2 dx j(Nr<)n(vEr, )c4Mx) (17.4)

0
where r< is the smal er of x and r, and r> the greater. Comparing

(17.13) and (17.12) with the .usual ezpression fov the phase shift, it is

easily seen that

tan TI(E) -( 2) VS W( 04) (17.15)

8. Ths solution for (pq)

In coordinate space, equation (16.4) baccwas

P(rr'E) = G(rr•') + f x2 dx G(rxE)F(xrt') (18.1)
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thero It is oesily seen that

G(rr'n-) = v(r)j(%/Er<.fVr >) (18.2)

Defining a function H(r n'E) as:

H(rr.'E) = F(r'r,) /v(r) (18.3)

H(rr'E) = v/j(vE< )n(v'<r ) + VI 00x2 dv(x)a(v r<r)n(v'r>)

H (xr ' E) (18.4)

which can be seen to be equivalent to the differential equation

•?2 d • + E -Z(+)-v(r) H(rr'E) = 6(r-r')

dr dr r r
(18.S)

Thus H(rr'E) is the real part of the single particle Green

function in equatin(17.-4) and is the inverse kernel to

G(rrE) - j C/r)'Vn2) which solves the integral equation for

the radial wave function:

R(Er) = J(Vur) 0x 2 x H(rxS) v(x)j(VL.x) (18.6)

1Using equns (16.7) together'iith eqn (17.11) it can be-s6en that

W(Vr) = v(r) R(Er) (18.7)

Substituting (18.7) into (17.31) and (17.10) gives the result

S(Er) - R(Er) (18.8)

Together with equation (17.15) J.is -beo s i

p'(rr'E) = •-v coeTI(F) R(Er) R(Er') (18.9)

. -5
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19.Friedel sam rule and idempotency of Dirac matrix

The Dirac matrix is obtained from P' by an integration

over energy
ESp (,j:,E) E [c'P' (Lp' ,•) (19.1)

It is idempotent, i.e.

p ,',) fd!c p(.•.,, E) (19.2)

and obeys the closure relation

p o) = 6,(r_-,) (19.3)

In equation (19.1)only the continuum states are considered.

The bound state contribution, wiz.

must be added in before equation (19.3) is true. Here i runs

over afl2the bound et.tes of the system. If the scattering

potential is to be completely screenad at large distance:.., then

the displaced charge must equal the net charge producing the

potential, i.e.

fr [p(,. El) -po(r,rt,,)] : Z (19.5)

vhere Ef is the energy of the highest occupied state, and the

region of integration is large. Expanding equations (19.1) to (19.5)

in spherical harmonics it is seen that
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p(rr'E) = E (r E) (19.6)

0

p(rrI'E) = Fx 2 dx p(rx-E)p(xrtE) (19.7)

0

p(rrto'o) = -2 (•_,) 9.8)

2.4w l (a_+_ f [ R r 2dr[p(rrEf f Po(rrEf)] z (19.9)

The factor of 2 in equation(19.9)accounts for spin degeneracy.

the radial wave function for continuum states satisfies the

di atial equation

r R (kr +k - v(r) r R(kr) = 0 (193.0)
dr r

where E - k2 and rR(kr) - 0 at r - 0. Multiplying k19.10). by

cos -q (k), setting tn a similar equation for rR(k'r), subtract-tVg,

integrating by parts gives

[icos(k')rR(kwr)l !L [cos(1(k)rR(kr)] - [cosTl(k)rR(kr)

,o dr

d_[cosrj(k') rR(k'r)1
dr

k r2_1-2) / 20 r cos((.)cosn(1')1(kr)R(k'r)
ii o(19-.1)
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The asymptotic formi of R(krI is

R(kr) =J(kr) t-tazM(k) P.(kr) (19.32)

Hence., substituting j( p)-+ *p Co's (P47+I)t

n~(p) = p - sinP4 ?('6+1)7. and multiplying

by eosn(k) gives the result

'nia ij (k)R (k-r) =(kr)1  8 in (Ir .t T11(k) r -oo (193.13)

SubstitutLon. into(19.ll) gLves

R 2
r rdar cos-j(k)cosT3(kj' )Rk~r)P.(k'r)-

0 2kkv~k-kl)7

- I ~~sin[(c+kc')R + 73I(k) +('
2kk' rk+-k)

Oidch is thie same tjding as

drcos73(k)cosn(Ic')R(1cr)R(ic'r-

+ CO cs[n~)-n k.'' ini()i)1'~

2k~kt(k-kt) (91)'

-cos(1c+k')R sin[T3(k)+-q(!-')-&it]
2kklk kt



using the representation 6(X) =im ain A/•.•..he

result for free electrons -btains by setting Tj Os

Hence

'a~ ~ f :r~dpt.(rrtk)-pc;(rr'kyI

0

= 1 &im sin[H(k)--n(k')] + an oscillating term.

2k k-k' (19.16)

But since ri(k') = TI(k) + (k'-k) dr/dk and neglecting the

oscillatory term:

• rd[p'(rr'k)-p, (rr'k)] = dn-• = d__f (19.17)

Hence using (18.9) and (19.9) we obtain the result

2
Lj(2.;+1) rq(Ef) =Z (19.18)

which is just the Friedel sum rule. To prove that the solution (17.15)

produces an idempotent Dirac matrix, using (19.6) and (19.7 )re obtaiu

P(rr'E) =1 ~2 2k't dk,2k" , co-q(k')cosri(k")R(rk')

R(rr'k t

x x Ox cosi(k' )cosi(k")R(x-k')R(xk") (19.19)
10
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which is to be proved, if the solution is idempotent. The

last factor in equation (19.19)s given by equation (19.15) Notice

first that the term in 6 (k'+k") does not contribute, since k•,

and k" are always greater than 0. Secondly, the oscillatory

terms also give zero contribution as R -o , since the integrands

are smooth functions of k' and k". The only-part where care

is required is the vanishing denominator in

,cos(k-k')R sin[•(k)--(k'). when k' -• k
2kk'. k-k'

But as (19.6) ca:d (1917) ohow, this Civos" rise to no difficulty. Hence

00
Jo 21•

2k
and so the right hand side of equation(19.19) becomes

1 k2 k' cos1(k')cosij(k') R(rk')R(r'k')
F 0

which is jusl p(rr'E), by equations (17.15)and (19.6). Adding

in the bound state contribution to P gives no difficulty, as

this part is idempotent in itself, and integrals of products of

and R vanish, as these functions are orthogonal.

20. Proof of closure relation

Expand an arbitrary function *(r r') iu the function

P'(rr'E) and the bound state wave :tunctions 0i(r) (we

write 0i(r) for the 4th component of for simPlicity).

Then
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*(rr')= Cj~~r)j~t) I 2kea 23 dk'cos-q(k)

Raow zml7tdply (20.1:) by 7,1 eds-9 (0"cosvj(k" )R (ke'r)R (0" r')

and iutegrate over r..r' We have

40 2drr t2jrf *(rrt )cos-qOc")cosri(k"'
t )R(k"r)R(k" '2,)

= ~~2k dk2k'padkIr %xr' ~dr'R'(Jr) cosil(k)R (ksr) cosli~k")

becauv- of the orthogona:Lity of R and . Because of equ. (19.12)

we have

0 = ~k~k').(20-3)

Now set kll-kll I and integrate over k". We have then

f rdrr drW*(rrj)2 kesqkRk~o~,kR,

00

10'P'kdke(kk) (04

II But film.

sJr rdi(rr) + 12r

Go (20.0

-- 2 2 ~ - t
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OCipiring (2014) and (20.5) we see that we must have

I :: mcos-t(k)R(k )cos-q(k)R(kr')

(20.6)

Hence the soliution given in equation (18.9) together with the bound

state contribution, satisfies the closuwe relation, as well as

ideMpotercy and the Friodel a=~ rule.

IA

S.

'SN
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21. '-%=ay

Part A has reported a treatment of relaxations round point

defects in metals, using electron theory. Preliminary results

are reported for lg in Ui and for a vacancy in CU, and further

work is in progress on applications of this theory.

In Part B, our earlier work on electron states is extended

to daal with the electrical resistivity of liquid metals where

there is strong electron scattering. The theory should be

applicable to liquid metals like calcium and barium, wbhich have

relatively high resistivity and numerical calculations oij calcium

are in progress, using the met•,od outlined immediately above for

treating the single-centre scattering from a calcium ion.

Generalizaticns to liquid metal a~loys are also under investigation.

-44
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Relations between functions F, R and P characterizing

perfect lattice

, want to sumarize here some of the basic properties of

the functions F, R and w which, in principle, can be found from

the theory of the yerfe~t 2rystai. To obtain F, as stressed

above, is a one-body problem, once the potential V (r) is known.

On the other hand, exact determinatinn of R and P is not possible

at preset .t, as these quantities depend on the exchange and

correlatior. Lnergy of an inhanogeneous elect:on gas.

Proof of relation ( 3,4 ) between response

fun•ticn F and one-body Green function and density

matrix

As remarked above, the relatiou ( 3.4 ) was given by

Stoddart, March and Stott (1969). An elementary proof of this

will be sketched below.

Fqn. ( 3.7 ) gives us the change in the Bloch density

matrix C0 (_r r' p ) due to a change in potential AV, a change

we denote by AC(_r .3 ) in the diagonal.

Then we have iimmediately frma eqn. ( 3.7 ) that
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iC(R •) -/fd AV(r')/P d,8 %(R R 1) c,(jr 1
0 ( .1})

We nov compare this result with the density change AP (r E)

caused by the same change in potential. This, from eqn. (4-.1)

... ith Vd(r) set equal to zero is

Ap(M E) = d' AV(R') F(Z r' E) (A1.2)

But we have the Laplace transform relation between 0 and p

(provided we add a positive potential energy to bring all

energies ;'0)

SAC( ) 0= Ap (_r F,) e- dUT,-. (Al.3)

Integrating this equation by parts, we find

Ac(C •) =(Me-E d & p(Z)d ( .)

- f A V' WV(') 1o- a .6_' e p)

'where the last line follows by differentiating eqn. ( Al.2 ) with

respect to E.

It is clear then frcm eqns ( Al.l ) and (Al.4 ) that

aF/aE can be related to the integral over of the product

of CO's displayed explicitly in eqn. ( A.l ) Substituting



the explicit form 3.1 for Co, the • integration is readily

accomplished. Similarly, the inverse Laplace transform, required

to obtain 7,F/cl E from equ. ( Ale4 is easily completed. Hence,,

using the explicit definitions of CO and p eqn, (3.4) follows.

Integral equation for R

The determination of R from first principles presents more

difficultys though a semi-empirical procedure can be devised to

obtain a useful st.-ating approximation (see Appendix 3).

The argument sketched below follows the discussion of JM

and is given for completeness in tbat the potential AV(r) required

to generate the Kanzaki lattice depends on P through ecqn. (3.2 )-

The essential point is that we can write the change in the one-

body potential as we move the ions from Z to?, +u as

elect ostat u( r')p 1 .(_') dr'. (Al.5)

But pl. is related to R (r) and -e also have

+ Zd.fu_ _t) Pr .) d_, (Al.6)

4,5
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This can now be expanded to O(u . ) to yield tihs form (3.2 )

where

P~)= ____- -Z * (rr')R•(r')d_'" Ir-r'l r

(Al. 7)

After some manipulation, the basic integral equation ( 3.3 )

of JM then follows.

gA

i-i
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Appendix 2

To avoid the troublesome problem of solving eqn. 4 h.2 )

by numerical iteration, we shall now argue as follows. With

the defect potential Vd(r) introduced into the perfect lattice,

let us suppose that by the methods of Stoddart, March and 0tott

(1969) we have generated a density matrix Cu, vhere u stands for

the unrelaxed defect lattice. Then we define

ACu° Cu_ Co (A2.1)

and
ACf K elf CK- C.(42.2)

lt seems reasonable to assume that a useful starting point

for the calculatirm of At' wo-ld be A C, -which, at least,

Includes the full effect of the defect potential Vd(r), though

not, at first, the relaxations.

It is now a simple matter to show, from the integral form

of the Bloch equation, that

0 f'K = i 1 _"," - )+ cfK(l £2"-1.))
0

v (z,) c•:z."z' p•,(A2..3)
Vd(aP

and
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0Lc

(A2.4)

Subtracting these,. we have for the error 60 AC~ AC
fK uo

the result

= -f d~jjdf CC[6 + ACU0  CKjd(r)CK(fr r-'P)

(A2 .5

+J~d1 f0 .CI, A'C' + C.] Vd(r ) C0 (fl r113)

Now we have also

CK Co Ko (A2 .6)

'where A,ýo is O(U~) Tus. to0(u. ),we find

Cr r
= 10~ i]" V0 + AKoj~d(l') CoE! Cr" '01)

-f difdD" [A icu. + c 0] ir~l ACKO(E!rIrO3)
0

If we further assume, as starting point,, that 6C <ACK

then we have as the first approxi~mation to correct tho chmarge

Idisplaced' by Vd(~'l) in the unrelaxed crystal

6c 21f do, dfart ACKO Va(r") C%(f r' 01)
0 (A2.8)

10 jU0 1 d" Vd (r)AC~c (r 01)

0i
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Here then, is an expression to correct the displaced charge

for the effects of relaxation, in terms of the properties of the

unrelaxod crystal containing the defect potential Vd(r).
gd

To get a self-consistent theory, it is clear that eqn. (4.10)

must be used to refine the diaplaced charge in the unrelaxed crystal.

If we work with the Green function, the 1 integratinn in (4.10 )

is immediately removed.

It my well be possible to calculate local changes around

the vacancy by making the additional approximation in eqn. (4.10)

that '"d varies slowly in space. Then for the diagonal element

C~(r_ 1? ) we find

6C (ME )

-> - - 1  [A1-- Co -O f )

0

•~ [•Co (r" r••-[2c ( •_ 1 - •

In hAman mn~i-. +w -Cu(- £ • )

SIn the - ain reP-r We give a rather cruder form of eqn. ( A2. 9 ).

Clearly, however, eqn. (A2.7 ) provides a perfectly proper

starting point for refining the displaced charge calculated

in the unrelaxed lattice.



-70-

Appendix 3

Preliminary estimate of P1 (r), the charge ,displaced'

in the Kanzaki lattice, for vacancy in Cu

Since the evaluation of the displaced charge in the

presence of relaxation is, via cqn. ( 4.31l), Intimately

related to the charge displaced in Kanzaki lattice, namely

Pl (r), we have made same preliminary estimates of this

quantity for a vacancy in Cu.

Evidently, to calculate p 1 (r) from eqn. ( 2.1 ),

we must. have information on the displacements uZ and the

response function R (r).

Tewordt (1958) has dealt with the problem of the

relaxations round a vacancy in Cu by matching local relaxations

around the vacancy, obtainaed using Born-Mayer pair potentials)

on to the long-range .-elaxations IhIch car, be properly treated

by replacing the discrete crystal by a continuum. This approx-

imation beccmes valid outside a sufficiently large region

enclosing the defect or defect complex. For then the

casplacements u become small and vary slowly from atom to

atan.

We have used these displacements u as given by

Tewordt (3.958), even though they will eventually need

4
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refining to take account of the detailed nature of the

displaced charge round the vacant site as discussed in this

report.

It only then remains to set up a suitable approximation

to R(r) in eqn. ( 2.1 ). We already have the Fourier

ccmponents R. at i.e reciprocal lat.tice vectors K through

eqn. ( 2.3 ). .atterman, Chipman and de Marco ((1961)

have studied the X-ray scattering from Cu end we therefore have

approximate estimates available of the p K'~S. Foloing JM,

we have made the assumption that we cau use the form ( 2.3 )

for all hk, smoothly interpolating between the pKS at the

reciprocal lattice vectors to obtain P k" Obviously this

procedure is not ut.'que and eventually the integral equation

of JM (see Appendix 1) must be solved to find R(r).

The above assumption, as emphasized by JM, is equivalent

to thrý ass--Lption vf pair forces, and we can then write R

as the gradient of a scalar density 0 (r), namely

W (_) = Vo(r) (..i)

where, from eqn. (v.2 ) it then follows that

Provided O(r) has the correct Fourier coponents at the

reciprocal lattice vectors, which is of course ensured by our

procedure to within the accuracy cf the experimental measurements,
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then oqn. (A3.2 )will repj,.duce the Amet ground-atate

charge density of the crystal.

The form of 0 used to fit the X-ray results of Batterman

at al is given (cf. Jones, March and Tucker, 1965) in FIgs Al - A3.

Displaced charge in Cu metal

As an example, we shall comute the displaced charge in

Ca metal using Tewordt's displaeemer.ts and making the prelim-

ibary approximation R . We fit a the 'pseudoat-om'

charge density to the X-ray scattering experimentsae sbowm.

"in Figs Al and A2.

Using the Hartree-Fock atom density as starting point,

the correction AG (k) required to fit the X-ray scattering

at the Bragg refteotions is shown explicitly in Fig Al.

71s is not unique; we have simply drawn a smooth curve

through the measurements, and, of course, eventually the

integral equation of Jones and March will have to be used to

find R(r). The Fourier trausflrm "Ac (rY is. shown in !rig A2.

We then calculate

o•r)= LY.&. o(r_ - !)(A3.3)
4 W

4W43)
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for various directions in the crystal and the results are

shown in Figs. A3-A5. The very marked anisotropy .vident

there is a consequence of the fact that as we go out along

the< M11> direction we do not encounter an atom over the

range shown. This then is a first es+imate of the charge

displaced in the Kanzaki lattice, strained to account for

the displacements rotuid a vacancy in Ca.
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Appndix 4~

Relation between response function approach and elasticity

theory in long wavelength limit

The customary elasticity approach gives us the result

that, in response to a localized body force, which in k space,

in the long wavelength limit gives us the Fourier transform

of the force F in the form

P k)-ik X (A41&.)

where ? measures the strength of the body-force, the

displacements . (r) take the form,

U - (A4i.2)

The multiplying ccnstant in eqn. ( A.4.2 ) is determined in

Tewordt's method by matching to the 'discretet displacements

in the immediate neighbourhood of tne defect.

It is evident in ianzaki'a method that F and u are

rslated by the dynamical matrix Dap (k), which in turn,

as JM discuss, is related to the response function R(r).

it then becumes clear that elasticity theory gives us rather

direct information on the response function R(k) at smal,.A

_, and, in particular relates the small k behaviour rather

directly to the elastic constants. This will be discussed

quantitatively elsewhere by Claesson, Jones and March (to be

published) in connecticon with mary-body forces in lattice

dyTgwdis.

I'l
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We want only to make one other point relating to

elasticity theory here, Cerresponding to the displacements

(A4.2 ), It is well known that there is a volm-e change

per defect, g.ven by

(A=4.3)

where Y - 3(1 - CO)/( + 09 0 being Poisson's ratio.

W&:anticipate that eventually it may be n~cossary to check

that the defect potential adopted obeys some condition equivalent

to a Friedel sum '.le into which the volume change ( .4.3 )

is incorporated, as we indicated in tne Introduction. Our

microscopic theory is not yet sufficiently well developed to

give a precise understanding of this point, which is worth

further study.
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Captions for Figures

Fig. 1. Local density of states O(r E) for 1g in Li (solid

curve) for E = ½ Ef. Dashed curves show local density of states

in pore Mg and pure Ui metal.

Fig. 2. As in Fig. 1 but for E Ef(private communication from J.

Inglesfield).

Fig, 3. Total displaced charge Q(r) inside sphere of radius

r in case of vacancies in ua (Z -1)., Mg(Z = -2), A 4 (Z --3)

and Pb (Z% -4).

This is needed to calculate electric field in Kanzaki

latice. Results shown are from the work of Stott, Barancvsky

and March (1970; see also March and Stoddart (1968; p.551)),

2 +c 2  2Fig. A.!. 6Oversus (h + k2 + 1)- for 'Xx, used to fit X-ray

results of Batterman et a!. Form is given by

AO(K) =A K•-a3 K + A2 K e 2K

3.24., a1  1.1,A 0.C83 , a2 =.35.

Fig. A.2. Aa (r) corresponding to Aa (K) in Fig. A.I.

Fig. A.3. harge density po in Ca, together with displacud charge P1

in Kan7.ani lattice when strained by a vacancy. Densities shown along

< 100> direction.

Fig. A.4. Same as Fig. A.3. but along < 110> direction.

Fig. A.5. Same as Fig. A.3. and A.4. but along < 331 > direction.
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