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l>' A Green's function method is used to find the low temperature

C:: change in the specific heat due to a (110) surface on a simple

‘=E cubic monatomic lattice. Two separate first neighbor force con-
stant models are used for the calculation: the first assumes that
the atomic motion normal to the surface is uncoupled from motion
parallel to the surface; the second is the familiar two fcrce con-
stant model popularized by Montroll and Potts ., Both models are
anisotropic in the surface and neither satisfies the condition of
rotational invariance, Analytic expressions are found for the sur-
face mode dispersion relations and for the low temp~rature specific
heat, It is found that for smnll deviations from isotropy, the
change in the specific heat is independent of the model and is the

same for the (110) and (100) surfaces.
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A Green's function method is used to find the low

i 4 temperature change in the specific neat due to a (110)
surface on a simple cubic monatomic lattice. Two separate

first neignbor force constant mcdels are used for the cal-
culation: the first assumes that the atomic motion normal
to the surface is uncoupled from motion parallel to the
surface; the second is tne familiar two force constant model
popularized by Montroll and Potts. Both models are aniso-
tropic in the surface and neitner satisfies the condition
of rotational invariance. Analytic expressions are found
for the surface mode dispersion relatlions and for tne low
temperature specific heat. It is found thnat for small
deviations from isotropy, the change in the specific neat
is independent of the model and is the same for the (110)

and (100) surfaces.
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THE SPECIFIC HEAT OF AN ANISOTROP1C SURFACE

There have been a numbex of studies of the change in the
specific heat due to the presence of a surface from both the
continuum and the discrete lattice points of view.1 In every
study for which an analytic result is obtained, however, the cal-
culation Las been restricted to force models that are either iso-
tropic in the ralk of the crystal or isotropic in the plane of the
surface,

In this paper, we will obtain the change in the specific heat
due to a (110) surface on a simple cubic monatomic lattice. The
lattice will be described by two models, both of which use two first
neigﬁbor force constants, The major interest in these calculations
comes from the fact that the two models used are anisotropic in the
(110) surface and from the fact that the models are sufficiently
simple for the entire calculation to be carried out analytically.
The models have the disadvantage, however, that they do not satisfy
rotational invariance and therefore the results must be interpreted

accordingly,
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I, SURFACE MODES

. The Cartesian coordinate system will be situated s.*a that the

X and § unit vectors lie in the plane of the surface (s:2 Figure 1).

In the harmonic approximation, the force on the 0th at.n) is:

F (0) = my (0) = ~£§ ¢QB(0L)uB(L) (1.1)

where m is the mass of each atom and ua(L) is the d-.sj:lacement
from equilibrium of the Lth atom in the o-Cartesian Jdirection.
The particular crystal models to be considered are d:termined by
specifying the valueslof tue force constants ¢QB(OL). In this
paper, the force constants ¢GB(OL) are zero unless the index 1
refers to one of the six nearest neighbors of the 0" atom. The

labelling we will use for four of these neighbors is shown in

Figure 1. Atoms labelled 5 and 6 are located at iao(l,0,0).

A. Model I, Equations of Motion
The first model to be considered involves central and
non-central nearest neighbor forces detf.ned such that the motion
of the ions in any one of the Cartesian directions is uncoupled
from the motion in any other direction. The equations of motion

for +% bulk atom in this wodel are:

mil, (0) = 6[u, (5)+u, (6)-2u, (0)]+lu (1) +u (2)+u, (3)+u,(4)-4u (0)]
muy(o) = B[uy(S)+uy(6)—2uy(0)]+a[uy(1)+uy(2)+uy(3)+uy(4)-4uy(0)]
mﬁzﬁo) = B[uz(5)+uz(6)-2uz(0)]+a[uz(1)+uz(2)+uz(3)+uz(4)-4uz(0)]

(1.2)
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The coefficient B is the non-central force constant defining the
restoring force when the atoms in the bond are displaced perpen-
dicular to the bond direction. The coefficient 6 is the central
force constant for the bonds exterding in the x~direction., The

force constants 6 and B are related to the elastic constants by:

6 = aocll
(1.3)
B = 8.Cqq= - 2 Cyy
and the force constant o is:
_ 1
o = -2‘ (6 + B) (1.4)

These relations result from identifying the equations of motion in

the long wavelength limit with the Christoffel equations of elasticity,.
The interest in this very simple model stems from the fact

that it giver rise to Rayleigh waves that are split off from the

bulk modes even though the motion of the ions normal to the surface

is completely uncoupled from the motion of the ions parallel to the

2,3 that a suffi-

surface. This supports _-he previous observation
cient criterion for the presence of Ravleigh waves is that the cut

bonds be oblique to the sarface.

B. Model II, Equations of Motion
The second model is the now familiar model first suggested
by Rosenstock and Newell4 {(and made popular by Montroll and Pottss).
This model uses two forc= constants: a central force constant v
which pives the restoring force when the atoms in a bond are dis-

placed in the direction of the bond, and a non-central force constant

- T o haiaic TN
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A which gives the restoring force when the displacements are per-
pendicular to the bond. Due to our choice of coordinate axes,
these force constants lead to a coupling of the equations of
motion in the y and z directioa. The equations of motion for a

bulk atom in this model are:

mi_(0) = y[u_ (5)+u_(6)-2u_(0)] + Alu (1)+u_(2)+u (3)+v_(4)-4u_©0)]

md_(0) X[uy(5)+uy(6)-2uy(0)j + 3(y=2) [u, (1) -u,(2)+u,(3) -u,(4)]
+ %(Y+X)[uy(1)+uy(2)+uy(3)+uy(4)—4uy(0)]
mﬁz(o) = x[uz(5)+uz(6)—2uz(0)]+ %(Y—X)[uy(l)—uy(2)+uy(3)-uy(4)]

+ $(y+0) [u, (1) +u, (2) +u,(3) +u, (4) -4u,(0) ] (1.5)

The force constants and elastic constants are related by:

Y = aocll
(1.6)

>
i

2044 T 7 200

The interest in this model is partly pedagogical and partly
due to the ability to compare our specific heat results with the
same model calculation for the (100) surface.l’6

We assume for both models that the displacements of the atoms

can be written as:
u, (1) = U, exp[ik-x(L)+ iwt)] (1,7)
where w is the angular frequency and 5 is the wave vector. To

obtain the dispersion relations for the bulk modes, wc make the

usual assumption of cyclic boundary conditions in the three

‘ il
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Cartesian directions.

E By substituting Equation (1.7) into the equations of motion
; g for the two models, we obtain matrix equations of the form
. F
1 >
_ % (Model I) - - .-
S p{D) . 2 o 0 U
. L XX X
F 1
= 0 p¢ D 2 0 u | =0
S vy y
- (1)_ _ 2
{ 0 0 D -
= € vy mw ‘Uz_‘
. (1.8)
5 : (Model II) ~ - o -
D(II)~ mwz 0 0 U
XX X
3 . (1D 2 (1D
0 D -m
= yy v Dyz Uy
e (11) (1) __ 2 =0
0 D D ~my) U
Yz yy Z
- 4 L
(1.9)

E It is easily seen that the eigenvectors which Jdiagonalize the
above matrices are independent of the value of the wave vector

and are given by:

; (Model I) )
L 0
~ eél)(hj) =lo 1 0 (1.10)
0
3
-
(Model II) NZ 0
k e(ID gy = V2 | -1 (1.11)
o ~ 2
0 1

T B
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The disgonalized matrix elements when set equal to zero give the

frequencies of the bulk modes. These are:

(Model 1I)
mu? (k) = DLE) = 6D, (1) +8D, (o)
‘ (1.12)
mw§’3(k) = D§$) = 8D, (k) +aD,, (k)
(Model II)
mwf(g) = Diil) = YD, (K)+AD, k)
mZ@ - i - D
= ADy (k) +3 (y+))D, (k) -2 (Y-2)Dg (k) (1.13)
mw2 (k) = D§;I) + Déil)
= AD; (k) +3 (Y+1) Dy (k) +5 (Y-2)Dg (k)
where:
D1(§) = 2(1 - cos kxao)
Dz(h) = 4(1L - cos % kyalcos 3 k,a;)
Dy(k) = 4 sin 3 kya; sin 3 k,a, (1.14)
and a; = Jﬁ'ao (1.15)

For comparison with the surface modes, we set the component
kz= 0 to obtain the dispersion relations for the bulk modes that
propagate parallel to the surface. This gives:

(Model I, bulk)

2 - - - 1
mwl(kxky) 25(1 - cos kxao)+ 48 (1 cos 3 kyal)

(1.16)
w2 = - ‘ - 1
m»z,g(kxky) 28(1 - cos kxao)+ 40(1 - cos 3 kyal)
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(Model II, bulk)

2 - - - 1
mwl(kxky) = 2y(1 - cos kxao)+ 4\(1 - cos 3 kyal)

2 - _ _ 1
mw2’3(kxky) 2M(1 - cos k a )+ 2(y+\) (1 - cos 3 kyal)

(1.17)

These dispersion relations are shown in Figure 2.

The models we have chosen are sufficiently simple that the
dispersion relations for the surface modes can be determined by
either a direct boundary value calculation7 or a Green's function
approach.8 The mathematical steps for the Green's function method
are the more cumbersome, however, and therefore we will defer to

the boundary value method in this section.

As indicated in Figure 1, we will assume the crystal occupies
the half-space where z > 0. Thus, we will assume periodic boundary
conditions in the x and y directions, but replace the boundary con-
dition in the z direction by the requirement that the sum of all
forces between the atoms on opposite sides of the surfacc must van-
ish. For our models, these are the forces on atom 0 due to atoms
1 and 2.

C: Model I; Boundary Conditions

The boundary conditions for Model 1 can be writter:

F,=0-= s[ux(l)+ux(2)-2ux(0)]
F, = 0 = olu (1)+u (2)-2u (0)]
FZ =0 = a[uz(1)+uz(2)~2uz(0)] (1.18)
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Since the x, y, and z atomic displacements in this model are inde-
pendent, these boundary conditions are satisfied by displacements
of the form (1.7). Upon substitution, we obtain the same complex

equation for each condition in (1.18); namely:

<1
izk a ,
e 271 =cosi kya (1.19)
By writing kz in the form:
_ .Y L 1
kZ = kZ + 1kz (1.20)
r i
where kz and kz are real, Equation (1.19) reduces to:
r ==
kz ay 0
~k, a; '
e = 3(1 + cos kyal) (1.21)

These relationships are shown graphically in Figure 3. The imagin-
ary component k; (called the attenuation coefficient) leads to an
amplitude of vibration in Equation (1.7) which varies exponen-
tially with increasing distance from the surface. Solutions wheute
k; is positive are classified az surface waves,

The dispersion curves for the surfacc modes are found by sib-
stituting the value of the wave vector component kz imposed by the
boundary conditions (1.18) into Equations (1.,12). This gives vhe
simple result:

(Model I, surface)
mw%(kxky) = 28(1 - cos kxa0)+ B(1 - cos kya

X
(1.22)

2 = - c -
mw2,3(kxky) 28(1 - cos kxao)+ a(l cos kyal)
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Thes« dispersion curves are shown in Figure 2. Of interest is
to note that for small values of the wave vector k, the dispersion

curves for the surface modes and for the bulk modes are the same

T N T R Y y
Loy TN o *«:"OMM

to order k4. Henre, the velocities of sound for the surface modes

§ are the same as the velocities of scud for the bulk modes having

%

&

% the same polarization and propagation direction.

: D. liodel II, Boundary Conditions

é The boundary conditions for Model II can be written:

; Fx =0 = A[ux(1)+ux(2)-2ux(0)]

:

5 = = - 3y leya -

? F, =0 By Lug (1) +ug (2) =2u (03 ]+ F(y=1) [, (1) -u,(2)]

1

; =0 =1 - 1y -

: FZ 0 g(y+h)[uz(l)+uz(2) 2uz(0)]+ 2 (y x)[uy(l) uy(2)]

H

: (1.23)
n . .

E For this model, x-displacements of the atoms are independent of
b the y and z displacements, By substituting displacements of the

form (1.7) into the equation for the x component of the force, we

obtain Equatior (1.19) relating the wave vector components ky and

.y
S T

kz. For this particular mode, the steps are exactly the same as

those for Model I, and hence we obtain for the surface mode:

(Model 11, surface)

2 - - -
mwl(kxky) 2v(1 coS kxa0)+ A (1 cos kyal) (1.24)

Upon substituting Equation (1,7) into the boundary conditions

for the y and z component of the force, we obtain twc coupled equa-

tions in the Fourier coefficients U and Uz‘ In matrix form these

are;
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B O
i%kzal .

.(y+x)[cos 3 kyal—e ] =i(y=\)sin 3 kya1 U,

) ijk a =0
-i(y-\)sin % kyal (y+2) [cos ¢ kyal—e H U,
n B I

' (1..25)

Upon csetting the determinant of this 2x2 matrix equal to zero,

we find the condition on kz to be:
i3k _a _
e 21 = cos 3k oa, + i L=h) g4 1 koay (1.26)

By dividing the wave vector component kZ into its real and imagin-

ary parts as in (1.20) we obtain:

i 2..2
~k_a Yy +A"+2y\ cos k_a
e 21- 5 y 1 (1.27)
(y+))
and
1 4,7 - (y=2) 1
tan 5 kza1 + C73)) tan 3 kyal (1.28)

In expressions (1.26) and (1.28), the + (-) sign belongs with the
mode j = 2 (3).

Ordinarily when two components of the motion are coupled,
the form of the displacements which must be used to satisfy the
boundary conditions is not Equation (1.7) but rather a linear com-

bination of the type:

= 2 Ug exp[igj-g(L)+i®t] (1.29)
J=2,3 '

where the label j is added since the quantities Ua and 5 may differ
for the two modes., This procedure has been fully illustrated by

Gazis, Herman, and Wallis.7 The modelis used in this paper, fFowever,

-a---—ﬂ-«n«“J
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are sufficiently simple that the equation that results from this
linear com®ination is a perfect square of the determinant of the
matrix in Equation {(1.25). Thus the straightforward calculation
shown above gives the same results for the two coupled modes as
the more involved method.

Since the real part of kz is not zero for these two modes,
they are properly classified as ggneralized Rayleigh waves. The
dependence of kZ upon ky is shown in Figure 3. O0f interest is
the fact that the attenuation coefficient k; increases with ky to
a finite value at the zone boundary 6K whereas for the previous cases,

t@e attenuation coefficient increased without bound. For the

vibrationc. modes that have an infinite attentuation coefiicient,

only the aiom. in the surface layer are displaced from equilibrium.

Tue surface mode frequéncieé are obtained by substituting the
condition (1.26) into the frequency expressions (1.13) for the bulk
modes, The result is two degenerate modes whose frequencies are
given by:

(Model II, surface)

2Y\

2 _ - - .
mw2’3(kxky) = 2A(1l-cos kxao)+ 70 (1-cos kyal) (1.306)

The polarizations of the degenerate modes for both models are given

by the eigenvector components in (1.10) and (1.11)., An unusual

feature of both models is the fact that we obtain three separate
surface mode branches corresponding to the three different polar-
izations >f the atomic motion. In continuum calculations, for

instance, only one Rayleigh wave is obtaineu.

\-1‘]
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The surface mode dispersion relations for Model II have been

found previously9 and are showrn in Figure 2, The solution for

Model I and Model II are identical in the isotropic limit when

Y=\A and =B, Lut they diverge for other values of the force constants.

II, THE SPECIFIC HEAT

As in the surface mode calculation, the low temperature spec-
ific heat due to the surface perﬁurbation can be found in two ways.
One method deals with the explicit determination of the surface

modes and the perturbed bulk modes prior to calculating the specific

heat.3 The second method sidesteps the problem of determining the

perturbed modes by using a Green's function approach, Since the

Green's function method is particularly convenient for low temper-
ature calculations where the long wavelength expressions for fre-

quency can be used, we will apply this second method to our present

problem,

The method we will follow is that reported by Maradudin and

Ashkinlo and presented fully by Maradudin and Wallibl1

referred to s MW).

(hereafter

The method uses the function Q(yz) which is
defined as

ay?) =2 { 1 - 1

ki |y

= (2.1)
2 2, 2
vl yHioo |

where wj(E) and wj(g) are the frequencies of the normal modes of
the crystal with a surface and without a surface, respectively.
MW have shown that when the function Q(yz) has a logarithmic sing-

ularity in the limit }y|- 0,

HnaG? - A togly] + oCios

yl) (2.2)
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then the change in the specific heat, ACV, is given by:

A, (T) = 6A c(Nk (kT/m2 + o(1?) (2.3)

where ({(3) is the Riemann zeta function, kB is Boltzman's consternt,
and T is the absolute temperature, The specific heat problem then
reduces to the problem of determining the coefficient A in (2.2).

MW have shown the gene'al form for the function Q(yz) to be:

) . 2
t(kj,~kj,~-y“)
iy = -5 2=

(2.4)
ki (y%](91?

e Mw,.mfMm?»mmmﬁ-wweﬂ&ﬂémmv-";v N T A T A TSI N T

where the term t(Ej,-Ej,-yz) is the solution of the integral
equation:
1 . ' 2y _ : i 2
t(ki, k'3',-y°) = v(kj, k'i',-y“)
3 nan 2
V(EJ’_I,\{, 3" =y ] . 2
- E 2 2 t(l,f,"J",}f,'J',"Y ) (2.5)
’ISHJH y +wj"(l,§,")
;
and where:
P Y S 2 - 1 t_ ’_
: V(ki, k'3, -y%) nL, 8(ky -k )8k ~ko)
g ;
s xZ e (ki)  (0l)e (-k'j')s
; QB'{/ o~ cp B ~ 'fzz'l'l
1
4 N 3 . . ’.
= x [1 - eI XMW qry o omik’-x(0)] (2.6)

Here, % Lza1 is the distance between the two crystal surfaces.

T R

X The discussion in this section, then, will proceed to:
i (1) evaluate the term V(Ej,—g'j',—yz) for the two models, (2)

. . 2
solve the integral equation in (2.5) for t(EJ,b i',-yT), (3)

cemrnaen ko e

perform the integration over the Brillouin zone in the long
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wavelength limit indicated in Eq.(2.4), and (4) obtain an analytic

expression for the coefficient A for both models by taking the
limit in Eq. (2.2).
If the eigenvectors ea(gj) are inderendent of the wave vector

k, then for a particular value of the index ¢, the sum over o and

B in Eq.(2.6) can be carried oul .o give:
Z e, (ki) §, (00 e (-k'5") = T e, (D d,z(00eg(3"
of of
= —CJ(L)éjj: (2.7

This result is easily seen to be true since the ¢aB(OL) matrix has
exactly the same form as the dynamical matrix for a given choice
of 4.

The number of values of the index % is determined by the
number of bonds in the perfect crystal that cross the boundary.
For our models, this number is two representing the bonds between

atoms 0 = 1 and 0 ~ 2. Thus the terms Cj(&) become:

(Model I)

c,(1) = c,(2) =8

Cz(l) = C2(2) = o

C3(1) = C3(2) = o (2.8)
(Model II)

C;(1) =¢y(2) =

Cz(l) = X 3 C2(2) =Y

C3(1) =y ; Cg(2) = (2.9)

Equation (2.6) can now be written:

. N 2 . ] < . - !} .7
V3, -k my D) = 6 skt 8lkemk) Z v (KDY, (TR (2.10)

1=1,2
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where:

1

C. (D% 1.

ﬁ%"‘] e12K E(L)sin%g‘g(t) (2.11)
z

vy(kj) =2

Being able to express the V(EJ,—g'j',-yz) term in separable

form as in (2.10) is an important step in the evaluation of the

specific heat. The ability to do this led MW to use a model which
contained only central interactions. In our calculation, the fact
that the eigenvectors are independent of the wave vector E allows
us to write (2.10) for a wide range of different models.

By substituting the expression (2.10) into Equation (2.5),

we obtain the equatio=w:

U . .
t(ki,k'3',-y%) = s(kx+k§)6(ky+k§)%>v4<5a)vL<g i

v, (K3)v, (-K"3")
=2 D sk k) bk mky) T D (K, -y )
L N yowy, (k)

(2.12)

The solution of this integral equation with separable kernel is

straightforward with the result:

t(gj,-gj,-yz) =£?,VL(5j)[I-M(kxkyj,—yz)];i:véf(—gj) (2.13)
where: . '
MLL/(kxkyj,-yz) T Viégigisz(kg) (2.14)
z J~
Finally, the function Q(yz) in Equation (2.4) becomes:
ayd = -2 D VoI vy (D) [I—M(kxkyj,-yz)];i: (2.15)

A AN
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Strictly speaking, our choice of a non-primitive unit cell
for this problem leads to six phonon branches ir the first Brillouin
zone as shown in Figure 2. The optical phonon branches, however,
are extensions of the acoustic phonon branches from the neighboring -
zone. This means that by using an extended zone scheme we can
treat the problem as if there are only three independent phonon
branches. Therefore the sum over wave vector k and branch index

j can be converted to integrals as:
/a 2n/ay

m
6
S L.a
2-°Zl /dk fdk fdk (2.16)
j=1 J=1

-n/ao -ﬂ/al -2n/a

=

where S0 is the surface area of the crystal after the cut is made,
and the limits on the integral over kz indicate the use of the
extended zone scheme,

Ve separate out the sum over j from Equation (2.15) by

defining: 3
2 Y 2
Q(y?) = Q. (y9) (2.17)
=1
Thus we obtain: n/a n/a
9 S L a
Q. (y%) = dk dk
J LL’
—n/a -n/a
- 9 -1
X JLL'(kxkyJ’—y )[I—M(kxkyJ,-y )]LL' (2.18)

In this expression we have obsorbed the integral over kz into the
. 2 .
term JLL'(kxkyJ’ y9) as:

ar/ay
v, (&3 v, (-kj)

. 2
J,, (K. k_j,-y9) = / dk Z (2.19)
4 ’ 2
ey 2 [yPe?a 12
-Zw/a1 J
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In terms of integrals the M(kxk_j,—yz) matrix becomes:

y
2ﬂ/a1
L. a v,(=kj)v, (kj)
2 z1 LY~ IR
M,,(k k ,~-y%) = - }[ dk - (2.20)
-21'r/a1 J

To determine the long wavelength limit, we expand the relevant
expressions in terms of the lattice parameter a, and keep only those
terms of lowest order. In taking the limit as a, ™ 0, the density
and the elastic constants must remain finite. This implies that
the mass m is of order aﬁ and the force constants are of order ai.

The frequencies of the perfect crystal ncrmal modes in the

long wavelength limit can be written:

2 - 2 2 2 2 2 .2
wj(g) = cjx ky, + cjy ky + cjzkz (2.21)

where the coefficients c?a for each model are found by comparison

with Equations (1.12), (1.13), and (1.14) in the longwavelength

2

limit. The matrix of the values cja for Model I is:

(Model 1)
B8 o o (2.22)

For Model II, we have the added complication that the frequency
expressions for modes j = 2,3 have a term that involves the product
of ky and kz. In the long wavelength limit, the rormal mode fre-

quencies are:




R

mwg(g) = )k

22 2 2 1
30 T (y+x)k + 4(y+k)kza1

-~ é(Y-x)kyalkzal

= k22 L 1
mws(k) ka o (y+k)k

) WOV
+ 5(y x)kyalk

These frequencies can be

a

z°1

19
2_2
(2.23:)
2.2 2.2
aj + Iy k 221
(2.23b)

put into the form (2.21) by a change of

variable,
Jj = 2; kéa1 = k,a; - %XIX% k2,
j =3; kja; =k,a; + %x:%% kya1 (2.24)
with the result:
mw2(k) = Ak2aZ + Ly koad + Fyen) (kja)?
mwg(g) = inag + ?%%XT k?a% + l(Y+X)(k" 1)2 (2.25)

Thus, if we remember for the time being that the wave vector com-

ponent kz is different for each mode j, thea the C?a matrix for

Model II is:

(Model 1I)

-
Y A A

2y \ 1
A ?%:KT 2 (Y+1)

21_)‘___ 1 2.26
A (Y+)\) 2(Y+7&) I ( )
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In changing the integration variable from kz to ké or k; as
in Equations (2.24), the only effect is to add a constant to the
integration limits. Before taking the long wavelength limit, the
integrand is periodic in the extended zone scheme. Therefore add-~
ing a constant to the limits of the integral has no effect on the
value of the integral. The same is true in the long wavelength
limit provided the new integration limits always span the origin.

§ This last condition is always met for both cases; therefore:

j Zn/a1 2ﬁ/a1 2ﬁ/a1

,3 = ’ = "

: dkz / dkz [ dk =

: _ K _ (2.27)
; 21'r/al 21T/a1 Zn/a1

e

and we can forget the distinction between kz , ké , and k; that
we made when we wrote the c? matrix in (2.26).

The JL&'(k k 3, -y ) matrix elements can be wrltten in the long

B3 g AR oy by RIS, e

wavelength limit as:

; 2n/a
H 1 2 2
: Jll(kxk j’-yz) =T Z%f—_ dk 19
. y Z 2 2.2
: b/ [d + ¢ k7]
: -2n/ay Jjz z
] 2n/a

g C.(2) " )2 2

‘ (e ko3, -y% = - gh— dk

. 2 ? 4nL Z 2 ? 2

i zZ [d + C, ]

i -2n/a J Jz 2

: 1

? [Cj(l)Cj(2)]% -i%kyal

H (kxkyJ9 -y ) - e

£ ) 4mL

z

: 2n/a

: Vool - kg)af ,

! X dk, 7272~ Iy %
N [d + C J (d ¥

, JZ z

i -er/al

(2.28)
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. 2 2 2.2 2.2
. = .k ..k .
dJ y° + ch x ch v (2.29)

These expressions are valid for both models and for all j. The
limits of integration can be extendcd to + «» since the integrands
a1 : properly convergent. The terms in the integrand that are odd

in kz vanish, and we obtain:

.2 2
311 (k3 ,=yD) = =€ (D[P + QK2
Joo(k K j,-y2) = =C.(2)[P + QkZ]
22 "xyY? J y
-isk_a
L2 3 g, “itkya,
le(kxkya, ¥9) [Cj(l) Cj(z)] [P-Qky] e
*
= T (kk 3,y (2.30a)
where:
T.'a2
L ( ; )
m .C .
z°§ 3z \cj,
ma
Q= mr A ( 2 ) (2.30D)
zZ j jz dj

All matrix elements are of order ag
The MLL'(kxkyj’-yz) matrix elements in the long wavelength

limit can be written:

er/a1 2 9
J2 a_C.(1) (k_+k )“a

M, (K k j,~y2) = —Qd ~ gk -2y "1
11V %y 16mm z d2+c2 k2

-21/a, J jsz
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o 2 a,C.(2) 2r/ay (k -k )2a2
M (kk j,-y*) = —2J dk z y “1
l 22 ¥ x"yd 16mm z 2 2 .9
d+c? k
J JZZ
-Zn/a1

1
fz"ao[cj(l)cj(z)]2 i%kyal

Co_ 2y
M12(kxky‘]’ ¥ 16mm e
2m/ay (k2-x2) a2
*
X dk, —2Y L - y* (kk_j,~yD)
Z 2 .2 .2 21V xy
da’+c Kk
J Jj% =z
-2n/al (2.31)

Again, these expressions are valid for both models and all j. Some
. these integrals do not converge when the limits of integration

; are extended to + », Hence, we retain finite limits for those
integrals that diverge and change the limits of the other integrals

to + » to obtain:

|

. 2
k j,~y )

2
My (ke C;(1) [R -8+ Tk,]

2y

i

. 2
My (K k 3,y c;(2) [R -8+ 7]
itk a

} e - m2 yo1
[CJ(I)CJ(Z)] [R -8 Tk,] e

il

.2
Mlz(kxkyJ’ v

k J,‘Yz) . (2.32)

M. (k
21 'xy

where:
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JZ ad
T o= —-%— (2.33)
8mdjcjz °

The coefficient R is of order agl whereas S and T are of order ag.
All three terms must be retained in the limit of a, - 0, howevér,

until after the inverse matrix [I - M(kxkyj,—yz)]Zi, iz found.

The determinant A(kxkyj,—yz) of the matrix

I - M(kxkyj,—yz) is:
A(kxkyj,-yz) =1 - [C;(1)+C (IR + 4TRCJ(1)Cj(2)k§
.2
+ £CJ(1)+Cj(2)][S Tky]

_ 2
4TSCJ.(1)CJ.(2)ky (2.34)

Of the five terms on the right hand side, the first two are of

ordex 1, the second two are of order ai, and the last is of order

az. The two terms of order 1 when writc¢en in full are:

o]
a_ [C.(1)+C.(2)]
1 - (C(1)+C.(2)] R =1 - 2 J (2.35)
J J ome?

cjz
These terms identically vanish because:
2
2 a [Cj(1)+CJ(2)]

¢4 =
jz om (2.36)

for all j and for both models. Thus, the lowest order of the

determinant is ai and can be written:

J2 a
. 2 o) 2 2,2 ~2 2)

- = ee— +_k+_k .7
gl ¥ - VIR cix t Ciyty (2.37)

Ak _k ;
JzJ
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2 2
2 2 a, [C5(1)-C,(2)]

2 . (2.38)
Jy Jy 2m {cj(1)+cj(2)]

The lowest order of the inverse matrix, then, is a;1 and can be

written:
1 i%kya1
Cj(l) [Cj(l)cj(Z)] e
‘ ) -i%kyal
EFJ(I)Cj(Z)] e CJ(ZZ

2=l
[T - MGk §,-y) 17,

Blkkyd, =y [C;(1)+C,(2)]

y
(2.39)

~

The: sum of the products of the J matrix elements and the M

matrix elements that appear in (2.18) is:

.2 _ . o2y -1
Z Tpp (R 3,=y) 1Mk Kk 3,-y) 1,0

!
2 ~2 2
(c? -c% Jk
- . 20 5 (1 + Jszy y (2.40)
J§Lzaoaj l dj
where:

~2 2 2 .2 ~2 .2

dl = + . kS o+ .k .41
3 Y T %k T Chyty (2.41)

The integral in (2.18) for the function Qj(yz) can now be written

in two parts as:

nj(yz) = Q§1)(y2) + ngz)(yz) (2.42)

where;
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' > 3 S n/a1
3 1 2, _ _o 1
060 == )f dk, J{ Wy JZo? 12,02 42
-r/a -11/a Ixx" %5y y
o 1
(2.43)
and
n/a n/a
@ 2 sO(cgy-Gﬁy) J{ o 1 K2 a
Q. y = dk dk - 2.44
J 1612 X y dfﬁ?
-n/ad' -n/al

For the term Qél)(yz), the limits for the integral over ky can be

extended to + «» and the integration can be carried out directly

to give:
s Tr/ao
n§1)(y2) -2 J[ dk_ L (2.45)
16nc, [y“+ x x]2
Jy -n/ao J

For this integral, the limits must remain finite until after tbe

integration is perfcrmed.

kx=rr/ao
2
S vY\3
le)(yz) =2 log[kx+(ki+ 5 ) ] } (2.46)
16 -
"C5yCx jx
== . 4
kx n,ao
In the limit as 2, = 0, this becomes:
S
le)(yz) = --———iL——-loglyI + constant (2.47)
J nc._C.
JX JYy

For the term 0;2)(y2), we split the integrand as:

2 _~2,,2
( -c% )k
- “~;y e N 12 RN N 12 ) (2.48)
“ k°+3% k “ycé :
d dJ y +ch x+ch y y +03xkx+cgyky

o .
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Thus, aside from different ‘coefficients, the resvliing two inte-
grals for Q}z)(yz) are of exactly the same form as the integral

for le)(yz) in (2.43). Thus, we obtain directly:

—

S
ng) (v = -2 —

logly| + constant
8m

C..C. c..C.
JX 3y JXJy (2.49)

By substituting the results (2.47) and (2.49) into Equation (2.17)

and comparing witb Equation (2.2), we obtain for the term A:

S C..,~C.
A=g2 T L 14 Y 3Y (2.50)
m j=1,2,3 c..c ng

JxJy

Tor Model I, the second term in the sum vanishes because the

term Ejy = cjv for ali j. Thus, by using the identifications in

(2.21) and (2.22) we obtain:

(Model 1I)
S
A= —2 1+—:-"4%'—1- (2.51)
8nrey (1+r°) 2
Ct
where: r = — (2.52)
c
4
and C, and c, are the longitudinal and trausverse velocities of

sound respectively in the bulk crystal (.00) directions.
For Model II, the second term in (2.50) vanishes for the mode

J = 1, and is the same for modes j = 2 and j = 3. For this model,

the term ¢. is:
Jy

N 1-r2 2 3
i== . . = i = 1 - . R
j=2,3; ch X ch ( oIS ) ch (2.53)
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so that the coefficient A becomes:
(Model II)
S 2% o
A=—2 0y 2 (2 X) (2.54)
8nre) J2 X

Dobrzynski and Leman6 calculated the specific heat using
Model II for the (100) surface by a different method and obtain~d
the result:

(Model II, (100) surface)

3
(o}
A )

5 1+ 2r) (2.55)
8mr CL ‘

In the isotropic limit where r - 1 and y - 1, the three results

(2.51), (2.54), and (2.55) reduce tc:

38

A

A, =

iso (2.50)

SﬂCi

which agrees with the result of Maradudin et.al.1
The value of the coefficient A for the surface of an isotropic

solid has been determined from a correct continuum calculation
to be:11
So 10
= 5 (75) (continuum) (2.57)
8ncL

Aiso

The fact that our value of Aiso is 10% lower than the continuum

value is not too surprising since our models are not rotationally

. . 12
invariant.

For small deviations from isotropy, we introduce the quantity

A=1-r (2.58)

The T T 'nv’r*z» 78
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To lowest ordor in A, the coefficient A for the three results

(2.51), (2.54), and (2.55) becomes:

=i

A=A, (1 + 5 4) . (2.59)

1so

The fact that we find the deviation of the specific heat for small
deviations from isotropy to be independent of the surface and model
for the two surfaces and two models considered supports the belief
that the expressions give meaningful qualitative behavior in this

limit.

III., CONCLUSIONS
(1) We have found the change in the specific heat at low
temperatures due to the (110) surface in a cubic monatomic lattice

for two simple interatomic force constant models to be:

(Model I)
c_(T) 3kgc(3) { _2415__{ | o o2 )
A T) = - ——— 1l + S T (3.1
v 4nh2rci (l+r2,* ’ °
(Model II)
3
3k5C(3) 2.1
AC (T) = —‘-3—2———5 1 4 2034r7) (2-x) s T2 (3.2)
4mhrey J2 r X °

To our knowledge, this is the first deiermination of the change

in the specific heat due to a surface that is anisotropic.

(2) We have shown that the (110) surface of a simple cubic
monatomic lattice gives rise to Rayleigh waves that are split cff
from the bulk modcs for very simple force constant models. The
surface waves arise ever for the case where the atomic motion
normal to the surface is totally uncoupled from mocion parallel

to the surface. The only condition needed to obtain Rayleigh waves
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is that the "bonds" between atoms on opposite sides of the surface

ke oblique to the surface.

(3) We have provided a second example of the practicality
10

AT RO

of the Green's function method suggested by Maradulin and Ashkin
E - in calculating the low temperature surface specific heat. The use-

fulness of the method depends upon the ability to express the

iy

resulting integral equation in separable form. Maradudin and
Wallisl1 succeeded in doing this by assuming central force inter-
actions. This paper succeeded in doing this by using the fact that

the eigenvectors for the assumed models are independent of wave

VENTURY
B e e R L U B N R A T it

vector.

(4) Ve have found that the value of the surface specific

heat for the two models in the isotropic limit is 10% lower than

AR s s A e e i

the value found by correct continuum theory. We believe that this
discrepancy is due solely to the fact that the assumed models do

not satisfy the rotational invariance condition.,

(5) We have shown that as the longitudinal velocity of sound
increases relative to the transverse velocity of sound for values
that nearly satisfy the isotropy condition, the value of the surface
specific heat also increases., This result is independent of the
f model and surface to first order in the deviation from isotropy

for the two models presented and for the (110) and (100) surfaces.

g
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Figure 1:

Figure 2:

Figure 3:

FIGURE CAPTIONS

The atomic configuration and unit vector designation
for the (110) surface oi a simple cubic monatomic
lattice. The unit vector X is perpendicular to the

y-z plane shown and the atoms designated 5 and 6 are

located at + xao.

The dispersion curveg for the bulk and surface phonons
propagating in the § direction for Model II where the
force constants are related by y = 2A. The bulk mode
dispersion curves for Model I are the same as those
shown here if the force constants § and B are identi-
fied with y and )\ respectively. With this identifica-
tion, the surface mode j = 1 is identical for the two
models but the degenerate modes j = 2,3 are higher for

1
Model I by a factor of (9/8)2,

The relation between the complex wave vector kz and the
wave vector ky for Models I and II. The attenuation co-
efficients for all modes in Model I and for the mode

J = 1 for Model 11 are independent of the force con-
stants and diverge as ky approaches the zone boundary.
The real part of the wave vector kz vanishes for these
modes, The real and imaginary parts of kz for modes

J = 2,3 in Model II are shown for the case y = 2\.

22
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