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ABSTRACT

A radially directed load ig suddenly applied 7o a portien of the outer surface
of a circular cylindrical shell which responds in a state of plane strain. An
analytical solvcion for the resulting dynamic response is obtaired within the con-
text of linear elasticity theory, Fliigge shell theovy, and an "improved" shell
theory. A comparison of the analytical solutions ... numerical results ior a
specific loading indicate that the iraproved theory is far superior io the Fliigge
theory in terms of predicting both the magnitulc and characteristics of the
response. However, as expected, neither skell theowy con satisfactorily

predict the wave characier of the initial response,
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NOMENCLATURE (1)

Dimensional Physical F-L-T
Quantity Description Units
Ay u Lamé's constants /L2
p elastic material density FT2/ L4
Cp= ./L:pz‘i dilatational wave speed L/T
Cg = \/I“-)T sheur wave speed L/T
R median surface radius L
h shell thickness L
P, radial load intensity /L2




NOMENCLATURE (1)

PR/

T orT T

Dimensionless To convert to Physical
Quantity dimensional form Description
multiply by
y = CS/ Cph 1 wave speed ratio
a =h/R 1 thickness ratio
1 -%s r<l«+ % R radial coordinate
-m<B < 1 plane polar angle
0<st< —CB— time
D
POR
W,V — radial and circumferential
pCI) displacements respectively
Ty Ta, T P radial, circumferential
r’ 8 0
and shear stresses
9 respectively
POR
O, 5 displacement potentials
PChH




I. INTRODUCTION

The small motions of an isotropic, elastic medium, produced by a dis-
turbance of its bounding sarlaces, may be described mathematically by the
cquations of the three dimensional theory of elasticity together with appropriate
boundary and initial conditions [ 1]. ) The first investigations of these equations
of motion in cylindrical coordinates were conducted by Pochhammer [ 2] in 1876
and Chree [ 3] in 1889, Their studies dealt with the propagation of free harmonic
waves in a solid eylinder which was infinite in cxtent in the direction of its
generators. Si ce then several extensions and refinements of these imtial studies
have been made, most notably the addition of numerical data for the frequency
equations. For a thorough discussion of Pochhammer's work and some of the
subszquent investigations, the books by Love [ 4] and Kolsky [ 5] should be
consulted,

The siudy of the motions of cylindrical shells using these cquations is
considerably more reoont. It was only in the past two decades that an extensive
effort was made to study the [ree harmonic vibrations of cylindrical shells as
characterized by the three dimensional theory of elasticity. For a sample of
the literature on this subject references [ 6] through [ 19} should be consulted,
Also, recent studies have been made of the fyrced motion and transient re-
sponge of cylindrical shells using this theory. “or example, in 1964 Liu and
Chang [ 207 investigated the transient radial displacement of an infinitely

long cylindrical shell subjected to an internal axisymmetric blast load and

(I)Numbers in brackets designate references at the ond of the paper.
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sudden temperature change. By applying the method of Mindlin and Gondman [21]
to the problem, thev 'vere able ic construct a solution in terms of the noi.mal
modes of vibration of the cylinder,

Subsequently Suzuki [ 22] considered the problem of a circular ring subjectec
to a transient pressure loading of both the inner and outer surfaces. He attacked
the problem with a combination of Laplace Transforms for the time variable to-
gether with a harmonic analysis with respect to the angular :oordinate in the
plane of the ring. He thus formulated the general problem of a suddenly applied,
exponentially decayving load, arbitraril, distributed over the lateral surfaces of
the ring. However, he onlv presented solutions for the axialiy symmetric case.

In 1967 Garnet and Crouzet-Pascal [ 23] investigated thc response of an
infinite cylindrical shell imbedded in an infinite elastic medium produced by a
plane dilatational wave traveling through the medium in a direction normal to the
cylinder's axis. Their approach was to construct a train of incident pulses
from steady-state components such that each pulse contained the time history
of the transient stress in the incident wave. By making the time interval between
successive pulses sufficiently large, the cylinder would return to its original,
unstrained state before the arrival of the next pulse in the train. This occured
because of the radiation of energy from the cylinder through the surrounding
me-'ium to infinity. This approach proved to be very successful and results
were obtained to illustrate the time history of the stresses and displacements
in the cylinder.

The examples cited above illustrate that the forced motion of a cylindrical
shell as characterized hy the three dimensional theory of elasticity is mathe-
matically very complex. A quantitative description of the response is extremely
difficult without the use of high speed computers. This is the principal reason

for the long delav between the initial investigations of Pochhammer and Chree
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and those just mentioned. The cylindrical shell, however, is » very co.nmon
element with many and varied applications, therefore the need to analyze iis
dynamic response arose long before the means for carrying out such an analysis
within the framework of the three dimensional theory of elasticity were avail-
able. This lead to the development of several, m.thematically simpler,
theories to describe the motion of cylindrical shells. These so called shell
theories were based on the assumption that the radial thickness of the shell

was much smaller than the radius of the nedian surface of the shell. With

this assumption the dependent variables could be 3xpanded into convergent
power series in the thickness coordinate and the first one or two terms in these
expansions would suffice to describe the response of the shell. A theory of this
type was developed by Love [ 4] at about the same time as the Pochhammer and
Chree investigations. Since then numerous other shell theories have heen ‘
proposed. Most of these may be placed into one of the following three categories.
The first type of theory is called a membrane theory. Here, n» variation of

the dependent variables through the thickness of the shell is permitted. Re-

ference to this type of theory is made by Rayleigh [ 24] and the equations of
motion for a cylindrical shell may be found in the books by Fligge (25) or
Vlasov [26]. The second category contains the classical shell theories. These
allow the dependent variables to vary linearly through the thickncss of the
shell but in such 2 manner that straight line elements normal to the median
surface of the shell in the unstrained state remain normal during the motion
of the shell. Furthermore, these clements retain their original length and
contribute no rotatory inertia to the motion, Love's equations are contained

in this category along with those of Fliigge, Donnell, Vlasov and Sanders.

The third category contains the improved theories, As in the classical theory

the dependent variables are allowed to vary linearly through the thickness of

3
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the shell. The improvement is obtained by allowing the previously mentioned
line elements to rotate relative to the median surface and by including their
rotatory incrtia in the motion of the shell. Although these line elements are
still required to remain straight and retain their original length, a further
improvement is obtained by introducing a correction factor intc the trans-
verse shear force to compensate for this, The magnitude of the correction
factor is obtained by matching the phase velocity of the lowest mode of
propagation of fre. harmonic waves in the axial direction with that obtained
from the three dimensional theory of elasticity [ 14]. The cquations of motion
of a cvlindrical shell characterized by the improved thecory may be found in
the papers by Herrmann and Mirsky (27 and also Reismann and Medige [ 28].
‘ As a result of the diversity of the proposed shell theories, the following
auestion ariscs. For a cvlindrical shell subjected to a specific disturhance,
which of thesc theories predicts the response to within a given accuracy with
the least effort® This question may be answered by comparing the response
predicted by cach of the shell theories to the vesponse predicted by the three
dimensional theory of clasticity for cach specifi.- disturbance, This approach,
however, would negate the only advantage of the shell theories, which is their
relative simplicity compared to the three dimensional theory of elasticity. An
alternative approach 1s to carry out a comparison with the elasticity theory in
only a few specific cases which represent the limits of the range of possible
disturbances and shell geometries, From these few limiting cases rational
estimates of the accuracy of the shell theories for various other disturbances
and shell ceometries could then be made. Some of theze limiting cases have
already been ivestivated and comparisons of the shell theories with elasticity
theory have been made. For example Klosner in references { 26 | through [ 32]

and Ivengor and Yogananda " 337 have examined various problems involving
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cylindrical shells which are statically loaded using elasticity theorv and shell
theories. However, no comparisons have as vet appeared for the other extreme
rose, that is where the load is suddenly applied. Since most real loading situations
fall somewhere between these two extremes a comparison of the shell theories

to elasticity theory for the latter case would be of great interest. Therefore, the
primary purpose of this investigation will be to present such a comparison,

To accomplish this goal a cylindrical shell of circular cross section which
is infinite in the direction of its generators is subjected to a suddenly applied
force on its outer surface., This force is chosen to act only in the radial
direction and also to be invariant in the direction of the generators of the
cylinder. With these restrictions on the force the cylinder may he assumed to
he in a state of plane strain and thereforc only a plane section normal to its
generators will be considered. The response of the shell predicted by the three
dimensional theory of elasticity will be found using the method discussed by
Suzuki © 227, Next, the response of the shell predicted by the Fliigge Theory
25;, a classical theory, and also the improved theory due to Herrmann and
Mirsky [ 27 will be found from their corresponding Green's functions given
hy Pawlik and Reismann in { 347,

The time history of the digplacements and stressces at various points in
the shell as characterized by the three theories will then be compared for a

specific shell geometry and load distribution.

<t



FIGURE 1-A. SHELL GEOMETRY



II. STATEMENT OF THE PROBLEM

An infinitely long, circular cylindrical shell, composed of an isotropic,
linearly elastic material, is at rest and in an unstrained state. A load, directed
radially inward, is suddenly applied to the outer cylindrical surface of the siell.
The distribution of the load on this surface is constant along the generators of the
cylinder but otherwise arbitrary.

To simplify the analysis of the resulting mot.on of the cylinder, its weight
will be neglected. In this case it may be assumed that the motion of any plane
section normal to the generators of the cylinder takes place entirely within thai
plane and is identical for all such sections. In other words the shell responds in
a state of plane strain,

The initial geometry of a planc section of the snell together with a particular
load is shown in Figure 1. The applied load may be represented symbolically as
follows,

P@,t) - PO £@) H(H (1)

In (1), Po is a reference pressure, g@) describes the distribution of the load over
the outer boundary of the shell and H(t) is the Heaviside step function with respect

to time:

0 .t"oz @)

H(t) ;1 T 0

The analysis of the motion for an arbitrary load distribution, g(@), is

facilitated by expressing g@) in terms of ¢ Fourier series.,

0

-a
£6) -_} L - (a“cos nfh - I)nsinne)_] )

s

—

n i

~
[
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However, since ultimately a quantitative measure of the response is desired, the
ahove series will necessarily be truncated after summing some finite number of
terms (N). This results in an approximation of the actual distribution g(§) by the
finite sum gN(B). The accuracy of this approximation for any given value of N
may be increased by applying the process of "'smoothing, " explained in Appendix

I, to zN(G). In the present case this amounts to multiplying each term of the
truncated series by the factor (-N- sin 20 )

nT N
N
1 ao
@) = = [’é’ + Z (2,c08 n6 - B sin ne):l (4)
n=1
- (N nn
where a =a Km sin g

By, (2L o )

The analysis will therefore be carried out for the load distribution gN(O)
given by Equation (4).

All the variables used in the following analysis are in dimensionless form

both for convenience and generality. The conversion to dimensional form is

given in the Nomenclature.



o

TNV AEETRGOIII 71N e 5 g ar e o o

III. THEORY OF EUASTICITY

A. Basic Equations

Navier's equations of motion for an isotropic, linearly elastic material

may be written in dimensionless form as follows.
v+ (1 -yD) T (T = 3 (5)
at

22

2=€7’°\‘7’is

Here 3 is the displacement vector, J is the gradient operator, v
the Laplician operator and y is the wave speed ratio, Using Helmholtz's

Theorem [ 36] the displacement vector field may be expressed as follows.

W=To+7xT ,77=0 | (6)

© i8 the scalar potential and I}f the vector potential of the vector field a . Sub-
stituting (6) into (5) results in the following equation,

[P0 9] 3 ufPer -2 ] o

This equation is satisfied if

2
81:
and (7)
2 29 az"'g
y v V = 2 .
at

For the case of plane strain in cylindrical coordinates the displacement vector
and potentials are

0ow(r,8,H2, 1 v(r,8,t)8,

o :=o(r,8,t) (8)

<+

b ,’(I’,e,t)t:z
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where Er’ 5:'9, Sz are the unit vectors in the radial, circumferential and axial

irections respectively. The kinematic and constitutive relaticns for the plane

strain case are

e o 2w
r - Or
_lav, w
%" v38" ®)
g . LW 2y v
r 38 Ar r

2
et (1-2y )e6

2\
g “ % {1-2y e, (10)
T - yzs
where € €gr i T are the normal strains and corresponding stresses while

8 and T are the shear angle and shear stress respectively.

Substitution of (8) into (6) and (7) yields the following set of equations:

2 2 .2
[30,1_1..-}7.9_2_,}@9_%
3p TOT & 49 at
(11)
¢ ]
2['“3 L1 01 0" 9_.2,
Ly,2 rar I'2 ”92 J° Atz
e 1
W="r "} T8
(12)
1o _»n
r 8§ Ar

Substituting (12) into (9), then (%) into (10) results. with the aid of (11), in the

followiny, relations:

2 - 2
A 2O _p 21 1 3o 3 (123
r at‘? 24 ‘r iy r2 ﬂaz 3 \r 519—)}
2

-2 ) .

P~ P I - R BS B R .

9 ~3 % Lz‘«r\rae )J (13
10
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P2 2[R 2 (1))
512 3y2 Or\r 28 (13)
The initial conditions for the problem under consideration are

<D(r,6,0) = '»’(r,0,0)-- 0
(14)

The boundary conditions are
7, &.8,1) = - g @HE)
T(X,8,t) -0
(15)
fyr(Y,O,t) =0

(Y,8,t)= 0

%

where X =x =1+ 3 and Y=y =1- % are the outer and inner radii of the shell,

respectively.

11



B. Solution of the Equations of Elasticity

The solution of the system of equations, boundary conditions and initial

conditions (11) through (15) will now be obtained by a combination of harmonic

analysis and Laplace transformation.

| S i BR3P PN TRI R T

In view of the boundary conditions (15) and the form of gN(G) given hy (4),

the dependent variables in (11) through (15) may be assumed to be in the following

form,
a N 1
»(r,0,t) - ——1; [-?‘2 <I>o(r,t) ' _ <I>n(r,t)(anr 20s nh -ﬁnsin ne)_j (16-a)
n-1
N
. 1 ‘ . .
c(r,8,0 -z » \I/n(l,t)(?tnsm né Bncos n@) (16-b)
n-1
a N
-
wr,8.t) -+ [’r; Wotsty - W (r 1) cos n§ - 8 sinnb) | (17-a)
n 1
N
1 -, i _ -
v(r,8,t) — _ \fn(r,t)(\.nsm né Sncos nh) (17-H)
n 1
X
- {r,8,1) -1 r—a-g- Qr(r t) N ‘ir(r t}(r_cos nB - B8 sin 1\9)-] (1~-a)
P - L2 Yo' - n e n J '
n 1
_a N .
vs(r.e,t) -—%L-—? S?)(r,t) _y Si(r,t)(.xncos nf - ﬂnsin nh) ' (I~ h)
n 1
N
r -J- Ty . i . ‘OR -
r(r,0,t) - u']n(l ,t)(xnsm ne - Bn(“o nA) (18-¢)
4 n 1

The modal cocificients ¢n’ ‘pn ete. are determined by substituting the

assumed solutions (16) through (1») into the relations (11) through (15). This

2o

12



results in the foilowing set of equations.

2
[-527*13——2;]4’:32“ (19-a)
r ror T n at
2
[ i5-5]- 510
or ror . n v~ ot
T(r,t)=0 (19-c¢)
®,(r,0) = ¥ (r,0) =0 120-a)
3d 3
Tt-q 1 = —arn-~ = O (20‘}))
t=0 it=0
r ST
Syt = Ht) , S (Y,t)=0 (21-a)
TXH=0 , T (Y,t)=0 (21-b)
3¢
W) 5t T 52-a)
bh
- n E 90 _
Vn(r,t) =57 ! r(bn (22-h)
2
) 2
r ) n 2y . _
8, (r,t) - 2 L {wn ,nvn] (22-c)
32y 2
2
T (r,t) - atz" - —Ilj— LV, - nw ] (22-q)
9
3% 2
20 __n 2y - 90
Sﬁ(mt) - (1 -2y%) 2 (W, -nv ] (22-¢)

wheren ={0,1,2,...,N}.
The solution of the differential equations (19) may bhe obtained by applicat:on

of the Laplace transformation defined helow.

o

T(r, P) - f f(r, t)e Tt (23-a)

0

13
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a».r..,%

C+im
£ 1 z Tt
(r,t) = 51 / f(r,P)e d.
C-iw

(22-b)

In the above integral, known 1s Bromwich's integral formula, i :ﬁ and the real

number C is chosen so that P = C lies to the right of all the singularities of f(r, P)

in the complex P-plane.

Applying the transformation (23-a) to the set of equations (19) through (22)

results in the fcllowing system of equations:

- 9 2
d 1 d P2 n =
l.dr2+;dr'K "’)]n"o

r
@ 14 ﬁﬁﬁ -0
dr? r dr \ 2 r2 ) n
Eo(r,1>)=o
=0 o1 r B
SX.P) = 5, Sn(Y,P)—O

dii>1 n
WPy = = ';En
4w
LA L
2
A - -
;;(r,-)-l""é_‘— =4 W - nV ]
T (r,P) - P2 ﬂifv W]
(r,P) U TV Wy

2
S?l(r,m Q- 2y2)p2<§n AW -V )
where n - {0,1,2,...,N}.
The solution of equations (24) is (see for example [ 35])
& (r,P) - A_(P) (Pr) + B (P)K (k1)

A (Pry Pr
Qnu’p) Cnanhl\y } Dn(p)Kn y )

14

(24-2)

(21-b)

(24-c)
(25-a)

(25-b)

(26-a)

(26-h)

(£6~-c)

@5 )

(26-¢)

-~

27-3)

(27-Db)



T (r,P)= 0 {27-¢)
where I“1 and Kn are the n ‘dified Bessel functions of the first and second kind

respectively. The ccnstaiis A_’, Bn’ C., and D,1 are determined as follows, Sub-

D
stitute (27) into the relations (26) to obtain expressions for the modal stresses., Nexi,
substitute these expressions into the bounuary conditions (25), This results in a

set of linear algebraic equations from which the constants An’ Bn' Cn and Dn may

be uniquely determined. After substituting the constants thus obtained into (27) it

io observed that all the modified Besse!l fitnctions may he conveniently grouped into

four new functions called the cross products of the modified Bessel functions. These

are defined below:

Ff}l)(P,X,Y) = I (PX)K (PY) - 1 (PY)K (PX) (28-a)
F;Z)(P,X,Y\ = PYLI (PX)K!(PY) - I/(PY)K (PX)! (28-b)
Fff)(P,x, Y) = PXLI/(PX)K_(PY) - 1 (PY)K'(PX)] (28-c)
/ / ' / _
R 1/(PK)K(PY) - I/(PY)K/(PX)  n=0 o

2 7 ! ' -1/ y ’ »
P XL[In(PX)Kn(- Y) In(PX)Kn(P}\)] , n>0
where a prime denotes diffe ~entiation with respect to the argument of the function.
The properties of tl.ese functione used in the forthcoming analysis are listed in
Appendix II.

In terms of these cross products the solution may now he written as

T4, P)
$(r,P) —g——— (29-a)
n D (P)
_ ¢ (r,P)
¥ (r,P) - —é‘ A (29-b)
r P°D_(P)

where Efand Er; are given below,

Forn- 0:
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vz m wpeux

, 2 _
cle,p) - PRV, 1Y) - % Ff)(p.ry) (30-a)
Y

2
B 25(M)p x vy - 2Y_ §2)
D (P) - P°F, (P.X, V) " F,(P,X,Y)

- —2;’—2- 'F((f)(p,x,Y) ) %ifrg4)(p,x,v) (30-h)

Forn =
(e, P) - ;l?j Ao(r,P) (31-a)
Ef (r,P) - ;%Kf(r,p) (31-h)
By(P) = —5 A (P) (31-c)

C“°(r p) A (r P) 1 (n°- 1)’1§f(r,P) (32-a)
E:l(r,P) . K;\(r,P) ! (nz-l)B'fl(r,P) (32-b)
B,(P) - A2(P) - (v~ )BA(P) (32-c)

The functions 7'\(: ete, are defined below in terms of the cross products for

n={1,2,3,...,N}.

42 22 22
KA(I)) - 8y n Kpg ; 12 n ) \1)2 ‘ 4[ n )F(l,l)(p)
n X2 YZ n

a5 !
X7y
2, 22 2 22
- .iZ__Kp- : iz_ﬂ__/f:(lﬂ)(p) - ‘_*L_sz ' _41L)f*(1’ 3)(1))
\.2 X2 n X2 2 n

=(1,4) 2,3)
! ——L—1 F o o(P) T‘ (P)
x2y? ]

4 12 2 .
Bip) - -2 {W st R

‘) ‘)
pixiy? | xPYP vvox7

o
1o

in L-—L.*.i_—)_ 4)/“”"']’) \ _l_r_)_ ' ])4 X 1 l)(l)
Y" X® Y
(continued on next page)
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2 2 2 2
XPrayte?- ) | 4y%0P® p4]1'5‘2'2)(p)
n

vt xt x2
2 2
[4)/ n (n Yy n p? 4]1,(3 3)(P)
Y

2 2.2
syt®- 1) 1‘-,(4,4)(1,) _ 4y n2P Fg,z)(p)
X

YZ

e ;‘ZP 15‘(1 »3)(p) + 4y le— L '(3 4)ip) + ;213512’4)(13)}

where Fg'j)(p)s %[Fg‘(P,X,Y)Fg)<—$,X,Y>+ Fg)(g,x,Y\Fg)(p,x,Y)}

A%(r,P) = - il-Lﬂ—[:lr(l)(rz x,n) - F¥@,x r)]

(o 20 (¢ A )i, R D(E 5. 3)

. EYL;-(pz N —21-—;‘2—) [Ffll’(P.r,Y)‘Ff)(% X,Y)

; Ff’(p,r,Y)Ffl”(l; ,X,Y)J- -‘3:; (p? ﬂ%‘i)ﬁg)(p,r.Yﬁg’)@;—,x, Y)

__z__ F;l)(Ps T, Y)Ff;;)(—g . x, Y>+ F;Z)(p y Iy Y)F‘f_‘s)%sx» Y)]

Y2

Kg(r,m z- 31;-&[(92 - lez‘,a—“z—)'ﬁ;“(g,x,r) —)fi F“”(—-x r)]

2 22, . :
2y%n (2 . 4Y°n2 \ (1B _ ¢)(D)
L 2n (o2, A28 ) pE )T X, )

AN

;72-;— F(l)\y,r Y)Fflz’(p,x,n ' F;z)K%,r,H’)F‘g)(P.X,\')]

1

22
_Z DRI (O AT § T N (1) PR
U YZ /rn \y’l’\/‘n (NN
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4
4y [P =) 2P =)
n Fl ky,r,Y)Fn (P,X,Y) + F Ky,r,Y)Fn (P,X,Y):'

4
B(r,P) = -——47——4- {2)/ n? [F(3)(P X,r) - F(l)(P X. r)]

P’y

+ n2(PPx% 4 2920 )F‘”(P r, Y)F‘l)( X, ¥)

- 2y%y F(l)(P r, Y)F“”( X, Y) +2y21?‘f12)(P,r,Y)T“l(14)<l;,X,Y)

P%x2 4 2920 )F(z)(P Y)F(z)( X, Y)}

4
=9 - 4y 'n 2=(3)/ P \ 2,2 2 2\=(1)/P ;
Bn(r,P) = -EEXL_.ZYT {27 Fn (y,x,r/- (P X" +2y"n )Fn (y,X,r)

v 2y2n F“\ T, Y)F(l)(p X,Y) - 2y%n I‘:ll)(%,r,Y>'I~_‘fl3)(P,X,Y)

-2 B ) F P x, vy 2y2"(2) v, ) Fp x Y)}

The abcve relations will be referred to as equations {33).
The solution in the time domain will now be obtained by substituting (29)

into the Bromwich integral formula (23-h).

C+im =0
1 / Cptx P) Dt

® (r,t) 5 dP (34-a)
n 21 3
C-in PD,(P)
1 ST g g
\Iln(l',t) el 3¢ dP (34-b)
ot P°D_(p)
-im n

For v > 0, cach of the functions Cf(r,P), C, (r,P) and D_(P) is (a) an entire
function of P, (h) symmetrical in P and (c) nonzeroat P 0, I—)n(P) has a de-
numerable infinity of simple zeroes located along the imaginary axis of the complex

P-plane for each value of n. If the magnitude of these zeroes is denoted by w, thcn

D(tlw ) 0 ¢ i 0,1,2,... (30-:1)

with
18




0< W <w < w,<* (35-b)

The integrals (34~-a,b) will now be evaluated by contour integration. From
the above discussion we conclude that both integrands have simple poles at

P =+ i w_, and a pole of order three at the origin. By applying the residue theorem

nj
to the integral around a Bromwich contour with C> 0 the solutions are obtained

in the following form.

Fort> 0
& (r,t) =¢fls)(r,t) + Z c‘:(r, wnj)an(t) (36-a)
j=0
v = v+ ) el e 0 (36-h)
j=0
where
nTT2Lap® N B ) =0
2 ﬁly(r P)ePt
(S) 13 n'"
v r,t) = 5 — (37-b)
n z[apz ( B (P) >Jp =0

Cg’(r, w = (_JS(r, + 1) (38-a)

Clir,w) = Cptr, ¢ iw) (38-b)

D (w) = Bn(t iw) (38-c)
cos w“.t

Q) -~ (39-a)
wann(wnj)

G (w) - Ein(i iw) (39-b)
. dﬁn(l’)

Un(P) 3P AP (39-c)

By substituting the potcatials (36) into /°2) we obtain the desired solutions for the

mod-l displacements and stresses,
19



kit o oy

Wn(r,t)zwfls)(r,tw Z W Ry () (40-a)

i=0
V=V ) VLR (40-b)
j=0
r _ oT(8) T T ) _
S (r,t) =8 "(r,t) + 2‘ Snj(r)an(t) (40-c)
j=0
Sg(r,t)=Sg(s)(r,t) ) S:j(r)Qm.(t) (40-d)
=0
T (r,t) = T r, by + Z T (r)Q_.(t) (40-2)
n’ n "’ nj nj -
i=0
where
W) = 22w ) + Tehw wy) (41-2)
Vo) =5 Catrowy) ¢ 2O, w ) (41-b)
2
SEm) = - Wi CRr, ) - BEw -] (41-c)
2
6 ) 2 . 2.0 2y~ _ i
Snj(r)- - ~dm.(l 2y )Cn(r,wnj) + = [wnj nan] (41-d}
T (r) = - wi.C' -—2)’i[v - W] 11-
nj™) = - W Cplms @) - = nj = "Wn; (41-¢)

The functions Cf(r, w), C';'(r, w) etc. may be conveniently expressed in terms

of the cross products of the Bessel functions defined below.

(1) - _ , i
Foo(wx,y) Jn(wx)Yn(.»y) J (W)Y (wX) (42-a)
F(Z)(w X, V) wviJ (wx)Y (wy) - I (V)Y (wx)] (42-h)

n AR A 95 D n n A ¢ n o n ] 2
F(s)(w X,V) © WX I (W)Y _(wy) - J (W)Y (wx) (12-¢)

n (AT “n n A n n . 2

Y ’ a1’ v !
JO(»x)YO(m) Ju(w\)\n(ux) n o0

(WX, V) . (12-d)

(1)
}‘n h-) r',l \.I ]/ \’l -
WX\ ; w\v) - . )Y X )
W X\ n(u.x) n(u)\) n(.‘,\) n‘»\) not
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where a prime denotes differentiation with respect to the argument of the function.
The properties of these functions used in this analysis are given in Appendix II.

The functions appearing in the modal solutions (40) and (41) are given below

explicitly in terms of the cross products of the Bessel functions for the three

casesn=0,n=1and n= 2,

For n = 0 the eigenvalues (woj;‘ j=0,1,2,..,.)are the positive real roots

of the equation

D (w) = 0. (43)
The functions used in the modal solutions are
2
C 2 2 2
D (w) = —g w Fgl)(w, 5y) 4 —)%' Ff) ){w.X.Y)
2y 4?4
+ x2 FO (w.x»)’)* Xy FO (’J)oxoy)J (44-3)
- 2 -
2 2 2
Co(ry w) - %Lw Ff)l)(w.r.y) 4 '_YZQ‘FS) )(w,r.y)_' (44-b)
J > (1.3 22 4 7
il
5r00mw = 4 Ly - BBy | (44-c)
" 2. (1) 1. 4yt
Gyl - - 3 -2 A wx,y ¢ (0 )
1 1yt (3)
g\l i) @)
w X
2. x v 4y2 )
4y k; PE T )Fo (w.x,.v)J (44-d)
w Xy
V2
2 2. L
W(S)(r t) = - y r:(l-y) r2 (15-a)
0 ' {
2, 2
2)7(1-yM0 - 45
X
2
1o X
r(s) r2
SO (r,t) - — 5 (45-h)
|- X
2
X
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Sg(s)(r,t)- T

(45~-¢)

For n = 1 the eigenvalues (wlj; j=0,1,2,...)are the positive real roots

of the equation
Dl(w) =0
The corresponding functions used in the modal solutions are
.

ac?

© __ 1,0 1 __ 1 0/
Cl(r'U))“ 2A1(r’w) ] ar - 2A1 (r’w)
w w

a<:f 1,0,
C(r w)—-—A (ryw , —br—"-—g'Al (r,w
w

G, (w = ——-[AA(w) -—A“(w)]

(46)

(47-a)

(47-b)

(47-¢)

(47-d)

where a prime denotes partial differentiation with respect to r and a dot denotes

differentiation with respect to w. A‘p, Aﬂu , AAetc. will be defined shortly,

1
2
W“Nrn 2, 4[3—~2\ ﬁn—
2 , 2, .2
, X \)L. . \l_:_éz;_).z;_.\
3 2 \ 2 2)° 2/
X" 4y r 1-y y

2.2
,_(AJ_YT)L,I,,L:,J}
ay y

v(s) x_ )2 v [rz g (1 +z2 Vin £
(rt) - 33 it R 7—)In v
y Y
2 2 2. 2.
. X y_ ., 8-y  r_
5 3z 7)) 3)
X -y r 1-v ¥

2.2 2
Sy XX g 1oy 31
vy Y

22
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22 3
r(s) NS A SANI Y 1 -
(r,t) = 2-y ) - (48-c)
[ K ) x er2 \r3 y)
9(3) r t) [(2 -3 2) F_ + 2 .Y. + _Xi’ii_:’)fi_ +3 .1.'.. ‘J (48-d)
(r,t) = 34 YIyrrY % x2+y2\,3 y/
2 3
(s) r_ . S AN -
'I‘1 (r,t) = in L_( ) x +yz 3 y)_] (48-e)

Forn={2,3,4,...,N] the eigenvalues (wnj 1 §=0,1,2,...)are the
positive, real roots of the equation
D (u) = 0. (49)

The functions needed for the modal solution are

Dn(w) = A:(w) + (n?'- 1)Br?(w) (50-8)
co(r, w) - AP, « (n2- I)Bf(r,w) (50-b)
Co(rw = AY (v, + (2~ 1B (1, (50-c)
ac®

S =AY (rw) + (0% 1)BP (1) (50-d)
3c) .

37 ° Ar;'(r,w) ' (n -1)BI;’(r,w) (50-c)
Gyl = = 5= TAS W + (- 183 (W) (50-1)

where a prime is used to denote partial differentiation with respect to r and a

dot denotes diffe1entiation with respect to . Ar?’ A‘:, etc, will be defined

shortly,
Let
1
[ 2
8 - nkfé- -1) () (51-a)
- - X -{X)2n 51-
bn n{1 x?‘)” l\x> (51-b)
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i

, 2
c, =n(1-%)+ (1‘-)2“- 1 (51-c)

n X y
y
y n n -1
0 -[*(3- 1) (5 - 5] @ice)
then
(8), ¢ . _oon n(l ~y%) - 2y* 7/ x\n+1
LR ‘J-(nn)(l y)-'<">
oo (F)(E) L e ()5
n(l-y )+2y n 1 o
d[(n 11- y)JK z e

vff’(r,t) . 3 "[n&-_ui Jn+1

(n+1)(1-y

<,.+1)k"“’” e (3"

nl-y"-2 35_ n-1 -
+ d"[(n N )] T (52-b)
- e (5, (3
-nC_ <_,_(r_)n -2, d (n+2) (%)ni | (52-c)
P00 3 agmen (D)% w, (22
ey (200 (21

00 50 o (5% 0, (27 %0, (2P a5 e
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The functions Aﬁ, Ag’ etc. are given below forn - {1,2,3,...,N}.

{2 2 22, 2 2 .
8 7,2 4 2 4y™n 1 1 .
At Sh o R ek (N x.s)
XV X v

2 2 »
¢ 2 2 4 1 2) W Y, w2 1)(w \
Ty —_52_'\“’ ) _2;22.4 fo )“"""-")Fx(x )ky’x'y)*Fix )(“”"’Y)Fx(x )<y”"y)J

2 ¢
*:21" 2y2 Gl = Sk n [F(I)(w,x,Y)Fw)\-%,x,,) I‘(s)(w,x,y)r‘(l)< ’x’y):ll
X
Rty e ) P2, ¢ y)
1 22 L0n (w,x,y)F \Y.x,y/+ n (WX, y)F y,x,y/J

2 4
LAY @) A(3) w e CYw . ]
' xzyz [In (W, X, V)F {y.x,y) Foo(wx,y)F, (,y,x,))_!

(53-a)
4 2
® .4y n l (1), _ g3 ]
An(r’w) ) xzv?' Fn (W X, T) Fn (w,x, 1)
o 2
I e 20D 2 Ay O )
'4K 2 0 v/ DY) Ny %!

2 2
2 2 1 , N2 ]
T -L—)l P r R &) e ) |

(o3 2
Z. J__ __y__n Vp(l) (3) w
'y \w 2 P {w, r, v)]n ,‘( \)
=2 ayirua e, )p®) (3) @
T :27;73{!'“ (w1, V)F \—;,x,y)‘ Fo (o, my)F &7,&3')]
) (53-b)
A (r, ._.X_.__r L - _21_222. Vel o _2);2_]:(3)_‘9. (T
w - 2 L7\ 2 /'n \y' ™t e n&)’h’)
2 .2 2 2
T “y(,n \wz— by ;‘ ) l‘(l)\-—';- r, \'/) I~‘§1”(w.x,.\')
x” yveo
2 oo (2) (2) w 1y ]
Y ;(2\‘— Llln ~)_’1"\/"I‘n (w, X, ¥) 1 N \/1 (%, \')-]



e T

2 5.2 2 2
2y°n 2 4y
e U 3 )Fgl)@y‘»r'&’)l’f,m(w.x,y)
x y

+'r7r12— ‘?%[FS)@, r, Y> Fff)( WX, y)+ Fflz)(%, r,y> Fff)(w,x, y)]

(53-c)
2 4 42 2
A L _ Ty 4 [8yn"(n®-1) , 22 2/1 1]
B (W= 422{2L 3 3 47““’(2*2)
wxy (n x“y y. x
4.2, 2 2 2
2[4y n"(n"~1) 2221 1 4x" y .
tn 32 '47"“"\"5*2)*“’(2* 2)]
x“y veox yo X

. )w
F (@, n)F A x,y)

2 4 2 2 222 /
x"[4 -1 4 ¢ 2 (2 2
-G v ne L T PO )
y X X
2 4 2 2 2.2 2
Y _f4ym(n-1)  4yTnw 473 (3w
S R e KR TP &, x,y)
X y y
avte®-1) @) (4)
* 22 F, (@x,y)F K-,,',X,Y)

22 2 \
2 n 1 \'2 ‘\\ ~ 2 l / Y
* _szL[F,(\ )(w,x,y)lﬂ;1 )@"— X,y I'fl )(w,x.y)l-‘g )—‘;%,x,y)]

y’
M F(l) , F(3)<w N w3, ,(1)<U) )
+ yz [l’l (w,x,y) n ';",X,)) rn (w’;\’y)l‘n ')T'X’)>]

2 2 \
e 2 [_Ff,s)(w,X.y)Ff,4)<%,x,y>+ Fff)(w,x,y)l-“ff)(—‘;’-,x, )]

2 2
- 72 I:Fff)(w,x.y)F?)(%.x,y )+ Fff)(w,x,y)Fflz)K-‘;—’,x,y>]}

(53-d)
2.4

22
B,‘f(r,w)-—--}:? - {- W O, - P x|

a2l - 902 2 (), (w
n(Wx” - 2y n")F (w,r,¥)F Ky,x,y/
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- 2 %n2F g, r.y)Fff)(%‘f-',x,y)

22 , 22 (2) AR W
*lwx- 2y ) F w1, 1)) (5%y)

+ 272F1(12 )(w.r,y)Fff)(%,X.y)} (533-€)
2 4
v s ym ) 2, 2.(3)w 2x2_9y,2.2) p(1)(w
Bn(r. W = - :2;%}? {_ .:1{27 Fn (y,x,r)+ (w X“-2y“n >Fn (y,x,r)]

+ 2y%n? Ffll)(%, t,y) ED(w,x,y)

2)’ n F(l)( ,T y)F(s)(w,x y)

-2y F(z) ,T y)F(z)(w,x y)
- 272F,‘,2’(%, r,y) Fg‘*%w,x,y)} (53-1)
2

4 2
0 ST 1)2 4yn” [(2) _r(4)
An’(r,w)- 3 r{w x2y2 [Fn (w,x,T) Fn (uu,x,r):lJ

2 2 .
- (o J—)&» Ay, MEE x,y)
Yy

K 2 2)’ n [F(s)(w’r v)F( )‘\— X \’) F( )(JJ,I‘ \)Ffll)’\—)j,x,\ _-]

2 2 2
2y°. 2 4y%
PTg\w S 2

JFO e, \)P(3)\—,x )
o o) (4) w {4) AW
+:2yL2[Fn (wr,y)F @,x,y)wn (w r,y)F \—)/-,x,)/:l
(54-a)
2

2 2 2 2
v 21 1)22y'nf 2 2v"n" (2w 2w
An (r, w) = 4 r{w v2 [ &“" x? ,F \y"( r)- F

x2 n \y' % T

2 22
- 2_)/2£sz - 4y2n >F(3)’ ,r,v)F(l)(w,x V)
X \4
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4 ‘
20 B S TP O . P 3 T4 1y, .
- x2v2 Fn \:y,r,})Fn (w,X,V) Fn <y,r,y>Fn (Uﬂx7Y)]

+272n 2_ 472n2\F(3)’_¢9_r >F(3) %,v)
) Kw /'n K)’, 'y n (JJ, 'Y

2
X y
iy [_F""’t“’,r )P, FO&, e PO, ,y)]}
(54-D)
2.4 22
i 1 4 4 2
B/ (r,w) = - 32 1 : [ E 1) B,
WXy
-n (w x 2)/ n )F(3)(w r, y)l‘(l) X,Y)
_ (3) By w
27 n Fn (w,r,y)F, \),,X,Y>
2.2 , 2 2 (4) (2)'w
4 (WX -2y"n )I‘n (uu,r,y)ln K),,X’.V>
2..(4) AHw
12y F (w,r,y)F <),,x,.\>
(54-c)
' ik RN w22, 2 2 (2)w J
B (v, w) = 551 7 { |”‘y Pn Gy Xt (wx"-2y%n )I‘n Ky,x,l/
WXy
¢ ‘)y n l‘(3)' , T \)I”)(.;),)\ V)
2 2‘(3)_@ TG ) P
’y v 2
- 2)'2F§4)v’§, r,y) Ff, )(w,x,.\')
. 2y?F£|4)\-‘}‘},r,.\'\'Fff)(w,V,.\')}
(34-d)
9 ~
s A T 2 22,1 1 (1,1
£ (w) T {24_200 -4y T -5 —.—z/:ll'f] )(w)
X"
2 lyzn?‘ 2 4y™n (1,1)
"\w h 2 /)'wd 2 n (W
X v
4 2 (1 f)) 4 2 2 4 42n2 .(] '))
H 2w _% an« (w) _l?._ \w-_ —J—?._“/Fn W
y ! X
12 (.3 R o G
: "—fz— DR '\)3 Ch {- L T




4 -
8 > (1,4) T (2’ 3)
+ —szyz LFn (w) + Fy ‘“”]} (55-a)

sS4 2.2,
Byt = - & 30w + T {-Zwﬁz&\%—%)

WKy T y X
2 2.
27, 8 x 22/ 1 1 (1,1
L4825+ L ) swrP( L o) JF Dy
y X y X
A 4“—-(——)-2 -1 4y ( —1-+-1—)+ 4733— +-ﬁ\" (1)
2 Y 2 “’\yz Z/ 1
42 2
[4y™"(m"-1) ay2n2 2 L, A ]F(z 2)(w)
L .22 2
X'y y

- a2
(e % - syt L ]F(z 20

-, 42 2 .
_[4y nzgg 1 _472nzw 1 S S _y_JF(3 3)(w)
- Xy x“
- 2 22 1 7.3,3)
-1 4w’ L - 8wy*n _"_an' (w)
— x-‘
4.2
, 4y 2!119—1( Fl(q‘i’l)(w)
x“vT
wwyind a1 222,
4 w22 I*( J“)(w) ; ‘2 _nz.__w Fl('l !"‘)(w)
X X

Z (1 3)(‘» C o4y 7w n ,o 1(1,3)( @)
) \.\

8wy> (3,4 12 (3,4
- ___‘-.'-’;’_Ff]’ )(w) - __Zx_éw__ F;’ )(w)

* Y5 . 2 2
Sy )y A d F£2,4)(w)} (55-h)
F ’ '
where
F(1 iy 2 Ll’(l 2)() 1(1 3)(“’)_] (56-a)

3 wl o
2)/') /°n j
(56-h)

29

9
t -Fgl,z)(w) [ A153) 1(“ iy 1,1(12,3)((»)_ ’\wz,v“)———'l—- o2 (1D
E
:



. 2
R R e e L
(66-c)

4y - {F(“’4)(w)+F(3 D +n? B Dy +n? 03y
- H—LJ—F(I)(w.x,y)F(2)<Q-.x,y)+ Ffll)(%,x,ﬁ Ff,z)(w,x,y)J

—Ll:-— P wx, EE, x, )+ FL x y)Fff’(w,x,y)]}

(56-d)
?514,2)(0)) - _f)_ {FI(‘2,4)(0» . n2F£1,2)(w)

2 2
- ‘Qg“f—[;lz—Fflz)(w,x,y)FS)( X,y)+ F(w,x, yFENe Y x, y/]}

(56-¢)
P&y - L {F‘z e+ B a1 0258 By 209

- w; [‘#Fﬁz)(w,x,y)Fr&l)(%,x,y)+ Ffll)(w,x,y)F:‘Z)(%,x,y}]
2 2 , L
= wz [-)% FI(IS)(w,X,y)Fgl)k-‘;)—,,x,y>+ Ffll)(w,x,V)Fl(;”\%,x,y)J}

(56-1)
F(z Ay - L{_( 2 2 loz . )F(z 2w F (4 4)(w)m21(2 3
27

2 2 Y
2p(1,4) _ﬁy_[_l (2) 3w
+n Fn (U)) 2 'yz Fn (w.X,_V;Fn K‘}”x"\/

* F(S)(w.x y)F(2)<),.x,y)+ ;— F( )(.u,x \)If‘ )\i“’—,x v)

* Ff,l)(w,x,y)Fg”(%,X.y):l} (56-g)
£(3,3) _?J 3,4), + . 2.(1,3)
(W) ‘”ipn (W) * nF ()

wx

(3)(w.x \)I‘(l)\ =X, \‘“ I( )(w,\ \)lf]”\';’,\ ]

(H6-h)



2
: ! 22

2 2 ,
2p(lid) - WX T L3y (2w
fnTF U (w) - va F o (wx, y)F Ky,x,y)

+ F,(,z)(w,x,y)l'“,(.?)k%,x,y}fz—Ffl")(w,x, N,y

+ F,‘,”(w,x,y)f‘ff)(i‘;—.x,y)J} (56-i)

I’?f‘4’4)(w) ) % { zFflz,cz)(w) * nng3,4)(w)

i w2x2 -

5 ? Ff;”(w,x,}')Ff,z)\ﬁ")px,y)+ F‘:)(%,x,y) Fflz)(w, x,.V)_:l

2 2 , .
- "sz Ey'lg—Fr)(w,x,y)Fff)K%.x,y)’ FS)\%,x,y)Ff)(w,x,y)_J}

(56-j)
where

P = 2[00 xnED (&, x,y)

R 2 ) x|

The completes the analytical solution of the equations of the three dimensional

theory of elasticity for the stated problem. In the next s.ction some observations of

the form of these solutions will be offered,
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C. Discussion of the Elasticity Solution

The most conspicuous attribute of the solutions given by (17), (18) and (40)
is their double series form. The sums shown in (17) and (18) are over all angular
harmonics (n) contained in the load representation. Since the load, by earlier
agreement, contains a finite number of harmonic coraponents (N), the sums (17)
and (18) are finite. However, from (40) it is observed that each harmonic com-
ponent or mode of the response is itself an infinite series. To establish the con-
vergence of these series a brief study of the asymptotic behavior of the characteristic
values wnj and the characteristic functions an, an ete, for large values of the
summation index j will ncw be presented. The following results may be deduced
from the asymptotic hehavior of the cross products of the Bessel functions for

large values of w given in Appendix II.

w .
D (w)~ - sinay (57-a)
© /XY
=2 - 57
Dl(w) Xy Sindw sin y (57~b)
sz dw
Dn(w)~ XY sinaw sin T nz2 (57-c)

Since the characteristic values wnj are the roots of the cquation Dn( w) =0 we

conclude from (57) that

K .

QOOJ'“J T ’ K= 1’2o3va . (58"3)
K L }

Wi~ T Y AT (K1) = 1,2,3,. . (58-b)

For any given value of n, the integers K and L are linearly related to j for all
j above some minimum value J(n). The formulae (58) will be very useful when
calculating the characteristic values numerically, Gazis i 7] also obtained the

relations (57) in his study of hollow cylinders, Using these approximations for
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wm. the series (40) are found to behave asymptotically for large j as follows.

Forn-10,1,2,. .,
W (rIQ ()~ — /— -(—)-—cos “(r-Y)cos STt (59-a)
| N VA
K
S;j(r)an(t) ~ 2 JE EL i KT o v)cos L’ (59-b)
K
6 2 2 -
Spy(TIQ(t) ~ (1-2v%) 2 \/%‘- L%{)— sin £ (z-v)cos Luf (59-¢)

Forn=1,2,3,...

/— {— sin Km o (r-Y)

+ __%Zﬁ[ﬁ cos —(X r)+(- 1) —cos—(r Y)]} cos ﬁt

Ysin
or
G n / L‘l) 1 X L
V (1‘)C? (t) sinyLm [?cos < (X-r)
Y Lm Ln
4 )_( cos YL7cos T (I‘-Y)] cosy — t (59-d)
K+1
a
j(I‘)Q (t) ~ —n'L VI LL— {—-cos —(r Y)
K
K
- 1 1 Kn - (-1) . Km K=
sin KT [Y sin =Y (X-r)+ X sin 2y (r-Y)]}cos —a-t
4
or

~ L
T (ty~ my /X (-1 1 1. L7
nJ(I')Qm(t) 'r2 Vo L2 Sy LT | v sin 7= (X-1)

1 . L
} X cos YL7Tsin Trr (r—Y)] cosy M t (59-¢)
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In each of the above expressions the first term occurs at the roots 5 and the

second at ¥ -L;
We may conclude from the above asymptotic relations that all the series
in (40) do in fact converge for (Y - r< X).
In addition to verifving the convergence of the series (40), the relations

(59) also provide a useful aid to understanding the nature of the solutions. For

i KT vt ty

example, it is noted that all these relations are either of the forme” a
or ei 551 (e-Yt ‘yt). Both represent traveling waves having in the first case a

unit phase velocity corresponding to the dimensionless dilatational wave aspeed

and in the second case a phase velocity ¥y corresponding to the dimensionless
shear wave speed. I'herefore, we may interpret (59-b,c) as vielding discontinuous
dilatational stress waves in S;(r,t) and S]?(r.t). These aiscontinuities or steps

in the stress are the result of the dilatational wave produced by the suddenly
applied load being reflected between the boundaries of the shell, From (59-e)

we gee that the modal shear stresgs is composed of both dilatational and shear
waves, however they are continuous and in the form of a ramp function rather
than a step function, This is to be expected since there are no discontinuities

in the shear stress introduced at the houndaries as was the case for the radial
stress. From (59-a) we ohserve that the radial displacement is continuous and
dependent primarily on the dilatational wave while the circumferential dis-
placement (59-d) is dependent upon hoth the dilatational and shear waves.

At this point it will be convenient io consider the practical computation of
the series (40) in a specific problem, Since these series converge at least in
the manner of a step lunction, they may be terminated after summing some
finite number of terms to obtain an approximation ot the desired function.

Just as in the load representation, the Lanczos smoothing process may be
applied to these finite sums to inerease the accuracy of the approximation.
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This process, as explained in Appendix I, will result in each term of the sum

w (el
being multiplied by the factor X sin —— where j K is the last term
wj’T Wi

retained in the sum.

It is interesting to note that the form of the solutions (17), (18) and (40)
is exactly the same as would be obtained by solving the problem by the Williams
or mode acceleration technique { 37). In this context the terms wr$S)’ Vfls), efe,
are referred to as the ''static' modal solutions, the wnj are called the natural
frequencies of the system and w‘ni' Vni’ etc. the eigenfunctions of the system,
In fact, for the suddenly applied load the “static” solution is the solution of the
corresponding static problem in which hoth the equations and houndary conditions
are independent of time,

This concludes the analvtical investigation of elasticity theory and we
will now proceed to examine a specific example for the comparison of the

theories.
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IV, A NUMERICAL EXAMPLE

In order to obtain a better insight into the nature of the elasticity solution
and also a clear comparison with the shell theories a specific shell geometry and
load distribution will be studied. An interesting example which also has physical
applications is the suddenly loaded cylindrical arch shown in Figure (1-B). A
radial load of constant intensity P o is suddenly applied to the outer surfac~ at
(- B< 8 < B) of a eylindrical arch whose ends at 8 =+ _;_r are free to move hori-
zontally on frictionless rollers but restrained from moving vertically, The
proper boundary conditions at the ends are v - Tor® 0ath -+ 21 This problem
is analogous to the problem of a complete cylindrical shell of identical thick-
ness and material properties subjected to the same loading as the arch plus
the symmetric reflection of this load about the § - ! ;;' planes. In this com-
plete shell, because of the symmetry of the load, v - L 0at8 =+—. The

2
proper load distribution function for this example is therefore

1, 18 <8
g@)- (0 , .B<.9I<,r-ﬁ}

1, 1-8:8, -+
The Fourier coefficients of this function are
a,: i8
an—%sinnﬁ s on-2,4,6,.,..
an~0 n-1,3,5,..,
bn -0 :on 1,2,3,. ..

The thickness ratio used in this example is x 0,1, The only material
property required in the analysis is Poisson's ratio which was chosen to be

v - 0.3 from which the wave speed ratioy & 0,5315 may be obtained.
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The solution of this example by the shell theories is given in Appendix TIT.

Next the angular extent of the load (B) and the number of terms (N) used
the load representation must be chosen. In order to detect all the peculiarities
of cach theory and to emphasize the possible differences bitween the theories it
is desirable to choose 8 as small as possible. However, as 8 is deereased the
number of terms (N) necessary to obtain a reasonable approximation of the load
increases very rapidly. Therefore some compromise must he made to ohtain a
sufficiently concentrated load representable by a reasonable number of terms.
After studving several different load representations it was decided to choose
B =1 -0.1with N - 100, The load distribution function gN(O) is shown in
Figure (z, .orv these paraiancters.,

Having specified all the load and shell parameters we may now proceed to
the actual computation of the solution. TFirst the natural frequencies must be
found for each theory. For the shell theories this is a straightforward com-
putation which involves finding the roots of a quadratic polvnomial for the Flivege
theory and a cubic polynomial for the improved theory, for cach harmonic n,
However, for the elasticity theory this involves finding the roots of the trans-
cendental equation Dn(“”) = 0 for each harmonic n, If approaumate values for
these roots are known they may be used as starting values for a first order
Newton-Raphson iteration scheme to obtain the natural frequencics to any
desired accuracy. The asymptotic relations (5%) may he used in this pro-
cedure as follows., For each value of n, Dn(w) is plotted forw - 0 untal il
is noted that the roots are obeying the asyriptotic formalac (58). The starting
values for the lowest roots are then obtained from the plot and the starting
values for the remaining roots are obtained from the asymptotic formulac,
Table (1) liste some of the starting values for the first few harmonics and
indicates when the asymptotic relations become valid by using the appropriate

asymptotic formula from (5&) rather than its numerical value,
3x
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TABLE I
Wni
STARTING VALUES
n 0 1 2 3 4 5 6
0 0.90 g 2—3 3% 42 5% 62
1 1.27 y% % 2)% 3y z-gL 4y§
2 0,06 2,01 re a 2y2 3y2 22
3 0.19 2.8 yT 2 2y 33 22
1 0.37 3.70 Vg 2 2y< 3y§ 22

All the larger values of n follow the pattern set by n = 2,3 and 4, however the
value of j at which the pattern becomes evident increases as n increases. This
presents no difficulties since the starting values for n - 6,8,10,...,100 may

be computed from a difference scheme as followe,

Wrj T “n-2,it @nep T Yneg,

In this scheme w _, i and w__, .are the correct frequencies obtained from

4,]
previous calculations and wnj is the starting value for the Newton-Raphson
iteration, The difference scheme was formulated to compute only the even
harmonics since the odd harmonics are not used in the present example. Using
this procedure to generate the starting values, the natural frequencies were
obtained to eight significant figures with usually no more than three iterations.
Note that the j = 0 root for n = 1 seems to belong with the j = 1 group of

rocts for :he higher harmonics n = 2, 3,4. This occurs because the lowest
frequency for n = 1 is w = 0 which gives rise to the rigid bady motions already
contained in Wl(s) and VI(S) equations (48-a,b). Theretore it ig absent {rom this

Table and it is not a root of Dl(w) =0,
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TABLE II
COMPARISON OF NATURAL FREQUENCIES

' Elasticity Improved Flugge
N J Theory Theory Theory
] 0 L0040 . 90388 . 90388
0 1 31.:03019
0 2 (62, 83898
0 3 94.2525H3
0 1 125, 66727

D 157, 082448
G 188, 19793
. 06964 . 06957 . 06997
2.01483 2.01519 2, 02061

16, 94201
31.26898
33, 81500
H50. 38530
62. 87608

17. 33108

SRR SN S S N TR OB £ VAN LR (O o] fe B

. 37942

0
1
2
3
]
D
6
0 . 37019 . 36970
1 1,.70998 3. 71459 3.72648
2 17.28616 17. 69410
3 30. 90754
“ 31.33510
5 50.37718
6 62. 98677
6 0 . 85090 . 84940 . 90011
6 ! 5.46350 5, 47943 5.49793
i 2 17.83391 18,27320
6 3 30. 49687
6 4 35.01135
6 5 50, 36573
6 6 63.16919
10 0 2,22634 2.21974 2.56819
10 1 8.97353 9. 05096 0. 08409
10 2 19. 41665 19.95633
10 3 29. 76484
10 4 36. 60387
10 5 50. 34532
10 6 623, 73688
20 0 6. 93539 6. 89078 10. 38735
20 ] 17. 21416 18.01753 18.10:386
20 2 24.97077 26. 03038
20 3 29, 37554
20 4 41.33574
20 H 50, 51445
20 6 66, 13638
50 0 22.93459 22, 68683 45. 16705
50 1 29. 62303 44, 74099 65.19103
50 2 42, 05902 49. 85375
50 3 48, 12222
50 | 57.86813
50 5 58.32040
50 6 73, 89630
100 0 18. 01206 48. 37416 90. 35017
100 1 51.48h81 88. 61057 260. 79596
100 2 61.83290 94. 47102
100 3 73. 38704
100 4 84.79185
100 5 923.98815
100 6 102. 16473




A partial list of the natural frequencies predicted by both the elasticity theory
and the shell theories is given in Table (2). Only even harmonics are shown since
the odd harmonics are not used in the example, Note that the lowest frequency is
""2, 0 indicating that the shell offers the least resistance to motion inthe n- 2
mode. Since the n = 2 mode is also prominant in the load representation we

expect this to be the dominant mode of response for the shell in this example,

w
2,0
of time. Next ohserve that the frequencies predicted by the Flugge theory are

= 90 dimensionless units

The period of the response in this mode is T =

consistently greater than the corresponding frequencies predictea by either the
improved or elasticity theories with the exception of n - 0, For n - 2 the lowest
frequency predicted by the Fliigge theory is only 0.4757 greater than the lowest
frequency predicted by the elasticity theory, however, this difference increases
as n increases so that at n = 100 it is 87.5%7. Therefore, the Fliigge theory should
satisfactorily predict the response caused by the low harmonic components of the
load. This characteristic will rapidly deteriorate as n increases. On the other
hand, the lowest frecuency predicted by the improved theory is alwavs within 17
of the corresponding frequency predicted by the elasticity theory for the range of
harmonics covered by this Table. Therefore, we may expect the improved theory
to satisiactorily predict the response caused by all the harmonics in this example,
One of the most obvious differences between the theories is the number of
frequencies associated with each theory for the various harmonics. In the
elasticity theory a complete set of radial eigenfunctions and associate eigenvalues
(frequencies) is required to represent the prover radial variation of the response.
The shell theories on the other hand, only represent the gross effects of these
radial variations for any position @ on the shell. Since for each harmonic, except
n = 0, the response is due to the combined effects of shear and dilatation, the

elasticity theory contains two sets of frequencies, one associated with the
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dilatational effect (wnl ) and onc associated with the shear effect

y 3 o o

y-[-“_j— ). The TFliigge theory approximates only the lowest frequency

(wnO,..., Ly v

from each set (wno’ wnl) while the improved theory includes also the second
frequency associated with the shear effect (wno’ w1 wnz).

When computing the response predicted by the elasticity theory for each
harmonic, the series will necessarily be truncated after summing a finite number
of terms. From (59) we see that at the boundaries (r - X, Y) all the scries converge
uniformly for all t. However, for Y< r< X there are step functions or dis-
continuities in the radial and hoop stresses which periodicall. recur with period
t = 2x at any g;iven value of r. To accurately represent these step functions the
series will be summed with the Lanczos smoothing fuctor up to and including the
K = 100 term. This corresponds to suming 0< j< 100 forn - 0 ~ad 0< j -~ 28
for uz 2,

One further interesting feature of the response may he deduced from this
Table of frequencies. It may he shown ' 31] that for improved theory for large n

~ 196
Wy 0.496n
wn2 ~ 0.87bn

~ 0,92t
W 0.929n
while for Fligge theory

R
~ 0.0261n"
“n1
W~ 0,9035n
n2
If we simultancously examine the angular and time dependence of the response for
any value of j it is of the form cos wnjt cos n 8 which ma\ be written as
w._. w
n ) . .
cos n(8 + »—nJ- t). In the improved theory for amv value of g, - ooy where
n )
Vj is a constunt so that the solution is a sum of harmonie components ot (he
form cos n(8 = Vt). This represents a wave propagating dround the Crecanlerence

of the sheil with phase velority V. Thus it is possible i the tmpeoved theor to

ohserve wave phenomena related to the angular coordimate hut not to the radial

12




wnl
n

coordinate. In the Fliigge theory ~ .0261n so that the harmonic components
of the response are now in the form cos n(6 + .0261nt). Since the phase of each
component varies with n, the high frequency components will be out of phase with
each other and a traveling wave will not be observed.

The elastiticy theory frequencies listed in Table (2) were checked, when
possible, with those given by Armenakas, Gazis and Herrmann { 19] and com-
plete agreement was found. The asymptotic relations [ 58] were derived earlier
by Gazis [ 7] and [ 11] and further discussion of free vibration characteristics
may be found in references [ 6] through [19],

We now bhave all the information necessary to quantitatively compute the
response of the shell predicted by each of the three theories. The resuits of
this computation are presented in Figures (3) through (15). The comparison of
the theories is shown for the radial and circumferential displacements at the
median surface of the shell (r = 1) and for the hoop stress at the inner and outer
surfaces (r = 0,95, 1,05). The radial and shear stresses predicted by elasticity
theory at tne median surface (r = 1) have also been computed.

A comparison of the static solutions is showu in Figures (3), (4), (5) and
(6). Note the excellent agreement between the improved and elasticity theories,
At their maximum values the improved and ¢” ist city theories differ by less
than half a percent in these vesults, howev.: . « Fligge and elasticity theories
differ by five to six percent. The maximum stai' radial displacement occurs at

8 = 0. The maximum static tangential displace: «« £ occurs at 8 - 0,76775 and the

maximum static hoop stress occurs at8 : 0, r 0,93, At any given value of r

and 6, the maximum value of the dynamic response is expected to be twice the

static value (see [4], pp. 181-182), Therefore, the displacements and the hoop
# stress predictcd by the three theories in the dynamic case will be compared a

the values of r and 8 given above.
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The static shear and radial stresses predicted by the elasticity theory at
the median surface (r - 1,00) are shown in Figures (7) and (5). The maximum
stress occurs in hoth cases near the edge of the load atA 0.1.1715 as exp<ated.
The maximum magnitude of the hoop stress is seen to be twenty times greater
than the maximum shear stress and forty times greater than the maximum radial
stress. This provides justification for the usual assumption made is shell theory:
the radial stress may he neglected compared to the hoop stress. We will now
proceed to examine the dynamic response of the shell.

Figures (9) through (12) depict the initial response of the shell. In this
very early stage of the response the various stress waves may he observed as
they propagate through the shell and are reflected from its boundaries. The time
history of the radial stress at the median surface directly hereath the load is
shown in Figure (9). The events depicted on this graph may be cexplained as
follows. Att - 0 the radial stress at the outer surface is discontinuously
changed from zero to minus one. This discontinuity in the radial stress pro-
pagates as a compression wave into the shell with unit dimensionless veloeity
(dilatational wave spced). At t % =, 05 we observe this compression wave as
it passes the median surface. Att = % it encounters the inner surface of the
shell and since this sucface is stress free it is reflected as a tensile wave which
is observed as it passcs the median surface at t —'-3-2}— - 0,15, Att 21 this
tensile wave encounters the outer houndary from which it reflects as a com-
pression wave. This phenomenon is repeated periodically with period T 21,
The time history of the stress at the median surface hecomes more complicated
as cach wave passes and adds its effect to those of the previous waves. This is
the reason for the changing form of tnhe response curve in Figure (9).

Figure (10) shows the shear stress predicted by elasticity theorv at the
median surface of the shell and at the edge of the applied load, As predicted

B!
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earlier, there are no discontinuities in the shear stress, however, the various

waves may still he detected since they cause discontinuities in the slope of the

0.05 ~

Y
0.935 we observe the shear wave as hoth pass the median surface. Then again

curve. Att - 0,05 we observe the dilatational wave and then at t -

att = 0.15 and t 0. 187 the dilatational and shear waves reflected from the
inner surtace are observed.

Figure (11) depicts the time history of the hoop stress at the median
surface directly hencath the load at 8 0 A comparison of the three theories
is presented on this plot. In the elasticity theory the dilatational wave is
observed as it is reflected hetween the shell houndaries. As noted earlier
this wave cannot be predicted by the shell theories; however, they do accurately
characterize the average value of the stress.

Figure (12) shows the hoop stress predicted by the three theories at the
inner surface of the shell at 8 - 23 Because of the wave character of the
elasticity theory, no response is observed until the dilatational wave originating
at the edge of the loarl reaches this location on the shell. This time interval is
approximately { . —é— -8 1.47. Similarly the improved theory contains waves
traveling around the shell with phase velocities V1 0.-196, V2 - 0,878 and
V3 = 0,929, Therefore, there is no response observed until the fastest wave

3-8
V‘ passes this point on the shell, This occurs at t "v = 1,58, As indicated

3
previously the Tligge theory response is not entirely composed of traveling waves

and therefore it predicts an immediate response at every point on the shell,
Figures (13) through (15)show one full period of the response predicted
hy the three theories, The radial and circumferential displacements of the
median surface of the shell are shown in Figures (13) and (11, Note the
excellent agreement hetween the improved and elasticity theories. In both cases

they differ by less than half a percent in the vicinity ol the maximum, The

£
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Fliigge theory however, differs from the elasticity theory by approximately seven
percent in this vicinity. The static solution predicted by the elasticity theory is
aiso shown on these graphs and, as expected, it is approximately one half of the
maximum value of the dynamic response. Also, the period of the motion is seen
to be T = 90 as pre‘icted.

Figure (15) shows the hoop stress at the inner surface directly beneath the
load predicted by the three theories. Again the agreement between the elasticity
and improved theories is excellent both in magnitude and form. Since the response
predicted by the Fliigge theory is slightly out of phase with the other two theories
(the Fligge theory predicts a slightly faster response) there are large differences
between the theories at any given instant of time, however, the maximum value
predicted by the Fliigge theory differs by only nine percent from the maximum
predicted by the elasticity theory.

The radial and shear stresses were computed for one complete period of
the response and their maximum magnitude was found to be, as in the static
case, less than four percent of the maximum hoop stress. Thus the assumption
made in shell theory; i.e., the radial stress is negligible compared to the hoop
stress, is also valid in the dynamic case.

This concludes the study of the specific example. The principal findings of

this inves.igation will now be summarized in the conclusion.

46




JIONY VVI0d ‘SA LNIW3IIVIdSIA TVIAVY JIivis '€ 33N
e
o1 ._ﬁw N_.n n.vd 80 90 #0 0 o)
. T T - + 4 -+ oan
- 0T -
- 0§ -
M
(s) -
- 0S
0S°'0=T
010> =9 + oSy
00T =4
||||| AYOIHL 399NV~ — —
AJ03IHL QIAOUIWI — —— o<z
AYO3HL ALIDIlSYVI3I——— T

Risdaanssicraos 2 avesivr -~ -
e - ~ .




[ vt U ST

9t

FTONY YVI0d "SA INFWIDVIISIA TVILNIYIAWATYID TILVLS b 3¥NoL4

A

Tl

07

©
%5 9p

+0

T0

0t O=((
OT 02 = &
00"t =4

AYO3HL 39904 — — —

AY0IHL GIAOYAWE — — —

ABOIHL ALIDIISY T ———

ot

+ o

QLY

e b b e, o e e o

45

)

PUSIFPL TN PN




FTIONVY AV10d ‘SA SSIULS dOOH DllvisS 'S 3¥N9Id

©
9l *... T ot 80 90 w0 To o

i '
Ll L ¥

4 O.Nl

{ol1-

e
19

1'0: Q=0 €0=(
S6°0 =4
AYO3HL 399N1d ———

AYO3IHL GIACYINL — — —
ABO3IH1 ALIDILSYIE

o W CE T By o & i Y

ge YA

0%

oh




JIONVY UVI0d "SA SS3IALS dOOH IILVIS ‘9 3BNOoI

o
9T 47T TT 07 80 90 +0 Z'0 op-
F0E -

10:=9=% 0=

SO'T =4

AYO3HL 399014 — — —
AYO3HL 0IAOUIWI — — —
AY¥OIHL ALIDILSY13

i

L ONl

1 01

1)




JFTONV BVT10d "'SA SSIYLS YVIHS DlLVIS £ 3¥NOid

o, :
91 1 Tl ot Qo 9C 0 To 0O

AN + t + ¢ + + +— m (o]
4¢€0
190

T0:=9=X €0=

0t=1
160

AYO3H1L ALIDILSVA3
+TY

1A ¢

51




w
-d
O
4
<
o4
q
8
Q.
@
>
/4]
7]
w
o
-
N
-
g
o
<

¥ oy .
97 kA TT 01 © 1S '8 Jynouy
$ 1 m;a °
2 %% %0z
: A —1 o90-
N - 20-

‘N o 4 [3 [ 4 [ v L3 ¢

dno "&.K n.o = mlﬁu
OT=3
AYO3HL AL1D118y13

60




JNIL SA SS3ais vigvy :3SNOJS3Y viLiNE 6 38N

90 31 w0 o

o't o.
' iTix\\T\\llT\&‘\Tfﬁ.ﬂT\\\HT\\tL, o

-'q
o

o

e

- 60~

l90-

10

1

L0~ |

“\ﬁouo -p g0
0.0 2 ,0. o.ﬁu.\—

c..

€0

%‘m&wﬁw&%ﬁ Baanoies




WL "SA SSIYLS YVIHS :ISNOdS3Id TWILINI  OT 3Enold

o1 wwo 20 1 vo o o
e + + —+ { \‘\\ —+0
\J\\/ 1 N.o
+4#0
+90
T0-= W =)
€0 =L |
m"h.@ﬂﬂoo .I¢ Axw »U
00 1T=4
01

.w.&?mkm,tus: e




IWIL SA  $SFAULS dOOH :ISNOGSTI TVILINI "TT 3dnotd

ot 80 90 3 w0 TOo . o
t t t + + + + $ + o,ﬂe
1T0=9:) €0=C
000 = © 00l = 4 | a0-
AYO3HL 39901 — — —
AUI3IHL Q3AOUCWI — - —
A303H1 ALIDILSVY3 )
190-
| *V.O' (3]
- ®p
- + N.Ol
% ~t
0
+ 20

e




3NIL'SA SS3Y!S dOOH : ISNOJSIY TVILINI "2I 3dnold

3 .. : .
S 4 ST ot SO
ow t + o‘—l
\
10=9:=» £€0=T
80LS1+© $6'0=1 s0
. -
AYOIHL 399N —— —
Ad03H1 GINOYAWI — ——
AYO3IHL ALDIISY I3 —— =
VARRN
7 N\
\ / s - \\“f -
\ IAI'\\\ Il(\ I\\ \16
/ |
!
/
£0
e i sttt e T s st e o el




ool

IWIL 'SA AN3IWIDVIISId WVIAVvY

-’
-+

09 b | ok

4.
Al

e\ 3YN9I
ot o

NOILLNT0S
Jilvis

b
L{

i

0Sh -

109¢-

T oLt-

TO = =) £TO0=¢
Q009 00124
AYOIHL 399N ———
Ad03HL GIAOUANI — - —
AYOIHL AlLDIISVT3

-081-

t~

o raee ek ae .




SWIL ‘SA LNIWIIVIASIA TVLLNIYIINNIBID &l JUNOIY

(00) ¢ 08 ) 09 u ot . ot . o.o
/ - -
T0:=9 =0 €0:1
SLL9LO=6 001=1 lep
AYJO3HL 399013 ———- -
AYO3IHL A3INOUIWNT —-—
AYO03IHL ALIJILISV I
406
NOLLNTI0S 1o
J11VisS
{0871
Ste

ok




00T 08

E o
b

dWIL 'SA SS3YLS JdOOH ‘¢ FYNOIS

+

09 3 ot

1
L

+

4 Il
v T

1'0=9 =P €0
00°0:© $6°0c= |
AYO03HL 399N14 — ——

AYO3HL G3AOUINWT —-—
ABOIHL ALIDILSYT3

+

+Si

/-O—Pﬁaom

J11V1S

SL




V. CONCLUSIONS

The principal findings of this investigation will now he summarized. There
are three convenient stages of the response for which the shell and elasticity
theories have been compared. First, there is an initial response in which the
dilatational and shear waves transmit the effects of Ui e loading to the various
points in the sh<ll and the radial variation of the response hegins to develop.
Neither of the shell theories can accurately describe the details of the response
during this cariy period and the elasticity theorv must be employed to observe
this phenomenon. The period of the wave phenomenon occurring during this
initial responsc is T 2 1 which is the time required for a dilatational wzve to
travel from the outer surface to the inner surface and then back again to the

. . : 21
outer surfacc, The corresponding period {or the shear wave is T v

The second stage of the response consists of the effeets of the load being
transmitte! around the shell in the circumierential direction, The characteristic
periods of the response produced hy the dilatational and shear waves in this

2 -
stage are approximatelh T 2-and T EE As shown, the improved theory

does provide a good approxiniation of this aspect of the responsc with the

periods being slightlv larger than those predizted by elasticity theory, However,

the Fliigge theory cannot chavacterize this aspect of the response because of
the nature of its frequency spectrum.
The third stage of the response contains the maximum displacements and

stresses occurring in the shell tor all time. One complete period ol the response

2

occurred in the interval T === where w, AE the Towest frequeney prediceted
J‘_), 0 -
by the various theortcs, s explained carlicr the n 2 mode 15 the prineipal

60




B e |

; harmonic component of the response. Since the Flligge theory very accurately
characterizes this mode of response, the results predicted by the Flugge theory
are surprisingly good. The inaccuracy in the Fligge theory characterization of
the higher modes contributed to a total error of less than 107 in the maximum
hoop stress and even less in the maximum displacements. However, the improved
theory is still far superior to the Fliigge theory because of its accurate characterization
of the higher modes. Thus the error in the improved theory was less than 1/2% in
both the maximum stress and displacement. Also it was secn that the Iliigge theory
always underestimated the maximum stress whereas the improved theory provided
a slightly conservative estimate,

If the applied load is modified in such a way that the relative importance of

the higher modes is decreased the Fliigge theory may be expected to yield an even

—ry

better approximation of the overall response. This would occur if the load were
applied at a finite rate, if the angular extent of the load were increased or if the
load were distributed continuously over the shell surface. On the other hand if the
load becomes more concentrated the error in the Fligge theory response will
increase. However, since the reiative difficulty of both shell theories is about
equal compared to clasticity theory and since the improved theory vields a closer
approximation to the actual response, the improved theory must he judecd (o be
superior to Flligpe shell theory,

One turther tactor to he considered when comparing the shell theories to the
elastici.y theory 1s the computation time necessary to obtain the solution., All
computations tor the example presented were programmed in Fortran IV on a
CDC 6100 computer. The computing time required lor cach sheil theory was
approximately ter minutes, however the computing time required for the
elastivity theory was approvimatels four hours, Elasticity theory required a
greater amount ol time because of the number of terms summed in the sevies for
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each harmonic to ohtain the initial response. If the initial respense is not desired,
considerably fewer terms may be used in these series. However, the computing
time will still greatly exceed that required by the shell theories because the Bessel
functions involved in the solution require more computing time than the algebraic
functions involved in the shell theory solution. Thus if the initial response is not
desirad, this cons.deration represents an additional advantage of improved shell
theory.

In conclusion, it appears that improved shell theory is the superior choice of
the three theories in terms of the trade-off between accuracy and analytical com-
plexity if the details of the initial response are not required. If the initial response
is desired elasticity theory must be used. We also note that there are several
shell theories which are similar to Fliigge's theory. Thus it may be expected that
the present findings with respect to Fligge's theory are also applicable to the shell

theories of Love, Donnell, Vlasov, Sanders, etc.
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APPENDIX I: LANCZOS' SMOOTHING TECHNIQUE

The accuracy of the approximation of a function over some interval by a
truncated Fourier series may usually be increased by applying the operation of
local smoothing to the function being represented. This procedure along with some
illustrative examples are presented by Lanczos in his book on Fourier series
({38], pp. 61-75). The cruv of the method is the replacement of the original
function by o1 - which is locally smnoth, For example, suppose we wish to
represent the function {(X) defined over the interval -L < X< L by a Fourier

series which has been truncated after the Kth term in the series. Then
a, o
f(X)= — + a, cosw.X -b, sinw.X
kX = 3 2 ( i j | j )
j=1

where a aj and bj are the Fourier coefficients of f(X) and "’j = J% Consider a

new function T(X), derived from f(X) as follows.
T

- wK ’
(X)= 5 f(X+Y)dY

L
Wi

o |

The following conclusions may be obtained through the application of the mean value

theorem to the above integral, If f is continuous at Xo’ then lim [ lim f(X)]= f(Xo).

X~ XO K+ »
If { is discontinuous at X,. then lim [ lim (X)) - i——é—-f; where
X+4X K=+~
o
£t lim f(X( c=yand 17 lim I(X0 - <). TFor large but finite values of K, this
40 7 S )

smoothing procedure has very little effect on f(XO) if f is continuous over the

interval (X - — X X + —), ilowever, if f has a discontinuity at X
0 4)K 0 wK o]
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the discontinuity will be smoothed into a rapid but continuous change, The truncated
Fourier series approximation of this smoothed function may be obtained by sub-
stituting i‘K into the integral definition to obtain.

_ a, - w
g&X) = 5= - %

(aj cos ij - bj sin w X)
j K “
1

The securacy of th.s approximation of f(X) is better than the truncated Fourier

series at all points except those in the immediate neighborhood of a discontinuity.
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APPENDIX II: CROSS PRODUCTS OF BESSEL FUNCTIONS

The properties of the cross products of the Bessel functions defined in
equation2 (28) and (42) are listed below.
For0<X<o,0< Y<», K=(1,2,3,4)andn=0,1,2, ...

(1) FflK) (P,X,Y) are entire functions of P

@ FOepx,v)- F‘g‘) (P,X,Y)

3) ?;K) (iw,X,Y) = -2 FflK)(w,X,Y) . (K,n) # (4,0)
F)w,x, 1) =7 FH %, 1)

where i =/-1 and w is real,
=(1) _
@) 11)1::10 ) p,x,v) - 2n |.\Y )":l
=(2) X \n Y
lim 7 @,x,v) - 2[&-\?/ +<)—()"]

Pao

lim FO\(p,X,Y) = %[\%)n”(}i)n]

P20

im 7Y p,x,v) = [(/X -(3 )“J ,

P20

im FOp,x,v) - - —[——- 3
P20

(5) As P+ » the functions behave asymptotically as follows,

B0 @e,X,9)~ —— 3 sinh PX-Y)
/XY

-

?flz)<p,x,\',~ ~ JX cosh PX-Y)

>



v -t »mvﬁwmm

(6)
(a)

(b)

(7)
(a)

?;3)(P,X,\’)~ \/% cosh P(X-Y)

T @, %, ¥)~~/XY P sinh PX-Y) :n# 0

=(4) -1 )

F(P,X,Y)~ - = sinh P(X-Y)
o XY P

Forn=0

'a% F(w,x,v) - —35 [Ff’(w,x,Y) + 7O (w,X,Y)]

3 (2 4 . 1
= F2) w,x,v) =le:XF£ M(w, X, - YE )(w,x,Y)]

= FOw,X,Y) =wx [YFE)4)(w,X, v) - XFD (@ ,X,Y)]

2w, x,v) - %)1- 2w, x,v) ¥ Fw,x,v) + 2Ff)4)(w,X,Y):I

Forn=1,2,3,..

= Ffll)(w,x,Y) =-$ [Ff’(w,x,Y) ‘ Fff’)(w,x,Y)]

2 Fflz)(w X, Y) = ‘-%I:Fff) (@,X,Y) + (n°- wZYZ)Ffll)(w,x, Y):|

-
270w, x,v) - -‘%LF;“)(w,x,Y) 4 (0 -wzxz)Ffll)(w,X,Y):l

glw Fff)(w.X,Y) - ;—l[(wzxz - n?) Ff\z)(w,x,Y)  (w2Y2 —nZ)Ff’)(w,x,Y)]
Forn-0
27 w,x,v) - £ F w0, %, v)

)

2_ pl@) 2y p4)
v X IO (UJ,X,Y) - W Y FO (w9X’Y)

P w.x,v - 379 ,x,v)
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35?- Fff)(w,x,‘z) - w2XFf)4)(w,x,Y)

(b) Forn- 1,2,3,...

7% FU @, X, 0 = L F,x,y)

'a%? Fflz)(w,x,Y) - il Fff)(w,X,Y)

X P @ X, 1 = - Fwix? - 0 4 x,y)

3 (4 1, 2.2 2.2
% M9, x,v) - - x (@ X" - 0)F(w,X,Y)

(2)

3_ (1) '
¥ Py (WX, Y)= $F

(w,X,Y)

ST WX, 1 = L rWy x v
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APPENDIX III: SHFLL THFORY SOLUTIONS

The response of a cylindrical shell in plane strain produced by an arbitrary,
radially divected load P8,t) is given in [ 391, p. 22 and [ 34], p. 297, for hoth the
Fligge and improved shell theories. In terms of the nondimensionalization used in

this study these solutions may he rewritten in the following form, For the Flugge

Theory:
N 2
1 1., N \
w@.,t) - - 7= L2 Fo ) zL nAmrm(6 t)J
n-11-
N 2
R S
V(e,t) - am L e Ln ’ll'iGln(e R
n-%1i-1

gl 15651 L2y Do 0

arT 2 20
(1-v) L
N 2

md —

‘n(‘ ]'n 4 .J

For the Improved Theory:

N 3
X S \ N .
w@,t) - - - 3 I*O(t) L ) un.f\inl-m(e,t)_-i
n 1t 1

N "
o - T 1
ve.b - ot L Lo L l‘nBinGin(e’t),_l

n 1i 1

‘9( r,e,t) - .‘\: {1 "“1‘5) Fl ()
(1-v)
N 3

— —

s Al s AR \. ‘\- f
[ n( \“‘ an n{! l,bln)l m(B, t)

{ S

— —

s



o anx TN, -"\"»"&%

where

F (t)— f f P(: ,‘r)smw(t- yd. dr

¢ T
1 Coved v
Fi @t = P f ‘ﬁf P(¥,T)cos n(§- :)sinw, (t- ) dr

in o

t m
_ 1 Y : . - in s - N
Gin(e,t) = —-_—win of m‘/‘ P(-,T)sin n(R - 1)sin _uin(t Tidr dr

- N sin =
n nv N
/1-2p v 1-2p
o= M2zl N 1mel
“in = 0y a0 Yo () 9

For the exampie discussed in Section IV P(8,t) = g(8)H(t)

where g(-8) - g@) = g 0 . B<B< -8

1 , 0<6<8 }
1, T1-B<@<sm

Therefore, for this example

rl-coswt
Fo(t) = 48] ]
wo
l-coqwint |
(8 t) - —smnBcos g —-—--—r,-——_J';n-2,4,6....
“in
4 1-cosw tq
Gin(e,t)zgsm nB sin nf -—-——_J tn- 0.4,6,,
W,
in
F. =G, -0 :n=1,3,5....
in  in

The mial coefficients Ain' Bip, Cin nnd the natural frequencies §,

sociated with cuch theory are given beicw, For the Fligge theory,

/ 2 /—\"_—— /T——'“_
X Y X
S 12 " an Y2 “‘Xn) ! nZn oL (1 '\n)
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AR I

Bl U b 2 AR

Skt

1'X 2 1-% 2
e () - 2 (G
Xn 2 )‘n n Xn n
B, ==%_ g ._jp
1n )‘n)‘n 2n In

2 22 2 2
kn=1+n2+?—2(n2—1)2’ X =\/‘l_a—ll_&.__];2_

n o2
d}\n
For the improved theory:
2 12 R,
- in
Qo_ 1+ 12 - Qins=
a-; 1-%
v 12
1 - 4 2
An - d - Bin =20 Bin 208y
B L i B. -a, g ]
in din 5n "in in®1n
1 2
Cin 5 [abngln_ A0 ﬁinj
in
Cra2 Q29,2 2
Gn * [ﬁid,n Bin] [ﬁi+2,n-ﬁin] MOD (3)
2 Ba .
B e l- g
2
B4 5 (14 -4 ]
2 0
531 .
‘ 12(i-1)
3 .1_ o r - 9\ o n ! — ) »
Ein 3 B, Ll ...\ncos \ 3 / , e 2
¢ [ P 7Y ‘-
\n » * 3}'.:—)“
Coe S : am10
ORI - }-..i: :'_n - q s -0 |
po Breen ) L 5 By 2 "in s 278 ‘ "."m)_j
_A) )
S Uy

Tu



T Y TR TR

o2n? 2. Mo 2 . Mp@
gzn— 12 (2+K™)1+ 13 Y+ KT (1+ 12)
2.4 A 2 A az
o
_a'n 2 3 22 4
830~ " 12 (1+2K™) (1 + 13 )+ K™n" (1+ 12)
2 2
2 a® 2 a
+ K (1+—i—§—) (1+T)
2.2 2
- P N B T
Ban =12 L+ )R-
o
_B1n83n - Bin 4n
8n- "2 : 6n 2
&2n 82n
3 CLZKZ 9 1 - i
12 B a” 144
x1’_ 2 ’ X2—4+"4_ + ‘—_“2
2+K K
CLZ
AR L 14K oa? 2
Ay =K { 3 e LA R T
1+ 2K K
- 22 2
2 an 2/ L)
4n* 12 PR+ :l
22 2 . 2 2 .
a™n” a 2 a a” oy
B =12 \2 ) K\1’12><1*4)
2 2
a —G'_“l_L)
3n 12 \ 1
22 2
i an .2 .Ci_\
P12 K1 T3 /]
azn - 2 th 2
S REE L SRR
2
2 a 2
R CR L
2 2 2 2
rrs X \ o8 . U |
a,,n n[l\ \1 ‘ ‘iz{"/] ']—‘\Z 6—1—:3—/];]



v
]

i-v
K= 2 K where ¥ is the Mindlin shear coefficient. K2 = 0.86 in the

cxample of Section IV,

72




[1]

(2]
(3]

[4]

|t | i |
[=2] (43 ]
3 [}

C7]

L8]

9]

r107

f11]

[12]

REFERENt ES

Navier, "Memoire sur les lois de 1” eQuilibre et du mouvement des corps
solides élastiques" Paris, Memoires de 1° Institut V. VII (1827) pp. 375-393.

Pochhammer, J.f. Math. (Crelle), Bd. 81 (1876) p. 324.

Chree, '"The equations of an isotropic elastic solid in polar and cylindrical
coordinates, their solutions and applications' Trans. Cambridge Phil. suc.
14, 250, (1889).

Love, A.E.H. "A Treatise on the Mathematical Theory of Elasticity"
Fourth Edition, Dover Publications, New York.

Kolsky, H. "Stress Waves in Solids' Dover Publicacions, New York (1963).

McFadden, J.A. "Radial Vibrations of Thick Walled Hollow Cylinders"
J.Acoust. Soc. Amer., V.26, N.5, Sept. 1954, pp. 714-715.

Gazis, D.C. "Exact Analysis of the Phane Strain Vibrations of Thick
Walled Hollow Cylinders' J. Acoust Soc. Amer,, V.30¢, N.8, Aug, 1958
pp. 786-794,

Greenspon, ''Flexural Vibrations of a Thick Walled Circular Cylinder"
Proc. Third U.S. Nat. Congr. Appl. Mech.,June 1958,

Greenspon, "Flexural Vibrations of a Thick Walled Circular Cylinder
According to the Exact Theory of Flasticity" J.Aero/Space Sei., V.27,
N.1, Jan. 1960, p»n. 37-10.

Bird, J.F., Hart. R.W. and McClure, F,T. "Vibrations of Thick-Walled
Hollow Cylinders: xact Numerical Solutions" J, Acoust, So¢. Amer., V.32,
N.11, Nov, 1960, pp. 1404~1412,

Gazis, D.C., "Three-Dimensional Investigation of the Propagation of Waves
in Hollow Circulax Cylinders: Purts I and II"" J. Acoust. Soc. Amer., V. 31,
N.5, May 1959, pp. >68-578

Gavrilov, "Deterirination of Frequencies of Free Vibrations of Flastic
Circular Cvlindrical hells" Izv, Akad. Nauk SSSR, Otd, Tekh, Mekh.
i Mash.,, N.1, Jan., 1h, 1963, pp. 163-166,

Greenspon, "Vihrotiuos of Thick and Thin Cylindrical Shells Surrounded
by Water' J. Acoust Soc. Amer , V.33, N,10, Oct, 1961, pp. 1321-132§,

Herrmann, G. and Mirsky, I., "Three-Di.nensional and Shell Theos
Analvsis ol Axially Symmetric Motions of Cvlinuers' .J. Appl. Mech.,
V.23, No 4, 1956, pp. 563-568,

73



\—',54:4'4\%

[15] Greenspon, "Axially Symmetric Vibrations of a Thick Cylindrical Shell
in an Acoustic Medium' J, Acoust. Soc. Amer., V.32, N.8, Aug. 1960,
pp. 1017-1925,

[16] Mirsky, I., "Wave Propagation in Transversely Isotropic Circular Cylinders"
J. Acoust, Soc. Amer., V.37, N.6, June 1965, pp. 1016-1026.

[17] Prasad, C. and Jain, R.K., "Vibrations of Transversely Isotropic Cylindrical
Shells of Finite Length'" J. Acoust. Soc., Amer., V.38, N.6, Dec. 1965,
pp. 1006~1009,

(18] Armenakas, A.E., "Propagation of Harmonic Waves in Composite Circular
Cylindrical Shells I; Theoretical Investigation' AIAA J., V.5, N.4, April
1967, pp. 740-744.

[19) Armenakas, A.E., Gazis, D.C. and Herrmann, G., "Free Vibrations of
Circular Cylindrical Shells"First Edition, Pergamon Press, 1969.

[20] Liu, C.K. and Charng, C.H., "Thermal and Dynamic Response of an
Infinite Hollow Cylindex' Dev. Theor. Appl. Mech., V.2, 1964, pp.
487-501.

[21] Mindlin, R.D. and Goodman, L.E., "Beam Vibrations With Time De-
pendent Boundary Conditions" J. Appl. Mech., V.17, (1950), pp. 377-380.

{22] Shin-Ichi Suzuki, "Dynamic Elastic Response of a Ring to Transient Pres-
sure Loading' J. Appl. Mech., V.33, N.2, June .966, pp. 261-266.

[23] Garnet, H. and Crouset-Pascal, J,, "Transient Response of a Circular
Cylinder of Arbitrary Thickness in an Elastic Medium, to a Plane
Dilatational Wave'" J.Eng. Mech. Div,, Proc. ASCE 93, EM3, June 1967,
pp. 521-531.
[24] Strutt, J.W, (Lord Rayleigh), "The Theory of Sound" Vol. I., Dover Publications,
New York, P. 332,

»

ﬁ (25] Fligge, W., "Statik und Dynamik der Schalen" Third Edition, Springer
t Verlag, Berlin 1962,

[26] Viasov, V.Z. "General Theory of Shells ar. its Application in Engineering"
NASA Technical Translation, NASA TT F-99, National Aeronautics al;d
Space Administration, Washington, D.C. April 1964.

(27] Herrmann, G. and Mirsky, 1. '"Ncnaxially Symmetric Motions of Cylindrical
Shells" J. Accust. Soc. Amer., V.29, N.10, Oct. 1957, pp. 1116-1123

[28] Reismann, h. and Medige, J., "Dynamic Response of Cylindrica: Shells
(Part I)" Report NO.13, Division of Intevdisciplinary Studies and Research,
School of Engineering, State University of New York at Buffalo,

(297 Klosaer, J.M,, "The Elasticity Solutio - of a Long Circular Cylindrical
Shell Subjected to a Uniform Circumfe. :ntial Radial Lin. Load'" J. Aero/
Space Sci., 29, 834-841, July 1962,

74




[30°

(31]

[32]

(33]

[34]

[35)

(36)

[37]

(38]

[39]

Klosner, J.M. and Herman, R., "Comparison of Elasticity and Shell Theory
Solutions for a Circular Cylindrical Shell Subjected to Periodically Spaced
Band Loads'' Polytechnic Institute of Brooklyn, Aerospace Lab PIBAL Rept.
658, Oct, 1962,

Klosner, J.M. and Kempner, J., "Comparison of Elasticity and Shell Theory
Solutions' AIAA J. 1, 627-630 (1963),

Klosner, J.M. and Levine, H.S. "Further Comparison of Elasticity and
Shell theory solutions™ AIAA J., V.4, N.3, 467-480 (1966),

K.T. Sundara Raja Iyengor and C.V. Yogananda, '"Comparison of
Elasticity and Shell Theory Solutions for Long Circular Cylindrical Shells"
ATAA J, V.4, N.12, 2090-2095 (1966).

Reismann, H. and Pawlik, P., "Plane-Strain D, namic Response of a
Cylindrical Shell--A Comparison Study of Three Different Shell Theories
J. Appl. Mech., V. 35, N.2, 297-305, June 1968,

Abramowittz, M, and Stegun, I., "Handbook of Mathematical Functions"
Dover Publications Inc., New York, 1965, p. 374.

Fung, Y.C., "Foundations of Solid Mechanics' Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965 (pp. 184-189).

Reismann, H., "On the Forced Motion of Elastic Solids' Appl. Sci.
Res. 18, Sept, 1967, pp. 156-165,

Lanczos, C., '"Discourse on Fourier Series' Hafrer Publishing Company,
New York, 1966,

Reismann, H. and Pawlik, ?., "On the Plane Strain Dynamic Response of ﬁ
a Cylindrical Shell Under Lateral Loads' Report NO, 22 Division of Inter- #
disciplinary Studies and Resecarch, School of Engineering, State University

of New York at Buffalo, April 1967.

ha ¥






