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Preface

This report by Dr. John Tweed is the outgrowth of scme of the aithor's
work on fracture mechanics initiated while he was a Visiting Assistant
Professor at North Carolina State University in 1969-70,

Although the major portion of this work was not supported by
Grant AFOSR-69-1779, it is being presented as a project report as a part of
our continuiag interest in problems of fracture mechanics.

Dr. Tweed plans to obtain some computational results using the theoretical

tools derived in this report,
V. J:Z Hfarrington?‘

Project Director
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ABSTRACT

In this paper, the author makes use of a recent development in the
theory of Mellin transforms to show that the stress intensity factor and the
cracx energy of a crack, which originates at the edge of a circular hole in
an infinite elastic solid, are related in a simple fashion to the solution of
a Fredholm integral equation of the second kind.
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THE DISTRIBUTION OF STRESS NEAR THE TIP OF A CRACK WHICH
ORIGINATES AT THE EDGE OF A CIRCULAR HOLE

by
John Tweed

1. INTRODUCTION.

The problem of determining the distribution of stress near the tip of
a crack which originates at the edge of a circular hole in an infinite elastic
solid appears to have been considered first by 0. L. Bowie [1] who solves it
by using a complex mapping technique. It would seem, however, that the
results giveu by Bowie are not very accurate, so in this paper we wish to
show that the stress intensity factor and crack energy are related *o the
solution of a Fredholm equation and may therefore be calculated to & high
degree of accuracy.

We shall assume that the problem is to be solved under the cunditions
of plane strain and that the crack and the hole are defined, in plane polar
coordinates (r, 8), by the relations R < r < Rb, 6 = 0 and

0<r<R, 0<6 < 2r respectively.

Figure 1,
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If the loading is symmetric about the plane of the crack it is clear
“hat the problem may be reduced tc that of finding a solution of the equations
of elasticity for the regioa R < r < ®, 0 < 6 < v, which is such that
(1) at infinity the stresses “rr(r’ 0), ure(r, 8), oae(r, 8) are

O(r.z) and the displacements ur(r, 6}, ue(r, 8) are O(r—l),
(2) Ure(r’ 0) =0, R< 1< =
(3) o o(r, m = u(r, ) = 0, R< 1 < =,
(4) orr(R, 8) =0, 0<8@<m,
(5) cre(R, ) =0, 098 <1,
(6) oee(r, 0) = - £(r), R< r < Rb,
@)) ua(r, 0) =0, Rb < r < =,

and

8) limit 2% ‘%0 o |

r—-rR+ or

2. REDUCTION OF THE PROBLEM TO AN INTEGRAL EQUATION.

In ovder to find a cuitonle vepresentation for the stresses ani dis-

placements in the prob.em set out abeve we shall begin by superimporing the
solutions of problems i and 2 below.

PROBLEM 1. Find a sclu%ion of the equatione of elasticity for the region

Rer<w, 0 cp <rx, wvhich 18 such that

(a) at infinity the stresses are O(r-z) end the digplacements are O(r-l),

(b) ore(r, 0) = ue(r, 0) = 0, R< ¢y 7 =
and
(c) cre(r, ) = ue(r, #) = 0 R<y<w,

LDy the method of separation of variables it is not difficult ro show
(e.g- see Durelli, Phillips and Tsac ["|; that the Airy stress funcrion

for this problem is given by
- -n+2

1 “
¢lr, €} = :olog r + clxwlcos 6+ ) lcr™ + dnr jcos nd , (2.1)
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and the corresponding stresses and displacements by
-2 ot -n-2 -n
o, (r,8)=cr - J [a(n+1lecr + (n+ 2)(n~-1)dr Jcos nd , (2.2)
Ir o nel n n
o . (r, 8) = - °Z° [aGe + Der ™2 + @ - 1)d £ ™] sin ng (2.3)
!'9 ’ “ n n 1 .

n=1
2 00
T e - r =
oee(r, 9) cr + nZan(n + l)cnr

n-2 (n-2)( - l)dnr-n]cos nd , (2.4)

- l+n/f_ -1 -2
ur(r, 8) 5 { cor +c1r cos 0

-]

+ 7 [n cnr"n"l + (n+2- 4n)dnr-n+1]cos ne} , (2.5)
n=2 -
and

uy (r, 68) = .l_ul.{c r_zsine + )‘ [n cnr"n_1 + (n -4+ 4n)dnr-n+l]sin n(%,

E 11 z (2.6)

where E is the Young's modulus and n is the Poisson's ratio of the material.

PROBLEM 2, Find a solution of the equations of elasticity, for the half-plane

0<r<e, 0<8 «<m, which is such that

(a) at infinity the stresses are O(r-z) and the displacements are O(r-l),
(b) at the origfn the stresses and displacements are bounded,

(c) cre(r, 0) =0, 0<rc<e,

and

(d) cre(r. 1) = ue(r, m =0, 0<r<w,

By utilising the properties of the Mellin transform (e.g. see Tranter [3])

it can be shown that the solution of the problem may be written in the form

o (r, 0) = T [Eﬁ‘}; {(s + 4)cos(6 - 1) (s + 2)

- (s + 2)cos{f ~ n)s} H rJ , 2.7)
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ore(r, §) = r‘%u‘l[ﬁé_i_lléﬁzl {sin{p - w)(s + 2) - sin(e - n)s} ; r] , {2.8)

2 sin' s

°ee(r. g) = r-zM-l[——Aigl- {(s + 2)cos(® - m)s

; 2 sinns
;
i
] - s cos(® -~ nw)(s + 2)} ; r] . {2.9)
; “r(r, 8) = 1 +nM-1[ Als) {(s + 2)cos(s ~ m)s
; rE 2(8 + 1)sinms
j ; - (s + 4 = 4n)cos(® - m)(s + 2)} ; r] . (2.10)
and
ue(r, 6) = L+n M-l[ A(s) {(s + 2)sin(6 -~ 7)s
rE 2(s + l)sinns

- (s =2+ 4n)sin(e - w)(s + 2)} ; r} . (2.11)

where M-l is the inverse Mellin transform and -1 < Re(s) < O.

Clearly by superimposing the solutions of these two problems we obtain
a solution of the equations of elasticity for the region R < r < =, J < 8§ < 7
which automatically satisfies conditions (1), (2), and (3) and which is
such that

cr?. } [n(n + 1)cnr'“'2 + (n+2)(m - 1)dnr‘“]cos no

o
n=}1

r A
Orr( y 8J

- - {
+ r 2M 1[—-5*21— {{(s + 4)cos(6 - m)(s + 2)
2 sinrs

- (s + 2)cos(8 -~ n)s} r] . (2.12;

n-2 n(n - 1)dnr-ﬁ]sin né

4

crﬁ(r’ g) = - o(n - J)cnr-

Vg g

—————

1

It

+ r-2M~1{L§,1_31éL§L {sin(6 - m)(s + 2) - sin(8 - ms) 5 v, (2.13)
2 siurs




5
_ -2 . % -n~-2 ~-n
Ogo(rs 8) =-cr + nZl[n(n + Der + n-2)n - l)dnr Jcos nd
+ r-'sz1 —M-S-Z—{(s + 2)cos(6 - 7)s
2 sinrs
1
- s cos(8 - =)(s + 2)} ; rJ , (2.14)
u_(r, 8) = =21 [-c r1 4 e r2eoso + J {nc r™ 14 @+ 2-4n)d £ cos ne]
r o 1 n n
E n=2
+ L+ M-l As) {(s + 2)c08(6 - m)s

: tE 2(s + lsinws ]
‘ {
%: - (8+ 4 =-4n)cos(®@ -mM)(s+2)}; |, (2.15)
'3 and
i, u, (xr, 6) = 1+n clr-zaine + § {nc ML (n -4+ 4n)d r 11610 ne :
E 6 E n=2 n n i
i ) |
sl Ale) (s + 2)sin(o - ms %
3 rE 2(s + 1)sinms
g
: - (8 =2+ 4n)sin(®@ - m)(s +2)} 5 r|, (2.16)

where -1 < Re(s) < 0. The complete solution of the problem may now be
obtained by choosing the u~known function A(s) and the unknown sequences

{cn} and {dn} in suca a way that the remaining boundary conditions are
satisfied,

s A A ot a4 ol S

From (2.14) and (2.16) we see that conditions (6) and (7) will be
satisfied if A(s) is a solution of the dual equations

M-l[A(s)cotns s rl = - rzf(r) - rZF(r), R<r<Rb

(2.17)
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where -1 < Re(s) < 0 and

+ T+ Der™ 4 a-2@-Ddr
=1 n n

2 n].

F(r) = -cor-

If we now assume that A(s) may be written in the form

Rb

A = [ a0
‘R
we find that (see Tweed [4]) ¢ 0, 0<r<R
-1 -1 J Rb
M [A(8)(1 +8) "; r] = J p(t)dt, R <r <Rb
r
0, Rb < r < »
and
Rb
M-l[A(s) cotms 3 r] = % J tple dt
R t-r

and hence that the equations (2.17) will be satisfied if

Rb
% f tpC)de _ r £(r) - r F(r), R < r < Rb.
R

t -1

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

The equation (2.22) 1s well known and Tricomi [5] has shown that its solution

is given by
1/2 . .
1 t - R b 2
tp(e) = (R -y [y eevr@ o
’Rb -t JR y - R y -t

C
[(Rb - t)(t - R)]

1/2

where C is an arbi*rary .onstant. In order to determine C we make uce of
condition (8) which together with (2.16) and (2.20) clearly implies that

iimit p(r) exis s and hence thar C = 0, It now follows that
r —R
-+

(2.23)

PRI
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p(t) is given by the expression

1 ‘ t - R‘l;‘:z ;“R‘)

p(t) == ‘ﬁ—:—;}

1/2
‘Rb - y) / 1 iy + vy Fy) dy. (2.23)

y-R y-t

“R

Similarly, on applying conditions (4) and (5) we find that

-c + Z n(n + 1) R D+ (a+2)(m -~ 1)d R.n+2]cos no
°o n n

1r
=M li_ale) {(s + 4)cos(8 = 1) (s + 2) - (s + 2)cos(8 - W)s} ; RI,
s 2 sinvs

z [n(n + Dc R " + aln - d R
01 n n

2]sin né

- M'l [AQSlﬁé;t_Zl {sin(g - m)(s + 2) - sin(6 - w)s} ; R]

2 siavs

where 0 < 6 < 7, and hence that

Pe)
o
5]
o]
°§.
—=
=3
EN
/4]
~
—Nr—
m
+
N
i
o |
+ [+

;
;‘}; RJ , (2.24)

r

-t A(s) (s + 2)
’
(¢ - n¥)y(s + 2 + n)

1 (2.25)

0-2 A(s) (s + 2) ,
2 9

n ™ _fs +n)(|s + 2]2 -n)

and

R|, n>2 (2.26)

where -1 < Re(g) « 0-
On subsrirutzug from (2.19) into (2.24) through (2 26) and working

sut the inverse Mell:in transforms, we now find that

-1
|t “p(t)dr , (2.27)

. n
_n'zfit‘\}dr, n> 1 (2 28)
i\
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3 and
;.
n-2 :Rb
3 - R , o~ 2 B n (R n+2 i
, d J t p(t) {-——-n = 3] - [§) dt, n: 2 (2.29)
3 2'"' R
:
{
E and hence that
1 Rb
F(r) = = f p(t) K(r, t) dt , (2.30)
R
where
2
R2 R™ - t2 2 t(R2 ~ tz) t R2 - t2 1
K(r, t) = 3 T - 2 5 3 + 5 -7 (2.31)
t(R™ - rt) (R™ - rt) R™ - rt rt
At this point we find it convenient to introduce the function P(t)
which is defined by the equation
1/2
p(t) = [(t - R)(Rb = £)] 7" "p(t). (2.32)
o On substituting from (2.30) into (2.23) and taking account of (2.32) we see
that P(t) must satisfy the integral equation
Rb
P(t) - J P(p) M(e, p) Tz do = S(0), (2.33)
R [(p = RY(Rb - p)]
where
¢ -r (R Rb-)[l/z y £Qy; dy
S(t) = J . , (2.34)
Tt R ¥y - R y-t
and
/Rb 1/2
M(t, o) = LQ R [ Rb - vy Y Ky, p) dy. (2.35)
T t <R y - R y -t

If we now substiture from (2.31) into (2.35) we find that M(t, o) may be

written 1in the form




- - 2 y -
MGe, p) = E2B. TR - 002, B + 0T - 0D 10,0 0 - 3,0
Tt
+3,(e, 0) - I (¢, R o),
whey 2
J(t, x) =2 [Rb 3_12_:_11/2 ydy ..
! "k | y-R (v - x - y)?

0O<x<R<t<R, u=1,2 3.

On making use of the result

:Rb 1/2
J(x)=lJ Rb - y ~dy_
™ Jr y - R y - X
1
1/2
= "—{—:—R-t-)- —1 » Rb<x<oo
x - R
-1 . R < x < Rb
1/2
(—R-E_-—i _1 ’ Oix<R
R-x

and the fact that
3t %) = (x - 6" e 3t - x J®)]

) J1(t’x) and J(t, x) = -1 73 JZ(t’x)

Jz(t‘ X) = - ox% 2 3K

it now becomes a simple matter to show that M(t, p) is given by the formula

(v - RRS - o%)° b-1)t
M(t, o) = 3 7 177, 373
e 2R(R" - pt)"{bp - R) (o - R)
/2 1
(b - 1)[“1 + 3b)p = 4R] _ _t (bp - R) ‘

372

8 (R2 - ptY¥fbp - R) (¢c - R)S/2

o®? - 003 - miY f

)Rzlp)]

(2.36)

(2.37)
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(t - R)(R2 - pz) ot (bp - 5)1/2
+ 2 7 1/2
Tt (R” - pt) (p - R)
- R(b - 1)p - il
28 - oty oo - 02 - Y% ot

/2

L (= R)R®(bp - R)>
/2 °

nt(R2 -pt)(o - R)1

3. THE STRESS INTENSITY FA¢IOR AND THE CRACK ENERGY.

We shall now show that the stress intensity factor K and the crack

energy W which are defined by the equations

du, (r,0)
K = 8

- Hmit oy o gy g/2 _E -
r—Rb 2(1 - n7) oar

and

Rb
W=~ J g (xry, 0) u,(r, 0) dr
R 0 6

10

(2.38)

(3.1)

(3.2)

respectively, are simply related to the function P(t) which was introduced in

the last section.

By substituting from (2.32) into (2.20) and taking account of (2.16)

we see that

2, (Rb
u (r, 0) = - 2l -n) { P(t) dt 5 R < r < Eb.
6 E 'y [(t-R@® - t)]
It now follows that K is given by
21/2
K=~ P (Rb)
[R(b - 1)]1/2
and W by
2, Rb t
R 16 S ) j P(t) dt 7 I £(r) dr.

E R [(@Rb -1t)(t - R)] R

(3.3)

(3.4)

(3.5)
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