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Abstract

The differential and total cross sections for ellipsoids and elliptic cylinders
having Gaussian electron density distributions have been obtained by a ray tracing
procedure. Calculations for the case of an external magnetic field were restricted
to the ellipsoidal distributions. The results show that the scattering is extremely
sensitive to the orientation of the body. A peak in cross section occurs at the scat-
tering angle corresponding to the ray normal to the critical surface, and increases
as the surface becomes flatter. The cross section is sensitive to the ratio of peak
density to critical density for moderate values but bacomes relatively insensitive
when the ratio exceeds 3. The total cross section is a very sensitive function of
both orientation and ratio of inajor to mmor axes. The introduction of a magnetic
field decreases the ordinary ray cross section; the extraordinary ray exhibits
higher values only in the forward scattering region, but is always higher for the
spherical case. Comparison of the Gaussian ellipsoid with the corresponding con-
ducting ellipsoid shows that the Gaussian has a large cross section in the forward
region but considerably lower values {n the backscatter region.
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Scaftering of HF Radio Waves by Eiliptical
Electron Dentity Distributions

1. INTRODUCTION

In recent years theve has been scrac work periormed on the scattering of High

Frequency (HF) radio wavea by artificial charge disiributions in the ionosphere.

The most notable of these are the "SECEDE" Baiium Releages which have been

discussed in the literature ‘Bates,1971; Rao, elal., 1971; Tome, 1888}, Up o this
time, there has not been a thorough investigation into the scattering hy thsde re-
leases as ¢ function of angle of the inciden waveto the n.ajor axis of the releases.

We have therefore calculated the total cross section ¢ nd the differential cross
section o1 a long cylindrical charge d.stributisn with an cilipsoidai cross section
and a two~-dimensional Gaussian «lectroa dens'ty distribution for seversl orienta-
tions of the m~jor axis of the digtribution to the incident wave., To Herform these
calculat. 5 wo aypply the theory of ray optics an. use i.oz=lgrove's differential
equations (Kelsn, 1964} to calculate the ray paths. T ealculate the 1ncex ot refrac~
tion, we hove employed the Appleton~iartiee dispersion equation (Kelso, 1964)
neglecting absorption by the medtun..

In the following discussion, we will present ¢ur results for Je differential and
total cross section of long cylindrical bodies wnich hizve various ellipagical cruss

secticns and differing elecrron contents. In addition, we will troat the vase of a

{Received for publization 17 Yanuary 1972)




prolate ellipsoid when the direction of propagation of the incident wave is along the
major axis of the ellipsoid.

Although it is known that the artificially induced charge distributions take an
ellipsoidal form, we will initially treat the simpler case of an infinitely long cylin-
der with an elliptic cross section. The special case of the incident plane wave par-
allel to the major axis of the charge distribution can be treated as a prolate ellip-
soid since there is no dependence on azimuthal angle, and thus the cros. section is
a function of scattering angle only. The azimuthal dependence of the cross section,
which is important in the case of an incident wave at an oblique angle to the charge
distribution, has not been included in our calculations.

2. ANALYSIS

For a spherically symmetric distribution the scattering cross section is given
by the formula (Merzbacher, 1961)

o(9) = b |-§-3—| (1)

where b is the impact parameter, and ” he scattering angle. We have introduced
a factor of 47 in order to be consistent with the definition used in radar cross sec-
tion studies.

A more general formula (Merzbacher.1961) for the differential cross section is

dA = o(@)4a’ (2)
where dA is the incident flux per unit area and dA’ the area into which it is
scattered.

For a long cylinder, neglecting end effects,

dA = db dy (3)

where b is the impact parameter and y is a length along the cylinder. In cylin-
drical coordinates, we have

o@dA’ = a(h,y) do dy (4)

where 6 ‘s the scattering angle. Substituting Eqs. (3) and (4) into Eq, 2),

dbdy = a(6,y) dé dy. (5)

]
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Since the cylirder has a uniform cross sectional area along its length, ¢ is a
function only of 8, and we can thus integrate the y component to obtain

db = a(6)dd. (8}

Introducing the factor of 2% to be consistent with radar cross sections, we

obtain

o(0) = 2n | 55|. )

Eq. (7) was used to calculate the differential cross section per unit length of
the cylinder. For convenience, we have taken the unit of length to be 1 km. The
total cross section can be calculated by integrating the above equation over 8.

In order to evaluate the derivative in Eq. (1), we must calculate the paths of a
number of rays in order to obtain the dependence of b on #. 'These ray paths are
determined by Haselgrove's equations, which we will discuss in the next section.
The evaluation of the derivative was worked out with the help of Rosenberg (Rosen-
berg, 1971), who has written a spline fitting program (Ahlberg, 1967) which allows
us to fit a function to a number of cubic polynomials so that the first derivative is
continuous or nearly continuous at each point along the curve, Thus we can calcu-
late 0(f) under a variety of different conditions.

3. PROCEDURE

We now discuss the evaluation of Haselgrove's equations and the computer code
which was written to calculate the scattering cross section of 4'long cylinder with
an ellipsoidal cross section. Figure 1 shows the system of coordinates which we
have used in our aralysis. The x-axis is horizontal, the z-axis is in the vertical
plane, and the y-axis points into the paper. The rotation angle of the ellipse fRr is
measured counterclockwiss from the positive x-axis to the major axis of the el-
lipse. The impact parameter b 1s measured from the x~axis and 1s incident from
the left. The perimeter of the ellipse is the curve along which, when no rnagnetic
field is present, the index of refraction u(x,z) 1s zero (critical ellipse). The dis-
tance Z is the z-coordinate of the point in the left~hand plane, where the tangent to
the ellipse is perpendicular to the x~axis,

In order to solve Eg. {7), a Fortran computer program was written to calculate
b{f#) and subsequently evaluate (6} for a number of different parameters. Follow-
ing is a brief description of the steps involved in the computations. Append:x A

centains a copy of the computer code which was written.

o
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The first step in the calculation
of cross section is the determi.ation
of the rays which define b(6). In
order to calculat2 the rays, we need
a set of impact parameters which
should cover the complete range of
scattering angles. This set of impact
parameters varies according to the
orientation and width of the cyiinder.
To determine a complete set of im-
pact parameters, we calculate a quan=~
tity Z' about which we symmetrically
distribute the impact parameters by

Figure 1. Geometry and Coordinate Sys- 2'=z-.3 sin(0R) Zmax (8)
tem of the Electron Duasity Distribution

where 0p is the angle the major axis
makes with the x-axis, and Z,, .. is the maximum z coordinate of the critical el-
lipse. The above empirical formula was found to work sufficiently well for the ro-
tation angles 0°, 45° and 90°.

The impact parameters were closely spaced near the value of Z, but the spac-
ing increases as we proceeded away from the line of symmetry. Tae maximum
sepe ation between impact r wameters was .25 km, and they extended to a distance
of 4 Z,,., from Z.

Once we have chogser the impact parameters, we launch each ray from an x
coordinate of -5 km towards tne ellipse. Haselgrove's equations, which define the

path that a ray will take in a medium with an index of refraction g are:

-a-’-‘=——“§- {4 cos o + 2B gin @)

at In oa

a—7‘-=-9§-(usincr-—a-‘-‘-sinm) {9)
at T on

oo __cé_ (cosa—a-g--' sina-a—#-)
at m 3z ax

where p{x,z) is the index of refraction at ihe pount {x,zs. The phase angle of the ray
is ¢, and -g—)z;- ic the angle between tue ray direction and the imtial direction of




propagation. To solve Haselgrove's equations by computer tzchniques, Eqs. (9)
were transformed im0 Egs. (10),

8x = Ad (@ cos @ + & sina) / 42
8z = Ad (usin o ~ 38 cos a) / 2 (10)
Ao = Ad(coasoz%%-~ osinozg‘):—)/u2

where Ad = c At and c is the speed of light. The quantity Ad which was used in
integrating the above equations represents the step size which at a maximum was
0.5 km. This velue was decreased by the program such that in no step would the
phase angle change by more than 3°. The integration was carried out by means of
a Runge-Kutta method for the solution of a set of simultaneous linear diffarential
equations (Scarborough, 1930). When the calculation of the rays was performed
with a step size of 0.25 km, half the normal step size, the maximum difference in
the scattering angle was 0.009°, The difference in the scattering cross section was
less than 0,001 km® where the maximum scattering error occurred.

The value of y at each point that the equations were evaluated is given by the
Appleton-Hartr. > Dispersion Equation,

X1~

pllx,z) = 1 - F (11)
1-X-¥2 & (Y 4+ ¥ (-xP
2 K3
where
x2 2
X{x,z) = pexp |- 1 +£§- . (12)
% 2o

A measure of the hardness of the charge distribution is p, which is defined as
the ratio of peak plasma density to the critical plasma density. If p is somewhat
greater than 1, we have a hard charge distribution, for which we consequently have
a significant region of backscatter.

The Gaussian half widths of the charge distributions are X, and z o'

The gyromagnetic ratio (ratio of ion frequency/incident frequency)1s Y, and
Y, and Y, are the .ransverse and longitudinal components of the gyromagnetic

ratio,
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Y, = Y sin {a- 0)
(13)

where Oy is the angle the maguetic field makes with the incident wave. In the case
of a nonmagnetic field, Y = 0, and the equation for the index of refraction sim-
plifies to

uz(x,z) =1-X, (14)

Once each impact parameter has traced a ray, the resulting table of b and 0 define
b (6).

The value of b for 6 = 180° is defined as the displacement, and it is subtracted
from all values of b. The reason for the displacement is the asymmetry of an el~-
liptical charge distribution when it is rotated with respect to the incident plane
wave, or when a magnetic field is present.,

The table of b and 8 is then interpolated at intervals of 1° with a cubic spline,
and the slope at each point is calculated. Since the slope has a few discontinuities
due o imperfections in the method of interpolation, it is smoothed by taking an 11
point running average twice.

The process of smoothing is of questionable value since the total cross sec-
tions appear to be increased by as much as 10% when the smooth data is used. The
effect of smoothing appears to "lift" the curve, thus increasing the value of the in~
tegral. The region where the smoothing is needed is normally in the backscatter
region where the cross section is small. Thus it would seem that, although not
aesthetically pleasing, the curves with small discontinuities in the backscatter re-
gion are more accurate over the completed range of angles than the smoothed
curves.

Once we have the derivative, the cross sect.on is easily calculated by Eq. (7),
and the total cross section

n
- i db
g = o '-d—g-' de. (15)

The values at 0° and 360° are determined by linear extrapolation.

In order to compare the cross section values to a cylindrical rod of circular
cross section, we have calculated the values of X, and z, such that the total elec-
tron content in a slicc of the cylinder is the same.
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‘The electron content in a circular cylinder of unit length is

¥ -xz- z2 2
SSpexp — dxdz=pl’r°, (16)
- a0 r o

and the electron content in an ellipsoidal cylinder of unit length is

¥ x2 22
SSpexp =g -—gjdxdz = CLER I 17)
=00 *o %o

4

Therefore the electron content for a slice of a cylinder will remain constant if the
product of the major and minor axes remains constant.
If w~ take ry = 1 km, then

1=x2z . (18)

If we want an ellipse with xo/z0 =5 = R, then

o

1= 5zo . (19)

We will now be able to determine not only how the orientation of the charge distri-
bution changes the cross sections, but how the shape of the distribution affects the
cross section.

The program which was written had a number of parameters which could be
changed to investigate their effects on the cross section. These parameters were
Py X5 2, and BR' The output of the program was: impact parameters, the total
cross section per unit length, and a tabulation of %, db/d6, o() at 1° intervals, and
total cross section.

4. RESULTS FOR A LONG CYLINDER

The program to calculate the cross sections produces 6 graphs for each choice
of parameters. The curves are the ray paths (Figures 2a, 3a, 4a), the function £(0)
{Figures 2b, 3b, 4b), the derivative db/df (Figures 2c, 3¢, 4c), and the cross sec-
tion (Figures 2d, 3d, 4d). In addition, the smooth values of derivative and cross
gection are alzo plotted but are not shown. Figure 2 has the ellipse unrotatec,
Figure 3 has the ellipse rotated 45°, and Figure 4 has the ellipse rotated 9. i1
all three cases, p = 2 and Ro = 3. In Figures 5, 6, 7 we have shown the differen-
tial cross section for Ry = 1, 2, and 5; fg = 0, 45° and 90° with p = 2.0.
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Figure 2. Scattering From an Elliptic Cylinder with p = 2.0, R = 3, and 9 0°;
(a) Ray Paths, (b) bvs 8, (c) db/d8, (d) o(9)

From the figures, it can be seen how the detail structure varies with different
orientations, and the sharp peak when Ro ‘= largest,

If we carefully examine the differential cross section curves in Figures 6 and 7,
we notice that the cross section reaches a relative maximum between the end points.
This peak, which is dependent on the angle between the major axis of the ellipse and

the propagat.on direction, increases the total cross section. The radius of curva-
ture of the charge distribution is also an important factor. The peak is highest
when the curvature is small, and the wave normal is perpendicular to the tangent
of the charge distribution at the pownt of contact with the critical surface.

BN,
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In Figure 8 we have plotted the location of the peak vs the rotation angle of the
ellipses for Ro =2, 3 and 5. The points which do not lie on the line 8 = ZOR
probably are different due to the reflecting body being an ellipsoid.

190
b3
S
=
ngOr-
§
3 7, R°'3
w 60 VY
5 7
g %
RO-S //
7,
7,
7
R 1 1 .
oO 30 60 90
O

Figure 8. Angle of Relative Maximum of Differ-
ential Cross Section vs BR

o

In Figure 9 we have shown how the cross section at an orientation 0°, 45
and 90° changes as we vary p and keep Ro = 3. One of the important features
we have noted is the insensitivity of the total cross section to p. Figure 9 shows
the variation in cross section is not very significant for p greater than 2.

In Figure 10 we have plotted the total cross section per unit length vs Ro for
four different arigles of rotation. This graph demonstrates how elongation of che
distribution can increase or decrease the total cross sect.on; for an angle of about
20°, the cross section remains relatively constant regardless of the value or Ro‘

In Figure 1! we can see the large change in the total cross section as a func-
tion oi angle. This graph demonstrates the importance of knowing how the ellipse
is aligned in order to properly interpret radar data. In addition, we have also
plotted the smooth data on this curve for Ro = 5 to show how the total cross sec-
tion has increased with the smoothing.
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Figure i1. Total Cross Section vs 6y for p = 2.0,
and Several Values of Ro

5. RESULTS FOR THE PROLATE ELLIPSOID

In the case of a prolate ellipsoid, the cross section of the electron density dis-
i tribution perpendicular to the major axis is a circle, If we have a plane wave 1n-
cident along the major axis of the ellipse, it encounters a circularly symmetric
charge distribution, and we can apply Eq. (1) to calculate the differential cross
section.

In Figure 12 we show the differential cross section for Ro =1, 2 and 5. From
these curves it appears that elongating the distribution has an effect similar to de-

creasing the size of a spherical distribution or decreasing the value of p. If we
27
~

integrate Eq. (1), we obtain the total cross sertion 0 = Zl?r'j u({0)d9 of the ellipsoid.
o

woad oy

In Figure 13 we have plotied the total cross section vs R, keeping the total
electron conteat constant. For this case Eq. (19) has to be modified such that z, is
L a function of the cube root of the ratio. ¥From Figure 13 we can see the dramatic

decreasc in the total cross section as the incoming wave encounters a smaller area
perpendicular to the direction of propagation and thus has a smaller backscatter

region,




AN SR BAY e R R ey

SRRSO NI e s g e

CROSS SECTI0N vS

SCRTTERING ML E

(a)

Figure12. Differential Cross Section vs Scattering Angle with Azimuthal Symmetry,
p = 2.0, 6z = 0° and Several Values of Ry @R =1, ®R =2, ()R =5

D s ol T I

CRESS SECTION vS. SCATTERING MLE/

/

(b)

.-

M - s

CEIry ety

-

ChuSS SECTION vS

\

TTRTTECING ANGLE

/

/

i

!

| /
kﬂyﬁﬁ¥mWﬁﬁ«

|

/

|

(c)

e

e A




o L

<

YA RN TN

TS S T A

¥ o

T

o

[ ar

- . s - ——_ry e Ty e v — x er W AR - AW T M
o - wr m am—— e T R NN
I T YT AT A T ad

18

80}

sz 3

60}

20 i L " 1 L

Figure 13. Total Cross Section of
Ellipsoid vs R, for g = 0° and
p=2.0

6. RESULTS OF THE PROLATE ELLIPSOID IN A MAGNETIC FIELD

We have performed some scattering calculation for the case of a prolate ellip-

soid with p = 2.0 with the magnetic field aligned along the major axis of the ellipse

and a gyromagnetic ratio of 0.3, Calculations of the differential cross section for
both ordinary and extraordinary rays with Ro =1, 2 and 5 are presented in Fig-
ures 14 and 15. The cross section for the ordinary ray has a somewhat lower
cross section than that for no magnetic field, The cross section for the extraor-
dinary ray is always higher than the nonmagnetic field results for R, = 1 but is,
however, higher only near forward scatter for other values of Ro‘

7. COMPARIZGN OF GAUSSIAN AND CONDUCTING ELLIPSOIDS

To show the effect of a change from a continuous density dictribution to the
extreme case of a conducting body, we have plotted the scattering cross sections
at RR = 0 and Ro = 3 of the Gaussian ellipsoid (p = 2) and the perfectly conduct-
ing ellipsoid (Crispin and Siegel, 1968), The surface of the conducting ellipsoid
was chosen to correspond to the critical surface of the Gaussian ellipsoid. As
indicated by rigure 16 the cross section for the Guassian distribution is larger

for a range of forward scattering angles but decreases so rapidly that it is

mt oo
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considerably below the cross section of the cunducting ellipsoid for the range of
backward scattering angles. Similar results (not shown here) are obtained for the
case of the elliptic cylinder with the incident ray along the major axis of the
ellipse. These results corroborate previous work for the Gaussian sphere (Klein
and Mabee, 1968), which indicates that the replacement of a moderately overdense
Gaussian sphere by a conducting sphere of critical size i8 a poor approximation.
In highly overdense bodies, however, the density gradient in t! = critical region ie
quite high so that here this approximation may be a reasonable ona.

8. CONCLUDING REMARKS

It should now be obvious that the shape of an electron distribution and its ori-
en.ation to an onserver are very important in determining the differential and total
cross section, Thus with the figures available in this report, it is hoped that cross
section values of charge distributions can be approximated by properly applying
the data presented and taking care of end effects for finite length cylinders.,
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We have shown that the magnetic field decreases siightly the differential cross
section for the ordinary ray, but the extraordinary ray has a larger cross section
than the same charge distrilbution when we do not have a magnetic field. We have
irdicated the error involved by trying tc replace a charge distribution by a conduct-
ing body. The characteristic differential cross sections are so different that we
could only use a conducting body for a very small range of scattering angles, Al-
though the computer cade in Appendix A was written for a CDC 8600, it should be
easily converted to another system with minimal effort so that individual cases
could be calculated. In addition, subroutine DERIV is written for a Gaussian charge
digtribution. If another charge distribution were desired, only this subroutine
would be affected.
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Appendix A

Computer Code for Ellipscidal Scattering
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PROGRAM ELLIOS(INIT,0UTPUT, TAPES=INPUT ,TAPEG=0UTPUT,TAPE3I,
1::$¢°NIL 0E°IV1901’ )

COMMON Q(iﬂﬂ)y; SATANC(1IO0D) - !
DIH;NSION PQWT(:).Y(S),DEQV(B) I

10}
NIMENSION DIS?_(2),DUMY(2),ANGI(2),RAY(2,2)

¥

< THE EOLLOWING ARPAYS DEPEND ON THE NUMRER OF
_2_____1M1_REDLAIED_EJINIS
ZOMMON
TOMMONZSONSTZ HO9XN20, THETA, THETAH,YYY,II
 NATA (RAYIK,1),K=1,2)/720H ORDINARY RLY z
NATA (RAY(K,2)4X=1,2)/720H EXTRAORDINARY Y 4
DATA YYITLEZA®10H " A
DATA TITL/734M3)SS SESTION VS, SCATTERING ANGLE 7/
A*404 L
DATA XLAREL/304 SCATTERING ANGLE/
DAYA YLARCL 7304ATIMIALT OARAMETER 4
01=3,1415926535896
RAD=OT/180,-
ITITL=1
ITL =34

XS[72=11.0
YSIZ?E=114.3
IPAGE=(

If= { FOR THS JRDINARY RAY
IT.= 2 FOR Tyt FEXTQANINTMARY 2AY

ITIME = THE N#M3ER 0F CASEé_TO aE PUN,

N9 501 ITIME=1,5%

RZIAD [N HARDNISS, MAJIR ANN MINNR AXIS, AND INJLINATINON OF
__ ELLIASQIO - -

} a‘,;oh ka;sunuuu

REA0(5,10) RHDL,X0,20,THETA
ENRMAT (4F 1040}
REAN(G,10) THITAH,YYY

—
2

-~ - II1T_ IS YHE NUM3ZR NF ORIENTATIONS PER CASE. . __

SRR ]

e - 00 B ILI=Y, .
TI=T1I

_IHETA=THETA
N?=359
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IPAGE=IPAGE+L
OAGE
40 FORMAY (1H1,125X,*OAGE*13)
—DIATE=DATE(D)
MRITE(6,608) ODATE
90 FORMAY (7/,60X,* THE DATE 0F THIS RUN IS*A10,./)
HRITE:6420) RMIH XN, 70, THETA
F Y = F
150X 919H THE MINIR AXIS ISsF5.3,57,50X,23H THE ROTATION ANGLZ IS,F5
4e20/7)
HRITEI6,110) IWMYIK,I1¥,K=1,2)
=310 FORMAY (/7/7,55%92710,727)
HRITE(6,30) THITAM,YYY
FORM 2934 THZ % L 2 4 3Y
+GNETIC RATIO OF F6e2,477/)

SALCULATE ELLIZSOIN

K3 D2K?

1 COST=CNS{-THETA*RAN)
SINT=SIN(-THFETA*RAD)
IF(RHN,LEs1e) WR=1,

- _IF(RHO.Llc.1.) 50 TO 5
93R=3NRT (ALNG(IHOY)

AMX=0,0
AM7=0, 0
= 1
X1=X0*GOS{FLOAT {2%T) *RAD) *R"R
T4=70*SIN(FLOAT(2%1) *RAT) *ROR
“(I)=X1*00ST+7L*SINT
7. 1) ==X1*SINT+71 %3087
AMX =AMAXL (AMX,X{T))
] AM7=1MAX] (AMZ,7(T))
11 CONT ‘NUS

BLOT ZLLIPSOIN

MY Cap2

XN (1)=4a 1)
XX (2)s=4s 1
YY(1)=4,.0
YYi2)==4e
XG=1.0
. Y¥S=1.0 - ; —
NO=3

£ =1
CALL PLOTV(NO XX g XSy YYgYSy2,33,=-1,ITITL,TITLE,X_ARL,YLASRL,
. AXSIZE,.YSITF)
CALL PLNTY29Xa XSy 79¥Sy181 33344, ITIVL,VITLZ,XLAREL,YLAREL,
AXSI7E,YSI?F)

c
~a SALCINATZ TMOAST OARAMFTERS,
c
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[F(THETALEGe D No 0 THETALENL90.0) 6N TN 25
INDOM-SS~TFIXIY4FTR/2,)
ANG=130,~-THETA
e AMX=(7(TNDMY=7(INDM=1)) 7 (X CTNOIM) =X (TNM=1))
N9 31 [=1,50
. INN=ANGe2.*FLIAT 1YY/ 2,
AML=(7(IND)=Z(IND=-1) )} 7 (X CIND)~X(IND=1})
——TE (AME . GT. AMX) TNDY=TINN
[F(AML.GT. A ) AMY=AM]
— 31 CONTINUE -
DATA FATTOR/0.01000602550005050010¢04259065051609260,54,07
= n
R(I1=0.0
—hl SONTINUE
ZERO=7 (INOM) ¢0, 3*AMT*SIN(=2, 0* THETA*RAD)
e TF(THETALFQa 0, 0,0, THETALFN,90,0) 7EPO0=0,0
AMZZ2=AN?
‘AMY ryg s . L_AM7-AM7%0. 3%
nn 71 I=1,49
—_— 2507500
J=8
1€ YL 5.28) J=2
If(I.LE.22) J=)5
e TE(Y 1 5,18) d=5
IF(LeLESLD)Y J=0k
IE(TI. 1 Fa12) 13
IF(T.LE.8) J=2
e JF(Y.1 %.0) J=1
NIF=FA TOR(J) *aN7
e JE{OTF o GTa D 253) DNIF=0.25
IF(R(S1=-T)eLE.ANZZ,ANDNIF T4 0,15) NIF=0615
IE(A(51-T) GT AN 7= 26 ANNL A5 =T) ol Ta AM7 240,15
1.AND, THETA(SN. 3N} NIF=0,925
A{6)=-13=R(51~-T2+DNIF
3(50+1)=3(43¢1)-DIF
71 CONTINUSZ
J=0
NN 81 Tz1,13)
IF(2(I)«ENe0.0) GO TN 814
— . _IF¢ABSC(L(ACT)Y 1).GT, 4, 0%AM?2)Y_GO_ YO 8%
NENIS)
——— Az TY —_—
81 CONTINUE

[¥P= NUMRER 07 [MPATT DAGAMETZRS,

T’ ~3 r)

4Pz
e MRLIE(6,50) (O(I13,Tal,IMPY
50 FOOVAT (/74274 THT [MOAST DARANMETEPS AOC,/,10(10F1003,71)

-

c START RAY TRATING.
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(1]

N0 21 I=1,1IM4°

ISOUNT =0

PIIMT(I)= INITIAL STEP SIZEs IF IT IS NEGATIJE, EACH STEP
IS _NOT PRINTED

PMT(4) = MAXIMUM ANSULAR CHANSGE PZR STE®,

N2 .30 CIK2

ORMT {31 ==0.25
OIMT(4) =01/60,0

Y(1)==5.0
Y(2y=a(J;
Yi31=0.1
NOIM=3

T (PRNT(3),LE.fe 0) 50 TN 35
ICAGE=[CAGE+]1

WRITE{6,40) IPASGE

35 GALL RX5S(PRYT, Y, NERY,NDIY,THLE + DERIV,OUTP)
c

2 PLOT SSATTERED RAYS,

¢

—  CALL PLOTV(2,%XsXSs 7y ¥YSeIOOUNY. 3351, IVITL,VIVLE,XLAREL 4 ¥LARZL,

1XSTZ2E,YSI7E)
SIATAN([Y=ALO4A ([COUNT) 7/RAD

IF(SCATANIIVLT,0,0) STATANIT) =360,¢SCATANID)
21 CONTINUE

ZHECK FOR ZERNH SCATTEIING ATV NORMAL INCIDINCE.

KD L

IMP1=TMO

I==0
N0 94 [=2,]IM°

53 IF(SZATANITI) 5T, SCATAN{I-1)) 50 Tn 51
050 10 52

51 IF (SCATAN(I+11.6T,SCATAN(I)Y 50 TO 92
52 [4P1=T¥{-1

D0 191 J=I ,IM31
SCATAN(I)=SCATANC(I+1)

a(Jr=2(J+1)
101 SONTINUE

IF(I.GT.IMP1-4) GO TO 5
0 _T0 S3

32 TF(IE«NZ.0) G TO 9¢
— JFE(STATANIT) . 3Ta180.) 5=

91 SONTINYUE
8 _ImD=IMPY

NDATL ANGI/480.,380.17/

—— _ SALL INTO(SZAVANLt[Z=2),3([E=~2) 44, ANGI,OISPL ,CUNY,24JL4JH) =

WRITI(6,100) DISPLID)

100 FOQMAT (/,30X,* OISOPLACSEMENT = *FAR.3)
'\

’
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3 W2ITE INOUT PAEMITERS, IMPAST SARAMETERS, AND SHATTERING
" ANGLES ON TAD=2,
- HRITE (2,703 RUIL XN, 7N, THEYA, THFTAH,YYY, NNATFE ,ITMHD
70 FNOMAT (5F10,5,410.T10)
. _MRITE(2,80) {8([),SSATAN(I), =g, f¥0)
80 FIORMAT (8F13.5)
~
3 SONVE2T SIATYEING AN3LI TO RADIANS AND INTERPOLATE 8 VS,
. S"ATTERING ANG £,

2

0 131 TI=1,TM2

UD =) =-NIS?_(1)

— SCAYAN(T)=SCATAN(I)*eQn
131 SONTINUE

NY=2.0%*21/3ha

ANGINT (1)=04001757, 407
NN 221 I=2,M7

ANGINT (L) =ANGINT ([~1)+NT

221 CONTINUT

GALL INTO(STATAN,S,IMI,ANGINT,AINT,NBNA ,NP, JL 4 J4)
001431 Tsdl,Jd

ANGINT(T=-JL+1)=ANSINT (I} /242N
AYNY T=1 £13=3TNT T}

DADA(T-JL+1)=N324(1)

—— 161 CONTINUZ

NOz JH=-JL +1

Laots

OLNT IMPACT PAAMETERS VS. SCATTERING ANGLE.

“X(1)V=0.0
XX 2 1z300.10

YY(11=-3,0
YY(23=3,0

SX=40.
SY=1.1

CALL PLOTVII, XNy b0s g YYyLle092,339=1,ITITL,TITLESXLARZL,YLARZL,

1XSTZEL¥YSTIZF)

SALL PLOTV(2,ANGINT,40.9BINT 1.0y NPy 33,2, IVITL,VITLE,XLABE ,¥YLARZL

1. XSYZF,YSIZE) .

SMONTHE DFRIVATIIVES

240D

IFILTIRZS

e DN 181 JS2,NPL .

NPi=NDay
N0 201 NSMalel .
IF(NSM.ZMe1) 5D TD 45

I4=IFILT?
IELJ LELIEILYIR ) T4z =i

IF(J+IFILTRLHZ.NPY [J=NB=)
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SIRDA(J)=08.0

09 191 JJ=1.1}

ST20A(I) =SOA0A { J) +I3DA I+ I5) 40904 {I=-J N

191 CONTTNUC
SORDACJS) =S03DALJ) +DROA (N
ANACJY =S0BNAL 1) 751 AT (2] J+1)

151 CONTINYE

DN 172 ,)=Z.MP%

N30AC(J) =SORNAL LY
171 SONTINUE

IFINSM.EN2) 3D T9 20t

CALCULATE CROSS SENTION

K$ N2

45 SUM=l.0
D) 121 I=5.N°
SIGLII) =4, 0%PI*CINTIII*IBIA(I) /SINCANGINT (1) *OA3)
121 TONTINUE
N0 111 I=1,NP
S0=1.0
IF(I.€Qe1eO0R. I, 2N NP) ST=0.5
—  SUM=A9S(SIGL({}}*S™+SUx
SIGLIINI=ALOGLIBIARSISIGLITINYY
111 CONTINUE —
SUM=SUM+0.5* (#ANGINT (1) #(DROA (1) *(~ANGINT (1)) #210,.**SIGL (1))
M=SUMe (T30 = Py ) & (N oy » NPY) = 4+ ‘e
1SIGL {NDY)
SUM=SUM*RAD
WRITE(6,120) SJM
12¢ FORMAY (/7/7,30%X*VITAL CRNSS SE TION =%E I 3,84 (KM**29y} —
IPAGE=TPAGE+L
WRITEC(G.40) I2AZE
L=NP/100+1
N0 151 X=1.L
LL=({K=1)*100+1
—_— LU=KEL0D —
IF (K. ENWL) LU=NP
WRITE(6,90)
30 FORMAT (2:* SUATTERINS ANSLE 14PACT PARAMETER DERIVATIVE -
16 _SIGMA®,5X))
WRITE(64170) (ANSINT(I? 43INT(IY,NBOACIY,SIGL(T},I=LL,LY)
—A70 FOPMAT (2(5X,F742413%XeFHa3:s10%eF7at35%F0a3a6X)) —
TPAGE=IPAGE+1
HITTE(6,40) TPASE
151 SONTINUE
e XX(¥¥=d.0
XX{2)=3/0.0
YY{1)=uall
YV(2)==4,0
SY¥=1.9
CALL OLOTVI3 XXy SX¥Y,SY32,334=1, ITITL,TITLE,XLABEL,YLARL ,xSI2Z,

e e a——————




1vYSI7cY
~ o - o -—yy=
1XSI2E,YSIZE)
e XXL1)=0.0
XY {2)=360.0
!! '1,=2 n —
YY{2)1==2.50
SY=0.510
DATA YLAR/JIGHLIS STATTERING TRNSS SECTION I'4
| > 2 -
AXSI7E, ¥SI7ZE)
s o a 5 De33,1,IT, TTTL ,XLAACI ,YLAR"L,
AXSTZE, YSIZE)
—201 CONTINUIF
31 TONTYINUZ
308 SONTINUS
ENDFILE 2
CALL PLOTV IG)
STne
— _FNN0
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SUBROUTINE DERIZ(YY,DIRY,NEG)

(%1 3/

THIS SUBROUTINE CALCULATES THE DERIVATIVES OF AN ELLIPSOIDAL
" CHARGE DISTRIBUTINN FOR THE RUNGE-KUTTA METHOD,

COMMON/GCONSTZ RHQ X070 THETA, THETAH,Y, ]
DIMENSION W{2),IHDA(2) 5 YY(3) ,DERY (3) , DUDX(2) ,0UDZ(2)
0f=2
RAN=PL/180.
NEG=)
COST=COS(THETA®*RAN)
SINT=SIN(THETA*IAN)
SHI=CHO®EXP(=((YY (1) *CNSTHYY(2)SSINTY/XOY**2
1=t -YY1YSSINT+YV 2)*COST) 770) %%2)
YL=Y*COS{(~THETAH*RAN) +YY(3))
YT=Y¥SINC((~THETANH®QAD) +YY(3))
H1 = (YTS%4) /74,4 (YL %%2) % ((1,-"H]) **2)
IF sWielT.0.0) 32 79 S
WL = SORT(N1)
Y= «BHI = $42) +H1
W(2)=1e=CHI~(YT¥%2) 72, =U1
AMU=1,~CHI*{1.=-CHE) ZWIT)
IF(AMU.LT.0.0) 50 TD 5
[F(W1,EQ.0,) NINA = 0,0
[IF(M1.E%0,) 5] T) 35
DUNAL)I =YL ®YT® (o] 4+ (VT¥% 22, ® 1. =OHII®*2)V/(2,%N1))
NHNAC2)=YLAYTO (=1, - (YT*%2-2,%( 1., - HI)**¥2) /7 (2.%H1))
NUDA=NHI®*(1,=4T) *THNA(T) 7 (2, P SQRT(AMUI * (W (]I **2))
35 SONTINUE
NOEHIDX==2,¥CHI* [ (YY 1Y 2NOST4+YY (2) *SINT) *rNST/  XD**2)
1= (=SINT2YY (1) +YY(2) *TOSTI*SINT/(70%*2}))
ICHID?==2, *CHI® ((YY (1) *5QST+YY (2) ®SINT) *SINT/{XDQ**2)
14 (=YY (1) *SINT+YY (2) *30ST) ¥ S0ST/7(70%*2))
IFIW1,E04000) 50 T9 45 .
DUNX7 L) =DSHIM* (2, * THI =1, ~CHI* (1, ="HIV* (1. + (1, =-CHI) * (VYL **2) /
I /W I[N Z7(2,%SOART (AMUY *W(T))
NDUNY(2)=OCHINYP (2, ¥SHI=14=CHI®* {1, ~CHIV* {1,~{1s=-CHIV B JVL®**2)/
1H1) ZWCT)N /7 €2, *SART(AMUI*HITI))
NUD7(LI=NIHIDTH (2, #*THI =1 =SHI* (14 =CHI) * (Lo $ (1, =CHI) * (VL **2) /
—e ALY ZM(T) ) 7 {2, *SORTIAMUY PHIT) )Y 3
DUDT(2)=DCHID7* (2, * CHI=1.="THI¥* (1, =THIV*(1,=(1.=CHI) % (YL®**2)/
AWM ZWCINI/ (2. *SART(AMII *HATIY -
6N TN 55
L5 NUOX(L)==NOHINX/ {2, *SORT 14MLIY)
NUOX(2)==NCHIIN/Z (2, ¥*SARY (AUY))
— .- DUD7(1)==DC4TD?/ (2, *SORT(AMYYY =
NUN7(2)==0D3HINT 7 (2, *SIPT (AMY))
— S55_YY3=YYI3) —. -
OXDT=(SART (AMUY * IS (YY) +DUNA*SIN(YY 3)) 7AMU
N70T=(SART (AMJ) *SINIYYX)=-DUDA®*TOS(YY X)) Z7AMI}
DADT=(SOSC(YY *IUNT(IY=SINIYYIY*NUDX (I ) 7AMV

Y

<

6N 10 15
S NEGz=1
"0 1D 25
15 DZRY(1)=0XDY e e e
ngeyY(?2)=D70Y7
NERY(3)=NADT . -
25 CONTINUE
REIURN
END

~f




SURRJYTTINE QUT(XX,Y,0ERY,IHLF, PRMT,NEG)

THIS SUBRAUTINE OAINTS THE RISULTS OF THE QUNGE-KUTTA INTZGRAT IJN
_AYN DITIOMIMIS WHEN WE MAVE FOLLOMED A RAY FAR SNOUGH,

NI EY ) %4

e _DIMENSTINON_Y3),DEIY(I) L, ORUT(5)
T(DIRY(3) e To1e0Z=3eAND XX GV o B8. 0) POMT(5)==1,0
_IF(OooMT (31, . Ta0a0) G0 TN 5
WATTE(H,10) XXy (Y(JY 3J=1,30,(NERY (J) yJ=1,3),IHLF,4NES
. __ 10 FIRMAT (7E17.8,2T1%5)
5 RETI2AN
ZND

" synagyT INE RUGS{PRMT VY . ODTRY,NNIM, THLF.DERIV,0UTP)

; THIS SYRROUTTINZ 2IRFORYS THE RUNGE-KUTTA INTEGRATINN,
NIMENSTON PRMT1),YY L) ,DERYIL) 4 X1{300) 3773000 yALPHAIZ0D) y<I3s%)
oo o DIMENSINN XX (300),0807(4)
RIAL X
—_— e m e o SOMMOM X1,27,8L 348,00
TAMMON/GNNST/Z 40.X0 47Ny THETA, THETAH, YYY,IIT

LI N |

32T Yo TYE IMTTIAL RONNTTIONS,

PT=3,14153265
RMI="T/180a. .. .
TAIT=T42ITAH
[F (8RS (THITAHY 4 5T490.) THET=180,=ARSITHETAH}
TYET=TUIT*PAY
n=2
J=0
e DADTL=0.0 . _.
T4LE=)
. X=0,.10
Hz 425 (2MT(3))
- ZRREZPRMT (L)
PIMT{59=040
e 35 dsder
IF(JeGEL300) WPITZ(5,10)
i 10 FORMAT (/7,20%.*THI NUMBER 0F STZ0S HAS FXJCENED. YHE DOIMENSION®)
IF{J5E.330) 57 T1 55
] X10Ji=YY(1)
T(Jr=YY(?)
— . ALBHAC) =YY (3)
XX JYy=zY
- kS5 II=Q .

3= SALZULATE THI NERIVATINES, AND ZHEDK YHAT NO_ERROR HAS NZIUIRTNH
3 TN NEP” v,
~

"5 SALL JERTVYY,IZRY,NES)
RALL QUTO (XYY, 0E2Y, [4LE 32T, NEG)
f IE(POMT (5) N7, 0) %0 T9 55

U 5 S5 8 S .
I (TARS(NEG) 43T, 0) 50 TH 15

A —— b -




e b iia

o i e o i o
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STORE CONSTANTS AND SALJULATE THE NEXT St OF JALUES AT W4IZH
NEPIVATIVES ARS REAUIREN,

KCL,II)=DERY(I) *H
CONTINUE

NADT(II)=DERY(3)

IF(IT.E%&) GO TO 25
02

[F(II.FN3) 3=1.
YYeL =x1sJ)#X31,110/C

YY(2)=7(I+K(2,IIV/"
YY(3)=ALPHA(ND +X(3,ITV /0

X=XX(J)+H/D

60 10 5

DESREASE INTSRWAL AY .5 IF AN E?ROR_HAS OQCCURED IN CALCULATINS

) INE )

THE DERIVATIVES,

15

“1'-‘-”’2-

_IHLF=THLF+4

IF (IHL".GT440) 50 TN 55
IF(IT.LEs2) J=)-1

X=XX{J)
YY) =¥4¢J)

YY(2y=7¢(J
YY(3) =ALPHA L)

GO TN 45

CALCULATE THE JVALUZ NF THZ FUNCTION USING THE FOUR PREVIOUSLY
CALCULATED POINTS,

RIS NS )

25 DELX=(K(1,1)¢2, (K], ¢K(1,3)V+K(1,4)) /6,

DELZ=IKI2y1142,F{K{2,2)4K{2:3))4K(244)) /6,
DCLA=(K(3o1)+2, *(KU{3,2) +K(3,3))+K(3,04)) /6,

DADT2=ARS ((DADT (1) +NANT (2 +DANT(I+DANT (4)) /74.)

c RHECK THAT THE ANGULAR CHANGE IS NOT GREATER THAN DESITED,
e
IF (ARS (DELAY,5T.ERR) GO TO 15
3 STORFE, ACGEPTAALE JALUES NF THE INTEGRATION,
.t

YY (1) =X1CJ)+DELX -
YY(2)=7(J)#NEL 7

YYI3)=ALPHA{S) +DELA
Xz XX )+

SHECK FOR SPITZ7E ZONDIYION -

CINd I

IEIYYY.SQa0,0) 50 1] 14

IF(RHNDLLT,1.1) 50 7O 11

e TE(INDLEQ.1) 5D T2 14

e IFIYYS1)¥¥24YY(2)¥%) «ROR o6Ts1.0F=5%) GO TO 34

RIR=SNORT(ALOG(RHOY)

IF(ARSHYY(3)), . TLAAS(THET)) B =(BOS(YY (3))-AAS(THET))I*2,
TE(ARSIYY(3)) a3T o AISCTHETY) F=(AQS(YY({3})}=AQS(THEY)=2T72,)%>.0
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3 OHASE ANGLE 9UST 8E WITHIN 0.25 NEGPEZT NF THE MAGNETIZ FIZLD.
s

IF(ARS (ZR)4GT,N¥,20) 50 I 11
YY) =YY {3I4STSN(ECS L,YVY(3))

IND=1
e CHECK IF THE INTEPVAL NF INTSGRATION CAN AE INCREASEN.
3 11 [S(ARS(DELA)LTe0,31ANDLDANT2,L{,DADTL) GO TO 65
NANT1=DANTR2
G0 Th 3

55 NANT1=0A0T2

: ' IF(H 6T, ATS(PRMT(3))) GO Tn 35
CHULY. P

THLF=THLF =1
5627235 .

a2t N

55 RETURN
_— SNf
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Sample Data

260 14330 1. 000 0.0
Je 33

2.0 1.587 0. 79% 0.0
0,30

240 24080 0.693

0.0 003

240 24924 0.585 0.0

0,30
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