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PAPER NO. 24

THE TRANSVERSE RESPONSE OF THE LUMBAR
SPINE UNDER LONGITUDINAL LOADS

H. E. Krause and M. Shirazi

University of Dayton Research Institute
Dayton, Ohio

ABSTRACT

A novel continuous model of the spine is presented. The trans-
verse motion in the sagittal plane of the spine of sitting human subjects
exposed to vertical vibrations revealed considerable bending along the
lumbar spine and negligible bending along the thoracic spine. There-
fore, the model consists of a curved rod, representing the lumbar spine,
longitudinally loaded by a mass, representing the thorax. The differen-
tial equation of the transverse motion was derived and solved by making
a product assumption. No transverse displacements and no bending
moment was assumed at the pelvic end. At the thoracic end, a shear
force and a bending moment are applied, representing translatory and
rotatory inertia of the attached rib cage.

Eigenfunctions and eigenvalues depend on longitudinal loading. The
eigenfunctions correlate well with data obtained over a large range of
experimental conditions. The solution for the time distribution contains
various distinct harmonic components if an external force, alternating
sinusoidally at only one discrete frequency, is applied. This effect is
due to a periodic parameter in the differential equation.

INTRODUCTION

Most observed spinal injuries result from external forces applied

in the longitudinal direction. Long-time exposure to moderate external

loads can develop slowly increasing damages. Compression of the

spinal column is the prevailing stress mode.
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In recent tests, Vulcan et al. observed considerable bending of the

spine of human cadavers that were exposed to spinal-direction impact.

Considerable bending of the lumbar spine of sitting human subjects under

vertical vibrations was observed by Krause. In view of these findings

it se-ýms that transverse displacements as well as longitudinal displace-

ments should be considered.

Ber-tling relieves stress in certain areas and increases it in others,
if it is superimposed on existing compression. Therefore, bending may

he the factor that determines the location of injury if it is present to a

significant magnitude.

This is an exploratory study in which only transverse responses

under longitudinal loads will be considered. In particular, we attempt

to account quantitatively for the effect of a longitudinal load and initial

curvature on the bending stress, its distribution along the lumbar spine,

and the conditions of dynamic instability. Longitudinal responses will

3be neglected. It has been shown by Bolotin that transverse vibrations

are significantly disturbed by longitudinal vibrations only at resonance

of the latter. Longitudinal vibrations can therefore be neglected if we

assume their resonant frequencies and those of the transverse vibrations

do not coincide.

SPINAL MODEL CONFIGURATION

For a hypothesis, a spine model is assumed that consists of two

parts (Figure 1). They are a curved rod to represent the lumbar spine,

and a rigid mass connected with it that represents the thorax.

Experimental observations have led to this configuration (Figure 2).

The amplitude of the first derivative of the transverse displacement of

the thoracic spine above the 10th thoracic vertebra of a sitting human

subject under vertical vibrations from 10 to 40 Hz is almost constant.

The second derivative is, therefore, almost zero and hardly any bend-

ing exists. It is assumed that the rib cage increases the bending stiff-

ness of that part of the spinal column.
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Figure 1. Model Configuration for Lumbar Spine and Thorax.
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It should be noted that Figure 2 includes the torsional deflection

under the same experimental conditions. A nodal point can be observed

around the 6th and 5th thoracic vertebra. This point was observed for

13 frequencies within the test range from 10 and 40 Hz and for 30 ex-

periments at each frequency. This nodal point coincides with a peak at

that point of almost all published curves of injury incidence along the

spinal column.

EQUATiON OF MOTION

The equation of transverse motion of a curved beam has been pre-
3sented by Bolotin. It is

64v 2V 2Vd 2V,0EI +P - Pt) dx2' (1)~a 8X4 2 8t"d2•

where

E = modulus of elasticity

I = aereal moment of inertia

v(x, t) = transverse displacement from initial curvature

v (x) = initial curvature
0

P(t) = longitudinal load (compression positive)

p = mass per unit length of rod.

The function vo(x) 0 if the beam is straight. The nonhomogeneous

equation (1) reduces to a homogcýneous equation

E Ox4 + 62

A product assumption

OD
V (W~) ,, V V(W)n(,t) (3)

nfl'

where

Vn(x) = spatial distribution

Tn(t) = time distribution,
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decomposes the partial differential equation into a system of ordinary

ones. They are

El _ M4 (4)Svn(x) + v--n Vn • o0

P(t) is here considered to be constant.

The solutions for these equations are

A. Spatial Distribution

vn(x)=Dn Sinr2x'l+Dan cosr2 x (6)

+ D3n sinhrI x+ D4 . coshr1 x

The r, and r 2 are

r P 2 + I (7)r,•= +7r )I '+-E-T EI

B. Time Distribution

T (t) AinncOSnt + Anslnsnt (8)
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where

an = natural frequencies

Dmn constants

rI, r 2 = eigenvalues

The constants Dmn will have to be determined by the boundary con-

ditions. Two different sets of boundary conditions will be considered in

the following sections. A solution for the homogeneous (that is, straight

beam) equation of motion and for the nonhomogeneous (that is, curved

beam) equation of motion will be derived for each set of boundary

conditions.

RESTRAINED THORAX

The thorax is supposed to be restrained so that no transverse dis-

placement or rotation can occur. The idealized model for the lumbar

spine under these conditions is depicted in Figure 3. This configuration
3

has been treated extensively by Bolotin and other researchers in the

field of dynamic instability with the inclusion of nonlinear damping and

nonlinear inertia.

A. Straight Rod

The solutions for the constants in the spatial distribution equation

for the straight beam (equation 6) are determined by the boundary con-

ditions which are

V(M) = V(O) 0

_ (9 )dV= -jo .
AI) dYV

dx xt dx x=O

Transverse displacements and bending moments are not admitted

at either end of the lumbar spine. This furnishes the equations:
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Figure 3. Model Configuration of Lumbar Spine. with
Thorax Restrained from Moving.



V(1) - 0 = D, sin r2I + DZcos r 2 I

+ D3 sinhrr I + D4 coshr r (10)

V(O) 0 D?+ D4  (11)

V"(1) 0 = DD rzasinrz2 - Dz racos rZI

(12Z)
+ D3 r, 3 sinhr, I + D4 r, cosh r, I

'V"(0) 0 = rD2zr+ D4 r, . (13)

These are four homogeneous equations for the four unknowns. In

order to obtain solutions, the characteristic determinant has to be zero.

0 1 0 1

o -rz0 rl

A 01
sin r I cos r i sin hr 1  cos hr I

-r Z sin r2 -r Z cos r2 ÷rI sin hrlA rI cos hr I t

+ (r1 2 + ra2)2 sinr 2 1sinhr 1 0 (14)

This condition is met if

rz • n (|5)

or

,,rI• (16)
r1 0

The latter condition requires P 0 0 and is, therefore. trivial. The

elgenvalues are:
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r = -+ (- + -(17)2 M VE! v2El RE-

This equation can be solved for the natural frequencies
S (2EIT) aP) -)2P

EI ;(18)

It is apparent that these frequencies depend on P. If P is zero, we

obtain

a2 W:n)4 El (19)
no A (n)nO

The frequency equation can be rearranged to assurne the following

form-

The natural frequencies equal those of the straight beam except for
(•va P

The relationship between 0. and P Is p-rabolic. The a&lution v(x, t)
is of a periodic natue if It in real and uL is of a non-periodic nature

I!I
it is ima y The transition between both regimes occurs when
crit
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The dependence of the natural frequencies on the longitudinal load

may be of practical consequence. For example, the response of the

spine to external forces seems to be different under different sustained

vertical loads as they occur in a dive. pullout, or tight curve. The

amplitude of free vibrations is expected to change with the natural fre-

quency if energy is conserved during transition from one longitudinal

load to another.

The eigenfunctions for this model are

Vn(x) sin ran x. ()

They are identical with the eigeaft-itions of the unloaded straight beam.

It is easy to see that these functions are orthogonal.

B. Curved Rod

The initial curvature will be considered in the following paragraph

by solving the nonhomogeneous equation of motion, equation (I).

The boundary conditions remain the same.

Again. a product assumption is made:

V(K.t 0 V a W)T a(t) .(23)

VU(x) represents the eigenfunctions that are now known i-o lth. pre-

ceding paragraph. TW(t) are solutions that we seek. Considering the

orthogonality of the egoenfunction•. this assumption leads to

V it, (x)-o. O* d P'.... ..d , (4)
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The initial curvature may be represented by a Fourier sine series.

This series contains only sine functions because the initial curvature can

be an odd fun, ion with

V0 (O) V 0o(1) = 0.

The second derivative of the initial curvature is

2 gon sin xdx2 nai

which results in a set o' differential equations

T1+~ [(lT 4E1 fi ~~ (26)

These equations are uncoupled due to the orthogonality of the eigen-

functions and due to the orthogonality between the eigenfunctions and the

Fourier components of the initial curvature. With the initial conditions

tuo

we obtain the solution

Tn 2(ff (x) sin - sin ,flnt

0g 0

+ f ,x) sin X, - ] COS ant +
I II 1IIP

0Pgn

2 (28)
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The longitudinal load P, as well as the modulus of the Fourier compo-

nents, is contained in the coefficient of cos a nt. Thus both of them have

an effect on the amplitude of the free motion.

th
The coefficient of the cosine function of the n eigenmode contains

thonly the Fourier coefficient of the n component of the initial curvature.

If some of these components are zero, then the equivalent eigenmode

amplitude will be unaffected by either the initial curvature or the longi-

tudinal load.

The spine can assume various equilibrium positions. Each one

will produce a different shape of ics initial curvature. This results in

Sdifferent sets of g values. The amplitudes of the various eigenmodeson
* and locations of maximum bending stress will therefore be dependent on

the attitude of the subject.

In particular, the interpretation of test results with animal sub-

jects should take differences in curvature between man and animal into

consideration.

C. Dynamic Instability

When a time variable force is added to the longitudinal load, then

P(t)-P+Posin(rt • (29)

The solution that was just discussed does not apply. The differential

equation for the time distribution is now

T++', T)7 T)(+,:o ,,,,,, ' l

(PFPo sinot) 0o

S•"(30)
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This equation represents a Mathieu equation except for the addition of a

forcing function. Due to the multiplicative connection of T and its co-

efficient, the solution contains also harmonics that are of different fre-
quency than the parameter variation. Which one of these harmonics

dominates the solution depends on the relation of the parameter fre-

quency to the natural frequency. Unbounded solutions can be expected
3at and around frequencies that, according to Bolotin , are

=20 , k= 1, 2, 3... (31)k.

The solution is of frequency w if k is even and of frequency w/2 if k is

add. Therefore there are frequencies of parametric resonance in addi-

tion to the regular resonant frequencies. These frequencies are load-

dependent. The relationship between the first resonant frequency and

the longitudinal load, equation (20), is represented by the solid para-

bola (Figure 4) that intersects the abscissa at w/gZ = 1. The other

parabolas represent locations of possible parametric resonance.

Instability is also possible in areas around these parabolas. Their

width depends on the amplitude P of the load variation. These regions0

of instability are indicated by the shaded areas in Figure 4. Most

dangerous, is the first region of instability that is represented by the

first region on the right.

Approximate equations for the boundaries between the stable and
3

unstable regions are given by Bolotin3. They are:

Ist Region of Instability:

- 1I 1 I I )( z

.15 t (32)
PE 2
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0,0 0.5 1.0 1.5 2.0

Figure 4. Regions of Instability for Model of Lumbar Spine
(Thorax Restrained).
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2nd Region of Instability:

E 3 (33)13 ,,

PE

3rd Region of Instability:

S - A I-(4-) )(3
3E 8+9,6

P 0 EPo
6.2 I(pF PE Euler buckling Load

Parametric resonances were occasionally observed when the trans-

verse motion of the spine of a human subject under vertical vibrations

was observed. The difference of impedance curves as obtained through

vibration and impact tests could perhaps be explained through para-

metric excitation.

Also the capability of the spine to transfer energy at various fre-

quencies may be of some consequence, in particular with respect to

subsystems that are coupled to the spine. Conversely, coupled sub-

systems may distort parametric resonances.

UNRESTRAINED SPINE

The model will now be extended to include the thorax without ex-

ternal restraints. The boundary conditions at the upper end of the rod

are determined by the inertia of the thoracic mass to transverse accel-

erations and the rotational inertia of the thorax (Figure 1). A longltu-

dinal force is acting at the lower end of the hunbar spine. The

configuration is somewhat idealized because whole-body accelerations

and rotations are assumed to be negligible. The equation of motion is

the same as in the previous case and the treatment will follow the
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same sequence of steps as before. The homogeneous equation of motion,

equation (2), (straight rod) will be solved first and the effects of the

longitudinal loading will be discussed. The second step is the solution

of the nonhomogeneous equation of motion, equation (1), and a discus-

sion of the results.

A. Straight Rod

Equation (2) applies in this case as well as the ordinary differen-

tial equations (4) and (5) that were derived from it, and the general

solution for the spatial distribution, equation (6), and time distribution,

equ tion (7). The constants Dmn will have to be determined by the

boundary conditions which were discussed in the previous paragraph,

and are quantitatively defined by the following equations:

V(O) e V" (O)ao (35)

3 2

OV )v (36)t• ~E ax :: -m(a'")~
ax xg Ot XI

m- mass of thorax

3 v -E - -v (37)

2~a -El 2-a)xat X&I" ax1 x-!

e -dynamic moment of inertia

of thorax

The characteristic equation as obtained through the usual manipulation

is
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(rl +"4 r )[(-r cos r 2 -sinr 2 )(r rsinhrl

-)Xr, coshri )+(r 3 coshhrl

.- Ssinhr U)- rU 2 sinr 2  + r r (38)

In this equation are

man2
6 =-E (39)

(40)EI

The characteristic equation contains the natural frequencies as well as

the longitudinal load P which is contained in r, and r2, (see equation 7).

The natural frequencies can therefore be determined as a function of the

longitudinal load. This was done by iteration. The results are presented

in Figure 5 by the solid curves. Arbitrary values were chosen for the

parameters. The only purpose of these preliminary numerical computa-

tions was to obtain a graphic picture of the relationship between load and

natural frequency. The numerical values for these computations, such as

the modulus of elasticity, static moment of inertia, etc. were rough es-

timates of the various spine materials.

The eigenfunctions for this set of boundary conditions are

i fr2 co. + 8 sinrJ
ViX)- sinrf + sinhr+ "

,c€oshr..i-asinhrl

These eigenfunctions depend also on the longitudinal load. The first

eigenfunction at three different longitudinal loads is presented in

Figure 6. The numerical values for the various parameters were

chosen to represent a human subject. The length I is 30.48 cm which
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Figure 6. Eigenfunctiorns of Unrestrained Spine Model Under
Various Longi~tudinal Loads.
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represents the length of the average lumbar spine. The lowest of the

longitudinal loads, P1 , is 27 lbs. or 12. 27 kp, which is about the weight

of the average human thorax. The load P2 is three times that of P1 and

the load P3 is ten times that of P 1 . It is very obvious that these eigen-

functions depend very much on the longitudinal load. The curve for the

load P2 is in shape similar to the transverse displacement distribution

along the lumbar spine of sitting human subjects under vertical vibra-

tion (Figure 2).

The bending moment along the spine in one of its eigenmodes is di-

rectly proportional to the second derivative of the eigenfunction. These de-

rivatives are plotted in Figure 7 for the same three longitudinal loads. It

is very obvious that these derivatives depend on the longitudinal load. The

bending load is rather evenly distributed over the length of the lumbar

spine at small longitudinal loads. Peaks of bending loads appear as the

longitudinal load increases. The greatest peak occurs at the upper end

and a smaller one at the lower section of the lumbar spine. The peaks

increase with the longitudinal load and the lower peak moves farther down

the spine.

Statistical curves have been published that show the incidence of

vertebral injury along the lumbar and thoracic spine. These curves

differ somewhat from one author to the other. Hirsch and Nachemson4

arrive at a distribution along the lumbar spine that is fairly even.

Moffatt and Howard5 present one with an incidence of injury that is low

at the lower end of the lumbar spine. increases slowly from there on up.

and increases rapidly around the I Ith and 12th thoracic vertebra.
6

Another curve published by Higgins et al. is similar to that of Moffatt

except for no injuries around the 4th lambar vertebra and some injury

of the coccyxM

It seems that the differences of these curves may be due to differ-

ences in the magnitude of the longitudinal loads.
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Figure 7. Second Derivative Of Elgenfunctions Of Unrestrained
SPine Model Under Various Longitudinal Loads.
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After comparison with the second derivative of the eigenfunction,

one would expect the incidence curve of Hirsch and Nachemson to be

obtained from cases of relatively small longitudinal loading. The sec-

ond derivative of the eigenfunction crosses the zero line for two longitu-

dinal loads. This seems to reflect the zero incidence in Higgins' curve

around the 4th lumbar vertebra.

B. Curved Rod

In the previous discussion, we did not consider the right hand side
of equation (1). The nonhomogeneous equation cannot be solved exactly

by making a product assumption because it is not self adjoint. An ap-

proximate solution with such an assumption can be obtained. In this

case, the Galerkin method will be applied.

The equation of motion is rearranged to assume the form

4 2 2* z x2  0t2" dz 2

A product assumption of the following nature is made

•(3~t -ItVniX) TnltM (43)

ns!

where the Vn(x) are the previously determined eigenfunctions. This is

substituted into equation (42) which results in

LOD (1). (44)

t(x, t) is zero if such an assumption can satisfy equation (42) exactly.

and it is different from zero if it cannot do that. In this case the error

of an approximate solution with this assumption is minimized by im-

posing the conditions
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fL ') Vn (x )dxso . n 1. N (45)
0

This requires the error E(x, t) along the length of the rod weighted by

the eigenfunctions and integrated over x to be zero. In other words,

equation (45) requires orthogonality between the residual and the eigen-

functions.

The variable x is eliminated through integration and a system of

coupled ordinary differential equations with t as the variable evolves.

These equations would not be coupled if the eigenfunctions of the ad-

joint problem would have been used for weighting functions. The coupled

equations are in matrix notation

}+ (E [bnI + P-(t) [C0i T.){

(46)

0 "JVnVida ; bnl fVnVl
o0

(47)

o V
Dfj Vj*dx An'o d Vn dx

The solution of this equation consists of the solution for the homo-

geneous equation plus a particular solutiou of the nonhomogeneous

equation. An assumption of the type

T (T 1 )-{T') e'i' (4()

for the homogeneous equations, and the usual manipulations, lkads to

a solution of the type
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N
T q (49)n - k I•k s'n (6kt + 1Y (9

k=l

The pnk are the amplitude ratios.

The right side of equation (46) is constant. Therefore, a constant

can be determined as a particular solution. This solution is

(Bi} -P(t) CHI" [aIJ'- ýAJj (50)

[ 1 Jai-'_ (El[b.j] 4 P(t) [cijc) (51)

The complete solution is then

a N
VLjt n V E (qk LnksiVn (wkt + +k)+ Ba) (2UZIl k-=l

This can be rearranged and expandv-d to assume the following form:

Y(xt) 0-q 1 tVIl+SL, V + -.. VtMI sin(witt+ 4,}--

+ q. (Viuni + V*& + .. Vpnn] sin (wntt +

'In ($3)

The eigenfunctions of the curved rod under the specified bounidary con-

ditions can be expressed as series of the eigenfunctions of the straight

rod weighted by the amplitude ratios as obtained during the solutiot,

for the time distribution.

The q. have to be determined using the initial conditions. Various

methods can be applied such as subdomain. Galerkin. or a collocation

technique. In any case. the qn will finally be dependent on the V, that
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is the eigenfunctions, and on the B which are determined by the initialn
curvature. Therefore the .. :.plitudes of the free motions are affected

by both the initial curvature and tae longitudinal load which is also part

of the B 's and the eigenfunctions. The initial curvature of the spinen

changes between different attitudes of a subject. The difference in re-

sponse between attitudes can be accounted for through the initial

curvature.

C. Dynamic Instability

The solution for the spatial and time distribution, equation (49),

applies only if P(t) is a constant. The differential equation for the time

distri.ation, equation (46), will have to be solved by procedures such as

Hill's method. Of particular interest are areas of possible dynamic in-

stability. These hi. d rnt beaen determined for this particular case.

However, these areac are usually arotud the lines of the natural fre-

quencies in Figure 5 and also around curves of twice the natural fre-

quency, fracticns of it, and at fr.equencies that are the sums and

differences of the natural frequencies. Some of these conditions of

parametric instability are indicated by the broken lines in Figure 5.

CONCLUSIONS

It was the purpose of this discussion to investigate the possibilities

of accounting quantitatively for the effect of longitudinal loads on the

natural frequencies of transverse motions of the lumbar spine, as well

as for the effects of longitudinal loading and initial curvature on the

magnitude and distribution of bending along the lumbar spine.

Longitudinal loads, Initial curvature and boundary conditions im-

posed on the lumbar spine seem to have significant effects on the mag-

nitude and distribution of bending in a dynamic environment. The type

of bending distribution curves that have been obtained seem to agree

with statistical curves of injury incidence along the lumbar spine. The

transverse displacement distribution along the lumbar spine under
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longitudinal loads agrees with experimental data. A more detailed

numerical adjustment of the model to experimental data will be attempted.

In particular, major subsystems that are coupled to the spine will have

to be considered for this purpose. Because subsystems have an effect

on the boundary conditions and thus on the response of the spine, it

seems they have to be included because no experimental data are avail-

able that exclude coupling effects.

The natural frequency of transverse spine motions under longitudinal

loads is load-dependent. The natural frequency decreases in general

with increasing compressive loading and increases with increasing ten-

sile loading. The type of natural frequency - longitudinal load relation-

ship depends to a great degree on the boundary conditions.

Parametric transverse resonances and dynamic instabilities can be

expected under a periodic longitudinal load.
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