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THE EFFECT OF INITTAL CURVATURE ON THE DYNAMIC RESPONSE
OF THE SPINE TC AXTAL ACCELERATION

T.F. Li, S.H. Advani, and Y-C. Lee

Department of Theoretical and Applied Mechanics
West Virginia University, Morgantown, West Virginia

ABSTRACT

A majority of the studies on the dynamic response of the human
torso have considered uni-axial models wherein tho initial curvature
of the spine is ignored. A detailed discrete parameter vertebral
response model incorporating the variable gaometry of the spine and
subjected to pilot ejection simulated impact conditions has been
recently investigated by Orne and Liu. In this work, a simple con-
tinuum representation of the spine is formulated and the resulting
boundary value problem is solved for the axial and lateral (bending)
dynamic response. The assumed model is a constant cross-section,
3inusoidally curved, elastic beam with an end mass subjected to an
axial acceleration at the other end. The effects of transverse shear
and rotational inertia are ignored in the model. The equation govern-
ing axial displacement is & non-homogeneous wave equation subjected
10 non-homogeneous boundary conditions. The governing approximate
equation for the lateral deflection is a non-linear second order dif-
ferential equation with variable coefficients. Short time solutions
for these equations are obtained to demonstrate the effect of initial
curvature on the spinal dynamic response., Numerical results indicate
that the dynamic bending stress is significant in comparison to the
axiasl dynamic stress.
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LIST OF SYMBOLS

(‘ : Dimensional Quantity Physical interpretation
s =L A effective spinal cross-sectional area
e c = vB/u compressional wave speed
.'-: ‘,, g E instantaneous Young's modulus
. ° I=Ar? principal moment of inertia
’ M concentrated head and upper torso mass
- r effective radius of gyration about
{8 spinal bending axis
{ 1] lumped effective torso and spine mass
, ' .ﬁ density
, .; ] Non-dimensional To convert to Physical Interpretation
- - Quantity dimensional form
3 (7) multiply by
'. a c?/r foreing acceleration
A 1 L r effective spinal length
" P AE axial force
“, t r/e time
4 u r axial column displacement
- i X r axial co-ordinate
v(x,t) r total column bending displacement
Y(t) r time function
yo(x) r initial column bending displacement
YO r maximum column eccentricity
A=Mulr =2 0L mass parameter
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INTRODUCTION

Crew member protection from hostile merospace environments is a
biomedical engineering problem of grave concern. Rheological and
structural response models of human body system components have re-
ceived particular attention towards defining limiting injury thresh-
olds associated with the governing mechanism(s) of injury. Of special
interest is the modelling of the vertebral column response to transient
headward accelerations along the spinal axis (+ G_ ejection mode).
Reported data on vertebral fractures resulting frém pilot ejection
reveals that a majority of these fractures occur between T8 and L1.
Several discrete parameter and continuum models of the human torso
ranging in complexity and scope have established the desirability of
analytical representation of the response variable defining injury.

A review of pertinent investigations can be found in studies by von
Gierke [1], Roberts, et al [2], and Orne and Liu [3]. Selected contri-
butions are indicated below.

Uniaxial spring mass characterizations of the human torso under
impact have been examined by Latham (4], Payne [5], Stech [6], and
others [T]. A more refined model described by an eight degree of free-
dom damped spring mass system has been studied by Toth [8]. Recently,
Orne and Liu [3] have investigated a detailed multi-mass representation
of the torso incorporating the effects of spinal disk axial, bending,
and shear deformations in addition to the variable vertebral geometry.
The discrete parameter models involve the (simultaneous) solution of
ordinary differential equation(s) formulated from the conditions of
dynamic equilibrium. Research on continuum descriptions cf the torso
includes one dimensional wave propagation models considered by Hess
and Lombard [9], Liu and Murray [10], Liu [11], Terry and Roberts [12],
and Murray and Tayler [13]., These uniaxial continuum models vary in
their degree of sophistication depending on the boundary conditions
(head mass), and constitutive relations (linear/non-linear, elastic/
visco-elastic)., It is noteworthy that experimental results and ana-
lytical solutions comparing the rectangular pulse response of an
elastic rod-mass system with that of an equivalent spring mass approxi-
mation have been obtained by Seigel and Waser [14]. Their work indi-
cates that the rod-mass system experiences "significantly larger" forces
for short pulse duration and/or end mass magnitude.

In this paper, we consider a simplified continuum dynamic model
representation of the curved spine with the torso mass uniformly dis-
tributed along its length. The idealized model is a constant cross-
section, sinusoidally curved, elestic column with end mass subjected
to a uniform acceleration at the other end. The influence of trans-
verse shear and rotational inertia is ignored in the model. In addition,
the effects of moments arising from the head-torso mass eccentricity
and the external support-restraint system interaction are not ineludod
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in the analysis. The bending stress resulting from these external force
and moment intensities can be superposed on the selected basic model
under study. Experimental work by Vulcan, King and Nakamira [15] indi-
cates the relative importance of support-restraint systems and head-
torso rotation on bending stresses in the vertebral beam-column. The
motivation for the assumed model stems from the results of small animal
+ G impact experiments conducted with flat back and contoured support-
restraint systems [16,17]. The large incidence of vertebral fractures
and paralysis for the flat back system evidently supports the consider-
ation of initial spinal curvature.

As a problem in theoretical mechanies, the non-linear dynamic
response of a simply supported column with sinusoidal initisl curvature
and a constant velocity forcing function at one end has been studied by
Hoff [18], Sevin [19], and Dym and Rasmussen .{]. A comprehensive study
of the curved dynamic beam response under constant velocity end loading
with combinations of simply supported and clamped boundary conditions
has been conducted by Archer and Das [21]. They demonstrate an improved
numerical stability of their finite difference solution when the effects
of beam transverse shear and rotational inertia are included. Here, the
E _ equations and associated boundary conditions governing the axial and
E ;: bending spinal column motion are formulated and uncoupled. The non-

E . 3 homogeneous wave equation for the axial motion is solved and an approxi-
X mate equation for the bending response time variable is obtained by

using the Ritz-Galerkin procedure. Short time solutions for the spinal

g response are obtained by the Runge-Kutta method to demonstrate the

i importance of initial curvature in considering the spinal column

- response.

2 - FORMULATION OF THE BOUNDARY VALUE PROBLEM

The equations governing motion of the basic spinal model (Fig. 1)
i3 ¥ can be derived by use of Hamilton's principle. The Lagrangian, using

: this variational energy formulation, considers the strain and kinetic
3 : energies of the column and the work done by the axiesl force. The non-
. 3 dimensional equations, in terms of the coupled generalized co-ordinates

& y(x,t) and u(x,t) with respect to an inertially defined co-ordinate
. system are:

(i) An equation governing the bending motion of the column

. y""+(P'y'+P¥")+;=y6"' (l)
K ;_ (1) An equation governing compressive motion of the column

: ] -P' = u (2)
E o The non-dimensional axial force P(x,t) in equations (1) and (2) is

4 9 defined by

» o - )

A [} S - t = t - ]

[ pe-fur+ 302 - () (3)
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In the preceding equations primes and dots denote differentiation with
respect tc the non-dimensionalized space and time variables respectiv-
ly. The influence of column transverse shear and column, torso-head
rotational inertia is not considered in these equations. A more gen-
eral representation of equations (1), (2), and (3) is currently under
study at Technology Incorporated using the finite difference method [22].

The boundary and initial conditions for the assumed model are

u(0,8) = 3 a2 P(L,8) = Au(L,t) (La)
y(0,t) = y(L,t) = y'"(0,t) = y''(L,t) = O (bv)
u(x,0) = u(x,0) = y(x,0) =0 , and y(x,0)= yo(x) (ke)

AXTAL, DISPLACEMENT RESPONSE SOLUTION
Equations (2) and (3) can be re-written in the form
u-au'ts= £i(x,t) (5)
vith f(x,t) = %—[(y')z - (yé)z] .
The solution to equation (5) can be obtained by considering (i)

& homogeneous wave equation subjected to non-homogeneous boundary con-

ditions and (ii) a non-homogeneous wave equation with hcrogeneous
bourdary conditions. We therefore write

usutu, (6)
where wu, satisfies the equation

H
wy - uy' =0 (1)

with the boundary and initial conditions

ulot) = Zat? w(Lyb) = -hug(B,6) = £(L,t)yu (x,0)
= &H(x,o)= 0
and U satisfies the equation
up = up' = £1(x,t) (8)

with homogeneous boundaery and initial conditions

up(0,t) = wilL,b) = uy(x,0) = Uplx,0) =0
We obtain the solution to equation (7) in a manner similar to that of
Liu and Murray [10] with the modification expressed by the term f£(L,t)

in the boundary conditions. The resulting solution after use of the
Laplace transform method is
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uH(x,t) 8-3- (t - x)2 H(t - x) +Z [(t - 2nL - x)? H(t - 2nL - x)

n=1

~ (t - 2nL + x)2 H(t—2nL+x] Zz('l)m 2A n, ,

n=l m=1

t
. j [ (t - 2nL - x)2 H(t - 2oL - x} - {t - 2oL + x)2 H(t - 2nL + x)]~
0

. (t - T)m"l e—(t-T)/A d

n=l

t
- Z [ (~-3.)n [f(L,T +x - (20 +1)L) - f(Lyx =x - (2n + 1) L]°

B () Be)
R [e ss ]' Tt []E.H(L: ] dt (9)

where L-l denotes the inverse Laplace transform and
e(s) = (1 - a8)/(1 + rs) .

The solution to the non-~homogeneous equation (8) can be obtained
in the form

® 9 L3 sin B2X ’ £(L,t) sin &L !
Up EE : > 2 -
o

nw 2L
n=1,3,5
nr . £{x,t) cos 2= ax { sin — (t - t) ar (10)
Ta |, 1) co8 5

SOLUTION FOR THE BENDING RESPONSE
Equation (1) governing the column lateral response y(x,t) is
simplified by selecting the initial column deviation g (x) from the
vertical uxis to be sinusoidal. Additionally, in view of boundary con-

ditions {4b) we :ssume that the column responds in the first spatial
mode. We therefore take

¥(x,0) = yo(x) = Y, sin (ax/L) (11)

y(x,t) = Y(t) sin (wx/L) (12)
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Substituting equations (3), (6), (9), (10), (11) and (12) in equation
(1) and using the Ritz-Galerkin averaging method, we obtain after con-
siderable simplification a non-linear, variable coefficient, second
order differential equation governing Y(t) . It is

4 4
§(t)+(% [(r-yo)\»g-(ﬂ-yg)n(%) »%A(t) Y

6 o — n2.}
- ==Y — G (t =0 1l
— Zl:3 ECRPS o )] (13)

n=l,

where

2 L L
= | L 21X n ) Ix i
A(t) (L) [ Py sin de+LJ Py sin == cos <5 dx
o} 0

t
- 2 _y2 a7 o -
Gn(t) fo (Y YO) sin 5T (t - 1) ar

and PH is the axial force derived from the homogeneous wave equation.

Asymptotic solutions to second order non-linear differential
equations with variable coefficients of the type designated by equation
(1%) have been investigated by Kuzmsk (23). However, these solutions
are valid for slowly varying time coefficients. A power series solution
to (13), with physical constants represented by spinal constitutive and
geometric properties and a forcing acceleration (&) of 20 G, exhibited
numerical instability following a time duration of 15 milliseconds. An
improved technique of solution using the Runge-Kutta method in conjunc-
tion with an iterative procedure was finally used to yield the transient
model response.

ASSUMED SPINAL CONSTITUTIVE AND GEOMETRIC PROPERTIES

An extensive literature reviev revealed that available data iz in-
adequate for characterizing the spinal response in the short time domain.
Data surveyed included results on spinal compressive wave propagation
experiments and snalysis [6,7,22], natural axial frequency dats on spinal
response [1,7,24], and compress’on and bending tests on human vertabrae
and disks [22,25}. The wide range of reported results is evidenced by
comparing (1) a calculated compressive wave velocity of 100 ft/sec ob-
tained by Hess and Lombard (9] versus an experimentally determined spinal
cadaveric velocity of 191 ft/sec [22]) and (ii) a first resonance axial
frequeacy of around 10 H{z for the spine-upper forso mass {1] as cowpared
to Ul Hz indicated in another study [7]. The static compressive proper-
ties of vertebrae and disks are well docuntented in the literature. Ex-
pericents conducted at Technology Incorporated {22] on the compressive
response of human vertebrae and disks, using linear"VIsco-elastic theory,
indicate that "the average initial elastic modulus {ur sets of one done

560




T A .

R AR e L

N P T

SRR LE 00 BESLRE LCI Al R E A

\

plus one disk is T428 psi. The corresponding reported values for verte-
brae and disks are 10,029 psi and 2552 psi respectively [22]. Prelimi-
nary results from static moment-curvature tests on human cadaveric
spines reveal that its flexural rigidity EI ranges from 6 x 103 to

10% 1b-in?[25].

Based on the Aata and literature reported in the preceg¢ding para-
graph, a compromised set of constitutive and geometric constants was
selected, The values chosen for the assumed model are:

Effective spinal length (L-4 to Cervical Vertebrae) L = 18 in
Effective cross-section of area 4 = 1.3 in?

Effective radius of gyration about bending axis r = 0.527 in
Spinal column eccentricity Y. =2in

0
Head and upper torso concentrated mass M = 0.055 1b sec?/in

Non-dimensional mass parameter X = MuAL= 0.33
Instantaneous elastic modulus E = 10,000 psi

The undamped compressive wave velocity and axial spinal frequency
with the above data are 120 ft/sec and 13.5 Hz respectively. The
spinal cross-sectional area and radius of inertia take into acccunt
the added contribution of the supporting vertebral structure. In
addition, based on the "hardening" strain rate characteristics of most
biolngical materials, the assumed instantaneous model elastic modulus
is chosen to be larger than reported static values.

DISCUSSION AND NUMERICAL RESULTS

Before proceeding to illustrate the results of the numerical compu-
tations, a discussion of the assumed model and its inherent limitations
vill be presented. The selection of a simple half sire vave for descridb-
ing the initial spinal configuration deserves special mention. BRased on
geometric data, the sine vave adequately defines the cpinal curvature
from the cervical vertedbrae to the upper lumbar regicn. The results of
Orne and Liu (3] demonstrate a vanishing bending zoment for durations up
to 90 milliseconds in the vicinity of the L-3 region, thereby Justifying
the asswsed deflection form. In addition, their results indicate @ .t
the axial force remains relatively constant in the lumbar region for a
specified instant. The continuun model, being an initial atteapt tovards
desonstrating the efrect of spinal curvature, neither includes the
bending mozent contribution of the head-torso mass eccentricities nor the
influence of the support-restraint systes {nteraction. These cffects can
be introduced by refining the model to a beaz-column sublected to exter-
nal distributed dynaxic zoments and lateral forces (incorpcrated as e
rotational inertia term uJ y snd external forcing term ¢'x,%) in
the bean equation). Thue ef e§§§$e zass terns participating in the bending
and axial modes would aiso require modification in this zodel.

Rumerical work vas performed on an IBW 360, Model 75 conputer. ke
Punge-¥ulta routine vas combined with an iterative procedure to compute
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the lateral deflection. Figure 2 illustrates the mid-span lateral de-
flection time history computed from equation (13) for acceleration load-
ings of a =10 G and 20 G. The corresponding total compressive axial
displacement is also indicated in this figure. This axial displacement
is a superposition of solutions obtained from (i) a homogeneous wave
equation ( 7) with non-homogeneous boundary and initial ccenditions and
(i1) a wave equation ( 8) with a forcing acceleration term and homo-
geneous boundary and initial conditions. Since the support-restraint
reactions are ignored in the analysis, the results are assumed to be
relevant up to a time duration of 4O milliseconds. Figure 3 compares

the axial force computed for the uniaxial and axial-bending response
models at the load and head ends. The significantly reduced dynamic
response factor at the forcing end results from the curvature terms.

The head end axial force is also reduced and tends to be tensile for
larger elapsed times. The maximum compressive fiber stress time history
at the anterior mid-span obtained from the relation o = -(P/A + MA/I)

is shovn in Fig. 4. The assumed initial deflection forr prcsupposes a
maximum bending contribution at the mid-span (T-8 or T-9) which increases
with time in the interval considered. This is in contrast with results
vhich indicate a reversal of sign in the bending mowent around this
neighborhood [3]. The bending moment stress contribution due to the
initial curvature is about 30 percent at t = 40 milliseconds. This
effect would be further enhanced if the moments arising from the rotaticn
of the head and movement of the torso were considered. The instantaneous
elastic response solutions in the figures represent upver bounds for the
visco-elastic vertebral mcdel. However, the early time response for the
elastic and damped models is slmost identical.

A comprehensive discussion of the mechanisms associated vith verte-
bral injury has been presented by Kazarian, et al [26]. Among these the
terior lip fracture, the compression fracture, and the hyperextension
fracture are of particular interest. Coupled with these findings is the

reported constitutive experimental data {27,28,29]. In the tests con-
ducted by Crocker and Higgin. [29], the intervertebrasl disks exhibited
“hardening" stiffness propert cs with increarzing strain rate. Howvever,
their maximum compressive velocity rate of lmm/s=¢ is vell belov the
corresponding rate encountered in vertebral election. Based on the
general trend of svailable experimentsl results and the sodel analyais
represented by Figs. 2,3, and 4 the aechanisms of injury indicated abdove
lend themselves to analytical definition. For exsample, data on anterior
lip, cospression ari hyperextension Practures cen be correlated with
cowputed dynamic values of compressive stress, tensile stress (due to
excessive bending moment) and/or bending and axial displacements. The
spinous process fracture vith dirtplacesent of “he pedicle nay be inter-
mreted by incorporating the effects of transwverse shear in the goveruning

cquation.
OOACLUSICHS AFD HECOMNENDATIONS

The geomelrically non-linear, continuus wmodel analyzed here ansvers
some basic questions pertinent to the interpretation and prediction of

vertebral coluftn injury resulting from dynamic axial lceds. Specificaily,

the ipitial spinal curvature istroduces a scupled axial-lateral response.
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The axial force and stress distribution are significantly influenced by
the bending motion response as a result of the mechanical energy distri-
bution between the axial and bending modes.

It is recommended that spinal disk constitutive equations valid in
the impant range be determined from high strain rate compressive tests,
Finally, it is suggested that more complex continuum models be formu-
lated and the resulting boundary value problem numerically studied to
examine the detailed spinal stress response, the torso surface wave
response and the associated mechanical energies producing injury.
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