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ABSTRACT

L’So]utions of the ray propagation equation are obtained
for various boundary conditions, assuming vertical incidence
in plane, parallel, equal-travel-time layers. The solutions
are oxamined in poth the time and frequency domains and
certain properties derived, A complete discussion of
frequency-domain synthesis techniques is given in connection
with a treatment of the absorption problem., FORTRAN programs
are given which compute any of the solutions in either the
frequency or time domains, with or without absorption, The_
theory and programs are applied to the problem of source depth
determination, and it is shown that the method of pP spectral
nulls is somewhat unreliable.
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INTRODUCTION

Considerable work on ray propagation in multilayered media
has been reported in the literature (see Claerbout, 1968, for
references). Most of it has been concerned with calculating
near-source seismograms for vertically incident waves in loss-
less media., Claerbout summarized previous results for this case
in the concise notation of Sherwood and Trorey (1965), and
included in his paper a computer program to synthesize reflection
seismograms in the time domain. He also derived the solution for
the transmission seismogram due to a source buried in the lower
half-space. Landers and Claerbout (1969) applied the half-space
transmission solution to a study of crust/upper mantle models
proposed by Aki. Frasier (1970) has developed solutions for non-
vertically-incident P and SV waves in non-absorptive media which
are closely analogous to Claerbout's.

A totally satisfying treatment of the absorptive case has
not been given, to the author's knowledge. Trorey (1962) devised
a time-domain solution using a non-realizable linear absorption
law. For practical reasons he was forced to lump his absorption
into a small number of constant-Q bands. His procedure seemed
cumbersome and no attempt was made by this author to duplicate
it. Instead, a frequency-domain approach has been utilized.
Several authors have expressed the fear that this would lead
to large aliasing errors, but such has not proved to be the
case, A discussion of practical difficulties is given, Besides
its simplicity, the frequency-domain calculation has the
additional advantage that there is no particular problem in
making one's absorption law realizable, Sherwood and Trorey
(1965) gave essentially a physical argument that the delayed



transmission seismogram must be minimum phase for a minimum-
phase absorption law. A mathematical proof is presented here.
A discussion of dispersion is also given,

Since this work was completed, a paper has appeared
(Jensen and E11is, 1970) in which the authors obtain solutions
for non-vertical incidence plus absorption, using linear system
theory. They calculate spectra, not seismograms, and they do
not include dispersion, No programs are given. An alternative
approach to the general problem would be to apply the techniques
developed here to the solutions given by Frasier.

The emphasis in the present work has been placed on obtaining
algorithms which are fast, accurate, and concise, and therefore
useful for large-scale model studies. The first part of the paper
is devoted to obtaining lossless transmission solutions for
various boundary conditions of interest (assuming vertical
incidence in plane, parallel, equal-travel-time layers). A
computer program is included to do these calculations (exactly)
in the time domain. The second part considers the practical
aspects of frequency-domain absorption calculations. FORTRAN
programs are included to do all the cases treated in the first
part in the frequency domain, including frequency- and depth-
dependent absorption. Versions both with and without dispersion
are given,

One application of the theory and programs, to source depth
determination, is discussed in detail. Sources of error in
determinations by P-wave spectral nulls or cepstral analysis are
investigated both theoretically and experimentally. It is shown,
in particular, that inhomogeneities near the source can produce
large shifts in the null frequencies from the values predicted
using a simple echo model, Further, it appears that there is no



really practical way to circumvent this effect. Thus a limit
can be placed on the reliability of this method.

Certain other applications of the programs are mentioned

briefly.



THE LOSSLESS CASE

Propagation equation

For up- and downgoing displacement waves U and D, waves

at the surface are related to those at depth by the "propagator
matrix"

U : Xe(17z)  ZXe(172)| | v 5
D| urface ETIt G(z) F(z) D |y

Derivation of (1) is given in detail by Claerbout and will not
be repeated here. (Note that for convenience we factor out a
transmission factor TTt = TT$=]ti.) F and G are polynomials in

z, obtained by taking products of k "layer matrices"

b4 zrtiu

1

= - (2)
wt

D j r 1 D j+1

where z = w2 z e'imT represents a unit delay operator, and T
js the two-way travel-time across each layer (the same for all
layers) and equals the sampling interval, The (dispilacement)
reflection coefficients r are defined at each interface by

r = (pava = pbvb)/(pava + pbvb) (3)



for densities p and velocities v, a above and b below; and
the (downgoing) transmission coefficients t are related to
the reflection coefficients by t = 1 + r. Equation (1) may be
conveniently viewed in either the time or frequency domains.

In this paper we consider only problems in which at Tleast
one free surface is present, and it turns out that in this case
the quantity of interest in (1) is not F or G, but the combi-
nation

A(z) = F(z) - z°6(1/2) (4)
(A is normalized and is related to Claerbout's M by A(z) =

M t;M(z).) A recursion for A may be developed by multiplying
the propagator for k-1 layers by an additional layer matrix

zk']F(l/z) zk']G(l/z) z  zr,

G(z) F(z) e 1
L

- rksz(l/z)+zk“ 6(1/2)
. rsz(z)+F(z)

from which

Ak (2) = [r,26(2) + F(2)] - [r 2F(172) + 27 Ta(1/2)]



by definition (4), or

A (z) = alkeT)(g) oy Kalk=T)(q)2) (5)

Claerbout gives essentially this expression, In the time-domain
this is equivalent to the recursion

k k=1

A% ) - A% b e L=

A§k) Agk']) - rkA(k l% i 2, veus K
k) .

A£+% - "k

K
2 4 ..+ A2

, . (k) -
(obtained by putting A‘"/(z) = A] + Azz + A3z K+

into (5) and identifying coefficients of powers of z).

Half-space

For the case of an observer located at a free surface and
an impulsive source buried in a half-space below the layers,
the boundary conditions are a perfect reflection of the observed
seismogram X(z) at the surface, a 1 coming up from below, and
some function P(z) returned into the half-space. The propagation

equation (1) is thus

1 XF(172)  ZXe(172) ||
x| wkmt G(z) F(z) p

(6)



Inverting and solving for X yields
_ ukark
X(z) =« TT5_1(1-r;)/A(2) (7)

(The determinant in (6) is sz(1/z)F(z)-sz(1/z)G(z) = szﬁ(l-r§),
from (2).) This is Claerbout's solution. The seismogram due to

an arbitrary source function S(z) may be obtained by convolving
the impulse response with S,

To actually compute (7) we first compute A by means of the
recursion (5) and then invert, Note that in the programs we do
our convolutions (multiplications) and deconvolutions (divisions)
in the time domain for accuracy. In the timedomain, convolution
and deconvolution are N2 processes (require a time proportional
to N2 for N elements), but since the layer recursion (5) is also
N2, little is lost by doing this. Note also that the factor wk
in (7) corresponds to the initial delay of the first arrival,
but this is ignored in the programs and output commences with
the first point,

Source on far surface

If both observer and source are located at free surfaces,
boundary conditions are as shown in Figure 1,

SURFACE
LY X

41+R ¢ R
SURFACE

Figure 1, Source on far surface

-7-



R here is some unknown function. The propagation equation
for this case is

Xe(172) ZXe(isz)| |1+ R
X wot G(z) F(z) R

Solving for X,
X(z) [A(2) - 2*A(1/2)] = Wk T (1r)) (8)

Inspection of (5) and (7) shows that the same answer could be
obtained from the half-space solution by adding an extra layer
with r = 1 (an obvious result), provided that the layer is

not included in the transmission factor'ﬂ (1- -r, ). Writing

A (z) = A(z2) - 2 A(]/z), (a definition Lhat w111 be used through-
out this paper), (8) becomes

X(z) = wETW(1-r,)/A" (2) (8*)

The inverse wavelet in this case is antisymmetric about its
midpoint. This implies, among other things, that half the
information about the layers is lost, that is, one cannot go
from the seismogram back to the reflection coefficients of

the layers in this case. Another way to see this is as follows.
Inverting z in (5), multiplying by rkzk and adding to A gives



(1-r2) alk=1) () = alK) (z) 4 2K alkY 12y (9)

which is the inverse recursion that allows us to extract the
reflection coefficients from the inverse wavelet. In (9) we
remove layers one at a time, where at each step re = -Akt] is
the last boundary. Evidently (9) blows up when any re =t 1.

This result has an interesting physical interpretation.
Consider the propagator of an inverted layer set. If the
normal case is written

u' u

n
L

we write the inverted case

by inspection of Figures 2 and 3.

v b D U

* i I'l * ‘t 'rk
r2 Q -I'3
: 3 i)
: r "
k 1
1iU *'D *‘D' i'U'
"Figure 2. Normal case Figure 3, Layers inverted

-9-



Comparison with (1) gives

g -
K
z F(1/2) -G(z)
] u 1 (10)
2 wEH(l-ri) -z%6(1/2) £(2)

This can also be obtained from (1) by a time reversal, z = 1/2z,
plus a matrix inversion, i.e. Qz) = 0'1(1/2). Writing
R(z) = F(z) + G(z), by analogy with (4), we have

K*(z) = R(z) - 2k R(1/z2)

[F(z) + 6(2)]1 -zX[F(1/2) + G(1/2)]

A(z) - zFA(1/2)

or

-

A*(z) = A%(2) . (11)

.

Thus the antisymmetric combination is invariant under an
inversion of the layers. Comparing this with (8'), we see
that interchanging source and receiver gives the same seismo-
gram, except for a scale factor (reciprocity), i.e. one

-10-



cannot tell, from the seismogram, which side of the earth is
which.

In principle, a reflection coefficient slightly less than
unity removes the difficulty associated with (9), but in
practice the requirement is that l-rz must not be so small as
to make the recursion unstable. In any case, the actual reflec-
tion coefficient of the distant free surface is just the ratio
of the last to first points of the inverse wavelet., The
presence of absorption will change these results drastically,
In fact the inverse problem is then not do-able even in the
half-space case (at least not using the techniques discussed
here), essentially because one is required to obtain 2k items
of information from only k items of data.

Contained source

Of some interest is the case of a source buried in a
layer stack terminated at both ends by free surfaces. This
case may be easily treated by coupling half-space solutions
back to back {Figure 4).

SURFACE
X XV

ref. 38 Py
1 3R
¥x' x'§

SURFACE

Figure 4, Buried source

-11-



We assume the source to be located in a trivial (r = 0) inter-
face common to the two lay:~ stacks. The transmitted wave due
to a source B(z) is, by (7),

X(z) = wE T (1-r;) B(2)/A(2) (7')

The wave returned from the half-space may be obtained by
solving (6) for P

P(z)

wk A(1/2) X(2) /T (1=ry) (12a)
2 B(z) A(1/2) /A(2) (12b)

Primes wiil be used to denote quantities associated with the
distant stack. From Figure 4, the coupling relations are

B(z) = S(z) - P'(2) {13)

B'(z) = S(z) - P(2) (13')
for a spatially symmetric source S(z). The minus signs in (13)
are necessary to take account of the change in reference
direction of the (displacement) waves between the two layer

sets. Substituting (12a) into (13'), (13') into (12b) (primed),
and the result into (13) gives

-12-



' k ,
B(z) = s(z) - 2% [s(z) - —%— A(1/2)X(2)] A'(1/z)
T(1-r,) A'(2)

Using (7') and collecting terms

[A(z)A'(z) - 2X*K" aQi/2)a(172)] x(2)
(14)

-1 ,
= wk1T% ](1-ri) [A'(z) - zk A'(1/2)] s(z)
i=

Note that the filter on the LHS of (14) is antisymmetric and
depends on all the layers, whereas the filter on the RHS,
which is also antisymmetric, ‘epends only on the layers lying
between the source and the far surface.

A comparison with the far-surface solution (8) is tempting,
but in that case one reference direction was used for all
layers, whereas in this case we have decomposed the stack into
two opposing substacks. To make the comparison, we should write
the propagator for the whole stack in terms of the two substacks.
This is just the product of the propagator for the near stack
and the prv:. 'rator for the far stack inverted, i.e. QT =Q Q.
From (1) and , °) this is

] sz(1/z) sz(1/z)

Q0 = wRﬂt G(z) F(z)
] zk'F'(1/z) -G'(2)
- —

W TT(l-r%) -zk'G'(llz) F'(z)

] -6 (2)2XF(1/2)+F ' (2)2%6(1/2)
- wk+k'“(]+ri)n(]-r-'i) o -G'(Z)G(Z)+F'(Z)F(Z)

-13-



from which

Ap(z) = F'(2) A{z) + 6'(2)zX%A(1/2)

by (4), and
s kg
AT = AT(z)-z AT(]/Z) (15)
= A(z)A' (2)-2%"K" AQ1/2)AT(172) = (AR%)*

Putting this result in (14) gives

* kk'] *

Ar(z) X(z) = w T  (1-r;) AV (2) S(z2) (14')

i=1 !

Comparison of (14') with (8') shows that the only difference is
in the RHS of (14'), that is, one obtains the same seismogram
from a source Ss located at the far surface as from a buried
source Sb provided

5, (2) (15)

(The change in the sign of the reflection coefficients arises

-14-



because we have considered the primed stack to be ordered
from the far surface down, Actually, theorem (11) says that
we may calculate A‘* from the reversed stack as we11. in
order to be consistent with the calculation of A* T This is
done in the programs). Thus (15) represents a "source-burying
operator" which describes the effect of burying the source

in terms of the layers between the far surface and the source,

Remembering that A'* is antisymmetric about its midpoint,
which represents the depth of the source in travel-time
(sampling-rate) units, we might hope to use this fact in
source depth determination. If one could isolate A' by some
means, then the least-squares point of antisymmetry would
give the depth. For example, if a seismogram Xs were available
from an identical source lying along the same path at the
surface, then comparison with the buried-source seismogram
Xb would give

X /X ~ AT
b/ S

ignoring scale and delay factors. This method suffers from
certain obvious disadvantages. A more direct approach would
be to look for zeros of Xb. This has been done in the past
(cepstrum analysis) and suffers principally from the effect
of the source window S(z). A study of the limitations of the
method is presented below under Applications. An alternative
derivation of the buried-source operator given in the next
section shows that the result is general.

-15=-



Source=-burying operator:

An alternative derivation of the source-burying operator
can be given by comparing (distant) half-space solutions for a
far-surface source and requiring that the incoming and outgoing
waves be identical for the two cases (Figures 5 and 6).

_ﬁ @ *R.,.ss ﬁ v X
__*‘B v __*'B P

Figure 5, Surface source Figure 6, Buried source

For a surface source, the propagation equation (1) is

R ! sz(l/z) sz(1/z) B

R+ S wilt G(z) F(z) T

-16-



Solving for T gives

wkn(1+ri) zkA(l/z)
T — 1§ 4 —— B (16)
A(z) S A(z)

The solution for the buried-source case is given by (12b) with
source 8-S (the minus being necessary to keep the reference
direction consistent with the previous case), i.e.

P = [2XA(1/2) / A(z)] (B-S)

Then

k k
P+ = A(z)R%z?(llzl s + 2 Ail/z) B (17)

Identifying T in (16) with P + S in (17) gives

5 = Aéz)-zkA(l/z) S (15)
W H(1+ri)

as before,

In the buried-source solutions we have sc far considered
only the case of a source located within a homogeneous layer. If
the source is located in a reflecting interface, we can modify
the above derivation by explicitly considering the reflections
at the additional interface. If this boundary has reflection

-17-



coefficient ¢, instead of (15) we obtain

s, = Alz) = (192¢) 2*a(1/2) (18)
W H(1+ri)

This resembles the previous result with, however, a surface

reflection coefficient r 1+2c. (This can easily be proved

by inverting the stacks in Figures 5 and 6 and going through
the caiculation assuming a surface reflection coefficient

other than unity).

We can also modify the previous derivation to include the
case of a spatially asymmetric source., If in Figure 6 we
replace the upcoming (toward the surface) part of the source
function by S'(z), then it is easy to show that (15) becomes

s, = Alz)s(z) - 2A(1/2)s'(2) (19)
W n(1+ri)

If S(z) and S'(z) have identical time behavior but differ by

a scale factor (for example, an earthquake with an asymmetrical
radiation pattern) then (19) will have the form of (18). The
programs have not been written to handle these cases, but it
would be easy to modify them to do so, simply by redefining

the value of the terminal reflection coefficient between calls
to the inner computation routine (RCTOA).

Buried-receiver operator

The results we have obtained have assumed the receiver to

-18-



be located at the surface. A "buried-receiver operator",
analogous to the buried-source operator, can be derived
which relates the seismogram received by a buried receiver
to that received by a surface receiver lying on the same
path. This operator depends only on the layers lying between
the buried receiver and the surface and could be used to
relate the signals received by sensors in a vertical array.

Consider a sensor located in a trivial boundary which
terminates the upper layer set, as shown in Figure 7.

SURFACE
Xs X

_.{i;@._t"_

Figure 7. Buried receiver

For a wave Xo(z) coming from below and a wave P(z) returning
from above, the observed seismogram X(z) will be the sum (all
are displacement waves), i.e.

X(z) = XO(Z) + P(2)

-19-



By (12b)

o - ZFA(1/2)

Az) 0

and from (7')

wkH(l-ri)

X — X
g A(Z) o

Combining we get

a2 ALz)R+ 2Xa(1/2) g (20)
W H(l-ri) S

This differs from (15) in that the huried-receiver operator
(20) is symmetric. The discussion associated with (9) still
applies, that is, we should not expect to be able to go from
the ghosting filter for our array back to the reflection
coefficients of the layers. Inspection of the derivation lead-
ing to (11), however, shows that a similar result does not
hold for the symmetric case, i.e. the symmetric combination

is not invariant under an inversion of the layers.

As with the buried-source operator, we can remove the
restriction that the sensor be located within a homogeneous
layer and allow it to be located at a non-trivial interface.
This case is somewhat less interesting than the corresponding

-20-



extension for the source operator, but it is easy to do. The
result

(- Alz) + (1-c) 2%AQ1/:)

21
wEI(1-r,) (1-c) s g2

if the interface containing the receiver has reflection
coefficient c.

-21-



ABSORPTION AND THE FREQUENCY-DOMAIN
CALCULATION

So far we have viewed our solutions in the time domain,
but we could equally well view them in the frequency domain.
The z-transform formulation gives us the vantage point of
Janus in being able to see both worlds at once. This is the
power of the equal-travel-time assumption. While it is not
strictly necessary to retain this assumption in the frequency-
domain calculation, it is convenient for our purposes to do
so. Considering simplicity, speed, and accuracy, the time-
domain solution is undoubtedly the correct approach in the
absence of absorption; but since we now wish to treat the
general case of frequency- and depth-dependent ~bsorption,

a frequency-domain approach will henceforth be necessary.
(See Trorey, 1962, for an example of what is encountered

in attempting a time-domain sclution for this case). The
transition to the frequency domain is easily made by noting
the definition z = e” T Then instead of representing
polynomials in z, our expressions can be considered to be
complex functions of frequency. Since we wish a discrete,
sampled time function with sampling interval T and will be
using a Discrete Fourier Transform (DFT) to obtain it from
the frequency function, we will take as our phase interval
Awt = 21/M, where M is the number of time or frequency points
desired (see Rader and Gold, 1969, for a discussion of
Discrete Fourier Transform theory, and Sherwood and Trorey,
1965, for a discussion of the z-transform).
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Propagator with absorption

Following Sherwood and Trorey, we can obtain the layer
matrix from (2) by noting that z represents the two-way delay in
crossing the layer. With absorption present, the wave will
be further modified. If we represent our (one-way) absorption
law by f(z), then replacing z by zfz(z) and w by wf(z) gives
the layer matrix with absorption

u zfz(z) zfz(z)r u
I (22)
D| . wtf(z) r 1 D

J+1

We then write the propagator (1) in the form

U F'(z) G'(z) U-I
= ] (23)

k
DI surface witifi(2) |6(z) F(2) D

where F' and G' are related to F and G. (We take Claerbout's
form for our layer matrix, rather than Sherwood and Trorey's.
In ours, the absorptive band fk lies above the boundary rk).
Again, we will be interested only in the combinations
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A(z) = F(z) - G'(2)

(24)
A*{z) = F'(z) - G(2)
defined by analogy with (4). We develop recursions for A and
A' in the same manner as in the lossless case. Multiplying
the propagator by an additional layer matrix,
] ] 2 2
F'(z) G'(z) 2f, (2) 2f (2)r,
G(z) F(z) " 1
] 2
2f2 F' 4+ r 6" 2FE v F' o+ 6
zfﬁ G + rfF zfﬁ r +F
from which we obtain
A(2) = [F(2) - 6'(2)] + 2f2(z)r, [G(z) - F'(2)]
Ap(z) = r [6'(2) - F(2)] + 2F2(2) [F'(2) - 6(2)]
or
Ac(z) = A _y(2) - zfﬁ(z)rkAé_](z) ad)
5

AR(z) = = v A g (2) + 2f2(2) A (2)
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corresponding to (5). (To avoid conflict, we now use sub-
scripts to indicate the iterative step. ) In the absence of
absorption, f ( ) = 1, and it is easy to show from (25) that
in this case A (z) zkA (l/z). which gives back (5). At each
frequency, (25) represents a set of coupled recursions over
layers in the complex quantitites A, A', z, and f. Initially,
A](z) = Ai(z) =1,

Since we require a real time function A(t), A(w) must be
conjugate-symmetric about zero frequency. This implies that we
need only calculate A(w) for positive frequencies (up to the
folding phase, 7). This also implies that f(z) must be
conjugate-symmetric (the "crossing symmetry" relations of
Futterman, 1962) in order that (25) will lead to a conjugate
symmetric function.

We will take as our absorption law
f () = em19Tlraq, + 14, (0) | (26)

where ¢(w) represents the dispersive contribution to the phase,
and Q conforms to the usual definition of the quality factor,
This "linear absorption law" has been experimentally verified
in rocks (see Trorey, 1962, for references) and appears to be
the best choice for a calculation of this type. Neglect: ng
dispersion (discussed below), f = exp (-]wt]/74Q) and we can

use efficient recursions over frequency to calculate the
exponential and the sines and cosines in (25).

We see here the difficulty with the time-domain calculation
of (25). For each layer added, w2 must do two complete
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convolutions, Thus this procedure is N3. For small absorption,

our filter will have short effective length, so we might still
get by, The alternative is to use Trorey's approach., In either
case, one is also faced with the necessity of obtaining a time
representation of (26) for each layer,

Absorptive solutions

Knowing how to calculate A, we can immediately transcribe
all our solutions to include absorption by the technique used
to obtain (22). We list the results here for reference.

k
X = WS (1-r;)f,(2)/A(2); half-space (27)
i
kp_kq .
X = w H- (1-ri)fi(z) / AT(z); far-surface (28)
i
k¥ *
X = w ﬂi (1-ri)fi(z) B*(z) / AT(z); buried-source (29)
i
X = B*(z) / wkT[ (1-ri)fi(z); b. source operator (30)
i
X = A+(z) / wkﬂ[ (1-ri)fi(z); b. receiver operator (31)
i

To avoid conflict we have used B to refer to the distant
layer stack, which we have also inverted (stacked away from
observer) so as to be consistent, A careful calculation of the
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buried-source operator for this case shows (29) and (30) to be
the correct forms. Here A" = A(z) - z fk(z) A'(z), which is
calculated by addition of the far surface L 1 (which must
not be inc]gded in the transmission factors in 28 and 30).
Evidently A is no longer antisymmetric, Similarly,

At = A(z) + sz(z) A'(z).

Proof of minimum-phase

Claerbout gives an inductive proof based on (5) that
A(z) must be minimum phase in the lossless case. (See Sherwood
and Trorey for a discussion of the terms "minimum phase",
"realizable", and "positive-real" and their application to
seismic problems). By a slight modification of his argument,
it is possible to show directly from (25) that A(z) must in
fact ve minimum phase for any realizable absorption law f(z).
We rewrite (25) in the form

Ag-1(2)

2
_I;?TTE) =1 - zrkfk(z) K;?TT?T (32)
A} A
.L(.E.Z—_ = Zfﬁ(z) = rk -L-_LS_Z_) (33)
Ag-1(2) Ag-1(2)

Assuming f(z) has no poles inside the unit circle (i.e. is
realizable), then we need only to show that |A'/A|<1 on the
unit circle to complete Claerbout's proof. (It is evident from
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the structure of (25) that A'(z) must be realizable when f
is.)

Lemma: |A'(z)/A(z)| < 1 when |z| =1 (34)

Proof: We prove (34) by induction. Writing «, (2) = AQ(Z)/Ak(Z)s
then dividing (33) by (32) gives

2 2
2fy - /o Fe " 2T %1

o = o
k k=1 3 2
]-Zrkfkak_] ] - Zrkfkak-]

We must show that |a, | < 1 when lag_q] < 1, i.e., we require

lry - zfﬁ CTR N I I zrkfﬁak_]l (35)

given that |z| = 1, |f£| <1, and |r | < 1. We establish (35)
by contradiction, i.e., assume

2 2 2 2
|ry - ka“k-ll > |1 - zr fy a1l

or
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2
2
|2, o gl & ri - 2 Re(rzfla)

> r2|z¢2 o 12 + 1 - 2 Re(rzfla)

Since |z| = 1, we have

2
2 2 2,.2 2
1fi opaql + v > rlfi o T+

If |f§ “k-]l = 1, we have the desired contradiction; if not,
we can only have |f§ ak_]l < 1, by the assumptions, Ceoilecting
terms we get

2 2
2 2 2

Since the common factor must be positive, we can divide and
obtain ri > 1, a contradiction, Since ay = 1, the lemma is
provided,

Having proved the crucial addition, we restate Claerbout's
proof., Assume Ak-] is minimum phase. Assuming f is realizable,
(32) must be realizable. Further, the second term must have
magnitude less than or equal to unity on the unit circle, by
the Lemma. Hence its real part must be less than or equal to
unity and therefore (32) must have positive real part on the
unit circle. Since all A, represent real time functions, (32)
must be real when z is real. Therefore (32) is "positive-real”
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and hence minimum phase. Thus Ak is minimum phase whenever
Ak-] is. Since A] =1, all Ak must be minimum phase.

The minimum-phase condition on A(z) is necessary in order
that we may obtain realizable seismograms. Inspection of (27)
shows that if our absorption law f(z) is also minimum phase,
then we actually obtain minimum-phase seismograms, provided
we remove the initial delay. This is true even in the case
of two free surfaces (rk = 1) (note, however, that this may
introduce poles or zeros on the unit circle).

Dispersion

The key requirement in the above discussion was the physical
realizability of f(z). The zero-phase absorption law f =
exp(-|wt|/4Q) is evidently not realizable, since real symmetric
frequency functions possess real symmetric time transforms,

Hence f(t) possesses non-causal precursor before time t = 0.
Futterman (1962) has derived a relation between the amplitude
and phase parts of (26) based on causality (Kramers-Kronig
dispersion relations). He shows that the real part of the index
of refraction can be related to the imaginary part by the
Hilbert transform

=3

Re An(w) = 1 I I—'“%’lé,ﬂ d (36)

and he obtains a simple form for the phase in the case of a
linear absorption law (26). He uses the infinite Hilbert trans-
form, but since we are performing a discrete, frequency-limited
synthesis, we might expect the finite Hilbert transform
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n
d(w) = - %F J log|fa(9)| cot Q%Q dQ (37)

m

to work better. Such is the case. In (37) f, represents the
absorptive part of (26) and ¢ is the dispersive phase. (Note
that in this section we use w to mean wt. Obviously the argu-
ments in (37) must be dimensionless.) It can be shown (Rader
and Gold, 1969) that functions for which the phase is the
Hilbert transform of the log magnitude are actually minimum
phase. Thus we make our absorption law minimum phase.

Putting (26) into (37) gives

m

d(w) = E%ﬁ l |@|cot 2&2 da ' (38)

-

for our phase. Reducing (38) to the range of positive fre-
quencies and integrating by parts gives a term which vanishes
plus a term involving log sin u du, for which no explicit
form exists. It can, however, be expressed in terms of
"Lobatchevsky's function", for which a series expansion is
given by Gradshteyn and Ryzhik (1965). Carrying out the
algebra gives

o(w) = %&Zk: ) S (39)
0

which is exactly the result one would obtain by derivinj the
frequency-domain Hilbert transform (i.e. interchanging sine
and cosine coefficients and changing the parity) of the
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function |Q|/4Q. Thus we appear to be stuck with (39). Actually,
it turns out that the most successful procedure is just to do
the frequency-domain Hilbert transform using the FFT (Fast
Fourier Transform). Synthesizing ¢ from (39) using the inverse
FFT was slightly less successful, supporting our original
supposition that when doing discrete synthesis it is best to
remain entirely within the discrete realm (observe that (39)
represents an infinite sum and the coefficients 1/k2 were
obtained by doing an integral). Futterman's phase did quite

a bit worse. The criteria in all these cases was the observed
realizability of f(t).

Several properties of the discrete dispersive phase are
immediately evident from (39), namely ¢(0) = ¢(m) = 0. Further-
more, ¢ has an extremum at m/2 about which it is symmetric:

o(P) = - 5T (-nf7eakn)? - - e/m (40)
k=0

where G ~ .91596559... 1is Catalan's constant and G/m = .2915609...
Using these properties, an empirical approximation to (39) was
obtained,

6(0) = -6 1og [1 + w(m-w)] /7Q log (1 + w2/4) (41)

While this form was not used in the programs, it might be vseful
in some applications. It fits fairly well, but actually it is
not much more trouble just to compute the Hilbert transform.
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Having a procedure to compute the phase, we have all the
elements needed to complete our frequency synthesis. Using a
dispersive absorption law in (25) requires the explicit compu-
tation of all the sines and cosines and consequently more
computing time. For comparison, routines were written with and
without dispersion in A(z). In both cases, dispersion was
included in the straight-through transmission filter (the
numerator in 27-29). This is just given by (26) with a dis-
sipation factor zi]/Qi’ which can be large for many layers, even
in the case of high Q. Comparison of the semi-dispersive and
complete dispersive calculations is given in Figure 8. Running
time for the dispersive calculation was only ~1.5 times as long
as for the semi-dispersive case, but the semi-dispersive routines
have also been included here because of their simplicity.

Inversion methods

We have delayed until now a discussion of the chief difficulty
with the frequency-domain calculation: aliasing, as it is called by
most authors. A function that is synthesized in the frequency domain
and is not time-limited will have a time transform in which later
times are folded over into earlier times, since the computed spectrum
is the spectrum of the entire record and since the DFT treats time
functions as though they were periodic (Rader and Gold). Several
authors have mentioned the effect in connection with this problenm,
but evidently none has diagnosed the real difficulty. The key, it
turns out, lies in the method of performing the deconvolutions
in (27-31). From time-domain theory, we know that the inverse
wavelet A(t) has a finite length equal to the number of layers
(in the lossless case), whereas the seismogram X(t) has in
principle infinite length (and in the case of two free surfaces,
i.e. (28) and (29), does not decay at all). This indicates that
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it would be better to transform the numerator and denominator,
I, f (z) anud A(z), into the time domain and do a time- domain
deconvo]ut1on than to divide in the frequency domain and then
transform. Using the first procedure we should get zero aliasing
error in the lossless case, provided we take at least as many
frequencies, M, as layers, K. In fact, comparing the output

from the time and frequency routines, LAYERS and FLAYERS, with
infinite Q and random reflection coefficients, gave agreement

to 8-11 significant Jigits. Tests performed using frequency-
domain deconvolution, however, gave results whose accuracy
depended critically on M, The error in this is "wraparound error",
due to the fact that frequency-domain deconvolution is circular,
whereas time-domain deconvolution is not. Thus the real villain
is wraparound, not al® -ing.

In the absorptive case, A{t) is not strictly finite in
length, but develops a ripidly decaying tail, Thus some aliasing
error will develop in this case, but in general A{t) is still
much better-behaved than X{t), and one can meke the effect
negligible by choosing M large enough. Since the tail on A
decreases monotonically*, one can always determine by inspection
in any case whether aliasing has been significant., This is
definitely not the case with X, Values of M about 20% larger
than K have been used successfully for reasonable Q's, and it
would probably never be necessary to use values as high as 2K,

*Inspection of (25) shows that the highest-order term in

A(z) is zkrk i (z),so that the tail behaves like the overall
transmission f11ter with twice the dissipation factor. Thus
for any "buffer" allowance M-K, the error will be a function

of the total dissipation factor.
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Another point that should be mentioned here concerns the
way (22) was factored. If, instead, the inverse absorption were
left inside the matrix, then instead of (25) we would have

Ak(z) f;](z) Ak_](z) - sz(z)rkAi_](z)

A&(z) _-rkf;](z) Ak_](z) + sz(z)A&_](z)

and in the numerators of (27-29) we would have only a scalar
transmission factor, This approach is tempting because of its
simplicity, but unfortunately it is numerically very unstable
for low Q's. The approach we have used, however, appears to
be completely stable for the first three cases (27-29), even
for very low Q's. The last two cases (30, 31) are stable for
reasonable Q's, but in all likelihood the "burying operators"
would be computed only for rather few layers anyway.
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EXAMPLES

Examples of calculated seismograms are given in Figure 8.
Nonabsorptive, absorptive, and absorptive-dispersive seismo-
grams are compared for each of four different realizations of
random layer structures, Each structure consists of 100 layers
terminated at each end by free surfaces. Reflection coefficients
were drawn from a uniform distribution on (-.3, .3) and Q's
were drawn from a "log-uniform" distribution, lying between
32 and 320, centered on 100. The source (a spike) was buried
10 layers down from the far surface. This model is admittedly
not very realistic and is intended primarily to illustrate
the effects of absorption. Two effects are to be noted: a
general smoothing of the seismogram, due to the low-pass
transmission filter-in the numerator, and a progressive
simplification down the record, due to the inclusion of
absorption in A(z). Inclusion of dispersion in A had rather
little effect, a]thougﬁ this naturally depends on the dissipa-
tion (39).
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APPLICATIONS

Of several applications of the routines which have
already been made, one will be described here: testing the
reliability of pP depth-determination procedures. Another
application, generating data to test a homomorphic filter
program designed to reduce convolutional noise by beaming
in the pseudo-time domain (complex cepstrum), is being made
by P. R, Lintz., Quasi-realistic model studies are also being
carried on by R.L. Sax. Some work has also been done on
statistical behavior of synthetic seismogram spectra, which
will be reported in the future,

Source depth determination

The numerator of the buried-source solution (14) contains
the source depth information. One might hope to retrieve this
information by an analysis of the spectral zeroes of the .
seismogram, since the denominator, which is the total-path
filter, contributes only poles., As previously mentioned, this
has been done (Cohen, 1970). The usual procedure is to smooth
out the poles and enhance the visibility of the zeroes by
averaging spectra from several stations for the same event.

Actually, the receiver-end effect can in practice be
factored out of (14). Assuming only weak reflectors deep in
the mantle (disregarding core phases), (5) says that A(z)
will be fairly short. The derivation leading to (15) applies
to any decomposition of the path, so we may split the path
in the middle. Then writing A for the layers above the source,
B for all those on the source end, and C for the receiver-end
layers, we can write (14)

-37-



X(z) ~ A"(z) /7 [B(z) €(z) - zXT B(1/2) €(1/2)]

If both B and C are effectively short compared witk the path
length kT’ and if we confine our attention to the first part
of the seismogram, then

X ~ A*(z) / B(z) C(z)
Averaging over stations gives
X ~ [A*(z) / B(z)] « };[1/C.(2)] (42)

assuming that A and B are nearly the same for each station,
The Ci will usually be quite different and the average will
tend to smooth out the effect of these. Thus we are usually
justified in ignoring receiver-end effects provided we average
over stations,

Confining our attention to the numerator A*, in the
absence of reflectors this is just 1-zk for a source buried .
k layers deep. The power spectrum is then

-ikwTt 2
P(c.) = |1-e | = 2(1-cos kuwt)
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which has nulls at integer multiples of fo = 1/kt. Thus
measuring the null periodicity gives the depth of the source
in time units: td = 1/2f°. In practice, one is usually
restricted to measuring the first null frequency because of
the effect of the source window. Another means of determining
the periodicity is to take the spectrum of the spectrum (the
cepstrum; see Cohen*, 1970).

Cohen has applied the method to real data, with mixed
results. Conversion of pP delay times to depths requires the
application of an "average velocity" and the resultant depth
estimates will evidently be only as accurate as the velocity
assumed. Errors of this nature could explain the discrepancies
observed by Cohen. Another possible source of error, investigated
here, is the effect of reflectors on the nul) frequencies. It
turns out that introduction of rather few layers with reason-
able reflection coefficients can produce large shifts in the
nulls. In principle, the cepstrum should provide a more stable
estimate of the nulls, but in practice the cepstrum can also
become quite messy.

The effect of reflectors can be seen by writing the
*
source-burying operator A , the numerator in (42), in the form

A (z) = 1 - 2%A(172)/a{2)] A(2) (43)

*Actually, Cohen zeroes out the negative-frequency part of the
spectrum before transforming, It can bz siown that this "cepstrum"
is just the squared envelope of the autocorreiation. This is

also evident from his plots. Our "cepstrum", however, is just

the square of the autocorrelation.

-39-



Since |A(1/z)/A(z)| = 1, A*(z) will still have zeroes on the unit
circle, although they will no longer be equally spaced if

A(z) # 1. Evidently A(z) itself will contribute no zeroes on

the unit circle, by Claerbout's proof or by consideration of
(5). The number of zeroes, and hence the average spacing, will
therefore remain the same. Thus the cepstrum should provide

a stable estimate where inspection of null spacing fails,

(Large subsurface reflectors would, however, put additional
zeroes close cto the unit circle, which would contribute to

the cepstrum in the form of peaks at shorter delay times).

This is shown in Figure 9, in which the ideal case is compared
with cases having inhomogeneities above the source. (The first
plot in this and succeeding figures is for a homogeneous medium
between the source and surface. The other theee are realizations
of random structures, all with the same source-depth delay time,.
The random reflection coefficients in the latter cases are

drawn from a uniform distribution on [-.3, .3] with zero mean.
There are 15 interfaces above the source, excluding the surface,
i.e. this could represent a delay time of 1.6 seconds with a
sampling rate of 20 sps. These and most of the following plots
are 4-decade semi-log plots.) Although the null spacings vary
widely, the true delay times (marked by arrows) are given in
each case by the "break" in the cepstrum. If we consider the
denominator in (42) also, and allow layers below the source

as well, then this criterion breaks down and we see cepstral
peaks at longer delay times (Figure 10: reflection coefficients
above the source are the same; in addition, there are 15 below
drawn from the same population). Including a source causes
further complications (Figure 11). (The source function is an
empirical one of Cohen's). Convolution with a source results

in a multiplication (or modulation) of the cosine ripple by

the source spectrum. In the cepstrum, the result is the source
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cepstrum plus the echo cepstrum plus the sum and difference
(beats). Taking the logarithm of the spectrum before trans-
forming makes the source and echo additive and produces the
sum of the two log cepstra upon transformation, This tends to
simplify the cepstrum somewhat, and appears to improve the
accuracy (Figure 12).

Actually, the behavior of the log cepstra observed in
Figure 12 was borne out by 47 random realizations of the same
type, that is, there was almost always a sizable peak at the
correct delay time, although it was not always the biggest
one. (In some cases, choosing the biggest peak would lead to
considerable errors.) It was expected that the presence of
noise would tend to nullify any advantage possessed by the log
cepstrum over the linear cepstrum. In a rough attempt to model
this situation, log cepstra were computed for the same 47
realizations, with the spectra clipped at 1/30 of the maximum
(~ - 15 db). The first three cases, with the standard, are
shown in Figure 13. As anticipated, any superiority largely
disappears. Only 14 cases of the 47 yielded the correct answer,
compared with 29 correct answers in the absence of noise (these
numbers are subjective). In addition, there is little tendency
towards any peak at all at the correct delay time, much like
the behavior of the linear cepstra (wh%ch also gave 14 correct,
or nearly-correcty, answers out of 47)., The characters of the
"noisy" log cepstra and the linear cepstra are remarkably
similar, '

Since our "cepstra" are really just the square of the
autocorrelation, one might suppose the autocorrelation itself
to be less confusing by a factor of two, since it contains
phase information., (Cohen uses the product of the autocorrelation
with his square-envelope autocorrelation.
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This results in a peaky, smooth representation, convenient for
visual analysis, but of course it is no more accurate than the
autocorrelation itself.) In Figure 14 we plot the signed square

of the autocorrelation for the same cases so far considered.

(For convenience in plotting, the peak at zero delay is zeroed out.
These are linear plots.) The correct delay time should be

marked by a large negative peak. In fact, in one realization

there are no large negative peaks! This is of course embarrassing,
and tends to indicate the general unreliability of auto-
correlation/cepstrum analysis.

Assuming then, that the ultimate arbiter must be the
position of the first spectral null, since for shallow sources
it is usually the only one visible, it was decided to try to
determine just how variable this criterion might be. A hundred
realizations of the type discussed (15 layers above the source
and 15 below, reflection coefficients between -.3 and +.3,
source depth fixed in time units) were drawn and the standard
deviation of the observed first null position from the correct
answer determined., This turned out to be about 25% of the
correct answer., The maximum deviation observed is somewhat
open to debate. There are several cases among the hundred
where it seems unlikely that, in the presence of noise and
other factors, the first null would be seen and correctly
identified. Two such cases are shown in Figure 15, In all
likelihood, the second nulls would be the ones picked here
(remember that these are logarithmic plots). Thus it seems
that this criterion could be off by a factor of at least two
in some cases., Studies made with a deeper source indicate that
it might be off even more, the effect being that a deep source
can masquerade as a shallow one. Three such cases out of 15

are shown in Figure 16 (linear plots). The sources are 4 times
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as deep as before, 63 interfaces above the source (drawn
from the same population as before) and none below. A
fairly broad null falsely indicating shallow depth occurs
in all of these and, interestingly, the cepstrum seems to
substantiate the false nulls. The question here is whether
the high-frequency ripple in the spectrum would be visible
enough to tip off the analyst. At least one deep earthquake
has been seen with such a spectrum (Cohen, private communi-
cation).

Inclusion of absorption might be expected to weaken the
nulls, but for the cases computed here, it actually had
rather little effect (Figure 17). (A11 layers assumed to
have Q = 50. The long transmission path through the earth
was ignored, since it would not effect the low frequency nulls
and since it is more or less included in Cohen's "source".)
Non-vertical incidence, which is not treated in this paper,
could be expected to produce further complications.

In conclusion, inhomogeneities of the type which may be
found in sedimentary regions* can cause large errors in source
depth delay times determined from the first spectral null,
While cepstral analysis overcomes part of the difficulty,
other effects can produce an extremely complicated cepstrum,
difficult to interpret and inaccurate in itself. Thus this
method of source depth determination would appear to be of
limited utility, although the appearance of spectral nulls
indicating shallow depth might be taken as corroborative
evidence in the presence of other information.

*See, for example, Clark (1966). A velocity step of 2.1 to 3.9
km/sec gives a reflection coefficient of 0.3. The conclusions
reached here are not intended to be rigorous, but indicative.
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PROGRAMS

Three packages are included: the lossless, time-domain
routine LAYERS; the semi-dispersive, absorptive, frequency-
domain routine FLAYERS (I); and the dispersive frequency
routine FLAYERS (II). The first package comprises the
routines LAYERS, RCTOA, and CONVOLV/POLYDIV. The second,
FLAYERS (I), RCAFTOA, and CONVOLV/POLYDIV. The third,
FLAYERS (II), RCAFTOAD, and CONVOLV/POLYDIV. The same
routine CONVOLV/POLYDIV is used for all three packages.
Usage of the routines is explained in the introductory
"comment" statements. The two frequency packages have
purposely been made interchangeable, the only difference
in usage being that a storage equivalence is allowed in
one that is not allowed in the other., The time routine
convolves with a source function, With the frequency
routines, the user may do this externally, using CONVOLV,
if he desires.

The subroutines are written in FORTRAN-63, a programming
language of the CDC 1604-B computer, Non-standard external
symbols appearing in the absorptive routines are ERASE and
COOL. Calling ERASE (N,X) zeroes N elements of array X.
Calling COOL (LN, X, SIGN) Fast-Fourier transforms the
complex array X, to frequency if SIGN = -1.0, to time if
SIGN = + 1.0, where LN = log, (number of complex elements in
X)(Claerbout et al., 1966). Overall execution time is propor-
tional to KeM [or to (K + KP)eM, if IOPT = 3]. On the 1604,
1.25 sec is required for LAYERS, 12.5 sec for FLAYERS (1),
and 18.0 sec for FLAYERS (II), for KoM = 10%, Less time is
required if some of the reflection coefficients are zero.
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