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OPTIMAL STOCHASTIC LINEAR SYSTEMS
WITH EXPONENTIAL PERFORMANCE CRITERIA AND

THEIR RELATION TO DETERMINISTIC DIFFEF.ENTIAL GAMES
By

D. H. Jacobson
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

ABSTRACT

In this report two stochastic optimal control problems are solved
whose performance criteria are the expect.d values of exponential
functions of quadratic fcrms. The optimal controller is linear in both
cases but depends upon the covariance matrix of the additive process
noise so that the Certainty Equivalence Principle does not hold. The
controllers are shown to be equivalent to those obtained by solving a
cooperati%ve and a noncooperative quadratic (differential) game, and this
leads to some interesting interpretations and observations.

Finally, some stability properties of the asymptotic controllers

are discussed.




b
o
%

*

I
L%
-3
P
£
<

g

&
F
3
£
X

£
i
%
%

TR, 0Bt WEF 8 Mg T

2K,

2

IR AT}

I S g . - o

-1

1. Introduction

The so called LQG prcblem* of optimal stochastic control [1}
vossesses a number ~f interesting features. First, the ontimal feedback
controller is a linear (time varving) function of the state varizbles.
Second, this linear controller is identical to that which is obtained
by neglecting the additive gaussian noise and solving the resultant
deterministic LQPx* (Certainty Equivalence Princinle). Thus the con-
troller for the stochastic svstem is independent of the statistics of
the additive noise. This 1s anpealing for small noise intensitv, but
for large noise {larpe covariance) one has the intuitive feeling that
perhaps a different controller would be more appropriate.

In this paper we consider optimal control of linear svstems disturbhed
bv additive gaussian noise, whose associated nerformance c:iteria are the
expected values of exponential functions of nepative semi-definite and
rositive semi-dafinite quadratic forms. We shall refer to the former
case as the LEGnroblem and the latter as the LE'G problem and to their
deterministic counterpar:s as LF. P and LEY respectivelv. In the deter-
ministic cases, LEtP, the solutions are identical to that for the LOP
(the natural logarithm of the exponential performance criteria vield

+
aquadratic forms). MHowever, when noise is present, LF C problems, the

*
Problem with linear dvnamics disturbed by additive gaussian noise,
together with a nerformance criterionwhich is the exvected value
of a nositive gsemi-definite quadratic form.

*k
Same as LQG problem but with noise set to zero.
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ontimal controllers are different from that of the LQG problem. In

particular, though as in the case of the LQf: vroblem these are linear

functions of the state variables, they depend explicitly upon the

covariance matrices of the additive gaussian noise. For small noise

intensitv (small covariance) the solutions of the LEtG and LOC problems
are close, but for large noise intensity there 43 a marked difference.

In particular, as the noise intensitv tends to infinity the optimal
gains for the LE G problem tend to zero; intuitivelv this implies that

if the random inout is '"very wild" little can be gained (in the sense of
reducing the value of this part’cular performance criterion) bv con-
trolling the system. In the LE+G problem the optimal controller ceases
to exist if the noise intensitv is sufficientlv large (that is, the
nerformance criterion becomes infinite, regardless of the control input).

These new controllers, which retain the simplicitv of the solution
of the LQG problem, could nrove to be attractive in certain annlications.

In addition to formulating and solving the LEtG problems we demonstrate
that their solutions are equivalent to the solutions of coopnerative and
noncooperative linesc-quadratic zero-sum (differential) games. These
equivalences provide internretations for the stochast?~ controllers in
terms of solutions of deterministic zero-sum pames, and v.:ce versa. It
is hoped that these equivalences will aid in the quest for new formulations
and (proofs of existence of) solutions of stochastic nonlinear systems and)
nonlinear differential games.

We investigate briefly the infinite time version of the LEtG problems
and point out that the steadv state optimal controller for the LE G problem
is not necessarily stable. On the other hand the steady state optimal
controller for the LE+C problem, if it exists, is stable. Tuus the

LE+G formulation may be preferable in the infinite time case,

2 <oy _
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2. Formulation of Discrete Time LEtG Problems

2.1 The LE G Problem

a) Dvnamics

We shall consider a linear discrete time dvnamic svstem

described bv

xk+1 = Akxk4-Bkuk+rk0]( H k.nQ see ,N-]-) xo gi“,en’ (1) J

m
where the "state" vector X € Rn, the control vector u € R™ and the ;

gaussian noise inout € Rq. The matrices A,, B,, ', have anvropnriate
% k' °k’ 'k

B S R R I

dimensions and denend upon the time k.

ISy
?

b) Noise

The noise input is a sequence {ak} of indevendentlv
distributed gaussian random variables having nrobability densitv
j N-1

P (@gseeesty 1) = kEO o (o 3k) (2)

+ + +
where Py : RY x RN + R and o : RO x 1" + R is given bv

1Y = 1 1T
; ploy 5k) -———q-——_-; exp {-5aPal (3)
(2m) |Pkl
: with
i S Pk >0 (positive-definite) ; kenN,...,N-1 (4)
Note that
; Elo] =0, &Elaal]=rl; ken,...,N-1 (5)
k ’ k 'k k ° vt -

where & denotes exnectation.

PR YA TN TMPA NN AT R RN i Sk [PTE v

1
!
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¢) Performance Criterion

wpl

The performance of the stochastic linear svstem is measured

bv the criterion

3 N‘ 1
- A - - -
Vi(x) =~ é]x n ux(xk,k)uu(uk,k)ux(xx.N) (6)
o k=0

i where V : R® » [-1,0] and u; : R® x I+ + [0,1], u; : R® x I+ + [n,1] ;
: are given
' - 17T
§ ux(xk:k) = exn {- i-kukxk} ;7 k=0,...,N @)
g L (u, ;k) = exp {- -l'u'r ut ;3 k=0 N-1 (8)
: utt® A SR v
; ard
§ Qk 20 (nogitive semi-definite) ; k=Nn,,,.,N 9)
; R, >0 (nositive definite) ; k=0,...,N-1 (10)

A

Note that (f) can be written as i

R R s T

Vix) ==& {-l[NflcT +uTR u, )+xiQux, 1) (11)
X, Ik, P L QX R )t Qe

d) Problem

e A om v, IV B e ves

We are required to find a policy

- - . A
u = ck(xk) ; k=0,...,N-1; Xk {xo,xl,...,xk} (12)

which minimizes performance criterion (11). Thus the nroblem is identical
E to the LQG nroblem excent that the performance criterion is the necative

of the exnected value of an exnonential function of a negative semi-

o

definite auadratic form,
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Note that V_(xo) for arbitrary controls {uk} is bounded as

follows

-1¢ v'(xo) <0 (13)

2.2 The LE+C Problem

The formulation is the same as the LE Pexcent for the nerformance

criterion which is

N-1
T u Gy sKOM, (0 3kOH (x, :N) (14)

+ A
Vix)= &
° 'xo k=0

+ +
where V' : R" =+ [1,»], and L R" x I+ + [1,»), U: : R" x I+ + [1,»)

1 are givern by

+ . 1T v

ux(xk,k) = exp(z kukxk}’ k=0,...,N (15)
W (u, 3k) = explE wRu }; ken,... N-1 16)
u(e LR

with Qk’ Rk as in (9), (1n).

Note that (14) can be written as

V)= & exo (X [Nfl (x1Q, x, +uIR u, )J+x.Q.x.1} (17)
0 Ik, & 2 1 L ORI
The problem is to find a nolicv

+ + . - 1. é
w = CkO{k) i k=0,,..,N1; Xk {xo,xl,...,xk} (18)

which minimizes nerformance criterion (14). Apain this nroblem is
identical to the LOG nroblem except that the nerformance criterion

is the expected value of an exnonential function of a positive semi-

definite quadratic form.

Note that Vv(xo), for arbitrary controls {uk}, gsatisfies

+
0V (xo) £ ®©
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3. Formulation of LEtP

If no noise is present
akEO : k=0,...,N1 (20)

Minim..ution of (11) and (17) is equivalent to minimization of

O . Y SR, (21)
2 UL R * Ny
subject to

X4l ™ Akxk+8kuk s k=0,,,.,N1 22)

which is a standard LQP. Thus LE P and LE+P are equivalent and both
will be referred to as LEP. As the solution of the LQP is well knowm,
we state it now without voroof.

The optimal controller for the LEP(LQP) is

W= Dx ko= 0,...,N-1 (23)

where

T 1T
D = (R M 1B Bl (24)
and
T . T, -7

M = A I Mg B (R ¥B 2 BY) TBM LA (25)

with
‘iN = QN (2¢)

In view of our assumptions (9), (10) it is easy to show that

M o3 N : k=20,...,N 27
so that

(R+BM, B >0 5 ko= 0,...,N-1 (28)
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4. Solution of Discrete Time LEtG Problems

4.1 The LE G Prohlem

We define

] N-1
J (xk;k) = - min é"x Tou_(x, 30 (u ;idu (x 3N) (29)
x 1 u Uyt Wy
uk"'uN-l k 1=k

given that the minimizing optimal policy must be of the form
u, = Ci”&) ; 1 =k,...,N~1 (30)

At time k+1, then,

N-1
J7( ;k#l)= - min ¢ T ou (x5 1u (u, 38 _(x, :N)  (31)
et Wity g IRsy gmpag % 7wt Ry
so that
37 (X k) = min [u;(xk;k)u;(uk;k)a|ka'(xk+1;k+:)1 (32)
where
X1 ™ Akxk + Bkuk + Pkak N given (33)

Because of the Markov property of (33) which is due to the independence
of {uk} it is clear from (29) that J—(Xk;k) can be written as J-(xk;k)

so that (32) becomea+

J—(xk;k) - m‘iln [u;(xk:k)u;(uk:k)JEn(uk;k)J-(xkﬂ;k+1)duk] (34)
k
and
- 1 T
J (xN;N) = - exp {- 5 xNQNxN} . (35)

We now show that

N 1.7~
J (xk,k) ~ -F, exp {- 5 kakxk} (3%)

*Alternatively, the development could be continued using (32) ard
identical results would be obtained.
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which is defined for ¥ = 0,... ,N solves (34) where

K30 0 k=0,...,x 37

is given bv

-1, T~-
Qk Ak"’ku 1 k(Rk+Bk 1P BV 1Ay (38)
vhere
~. A - T ~1,T,- (10)
Merr = Y~ et kPt i k) ]
and
J =
W QN . (60)
In addition we have that L
(o 4T 4" T -1
- - P e o
i = Frnr o1 P el (41

and the ortimal nolicv is

uk 2 - Ckxk (42)

where
- A T~= -1_T~- . "
Ck = (Rk+Bkwk+1Bk) Bkwk+lAk ; k n,...,K-1. (43)

In order to nrove that (36) and (42) solve (34) we need the

following, nrobabiv well known but underexnloited,

WT -
" : P+ n
Lerma 1 : If ( Wt k k 1Fk\ > N, then
rﬂ S S xp (- = To o} exn {- T W \d
} m—— exn “k AL 2 X1 M1 k1 %%
Yendie
Tk
(0 +rTas, r )71
(p +T°W P -~
_ Ik exo (- 2 (A +Bu )W, (A x 4B u )Y (44)
. - fo_ % - '
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; where §;+1 is defined in (39).
£ Proof: See Anpendix.
£ X
. Substituting (36) into (34) and using the Lemma and (41) we obtain
¥
§ -exp{- 1.5 } = min -u_(x, ;K (u, ;k)exn{- l'( +B )Tﬁ. ( 4B, u )}
1 T2 R T M MM =7 AR P AR
% (45)
; which, upon taking logarithms is equivalent to
£ ]
.!. T~- E
: .kakxk mi“[xqu kﬂkkk“kﬂ“kx B P (Bl (66)
5
. Eouation (46) is satisfied by (38), (42), (43) so that the LE Q nroblem
is indeed solved. As in the LEP (LQP) it is easvy to verifv that, under
assumptions (4), (9), (1n), w; and ﬁ; are posicive semi-definite for
k=0,...,N so that
(pk+rkwk+l k) > 0, Rk+Bk k+1Bk) >0 (47)
which ensures that (38), (39), (41), (43) are well defined.
: 4.2 The LE G Problem

Here we define

" I k)- nin & e Ayt u, s 0t s (48)
t’ i x‘L n'k ,x jnk »Jx(xi ’ )uu(uiv UX ’%" )
000 -1 =

given that the minimi:zing optimal policy must be of the form
u, =C & ) : 1 =k,...,N-1 (49)
so that proceeding as in Section 4.1, we obtain

3 (x, skr min [ (x, SOW) Cuy 510 J‘: ploy 0T (3 kD) doy ] (50)

S AN AR G PRI B, AT TR S LA oy

{
t
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and
{ N,N) = exp{ qu“x“} (51)
The solution of (50), which is analogous to (3F) is

it (xk k) 4 erxv (z ka xk (52) ]

which 1is defined for k = 0,...,N, where

+ T~+
W¥%1mﬂwﬁmw%uu% G3) 1
where
3
1 ~4 + +
wk+1 k+1 k+1r (Pk k k+1 k Tw (54)
and
F.
Wy T Q (55)
In addition, we have that
T + -1
T '(pk Feaf) &y 56)
k k+1 -1 >N
lp. °
and the ontimal policv is
+ +
u = “G%
where
5 A -1 'I‘
4 ot . - - [
1 = (R'k+Bk k%-l k k-HAk : k=0,...,N-1 (57)
t In order to verify that (52)-(57) solve (50) (which we will not
do here because the nrocedure is almost identical to that for the LE G
problem) it is necessary to use Lemma 2, which we state below, which
is useful cnlv {f




<11«

+
%-bugk>o, k=0,...,N1 (58)

If (58) 1s not satisfied, then (52)-(57) do aot constitute a meaningful

solution for (50) since it follows from Lemma 2 that

i+(xk;k) is i{nfinite. (59)
Lemma 2 If

(P y > 9, (60)

rlyt
k k+1 k

then

e BRI

1

l
—_— exp {- ~u Tp . exp{= }d
Q;;;37;33]- 1% 2 k+1 k+1xk+1 e
k

Caiai et

I J
-1
/u o 7
k k' k+l k -
y T, exn {3 (A X, +B 1, ) “k+1 A x 4P u )}
k (61)
Moreover, if
T +
k—rkwk+lrk 30 (62)

then the left hand side of (A1) is infinite.
Proof: See Appendix.

-+
5. Properties of Solutions of Discrete Time LE™G Problems

5.1 The LE G Problem

AT o o R R e A AT

The optimal feedback controller for the LE G problem is a linear

function of the system state,

u; - - C;xk i k=0,,,,,N1 (63)
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where C; depends unon the solution of a Riccati type difference equation

(38). The main difference between this and the feedback law for the

LQG vroblem is that C; depends_upon P;I, the coveriance matrix of

LS Ny

the gaussian additive disturbance uk. In the LQG case the ontimal feed-
back law is indepen.ent of the covariance of the input noise and, indeed,
is the same as that for the deterministic LQP (so called Certaintv

Equivalence Princinle). Here, in the case where our criterion is the

s S VP R TR (45

exnected value of minus an exponential function of a negative semi-

definite quadratic form, the Certainty Fquivalence "rinciole does

not hold.

It is interesting to investigate two limiting cases; the first in

which Amin(Pk) + o  (input o =0, k=20,...,N-1) and the second in

which Amn(p;l) + @ (inout "infinitely wild").

1) min("k) +o ; k=0,...,N-1,

In this case it is clear from (36), (38), (39) that

C;*D 5 ko=0,...,N-1 (F4)

ﬁ the ontimal gains for the LOP(LEP). Note, from (36) and (41) that

- 1 T -
J (xk.k) + - exp {- % kakxk , k=0,,..,N (65)

Thus for small noise intensities (P;1 small, k=0,...,N-1) the solution

1 of the LE G problem is close to that of the LEP, LQP, and LQG problem.

r ii) min(Pk ) + @ : k - n,ooo,N-lt

Here we shall assume that

T . ) . _
M >0 5 k=0, N1 (66)

A N
These limiting cases can be argued Tigorously; the arguments are straight-
forward and are left to the reader.

IR LT
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L so that, from (37) - (39),
; rtwk+1 . : k=0,...,N1 (67 ,
as Pk +0, then,we have
1
:
: AR A (rThk+1 y 1rT gy 3 kom0, Nl (#8)
: and, from (36) and (41),
:
- J‘(xk:k) +0 ; k=0,...,N1, (69)
? Note that if Fk has rank n for k = 0,...,N-1, that
W >0 k=081 ()
so that
i c; +0 3 k=0,,.,,N1. (71)

An explanation for (71) is that if all components of », are
disturbed bv an "infinitelv wild" additive noise then there is no
point (as far as nerformance criterion (6) is concerned) in exercising
control to trv and counteract these infinite unonredictable disturbances.

Of major interest are the cases in which

: 0 < pil <o 3 ke,... N1 (72)

for which the new controller (42) offers an alternative to the standard

e R aa

LOG solution.

5.2 The LE'G Problem

As in the LE G nroblem the Certainty Equivalence Principle does

3 +
3 not hold because Ck denends upon the covariance of the additive process
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noise. We again consider the two limiting cases of zero noi.e and

"infinite" noige.

1) Amin(uk) +o ; k=0,...,N"1,

In this case, as the covariance matrix tends to zeio, we obtain from

(52) - (57) that

4

C "D k=0,...,N-1 (73)
and

J+(xk;k) -+ exp {']2—. X:w;xk} s kw0, . ,N-1 (74)

so that for small noise intensitv the solution of the LE+C problem is

clogse to that of the LEP, LQP, LQG problem.

-1
i1) Amin(Pk ) +® ; k=0,...,N-1,

For Pk sufficiently small (i.e. large covariance) the solution

of (50) can cease to exist (indeed (48) can become infinite). To see

thig, let us assume that

ri Oyl > 0 5 k=0, N1, (75)
and that

T, + ke _
PPy > 0 5 5 = ke, -1 (76)

From (75), (7R), (53), (54) we have that

T+
"1 > ° an

so that for Pk sufficiently small

T, +
Pe = Ti¥eaiTe 30 (78)
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which implies from Lemma 2, that the left hand side of (6") is infinite.

Clearly, then, from (50)

J+(xk;k) is infinite . (79)

Since k is arbitrary, k € {0,...,N-1}, we can conclude that if the noise
covariance is sufficiently larpe, the performance criterion (14) is
infinite, regardless of the choice of controls fuk}. We shall have more
to say about this interesting case when we treat the continuous time

+
LE G problem in Section 8.

+
6. The Discrete Time LE'G Problems and Deterministic Games

6.1 The LE G Problem

The solution of the LE 6 problem is, by inspecticn (or short
calculation), equivalent to the solution of the following cooperative
deterministic game (LQP).

1Nl T T 1 T
Minimize [3 z (kukxk+ukR‘.<uk+akplr0k) + 3 :%}Q“xN’l (8N)
{uk}.{ak} k=N :

subject to the dynamic constraint

Xe41 ™ Akxk-o-Bkck-H‘kak 3 k=0,...,8-1, x given (81)

It turns out that

I Gax fuRutaip o+ 3 xqx] (82)

T, - (1
140N 10077 3

l W - min
2 R fu ), 7} 2 1=k

Note that in the ahove formulation we determine ontimal control laws

--—- --—- s = o0 8 g™ 83
u, Ckxk, o Akxk : k=0, WN-1 (83)
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We now have a new interpretation for the linear-cuardatic game:
If nlaver U agssumes that nlaver a.K will cooperate in minimizing the

quadratic criterion (even though u knows that o behaves like a

gaussian random variable), then the feedback controller (policv) that

PO

“ is obtained for U uoon solving (80) and (31), namelv

u; = —c;_xk : k=0,.,.,N1 (84)

TR =

: is optimal aisoc for the LE LE G nroblem. Thus the policv for Uy obtained

bv treating “'y as a cooperative plaver makes sense when interpreted

as the solution of the stochastic LE G problem.

6.2 The LE'G Problem

Here, the aeterministic pame that has an equivalent solution
is non-coonerative, namelv,

-1
min pex, | 31 almndnn-ine + 3 o (89

subject to (81), where u+

K and 'x; are determined as feedback laws

(policies)

u: - -C;xk. a; = -A;xk : k=0,...,N1. (86)

. It is well known that if

: Tt . ko= -
; Pl >0 5 k=0,000,8-1 (87)

then

N-l
1 T+ T
3 3 x W, x, = min nax [ 2 ) (xiQixi+u1Riui aiPiai)-!- —xNQNxN] (88)
fui}{a } 1=k

o TR SR Aty L = .. -
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If the determinant of the left hand side of (87) is nonzero but the
matrix fails to be positive definite then as is well kncwn, (85) ceases

to be bounded. However, if the left hand side of (87) is singular

for some values of k € f0,...,N~1} then (85) may exist. Thus, provided

| P Ty N0 k=0, 81 (89)

we have, from Lemma 2 and (87), (8R), that (48) is finite (for k = 0) if

and only if (85) 1s finite.

parl o

Out interpretation of the above noncoonerative deterministic game

is as follows: 1f plaver u, assumes that o will not cooperate in minimizing

1 the quadratic criterion (even though u, knows that o behaves like a

k
: gaussian random variable) then the feedback controller (policv) that is

obtained for u, , upbon solving (85), namelv
{ + - & ] - _
: U, -Ckxk ;s k=20,.,.,N-1 (9n)

+
is optimal for the LE G nroblem. Thus this rather conservative game

formulation in which the noise ak is treated as a noncooperative plaver

4+
gives rise to a control policv which solves the LE G stochastic control

D

problem. When looked at frcm this viewpoint the min-max game solution for

Uy ("worst case design') does not apprear to be too pessimistic, since the

SV IR AN IR e e gl

+
performance criterion of the LE G problem is rather appealing.

7. Formulation of Continuous Time LF > Problems

7.1 The LE G Problem

In continuous time, the LF C nroblem takes the form

1]

! (x Qx+u Ru)dt + = x(tf)ﬂ x(tf)]} (91)

] Minimize -&b( exp{~[
; u(.,.)

T P ———————
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subject to
X = Ax + Bu+Tnn x(to) given (92)

where, for notational simvlicitv, time denendence of the variables
has been sunpressed* and where a(.) is a gaussian white noise nrocess

having

Ela(t)] =0 ; te [to.tfl (23)

610(t)uT(s)] = P-16(t-s) ; t,8E [to,tfl (94)

where & is the dirac delta function.

Note that in solving (21) we seek an ontimal control nolicv

u (Xt) =C {Xt) : t¢ ;'to,tf1 : X é{x(r);re[to,t]} (95)

1

where C : € X R~ Rm is a measurable function of its arpuments.

7.2 The LE'C Problem

Here, the nerformance criterion to be minimized is

t
1 T T T
6Wx° exp{5 [ f (x"qxtu Ru)de + %-x (tf)Qfx(tf)} (96)

t
o

and the reaquired controel nolicv is

u+(X.t) = C+(x.t) : tE [to,t ] 97)

f

8. Solution of Continuous Time LEtC Problem and Relation to Nifferential

Games

8.1 Solution of LEtC Problems

We can solve th» continuous time LE G nroblems either bv formallv

*
Note that Q 30, R>0, P> N for all t € [to.tf]. and Q > 0.

i sl

Al i - et b £
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taking the limit of the solutions for the discrete time cases or bv
solving the "pes :ralized” Hamilton-Jacobi-Bellman esuation (see
anpendix for derivation)

a°
3

- 57 (x,t) = min( -12- o (x QrtuTRu)I x, £)+130 (x,) 17 (Ax+Bu)
u

1,..,0 ~-1.T
= ¢- }
+5t .Jxx(x,t)r‘P T} (98)
where
‘ - : for LF G problem
o= (99)

‘ + 1 for L£+C nroblem

i
E
i
¢
g
2
H
i
t
£
E,

which is satisfied by

]

t
1
%=, ) 4 oé"x(t) exp{of ;— Lf(xTQerdrRuo)dH —zo?(tf)qfx(tf)l‘,(lnf))
where
o o
u (x,7) = C (x,T) : TE€ [t,tf] (1n)

N is the optimal nolicv.

Using either method we find that

; uc(x,t) = -R-lBTSUx : te {:o,tf] (102)

% and

£ o o 1 T.o

: J (x,t) = oF exnfo 3 %8 x} an3)
where

. 5% = qus®asaTs%-s% (Br 18 -arp IrTysO s°(cf) - q (104)

k

g and

-7 - % oFer(sorp irTy . F"(tf) -1,
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8.2 Relation to Continuous Time Differential Games

By inspection we see that the optimal controller for the LE G
problem (0 negative) is sbtained from the solution of the following

cooperative differential game

t
1
Minimize £ 1 (xTQx+uTRu+uTPa)dt + 4xT(t Yo x(=.) (106)
2 2 S A S §

u(.),a(.) ‘t

o
subject to

Xx=Ax+Bu+Ta ; x(to) given an7

wvhere we reauire the optimal controls in feedback (policy) form

u(t) = -C(t)x , o (¢) =-A (t)x(t) ; te fe ot (108)

which results in

1.7 (e)x(t) = min [Jf

2 u(.),al.)

f1

3 (xTQx+uTRu+aTPu)dt+-% xT(tf)Qfx(tf)]

] (109)
Because of our assumptions of positive (semi)-definiteness of Q, R, P
and Qf, it is known that S (t) exists for all t € [to,tf] so that
(91) is well vosed.

In the case of the LE+G problem the appronriate differential game
is noncooperative, namelv

t
Min Max I £l ToxtulRu-atPa)dt+ % xT(tf)Qfx(tf) (110)

u(.) a(.) Je 2

o

subject to (107). The optimal feedback laws are

we) = cte)x , oty = -ate)x ;o te [t,.t,) (111)




b

-21-

and

t
% !r(t)8+(t)x(t) = min max [[ t-% (xTQx+uTRu-aTDa)dt
u(.) a(.) It

+ 3 ¥ (eex(ey)] (12)

N VT SN

provided that

- &t . Q+S+A+S+Ars+(BR#IBT—FP-IFT)S+ : S+(5? = Q (11%)

T I R IR T

has & solution in [t,tf].

PR IE TN IS

Note that by standard results on Riccati differential equations,

(113) has a solution for all t ¢ [to,tfl if
R IB-re Ty 50, e [t ,t,] (114)

and so (114) guarantees existence of J+(x,t) ; te [to,:f]. If (114)
is not satisfied (sav for \min(P-l) suf ficiently large) then (113) may
exhibit a finite escave time (S(t) + » for some t € [to,tf]) which would

imply that (110) is unbounded and also that J+(xo;to) is unbounded.

+
9. Properties of the Solutions of the Continuous Time LE'G Problems

9.1 The LE G Problem

As in the discrete time case we have that as P_l +N: te [to,tf]

e amate . L

P

{Amin(P) +®; ¢ g [to,tf]}the cptimal controller tends to that for the

§ LQG problem. As A (P—l) +eo; te [t ,t.] problem (106) becomes

3 min o’ f

gsingular and care must be taken in studving the limit - see [2] for a

f careful treatment of the singular case. Using arguments veiv similar to

; those given in [2] it is nossible to show that as Amin(Pbl) +®: t ¢ Tto,tf],
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the limit of S must exist, t € (to,tf]. Now if we make the assumption
that

" has rank n ; t ¢ !to,tf] (115)
then from (104), (with O negative) and the fact that the limit of S :

te (to,tf] must exist, it follows that

LinS =9 ; ¢t¢ (to,tf] (116)
which tells us that

R 1pTs™ 4 n ;i te€ (co,cfl (117)

vwhich is analopous tc the discrete time case (71).

9.2 The LE G Problem

As Xmin(P) +o, t g [to,tf] we have that the solution of the
LE+G oroblem, as in the LE 6 case, tends to the solution of the 7.7
problem. As noise intensity increases, Xmin(P-l) +>® ¢t € [to,cf],
(114) will cease to be satisfied, and ultimatelv (113) will exhibit
a finite escane time signifying that J+(xo,to) has ceased to exist;
i.e., for sufficientlv larpge nolse intensitv, performance criterion
(96) is unbounded. Note that contrary to the LE G case, (117), we have
that

AT  sw ot [t ot,] (118)

as

-1 .
Apgn® ) =t e ) (119)
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10, Some Stability Properties of Undisturbed Linear Svstem Controlled
by Solution of LEic Problems

In this section we assume that all parameters are time invariant

and we investigate, briefly, stability of the system

X = (A—Bcg)x H O negative or positive . (120)

10.1 Stability Properties of Coo

Here we assume that the vair (A,B) is controllable and that
0 > 0. These assumptions guarantee the existence of S;, the unique
positive definite steadv state solution of the Riccati eaquation. That

is, S; > () satisfies
Q+SaataTsy - So(rt BT4pIrT)sT - 0 (121)
and we have the steady state feedback gain

¢ = R 1p7s” (122)

[- ] [--}

We now define

-4

L Tg-

xS x (123)

N

which 18 positive definite. Along trajectories of (120), we have

A % xT (S A+ATS )x- x'S_BR 'B'S_x (124)
which, upon using (121), i=
L -3 x"lo+s @R BT-IP IS ) % (125)
Now 1if
BR 1BT-rp7IrT 3 n (126)
we have

L <0, forall x# 0 (12n
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and systen (120), with controller C_, is asvmptoticallv stable.
Note that simple examples show that (120) can be unstable if

condition (126) is violated.

10.2 Stability Properties of Co

In this case we assume condition (114), namelv

H
H
v
£
i
¥
H
¢
&
y
£
i

srRBI-rprT50 (128)

and also that 0 > 0, Note that because of (128) we can write

' & prlpTorp 1T (129) ;

s

If we assume now that the vair (A,N) is controllable then it follows that

+
there exists a unique vositive-definite matrix Sw which satisfies

orsoaeaTs st Rl Torp 7 Tyst - 0 (130)
and
; ¢k = rlsTst (131)
Define
+Al1l T+
AL PP (132)
Along trajectories of (12N) we have that
.+ + + 4+ -1 T_+
it = 1 x(stanaTstm- x"stpr" 1B Ts x (133)
3 which, upon using (130), is
. - - +
it = - 2 <Trester BT T s (134)
<0 for all x ¢ 0, (135)
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Here, ﬂ+ is a2 Liapunov fun:tion and (120) wath controller q: is
asymptotically stable. Note the interesting noint that (126) is
sufficient to guarantee asymntotic stability of (12N") with controllers
q;_gs c:. In the first case, (12€) is used to guarantee negativity of

= +
L wvhile in the second it is used to guarantee existence of S_.

11. Interpretation of Stabilitv Results in Terms of Infinite Time

LEtG Problems

Clearly, from (103), (105)

J (x,t) *0Das t + - (136)
and

+

J (x,t) » ® 3¢ ¢ » ~» (137)

+
In order for LE G nroplems to make sense, therefore, we define
our infinite time criterion as
1

Lim joMi:1 & {[lr’f(r,rk)d T o(te-t)
oo | u( !) "x(t)omo 2 lt x Ox+u Ru)dtéx (tf)QfK(tf)] (138)

Note that from (103), (105) (138) is equal to

exp(Ger(sZre D)), (139)

In the case where 0 is negativ: and the noise intensitv is large
an unstable control law mav be optima.. because in (138) the auantitv whose
expected value is calculated is bounded belcw bvminus one and above bv
zero regardless of the control that is annlied.

Note that when 0 is nositive an unstahle control law cannot be

optimal because the acuantitv whose expected value is calculated is
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unbounded; this is confirmed hv (135) which indicates that if an optimal

controller exists for the infinite time L£+C problem it must he stahle.

12. Conclusion

In this paver we have nresented exvlicit (modulo sclution of Riccati
difference or differential equations) solutions of stochastic control
problems having linear dynamics, additive gaussian noise and exponential
objective functions. These solutions are linear feedback control nolicies
which devend upon the covariance matrix of the additive orocess noise
so that the Certaintv Equivalence Princinle of LOC thecrv does not hold.

In certain anplications these new controllers mav be nreferable, esveciallv
nerhaps in economics where nultinlicative objective functions are of
intrinsic interest.

Bv demonstrating certain equivalences between our stochastic control
formulations and deterministic differential pames we are ahle to give
a stochastic interpretation to min-max ("worst case') design of linear
systems. This suggests that the "pessimistic” min-max design is not
unattractive since it corresponds, in a stochastic setting, to minimization
of the expected value of an exponential function of a aquadratic form,
which is quite an appealing criterion. Another significant result of tlese
equivalences is that existence of solutions of the stochastic control
problems implies and is implied by existence of solutions of the differential
games. Hopefullv these notions can be extended to provide existence results

for nonlinear stochastic control problems and nonlinear differential games.
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Certai: stability properties of the steadv state solutions of
the stochastic control problem sre also investigated. 1In particular,
we point out that the steady state controller for the LE G problem
can result in an unstable dynamic system while the steadv state controller
for the LE+C nroblem, 1f it exists, alwavs stabilizes the dvnaric

<+
gystem. In this sense, the LF G formulation is nreferahle.

Note that wve have not considered in this naner the more commlex

problem in vhich noisy measurements cf the state are made, viz.,
= M = o0 e git—=l, 140)
zk Hkxk+3k ; k=0, S,N-1 (

vhere {Bk’ak’xo} are independent gaussian random varisbles. In this

case the optimal controls are restricted to be of the form
w = L) 5 k= 0, N1, (141)

where is - or + and where

5 4 =} ; k=0,...,N1 . 142)
7, {zo’zl""’"k’ s k=0,..., (
The appropriate performance criterion is
v© A 1 Mg T T 14
S o0& = 3
(z,) "8) z, exp{o 3 [kzo O e e (143)

The above problem appears . be intrinsically much harder than

the perfect state case, and could be the topic of a future paper.
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1 ﬁgendix

] ST e s

: Lemma 1 If ?k&_ ‘k+1'k , then

]
ry--J -

4 t 1 - 17 1 I l I -
; - e P AR A WS LS o P ”
I feohls e

e T +3u )t fALL
i T exp = 5 (XA Fiu AN )
he)

where i;+l is defired in (39).

Proof: The left hané side of (A.1) is, using (1), equal to

r 1

) q -1
- i !
J(Z ) Pk

1 N T
- 3 LAXIBUATm) Wy (B BT g s P adicn,

- i
e +Tk 1 k) 1‘ R
A =\ 3 B0 o (A kB Y
| P,
E - exp. "" (o - “y) (°k+rk“k+1 N (-3, oy
Joom31 e, + TE W, r )7
M7 Ttk Wrar'x (A.2)
3
where
z & rly (A.3)
a = - (P T wk+1rk) K k+1(Akxk B4

et an st bt ataall
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The Lemma is oroved by (A.2) since the integrand is a probability dersitv

function having mean Ek and covariarnce
> g le&l k . (A.6)

Lemma 2: - r
1) I - Tnbl ) > 0 then

r 1

— -2

S Ty uk Gl oo 2 xkbl"k*l’}u Py
(zw) '?k :

oLt 1!
Fk e % L ax s30T R .
-v p-L1 exp 5 (WX Fsy (X Byuy) (4.5)
X
where W' . is defined in (54
Te k\“lsnene n (54).
T+
11) If (P -T W T 3o, (A.6)

then the left hand side of (A.5) is infinite.

Proof: 1) The proof is the same as that of Lemma 1 with w;+1 replaced
+

-y
by e+’
1i) We have that

T 1 T +
{- 1 = W 3}
exp’ c.kPkak, . XD ) le 1 IX] 1

1, T T +

= f.. —-— - ™ ‘r .
exp! 2[0.‘(?1(0.k (Akxk+Bkuk+Tka.k) W (AL X ¥B U+ kcr.k)]_ (A.7)
and we note that because of (A.€) there exists a direction al’: such that

the right hand side of (A.7) does not go to zerc as ';'u{“ + o, (Clearlv

this implies divergence of the integral on the left hand side of (A.5).
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Ceneralized Aamilton-Jacobi-Bellman _!_guztiou

Here we derive equation (98).

Prom (160) we have that

t+f

P(x,t)= dé‘x(t)etp‘%clf (xTgxtu’ TRWO)d Y, (A.8)

t

t "~
T gT, C T
exp{lidr){rf {(x Qx+u” Ru Ydedx (tf)QfX(tf)}}

T
(xTqetus Ru®)de W (xtex, t+5)

~ 1 T, ol Syer . 110(x £3+3% T (Ax+ButTa) 64375
" (e {1405 (x'Qxtu” ku ¥5+. . 1 , x t

+% (mnmra)Tng(msmra)sz +...] (A.9)

Upon taking the exvectation and the limit ag % + N, we obtain, formally,

) T
- 0 = 2 otToen” B 0% (x, 0+ 137 (x, 01 AxtBu)

N _1_ Lof ™ -l,..T 1
+3 tr[Jxx(x,t)‘P ™) (A.10)
or
33° 1, T . T T
- - (x,) = @in f50(x oxtu Ru)Jg(x,t)H;':(x,t)] (Ax+Bu)
u
1 o -1.T
+3 tr[Jxx(x.t)T'P r'1} (A.11)

which is equation (93).




