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THE NUMERICAL OPTIMIZATION OF DISTRIBUTED PARAMETER
T SYSTEMS BY GRADIENT METHODS

ABSTRACT

The numerical optimization of distributed parameter systems is
considered, 1In particular the adaptation of the bavidon method, the
conjugate gradient method, and the "best step' steepest descent method
to distributed parameters is presented. The class of problems with

quadratic cost functionals and linear dynamics is investigated. Penalty

functions are used to render constrained problems amenable to these
gradient techniques,

Also considered is an analysis of the effects of discretization of
continuous distributed parameter optimal control problems. Estimates
of discretization error bounds are established and a measure of the
suboptimality of the numerical solution is presented.

Numerical results for both the constrained and the unconstrained
optimal control of the one-dimensional wave equation are given. Both
the distributed and the boundary control of the wave equation are treated,

The standard numerical comparisons between the Davidon method, the

conjugate gradient method, and the steepest descent method are reported,
1t is evident from these comparisons that both the Davidon method and
the conjugate gradient method offer a substantial improvement over the
steepest descent method.

T Some of the numerical considerations, such as, selection of ap-

propriate finite difference methods, multiple quadrature formulas,
interpolating formulas, storage requirements, computer run-times, etc.

i are also considered.
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CHAPTER I. INTRODUCTION

The optimal control of distributed parameter systems is
concerned with the minimization (maximization) of functionals
constrained by either nonhomogeneous partial differential
equations or by multiple integral equations. The study of
the optimal control of distributed parameter systems is
generally considered to have been initiated in 1960 by
Butkovskii and Lerner (l). The term "distributed parameter
system" was coined by Butkovskii and was intended to refer to
dynamical systems which are modeled by either partial dif-
ferential equations or by multiple integral eguations. In
fact, it is these distributed constraints which distinguishes
this field from the classical multi-variable calculus of
variations, which was considered by Lagrange as early as 1806.

The optimal control of distributed parameter systems
has received considerable attention in recent years. Since
Butkovskii and Lerner's original paper, well over two hundred
publications have appeared in the literature concerned with
this subject. At the present time two full length books
(2, 3) have been published on this topic and more are in
preparation. In addition many of the recent texts on optimi-
zation include chapters introducing this subject (4, 5). Also,
a number of doctoral dissertations have reported results on

various aspects of this field (6, 7, B and 9).

The rapid growth of literature concerning this topic has




motivated a number of recent survey papers on this subject,
which include extensive bibliographies. The first survey of
the subject was generated by Wang (10) in 1964 and still
provides a good introduction to the subject. Subsequently,
Wang published an extensive bibliography covering both the
stability and the optimal control of distributed parameter
systems (11). 1In 1968 Butkovskii, Egorov and Lurie (12)
published an excellent survey of the Soviet efforts in thié
field. 1In 1969, Robinson compiled what is probably the most
complete bibliography of this subject to date (13). Robinson
includes in his bibliography a brief discussion of many of
the various facets of this topic. Due to the existence of
these recent survey papers, only a brief introduction to
digstributed parameter systems will be given; and a complete
bibliography will be omitted.

At the present time there is no universally accepted
method for classifying the works published on this subject.
A number of possibilities are discussed in (13). In the sub-
sequent discussion, the publications will be divided into two
groups: (1) those papers which are primarily concerned with
the mathematical structure of the problem formulation; and
(2) those results which are primarily concerned with the

problem solution.
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Results Concerning the Problem
Formulation

The majority of the papers on the optimal control of dis-
tributed parameter systems deal primarily with the extensions
of the theoretical results obtained for lumped parameter
systems to distributed parameter systems. In fact about one-
half of all the repoxts, which have appeared in the literature,
are concerned with the problem formulation giving particular
attention to the derivation of the necessary conditions for
optimality. Three basic approaches have been utilized in
the derivation of these necessary conditions: (1) wvariational
calculus; (2) dynamic programming; and (3) functional analysis.
In addition, there is the method of moments which can be used
if che functional ié constrained by a system of linear integral
equations (14). 1In his early works, Butkovskii (15, 16) con-
siders systems described by integral equations and employs
variational methods to derive the necessary conditions for
optimality. These necessary conditions are given in the form
of integral equations. A number of Butkovskii's subsequent
works are concerned with the development of methods for solving
these integral equations. Egorov (17) and Lurie (18) follow
the work of Butkovskii; however, they consider systems described
by partial differential equations. Both of these approaches

have their advantages and their disadvantages. Since the

integral representation of the dynamical system yields bounded
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operators, this approach is useful in theoretical develop-
ments. However, the differential representation of dynamical
systems, which unfortunately introduces unbounded operators,
is useful because many physical problems are easily formulated
in terms of partial differential equations. In principle at
least, Green's functions can be employed to convert linear
partial differential equations into linear integral equations,
However, in practice this is not always possible, certainly
not in general for the non-linear case.

Wang was one of the first to use dynamic programming to
derive the necessary conditions for distributed parameter
systems with distributed control. Brogan (6) extends Wang's
results to include boundary control. The functicnal analysis
methods are generally applied to abstract cptimal control
problems in either a Banach space or in a Hilbert space. With
this degree of generality, the results obtained in these
papers certainly can be applied to distributed parameter
systems and to lumped parameter control problems as well.
Papers by Balakrishnan (19, 20) are of particular interest to
the present investigation:; since in these papers, Balakrishnan
considers the extension of the classicu’ steepest descent
method to the general Hilbert space setting. Russell (21)
applies functional analysis methods to problems in which the
controls are finite-dimensional. Axelband (22) utilizes the

Freéhet derivative to obtain the necessary conditions for a

-
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quadratic functional. He then proceeds to develop methods
for solving the resulting linear operator equation. A
number of authors, for example (23, 24 and 25) utilize
certain properties of special classes of problems to developn
methods for obtaining the optimal control.
Results Concerning the Problem
Solution

In the optimization of distributed parameter systems,
one's first impulse is to transform the problem into some
other form which can be solved by existing techniques. This
approach leads ultimately to some type of approximation. At
the present, the following approximations have been tried:
(1) eigenvector expansion; (2) spacial discretization; and
(3) space-time discretization. Of course, the eigenvector
(eigenfunction is the term usually used in this case) ex-
pansion techniques are classical methods of approximating
partial differential equations. Unfortunately, this method
only works for linear or linearized problems with rather
restrictive boundary conditions. When this method does

apply, the distributed parameter problem is reduced to a

lumped parameter problem. An approximation is introduced when

the eigenvector expansion is truncated to a finite number of
terms in order to facilitate a practical solution. Lukes and

Russell (26) prove that the solution obtained from the

truncated eigenvector expansion converges to the exact solu-

Y
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tion of the distributed paraméter problem as the number of
terms in the expansion increases. Space discretization also
reduces the problem to an approximate lumped parameter
problem. However, a very large number of ordinary differential
equations result from this methcd; and conventional lumped
parameter methods have not proven to be very effective in this
case. Axelband (22) uses space-time discretization to reduce
the problem to a parameter optimization problem. However,
once again the number of independent variables becomes ex-
tremely large; and difficulties dre encountered in obtaining
the solution with standard techniques. Axelband also proves
that in the limit this method converges to the true solution.
However, in doing so, he neglects to consider the numerical
approximations and their effects on the convergence of the
method. Recently, a number of authors (27, 28, 29 and 30)
have alluded to the fact that some of the direct computational
methods developed for the solution of lumped parameter opti-
mization problems, especially gradient methods, might also be
beneficially extended to distributed parameter systems. At
the present time computational experience with the steepest
descent method, as related to the optimization of distributed
parameter systems, has been reported in (28, 29 and 30).

These methods offer the advantadges of being very simple and

of applying to a breocad class of problems.
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Engineering Applications

In recent years considerations of the control of complex
processes,such as nuclear reactors and chemical production
systems, have motivated interest in the optimal control of
distributed parameter systems. However, these are not the
only possible applications for this theory. For example, it
is clear that an optimal control theory for distributed
parameter systems can be applied to the process industries
(chemical, petroleum, steel, cement, glass, etc.), the power
industry, and the aerospace industry. The following list is
not complete; nevertheless, it does indicate the variety of
problem areas to which the optimal control theory of
distributed parameter systems could be applied:

l. Control of heat and mass transfer processes (e.qg.,
heating, cooling, melting, drying, etc.).

2. Control of fluid dynamic processes {(e.g,, pumping
of petroleum, hydroelectric power generation,
liquid rocket engine design, acoustic phenomena,
etc.).

3. Control of chemical and kinetic reactions (e.q.,
petroleum refining, production of steel and glass,
combustion processes, chemical industries, etc.).

4. Control of elastic and viscoelastic vibrations (e.g.,
heavy equipment industry, aerospace industry,
geographic applications, location of petroleum
deposits, etc.).

5. Control of nuclear and atomic processes (e.g.,
nuclear power industry, nuclear space propulsion
systems, nuclear energy propagation, etc.).

6. Control of radioactive processes (e.g:, radiat@on
shielding, optical and electro-magnetic communica-
tions, etc.).
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7. Control of hydrodynamical and magnetohydrodynamic
processes.

8. Control of spaceacraft attitude (e.g., heat dissi- i
pation, structural effects, etc.).

9. Control of melting, freezing, and crystal growth.

10. Control of environmental processes (e.g., air
pollution, water pollution, flood control, traffic
control, forest fire control, etc.).

After examining the above list, it becomes immediately apparent
that there is no lack of motivation (from the point of view

of applications) for the theory of optimal control of dis-

tributed parameter systems.
Dissertation Objectives

As mentioned before, many of the existing results to
date are concerned with the mathematical structure of the
problem and the derivation of the necessary conditions for
optimality. Unfortunately, very little has been said con-
cerning how to solve these necessary conditions to obtain the
optimal control. From the engineering point of view, the
problem solution is at least as important as the problem
formulation. fTherefore, it seems desirable that a large
émount of future research efforts should be devoted to the
development of methods for solving the problems already
formulated.

One of the original objectives of the present research

was to demonstrate numerically that the second generation
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gradient methods, such as the conjugate gradient method and
the Davidon method, could be efficiently adapted to solve
practical distributed parameter problems. These methods were
selected because of their simplicity, their generality, and
their success in solving lumped parameter optimal control
problems. However, preliminary storage requirement calcu-
lations indicate that the solution of realistic distributed
parameter optimization problems are beyond the present

storage capabilities of the Model 360-65 system. In addition,
early numerical results indicate that the approximations in-
volved in discretizing the continuous problem are causing
substantial errors in the approximate solution. It was
realized that in order to effectively solve distributed optimal
control problems by gradient methods, it is essential to
determine the effects of these approximations on the numerical
solution., The new objectives formulated are: (1) to develop

a general optimization theory for a particular class of
distributed parameter problems; (2) to isolate those approxi-
mations which cause the largest errors in the numerical solu-
tion for this class of problems; (3) to determine the effects
of these errors on the class of gradient methods; (4) to
develop estimates for the errors between the exact and the
approximate solution; (5) to evaluate the effectiveness of the
conjugate gradient method and the Davidon method in comparison

with the standard steepest descent method on this class of

i e DR
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problems; and (6) to generate numerical results which sub-

stantiate the theory developed in objectives (1) through (5).
Class of Problems Considered

The non-linear distributed parameter optimal control
problem is easily formulated; and if tlie existence of a rela-
tive minimum is assumed, the derivation of the necessary con-
ditions for optimality is straight forward. However, the
solution of a non-linear distributed parameter optimal control
problem is usually very difficult. Existence and unigueness
considerations for both the minimizing element and the
distributed dynamical system dictate that extreme care be
exercised in the selection of the class of problems to be
considered.

Fortunately, gradient methods do not require the a
priori assumption of the existence of a relative minimum,
However, they do require the existence and uniqueness of the
solutions of the dynamical system. Thus, the selection of the
distributed dynamical system to be optimized is an important
consideration in distributed parameter problems.

The second generation gradient methods are basically un-
constrained, quadratic functional, optimization methods. Thus,
it seems natural to investigate their performance on quadratic

distributed parameter problems, especially, since quadratic

problems play such a significant role in the prescnt state of
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the art of distributed parameter systems. The penalty function
approach can be used to alter the constrained distributed
parameter optimal control problem into an unconstrained, quad-
ratic functional, optimization problem; if: (1) the penalty
functional is quadratic:; (2) the original cost index is
quadratic; and (3) the distributed parameter dynamical system
is linear. 1In the following, only problems with the above
properties will be considered: and will be referred to as

quadratic programming problems.
Dissertation Outline

The distributed parameter optimal control problem is
formulated in Chapter II. The concept of a functional deri-
vative is utilized to derive the expression for the gradient
of the cost index. Brief remarks are made concerning methods
which use the gradient to obtain the optimal control.

Gradient methods are introduced in Chapter III.

Specifically, an introduction of the three most popular

gradient methods is presented., The concepts of the inner and
outer loop iterations are discussed, and popular inner loop
iterators are introduced.

The development of an approximation theorv for the
numerical solution of distributed parameter systems by
gradient methods is presented in Chapter IV. The definitions

of the Optimal Control Error and the Cost Functional Error
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are introduced. It is shown that the approximations involved
in the discretization of the continuous problem cause gradient
errors. The effects of gradient error on gradient methods is
analyzed. Error estimates for the approximate numerical
solution are developed. A geometrical interpretation of these
erxor estimates 1s presented.

Chapter V presents numerical results for both the con-~
strained and the unconstrained optimal control of the one-
dimensional wave equation. Both .- tributed vontrol and
boundary control are considered. Penalty functions are used
to render the constrained problem amenable to the gradient
methods. Standard numerical comparisons betwee:n the conjugate
gradient method, the Davidon method, and the steepest descent
method are given. Some of the numerical considerations, such
as selection of appropriate finite-difference methods,
multiple quadrature formulas, storage requirements, computer
run times, etc., are discussed

Concluding remarks and recommendations for additional re-
search are given in Chapter VI.

Appendix A introduces mathematical concepts which are
pertinent to this dissertation. The coverage of these topics
is extremely brief; consequently, it is not intended to be an
introduction to any of the areas discussed, but rather as a
point of reference for the development presented in the main

body of this work.
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In Appendix B the derivation of the necessary conditions
for a general non-linear distributed parameter optimal control
problem is presented. Ordinary differential equations on the
spatial boundary are considered. The standard calculus of

variations is employed in the derivation of the necessary con-

ditions for optimality.
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CHAPTER II. THE OPTIMAL CONTROL OF DISTRIBUTED
PARAMETER SYSTEMS

The Optimal Control Problen

The optimal control problem may be stated as follows:

minimize

J(urx], (2.1)

subject to

Ylurx] > 0, xeX and ueU; (2.2)

where X is called the state space, U the set of admissible
controls, and J[u;x]) is a real valued functional defined on
the product space U x X. The non-linear operator y is de~
fined on U x X, and @ is the null vector of this product space.
The functional J[+;+] is generally referred to as the cost '
index, and the conditions of Equation Z.2 are called the
constraints., As a consequence of the constraints, the state
trajectory x(t) is dependent upon the control u. Thus any
particular optimal control problem depends on the nature of

the functionsJ and Y, and on the sets X and U. Consider

the following special cases: 1., Parameter Optimization:

let X and U be real Euclidean vector spaces, let y be a vector
valued function, and let J be a scalar valued function:

2. Lumped Parameter Optimization: 1let X and U be properly

selected function spaces, let y be decomposed into two

operators T and S, where T represents an algebraic equality
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and/or inequality constraint, and where S denotes a differen-
tial and/or integral operator with respect to one variable,

and let J be a real valued functional; 3. Distributed

Parameter Optimization: let X and U ke properly selected

function spaces, let ¢ be composed of algebraic, differential
and/or integral operators with respect to more than one
variable, and let J be a real valued functional. The solu-
tion of problems formulated in case 3 (above) is the topic
of this disgertation.

The difficulties encountered in solving for the optimal
control of a distributed parameter system are generally
related to the complexity of the constraints, Equation 2.2.
For distributed parameter systems very few general results
are avallable concerning the existence and uniqueness of the
solution to the constraint eguation. Consequently, little
can be said regarding the solution of the general distributed
parameter problem. However, there exist certain classes of
problems, of practical significance, for which results can be
obtained. For one such important class one lets: (1)

J[u;x] be a quadratic functional in u and x; and (2) y¢lu;x] be
a linear equality constraint, It is this particular class of

distributed parameter problems which will be considered

in what follows.

B ST SO PP
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The Distributed Parameter Optimal
Control Problem

Cost index

Let J{u;x] be a real valued quadratic functional defined
on the real separable Hilbert space U x X, generated by the
self-adjoint operators M and N, and by the inner product

<+,+>, and let J[u;x] be specified by

J(urx] = = + <c1,u> + %<u,Mu> + <c2,x> + l<x,Nx>,

2
(2.3)
or
d
u c u
JI{ d ix] = Sy * < % , da
Y “1 Yy,
1 Uyq | Ya
* 3¢ |uy ,[Mdle]ub>
+ <C,,X> + l<x Nx> (2.4)
2! 2 r r .

where XCL2[QxT], UCL2 [@xT], QCRm, TC'Rl c eRl o, el,

) e |
czex, and where the vector ¢ and the operator M are parti-
cd
tioned into é and [Mdle],respectively. At any time teT
c
1l

the distributed state of the system is denoted by

t
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Xl(rl rrzlc .. Irmlt)

) p (2.5)

[

x(r,t)

xn(rl,rz,...,rm,t)

where refl, and where each component xi(rl,rz,...,rm,t)ex,
i=1,2,...,n. Let the control vector u denote both the dis-
tributed control and the boundary control, that is
ud(r.,t)
u = . . (2.6)
ub(rb,t)
The distributed control vector Uy is represented by
1
ud(rl'r2"" lrmlt)l

ud(r,t) = ’ (2.7)

ug(rl,fz,...,rm,t)}

where each component uwilr, , v, ..,r_,t)el, i=1,2,...,p<n.
a'"1'72 m -
The boundary control vector Uy is represented by
1
ub(ré,rg,...,rg,t)

uy (r,,t) = . , (2.8)

1 2
ug(rb,rb,...,rg,t)

i, 1 2 m
where rbeaﬂ, and each component ub(rb,rb,.:.,rb,t)eu,

i=1,2,...,k<n.

Constraints

Let the constraint ¥ [u;x] be decomposed into the linear

distributed dynamical system
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Sx(r,t) = ud(r,t) (2.9)
with initial condition
x(r,0) = x,(x), (2.10)
and terminal condition (target set)
wlx(r,Tf) = hD(r), (2.11)
and into the boundary condition

Tx(rb,t) = ub(rb,t), (2.12)

where S8 and T are linear differential operators consisting of

a linear combination of a time differential operator D, and
a gpatial differential operator D given by
S = C1Dt + CZDr ’ (2.13)
T 2 [eyD, + ¢,D_] c, eRr? (2.14)
- 37t 47" |3’ i ' .

and Wl is a nxn self-adjoint matrix, and xD(r) is the desired
gstate of the final time, 1In addition it is assumed that
Equations 2.9, 2.10, 2.11, and 2.12 satisfy the conditions

of Theorem 1.1 in (20), which insures the well-posedness

of the dynamical system, and the representation of the soclution
in terr of integral operators. The distributed optimal
control problem for the system of Equations 2.9, 2.10, 2.11,

and 2.12 with respect to the cost index J, and the set of

admissible controls U can now be restated as follows:
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determine the control u*eU such that

Ju*;x(u*)] = min{J[u;x(u)l} . (2.15)
uel

Conditions for Optimality

Existence of an optimum

For the class of problems considered the axistence and
the uniqueness of the minimizing element u* can be easily
proven (31). This, of course, is certainly not the case
for the general distributed parameter optimal control problem,
since existence and unigueness results for even the dynamical
system do not (in general) exist. The existence and unigue-
ness of the soluticon was one of the primary reasons for the
selection of this particular class of problems, as the

subject of the present investigation.

Derivation of the necessary conditions for optimality

The numerical methods which are used in this dissertation
are directly applicable to only the unconstrained problem.
Thus, it is convenient to transform this constrained
problem into some equivalent unconstrained problem.

Assume that the distributed dynamical system defined by
Equations 2.9 through 2.12 satisfy the conditions of Theorem
1.1 (20); this insures that the dynami:al system has a unigue

solution for all ueU. However, only the controls in a subset

J—
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UWC:U drive the system from the initial state to the target
set. Therefore, the specification of a target set causes the
dynamical system to generate a constraint in the control
space. Hence, strictly speaking only the controls uer are
admissible, since if ue[U\y]c the u does not satisfy all of
the constraints.

The penalty function method will be employed to render
the constrained problem amenable to gradient methods. The
original problem is then replaced by an equivalent un-
constrained proklem, The only requirement of a penalty
function is that it be a positive measure of the constraint
violation. Thus for any particular problem, the penalty
function is not unique. In the subsequent development the

following penalty function will be utilized:
PIx(r,Tg)] = <¥,W¥e=<¥ x(r,To)-x,(x) ,W(¥ x(r,Tg)-xp(x))>

(2.16)

where W is a nxn self-adjoint matrix of penalty constants.
The constrained prcblem may be restated as an uncon-
strained problem as follows:
minimize
Jp[u;x] = Jluix] + Plx(r,Tg)] (2.17)
subject to Equations 2.9, 2.10, and 2.12 (Note: Equation

2.11 is omitted). 1In the unconstrained problem the dynamical

system is not a constraint, but rather a side condition, which
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must be solved only to evaluate the penalized cost index J_.

By representing the solution of the state system in terms
of appropriate Green's functions it is possible to remove the
explicit dependence of the cost index on the state trajectory.
Thus, let the solution of the dynamical system exist, be

unique, and have the representation
t) = ¢(t) + 8™ ) u, (r,8) + T Y ( (2.18)
x(r,t) = ¢(t xo(r) uglr,t) tiu (r,,t), .

where ¢(t)x0(r) denotes the contribution to the solution at
time t due to the initial conditions, S-%t)ud(r,t) denotes
the contribution to the solution at time t due to the dig-
tributed control, and Tn%t)ub(rb,t) denotes the contribution
to the solution at time t due %o the boundary control. The
state of the system at the time Tf is then denoted by

-1 -1
x(r.Tf) = ¢(Tf)x0(r) + S (Tf)ud(r,t) + T (Tf)ub(rb,t).

(2.19)

The state trajectory is eliminated from the penalized
cost index by substituting Equations 2.18 and 2.19 into

Equation 2.17, i.e.,

-1 -1
Jp[u:x] = J[u;¢(t)x0+s (t)ud+T (t)ub]

-1 -1
+ P[Q(Tf)xo+s (’I‘f)ud + T (Tf)ub]. (2.20)

Simplification of Egquation 2.20 yields the standard quadratic

form
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I lul = 3g + <c > + %<u,Au>, (2.21)

where

'
;
i
i
F
E
g
S
g
2]

* ] * *
Jy = S * <(% (t)cz-—(b (Tf)wl[w +w])xD,x0>
d(t) i No(t)
+ <(—§—— + YIQ(TE))xO, ( 5~ +Wf1¢(Tf))x0>
+ <xD,WxD>,\ (2.22)
|

- L

-1 -
of+ts (61 0, + 13187 1e) 1" (wem) T0 (0
. S-} *W* *
([s (Tg)] ¥, (W +w]wl]¢('rf)xo
A -1 * k_ x
N ~[S (Te)1 V] W +Wlxy

o= = (2.23)

-1 -1
2 SBrir (1)1 ey T (601" (e To (o) x

-1 * Kk *
HLT (T ] ¥ [W 1Y) 10 () x,

-1 * k%
- [T (Tf)] Wl[w +W]xD

11 12
A'-‘- ’ (2.24)

21 22
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with
-1 w =1 -% * %k -1
A11=Md+[s (t)] NS (t)+2([S Tf)] WlWWlS (Tf), (2.25)
-1 w -1 -1 P -1 ]
A12=[S (t)) NT (t)+2[S (T¢)) \vlwwl'r (Tf), (2.26)
Cem * - -1 "R -} ,
A2l—[T t)] NS (t)+2([T (Tf)] WIWW18 Tf)' (2.27)
_ -1 * =1 -1 * % -1
A22—Mb+[T ()] NT (t)+2[T (Tf)] WIW?lT (Tf) . (2.28)

The necessary condition for u* to be the element of U

which minimizes Jp igs that the gradient (utilizing the Frechet

derivative) of Jp with respect to the control u vanish at u*.

Thus
g
511
3J d 1
T lge = glu*) =14 = ¢ + F[A+A*]u* = 0. (2.29)
Mp [ yw

If A is a self-adjoint operator, then Equation 2.29 yields
g(u*) = ¢ + Au* = 0 . {2.30)

From Equations 2.25 through 2.28 it follows that for A to be
self-adjoint, Md' Mb' N, Wl, and W must he self-adjoint. 1I€

A is self-adjoint then the Hessian of Jp given by

2




o ey

24

is positive definite. Consequently Equations 2.30 and 2.3l
are necessary and sufficient conditions for u* to exist and

be the unique optimal control for the penalized cost index Jp.

Methods of Solution

This dissertation is not primarily concerned with
formulating necessary conditions for optimality, but rather
in developing practical methods for solving distributed
parameter optimal control problems., Thus, a brief introduction
of the basic optimization methods is warranted. 1In the opti-
mization literature two basic classifications for the methods
of solution have evolved. These categcries are generally

referred to as the direct and the indirect methods.

Indirect methods

Indirect methods are those methods which determine the
optimal control by indirectly solving (in most cases

iteratively) the operator equation
g(u) =0 . (2.32)

In general Equation 2.32 is used to eliminate the control from
the state and costate systems. Once the control is elimi-
nated, the state and the costate systems form the classical

two point boundary value problem (TPBV). The optimal control

can be determined once this TPBV problem is solved. Most
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indirect methods are characterized by an iterative modification
of either the boundary conditions and/or the partial dif-

ferential equations,

Direct methods

i Direct methods are those methods which determine the
optimal control by directly operating on the cost index J.
Based on information concerning J and possibly the gradient
of J the direct methods result in an iterative procedure

which, hopefully, converges to the optimal control. These

methods require an initial guess to start the iteration, and
then correct this initial guess in a certain predetermined
manner. The various direct methods differ principally in

the means used to determine the control correction. The
gradient methods which are certainly the most popular of this
class of direct methods will be discussed in more detail in

f the following chapter.
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CHAPTER III. INTRODUCTION TO

GRADIENT METHODS

Gradient methods are direct optimization methods which
utilize derivative information during the iteration. The
most well-known of the classical gradient methods are the
steepest descent method and the Newton-Raphson method. The
steepest descent method is a first order method (i.e., it
uses first derivative information) which is characterized by
simple logic, stability with respect to the initial guess, and
slow convergence near the solution, In contrast to the
steepest descent method is the Newton-Raphson method, a
second order method which exhibits rapid convergence near
the solution, but poor stability with respect to the initial
guess. In recent yvears a class of second deneration gradient
methods have been developed which combine the simplicity and
stability of the first order methods with the convergence
properties of the second order methods. The most popular of
this class of gradient methods are the conjugate gradient
method and the Davidon method. Although, the motivation for
each of these two methods is different, their performance is
strikingly similar. 1In fact, these two methods (theoretical-
ly) produce identical iterations on quadratic problems (32).

At the present time only the standard steepest descent
method has been adapted to the optimization of distributed

parameter systems. In this dissertation the numerical
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adaptation of the conjugate gradient method and the Davidon
method to distributed parameter systems is presented.

In general, gradient methods are employed to design
computer algorithms which are used to chtaln approximate
solutions to optimization problems. These algorithms usually
consist of two iterative processges, which are interrelated.
The terms "outer loop iterator" and "inner luop iterator"
are introduced to denote these two iterative processes. The
reasons for this designation will become apparent when the
algorithm is introduced.

Before presenting the general gradient algorithm some
nomenclature and definitions have to be intrdocued. Let the
control, the gradient, the direction of search, and the

th

control correction parameter at the n iteration be denoted

by u s and Yn! regpectively; where UneU for all

n’ I9n’ ®n

n>0, gncG for all n>0, sneé for all n>0, and YneRl for all
n>0, and where U, G, and S are real separable Hilbert spaces.
In the cases to be considered spaces G, 8§, and U are iden-

tical.

Definition 3.1: The outer loop iterator, specified by the

particular gradient method employed, implicitly determines

the direction of search Sh and explicitly performs the control

iteration; and is given by
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Unsp = Op (Vs Ypi VpgoeeeiUn gy (3.1)
, 1 n-m
; where OL: R* x T U+U, and m denotes the number of back ]
4 i=0

: ] points used in the iteration.

Remarks: 1. The semicolon in Eguation 3.1 separates the point
at which new data are used from the point at
which old data are reused.

2. The iteration formula defined by Equation 3.1

is referred to as a one point iterator with

memory (33).

Definition 3.2: The inner loop iterator determines the

control correction parameter Yn' and is given by

i+l i i i
Yn I (v Tl +y s 1, glu +y s )), (3.2)
where
IL: RllexeU*Rl.

Gradient Method Algorithm

The interrelationship between the inner loop and the
outer loop iterators is best illustrated in the gradient

method algorithm. This algorithm is as follows:

Outer loop iteration

l. For n=0, guess an initial control function Ug e
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2. Calculate the gradient of the cost functional

g(u)) = g  by:

a. integrating the state system from t0 to Tf; ¢

b. integrating the costate system backwards
r from Tf to to.
3. Calculate the direction of search Sy

4. Inner loop iteration: calculate the control

correction parameter Yp -

5. Calculate the control correction.

6. Test the convergence criteria; if these tests are
E not satisfied, increase n and repeat computations
| beginning with step 2.

The logic flow chart for the above algorithm is presented

in Figure 3.1.

The various gradient methods differ principally in the

means used to determine the direction of search Sh (step 3),
} and the control correction parameter Yi (step 4). The
coenjugate gradient method and the Davidon method are outer
loop iterators with memory, whereas the steepest descent

method is an outer loop method without memory, i.e.,

steepest descent always searches in the negative gradient
direction. Thus, the conjugate gradient method and the Davidon
method are able to utilize the results of previous iterates

to improve the direction of search; and hence converge more

rapidly than the methods without memory.
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Outer loop iterators

The approximation theory developed in the next chapter
applies to gradient methods in general., However, numerical
results will be presented for only the following three
gradient methods: the steepest descent method, the con-
jugate gradient method, and the Davidon method. A brief

introduction to each of these methods is presented below.

The steepest descent method The steepest descent

method is perhaps the oldest of the direct search methods.
This method was originally developed for minimizing a function
defined on a real Euclidean vector =pace. An account of this
method was given as early as 1847 by Cauchy. Later, it
was named the method of gradients by Hadamard. 1In 1945 the
steepest descent method was extended to the case where the
function is defined on a Hilbert space (34). More recently
Bryson et al. (35, 36) and Kelley (37) have used the steepest
descent method to solve lumped parameter optimal control
problems. Several authors (9, 28, 29 and 30) have applied
the steepest descent method to the distributed parameter
optimal control problen.

The basic philosophy of the steepest descent method is
very simple. The maximum rate of decrease of J in a neighbor-
hood of an admissible control u, is in the direction defined

by -9, This direction defines the half-ray U 1S9, 7Y, Y>0.

Thus to obtain the maximum decrease in the cost index, the
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best local dirrnction of search is in the negative gradient
direction; hence, the method is named steepest descent.

Consequeliitly the outer loop iterator is given by
Woe1 = Uy T Yp9, (3.3) j

where the control correction parameter Yn is determined by
the inner loop iterator.

It is important to note that in the gcneral case the
direction of search S, defines the direction of maximum
decrease in J only for Yn arbitrarily small. In practice
the selection of small control correction parameters leads
to excessive iterations. In fact to insure that {un}*u*,

Yn must be bounded away from zero., If YN=O for some N>0,
then uy becomes a fixed point of the outer lonp iterator:

but Iy is not necessarily the null vector, and hence uy is E
not necessarily the minimizing element u*. The slow
convergence of the steepest descent method near the solution
can be attributed to the fact that as the iteration converges
the gradient tends to the null vector. Hence, the control
correction Ynllgnll becomes excessively small, unless proper
piecautions are taken in the selection of Yn This brief
discussion indicates the importance of the inner loop
iterator.

The gimplicity and the stability of the steepest descent

method enables it to be adapted to many difficult, practical
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. problems. These characteristics are important to practicing
engineers,; and they often cutweigh the glow convergence

properties ot the steepest descent method.

The conjugate gradient method The conjugate gradient

o method was originally developed as a method for solving a set
of linear algebraic equations; the solution of the set of

i \ ‘. A
| equations being related to the minimum (maximum) of a certain J

properly selected cost index (38). In 1954 Hayes (39)
extended the original conjugate gradient method to linear
operator equations in a Hilbert space. Since then (40)

and (41) have alsc considered the adaptation of this method
to the solution of linear operator eguations. Fletcher and
Reeves (42) then modified the conjugate gradient method and
used it to develop a parameter optimization algorithm.

. Lasdon et al.(43), and Sinnott and Luenberger (44) extended
7 the conjugate gradient method to lumped parameter optimal
control problems.

The conjugate gradient method is a gradient method with

LTI

memory. The motivation for this method is given by the follow-
ing cuonsiderations. Let the set of admissible controls U be &

- o real, separable Hilbert space, i.e., U contains a countable dense
| subset. The separability insures the existence of at least

one linearly independent set of basis vectors {sn], s, eV,

such that the finite-dimensional subspaces Bn spanned by

3 {so,sl,...,sn_l} form an expanding sequence of subspaces,
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whose union is the closure of the control space. If for each
n>0, the inner loop iterator minimizes J over the translation

of the one-dimensional subspace defined by un+l=un+ysn, then

J[un+1]=J[un+Ynsn]:J[un+ysn] for all v>0, (3.4)

i and

1<J[u__ ,+vys ] for all ¥>0.

(3.5)

n+l+Yn+lsn+l n+l

aE Iluy, 1=l n+l

Thus, two one-dimensional minimizations are sequentially per-

g

formed over a translation of the subspaces spanned by S, and

Sn41” respectively. The following important question now

arises. How can the direction of search Shel be selected

{ ' such that the result of this sequence of two one-dimensional

- minimizations give the same solution as would a two-dimensional
minimization over the translation of the two-dimensional sub- 5

P space spanned by (sn, }. That is, how should Sntl be deter-

Sn+l
mined such that

{  Jlu,,51<3[u +as +Bs .1 for all a>0 and B>0. (3.6)

The conjugate gradient method generates such an outer loop

iterator. This means that the solution obtained by performing
%,. a sequence of one-dimensional minimizations over a properly
- selected set of translated subspaces yields the minimum of

‘,' the functional over the translated subspace spanned by this i

get. This method is referred to as the "method of expanding
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subspaces",

At the present time there exist two versions of the
conjugate gradient method; the original version is developed
in (38), and the modified version is developed in (45).
Willoughby (46), presents an excellent discussion and com-
parison of these two versions; and demonstrates numerically
that on quadratic functionals these two methods do not
produce identical iterations as the theory predicts. Never-
theless, the modified version requires substantially less com-
putation; hence, it will be utilized in what follows.

In the modified conjugate gradient method the direction

of search is determined as follows:
s, = "9, * ann—l p (3.7)

<g_, 9g.>
o 1 , (3.8)
<gn—l' gn-l>

if n=0, then BO=0.
The outer loop iterator for the conjugate gradient method is

given by

U = U, t YnS, ¢ (3.9)

The second term on the right hand side of Equation 3.7 is
the mnemory element. This term deflects the direction of
search from the negative gradient direction. The modified

conjugate gradient method is particularly simple to program,
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requires little additional computation and storage in com-
parison with the steepest descent metﬂod, and in general con-

] : verges much faster than the steepest descent method.

The Davidon method The Davidon method is another

popular, second generation gradient method. It was developed f

by Davidon (47) in 1959, who referred to the method as

the "variable metric method". The Davidon method was original-
ly developed as a parameter optimization method, Fletcher
F and Powell (48) present numerical results, and proofs of

convergence and stability for the finite dimensional case.

) Horwitz and Sarachik (49), and Tokumaru et al. (50), have
recently extended Davidon's method to quadratic functionals
defined on a real separable Hilbert space; in (50) numerical
results are included for a lumped parameter optimal control
problem.

The Davidon method like the conjugate gradient method
i is based on the gquadratic approximation. In the quadratic

case let A denote the self-adjoint operator generating the

. quadratic functional, and in the non-linear case let A
i denote the Hessian operator; then, the Davidon method deter-

mines a direction of search

' (3.10)

where Hn: U+U, such that the sequence of operators {HnA}

converge to the identity operator. Thus, the sequence of
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operators {H } converge to the inverse Hessian A", fthis
means that as the Davidon iteration progresses, it becomes
similar to Newton's second order method. This fact accounts
for the rapid convergence of the Davidon method. The
Davidon deflection operatox Hn is determined iteratively as

follows:

N_.N N, N
H f = an + <f,pn>pn-<f,qn>qn ' (3.11)

n+l

where feU,

H0=I (or any other idempotent operator), (2,12)
By = B/ (3.13)
a = G/ RV (3.14)
g, = HY, (3.15)
Yo = Fn4179,) Yy (3.16)

and Yn is determined by the inner loop iterative such that
J[un+Ynsn] < J[un+st] for all v>0. (3.17)

The Davidon method generates an outer loop iterator given

by

Upel = YUy + Y8 (3.18)

n+1l n n'

where Yn and s, are determined from Equations 3.1l through

3.17. The Davidon method contains memory because of the

Davidon weighting operator Hn.

L
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As evident from Equation 3,11 the storage requirement
of the Davidon algorithm increases with the number of
iterations. Thus, even on the large modern digital computers
gstorage problems arise, if a large number of iterations are
required to achieve convergence., This drawback of the Davidon
method has lead to the practice of restarting the iteration
every q iterations. This modification of the Davidon method
is referred to as the Davidonlq] method (51). By restarting
the Davidon method every g iterations, the storage require-
ment of the Davidon method is at least bounded. However,
when coupled with the inherent storage problems associated
with distributed parameter systems, even the Davidon [q]

method presents storage problems.

Inner loop iterators

As indicated previously the inner loop iterator deter-
mines the amount of control correction. Consequently, the
convergence of the inner loop iterator directly influences
the convergence of the outer loop iterator. In fact, when
the errors due to the various discrete approximations made in
solving the problem on a digital computer are considered,
it is the inner loop iterator which determines the success
or failure of the overall iteration. A detailed discussion
of this fact will be deferred until the approximation theory

is introduced.

The most popular inner loop iterators are those
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which perform a linear minimization in the direction of
search Sp- In theory all of these methods converge eventually
to the same fixed point. However, in practice this is indeed
not the case because of gradient errors. The analysis of
the effects of gradient errors on the inner loop iterator will
also be given in the next chapter.
The three most popular inner lcop iterators are the
following:
l. Cubic interpolation based on functional values and
directional derivative values (52).
2. Cubic or gquadratic interpolation based on functional
values (52).
3. Linear interpolation based on directional derivative

values, i.e., regula falsi (53).

When there are no errors associated with either the calcula-
tion of the cost index J or the gradient g, then method 1
above is cubically convergent, while methods 2 and 3 are
quadratically convergent. Thus in this case methed 1 is the
superior of these three methods. This is not the case when
discretization errors are encountered. 1In fact in this case,

method 1 turns out to be the least efficient of these three

methods.
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General Results for Gradient Methods

The following results are listed for future reference.
The cited references contain neither the first nor the only

proof available.

Theorem 3.1.: Let U be a real separable Hilbert space with

inner product <*,.> and norm ||:|]| = V<+,+>, let A be a self-

adjoint operator defined on U such that
2 2
mAIIfII < <f,Af> < MAllf'I ’

and let J[.] be a quadratic functional defined on U and given

by

Ju} = JO + <c,u> + %<u,Au>

with minimum at u*=—A-é: then, the steepest descent method
(54), the conjugate method (original or modified) (41), and
the Davidon method (50) with inner loop iterators 1, 2 or 3

generate a sedquence {un}+u*, and a sequence {g(un)}+0.

Theorem 3.2.: (32) For the problem defined in Theorem 3.1 the
direction of search vectors S, of the Davidon method and the
conjugate gradient method are positive scalar multiples of

each other.

Remark: The proof of Theorem 3.2 presented in (32) is only

valid for the finite-dimensional case; however, it can be

et sl
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generalized with minor extensions.

The above two theorems are particularly significant in
this study and will be used repeatedly in what follows.
Theorem 3.1 demonstrates that at least theoretically all
three of these popular outer loop iterators converge to the
minimizing element. Theorem 3.2 presents a connection between
the conjugate gradient method and the Davidon method. Due
to the generality of these two theorems, they certainly apply
to distributed parameter optimal control problems. The proof
of convergence of these methods for the general non-linear
problem is not a closed question. However, it is at least
intuitively clear that if the functional is smooth and
convex, then these methods converge to the solution. This
argument is founded on the quadratic nature of a smooth convex
functional near the minimum. Theorem 3.1 does not ensure,
however, that the discretized numerical zpproximation to the
problem defined in Theorem 3.1 will converge. This is sig-
nificant because it is the discretized version of this problem
that is actually solved by the digital computer algorithm.

The consideration of the discretized approximation to the
optimization problem defined in Theorem 3.1 will be considered

in the subsequent chapter.

D e S - _
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CHAPTER IV. AN APPROXIMATION THEORY

FOR GRADIENT METHQODS

Gradient methods are iterative procedures and are there-
fore only practical when programmed on a high speed digital
computer. Thus the original continuous pfoblem is actually
replaced by a discrete problem. In the process of trans-
forming the continuous problem into its discrete analog a
number of approximations are made which introduce errors.
Basically two types of approximations are involved:

(1) approximations to elements of a Hilbert space (e.g., the
approximation of functions by piecewise polynomials); (2)
approximations of cperators defined on a Hilbert space
(e.g., approximations of differential and integral operators
by finite-difference and summation operators, respectively).
In addition, there are always errors encountered which are
due to numerical round-off.

Until recently the analysis of the effects of these
various approximations on the solution of optimization
problems has been neglected, in some cases with justification
and in others without justification. For example, in early
studies of the numerical solutions of parameter optimization
problems the effects of round-off were considered important.,
These effects have been studied from the statistical point of

view (55). When finite-difference formulas are employed in

parameter optimization problems to calculate the gradient
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Rl el

vector, then the truncation errors of these formulas are
encountered. Stewart (56) approaches this problem, in the
current fashionable manner, by attempting to eliminate the

truncation error. Previous experience (57) by this author

reveals that this approach is not an answer, but only a cure
' and only an approximate cure at best. During the study
presented in (57), the need for an analysis of the effects of
gradient errors on gradient methods became evident.

Recently two excellent papers (58, 59) have been pub-

lished which discuss the discretization of the continuous

lumped parameter optimal control problem. These papers are

concerned with demonstrating the convergence of the solution
of the discrete problem to the solution of the continuous
problem, as the discretization parameters are refined. From
a theoretical point of view this is significant; however, in
practice discretization is finite and cannot tend to zero.
For as one attempts to let the discretization tend to zero

; difficulties arise immediately in connection with round-off
errors. As a simple example of this phenomenon, consider the
approximation of a derivative by a finite-difference formula

{e.g., £'(x) = 1lim f(x+h%—f(x)). If this limiting process is

h~+0
attempted on a finite word length digital computer, the effects

of round-off are vivid.

Fortunately, in the case of lumped parameter optimal

control problems the effects of truncation error can be con-

trolled. This is largely due to the advanced development of
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the state of the art of the numerical solution of ordinary
differential equations. It is not meant to imply, however,
that the effects of these various approximations can be
overlooked in the case of lumped parameter problems. For
example a common practice in the numerical solution of lumped
parameter optimal control problems is to use a fourth-order
Runge-Kutta integration method in the forward integration of
the state system, and then to utilize linear interpolation

(a first~oxder method) tc obtain the required midpoint values
of the state system on the backwards integration of the co-
state system. The inconsistency is obvions. The estimates
for the errors induced by this type of inconsicient practice
on the overall solution is still an open gquestion.,

The errors of the discrete approximations involved in the
solution of distributed parameter optimization problems on
a digital computer are in general larger than in lumped
parameter optimal control problems. Hence, the effects of
discretization errors upon gradient methods are more
pronounced in distributed parameter prcblems.

The computation of the gradient vector, which for
gradient methods is required at least once on every outer
loop iteration, primarily consists of the forward integration
of the state system and the backwards integration of the co-

state system. Thus in the soluticn of distributed parameter

optimal control problems by gradient methods, the repetitive

P

o
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computation of the gradient vector constitutes a large
percentage of the total computing effort. Hence, if high
order finite-difference methods are employed in the solution
of the state and costate systems, then excessively long com-
puter run times result. If lower order finite-difference
methods are used with a small mesh to improve the accuracy,
then storage problems arise., In addition for distributed
parameter systems, it is a general experience (60) that

high order difference formulas are usually quite disappointing
in practice. This is in contrast to the situation for lumped
parameter systems, where methods like Runge-Kutta achieve
remarkable accuracy with little computing effort. The reason
for this difference is a basic one: for lumped parameter
systems the initial conditions are elements of a real
Euclidean vector space, and thus can be represented to a high
degree of accuracy on a digital computer, with the error
being of the same order as the local round-off error; how
accurately the solution at t+AT is computed then depends only
upon the utilization of the information available; for dis-
tributed parameter systems the initial conditions are elements
of a function space (e.g., the Hilbert space Lz), and thus
cannot bhe represented to such a high degree of accuracy on

a digital computer, since it would be necessary to store an

infinite number of quantities at t=ty;: therefore, in com-

puting the solution at t=t0+At, one is limited by a lack of

e S
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needed information. Congsequently, only moderately accurate
finite-differences methods for the solution of the state and
the costate systems are possible with gradient methods. It
will be shown that errors introduced by the finite-difference
solution of the state and costate systems cause errors in
the computation of the gradient vector. Therefore, it becomes
necessary to consider the effects of gradient errors on the
class of gradient methods.
The Effects of the Discrete Approximations
on the Gradient Vector

As indicated in Chapter III the convergence of gradient
methods depends strongly on the gradient of the cost index.
Therefore, it seems reasonable that the analysis of the prop-
erties of the approximate gradient algorithms, such as, con-
vergence, stability, and efficiency, would depend essentially
on the analysis of the effects of gradient errors.

In the optimization of distributed parameter systems,
all of the approximations (approximation of functions, approxi-
mat.ion of operators and round-off) are present, and contribute
to gradient errors. In the investigation of these approxi-
mations, several results considered below are important.

Let the set of admissible controls U be a real
separable Hilbert space, and let U be a set generated by the
application of the discretizing transformation E(h) to the

elements of U, that is
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] W= {u: u=E(h)u, for all ueU}, (4.1)

where the discretizing transformation E(h)1 is an evaluation

map defined on the nodes N of a netn , and h is the discreti-
zation parameter of this net (the definitions of an evaluation

map, a net, and the nodes of a net are given in Appendix A).

Example 4.1.: Let f£(t)eC for all teT, where T={t: a<t<bl},

and let the nodes be the set N, where N={ti: asty,<ty<e..c<
t =b, ti+l=ti+h}' The discretizing transformation is defined,

in this case, as

f(tl) !
E(h)f = : . (4.2)
£t)

Let U be a function space generated by the application

of an interpolating transformation Q to the elements of W,

that 1is

e

U ={%: @=0u, for all uew} . (4.3)

Example 4.2.: Let U be the set of all piecewise quadratic

polyncmials defined on the set Al determined from Example 4.1.

T

Some properties of the sets U and ﬁ, and the transformations

g

E(h) and Q, which are pertinent to this study, are given in
the following lemmas. Proofs of these results are given only

in those cases where standard references are not available.

For notational simplicity, the explicit dependence of E
on h will be often dropped, i.e., EZE(h).

:
b
I
'
L.
3
?
b
g
g
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Lemma 4.1.: The set & is a finite dimensional linear space.

Proof: Follows from the fact that an evaluation map is a

functional on U,

Lemma 4.2.: The set U of piecewise polynomials is a finite-

dimensional subspace of U.

Proof: Clearly UcU, and aﬁl+ﬁ2 is a piecewise polynomial

for all scalars o and vectors ﬁl,ﬁzeﬁ: hence, U is a sub-

space of U.

Remarks: (i) U is complete; hence, with the addition of
an inner product it would be a Euclidean space.

(ii) 9 and U are isomorphic.

Lemma 4.3.: The interpolating transformation Q is a linear

transformation from U to U.

Proof: This lemma follows immediately from the fact that the
interpolation formulas defining Q are linear in the function

values on the nodes.

Example 4.3.: Consider the following one-dimensional piece-~

wise quadratic interpolation formula

Qf(t)=-0.5 8(1-s) f(I-1)+(1~-s) (1+8)£(I)+0.5 s(1l+s)f(I+1)

4

where s=(t-tI)/h, and f(N) denotes the values of the function

on the nodes. Thus
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. I+1
Qf(t) = I aj£(3),
j=I-1

and linearly follows immediately, since

QlafrBgl= I a,[af(§)+Bg(3)]

= aZajf(j)+BZajg(j)=an+BQg.

Thus, even though interpolation between the node points

night be quadratic, the operation of interpolation

defined on the discrete space U is a linear transformation.

Lemma 4.4.: For the transformations E(h) and Q,
(i) E‘%h) does not exist, and
-1
(ii) © = E(h) .

Proof: (i) obvious
(ii) E(h)Qu=E(h)UG=u because the node points are not
altered by Q; hence, E(h)Q=I, similarly

QF (h) U=Qu=1; hence QE(h)=I.
E Remark: On the subspace U, E(h) has an inverse, i.e.,

i E_%h)=Q on U.
)

Lemma 4.5.: The product transformation defined by P=QE (h)

; is a idempotent operator from U onto the finite-dimensional

subspace U.
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Proof: P2u=QEQEu=QEQu=QEﬁ=Qu=ﬁ, and

P2u=ﬁ=Qu=QEu=Pu. Thus P2=P‘

In the actual computational process on a digital computer,
the discretization is accompunied by the truncation of all
but a finite number of digits (approximately fourteen digits
in double-precision). This is due to the finite word length
of a digital computer. Let T denote the truncation operator,
then the Hilbert space U is transformed into the "digital"
space D by the transformation TE(h). In addition, when the
pseudo binary operations of addition, subtraction, division,
and multiplication, which are performed by the digital com-
puter, are considered then this "digital" space is no longer
a linear space. For example, because of numerical round-
off, the distributive law is no longer exactly satisfied.
However, if stable finite-difference methods and double
precision arithmetic are utilized, then the effects of round-
off become secondary to the other error sources. Thus, for
the problems considered in this work U can be considered
to be the digital space. Hence, the discretization process
can be thought of as a projection of the continuous problem
onto the finite-dimensional subspace U. The accuracy of the
approximate solution then depends largely on the dimension-
ality of the space U4, and on the interpolation formulas
representing Q. The relationships between the spaces U, U,

U, and D are illustrated in Figure 4.1.




Gfthmlicnbs s Lo . -

51

Figure 4.1. The discretization process

Many theoretical results exist for optimization problems
in a function space. Unfortunately, the elements of
function space and the operators defined on a function space
cannot be exactly represented on a digital computer; hence,
approximations must be considered. Lemma 4.4 insures that
the approximate optimization problem can be considered to be
in either the discrete space U or in the function space u.
Admittedly, the solution can be calculated at only a finite

set of points; however, there can be more information speci-

fied about a function than merely its values at a finite set

of points, e.g., the functions are polynomial, differentiable,
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etc. . Thus, it is felt that the elements of the subspace U
give a more complete description of the approximate solution,
and solving the problem in this subspace is more in the
spirit of the original continuous probhlem. However, regard-
less of whether the approximate solution is considered to be
in the space 1 or in the space U, the information which is
lost due to discretization cannot he completely regained
(E-%h) does not exist). Therefore, discretization error is
caused by the loss of information in the initial and
boundary conditions of the state system and in the initial
control due to the transformation E(h).

The exact gradient of J for quadratic programming

problems is given in Equation 2.30 as
g(u) = c+Au, (4.4)

Along with this exact gradient the approximate gradient

given by

g(h) = +Aq . (4.5)

is considered. The first question to be answered is the
following. How do the approximations of discretization and
truncation (round-off is neglected) effect the calculation
of the approximate gradient g(u)?

For the purpose of illustrating how each of these

approximations enter into the calculation of g{(u), consider

the following simple problem:
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minimize
1 2 1 2
Jlugr,0)1 = 5| |x(e, 7 ) [|° + F|lugtx,e)]]°, (4.6)

subject to

Sx(r,t) = ud(r,t) ' (4.7)

x(r,0) = xo(r), (4.8)

x(0,b) = 0, (4.10)

x(1,t) = 0, (4.11)
where ) ) R

_ 3 5 2 £ 5

S= —-2- - —-—2- ’ IIX|| = J f X (r,t)drdt,

It or 0’0

and Te = 4, R, = 1. From Equations 2,23, 2,25, and 2.30 the

f
gradient is given by

- -1
{4.12)

-1
where the term @(Tf)xo(r) + 8 (Tf)ud(r,t) represents the

forward integration of the state system from t, to T_, and

0 f

the second term on the right hand side of Equation 4.12 is
- *

then given by [S %Tf)] [x(r,Tf)] which represents the

backwards integration of the costate system. This explains

the reason for steps (a) and (b) in the gradient algorithm
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given in Chapter III. In calculating the gradient on the
computer the differential operators S and S* are actually
replaced by finite-difference formulas which are truncated

approximations of 8 and S*, This introduces truncation

errors. Let 4 represent the finite-difference approximations

to S, and let ¢(Tf)Ex0 denote the finite-difference solution

&
3

of the homogenous state system. Then the discrete approxi-
mation of Equation 4.12 vields the approximate gradient (dis-

cretized)

-1 -1
() =Eg=Bu g+l F (1)1 [5(T)EX + & (T Euy) . (4.13)

In Equation 4.13 discretization errors are introduced by the

approximation of the initial conditions X0 by Ex, and by the i

0
approximation of the control uy by Eu i truncation errors
are introduced by the approximation of differential operators
by truncated finite-difference operators, which are revre-
o sented by J-l and ¢, respectively. To be consistent the order
of the interpolation formulas, represented by Q, should be the 3
same as the order of the finite-difference method, represented
L by 4. Little additional accuracy can be obtained by making the

order of Q higher than the order of 4, and if the order of Q

is lower than the order of 4, then interpolation error ({(see

Appendix A) is being needlessly introduced.
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The Effects of Gradient Error
on Gradient Methods

L
[

5 8 e o

Let u  =G(u ,s .Y i U, 4+ -+.s U _o) represent the

! exact gradient iteration, then the approximations discussed

above yield what will be referred to as the approximate

ST AT

gradient method un+l=G(un,sn,Yn; un-l""'un-m)' The follow-
A : ing important questionsg arise: (1) when there are gradient

| errors, do the more powerful gradient methods, such as:

the conjugate gradient method and the Davidon method,

offer advantages or disadvantages over the simnler gradient

methods?; (2) given that the convergence of the exact

R DA - I R i D

gradient method is assured, under what conditions (if any) will

.

there result convergence of the approximate gradient methods?;

(3) if the approximate iteration does converge numerically

(in general {ﬁn}+ﬁ*#u*), at what step should the iteration

SR S T

be terminated in order to insure a reasonable estimate to u*?;
(3) how is this estimate to u* made and how suboptimal is G*?
Before answering these questions some additional nomenclature
] and definitions have to be introduced. Let ueU denote the
interpolated approximation to ueU, where from Lemma 4.2 U is

a finite-dimensional subspace of U. Let 9 denote the discrete

1 approximation to J, and let ||:|| represent the norm of a

vector.

e et

LS
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Definition 4.1.: (6l) If there exists a set.SN;{u: un+l

=0 ,n>N}, then {ﬁn} is said to be numerically convergent

g and SNc is said to be the state of numerical c¢onvergence.
'1

: Remark: Numerical convergence is different from the standard

concept of convergencz. This difference is due to the finite

word length of a digital computer.

pa

Definition 4.2.: If J[u*l=min J[u], then the optimal
uel

b

control error ||eu|] is defined as

o B

eyl I=11ax-u]],

o
where u uNsSNc .

Definition 4.3.: The cost functional error e is defined as

T il D A S R

e;=|J[u*]-¢[E(h)i*]

Since J[u*] cannot be computed, the cost functional error

st e

is a measure of the suboptimality of the approximate solution.

Gradient errors have two effects on the gradient itera-
' tion: (1) direction of search errors in the outer 1loop
3 iterator, and (2) linear minimization errors in the inner
loop iterator. Until more accurate finite-difference methods
are developed, it appears that the direction of search

errors must be tolerated. However, linear minimization errors

can be avoided when the effects of gradient errors on this
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phase of the iteration is understood.
Lf the exact gradient of the cost functional J[-] at

ﬁn is given by g(ﬁn), then

g(ﬁn) = §(ﬁn) + eg(ﬁn;h), (4.14)

where ﬁ(ﬁn)eﬁ is the approximate gradient at ﬁn, and
eg(ﬁn;h) is the gradient arror, which as indicated depends
on the discretization parameter h of the finite-difference
method used in computing the solutions of the state and co-
state systems.

Muny of the following results rely heavily on the
linearity of the dynamical system and on the quadratic nature
of the cost index. For a well-posed linear dynamical system,
there exists a linear transformation, given by Eguation 2.18,
between the control space U and the state space X. In
addition, the discretization of a linear continuous dynamical
system results in a linear system of difference equations which
when solved yields a linear transformation between the discrete
space W and the discrete state space . Consequently, the
truncation error (on the nodes), which is the difference be-
tween these solutions, is also linear in the control. To be
more specific, let g(u) denote the discrete approximation of

the exact gradient g(u) calculated by the finite-difference

solution of the state and costate systems, then
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g(u) = ¢ +Gu =a +&E(h)u . (4.15)

The operator & is linear because the difference equations
resulting from the approximation of the linear vartial dif-

ferential equations are linear.

Lemma 4.6.: If the dynamical system is linear and if J(+] is
a quadratic functional, then the truncation error in the

gradient zg(u;h) is linear in u. Specifically

eg(u;h) = E(h)u + cg,

where £(h)=E(h)A-QE(h) is a linear operator depending on the

discretization parameter h, and cg=E(h)c—c .

Proof: The truncation error in the gradient is given by

€, (uih) E(h)g(u)-g(u)

E(h) (c+Aul- [ +@E (h)u]

E(h)c-¢+[E(h)A-GE (h) lu .

cg + E(h)u.

Theorem 4.1.: If the dynamical system is linear, and if J is

a quadratic functional, then the approximate gradient
g(u)=Qg(d) is the exact gradient (apart from round-off)

of the quadratic functional

1

JIU)=T  +<&, 0>+ §<ﬁ,iﬁ>, (4.16)

0

Col
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where

=Qe, and A =QQE (h)

e

Proof: §(i)=Qg(d)
=Q[s +GE (h) Q]
=Q¢ + QAE(h)u ,
which by inspection is the gradient of J[u].

Remark: The inner product <:,-> can be calculated exactly

(apart from round-off) on the subspace U.

Theorem 4.1 is an important result because it implies
that even though § is not the gradient of J, or$§ ; g is the
exact gradient of J. Therefore, it should be possible to
at least minimize J. Hopefully, the minimum of this
approximate problem will be a satisfactory approximation to
the true solution.

The following result will be useful in the analysis of

the effects of gradient errors on the inner loop iterators.

Lemma 4.7.: Let Yy be selected such that J[un+ynsn]

< J[un+st] for all y>0, where Sn is the direction of search.

Then Yn minimizes J along the half-ray un+ysn, and is given

by
<g_,8_>
Y, = - n_n . (4.17)

<y A >
n'"%n

PR r— ..A'mmwmum
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Froof: Substituting u +ys, into Equation 2.21 yields,

2
- = s Y
J[un+l] J[uol ¥<9,¢8,> * 3 <8 ,As >,

The first derivative of the cost change in the direction

s, with respect to v is

d - -
EV(J[un+1] J[un]) = <g .8 >+ Y<S As >.
Setting the above equation equal to zero and solving for
Y yields

<gl’1 ,Sn>

Y = e -(—-;-—-——-
>
n sn,Asn

The second derivative shows that Yn vields a minimum, i.e.,
"QE(J[U 1-J[u_)) = <s_,As. > > m,|]|s l|2 > 0
ay? n+l n'' = n'""n A'1®n ’

By applying Lemma 4.7 it is easily shown that

<gn,s >
Yn T emerm—— (4.18)
<§n,A§n>
and
. <g .8 >
¥, = - n ~n , (4.19)
<sn,A§n>

denote the control correction parameters defined by Equation
3.2 in the direction § for J and J, respectively. For dis-
tributed parameter systems, the operators A and A are,

respectively, multiple integral and multiple summation
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operators. As a consequence, Eguations 4.18 and 4.19 are not
generally used in practice. Instead of Equation 4.17, the
following methods are usually utilized in the inner loop to
determine Yy
1. Cubic interpolation based on functional and
directional derivative information.
2. Quadratic interpolation based on functional infor- .
mation.
3. Linear gradient interpolation based on directional

derivative information (i.e., regula falsi).

In theory these three methods yield the same result,
However, method 1 is generally considered to be superior to
the other two methods because of its rapid convergence
properties. When there exist gradient errors of sufficient
magnitude, this is not the case. In fact numerical results
indicate that when there are gradient errors then method 1 is
the least efficient of these three methods. The convergence
of the inner loop iterator is essential to the convergence
of the outer loop iterator:; hence, the effects of gradient
errors on each of these three inner loop methods will be

discussed.

Method 1. Cubic interpolation based on functional and
directional derivative information

A general description of this method is presented in

(52). This method is the most sensitive of these three
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methods to gradient error because it requires a close corre-
lation between the gradient and the functional. Reliance on
both types of information (gradient and functional values)

can cause difficulties if the relative magnitude of the
gradient error is large. One reason for the difficulties en-
countered by this method is that it brackets the minimum in the
direction of search (i.e., the iterator determines two

scalars Yn and yi such that Yiﬁyniyi) by determining when

the directional derivative

a3 _
oA <g(un+ysn),sn> (4.20)

changes sign, i.e., from negative to positive. Unfortunately
due to gradient errors, this method generally does not bracket

the minimum. This is illustrated in Figure 4.2.

fir )

-SLOPE OF THE APPROXIMATE
DIRECTIONAL DERIVATIVES

SLOPE OF THE EXACT

DIRECTIONAL DERIVATIVES —\
i

Figure 4.2, Cubic interpolation
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As 1s indicated pictorially in Figure 4.2 the approximate
directional derivative at u tv,s, can be positive when
actually the exact directional derivative is negative. Thus,
based on the approximate directional derivative this method
would predict that the minimum is in the interval [0,Y0],
which is obviocusly incorrect. This difficulty can be
corrected by employing another procedure to bracket the
minimum. However, this would only be a minor cure since the
interpolation formulas, used by this method, are also hased
on both types of information. Hence, when there exist con-
siderable gradient errors, this inner loop iterator is not

recommended.

Method 2. Quadratic interpolation based on functional values

The fundamental idea underlying this method is the obscr-
vation that the cost index is nearly quadratic in y in the
direction of search s, near the minimum. If for fixed u, and

®n

9 [Y]=9[un+vsn]= ao+a1Y+a2Y2, (4.21)

then by computing Q[Y] for Y=Y i=1,2,3, a system of equa-
tions is generated from which the coefficients of the assumed
polynomial can be obtained. The estimate for Yn is obtained

from the equation

agly]
Y
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from which

Y * —ai/Za2 . (4.23)

if 9 is quadratic then this methed determines Yn in one
iteration; however, if 9 is not quadratic, then additional
logic is required to determine Yio The important feature of
this method is that it does not depend on the approximate
gradient vector. However, since é is not the gradient of §
(& is the gradient of J), the directional derivative at the
minimum of 9 in the direction én does not necessarily vanish;
hence, the subsequent direction of search is not a conjugate
direction and the method of expanding subspaces does not
apply. Therefore, if this inner loop iterator is used in
conjunction with a conjugate direction method, then rapid
convergence cannot be proven. Once again, it is the in-
consistency between the gradient and the functional which
causes the difficulties. Numerical experience indicates that
in the presence of gradient errors this inner loop iterator
combined with a conjugate direction method produces slow
convergence near the minimum. The slow convergence near the
minimum is caused by gradient errors which are more dominant
near the minimum (both the exact and the approximate gradients
become smaller, in the norm, near the minimum). The main

advantage of this inner loop method is that it attempts to

minimizeg',vndch may be a better approximation to J than is
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J. Methods for terminating this iteration will be presented
later, since the standard test on the norm of the gradient
no longer applies in this case.

Method 3. Linear interpolation of the approximate directicnal
derivative (regula ralsi)

Requla falsi has not received widespread application as

an inner lnop iterator; however, it is probably the oldest
of these three methods, This method is similar to Newton's
method in that it determines the zero of the gradient rather

than the minimum of the functional. When regula falsi is

employed as an inner loop iterator, it determines the zero

of the approximate directional derivative; hence, the minimum
5f J in the direction of search. Like method 2 this procedure
does not mix the gradient and functional information,
Referring to Figure 4.3 the interpolation procedure is as

follows: assume

aJ _
ay " a0+a1Y' (4.24)
then
aj
= = a,+a.qa, {(4.25)
dY'y=a 0 "1
and
a3
—— = a,.+a.f . {4.26)
dY‘y=B 0 1

The above relations yield two equations in the unknowns
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ag and a, By solving these equations for a, and al, an

~

approximate expression for g—i is obtained. The control

caorrection parameter :Yn is determined from the zero of g—% '

which is given by

- aj aJ aj a7
Y, = (Bg —a=| )/ (5 -—I ). (4.27)
n Wly=a Hlyzg " Wly=q 9¥|y=p
A THE LINEAR 4 .
APPROXIMATION OF == dJ
. dy r =B
dJ ¥
47 | vl ///
» I P
e // —i- Y
0 /’} P

e

THE APPROXIMATE 4
DIRECTIONAL DERIVATIVE -

= 50 7

FPigure 4.3. The requla falsi iterator
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Lemma 4.8.: If J is a quadratic functional, then the regula

falsi method determines Qn such that

-~

) < J[un+ysn] for all y>0.

TG +Y
Jlu +v, sy

Proof: For simplicity let a=0, then Equation 4.27 vields

<!
It

(<§,,8 >B)/ (< ,8 >-<F (8 +85 ), >)

|

(<gn,sn>8)/(<gn,sn>—<c+A(un+esn),sn>)

(<gn,sn>8)/(<gn,sn>—<gn+BAsn,sn>)

—<gn !5n>/<5n IASn> '

and the proof then follows from Lemma 4.7.

Thus, the regula falsi method is a numerical procedure

for obtaining the result of Equation 4.19.

Theorem 4,2.: If A is a self-adjoint operator, if the con-

ditions of Theorem 4.1 are satisfied, and if the requla

falsi method is used in the inner loop, then the gradient

iteration 4_, .=G(a_,S_,¥_:; 0 cee, enerat
ati U p1=GO »S WY i U g U _n) generates a

sequence {ﬁn} which numerically converges to the approximate

minimizing element in U, specifically

J[G%)

min Jul .
ued
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Remark: The standard convergence proofs for these three
gradient methods can be applied to Theorem 4.2 (refer to the

references given in Chapter III),

Corollary 4.1.: If the conditions of Theorem 4.2 are satis-

fied then both the conjugate gradient method and the Davidon
method converge in a finite number of iterations to the

minimum of J.

Proof: The proof follows from the fact that U is a finite-
dimensional subspace of U, and from the application of the

results contained in (41) and (50).

Theorem 4.2 is significant, since it implies that {ﬁn}
generated by G minimizes J and not J nor‘g . Corollary 4.1 is
important, since it insures convergence of the conjugate
gradient method and the Davidon method in a finite number

of iterations.
Error Estimates

Since {ﬁn} does not minimize J, it is desirable to com-
pute the optimal control error. This, however, is impossible
without prior knowledge of the solution u*. Nevertheless,

estimates of the optimal control error may be obtained by

means of the results given below.
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Lemma 4.9.: Let VuJ denote the gradient of a positive
definite quadratic functional J defined on a real Hilbert

space U, and generated by a self-adjoint operator A, then:

(1) Jg[u]=]]vuJ]|2=]|g(u)]]2 is also a quadratic

functional with Hessgian 2AA,

(ii) The set defined by Sg={u: ||g(u)||2=c} is a
hyperellipsoid in the Hilbert space U. and,
I ) * s *
J = J t =u*,
(iii) If g[ug] 3:3 g[u], hen ug u
Proof: (i) Jg[u]=l|g(u)]]2=<g,g>=<c+Au,c+Au>

= <¢,c>+2<c,Au>+<Au,Auw.

Since A=A*, it follows that <Auyu,Aw=<u,A¥Auw=<y,AAu>,
Thus, Jg[u]=<c,c>+2<c,Au>+ %<u,2AAu>, and the Hessian is then

2AA,
(ii) Jg is quadratic from (i).

(iii) Vng=2Ac+2AAu; hence, VuJ = 0 implies that AAu=-Ac

g
and that u;=—A_lA-lAc=-A’é=u*_

Lemma 4.10.: Consider the translation defined by (G=u-u¥*,

where J[ul=J[u]. Then:

(1) F1a]=a[u*]+ 2<@,AG>.

(ii) VGJ[0]=VUJ[u]
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Proof: (i) J([Q]=J[u)=J(G+u*]
= J0+<c,G+u*> + %<ﬁ+u*,A(G+u*)>.

Expanding and using the representation of the solution

u* = —A-é'
vYields
3[6}=J0— %<C.A_é> +'%<G,Aﬁ>.

Now it is easily shown that

J[u*]=J0+<c,u*> + %<u*,Au*>

=J0—<c,A'é> + %<A’%,AA'%>

=34 - %<C,A-é> ,
and thus,

F6]=T[u*] + %<ﬁ,Aﬁ>.

{(ii) VGS=AG=A(u—u*)=Au-Au*=Au—A(-A—%)

=Au+c=V_J.
u

2
Theorem 4.3.: The vectors defined by ||ﬁu||2=max||ﬁ||“
Qes

and ||ﬁl||2=minl|0|| are eigenvectors of A (i.e.; AA) with
ues
g

eigenvalues Mi and mi, respectively.




iy e e T

ey T ———— TR T = T

[

71

Proof: By using a Lagrange multiplier A the proof of this
theorem ¢an be formulated as an optimization vwroblem, i.e.,
extremize ||ﬁ||2 subject to the constraint Sg- This

constrained problem can be reformulated as an unconstrained

problem by considering the functional
2 2
E(G,A1=][a]]% + A(c-]|28] ).

Then, the gradient of f is given by

3f 26-2:\A%G
o1

VEIG,A] = = !
] 2
£ [e-11ag]|

where differentiation is in the FPreéhet sense.

By setting Vf=0, one obtains

Therefore, the vectors Gu and ﬁl which extremize llﬁ||2

subject to the constraint S@ are eigenvectors of Az. Since,

2
A

and mi are spectral bounds for A2 (since, A2e=AAe=AAe=AAe

My and m, are spectral bounds for A, it follows that M

=Are=A%e).

Theorem 4.4.: Let I]g(ﬁN)ll2 denote the exact normed gradient

squared of J[.] at GN’ Then,

g tu) ||
MA

| lg(a) ]

Ma

< [lam-ur]] <




Bipieiin - b Dol

e

R i S N

Pt

Rk W

72

Proof: Let G=ﬁN-u* and note that sinceA is self-adjoint, so is
AA. By Lemma 4.10, |lg(iy)|]1%=]1§(@)||%=||aa||%=<a,A%6>. Thus

from Thecrem 4.3,

2 2 2 2
m2[1a]1% < <a,ane> < M2[[a]]?,

and
2 2 ~ 2 2114112
my 1Al e < [lg@p 1% < myllafi®,

which yields the desired result after taking the square root

of
N 2 - 2
| 1g(uy) | ] g (u)] | y
N N 2 Uy
——— < | e [T < 5 .
M2 m
A A

From Theorem 4.2, {u } minimizes J: hence, {é(ﬁn)}*o. This
resules in a method by means of which ||g(4 ) || can be esti-

mated.

Theorem 4.5.: In the state of numerical convergence {see

Definition 4.,1), the approximate gradient methods re-

-~

sented by un+1=G(un,sn,Yn; un—l""un—m) with
§n=-<én,§n>/<§n,ﬁén>, insure that §(Gy)=0. Thus,

Ilg(ﬁN)|I=|leg(dN;h)||.

Proof: From Equation 4.14 g(un)=g(un)+eq(un;h). Now {un}

minimizes J (Theorem 4.2) which implies that {g(di )}+0 with n.
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Thus g(ﬁn)=eq(ﬁn;h) for all n>N.
Combining Thecrems 4.4 and 4.5 an estimate of the optimal

control error is obtained by means of the following

Corollary.

th

Corollary 4.2: Let eg(ﬁN;h) be the gradient error at the N

=G[u_,8 ,¥ i U

iteration of u__ 4 LN un—l""'un~m]' Then the

estimate

[eg (i) [1/My < []ak-ur ]| < |leg (Fysn) | [/my,

is obtained
Proof: The proof follows immediately from Theorems 4.4 and 4.5.

Unfortunately, only the projection of the gradient error on
the subspace of interpolating functions can be obtained on
the computer. Let Pegeﬁ be the projection of e cU on the
subspace U, and let (I denote the annihilator of U. From

the Projection Theorem, (refer to Appendix A) the gradient

error is given by
e _(U_;h) = Pe_ + Y, (4.28)
where YeU®. From the triangle inegquality it follows that

[Tegta iy [ < [1Pe | + [1¥]] , (4.29)

and the esgtimate
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Har-ur[ [ < ([[Pe [ + [T¥[])/m, (4.30)

holds.

From the Projection Theorem, ﬁ+U*=U, and thus, as the
dimensiunality of U increases (refinement of the dlscreti-
zation) the quantity ||Y||+0. Equation 4.30 yields a
practical method by means of which the optimal control error
can be estimated.

If method 2 is utilized in the inner loop iteration then
{g(4,)}#0, and thus, another method for estimating
||g(ﬁN)|| is requ red. Let Qn be the control correction
parameter for 9[p] in the direction §n. Since, method 2
minimizes 9[u] in this direction, ?n is then given by

<QEgn,QE§n>

?n = . L . (4.31)
<QE5n,QaEsn>

If the steepest descent method is employed, or if the other
gradient methods are restarted each time an up-hill direction
of search occurs, then ?n»o. As noted before this inadvertent-
ly creates a fixed point for the iteration, without causing

the gradient to vanish. In addition, since ?n eventually
becomes small, slow convergence results. This property has
been noted in numerical results (57). Termination of the

iteration occurs when

<oEqn.QE§n> = 0. (4.32)

e
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This implies that

QE(qg *e ), QEg > = 0, (4.33)

and since QE§n=§n, Equation 4.33 yields

<§nl§n> = '<QEeg I§n> . (4.34)

Now consider the relations,

2 ~ ~
[1QEg, 1% = <QBg,,QBg, > = <QE(§, +e ) /QE (G te )>

<§n+QEeg,§n+QEeg>

2
|

~ 2 ~
118, 11% +2<§, ,0Be >+ |0Ee_||*. (4.35)

Substitution of Equation 4.34 into Equation 4.35 yields

2
|

2_ 2 11~
[loBg, | 1°=|lQEe | I°-|13,]1*. (4.36)

Using the Projection Theorem and the triangle inequality one

obtains the estimate

~ L
o 11 < Tleeg [ + [1¥l], veU™ . (4.37)

Thus, the estimate
2 1> 112,2
(1Qeeg | 12-] 15,1217 + |¥]]

Ma

(=]

[ [ay=u*|]| < (4.38)

is obtained for the case where method 2 is used as the
inner loop iterator.

An estimate of the cost functional error can also be

given in terms of the gradient error and the spectral bounds,
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Theorem 4.6: Let J be a quadratic functional defined on U

gencrated by a self-adjoint operator A and by an .inner
product <.,.> . Let J be the approximation of J

defined on the subspace U generated by A and by the inner
product (.,<) . Then

2 .
~ o~ 1 i 1,14
otan-3tan | < 3 Eleg |+ F10v1 el I+l legl 1 + e |

e
* FUIEI I+ Togl 1+ legl 1y AL

~ i
’ c=c+ec, and <-,->=(~,-)+ers .

where J, = 3 + e
0 0 0 p

J
Proof: Let

Jlu*]=J +<c,u*> + %<u*,Au*>

0

and
FIOkI=F ok (B,0%) + (i Kb*) .

The relation

%<u*,Au*> = %<g(u*),u*> - %<u*,c>,

implies that

J[u*]=J0+ %‘c,u*> + %<u*,g(u*)> .

1l . ~ ~ Y 1
=Jg + §<c+ec,u*+(u*-u*)) + 5<u*,g(u*)>.

Expanding the above equation, taking into account the errors
due to the approximate inner products, and taking the absolute

value, yields the estimate
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| T [u*)-Fa*]| < |e + % | <&,u*=-tu*>| + %|<ec,ﬁ*>

|
JO
~ 1 1 1 2
¢ 3 lcequurino] + glet] + 3 fe ?]
p
+ 5 leue-it 5, g(un ]+ Fcane o]

Using Schwarz's inequality and Corollary 4.2, and by grouping
terms properly the desired estimate is obtained.

In practice g[Eﬁ] is computed rather than J[Q]; however,

|J[u*]—8[EG*]| < | Jlurl-Fa*]| + ]esl, (4.39)

where

ej = 3[&]‘T[Ea] .

The error e; can be eliminated (apart from round-off) by
the proper selection of the guaradure formulaé;" For example,
if piecewise quadratic interpolation is employed to determine
function values between the node points, then the use of

Simpson's quadrature formula over each partition insures that

E3=0.

Determination of the Parameters in the
Error Estimates
The estimates of the optimal control error and the cost
functional error are based on the gradient errors and on
the spectral bounds ma and M,. Hence, in order to use these

estimates methods for obtaining these quantities are required.
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Gradient error

At the present time two methods have been utilized for
estimating ||eg||: (1) error bounds in terms of higher
order difference, and (2) asymptotic extrapolation. Since
the first method is problem dependent and also conservative
only the second method will be discussed here.

Asymptotic extrapolation is an attempt to actually com-
pute the gradient error. It is based on the fact that if the

approximation to the gradient is of order v, then
) = §(i; P2 (% 3P+l
g(uN) = g(uN,h) + h eg(uN) + O(uN,h ), {(4.40)

where Eg is defined as the magnified error function.
Solving for the gradient g(uN) by using stepsizes of h and
qgh, respectively, 0<g<l, two equations in g(GN) and Eg(ﬁN)

result, which when solved yield

[ley (@y:n) [ = (1/(1-0P) 11§ (Gysan) -F @ m) ], (4.41)

\
In view of Theorem 4.2, Q(GN,h)=0, and thus, the estimate

o - WP PP
l]eg(uN.h)ll = (1/(1-h) 1] g (@ iqn) || (4.42)

for the norm of the gradient error is obtained.
For the class of problems considered the lower spectral
bound m, can be determined analytically. The general form

of the Hessian operator for this class of problems is

A = gl 4 T*T, (4.43)

e e ]
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By Lemma A-1l, T*T is self-adjoint with a lower spectral bound
of zero. In addition from Lemma A-2, oa+T*T is also self-
adjoint with mp=a. This analytical result is certainly an
advantage in performing the error analysis on quadratic
programming problems. However, in many cases it is not
possible to determine analytically either the Hessian operator
A, or its spectral bounds. For example, in non-linear
problems the operator A does not appear. However, if the
quadratic approximation is valid near the minimum of a non-
quadratic functional (which is at least convex), then Davidon's
method presents a numerical procedure by means of which an

5 approximate Hessian and its spectral bounds can be obtained.

Theorem 5.7.: (50) Let A be a Haessian operator defined on a

real separable Hilbert space U. Then there exists a subspace

UC. U such that

S -1
Hu = A U as n+»,

for all ueU, where {#") is the Davidon deflection operator

defined by Equations 3.11 through 3.16.

n
Corollary 4.3.: Let ||Hn+%-Hull<e for all n>N, and let

mE and Mﬁ denote the smallest and the largest eigenvalues of
N

H ', respectively. Then

- N
m, = l/MH

A




R
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and
N
MA = l/mH .
Proof: HVA = I implies that Mim, = 1 = m'M
Zroot: plie H™A H A

Unfortunately, H” rather than H" is obtained on the computer,

where APA+I.T

Thus, the previous error estimates are valid
only in those cases where mhjmi=1/Mg . If my decreases under
a refinement of the mesh, then one might possibly consider
using mx in the error analysis. However, this would probably
produce a more conservative error estimate.
Geometric Interpretation of the
Error Bounds

Due to gradient errors, one should not expect to obtain
the true solution of an optimization problem when gradient
methods are employed., Thus, estimation of the errors
become an important part of the solution. The error esti-
mates presented in this chapter rely heavily on the guadratic
properties of the cost index. These estimates are based upon
the following geometrical considerations. Assume a gradient
method is employed which ensures the vanishina of the approxi-
mate gradient., Then the true gradient at the Nth iteration

becomcs equal to the gradient error. Obviously, if the

gradient error can be calculated, then it is possible to

lAssuming that method 3 is used in the inner loop.
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b cont inue the iteration. However, in general it is much
casier to estimate the norm of the gradient error than the

E gradient error itself. If only the norm of the gradient error
is known, then it is impossible to continue the iteration
because of the lack of a direction in which to proceed,

Now assume that l]eq]] can be computed. From Lemma 4.9, the
set Sg={u: llgll2=c} is a hyperellipsoid, which if

orientated properly would have its center at u*. However,
since only |[|g|| can be estimated, it is not possible to
determine this direction. Nevertheless, the true solution u*

must be contained in a hypersphere which has a radius ecual :

to the semi-major axis of the constant gradient (at ﬁN)

hyperellipsoids. These considerations are illusted in Figure

4.4.

1 LOCUS OF THE CENTERS
' OF THE CONSTANT

‘ GRADIENT MAGNITUDE
CONSTANT GRADIENT CONTOURS

MAGNITUDE ELLIPSOIDES

e T T

E.' Y
\ |
\ !
} \ /
: N/
Figure 4.4. UGeometrical intarpretation of the oriimal

control error

|
|
|
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!'




i
X
3

it

)
gL

ke RN

ko

T

82

If the ratio MA/mA is large, then these error estimates he-
come conservative. In theory anh inner hypersphere can he
constructed based on the minor axis of these hyperellipsoids.
However, the methods used in estimating the parameters in these
error estimates makes these lower bounds questionable. It is
worthwhile to note that the constant J contours are in general
translated and deformed because of gradient error. This is
illustrated in Figure 4.5. The fact that the approximate
gradient algorithms only solve the problem in a subspace U

of U is illustrated in Figure 4.6.

J =C PROJECTED ~
ONTO U
\ U
GJN
Pu* )
] Pg

Figure 4,5, Constant cost contours
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b4

J=C CONTOURS IN THE  _
ORIGINAL CONTROL SPACE U

Figure

4.6. Minimization on a subspace
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CHAPTER V. NUMERICAL RESULTS

All computations reported in this dissertation were per-
formed on the IBM 360 Model 65 digital computer using the
Fortran IV language with double-precision arithmetic. Compu-
tation times quoted are the time used by the Central Proces-
sing Unit (CPU) during program execution. Although the
Central Processing Unit time is the best measure of the
computing effort required, it is not precisely reproducible
on identical programs due to the multi-programming feature of
the system. Storage requirements reported are in terms of
array area used in BYTES, which does not include object code
storage requirements.

The solution of the state and costate partial differential
equations were performed with a standard second order
symmetric finite~difference algorithm (62). The multiple
quadrature algorithm used in computing the cost functional
and the inner products was based on the Gauss-~Legendre ten
point quadrature formula (53). Piecewise continuous quadratiec
polyncomials were used to obtain function values between the
node points. All three types of inner loop iterators
described in Chaptar 1V were employed; however, only the
results obtained with method 3 are presented. Numerical re-
sults for the modified conjugate gradient method, the
Davidon method, and the standard "best step" steepest descent

method are presented and compared in Example 5.1, Since the

A il
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conjugate gradient method proved superior in terms of CPU
time (hence less computer costs) it was utilized on Examples
5.2 and 5.3. In Examples 5.2 the constrained distributed

control problem is considered. Ekample 5.3 presents results

T

for the boundary control problem. The three-dimensional
figures presented were generated by the Cal-Comp Digital
Incremental Plotter with a subroutine developed by the Iowa

State University Computation Center.

Example 5.1.: The unconstrained distributed control of the

vibrating string

The unconstrained, fixed time, penalized, minimum energy
distributed control of the vibrating string is considered.

The problem may be stated as follows:

minimize:
R T.rR
Jl{u =0 F xz(r,T Jdr + B £ f u 2(r,t)drdt, {(5.1)
d f d
0 040
subject to:
Sx(r,t)=ud(r,t), x(r,t) (5.2

x(r,0)=x0(r),

xt(r,0)=0,
x(0,t)=0, Figure 5.1. The vibrating string
x{1,t)=0,
32 32
where § = ‘e -~ Zox |, x_ (r)=ginmr, a=2, 8=0.5, R.=1, and
Brz ar2 0 F

TF=4. The initial and the boundary conditions are illusirated
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in Figure 5.1.

v

A physical interpretation of the cost functional can be

obtained if the inner product for the Hilbert space

Lz[[o,llx[0,4]] is introduced. Let the inner product be -
given by 1
Te(Rp
u,v> = I I ui{r,t)vir,t)dredt . (5.3)
0 -0

The norm is then

38 o

| _ Tf RF
[ Jul] = /ea, 05 = ( ulr,t)ulr,t)drde)? .  (5.4)
0 /0

With this notation the problem may be restated as follows:
determine the distributed control ud(r,t)eLz[[o,l]x[o,4]] which
minimizes the sum of the magnitudes of two vectors, (1)
: the magnitude of the deviation of the string from the equil~
ibrium position at the final time, and (2) the magnitude of
the control effort.

For the purposes of illustrating the dgeneral theory
i developed in Chapter II, this problem will be recast in the
; form given by Equation 2.20.
i It can be shown {see Appendix A) that the Green's

3 function for this problem is given by

o0
Go(r,t,Eh1) = I =2 sinkm(t-t) sinkmf sinkrr. (5.5)
F k=1 km

P Thus the formal solution at the final time is




@
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Ry

3 = - .

;' x(r’Tf) - JO GF(rITfIEIto)xo(g)dg

:

4 £.08

v;\ + J‘ J‘ GF(rITfIE'T)ud(E,T)d';d’f, (5.6)
! 0 ‘0

&

¥ which according to the notation developed in Chapter II

% becomes

?

| x(r,Tf) = ¢(Tf)x0 + 8 %Tf)ud, (5.7) 9

ﬁ and as a result the cost index is then

- 2 2
J[ud] = T%||¢(Tf)x0 + 8 %Tf)ud|l + 3||ud|| . (5.8) '

By expanding Equation 5.8 in terms of the inner product, and

[ by employing the definition of the adjoint operator

; (<Sx,y>=<x,5*y>) Eguation 5.1 becomes
_ 1 ¥
J[ud]—JO+<c,ud> + §<ud,Aud>, (5.9)
; where i
g _ .« , 2 - I
: Ty = T, ||¢(rf)x0|| ) (5.10)
_ 2a -1 * 11
and
2a, .7t x 1
£
Substitution of #=.5, a=2, and Tf=4 into Equation 5.12
vields

i SES) po; iy, Lo

i
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in Figure 5.1.

A physical interpretation of the cost functional can be
obtained if the inner product for the Hilbert space
L2[[0,1]x[0,4]] is introduced. Let the inner product be

given by
<u,v> = f u(r,t)v(r,t)drdt . (5.3)

The norm is then

[ Rl

Te(Rp
[lu] ] = /<u,u> = ( I J ulr,t)ulr,t)drde)® . (5.4)
0 ‘0

With this notation the problem may be restated as fcllows:
determine the distributed control ud(r,t)eLz[[O,llx[0,4]] which
minimizes the sum of the magnitudes of two vectors, (1)

the magnitude of the deviation of the string from the equil-
ibrium position at the final time, and (2) the magnitude of

the control effort.

For the purposes of illustrating the general theory
developed in Chapter II, this problem will be recast in the
form given by Equation 2.20.

It can be shown (see Appendix A) that the Green's

function for this problem is given by

o0

GF(r't,EyT) = I ?3 sinkr (t=1) sinkmf sinkwr. (5.5)
k=1 <"

Thus the formal solution at the final time is
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R
— F .
X(r,Ty) = jo Gp (r /Ty 1o ty) x, (£) A

Te Re
+ JO JO GF(r,Tf,E,T)ud(E,T)dEdT, (5.6)

which according to the notation developed in Chapter II

becomes
x(r,Tf) = ¢(Tf)x0 + 8 %Tf)ud, (5.7) ¥
and as a result the cost index is then
o - 2 2
Jluyl = TEI!¢(Tf)xO + 5 %Tf)ud|| + Bllugl® . (5.8)

By expanding Equation 5.8 in terms of the inner product, and
by employving the definition of the adjoint operator

(<Sx,y>=<x,S*y>) Equation 5.1 becomes
q

J[ud]=J0+<c,ud> + %<ud,Aud>, (5.9)
where
- o 2
S T, [lo(raixg |7, (5.10)
_ 2(1 -l * 1
and
20,71 * -1
A = 28 + T"[S (Tf)] [s (Tf)] . (5.12)
f

Substitution of £=.5, o=2, and Tf=4 into Equation 5.12

yields
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A=1+ [s'}Tf)l*[s’%Tf)l, (5.13)

and thus by Lemma A-5, m,=1. The gradient of J is given by

g (u) c + Au

1

- -1 -

-1 * -1
Ud+[S (Tf)] [¢(Tf)xo+S (Tf)ud] (5.14)

gt st ) 1" Ix(x, T

ugtle (1)1 [ax(x,To) ).

Equation 5.6 could be used to compute the cost index and
Equation 5.14 could be employed to compute the gradient;
however, a brief numerical study of the convergence of the
series in Equation 5.5 indicated that a finite-difference
method is much more efficient.

A summary of the defining equations and their discrete
approximations is given in Table 5.1.

The results of the solution of this problem by the con-
jugate gradient method (modified), the steepest descent method,
and the Davidon method are presented in Table 5.2. These re-
sults indicate that for this problem the convergence of the
Davidon method is superior to the other two methods. 1In
addition it is apparent from Table 5.2 that both of the
second generation methods offer a substantial improvement

over the standard "best step" steepest descent method. This

can be seen by comparing the approximate gradient magnitudes
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(columns 2, 4, and 6 of Table 5.2) at each iteration. However,
the Davidon method required in excess of 150% more CPU time

than the modified conjugate gradient method. In addicion the
Davidon method required 200% more array storage than did the
modified conjugate gradient method. Thus, at least for this
problem the modified conjugate gradient method appears to be
the most efficient of these three methods with respect to
computer run-time and storage requirements. In large practical
problems the run-time and storage benefits of the modified
conjugate gradient method would become an even greater
advantage of the method. Since each inner product calculation
is essentially a double numerical guadrature, the excessive
CPU times of the Davidon[g] method can probably be attributed
to the large number of inner products required by the
algorithm. However, it might be possible, it extreme care

is taken in programming, to make the Davidon[g] method
competitive (with respect to storage and CPU time) with the
modified conjugate gradient method.

The results presented in columns 1 and 5 of Table 5,2
indicate that the discrete approximation of the cost function-
al J[+] given by'g [-]1 does not decrease monotonically, as the
conventional optimization theory predicts, but rather
increases after the third or fourth iteration. This apparent

contradiction is explained by the approximation theory

developed in Chapter 1V, which showed that the numerical
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sequence {ﬁn} generated by the approximate gradient algorithms
minimizes J[.] not:?[.], and certainly not J[.]. Thus, it

is entirely possible, within the context of the approximation
theory, for (g[ﬁn]} not to be monotonically decreasing. The
fact that {1 } minimizes J[.] is evident from the decreasing
magnitude of the approximate gradient ||§n||2 (columns 2 and

6 of Table 5.2). This brief discussion illustrates the im-
portance of understanding the effects of gradient errors on
gradient methods.

The results of the error analysis are also presented in
Table 5.2. These results indicate that either the error
bounds are conservative or else there are considerable errors
introduced by the various appro*}mations involved in the
numerical solution., From the results given in Table 5.2 it
is observed that the optimal control error is of the same
order of magnitude as the norm of the approximate optimal
control. In this case it is felt that this does not indi-
cate a conservative error bound, but rather that there is
considerable error in the approximate optimal control. This
conclusion is based on the observation that after a refine-
ment of the relatively coarse mesh, used in the finite-
difference solution of the state and costate systems, the
aporoximated gradient magnitude increased sharply. This
indircates substantial gradient errors, in which case large

optimal contropl errors are expected. It also indicates that
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for this problem piecewise quadratic functions may not be
the best selection for the interpolating functions, Piece-
wise linear approximating functions were tried but as ex-
pected gave even larger estimated control errors. Due to the 1
nature of this particular problem, trigonometric approximating
functionswould be the obvious logical choice. A discussion
of this consideration will be deferred until the other examples
are considered.

The cost functional error estimate is obviously con-

servative. This of course can be explained by the methods

N

used in deriving this estimate (i.e,, the triangle in-

equality, Schwartz's inequality, etc.).

The initial guessed distributed control, the initial
trajectory (lSt component) , the numerically converged approxi-
mate optimal control, and the corresponding optimal trajectory
are depicted in Figure 5.2, (a), (b), (c¢), and (d), respective-
ly.

Example 5.2.: The constrained distributed control of the
vibrating string

The constrained, fixed time, fixed terminal state
(partial), minimum energy distributed control of the vibrating
string is considered. The problem may be stated as follows:
minimize

rTfJRF

J[ud]=BJ ug(r,t)drdt, . (5.15)
: oo
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(b) THE MOTION OF THE STRING
DUE TO THE INITIAL CONTROL uge

(d) THE OPTIMAL TRAJECTORY )
CORRESPONDING TO v* (c) THE APPROXIMATE OPTIMAL CONTROL u*{r,1)

Figure 5.2. The solution to the unconstrained minimum energy
distributed control of the vibrating string

(R, = 1.0 and Tf =1.0)

£
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subject to

Sx(r,t)=ud(r,t), (5.16)

x(xr,t)
x(r,0)=xo(r), x (r,0)

[

. x(r,T.)=0, x(r,T )~\\\\
; £ - f _\\ \\\\\\P

xt(r,0)=0,

AR

3 x(0,t)=0, Figure 5.3. The vibrating string
o x(1,t)=0, |
: 52 52

where 8§ = —x - —= , x_(r)=sinnr, a=2, B=0.5, R.=1l, and T_.=4.
el ax? 0 ’ £

The initial, final, and boundary conditions are illustrated

in Figure 5.3. The primary difference between this example

and the previous one is that in this case the terminal con-
dition x(r,Tf)=O is included. Since this terminal constraint

coupled with the dynamical system constitutes a constraint

in the control space U, this problem is not directly solvable

i
)

by the gradient methods. Thus the penalty function method is

St~

employed to alter the form of the problem by replacing the

wmn

MY

constrained problem by an approximate unconstrained problem.

g

The introduction of the penalty function to account for the

SRR

5

terminal constraint yields a new cost functional

O
Y
i

? J_luglsa {RF x% (r,T.)dr + Jlu,) (5.17)
: prid’Tn tele a'’ '
; where the penalty constant o is arbitrarily chosen. The

; defining equations and their discrete approximations are then
i

exactly the same as in Example 5.1, and are given in Table

5.1. The Sequential Unconstrained Minimization Procedure is
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to solve a sequence of unconstrained problems which converge
to the solution of the constrained problem.

Results of the solutions by the modified coniugate
gradient method with increasing penalty constants a, are
presented in Table 5,3. The initial guessed control, the
initial trajectory, the numerically converged approximate
optimal control, and the corresponding optimal trajectory
for an=100 are depicted in Figure 5.4, (a), (b), (c), and (d).
The results of the iteration resulting in Figure 5.4 are
given in Table 5.4. From the results presented in Tables
5.3 and 5.4, and from the solution illustrated in Figure 5.4,
it appears that the penalty function method offers a practical
means for solving constrained problems of this type.

Table 5.3. Penalty constants for the solution of the con-
strained wvibrating string problem

Penaltwaonstant J=Jp_P[x] Cogiggiint
2 0.24954254x10° 0.14859240x10°
5 0.55010654x10° 0.52410559x10 1
50 0.10938682x101 0.10421661x10" 2
100 0.11454726x10% 0.27283289x10 >
500 0.11894317x10% 0.11353210x10" 4
5

1000 0.11257950x10" N.28465427x10"

-
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{c) THE APPROXIMATE OPTIMAL CONTROL (d) THE OPTIMAL TRAJECTORY

Figure 5.4.

The constrained minimum energy distributed control
of the vibrating string, a, = 100
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Table 5.4. The solution of the constrained vibrating string

CPU Time=52.6 sec (with plot)

Storage

140K Total (ARRAY + OBJECT CODE)
uo(r,t)=10e-t

sinmTr cosrt,

problem
¥ Iteration Modified Conjugate Gradient Method
Y number 9 (G4,] <g,19,>
o 0 0.35919006x10° 0.24209658x10"
’ 1 0.76073334x10% 0.12886314x102
2 0.11789181x10% 0.52546089x10°
. 3 0.11727328x10" 0.22517444x10™ %
4 0.11727398x10% 0.21432484x10" >
5 0.11727564x10" 0.45933457x10%
6 0.11727565x10% 0.55115803x10” %
7 0.11727560x10% 0.16968429x10" '
- 8 0.11727560x10% 0.17853686x10 11
9 0.11727559x10% 0.44314448x10" 12
. 10 0.11727559x10% 0.30146695x10™ 12
11 0.11727559x10% 0.14755488x10" 1>

While performing the numerical study of the effects of

the penalty constant on the solution, it was discovered that

by guessing the initial control to be identically zero (i.e.,

uo(r,t)=0) the conjugate gradient method'converged numerically

in exactly one iteration.

The results of the iteration for

the case where an=5, x(r,0)=sinmrr, and uo(r,t)=0 are given
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in Table 5.5. Further numerical investigaticn with different
initial conditions and initial guessed controls indicate that
the rapid convergence was due to the particular combination
of the initial conditions and the initial guessed control
(i.e., x(r,0)=sinmr and uo(r,t)=0). Numerical results for the
case where an=5, x(r,0)=r(l-r), and uo(r;t)=0 are given in
Table 5.6. It is evident from these results that when the
initial condition is polynomial, then numerical convergence
from the initial gquess uo(r,t)=0 is not obtained in one
iteration.

The theoretical implications of these results are
interesting. It appears that when the initial conditions
are trigonometric (e.g. X(r,0)=sinmr) then the solution of
the optimization problem is in a finite~dimensional subspace
of the control Hilbert space U. Therefore, the infinite
dimensional problem is reduced in this special case to a
finite-dimensional problem. For example the solution
might appear as a finite double Fourier series given by
N M
I Zla

u*(r,t) = cosnr cosnt + bnm cosnr sinnt (5.18)

nm

+ . + . . .
Cpm Sinnr cosnt dnm sinnr sinnt)

The parameter optimization problem would then be to determine

the Fourier coefficients a. and dnm‘ It appears

m’ Pam’ Snm’
that in this special case the minimizing element of U is

contained in the one-dimensional subspace spanned by the

A o i ..
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approximate gradient of J at U,=0. In addition the initial
guess ﬁo does not translate the direction of search out

of this subspace. Thus only a single one~dimensional minimi=-
zation is required to obtain the approximate numerical solu-
tion. Further comments on how this observation could possibly
be used to generate an analytical theory for a special class
of problems will be discussed in the next chapter.

Table 5.5. The solution of Example 5.2 with a trigometric
initial condition (i.e., xo(r)=sinwr)

Iteration Modified Conjugate Gradient Method
number $, 14,1 <919,
0 0.25092812x10% 0.10533506x10°

1 0.81215934x10° 0.17635311x10" 28

Initial Conditions: x(r,0)=sinrr, xt(r,0)=0
Initial guessed control: uo(r,t)=0

an=5, B=.5
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) Table 5.6. The solution of Example 5.2 with a non- ,
3 ' trigonometric initial condition (i.e., xo(r)=
4 r(l-r))

: Iteration Modified Conjugate Gradient Method

: number ’b[un] <99,

E 0 0.47825656x10 0.18528340x10°

; 1 0.18137734x1072 0.23826587x10 2

g 2 0.18025130x10"%  0.11387571x107°

: 3 0.18025621x107 1 0.53594771x10"®

: 4 0.18025653x10 > 0.35357040x10™°

é 5 0.18025653x107 1 0.34480603x10 13

b 6 0.18025714x10™ 0.74813105x10 14

i

Initial Conditions: x(r,0)=r(l-r), xt(r,0)=0

Initial Guessed Control: uo(r,t)=0,

an=5, B=.5

E Example 5.3.: The Boundary control of the vibrating string

The fixed time, penalized, minimum energy boundary contrcl
of the vibrating string is considered. The problem may be

stated as follows:

minimize
F o2 F
J[ub]=a f X (r,Tf)dr + B [ ub(t)dt, (5.19)

0

0
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subject to

Sx(r,t)=0,
x(r,0)=xq (r), U, ()
xt(r,0)=v0(r) '
Tx(0,t)=u_(t) . r
' Yy ! Figure 5.5. Boundary contrdbl
x(1l,t)=0, of the vibrating
string
32 o
where § = ;:5 - ;;5 , T=I, xo(r)=sinwr, a=B=1, Rp=1l, and

F _ Tf=4. The initial and boundary conditions are illustrated
d in Figure 5.5. The defining equations and their discrete
approximations are given in Table 5.7.

The results of the solution for the minimum effort,
boundary control of the vibrating atring are given in Tables
; 5.8 and 5.9, and are illustrated in Figures 5.6 and 5.7.
Table 5.8 contains the results of the iteration when the
initial guessed control is identically zero (i.e., uo(t)=0).
The initial guessed boundary control, the initial trajectory,

the numerically converged approximate optimal control, and

: the corresponding approximate optimal trajectory are shown
| in Figure 5.6, (a), (b), (¢), and (d), respectively. As in
: Example 5.2, when the initial boundary control was guessed
identically zero, the iteration converged in one iteration.

The explanation for the rapid convergence is essentially the

same as that given in Example 5.2,
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Table 5.8. Results for Example 5,3 with uo(t)=0
Iteration

Modified Conjugate Gradient Method

number -
R 9 [Un] anlqn;'
0 0.50185624x10° 0.88209975x10"
12 0.10027777x10° 0.31521281x10 28

ERROR ANALYSIS:
Optimal Control ERROR: |' --a*|| < 0.17718170x10°

Cost Functional ERROR: |Jlu ,-Qli*]| < 0.20936213x10°,

where |le_(a*,n)[] = 0.35436341x10°,

[1§(i*:qh) |2 = 0.51743680x10™ >

and

||a*|| = 0.28581078x10°.

CPU time = 10.58 sec., Storage = 32400 BYTES.

aConverqence in one iteration occurred only when
uo(t)=0 was usad as the initial control quess.

The results of the iteration for a different initial
guess of the control (i.e., uo(t)=-10e"tcos 2nt) are pre-
sented in Table 5.9%. The initial quessed control, the
approximate optimal contr