AD 740127

STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO AIM-158

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-250

PROGRAM SCHEMAS WITH EQUALITY

BY
ASHOK K. CHANDRA ke
Tt O
ZOHAR MANNA . episem ‘m
v .
SPONSORED BY oV

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457
DECEMBER 1971
COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

Distribution Unlimited

| DISTAIBUTION STATEMENT A
j Approved for public release;

Reproduced by
NATIONAL TECHNICAL \
INFORMATION SERVICE \X“

BEST
AVAILABLE COPY

PROGRAM SCHEMAS WITH EQUALITY

by

Ashok K. Chandra and Zohar Manna
Computer Science Department
Stanford University

Abstract

We discuss the class of program schemas
augmented with equality tests, that is, tests of
equality between terms. AT §

In the first part of the paper we discuss and
illustrate the “power" of equality tests. It
turns out that the class of program schemas with
equality is more powerful thin the "maximal®
classes of schemas suggested by other investi-
gators. f
In the second part of the paper we.discuss
the decision problems of program schemas with
equality. It is shown for example that while the
decisicn problems normally considered for schemas
(such as halting, dlvergence, equivalence,
1somorphism and rreedom) are solvable for Ianov
schemas, they all become ,unsolvgble if general
equality tests are added, e suggest, however,
limited equality tests which can be added to
certain subclasses of program schemas while
preserving their solvable properties.

* a
i

1. Introduetion

In recent years the study of schemas has been
widely pursued in an attempt to understand the
povwer of programming languages. In the study of
program schemas, the functions and predicates
allowed are usually considered to be uninterpreted
symbols. The reason for this is that very simple
interpreted programs yield &1l the partial recur-
sive functions, and therefore interpreted programs
do not provide insight into the difficulty in
programming; c.g. the difference between the
esscntially iterative nature cf Fortran ond the
recursive structure of Algol or PL/1.

Earlier works in this arca, c.;;s Ianov
{19€0], Rutledge {19641, Paterson (1907, 1908}
and Luckham, Park and Paterson [1970] essentially
counsidered flowchart schemas, and emphasized the
decision problems for schemas, viz. halting,
divergence, equival~nee, ete. Most of the recent
papcrs, on the other hand, c.z. Paterson and
Hewitt [1971], Strong [1971a], Constable and
Gries [1971] and Garland and Luckham {1971}
considered more powerful schemas, i.c., flowchars
schemas with additional programming features like
counters, recursion, push-down stacks and arrays;
and were concerened mainly with the problem of
translating program schemas from one class to
another,

Several formalisms have been considered in
the literature for the description of schenas.

We define a flowchart schema as being a program
with the following features: it has a finite
number of program variables dencted by Y12¥preees

a finite number of uninterpreted function symbols

fl’ fz’ <« (which may be combined with the variatles

to form terms) and a finite number of nredicate
symbols denoted by pl,pz,... + Some of the func- .

tion symbols may be zero-ary. These stand for
individuval constants, and are denoted by
al,az, see « A statement in the pProgram moy be:

(2) an assignment statement of the form
yi -1
(b) a predicate statement

where t 1is any term,
of the form

ir pi(tl’t.?""’tn) then goto Ll else goto L2

where tl,...,tn are terms and: Ll,L2 are labels,

or (c) a terminal statement, i.e., a START
statement, a HAIT ctatement or a LOCP statement.

A schema has a uniquc START statement as its first
ctatement. Free use of goto statements is allowed;
and all statements except the START statement may
be labelled, 1In addition, for convenience and
readability we Jdescribe schemas usin; ALGOL-like
features, e.g. while-statements and block struc-
tures. These clearly do not add any "power" and
every such ALGOL-like procram can be translated to
an equivalent program that uses goto-statements
instead.

Certain features can be added to flowchart
scherias, e.g. counters or arrays. A counter ir a
special variable that takes nonnegative integer
values. The operations ullowed on a counter are
adding one, subtracting one,- and testing for zero.
An array is a one-dimensional semi-infinite sequence
of variables that can be referenced by using a
counter to cubscript the array.

In addition, we also consider recursive schemas.
A recursive schema is a sct of recursive definitions
of functionals Fl’FE’ «ee of the form

-if '
Fi(yl""’yj) if p(tl,...,tn) then t else t

where p is an n-ary predicate symbol and
tl""’tn » t and t' are terms that may concist

of function symbols, functionals and the variables
Yy "'Jyj .

The research was supported by the Advanced Research Projects
views and conclusions
authors and should not be interpreted as necessarily representing the official
Projects Agency or the U.S. Government.
Scientific and Technical Information, Springfield, Virgzinia
Full size copy $2.00; microfiche copy $.95.

Defense under Contract SD-18%., The
or implied, of the Advanced Research
Available from the Clearinghouce for
22151. Price:

Federal

Agency of the Office of the Secretary of
contained in this document arc those of the
policies, either expressed
Reproduced in the USA.

It ic quite surprising, though, that people
have £o far ne;lected Lo mention one of the most
useful leatures: cquality tests between temms,
i.e., statements of the form

if t) = t, then goto L, elsc goto L,

2 2
where tl,t2 are terms and L]_,L2 are labels.

The extension of program schemas to allow
equality is quite natural, much as is the exten-
sion of first order predicate calculus to first
order predicate calculus with equality. The
analogy can be extended further in that in both
cases equality tests can be treated as just any
other binary predicate but with a partial inter-
pretation which in turn involves all other predi-
cates and funttions used in the systems This
tende to be an unnatural approach to the treatment
of equality. Accordingly, we prefer the direct
approach of allowing the equality test to be a
basic operation in the system as is the operation
of assignment to a variable,

The reason for the omission of cquality tests
in earlier papers can perhaps be traced to the
following fact. All schemas discussed in the
Papers mentioned above have one very important
common property: thc behavior of a schema for all
interpretotions can be characterized by the
behavior for n subset of all interpretations
viz. the Herbrand interpretations. We therefore
call all these schemas Herbrand schemas. To be
somewhat more precise, in a Herbrand schema, for
every interpretation there "corresponds" a Herbrand
interpretation that follows exactly the same path
of computation. Flowchart schemas with equality
tests are in generel non-Herbrand schemas, that is,
they may behave quite differently for Herbrana
and ron-Herbrand interpretations. Consider, for
example, the simple schema:

START

if a = b then HALT else LOOP .
This schema halts for some interpretations and
loops for others. For all Herbrand interpretations,
however, it always loops. It is therefore a non-
Herbrand schemr, and further, thnre can be no
Herbrand schema that is equivalent to it. A non-
Herbrand schema that has no equivalent Herbrand

schema is said to be an inherently non-licrbrand schema.

The use of equality tests does not necessarily
make a schema non-Herbrand. Fxample O in Appendix
A is an intercsting instance of a Herbrand program
schema with equality tests that has an equivalent
Herbrand program schema without any equality test
and also an equivalent non-Herbrand program schema
(which does have cquality tests).

There are scveral other features which in
¢eneral give rise to non-Herbrand schemas: the
use of quantified tests is one such. Unfortunately,
it is not partially decidable if a given schema is
a Herbrand schema. This result follows from the
fact that it is not partially solvable whether or
not any given flowchart schema (without equality
tests) diverges for every interpretation. Given
any flowchart sthema T , replace every HALT
cstatement by the statement

if y=a tken HALT else LOOP

where a is a new individual constant. Now the
new schema is a Herbrand schema if and only if T
diverges for every interpretation.

™n

In the rest of this paper, we illustrate the
power of equality tests (Section 2) and the decision
problems concerning program schemas that use them
(Section 3). For the sake of clarity we merely
give the "flavor" of the .zamples in the main part
of the paper, and we state the theorems without
proof. Dctails of the examples are given in
Appendix A (Section L) and the proofs are sketched
in Appendix B (Section 5). Detailed proofs can be
found in Chandra [1972b].

2. The "Power" of Program Schemas with Equality

The use of equality tests in program schemas
raises an old question that has been asked seversl
times and never been answered to our complete
satisfaction -- just what is a schema? We do not,
in this paper, propose to answer this questic:, but
we can indicate that much remains to be studied.

It has been suggested (Constable and Gries [1971],
Strong [1971b]), for example, that the class of
program schemas with arrays might be a "maximal"
class of schemas, i.e., for cvery schema there
exists an equivalent scheme in this class. Now,

it may be that the class of array-schemas is indeed
maximal with respect to the Herbrand schemas, but
nevertheless all schemas in this class are Herbrand
schemas. It has becn shown, however, that %here
exist certain schemas using equality tests that ar:
inherently non-Herbrand. This means that the class
of program schemas with arrays and equality tests
is a strietly larger class.

A problem is said to be a Herbrand problem if
it cun be colved by a Herbrand Schema. — X RBon=—
Herbrand problem is one that can only 'e solved by
inherently non-Herbrand schemas. The class of
prosram schemas with arrays and equality tests can
solve certain non-Herbrand problems (which by the
definition of a non-Herbrand problem cannot be
solved if only arrays are allowed).

We first illustrate this point with two exam-
ples of non-Herbrand problems.

Ezample 1: Inverse of a wiary function

Consider the following problem: "Given a
unary function symbol £, a finite number of other
n-ary function symbols, n >0, and an input
variable x , writc a progran schema that under any

interpretation will yield a value of f'l(x) as
output. That is, it finds an element y that can
be expressed in terms of the given function symbols
and the input variable x , such that f(y) = x ;

if no such element exists, the schema loops forever".
This problem, which is essentially one of inverting
a civen unary function, is non-lierbrand, the reason
being that if the input x 1is equal %o the 2ero-ary
function a +then it has no inverse in any Herbrand
interpretation, whereas for ctrer iaterpretations

it may have an inverse. It follows that the task
cannot be performed by any lerbrend schema. The
task carnot be performed by any Herbrand schema.

The task is, however, well within the capability of
flowchart schemas with arrays and equality tests,

A schema in this class that solves this problem is
deseribed in Appendix A.

Example 2: lerbrand-like interpretations

Given a set of function and predicate symbols
of which therc is at lecact one zero-ary function,

we say that an interpretation I for this set is
Herbrand-like 1f' Lhere cxists some Herbrand inter-

pretation H cuuch th:t there is a 1-1 homomor -
phism fran U into I . In other words, an
interpretution I is llerbrand-like if and only if

for every pair of distinet terms tl and ta

(made up of the given functions) thc elements in
I corrceponding to tl and 1;2 are distinct.

Now, consider the following problem: "given
an interpretation for a tct of function and
predicatc cymbols, of which at lcast one is a
“ero-ury function, determine if Lhe interpretation
Is not ilerbrand-like. 1f {ihe interpretation is
not llerbrand-like then balt with no output, else
diverge.” This problem is inherently non-llcrbrand
in nature since a schema that solves this problem
must diverge for every Herbrand interpretation.
But for certain other interpretations the schema
should hglt. A schema with equality tests that
solves the stated problem is presented in
Appendix A. o

The problem presented above is an abstraet
model closely related to certain problems in real
life programming. As an illustration, econsider a
directed graph (with an identified root node) in
which each node has two identified pointers leading
from it. Pointers may lead to a terminal node
"NIL". The problem is to determine whether or not
the given graph is a tree. This problem may be
modelled by the above problem with two monadie
functions representing the two pointers, and with
the difference that the search for the equality of
two "terms" is condueted no% for the entire set of
all terms, but for those terms not representing
NIL. The correspondence is that the interpretation
is Herbrand-like for this set of temm# if and only
if the corresprnding graph is a trce.

Another related problem is that of determining
if a given list is eireular. In this problem, too,
the explicit use of equality in a schema model of
the computation represents a more natural approach
than the treatment of equality as an interprated
predicate,

Yhile the main interest in equality tests
stems from the fact that programmers frequently do
use tests of equality between variables whose
values are data elements and these tests are often
of a non-Herbrand nature, equality tests find some
interesting applieations in problems that are
really Hertrand in nature. We give two examples
below.

Example 3: Translation of flowchart schemas with

Counters
The recursive schema
F(x) = if p(x) then F(F(£(x))) else £(x)

can be transiated to an "impure" flowchart sehema
by introducing a counter. It can also be trans-
lated to a rather horrendous flowchart schema
without any explicit ecounter (Plaisted [1972]).
H.wever, the use of equality sives a relatively
simple flowchart schema equivalent to the above
while retaining the advantage of having a "pure"
schema (all functions and predicates being left
uninterpreted). Details are presented in
Appendix A.

Example L:

Efficient translation of linear

recursive schemas
—d s ST

Concider the recursive'r:chema.. TS

F(a) where i

F(y) = if p(y) then g(F(£(y)),y) else y .
Let I be an interpretation of T for which

there exicts an n, n >0, such that f"(a) =

FALSE and for all k<n, f£%a) = TRUE . The
output of the computation (T,I) is tbe temm

ele(a(-+ e(£(a), @) ..., £(a)), 2(e)),a) .

For usual implementations of recursion the

computation of the interpreted schema (T,I) takes
time (the number of operations on data struetures
performed) and space (the number of values stored)

both proportional to n .

The recursive schema

T ean be translated io an equivalent flowehart
schema using a fixed memory size (number of

variables) and time proportional to n*n .

Using

equality tests, however, the time can be brought
duwn to some constant times n(l*c) s wherc ¢ is

any arbitrarily small positive rumber.

Details of

the eonstruction are given in Appendix A. For
further discussion of this topic, see Chandra
[1972a]}.

5+ Decision Problems

We consider the following decision problems

for elasses of schemas:

(a)

(v)

(d)

(e)

is not strietly a decision problem.

The halting problem -- to decide whether a
¢lven schema in the class halts on every
interpretaticn.

The divergence problem -- to decide whether a
given schema in the class diverzes on every
interpretation.

The equivalence problem -- to deeide whether
two given schemas in the elass are equivalent.

The inclusion problem -- given two schemas A
and B to decide whether A ineludes B s leeo,
for every interpretation either both schemas halt
with the samc output or schema B diverges.

The isomorphism problem -- to deeide whether
two schemas are isamorphic to each other. (Two
schemas are said to be isomorphic, or opera-
tionally equivalent, if the sequences of
statements executed by both schemas are cxactly
alike for every interpretation.)

The freedom problem -- to deeide whether a given
schema in the class is frce.

The translation problem -- to translate any
schema in the class to an equivalent free
flowehart schema (using any number of
variables).

It should be noted that the translation problem
We include it

in this 1list, however, because it 's an interesting
problem closely rclated to the others.

All thesc quecttions can be answered in the
affirwative for the clasg of lanov schemas which
congists of onc-variable flowchart schemas using
only monadic function and predicate constants
(Ianov {1900), Rutledge [10Gh]). In view of this
it is somewhat uncxpected that the addition of
general equality tests to Ianov schemas renders all
these decision problems unsolvable. On the other
hand, we show that il2se problems for Ianov
schemas extcnded even to nonmonadic functions and
resets but with limited equality tests are
solvable.

It should be stated that for all "conventional"
schemas, i.e., all schemas mentloned in this paper
and in earlicr works, the following problems are
at least pa:iially solvable:

(a') The halting problem -- to decide whether a
given schema in the class halts on every
interpretation.

(b*') The non-divergence problem -- to decide
vhether a given schema ever halts,

(e') The non-isomorphism problem -- to decide if
two schemas are not isomorphic to each
other.

(£*) The non-freedom problem -- to decide if a
given schuma is not frce.

The notable exceptions are the equivalence
and inclusion problems. In general, the equiva-
lence and inclusion problems as well as their
negations are all not partially solvable.

%.1 Notation

We use the symbols
(1) 8,8),8,, . .¢

(or zero-ary functions, if you will),
(@) ¥s¥y¥pseee
(3) f’fl’fe’

use

(h) P:Pl:P2, 000

to represent individual constants

to represent program variables,
to represent functions, and we

to represent predicates.

The set of termms is defined by the smallest
sct containing a's , y's and closed under the
following operation: if tl’t:.’""’tn are terms,
and fi
fi_(tl""’tn) is also a term.

is an n-ary function symbcl, then

We-use the notation t(¥1¥pseeer¥y) tO
rcpresent that ¥1s¥preeesy, are the only variables

that may be present in t . Thus a term t(y)
may or may not contain the variable y , but
contains no other variable. A term t() indicates
therefore a constant term, that is, a tcrm that
has no occurrences of y's at all,

Given a nonconstant term t(y) , i.c., one
containing the variable y , a common subterm
£'(y) of t(y) is one such that if cvery
occurrence of *'(y) in t(y) is replaced by an
individual constant then t(y) is rcduced to a
constant term. Clearly the terms y itself and
t(y) are common subterms of t(y) . Also, if
t*(y) and t"(y) arc common subterms ef t(y)
then t*(y) 1is a common subterm of t"(y) or
vice versa,

The assignment depth |it(y)|l of a tem
t(y) is defIned fo be the number of common sub-
terms in t(y) excluding y itself. By conven-
tion, for a constamt term t() , ||t()p =0 .

The depth |t(y)| of a term t(y) is the
maximum depth of nesting in the term, and is

defined by:
lt()l =0,
ly] =0,

[£(t)stpseaest)) | = max(|t,|,0ee, |t)42

Note thet for monadic terms |[t|| = |t| , and in
general |t} < |t] . A few examples illustrate
this point. In the following table

(a) stands for t(y) ;

(b) stands for common subterms of t(y)
. (excluding y itself);

{e) stonds for |it(y)| 3

(d) stands for |t(y)| .

(a) (b) (c) (a)
y © (o] o]
f(a) - o o
£(y) f(y; S
£(g(n(v))) h(y);en(y) sfeh(y) 5 5
f(a(a,¥),e(a,y)) a(a,y)if(e(a,y),e(ay)) 2 2
£(y,e(a,y)) (y,e(a,¥)) 1 2

3.2 GSolvable Classcs
Consider the rather genecral class Sl of

flowchart schemas with one variable. Schemas in
S, contain the following statcment types (L1 and

1
L? are arbitrary labels in the Jdefinitions below):
START statement: START

y-a

i

Final statements: HALT or

Loor
Ascipnment statement: y - t(y)

Prcdicate-test st.: if p(tl(y), . ..,tn(y))

then goto Ll

glse goto L,

Equality-test st.: if tl(y) = t2(y)
then goto L,

else poto L,
The cquality tests allowed must, however, satisfy
the condition that cither tl(y) or tz(y) is a

constant term, or clsc both ntl(y)“ and Htg(y)u
arc less than or equal to 1 .

THEORFM 1 (Solvubility ol Sl) . For the class 5,

1(a) thec halting problem is solvuble
1(b) the divergence problem is solvable

B S G O aad

1(c) the equivalence problem is solvable
1(a)
1(c¢)
(1)

1(g)

Lhe inclusion problem is solvmble
the isomorphism problem is solvable
the freedom problem is solvable

any schema can be effectively translated to
an cquivalent free schema (with the addition
of cxtra program variables).

This theorem includes as special cases the
results of Ianov [1960], .utledge [1964], and also
recent extensions by h.ueli [private communication],
and Garland and Luckham [1971].

As a special case, the problems (a)-(g) are
solvable for the class of l-variable monadic
schemas allowing resets and equality tests of the
forms: -

tl()"ta() »¥=t() , y= fi(Y) » and fi(Y) =fj(¥) .
Consider, next, the class 32 of schemas,

similar to the class Sl » but with a change in

the form of equality tests allowed, viz. the
equality test statements allowed are of the form:

ir tl(y) = ta(y) then goto L, else goto L, »

but this time the restr:lct':lon is that
“tg(Y)" . :

b ()} =

THEOREM 2 (Solvability of 32) :

Problems (a)-(g) are solvable for the class

.
2

As a special case, the problems (a)-(z) are
solvable for the class of l-variable monadic
schemas allowing resets and equality tests of the
form:

0 = ta(y) where [t,()| = |ty (y)| .

5.3 Unsolvable Clagses

It should well be asked why we have the
"strange" restrictions on the form of cquality
tests above. The answer is that even slight
feneralizations of the restrietio & above yield,
astonishingly, classes whose problems are unsol-
vable. We demonstrate this on two classes.

Crisider the class S5 eonsisting of one

variable y , one constant a » no predicates ard
only monadic function constants. Statements in
schemas of S5 are of the forms:

START statement: START
Yy ~-a
Final statements: HALT or
Loop
Assignment statement: vy .- fi(y)

Equality-test st.: i £,(y) = fJ(fk(M))
then goto L1

else poto L,

55 differs from Sl in that noncongtant

tems of depth 2 are used’in equality tests; and
it differs from 52 in that termms tested for

equality do not have the same assignment depth.

TIHEOREM 3 (Unsolvabilitx of _sz) ¢ For the class

S5 B

3(a) the halting problem is unsolvable

3(b) the divergence problem is not partially
solvable -

3(c) the equivalence problem is not partiaslly
solvable

3(d) the inclurion problem is not partially
sclvable

3(e) the isomorphism problem is not partially
solvable .

3(f) the freedom problem is not partially

. Solvable .
3(g) there exists no effective translation tc

equivalent free schemas.

For the sake of completeness we should mention
that the nonequivalence and the noninclusion
problems for this elass too are not partially
solvable. Of course, the halting, nondivergence
and nonisomorphism problems are partially solvable,
which follows from the general result mentioned in
the carlier parts of Section 3.

We introduce next the class Sb of l-variable
monadic schemas similar to S5 but with the

difterence that equality tests allowed have the
following form:

H-V=t(Y)MML1ﬂs_eﬁﬂ°.L2
where 1 < Jt(y)| <3, i.e., tests may have any of
the forms:

v=£n,

¥ fi(fj(y)) s or

v = fi(fJ(f},_(‘f))) .

u

TUEOREM 4 (Unsolvability of %) ¢

Problems (a)-{g) for the class S.u are
unsolvable.

A class of cchemas is said to be sclvable if
its deeision protlems (a)-(e) are solvable;
similarly, a elass is unsolvable if its decision
problems (r)-(e) arc unsolvable, Classes Sl and
32 are solable whereas S5
vable. On comparing these classes it is ¢lear that
there is a very sharp demarcation between classes
of onc-variable schemas that are solvable and those
that arc unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked
how many function symbols sufiice to render a class
unsolvable. It ean be shown, for example, that for
the class S5 > merely b functio.s are sufficient.

and Sh are unsol-

1t is more interesting to nole, however, that
these function cymbole can be "coded" using only 2
Naetion symbols so that sehemas with one variable,
twu functione and general cquality tests, i.ec.,
Ltests ol the fomm tlTy) = ta(y) »_arc unsolvable.

So far we have restricted our consideration
to scchemas that have only onc variable. The rcason
ig obvious: one-variable schemas provide the most
interesting solvable elasses. When more variables
arc allowed, cven a very few features tend to make
the schemas unsolvable. For example, schemas with

two variables, two functions and tests only of the
form y, = fiyii are unsolvable.
It is even more intercsting, though probably

not surprising, that sehemas with a single function
too are unsolvable; for example, the class of one-

Nunction schemas having tosts only of the form
vy = y! is unsolvable 25 variablcs suffice in

this cace).

The proofs of these secondary results are
also presented in Appendix B.

k. Appendix A -- Detailed Fxamples
Fxample O: A Herbrand sehema with equality

Not all schemas that use equality tests are
non-ilerbrand. Consider, for example, the schema
START
Yy <V, -al
L: if p(yl) then
if p(y,) then
bepin
Y1 = £y
Yo = £y,)s
foto L;

end
= a then HALT
¥ then HALT else LOOP .

else if ¥y

else LOOP

clce E yl =

This is a lerbrand sehema because the eguality
test ,vl = ¥, rust always be true, and the

=4
equality test ¥3 = a can never be entered. The
riven schema i hence cquivalent to the followin:
schema, which has no equality test.

START

Y e a3

L: if p(y) then
be!'in‘
y-£(y);
soto L
end

clse HALT.

The following schema is also equivalent to the
above schemas, but it is a non-Herbrand schera
because the LOOP statement in it can necver be
entered for any iierbrand interpretation. The
schema is, however, not intereatly non-lierbrand.

OTART
Yy - o3

L: if p(y) then
’ if y = f(y) then LOOP
elsc begin

Y = £(¥);
goto L
end

else HALT .

Example 1: Inverse of a unary function

For simplicity we assume that the only 1unc-
tions are a single zero-ary function a , the given
unary function f and a binary function g . The
possible terms are therefore:

X, a8, f(x), &(xx), £(a) , g(a,a) , g(x,a) ,
a(a,x) 5 £(£(x)) 5 «on

The schema for any other set of functions is similap
to the one for this particular case.
Symbols cl,ce,c3 stend for counters.

Strictly, the only operations allowed on counters
are adding and subtracting one, and testing for
zero. For convenience, however, we will also allow
other statements such as cy - 0, c; - c'j , and

tests like c:l = c'j , a8 it is clear that these
opcrations can be performed using only the legal
operations and additional counters.

START
Al0] ~ x;
e - 0;

e, - 1;
REPEAT:
if £f(y) =

e, - c2+l;

A[cal - a;

v = Aleg]s

x then HALT(y);.
Ale,] = £(y):
Ales] = 6(yyv)3

c, = c tl;
2 2 7

C5 = €y;
while ¢, £ 0 do
c5 -cinl;
¢y =ty Aley] = elAles]yy);
¢y = el Ale,] = a(yyales]);

end;

e
G
ja+]
(2]
o}
5

€1 7%
0

——

(3) --

After the initfalization phase (lines (1) to

(2))

Alo) =x , A[l}=a , e =¢ , e, =1 .

1

After completiny cne pass through the outer loop of
tihe pro-vam (lines {3) to (5))

=) 5 ALY = e(%) , e

=xl,c2 g

-

algj =
a second pass
f(a) , AlS] = ¢(a,a) ,

s(xa) 5, AlT] = g(a,x) , €, = 2, ¢,

o

ardi after
Al']
TEaI

"
P
-

Tne algorithi works as follows: two pointers ¢
A[cl] reprecents

the "current” value. 1If the current value is not
the inverse, as determiined Ly line (W), it is
composcd with values preceding it in the cnumera-
tion by lunction applicationc, and the ncw values
obtained arc added to the array.

It can Le shown Ly induction that the process
of enumcralion gencrates und tests cach possible
term exactly once. Thic means that ihe inverse
will be found if it cxists. The point at which
tne teet of the inverse is made could be changed
to effect time efficiency but without altering the
main featurcs of the program.

und Sy refercice the array.

Example 2: llerbrand-like interpretations

We assume that the only functions are a sin-
gle zcro-ary function a , a unary function f
and & binary function g . Therefore the set of
terms includes

a, f(a) , g(a,a) , £(£(a)) , a(f(a),f(a)) ,
g(a, f(a)) , «oo .
The required schema is:

(1) -- START
A[0] ~ a;

(2) -- ¢y =c, - By

(3) ~- REPEAT: 3 = Aleili
- e e = = sy
c, -~ cl;

) |

¥hile c) f 0 do

begin

¢, - ch-l;

if A[ch] = y then HALT;

) -
|
|
g Be R D
c,

s el Aley] = £(y)s
e, = ct1; Ale,] = g(v:y);

e =03
while c, # 0 do
begin

cj - ci-l;
¢, = cst1; Ale,] - c(A[cBLy);

ey = cotly Aley] = a(y,Ale;1);
gBl;
ey - cl+1;

(5) -~ oto REPHAT .

This program is quite similar to the previous
one in the manner of cnumeration of terms. The
fuzt that cach term is penerated exactly once is
used in making the test (4) to check if a valuc
is repeated.

kixample 3: Translation of flowchart schemas with
Counturs

1
Lo

The recursive schema
F(a) where
F(y) - if p(y) then #(¥(f(y))) else £(y) ,

can be translated to a flowchart schema with one
program variable y and one counter c¢ .

START
y - a;
(1) == c~-0;
while true do
if p(y)
then begin
v = £(y)5
(2) -- c = ctl;
gnd
else begin
y - £(y);
(3) -- if ¢ = O then goto DONE;
(4) -- c =~ c-l;

end;
DONE: HALT(y) .

Note that the test " ¢ = 0 " above is not a test of
equality between two data structures but rather
between an interpreted variable, i.e., ¢ , and an
interpreted constant, f.e., O .

The corresponding equivalent flowchart schema
with equality tests instead of counters uses three
variables:

Y plays the samc role ss the variable y above,
2 effectivaoly simulates a counter, and
w is a temporary variable.

The idea behind the method is that the variable 2z

simulates a counter, where fi(a) stands for the
integer 1 . Thercfore, the ctatement 2z ~a
stands for the statement ¢ -0 , 2z ~ f(z) stands
for c «~c+l , and the statements

[w ~ a; while f(w) # z dow ~ £(W); z - w] stand
for ¢ ~c-1 . We have to be careful, however.

The temn fn(a) stands for the intezer n, n >0,
only if for no two distinct numbers 1, <n are

the temrs fl(a) and r‘](a) cquale Interpreta-
tions for which the counter is required to court up
to an integer n where therc exist i,j <n,

it J, such that fi(a) = r‘j(a) are called looping
interpretations. It can be chown that for looping
interpretations the given recursive schema never
halts. The rcquircd program schema is therefore
casy to construci:

HWEAKT

Y ~ a3

{1) -~ 2z +~u;
vhile Lrue do
L pn ™

¥ - I(¥);
r Wea; cheek
| while w £ = do Ifor a
Af w o £(x) |1oopin._v,
lhen 140P inter-
I clse w « 1(w); |prcta-
L if w=1f(x) then LOOﬁjtion
(2) -- 2 - f(z);
end
elsc begin
) Y = f(y);
(5) == if & = a then goto DONE;
r Wea3 1
(N) == | while £(w) £z do w ~ £(w); |
Z - w;
L - "2 -
cnd;

3
DONE: HALT(y) .

Examplc b: Efficicnt translation of linear

recursive schemas
Consider the recursive schema T :
F(a) where 0
¥(y) - if p(y) then g(F(£(y)),y) clse y .

Let I be an intcrpretation of T for which
there exists an n, n >0, such that

'(a) = FALSE , and £(a) = TRUE for all k <n
The output of the computation of (T,1) 1is

elelel -« a(£(a), 27Ha)) ... £7(a)), £(a)),a) .

The computation of (T,I) takes timec and
spacc proportional to n -- for usual implcmenta-
tions of rccursion. The recursive sehewa can be
translated to an equivalent flowenart sehems T°
using a fixed memory size (number of variables)
Such tnal the computation of (T',I) takes tire

proportional to nd y aas follows:

CIART
Y - a; .
vhile p(y) do ¥ - £(y); -- y = £Y(a)
% e a}
whilc p(x) do

bc;'ig

x - £(x);

X - xj .. L= f"(a) i>1

Z -~ a3
while p(xl) do
begin
X - f(xl),
z ~ £(2);
cnd; o
~1
v = clysz); -~z = " (a)
end
HALT(YY .

w0

Using equality testis, however, the time can

be broushit down to nl"‘ vwhere € is an arbi.

trarily small nunber. We rirst deserilbe an cguivge -
lent flowchart schema with equality tests with a °F

2 [/
time bound of n"/ = .
Intuitively, the idca is the following. The
carlicr flowchart schema spcnds most of its time
trying to find the inverse of the function f

(i.e., yciven fi(a) s to find fi-l(a)) -- though
thic opcration is somewhat hidden in the program.
We can speed up this by planting a value at a
"distance" of about 'n from the end

and computc inverses trom this planted value.

Time taken to find the square root is of the order

of nj /2 » average time to find the inverse is
n]‘/2 (done n times) and time to reset the

planted value is of thc order of n (done nl/ 2
times). In gencral, by planting (k-1) values
(instcad of Jjust one) at distances

Yk 2/k 3/k nlk-1)/k

s N 3 ses
from the end we get a time bound of nl+(l/k) .

n s N

START
y - a;
(1) -- while p(y) do y ~ f(y);
(2) -=- If y = a then HALT(a);

x -~ f(a);
(Z) -~ CHICK: Yy "V -8

while y, £ x do
g im

¥, = g
"}.‘_ﬂ:ﬁyg # x do
begin
Yo = £ya);
Vs = £(¥s);
if y5 = y then goto FOUND;
end;

yp = tyy)s

end;
w o= £(x);
(%) -- -oto CHKCK;

FOUND: 2 « v; -- X = I‘m(n)

R, - X3
(5) -~ REPEAT: .\‘1

wiile x, £ z do
LIS, ce

—-a;

begsin
Xy - f(xl);

(7) =~ while z 4 %, do
b(.'l',il‘l
T =X
while l(xj) £ udo Xy = f(x.’.);
e = U(y’xj);
- X3
(3 - engs
TEST: if z = a then HALT(y) 3
(9) -- X, = a; while (x2 # 2z) and (x2 Fx)
do X, - f(xe);
goto REPEAT .

Line (1) detects if there exi'sts arn n >0

such that f(a) - FALSE and t‘k(a) = TRUE for
all k<n . If such an n does not exist the
program loops forever which is the desired opera-
tion. If n exists it follows that for all

LIS, 1 143 then ri(a) £ #(a) . 4t
this point y = f"(a) 0

If n=0 the Program halts with output a
(linc 2), If n 2 1 the CHECK loop scgment of
the program from lines (3) to (4) finds the
cmullest positive integer m such that mém >n .
Ihis is done by successively trying larger and
larger values i = 1,223,000 for m until one’ is
foond such that i*i 2n . This is the required
valuc for m . We use the variable x to store

the value of fi(a) and the variable ¥y to

"count" up to ixi by successively taking values
*

a,f'(n),...,fi i(a) + The final value of x ig

(a) and it remains unchanged for the rest of
the program.
kxecution of lines (5) to (%) now causcs the

variable x, to be "planted" at M%) . The

while statement between lines (7) and (8) consti-
tutec the main part of the brogram. 'The variable
Y takes on values in the scquence

fn(a))
w((a), " Ya)) ,
w(e(r(a), £ a)), 2(a)) |

1506l von c(i‘"(a),i‘"'l(a)), T

On exit from this while-loop the valuc of 7 1is

My

Lines (9) and (5) to () are then used to

reset the planted value to rn-E‘m(a) and the
process i3 repeated. After it, the planted value

15 reset to i‘n'jm(n) » and 50 on. A special case
iz encountered when the integer correspendins to
2 becomes lecs than m . In this case, the next
planted value should be simply a , and hence the
use of line (9) instead of simply cetting X, =X .

G

5« Appendix B -- Proof of Theorams

¢~
.

We usc the terminology T, =T, to mean the
£chemas T, and T2 are cquivalent, and "1‘1 =) Ta
1 ineludes T2 .

Proof of Theorem 1 (Solvability of 5,)

to mean T

1(a),(b),(ec): The solvability of the halting,
divergence and equivalence problems follows from
the solvability of inclusion:

(a) Given a schema T of 8;, T halts if and

only if T' oM where H represents the schesa
[START; HALT(2)) that always halts with output a 0
and T' is the schema T with all HALT statements
changed to HALT(a) .

(b) Given a schema T of Sl » T diverges if

and only if L > T, where L represents the
schema [START ; LOOP] that always loops,

(¢) Given two schemas T, and T, of S, »
Tl 5T2 if and only if T1:>T2 and TEDTl .

1{(d): We give below only the intuitive idea
behind the proof of solvability of the inclusion
problem. Given two schemas Tl and TE of Sl ’

to decide if Tl =) T2 » an automaton is constructed
that simulates the computations of '1‘1 and T2 in

parallel. The input tape of the sutomaton repre-
sents an interpretation for Tl and T2 . The

input tape is rejected ir Tl and T2 both halt
but with different outputs, ur if T? halts and T

1
diverges, under the interpretation corresponding
to the input tape; otherwise, the tape is
accepted.

To describe the operation of the automaton we
firet introduce the notion of the "specification
statc" of a variable y ., The specification state
represents the outcomes of all poescible tests that
could be performed Ly a schema without changing the
value of the variable y (and using terms no
"lar;er" than the "largest" term used in the schemas
Ty and T,). The automaton simulates the compu-~

tations of Tl and T:, not Jjust for the main-line
conputation, but for a lare number of "instances"
of tie variable y . There is one instance for
cach ussignment statement and each constant term
{ne lar;er than the lar:est terz). The computation
of an instance (for an ascisment statement and a
term) represents what the cehema would really do if
*ts iain-line variable happened to cqual that
conctant term after that assignment statement.

The computation on each instance is kep* in
step, and the automaton keeps track of which
instances have equal values at cach step. This
¢nables the cutomaton to detect whether the input
tape really reprecents a feasible interpretation.,

The rsason that thic specification state
approech works with limited cquality teste is that
the finite specification ctute carries sufficient
information to allow it to be updated. This is not
true for ;encral equality tests, c.ze in the

T L T

classes S,l and 5y, » if & specification ctete

were to cai'x'y ull information necessary to update
it, the amount of information would grow without
bound as the computation procceded.

1(e): The proof of isamorphism is
proof of inclusion, except that the automaton not
only kceps track of which instances are equal in
value at each step, but also which equal instances
have an isomorphic hj-tory. The automaton can
then detect if for any input tapc the computations
of the two schemas are not isomorphic.

similar to the

1(f): Frecdom or nonfreedom is detected by the
algorithm 1(g) that translates a given schema in
S; to an equivalent free schema; if ever a test

statement is detected for which some exit is not
feasible the schema is not free, else it is iree.
i(g): We give below a short outline for the

translation of a given schema T in Sl to an

equivalent free schema T (using several
variables).

A "partial specification state" is like a
specification state but with the possibility that
the values of certain prcdicate and equality tests

may be unknown. Thc schema T, has a (large)

number of variables, one variable for each assign-
ment statemcnt and each constant term (no largér
than the largest tcrm used in T).

The schema T. begins by assigning all vari-

1
ables their corresponding initial values. The

schema T, has a (large) nunber of "chunks" of

1

statements. Fach chunk updates the variables.
This corresponds to one step of the automaton in
the proof of inclusion. This updating can be
performed without introducing any nonfrcedom.

Each chunk is asscciated with the following infor-
mation (line (iii) is unnecessary for this problem,
but it is rcquired to solve the freedam problem).

(1)
(i1)

(iii)

The statement in T corresponding to each
variable in Tl .

Which variables have equal velues.

Which pairs of variables have the preverty
that they both would have tested the same
value if wc hadn't cxplicitly avoided that
(i.e., if both variables are "entercd" by
the main-linc computation, nonfreedom would
result).

When updating is performed, no predicate or
cquality test ic introduced whose outcome is known
from the informatior corresponding to the chunk.
Loops arc dctected as before; and some variables
may become "inactive" either by looping or halting.

Proof of Thecorem 2 (Solvability of 5,)

The proof of Theorem 2 is similar to the proof
of' Theorem 1 exccpt that the formal definition of
the specification state reflects the differcnt
Iind of nquality tests allowed.

¢

Proof of Theorem 3 (Unsolvability of 55)

2{a),(b):
two variables 1 and Vs s and whose statements
consist of the following:

Wec definc a class S_ of schemas having

Start statement: START
Yy =¥ -85
Final statements: HALT or
LOOP
Test ctatement: y - f(yi);

ir p(yi) then goto L‘j
else goto Lk;
It was shown by Luckham, Park and Paterson
[1970]) that the halting problem for the class SS

is unsolvable, and that the divergence problem is
not partially solvable.
To show the halting problem for 83 +0 be

unsolvable we reduce the halting problem for SS
to that for S5 ; that is, we describe an algorithm
in the elass S_. as
input and yields a schema T; in the cl.ass S3
such that '1"3 halts if and only if T5 halts.

Similarly, to show that the divergence problem for
Sj is not partiamlly solvable we describe an algo-

rithm that takes T5
in the class S5

that takes any schema T5

as input and yields as output

such that Tj"

a ccherma 'I"i
diverges if and only if T5 We will

unify the construction for the two cascs by con-
structing for both cases a schema T5 in the

diverges.

but aupmentcd with a special final
called the REJECT statement:

class O,
P

statement

REJECT statement: REJECT .

The REJECT statcment signifies that the inter-
Pretation is unacceptable and ic rejected. Loosely
the idea it the following. There exists a map from

interpretations of T5 that are not rejected onto

the intecrpretations of TS such that the computa-

tion for T. under an interpretation halts if and

only if the computation for TS under the corres-

ponding interpretation halts.
Now it is clear that if we replace all REJECT
statements in T, by PALT ctatements to get T ,

5
then
only if '1‘5
Gimilarly, if we replace all REJECT statements by

LOOP statements to et Tg then Tg diverges

on every interpretation if and only if Te

mt

™ haltc on cvery interpretation if and
P

halts on cvery interprctation.

diverpges on cvery interpretation.
Given a schema T,) in 85 we construct the
in Sj (with the addi-

follows.

corresponding; schema T

tion of REJFCT statcmcnis) ag We use the

varlable y of T; Lo rupresent the latost
warlatble tested In
tunction

We use a new function
and Leste of the romm

’I'5 y Lece, yl
plays the swne role in T 5

or y. . 'l'he
ag in T. .
called a "test funetion";

if p(y) then'... else ...
in 'I‘5 s will tuke the form

if ¢(y) = ¢lg(y)) then ... else ...
in '1‘5 » In addition we use two "control" func-
tions fl and fe » Thelr roles are the tollowing:
if y stands for Yo (of 85) then fl(y) will
cqual the value of f(yl) at that instant in the

computation unless, of course, a REJECT statement
is recached earlier. The role of f2 is analojous,

i.c., if y sctands tor ¥y then fe(y) will
equal the value of I‘(ye) 5

The schema T5 simulates a computation of
T5 as follows.

a , f(a) , £f(f(a)) , £{t(£(a))) are represented
by contisuous squares from left to right. We

superimpose on this diagram the computations of
beth Tj and T5 + Suppose, at some instant in

In the diagram below the elements

the computation of T Y1 is at point A,

5 ?
and Yo is at C , and suppose
"read". T5 makes certain that the £,

from the squares scanncd, point to the right of
Y, . Suppose that we continue to "read" fron ¥y

until ¥y reaches point B Jhere the schema T5
starts "reading" from Ya o+ T.j checks that the
I, pointers from the squares scanned, point to

1
the right of B .

Y is being
pointers

f

2
A B C D

N

L i)

S

1 Vs

push Y, ==t
(T; reads yz)

<y .

“—
We arc now in a pocition to describe the cén-

struction of 'I‘3 » Without loss ol yencrality, we

will ussume thai in '1‘5 the first test statement
will effectively
contiin 2 copies of T5 except there is only

onc start statement. We will call thesc copies A
and B . We will label statements of T5 by

numbers 1,2,%,... . The corresponding statements
in T5 will be labelled 1-A, 1-B, 2-A, 2-B,

5<A 5 3-B 5400 &

tests the variable ¥y . '[‘5

(i) The start statement in T_ ig
5

START Reproduced from
¥, = ¥, = a; | best available copy.

zoto i

The corresponding statements in T3 are:
START

y - a;
if £(y) # £,(y) then REJECT else goto i-A;
Note that the test f(y) £ fe(y) is not

strictly an allowed statement. We use this
form for clarity: it can really be
"simulated” by the statements:

if f(y) £ fl(fl(y)) then REJECT;
if £.(y) £ £,(£,(y)) then REJECT
else goto i-A;
(ii) For any test statement i 1in TS y if 1 is
of the form:
ity = 1)
if p(yl) then joto j else goto k;

thie corresponding statements i-A and i-B are:

i-A: if £,(7) # £,(£(y)) then REJECT;
y - £y
if o(¥) = e(c(v)) then poto j-A
else proto k-Aj;
and
i-B: if £(y) # £,(£,(y)) then REJECT;
y = 1)
if 5(y) = a(u(y)) tuen poto j-A
else goto k-A;

(iii1) For any test statement i in 8 of the form:
in oy, - fy,)s
if p(_\'g) then coto j else goto k;

i-A and i-B arec similar to the above,
cxcept, one has to interchange fl with f

2
and A with B .
(iv) IALT and LOCOP statements remain unchanged.

Thic completes the conctruction.

ine radn renson thal Lie cchema T, can

sirulate the conputation or 'I',’ is thut cach !‘1 »

t, "pointer" is checied at most once from each
?

squure. 5" pointers were Lo e chiecked twice and
it turned out that thicy were required Lo point to
dirterent values there might exlst no interpreta-
Lion sallcfying this condition =- the result would
Le that all interpretations of 4. would be

rejected. 3

:»(c!: The non-partial solvability of the cquiva-
lence problem follows dircctly from the non-partial
solvability of the divergence problem (Part (b)),
since a program schema in s3 diverges if and

only if it is equivalent to the schema:

START
y - 8 ", .
Loop .

S(d): The ncn-partial solvability of the inclu-
sion problem follows immediately from the non-
partial solvability of the equivalence problem
since Tl = T2 if and only if Tl D T2 and

’1‘2:T

1

2(e): The non-partial solvability of the isomor-
phism problem also follows directly from the non-
partial solvability of the divergence problen.

Civen a schema T 1in the class 53 » construct a

new schema T' also in 83 obtained by recplacing

each HALT statement in 83 by the statements:
y = £(y);
HALT .
Then T and T' are isomorphic if and only if
T diverges.

3(f): The non-partial solvability of the frecdom
problem is shown by reduction of Post's Correspon-
dence Problem for nonempty strings (FCP) to the

nonfreedom problem for schemas in s5 . The proof

follows along lines similar to a relatecd proof in

Paterson {1967] with the mechanism for effectively
simulating two variables while using only one (as

described in the proof of ‘(a),(b)).

5(¢): There can exist no effective translation
to a frec schema since if there did exist such an
algorithm we could decide whether or not a given
schema of S} halts gince the haltin;: problem for

free schemas is trivially solvalle.

Proof of Theorem 4 (Unsolvability of 8y,)

The proof goes along lines quite similar to
the proof for Theorem 3. We rirst definc a subset
.'}(’ of the class of schemas sS . 56 s like SS »

has two variables ¥y and ¥, » one function sym-

bol f , and onc predicate symbol p . Howcever,
SG has the constraint that in any path tnrough

a schema of 56 » alter each statemecnt that tests
the variable vy there must bc either onc or two

statemente thut test y, (rollowed by a final
statoment or another test of Y,) == note the form
vl the test statoment of ss definod in the proof

of j(a),(b). The halting and divergence problems
of SG can be chown to be unsolvable, and the

halting and divergence problems of 56 can be re-
duced to those of sh » This implies the unsolva-
bility of problems (a)-{e) and (g) for 5, . The

freedom problem (f) can be shown to be unsolvable
on lines similar to the proof for 3(f), i.e., by
reducing FCP to the non-freedom problem and cffec-
tively simulating two variables while actually
using only one.

Proofs of Secondary Results

In the following results the number of func-
tions does not include ‘he individual constants.

(1) Schemas with One Variable, Two Functions and
General Equality Tests

The class of flowchart schemas with one vari=-
able, two functions (no predicatcs) and general
equality tests is unsolvable.

If completely general equality tests are -
allowed it is easy to sce that two funccion con=
stants suffice to render the class of schemas
unsolviuble because more function letters can be
"coded" in terms of two functions. For example,
in 3b we could use only two functions f and g
by making in the construction of T3 from T5 the

for all terms t

following substitutions:
simultaneously substitute:

£(f(t)) for f(t)

f(z(t)) for g(t)

g(£(t)) for f(t)

ela(t)) for f,(t)

All *the unsolvability results go through on

making tl'is substitution. Similar substitutions
can be riide to show the unsolvability of freedom.

(ii) Scheras with Two Variables, Two Functions and
Rectricted Equalitv Tests

Tae class of flowchart schemas with Lwo vari-
ables and two runctions (no predicates) with teets

only of the form ¥y 1‘(_\'1) are uncolvable.

Consider the class S7 which is the camc as

SS but with ihe differen:e that there are two
function constants fl and t‘2 » and no predicate

constant.
The computation of any schema 'I‘S in SS can

be simulated by a corresponding schema T7
obtained by replucing cvery test statement of the form
¥y = £y
if p(y,) then joto L, else goto L
by a test statement of the form
vy = fv))s
ify = ",(yi) then goto LJ else goto L, .«

in 37,

1t i¢ cary to gee
intinite, turough

tat for any path, finite or
T5 s il tliere exists an inter-

pretation for which '.1'5 executes statements along

thic path, then thicre is an interpretation for
which T, cxecutes statements along the corres-

7
pondin,: path. This ectablishes the unsolvability
" (note that

ot (a)-(c) and (g) for the class §
the unsolvability of (c)-(e) and (¢) follows from
the unsolvability of (b)),

Further, the freedom problem too can be shown
to be unsolvable by reducing FCP to it. The
reduction ic related to the corrcsponding reduction
in Paterson [1907], but to do it with 2 function
symbols we need the additional "cleverness" of
padding each symbol of the FCP with enough "bits"
in order to allow for testing, to effect a non-
deterministic search. o

(1ii) Schemas with One Function, Restricted

Equality Tests

Schemas with one function using tests only
of the form _yi = yl are unsolvatle.

The halting and divergence problems for two-
counter automata are known to be unsolvable
(Hopcroft and Ullman [1969]), and can be reduced
to the halting and divergence problems for one-
function schemas in a rather direct manner. In
the reduction process the only care that has to be
taken is for the operation of incrementing one to
a counter, in which case the schema checks for,a
lcoping interpretation as in kxample 3 of Appendix
A. The unsolvability of the equivalence, inclusion,
and isomorphism problems follows from the unsolva-
bility of the halting and divergence problems.

6. Refercnces

Ashcroft, Manna and Pnueli [1971) -- E. Asheroft,
Z. Manna and A. Pnueli, "Decidable properties
of monadic functional schemas", in Theory of
Machines and Computations (Kohavi and Paz,
Eds.), Academic Press, pp. >-18.

Chandra [1972a] -- A. K. Chandra, "Ffficient com-
pilation of linear recursive prograng",
Report, Computer Seience Dept., Stanford
Univ. (to appear).

Chandra [1972b] -- A, K. Chandra, "Properties and
applications of program schemas", Fh.D.
Thesis, Computer Scicnce Dept., Stanford
Univ. (to appear).

Constabie and Gries [1971) -- R. L. Constable and
D. Gries, "On classes of prorram schemata",
Report, Computer Seicnee Dejt., Cornell Univ.
(August 1971) .

Garland and Luckham [1971] -- 5. J. Garland and
D. C. Luckham, "Program cchemes, recursion
schemes, and formal lanruspes", UCLA report
(June 1971).

llewitt [1970] -- C. Ilewitt, "More comparative
cehematology”, A.l. Memo 207, Project MAC,
M.1.T. (August 1970).

Hoperoft and Ullman [1979] -- J. F. lloperoft and
J» D. Ullman, "Formal languares and their
relation to automata", Addison-Weecley, 1970,

13

lonov [195)] == Y. I. lanov, "The logical schemes
of algorithms”. Eknglish translation in
Problems of Cybernctics, Vol. 1, Pergamon
Press, lNew York, 1900, pp. 82-1k0.

Luckham, Park and Patcrson [1970) -- D. C. Luckham,
*D. M. R. Park and M. S. Paterson, "On forma-
lized computer programs", J. of Computer and
System Sclencc, Vol. 4, No. 3 (June 1970),
pp. 220-2k9.

Paterson [1907] -- M. S. Patercon, "Equivalence
problems in a model of zomputation”, Ph.D.
Thesis, University of Cambridge, ‘England
(August 1967). Also A.I. Memo No. 1, M.I.T.
(1970) .

Paterson (1968) -- M. S. Paterson, "Program
schemata”, in Machine Intelligence 2 (Michie,
Ed.), Edinburgh Univ. Press, pp. 19-31.

Paterson and Hewitt [1970] -- M. S. Paterson and
C. E. Hewits, "Comparative schematology", in
Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York
(December 1970), pr. 119-128.

Plaisted [1972] -- D. Plaisted, "Program schemas
with counters", Proccedings cf the Fourth
Annual. ACM Symposium on the Theory of Comput ing,
Denver, Colorado (May 1972).

Rutledge [1964] -- J. D. Rutledge, "On Ianov's
program schemata", J.ACM, Vol. 11, No. 1
(sanuary 190h), pp. 1-9.

Strong [1971a) -- H. R. Strong, "Translating
recursion equations into flowcharts", J. of
Corputer and System Seience, Vol. 5 (June 1971),
PP. 254-285.

Serong [1971b] -- H. R. Strong, "iigh level
lansuages of maximum power", IBM Research
Report.

