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A Theory for Optimal MTI Digital Signal Processing 

Part I:    Receiver Synthesis 

ABSTRACT 

A classical problem in radar theory is the detection of moving targets in 

a ground clutter plus receiver noise background.    Improvements in clutter re- 

jection have recently been made by replacing analog MTI processors by their 

digital equivalents as this eliminates many of the problems associated with 

the maintenance of the analog hardware.    In an attempt to determine the ulti- 

mate improvements possible using this new technology,   the MTI problem was 

formulated as a classical detection problem and solved using the generalized 

likelihood ratio test.     By manipulating the likelihood ratio,   the receiver 

could be interpreted as a clutter filter in cascade with a doppler filter bank. 

The performance of the optimum receiver was evaluated in terms of the out- 

put signal-to-interference ratio and compared with well-known MTI proces- 

sors.    It was shown that near-optimum performance can be obtained using a 

sliding weighted Discrete Fourier Transform (DFT). 

All of the results in Part I assume uniformly spaced transmitted pulses, 

which,   for high velocity aircraft,   leads to aliasing of the target and clutter 

spectra and detection blind speeds.    In Part II the maximum likelihood method 

is applied using a more general model for the non-uniformly sampled target 

returns.     This leads to an optimum receiver that is a slightly more complicated 

version of the sliding weighted DFT.    In addition to removing the detection 

blind speeds,   it is found that unambiguous doppler measurements are possible 

by selecting the staggering algorithm to properly design the signal's   ambigu- 

ity function. 

Accepted for the Air Force 
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I.       INTRODUCTION AND SYNOPSIS 

The exact role of radar in the beacon equipped Air Traffic Control (ATC) 

system is uncertain,   and the issue will probably not be completely resolved 

until after this decade.    In the interim it is quite clear that it will be necessary 

to employ radar for the detection and tracking of uncooperative non-beacon- 

equipped aircraft.    It is therefore of interest to determine whether or not re- 

cent advances in radar technology could have any serious impact in improving 

the performance of radar as an ATC surveillance sensor. 

There are two basic problems associated with the use of radar for air- 

craft surveillance.     The first arises from the fact that the radar uses a fan 

beam in elevation to obtain the desired altitude coverage.     This means that 

target returns must be processed in a strong ground clutter background,   a 

problem which has not really been successfully resolved even after two dec- 

ades of MTI development.    Once a target return has been detected,   there re- 

mains the problem of associating the radar position measurement with the 

aircraft that was the actual source of the datum.     The difficulty here arises 

from the fact that radar has been used to extract information of only the posi- 

tion of the aircraft,  no velocity filtering having been performed. 

It was originally intended that a study be made of recent advances in radar 

clutter processing techniques that have resulted mainly through the use of 

digital signal processing (DSP).    On trying to deduce a rational means for 

determining the enhancement in clutter rejection that might be obtained using 

DSP in conjunction with the present enroute radars,   it was discovered that no 

general body of theory was available to adequately characterize the signal and 

noise environment that confronts the MTI processor.    Hence no optimal MTI 



receivers had ever been derived,  hence no performance measures existed for 

comparing a practical receiver with the theoretically optimum.    It was decided 

that such a theoretical investigation be undertaken,   the results of which make 

up the bulk of this paper.    In addition to deriving a theory that puts classical 

MTI processors in perspective,   a new optimal processor is deduced that can 

lead to significant improvements in the ability to detect targets in ground clut- 

ter.    Quite accidentally,   this processor happens to be capable of resolving 

the data association problem as it provides for unambiguous estimates of aircraft 

velocity.    These estimates can be used to perform bulk filtering on the raw 

data and,  in addition,  lead to significant enhancement of the quality of aircraft 

tracks.    The processor will have to be implemented using DSP techniques 

which is entirely appropriate considering the current developments in radar 

technology. 

The paper is  structured as follows:    In Section II models are derived for 

the sampled-data target and clutter returns that evolve from a particular 

range-re solution cell as the antenna scans through azimuth.    Statistical 

Decision Theoretical tests are then applied to these models in Section III to 

derive the optimum detector.    It is shown that the optimum receiver consists, 

not surprisingly,   of a clutter rejection filter and a bank of matched filters. 

The pulse-canceller filters used in classical MTI technology can be interpreted 

as practical approximations to the optimum clutter rejection filter.     The good- 

ness of this approximation is the subject of Section IV where it is shown that 

the performance of the optimal and suboptimal filters is well-characterized 

by the signal-to-interference ratio (SIR).    This performance measure is used 

to compare the detection in clutter capabilities of the classical MTI filters 



with the optimum processor.    It is shown that the two-pulse canceller per- 

forms very poorly indeed,   and that the ideal clutter notch filter loses  10 dB 

in detection SNR as compared with the optimum.    Since the receiver involves 

filters that are matched to the two-way antenna pattern the possibility exists 

for optimum azimuth estimation.     The standard formula for the mean-squared 

error in the delay parameter is applied to the azimuth parameter in Section V. 

A brief discussion of the effects that weather clutter would have on the opti- 

mal ground clutter processor is included in Section VI.     For theoretical com- 

pleteness the optimum weather clutter processor is derived and interpreted 

in terms of adaptive minimum-mean-squared-error filters. 

The results in Part I are based on the assumption that pulses leave the 

transmitter uniformly spaced in time.    For ATC en route   L-band radars in 

which the unambiguous range must be 200 nmi,   unambiguous velocity mea- 

surements are not possible.    Furthermore,   "blind speeds" occur at multiples 

of the transmitter PRF at which the detection SNR of even the optimal detec- 

tor is degraded below practically useful limits.    In the development of classi- 

cal MTI processing it has been found from intuitive considerations that if the 

transmitter pulses are staggered in time,   improved detection performance 

can be obtained.    However,   there has been no theoretical investigation of the 

exact effect that staggered PRF's have on the underlying target and clutter 

models.    In Part II this question is explored in detail as a signal design 

problem and uses the analytical techniques developed in Part I. 



II.     TARGET AND CLUTTER MODELS FOR MTI PROCESSING 

The key discriminant that is used to process aircraft targets out of a 

ground clutter background is the doppler frequency shift that is induced by the 

aircraft as it moves relative to the stationary clutter.    The processing is done 

on the basis of a set of returns received as the antenna scans past the air- 

craft.     Since the aircraft moves slowly relative to the tip speed of the antenna, 

there will be no significant change in the target range during the short time on 

target.    For this reason MTI is fundamentally a sampled data system as the 

relevant information shows up at the  same range each interpulse period. 

Historically pulse-to-pulse processing has been done by storing all of the range 

data from each transmitted pulse in delay lines.    More recently,   it has be- 

come popular to store samples of the range   data and implement the MTI filters 

digitally,   as this overcomes many of the practical problems associated with 

analog processing.    In an attempt to obtain a measure of the clutter rejection 

capabilities of the best possible MTI processor,   digital or analog,   it be- 

came clear that good performance upper bounds were not available.    In an at- 

tempt to deduce them,   it was also recognized that presently used target and 

clutter models are imprecise and leave out valuable information that can be 

used in target tracking.     The historical background and development of clas- 

sical MTI can be found in fl] -  [3].    Reference  [2] provides the best descrip- 

tion of target and clutter models,  but fails to include the target azimuth which 

is also a relevant parameter to be estimated.     The general approach to target 

and clutter modeling and detector synthesis developed in this paper has much 

in common with the work in reference [4] which documents the results of a 

parallel but independent study of Airborne MTI. 



Target Model 

The radar transmits a never-ending sequence of simple on-off pulses of 

RF energy at carrier frequency f    Hz.     The complex envelope of the basic 

pulse is p(t),  where 

!VFT/AT 0 S t -k AT 
P (1) 
0 otherwise 

E     being the energy per pulse.     The transmitted waveform is therefore 

00 

§x(t) = e^c*    £    p(t-nTp) (2) 
n= -oo 

where T    is the interpulse period.    Throughout Part I it is assumed that T 
P P 

is constant,   while Part II is devoted to studying the effects of changing T 

from pulse-to-pulse.    For the Air Route Surveillance Radar (ARSR),   the 

radar to which the results of this study are to be applied,   the preceding 

parameters have values f    =  1300 MHz and T    =  l/360 sec. 

If an aircraft is located at azimuth cp and the antenna scans at a rate uu T s 

rad/sec.   then the detailed model of the signal return for the conventional 

scanning pulsed radar  [5] is then 

00 

§2(t) = yG2(u)st-cp) ej2TrVt   £    p(t - nT    - l)     . (3) 
n=-a> 

In (3) eJ represents the doppler modulation due to the aircraft motion, 

v = 2v f /c is the doppler shift (v    = radial velocity towards the radar, 

The carrier frequency is removed at the receiver. 



2 
c = velocity of light); G  (9) is the antenna two-way voltage gain,   T is the delay 

corresponding to the target's position at range R = CT/2,   cp is the target bearing 

and y = AeJ    represents the unknown amplitude and phase of the carrier signal 

return. 

For the ARSR the pulse duration AT = Z\i sec.   is small relative to the 

interpulse period of T    =  l/360 and since the antenna pattern changes slowly 

relative to AT the following approximation can be used: 

G2(wsT-cp)    £   p(t-nT    -T)«   £    G2(u)gnT    + u)gT-cp) p(t-nT    -T)    . 
n= -oo n= -oo 

(4) 

Furthermore at L-band targets moving at 600 knots induce a doppler shift of 

2600 Hz.    Hence the smallest period of the doppler modulation is .4msec. 

which is large relative to AT,   hence allowing the approximation 

j2irvt j2irv(nT    + T) 
e p(t-nT    -T)«e P p(t - nT    - T)      . (5) 

The constant 2TTVT can be lumped with the unknown RF phase leaving 

•       2 j2TTvnT 
§3(t) = Y    I   G (nu>sT    + u;gT-cp) e Pp(t-nT    -T)    .(6) 

It is standard practice to match filter each T     segment of range data to en- 

hance the range resolution.     This is accomplished using the filter with im- 

pulse response h(t) = p(-t)/vE    (with delay AT to insure realizability).     The 

resulting waveform is 



T 
r p 

S(t; a) = §,(t - cr) h(cr)  dcr 
o 

£      2 j2irvnT 
Y^/FT    )    G  (nuo   T    + u)   T - cp) e P *  (t - nT    - T) (7) 
'      p   L        v      s    p        s        Y/ Tpx p        ' v  ' 

where 

*p(t) = F"   J      p(<r) p((r + t} d^ (8) 

is the autocorrelation function of the basic pulse and a = (v, cp). 

Notice that although S(t; a) represents a continuous function in range,   the 

effects of the doppler modulation and antenna beam pattern are well approxi- 

mated by discrete time sample-values taken each interpulse period.    In other 

words the significant changes in the doppler information arise only every T 

sec. ,   hence some provision must be made for storing all of the range informa- 

tion over several T     segments.    In classical MTI this is done using a number 

of analog delay lines each of length T     sec.    For a variety of reasons that are 

of more practical interest than theoretical,   modern MTI processors have been 

implemented digitally.     This- means that each T     seconds of range data is 
P 

sampled at discrete range intervals and converted to a digital number for dig- 

ital processing.    It is convenient to think in terms of the data that evolves from 

a particular range resolution cell on a sampled-data basis.    Ideally this sam- 

pling would be done at least twice per radar pulse width to prevent a loss in 

detectability due to sampling rate  [6].    In this case a 1 megacycle A/D conver- 

ter would be needed to sample S(t; a) in (7) to produce samples spaced 

AT/2 =  1M- sec apart. 



Henceforth it is assumed that samples of S(t; a) are taken at times 

nT    + m AT/2 sec. ,   where first a value of n is specified,   and then for each 

value of n,   m = 1,   2, .... , M.     The processor can be visualized as having 

M separate memories and as each range sample is taken it is shuffled to the 

memory unit whose index corresponds to the range cell being sample. 

Therefore in the m      memory unit are stored the samples taken at times 

t      = nT    + AT/2 which when applied to (7) yields the target sample values 

S(t"; £) = yVF;G2(nwsTp + u)sT-cp) J "   * P^ (2^2. - T) (9) 

n=0,l,2,....,N;m=l,2,....,M 

For convenience it has been assumed that the sample-store operation begins 

at t = 0 at which time the antenna is pointing in the reference azimuth.    Since 

the exact value of T is unknown,   the factor JK      ilr   (— Tjis unknown and p      p\   2 / 

adjoined to   |y |. 

Furthermore the antenna pattern changes very slowly relative to a pulse 

width AT,   hence 

GVjp+T-tpl.G^n^Tp+^^-tp)    . (10) 

Since cp,  the aircraft azimuth,   is unknown,   the bias uu    mAT/2 can be included 

in its definition.     However,   it will be necessary to add this bias term onto 

the estimated value of cp. 
t Vi 

Therefore when an aircraft is located within the m      range ring,   N com- 

plex data samples corresponding to one scan of the radar will be stored in 



the m      memory unit,   whose values are 

_                               j2iTVnT 
Sm(£) = vG(nii)   T    - cp) e P        n = 0,  1, 2 N   . (11) 

The vector a_ = (v,   cp) denotes the unknown doppler shift and azimuth location 

of the aircraft.    In the most general context it is desirable to detect the pre- 

sence of an aircraft and to estimate the parameters v and cp as well.    Equation 

(11) resembles the classical delay-doppler target model.    In this case,   how- 

ever,   the delay corresponds to the target bearing.     This can be made explicit 

by defining T = cp/uu  ,   and 

g(t) = G2(cust) 0StlTs (12) 

where T    = 2TT/CU    is the time for one antenna scan,   the time needed to collect s s 

the N data samples.    Then (11) can be written as 

j2trvnT 
Sn>) = H(nTp-T)e P (13) 

n = 0,   1, . . .   . ,N- 1; NT    = T 
P s 

where o is defined to be tuple (v,   T).    Equation (13) is interesting because it 

suggests that the optimum filter will probably involve a bank of filters each 

matched to the two-way antenna pattern,    g(t),   but tuned to different doppler 

frequencies.    A visual summary of the target model is presented in Fig.   1. 

Clutter Model 

Since ATC radars use fan beams in elevation to obtain altitude coverage, 

it will happen that objects at zero elevation will be illuminated by the transmit- 

ted pulses and constitute legitimate radar returns.    Due to range-gating, only 
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those objects located in the m      range-resolution ring will constitute sources 

of interference to the target signal,  as illustrated in Fig.   2(a).    Each scat- 

tering center can be considered a target moving -with zero velocity.    Hence, 

the k      scatterer in the m      range ring at azimuth cp,   yields a clutter signal 

return according to (13) with v = 0,   namely 

CkTn=Vkg(^p-Tk) (14) 

where T    = cp, /uu    — m AT/2 takes the bias term mAT/2 into account.    In this 
K. 1C       S 

* A 

case v,   = A,  eJ  k where A,   is related to the scattering cross-section of the 

k      scatterer and 9    is the carrier phase shift it introduces.     The total clut- 

ter return is the aggregate of the signals in (14) and is therefore given by 

Cnm=   XCk?n=   l  Vkg(nTp-V 

The antenna scanning pattern and transmitter PRF are not synchronized which 

means that each time the beam returns to the reference azimuth new phase 

relationships will be generated between the collection of scatterers.     This 

means that on a scan-to-scan basis T, .   A, ,   and 6,   will be random variables 
k       k k 

which means that C       will be a discrete time random process.    It is reason- 
n r 

able to assume that the returns from separate scatterers are statistically 

independent and that the phases of each of the returns are uniformly distributed. 

Hence the following conditions are satisfied: 

y^= 0 (16a) 

V^7j =0 (1 6b) 

V?=ak6k,j <l6c> 
li 



Fig.   2(a).    Typical clutter scatterers in a range ring. 
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where the bar denotes statistical averaging over the ensemble of scatterers. 

The parameter or,    is proportional to the radar cross-section of the k      scat- 

terer,   and 6,    .denotes the Kronicker Delta.    If it is further assumed that the 

total number of scatterers is large enough so that some form of the Central 

Limit Theorem holds,   hence C       can be thought of as a sample function of a 

discrete time complex Gaussian process  [7].    Such a process is completely 

characterized by its mean and two autocorrelation functions.     Using (1 6a) 

and (1 6b) it is easy to show that 

Cm= 0 (17a) 
n 

c• cim = °   • (17b) 

The final relationship needed is 

Cnm ^ -   \   I  Vj* g<nTp - V *0 Tp " T.)     . (18) 

To evaluate (18) it is noted that the effective time duration of g(t) is well ap- 

proximated by Tp, = A0/uo    where A6 is the antenna beamwidth.    Hence the 

number of terms in the summations of (18) will be limited by the number of 

scatterers in the intervals (nT    -T„/2,nT    +  TT7,/2)and(lT    - Tr/2,   IT    + T_/2), v      p E' p E'    ' x       p E' p E'    ' 

as illustrated in Fig.   2(b).     Letting I(n) denote the index set corresponding 

to the scatterers that contribute non-zero elements to (18) we have 

cm      m*=      \        x —#     (nT    —j     *{1T    _T) (19) 
n       1 Li     U 'k'j0        p        k   ° p        j 

kei(n) jel(i) 

13 
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Since the two-way antenna voltage gain pattern is real and using (16c),   (19) 

becomes 

cnmcr*= l v^p-v^v^ •       (2o) 
kel(n) 

To carry out the statistical averaging needed to evaluate (20),   it is useful to 

deal with a more general problem. 

Consider 

T   /2 
P 

g(t"Tk)   g(8-Tk)=     J g(t~Tk)   g(s~Tk)   p(Tk)   dTk (21) 

s' 

tVi 
where p(T, ) is the probability density function of the location of the k      scat- 

terer.    It is reasonable to assume that the scatterers are uniformly distri- 

buted in azimuth throughout the range ring,   in which case 

P(Tk) =  l/Tg        . (22) 

Hence 

T  /2 

g(t - Tk)   g(S - Tfc) = i-   J      ' g(t-Tk)   g(8-Ts)  dTk       . (23) 
s    -T   12. 

s' 

Since the effective time duration of g(t) is small relative to the scan time 

(i. e. ,   T"E << T    since A9 << 2ir),  then 
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T  /2 
S n00 

g(t- V g(s - V d\~ Jro g(*- V g<s - Vd\ 
s' 

g(o- + t - s) g(o-) do- 

= Rg(t-s) (24) 

where R  (T) is the autocorrelation function of the scaled two-way antenna voltage 

gain pattern.     Using (24) with (23) in (20) the correlation between elements in 

the clutter sequence is given by 

s kei(n) 

As the antenna rotates,   the beam will envelope ensembles of scatterers whose 

underlying statistical parameters will be the same over azimuthal segment of 

the range ring,   but may vary from azimuth cell to azimuth cell.     This time- 

varying nature of the average clutter cross-section can be made explicit by 

defining 

kel(n) 

The final expression for the correlation function of the clutter process at the 

th ..  . m      range cell is 

Rc
m(iTp,   jTp) A C.m C.m* = ^ Rg [(j - j) o-2(iTp)     . (27) 

16 



The result shows that the clutter process is basically a non-stationary 

discrete-time process,   due to the time-varying nature of the clutter cross- 

section.    Since the target data evolves as the antenna sweeps past the air- 

craft,   it is intuitively clear that only clutter scatterers that matter are those 

located within a beamwidth on each side of the target.    Over this much smaller 

interval,   the clutter statistics are unlikely to change significantly and it is 

reasonable to assume that the process is quasi-stationary.    In this case 
2 

cr  (nT   ) can be considered a constant,   hence the clutter correlation function 

reduces to 

 *        2 

R  (jT   ) = C.m C."\   = 75-R  (jT   )      . (28) cVJ   p' I        i+j       Tg     gVJ   p' v 

Receiver Noise Model 

In addition to the target and clutter samples at each range cell,   there 

will be a noise component corresponding to the sampled data version of the 

receiver noise process.    In (7) it was assumed that the signal return after 

each transmitted pulse was processed by a matched filter and sampled every 

AT/2 sec.   out to the maximum range.    If |(t) represents the RF white Gaussian 

noise process due to the amplifiers in the receiver front end then its two sided 

spectrum is 

S   (t) = n 

N /2 |f± f   I £ B/2 o' ' c ' 
(29) 

otherwise 

where N    = kT   ,   k is Boltzman's constant,   T   the effective temperature and o e e r 

B the bandwidth of the amplifier.    Since both amplitude and phase of the signal 

are to be processed,   the receiver noise shows up as a complex Gaussian noise 

17 



process.    If this is denoted by T|(t),   then its autocorrelation function is 

T|(t) 71*(s) = 2NQ 6(t-s)     . (30) 

It is this noisy waveform that is processed by the transmitted pulse matched 

filter to yield to the new noise process 

T 

w(t) = 7)(t - cr) PlZ)    da     . (31) 

Samples of this process are taken at times t      = nT    + mAT/2,   hence 

m w n 

T 

71(nT    + m AT/2 - cr) ^P   dcr (32) 
0 P VE^ 

P 

which represents the noise sample when the m      range resolution cell is 

sampled at time nT   .    It is easy to show that this complex noise process has 

zero mean,   is Gaussian,   and has correlation function 

m      m* _ 2 [(i-i)T   ]       . (33) 
l        j o  rp J/    pJ v     ' 

Since the autocorrelation function of the basic pulse has duration 2 AT which 

is small compared to T   ,   then it follows that the sampled receiver noise se- 

quence is also a white process,  that is 

wm wm* = 2N    6..       • (34) 
1 J O      !J X ' 

The MTI Problem 

Moving Target Indication (MTI) is fundamentally a detection problem.    In 

terms of the signal,   clutter and noise models developed in the preceeding 

18 



paragraphs it can be stated mathematically as a hypothesis testing problem as 

follows: 

H•: target present: rm(nT   ) = y   g(nT    - T  ) ej2lTV nTp + Cm(nT   ) + Wm(nT   ) 

H•: target absent:     rm(nT   ) = Cm(nT   ) + Wm(nT   ) 
0 P P P 

n = 0,   1, . . . ,   N-l;       m= 1,   2, ....   M (35) 

The notation rm(nT   ),   Cm(nT   ),   Wm(nT   ) rather than rm,   Cm,   wm is used x      p P P n n n 

to make the sampled-data nature of the problem explicit.    The test is to be 

applied separately to each of the M range-rings.    In addition to the lack of 

knowledge concerning the targets location in range,   there also remains the 

problem of estimating the unknown parameters,   y,   v,   T.    In the next section 

sampled-data techniques are used in conjunction with statistical decision 

theory to deduce an optimum receiver for target detection and parameter 

estimation. 

19 



III.    DECISION THEORY IN MTI AND THE CLUTTER REJECTION FILTER 

The detection problem state in (35) could also be formulated as the test 

for the presence of a finite dimensional signal vector in a colored noise vec- 

tor background.     This is the approach used in [4],   [l3],   [l4] and it leads to 

very useful theoretical results but at some loss to physical insight as the pro- 

cessing is stated in terms of the inverse of a certain clutter correlation 

matrix.    In an attempt to find a solution that can be interpreted in terms of 

linear filtering theory,  the problem formulation will be altered slightly.    Since 

the doppler signal e^ p is amplitude modulated by the two-way antenna 

pattern g(nT    — T),   which is non-zero for a relatively small number of hits 
ir 

compared with N,   it can reasonably be assumed that the  received signal se- 
2 

quence r(nT   ),   is infinite in extent.       This sequence is then preprocessed by 

a sampled-data whitening filter,   h   (nT   ).    Denoting the output sequence as 

r   (nT   ),   then w       p 

r   (nT  ) =     S     h   (nT    -kT  ) r(kT  )     . (36) 
w       p Li       w       p p p 

k=- °° 

Under the H    hypothesis,   the target is absent and 

r(nTp) = C(nTp) + W(nTp)      . (37) 

This is a discrete-time quasi-stationary random process with correlation 

function 

The superscript notation denoting "m      range ring" has been suppressed 
since identical processing is applied to the data from each range cell. 

20 



R  (nT   ) = R  (nT  ) + 2N    6(nT   ) (38) 

which follows from (28),   (34) and the fact that 6(nT   ) is used to represent the 

Kronicker Delta 6     .     This random process has a spectral density defined as 
no , 

the Z-Transform of its autocorrelation function [7].    If S(z) denotes the spec- 

tral density of a sampled-data random process whose correlation function is 

R(nT   ),   then 
P 

(X> 

S(z) =     )      R(nT   ) z"n= Z[R(nT   )]       . (39) 
u p p 

n= -°° 

Applied to (38) 

Sr(z) = Sc(z) + 2NQ     . (40) 

Since r   (nT   ) is the result of passing r(nT   ) through a linear filter,   its spec- 

tral density is  [8] 

S      (z) = H   (z) H     (-) S  (z) (41) 
r        ' w w   z       r x     ' w 

where 

H   (z) = Z[h   (nT   )]     . (42) 
w w       p v     ' 

The filter was to be chosen to generate an uncorrelated output sequence when 

(37) is the input.     This means that 

Sr   (z) =  1 (43) 
w 

which can be achieved by choosing the filter so that 

Hw(Z>Hw(l> = S   (z) + 2N       • <44> cx   ' o 

Zl 



If S   (z) were a ratio of polynomials in z,   then (44) could be factored into 

poles and zeros inside and outside the unit circle   |z| =  1 in the complex 

z-plane.     The poles and zeros within the circle could be assigned to H   (z), 

while H    (—) would then account for the poles and zeros outside the unit circle, 
w  z 

As it turns out,   the whitening filter is not used explicitly in the final detector 

realization,   hence it is really not necessary to specify the rule for solving 

(44).     The point is,   that under the no signal hypothesis 

r   (nT  ) = 71(nT  ) (45) w       p p' 

where T|(nT   ) is a zero mean,   Gaussian discrete time white random process 
P 

with unity spectral density.     Under the H    hypothesis,   the target is present 

and 

r(nTp) = vS(nTp; a) + C(nT?) + W(nTp) (46) 

i 

where from (38) £= (v,  T) and 

S(nTp; £) =  g(nTp - T) ej2TTVnTp     . (47) 

The response of the whitening filter to the input (46) is 

r   (nT   ) = yS   (nT   ; a) + J\(nT   ) (48) w       p        '   w       p   — p x     ' 

where 

CD 

(nT   ; a) =     S     h   (nT    - kT  ) S(kT   ; a)     . (48) p   — L      wx      p p' p' —' v     ' 
S 

w'      p   —' u       w'      p p 
k=-o= 

An hypothesis test that is completely equivalent to (35) can now be formu- 

lated in terms of the detection of a signal in white noise. 

ZZ 



H . : target present:   r   (nT   ) = vS   (nT   ; a) + 11(nT   ) 

H   : target absent:       r   (nT   ) =  Tl(nT   )     . (50) 
0 w*     p'       "     p 

For a variety of reasons  [5],   the optimum detector is chosen as the one 

that computes a generalized maximum likelihood ratio and compares its value 

with a threshhold.     The target is declared present if 

pCrw(nTn)lHo'  V. £3 max w       p       o    > j. 
V.  £     p[r   (nT   )|Hl c     w        pi 

(51) 

When the noise is zero mean,   Gaussian and white,   (51) is maximized for 

A,   v     • 3 y = y(a) where 

y    r   (nT   ) S*   (nT   ; a) 
Li      w        p       w p   — 

A.   .        n= -°° 
Y(£) = T 

V     |S      (nT  ); a) 
/j     '    w p     -/ 

n= -00 

(52) 

The denominator in (55)  can be considered a normalization factor.     Then let- 

ting 

:(£M     ^      lS*m(nT^;a),: 

n= 
w'      p 

and substituting (52) and (53) into (51) yields the test 

max  I     S     r   (nT   ) S'   (nT   ; a) |2/E(a) > X 
a     '     Z-.      wv      p      wv      p   —' '   '    V-J 

n= 

The asterisk denotes complex conjugate. 

(53) 

(54) 
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A block diagram representation for this processor is shown in Fig.   3. 

This result is still not amenable to physical interpretation and alternate 

ways of implementing (54) are sought.    This will be done following the 

sampled-data analog of the technique used in [9],   [ 1 0 ] in conjunction with the 

detection of stochastic signals in colored noise.     The mathematical manipula- 

tions are detailed in the Appendix where it is shown that the test in (54) is 

equivalent to 

|x  I   £     x(nTp) S*(nTp;£)|2/E(£) (55) max 

n= -00 

where now 

E(a) =    Y    y(nT   ) S*(nT   ; a) (56) 
Jim             P                  ? 

x(nTp)= Z"1 |HW(Z) Hw(i) R(z)l (57a) 

y(nTp) = Z-^Hw(z)Hw(i) S(z; a)] (57b) 

and R(z),   S(z; a) are the z-transforms of the non-whitened sequences r(nT   ), 
~~ P 

S(nT   ; a),   respectively.     The sequences x(nT   ) and y(nT   ) can be interpreted 
Mr IT r 

as the result of passing signals r(nT   ) and S(nT   ; a) through a filter whose 

z-Transform is 

H  (z) = H   (z) H    (i)     . (58) c w w    z v      ' 

From (47) this reduces to 
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Fig.   3.    Block diagram realization of optimum processor 
using whitening filters. 
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Hc*z> = S  (zZ+ZN <59> cx   ' o 

and for reasons that will become clearer as the analysis proceeds,   H  (z) is 

called the Clutter Rejection Filter.    In (57),   which is the key operation so far 

as the detection process is concerned,   it is evident that the received signal 

is filtered by H  (z),   which depends only on the clutter and noise statistics. 

The output of this filter is then correlated with locally stored versions of the 

original signal,   not the whitened version of that signal.    As it is well known 

that such a correlation operation is optimum for detecting signals in white 

noise,   it appears that H  (z) is trying to remove the clutter in some optimum 

•way. 

Matched Filter Bank 

Using (47) and the fact that E(a) depends only on v and not on T (Appendix), 

it is possible to express (55) in terms of a bank of doppler filters.     Defining 

the impulse reponses 

h(nTp;  v) =  g(-nTp) eJ2lTVnTp/E*(v) (60) 

then it is straightforward to deduce that the likelihood ratio test,   (55),   is 

equivalent to 

CO 

•a*  I    Y      h(T  -nT   ; v) x(nT   )|2 >X       . (6l) 
—' ~* *^ r 

n= _oo 

The argument in (6l) is the output at sample time T (quantized into increments 

at width T   ) of a filter whose impulse response is tuned to a doppler frequency 
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v and matched to the two-way antenna pattern scaled by the factor E^(v).    There- 

fore at each sample time a search is made over the filter bank for the largest 

output.     Since the memory of the filter is limited by the effective time duration 

of e(nT   ),   T^,   T^/T     such values need to be stored.    If the largest of these 6X      p E       E      p 

numbers exceeds the threshold then a target is declared present.    Further- 

more the sampling time and the doppler frequency at which the maximum value 
4 

occur represent the maximum likelihood estimates of target bearing    and 

velocity. 

Therefore a realization for the optimum sampled data MTI receiver has 

been derived that is intuitively easy to understand from a linear filtering 

point of view.    As shown in Fig.   4,  the received samples are processed by a 

clutter rejection filter that tries to remove the clutter background from the 

target information.     The resulting samples are passed through a bank of filters 

matched to the original target antenna modulation.     These filters further pro- 

cess the target out of the white noise background and at the same time  gener- 

ate estimates of the target bearing and velocity. 

The classical works in MTI have focused on only one aspect of the above 

receiver,   namely the realization of the clutter rejection filter.     That this is 

true can be deduced by first noting that the frequency response of a sampled- 

data filter is given by the z-Transform evaluated on the unit circle.    From 

(60) with z = e p,   the frequency response of the clutter rejection filter is 

4 
Provided the bias term uu   AT is added to the estimate. s 
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Fig.   4.     Block diagram realization of optimum processor. 
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Hc<f> = JE3T  <62> 
Sc(e P) + 2No 

A typical clutter spectral density is illustrated in Fig.   5,   as well as the re- 

sulting frequency characteristic of the clutter rejection filter.     The sketch 

shows the effects of sampling in terms of aliasing the spectral density and 

the clutter filter characteristic.    Furthermore the fact that the clutter filter 

inserts a notch at DC and at all multiples of the sampling frequency is remi- 

niscent of the behavior of Classical MTI pulse cancellers.     However,   the 

derivation of the optimum MTI receiver provides the means whereby reason- 

able suboptimal approximations can be evaluated and compared.    In the next 

section a design criterion that reflects the clutter rejection capabilities of a 

processor is defined and applied to the ARSR problem to evaluate the perfor- 

mance of classical MTI receivers as compared to the optimum processor. 
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Fig.   5.     Frequency characteristics of a typical clutter rejection filter. 
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IV. COMPARATIVE EVALUATION OF MTI PROCESSORS 

The ideal criterion for evaluating the design of any detector is the trade- 

off between the probability of detection and the false alarm probability.    In gen- 

eral these quantities are difficult to compute as they require precise knowledge 

of the statistics of the background clutter and noise.     The performance mea- 

sure adopted here,   as in [4],   [l4] is mainly concerned with the ability of the 

receiver to detect targets in clutter.    Since the optimum processor is a linear 

filter followed by a square-law envelope detector,   it is reasonable to restrict 

the field of comparison to the class of linear filters.     Then it is appropriate 

to measure the detection performance of any filter in the class by the signal- 

to-interference ratio (SIR) at the output of the filter.     This quantity is defined 

to be 

A  instantaneous peak target output power if.%\ 
average noise output power ' 

When a target is present the received samples are 

r(nT   ) =  s(nT   ; a )+c(nT  ) + w(nT   ) (64) 
p P   ~~o P P 

where a     - (v  ,   T   ,   v  ) represents the true parameter values and 
—o        'o       o       o 

s(nT   ; a   ) = v    g(nT    -T  ) eJ2TrV
0

nTp      . (65) x      p   — o "o &        p o' r v      ' 

If h(nT   ) is the impulse response of an arbitrary linear filter,   the target out- 

put at each sampling time is 

5  (nT   ) =    )     h(nT    - kT   ) s(kT   ; a   ) (66) s       p     ^L,^ p p' p   -o      • 
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Therefore  the instantaneous peak target power in §   (nT   ) can be expressed 

as 

I  (nT   )|2 =   l^i? (£>H(z) Z   (z; a   ) zn_1d: 
sv      p' ' ' 2TTj   J     v   '      sx      —o' 

(67) 

where H(z) = Z[h(nT   )] and Z   (z; a   ) =  Z[s(nT   ; a   )].     The noise samples x   ' p s       —o p   —o 

at the output  of the filter are 

§ (nT  ) =    Y   h(nT    - kT   )  [QkT   ) + W(kT   )] 
nx      p' L p p'     ^      p' p 

(68) 

k=-°° 

and this output sequence has average noise power 

I   (nT   ) |2 = ^-r    [ H(z) H(-)  [S  (z) + 2N   ] z"1 dz     . 
n        p <-iTJ   « z c 

(69) 

j2TTfT 
Since the unit circle,   z = e ",   is a legitimate contour of integration in 

the z-plane,   the SIR at sample time T is 
.    5 

P(T) 

l/2 T 1       p j2irfT j2TTfT 
H(c P)   Z (e p; or   ) (e 

•1/2T S ° 
£  

j2TTfT        T/T , 
P) Pdf|2 

j2irfT^    -  _ J2lTfT, 
1/2 T 

I    j ~   |H(e" P)|^  [S  (e" P) + 2N   ]df 
pJ-l/2T ° ° 

P 

(70) 

Since the Z-transform of (65) is  [l2] 

Z   (z; a   ) = v    G(e 
s       —o        'o 

•j2irv   T 
o    p z)  z 

-T   /T 
o      p (71) 

T   and  T     are assumed to be multiples of  T 
o P 
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where G(z) = Z[g(nT   )],   then (70) reduces to 

|   f   2TpH(e^fTp)G(e^f-VTp)eJ2^T-To)df|2 

7 "1/2T 
P(T) = IYJ   T    r^fr 5 • <72> 

P  |H(eJ2lTfTp)|     [S  (ej2TrfTp) + 2N   ] df 
-1/2T C ° 

P 

Using the Schwartz Inequality it can be shown that the SIR is maximum 

when 

„,   j2irfT  . 1      G[e-J2Tr(f~vo> Tp] ,_.. H(eJ p) =  T^J 1 K-   . (73) 
Sc(eJ<ilTtip) + 2No E*(VQ) 

This is precisely the cascade combination of the clutter rejection filter and 

the matched filter that is tuned to the true target doppler v   .    Furthermore 

the maximum SIR is achieved only when the output of this filter is sampled at 

a time corresponding to the true target azimuth T   .    Of course it is not pos- 

sible to build such a filter because v    and T    are unknown a priori.    However o o c 

the maximum likelihood processor derived in Section III generates estimates 

T,   v which in a well designed receiver are close to the true values T   ,   v   . 
o       o 

Therefore the filter that maximizes the SIR can be visualized as being the fil- 

ter in the matched filter bank that is most closely tuned to the true target dop- 

pler and sampled at a time T that is closest to the true target azimuth. 

Therefore the maximum likelihood estimator,   in addition to being an optimum 

filter in the decision theoretical sense,     is also optimum in the sense of 

Maximum probability of detection subject to a fixed false alarm probability. 
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maximizing the SIR.    In the former case,  the realization depended on the 

Gaussian noise assumption for the clutter statistics,   but in the maximum SIR 

case,   no Gaussian assumption is needed.     Therefore the receiver has wide 

applicability in MTI problems. 

The maximum SIR is found by using filter (73) in (72).     This  gives 

P(T,VJ 1YJ2T 

1/2 T j2w(f- v  ) T ,_,.      „,   . 

/_ j2ufT 
"l/2TpS  (e P) + 2N c    c ' o 

1/2 T j2ir(f — v ) T      2 

j2irfT 
^/"p    S  (e P) + 2N r       cx ' c 

df 

(74) 

which when sampled at the correct time yields the maximum SIR 

P     „(V  ) =   \y    |2T optv   o' ' "o '        p    J, 

1/2 T 

/2T 

j2ir(f — v  )T   . 
lG(e °      P) 

P    Sc(e 
j21rfTi 

df 

) + 2N 

(75) 

This result gives the ultimate performance capability of all linear MTI 

processors,   digital or analog.     Probably the reason this processor was not 

developed years ago,   is due to the difficulty in realizing the matched filter 

bank at each range cell using analog hardware.    With the advent of digital 

signal processing techniques,   however,   it is not at all unreasonable to con- 

sider a practical implementation of the optimum processor [l3].    To deter- 

mine whether or not this is a worthwhile project,   it is necessary to compare 

its performance with well-known MTI receivers that may be considerably 

easier to implement.    This can be done by specifying the MTI filter transfer 
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function and using (86),   again assuming that the peak signal sample is taken. 

Then the SIR for suboptimal filters is 

V2Tp j2TrfT j2ir(f- v )T 2 
| '    H(e P)G[e °     P]df| 

-1/2 T 
Psub(Vo)=   '\J    Tp       1/2T   ? :    •   <76> L/'lp j2irfT       2 j2TrfT 

|H(e P)|     [S  (e P) + 2N]df 
1/2 T ° 

P 

In order to evaluate (75) it is necessary to compute the Z-transform of 

the two-way antenna pattern and of its autocorrelation function.     This task 

can often times be made simpler by relating the Z-transform to the Fourier 

Transform,   since the latter is usually easier to compute.    The desired re- 

lationship is deduced by representing the sampled data function g(nT   ) as a 

continuous waveform using 

00 

g|t) =  g(t)   ^     6(t - nTp) (77) 
n= -co 

where  6(t) is an ideal sampling pulse,   the Dirac Delta function.     Then if 

L[g(t)] denotes the Laplace Transform of g(t),   then it is a fact [l5] that 

Z[g(nTp)]=L[a(t)]s=l_lnz       • (78> 
P 

Therefore when g(t) is a well-behaved function 

i2ufT ..,   frr 

G(e P) = Z[g(nTp)]z=/
1TfTp 

= LCg(t)]s = j2lTf=F[a(t)] (79) 
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where F[g(t)] is the Fourier Transform of g(t).    From (91) 

F[g(t)]= F[g(t)]*   £    6(f-^") 
n=-°° P 

ST-    I    Fg
(f"f-) (80) 

P   n=' 

where F  (t) = F[g(t)] and "*" denotes convolution.      Therefore 

j2ir(f - v  )T • 
G[e o    P] = J_   £   F(£_Vo_n_,     . (81) 

P n=-°° P 

In order to make use of (81) in (75)   it is necessary to use the term in the sum 

that lies in the (-l/2T   ,   l/2 T   ) frequency interval.     This can be made clear 
P P 

by noting that F   (t) is narrowband about DC,   and then writing 
© 

m 

vr + Avo (82) 
p 

where lAv   I  ^ l/2 T o p 

j2ir(f- v ) 
G[e °] 'si-F(£-Avo) |f|*l/2Tp      . (83) 

Since the spectral density of a discrete time random process is the Z-transform 

of the sampled correlation function,  then 
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j2irfT .0   ,_ 
S(e P)= Z[R(nT  )] j2lTfTp p'   z = e r 

F[Rft)]*^-     \    6(f-^_) 
p n= - °° p 

(84) 

To evaluate (73) and (76) only those frequency terms out to ± l/2 T    are of in- 
P 

terest,   therefore for   |f |  = l/2 T 

j2TTfT 
Pi = -L S(e p) = 7p-F[R(t)] (85) 

R(t) is the correlation function of the continuous time clutter process and in 

this case is given by 

P     6 
(86) 

where 

R  (t) = 
g 

g(o-)  g(cr + t) dor (87) 

Since F[R   (t) ] =   |F  (f) |   ,   then using (85) the spectral density of the clutter 

process is 

j2TTfT 
S  (eJ P) 

T        T 
p  L    s 

|Fg(f> |f |  3= 1/2 T (88) 

Using (83) and (88) in (75) and (76) the final expressions for the signal-to- 

interference ratios are 
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'/2Tp|F,-Avo)|
2 

—f a df (89) 

'/"pL   |Fg,£)|2 + 2NoTp 

opt    o o       J 

1/2 T 

2 -1/2 T 

p j2TrfT ? 

H(e P) F (f - Av  ) df | 
o 

^sub^^o'^    1/2 T     ?       ~ —      <90> 

LZT  
|H(e      P)l L^|Fg<f)l +2NoT

P]df 

P 

m 
where v    = TF"

2
" + Av    with  |Av   I  ^ l/2 T      . (91) o      T o o ' '        p v     ' 

P ^ 

Therefore to make a performance calculation it is necessary to: 

1. Specify the two-way antenna voltage gain pattern as a function of 

azimuth (i. e. ,   G2(6),    |e|*ir). 

2 
2. Compute the time function g(t) = G  (uu t),   where cu    is the scan rate 

s s 

of the radar (rad/sec). 

3. Compute the Fourier Transform 

Tg/2 

F (f) =   I g(t) e"j2Trft dt     U)   T    = 2TT    . (92) 
g        ij /z s   s 

s' 

4. Specify the sampled-data impulse response for the suboptimal filter, 

h(nT   ) and compute its Z-transform,   H(z),   which is in turn evaluated 
P    j2ir£t 

at z = e ". 

In the paragraphs that follow,  these steps will be applied to a sinx/x 
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antenna pattern and several MTI filters that are representative of practical 

implementations. 

sin x/x Antenna Pattern 

The sin x/x antenna pattern' is extremely convenient to manipulate analyti- 

cally and is fairly representative of those encountered in practice.    It will be 

adopted as the basic pattern for the remainder of this study.     This means 

that 

oo-^lW- (93) 

where A8 is related to the antenna half-beamwidth.    Then 

s 
rsin(cu t/A0) 

**> = [    («, t%5)    J (94) 
s 

It is easily shown that the Fourier Transform of g(t) in (108) is 

x 

F (f) = 
g 

£1 [i -M ifin        if| <_§_ 
GO L1      u>      >1|J |1!  - A6 /ncx s s . (95) 

0 otherwise 

Let T„ denote the time it takes the antenna to scan through A9 radians so that 

n>8 T£ = A9    . (96) 

Since all of the effective target reports occur only as the main beam of the 

antenna is on the aircraft,   it is clear that T_ measures the effective time on 

target.    Substituting (96) into (93) and the result into (88)  gives for the clutter 

spectral density 
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T2 

J2.£T   r2 "^fl' TE|£ |2]    |flsl/T* 
S> P) = ( .       (97) 

0 1/TE<  lfl  - i/Tp 

Since C(nT ) represents a sample of the clutter as seen by the two-way an- 

tenna voltage pattern, |C(nT )| represents the clutter energy per sample. 

From sampled-data theory it is known that the average energy per sample is 

  1/2 T ._   ,_ 
 T r* P j2irfT 
|C(nT   )r = T S  (e p) df   . .     (98) 

P P   1W2T       C 

P 

Using (97) in (98) it follows that the average clutter power at the receiver 

input due to clutter in a 360°  range resolution ring is 

Pc = f-^      . (99) 
s 

Since T  /T^ = 2ir/A8 represents the number of azimuth cells,   each one 

beamwidth in extent,   and since the factor 2/3 arises from the assumed sinx/x 

2 beam pattern,   then it is clear that cr    represents the average clutter 

power that would be received by an omnidirectional antenna due to scatters 

throughout the 360°  range resolution ring.    It is appropriate to define another 

parameter 

*l = cr2/(Ts/TE) (100) 

as this represents the average clutter power inherent in the scatterers located 

in one range-azimuth cell as defined by the antenna beamwidth A0.    Since this 

is an easier quantity to compute analytically,   it will be used in future 
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calculations.    Therefore (97) becomes 

j2TTfT 
S  (e P) = 

c* •     (101) 

0 • l/T„ < |£| S 1/2 T E P 

Since F (f) is also needed in the evaluation of the optimum receiver,   then in 

terms of T„ (95) becomes 

(T     [1 -T     |f|] |f|  =§ 1/T 
F (f)  { **   . (102) 

*       (0 otherwise 

Optimum MTI Performance 

Since the structure of the maximum likelihood receiver depends only on 

the antenna pattern,   (102) can be used with (89) to evaluate its performance in 

terms of the SIR performance index.    Some typical results based on the ARSR 

system parameters,   [l6] are shown in Fig.   6 for various values of cr   . 

Since the PRF is 360 pps the SIR performance curve is periodic with doppler 

period 360 Hz.     It is also symmetric about DC a result that holds in general 

since the two-way voltage gain antenna pattern is real.    The target and clut- 

ter power returns are calculated on the basis of an aircraft located in a range 

ring at 100 nautical miles.    For targets at closer ranges the performance 

-4 will be significantly improved because target power follows an R       law while 

-3 
the clutter depends on R     .     Therefore the results are conservative for the 

near-in ground clutter which has been most troublesome so far as the ARSR 

is concerned. 

MTI Pulse Cancellers 

To appreciate the significance of the previous results it is necessary to 
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compare the performance with MTI techniques that are commonly used in prac- 

tice.     Classical MTI methods are simply approximations to the clutter rejec- 

tion filter; no matched filtering is used.     The simplest pulse canceller sub- 

tracts successive radar returns.     Since a stationary object would produce 

identical returns in the same range cell,   the clutter would be cancelled and 

only moving  target returns would remain.     The problem is that a scanning 

antenna renders all fixed target returns nonstationary,   hence much of the 

ground clutter must pass through this type of filter.     This deficiency in the 

two pulse canceller can be made quantitative by defining the appropriate 

sampled-data impulse response and then apply (90) to compute the SIR.     To 

specify the filter it is noted that if r(nT   ) denotes the radar samples cor- 

responding to a particular range,   then the output of the pulse canceller is 

S(nT   ) = r(nT   )-r[(n-l) T   ]     . (103) 

This corresponds to a sampled-data filter whose impulse response is 

h(0) =  1 

h(Tp)=  -1 

h(nT   ) = 0 n / 0,   n / 1       . (104) 

The transfer function is therefore 

H(z)=^—i (105) 

and along  | z |  =  1 

j2irfT -j2TrfT 
H(e P) =  1 -e P   . (106) 
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The familiar form for the magnitude function is 

j2irfT . 
|H(e P) | = asinirfT . (107) 

Using (101) and (102) in (90),   the SIR performance curve can be computed.    It 

is plotted in Fig.   7 for a typical clutter power level and compared with the 

optimum SIR possible.    One reason the two-pulse canceller performs so 

poorly in comparison to the optimum is due to the fact that the actual clutter 

spectral density is spread about DC as a result of the antenna motion.     Had the 

clutter returns been truly stationary this filter should perform quite well 

since it locates a null at DC. 

Higher Order Pulse Cancellers 

In order to further eliminate the higher frequency components in the clut- 

ter returns,   higher order pulse cancellers are used.     With these a broader 

rejection notch at DC should result in improved clutter rejection.     An upper 

bound on the SIR performance of this class of filters can be found by designing 

an ideal notch to eliminate all of the clutter.     Mathematically this requires 

that 

jZirfT I '    ' '     E 
H(e P) = 

0 l/T„ <  |f |  S l/T (108) 
i jii p 

which corresponds to the sampled-data impulse response 

^2irnT 
h(nT   ) = £•   sinf P)      n = 0,   ±1,   ± 2,  .  .  . (109) 

Using (90) the SIR performance of (108) can be computed for the  sin x/x 
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antenna pattern.    The results are shown in Fig.   7 in comparison with the 

optimum filter and the two pulse canceller.    It is clear that although the notch 

filter is considerably less than optimum significant improvements in perfor- 

mance over the two-pulse canceller is obtained. 

Digital MTI radars have recently been constructed which use higher order 

pulse cancellers to approximate the ideal notch filter [6].     Using the formula 

for the suboptimum SIR,   the performance of the proposed filter can be calcu- 

lated.    The filter of interest is a five-pulse canceller that has a frequency 

response that is zero at DC and a least squares fit to the ideal notch else- 

where.    In this case the sampled-data impulse response is 

h(-2) = h(2) = a2 

h(-l) = h(l) = &1 

h(0) = a 
o 

h(n) = 0 |n| > 2     . (110) 

In other words,   if r(kT   ) is the received sequence then the filter output is 

S(kT  ) = a   r(k + 2) + a   r(k + 1) + a   r(k) + a   r(k - 1) + a9 r(k - 2). (Ill) 
p £ 1 O 1 £ 

The z-transform of the impulse response is 

2 -1-2 H  (z) = a_  z    + a    z + a    + a    z      + a~  z (112) 

and the function needed in the SIR evaluation is 

j2ufT 
H  (e p) = a    + 2a.   cos 2TrfT    + 2a0  cos4ufT        . (113) 

o 1 p 2 p v        ' 
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Although the filter is non-causal since it requires future inputs to process a 

present value,   it can easily be implemented by allowing 2T     sec.   of delay be- 

tween input and output.     The coefficients a   ,   a   ,   a? are chosen so that (113) 

is a minimum-mean-squared-^rror fit to the ideal notch (108)  subject to the 

constraint H  (f = 0) = 0.    Equation (90) is used to obtain the suboptimum SIR 

for this filter.    Although the ideal notch and the more practical pulse can- 

cellers provide some SIR improvement there is at least a 10-dB loss relative 

to the performance of the optimum filter.     The reason for this is due to the 

enhanced receiver noise rejection properties of the matched filter bank of 

the optimum receiver.    If the ideal notch filter is used in cascade with the 

matched filter bank,   then essentially optimum SIR performance is obtained. 
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V.     AZIMUTH ESTIMATION ACCURACY 

So far the analysis has been concerned with the ability of an MTI receiver 

to estimate target doppler.    Another parameter obtainable from the radar 

sensor is the aircraft azimuth.'   In the MTI context this corresponds to esti- 

mating T,   the center of the two-way antenna pattern.    It is well known [5] 

that the maximum likelihood estimator generates minimum variance time of 

arrival estimates when the SNR is large.    In the present context this means 

that 

—2    /M2E     -V1 

<*-T„>" = l^73— '  »" J (»  4) 

where 

P 

1/2T 

|F(f)|2df (115a) 
•1/2 T g 

00 

.   2 
4TT f2|Fg(f)|2df 

^ =        • (115b) 
IF (f)|2df 

The term  |y    |    E/N    represents the clutter-free SNR at the output of the MTI 

processor due to match filtering all of the signal pulses received in one sweep 
2 

past the aircraft,   while uo    represents the Gabor bandwidth of the two-way an- 

tenna modulation.    Equation (102) defines F  (f) for the sinx/x antenna pattern 

which can be used in (115) to yield 
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uu2 = 4TT
2
/10T

2 

(116) 

1" Vi 
Using the fact that when a detection is made in the m      range ring,   the azimuth 

is given by 

cp = u) (T + mAT/2) (117) 
s 

then 

,A v2 2   .A .2 
(Cp-Cp   )      =   CD       (T-  T    ) (118) 

o s   ' o 

Using the fact that CJU   T„ = A9 where A0 is the defined beamwidth of the two- & s    E 

way antenna pattern,   then the mean-squared azimuth error is 

/A ,2 o 5       , . n,2 
^•'o1 =;—TZ' T' (A9) (119> 

IY0I 
E
   

W 

Signal processing therefore leads to azimuth estimates more accurate than a 

beamwidth when 

— N "~2 (12°) 
O TT 

which corresponds to -3 dB received SNR.    On the other hand when the re- 

ceived SNR is  greater than 17   dB  10:1 improvements in the standard deviation 

of the azimuth estimate can be obtained. 

These improvements do not come for free however,   since the ultimate 

accuracy is tied to how many points are allowed to pass before another DFT 

is taken.    It will be necessary to perform a trade-off between the desired 
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azimuth accuracy and the number of points the data window is allowed to shift 

before the next DFT is taken.     The point is,   that considerable improvements 

are theoretically and practically possible; it remains to determine the expense 

involved in achieving these gain's. 
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VI.   ALL-WEATHER MTI 

Although the previous discussion has been concerned with the rejection of 

ground clutter,   the results are actually applicable to the problem of eliminating 

clutter due to any source so long as its spectral density does not extend beyond 

the rejection band of the notch filter.     Therefore it is expected that the detec- 

tor should perform well in many adverse environmental conditions except 

those in which the overall mass of the clutter "cloud" has a significant radial 

velocity.    Since the scattering centers in a weather cloud will be in motion 

relative to one another,   the spectral density of the clutter returns will extend 

over a larger frequency interval than that of the ground clutter background. 

Since the doppler filters are designed on the basis of this latter quantity,   the 

enhanced velocity resolution will subdivide the power in the weather cloud and 

its overall effect on target detection will be reduced.    In the time domain this 

effect is explained by noting that the motion of the scatterers causes the weath- 

er clutter to decorrelate faster than the ground clutter which means that inte- 

gration of all of the pulses in a beamwidth will lead to some improvement in 

target detection.     Unfortunately it is likely that the power levels in each of 

these filters will exceed the receiver noise threshold setting resulting in false 

alarms in the low velocity filters.    However since weather clutter will probably 

cause false alarms in several adjacent low velocity filters it can be recognized 

as clutter and disregarded.    Although this is a simple and attractive scheme 

for eliminating false alarms,  the detection probability degrades to zero and 

clearly an alternate choice is sought.    Rather than just recognize and eliminate 

false alarms,   it is necessary for the receiver to raise the detection threshold 

in those velocity cells that are covered by the clutter cloud.    Adaptive 
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algorithms have been derived [l8] that estimate the average clutter power 

and use this value to reset the detection threshold.    In this case,  the estimate 

would be derived by averaging over the clutter returns in a range ring which 

had been gathered scan-to-scan.     The optimality properties of this algorithm 

are based on the assumption that except for an amplitude scale factor the clut- 

ter correlation function is known.     This is an unrealistic assumption in the 

present context since the velocity of the weather cloud and the width of the 

associated spectral density will vary on an hour-to-hour basis.     However,   a 

suboptimal algorithm can be deduced by further subdividing the clutter space 

into the DFT velocity cells.    Since the clutter spectral density is unlikely to 

change significantly over the width of one velocity cell,   the clutter can be 

considered to be white noise of unknown average power.     This is easily esti- 

mated by the scan-to-scan averaging of the power measured in the velocity 

cell.    The detection threshold can then be set for the particular velocity cell 

of interest by combining the estimated clutter power level with that of the re- 

ceiver noise process. 

The above algorithms may well prove to be of considerable utility in the 

struggle to diminish the effects of weather clutter,   but it will be necessary to 

build an experimental system before final judgment can be passed.    Since the 

preceding discussion is based on intuitive considerations,   it is of interest to 

determine whether or not optimal weather processors can be derived and 

what their role might be in a practical deployment of the MTI receiver.     The 

next few paragraphs document the first order study of the latter problem. 

In the background of ground and weather clutter,   the clutter process is 

more precisely written as 
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C(nT  ) = C  (nT  ) + C   (nT   )     . (121) 
p' g       p' wx      p' v 

Formerly C  (nT   )  referred to the ground clutter samples,   but it will now be 

taken to denote any clutter due to ground scattering or weather returns that 

induce no doppler shift.     The new term C   (nT   ) refers to the clutter samples 

from a weather cloud that is moving at some non-zero radial velocity.    The 

optimum receiver synthesized in the preceding sections is directly applicable 

to the weather processing problem,   except now the clutter spectral density 

is 

Sc(f) = Sg(f)+Sw(f-fw) (122) 

where f     is used to indicate the average doppler shift induced by the moving 

cloud.    It will be assumed that S  (f) and S   (f — f   ) are non-overlapping spec- 

tral densities,   so that 

S  (f) •   S   (f-f   ) = 0     . (123) g w w 

From the analysis of the preceding sections the clutter processing is done by 

the clutter rejection filter having transfer function given by 

j2ufT 
For convenience the notation S  (f) is used in place of S  (e "), 

c* ' L c* 
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Hc(f) " S  (f) + 2N 

S   (f) + S   (f-f   ) + 2N 
g w w o 

. r S  (f) + 2N n 

S  (f) + 2N       S  (f) + S   (f-f   ) + 2N 
g o L   g w w o J 

l r Sw(f-fw) -| 

S  (f) + 2N l1 _S   (f) + S   (f-f   ) + 2N        * (124) 

g o       L g w w oJ 

Using the assumption in (123) in the last equation results in the following final 

form for the ground plus weather clutter filter 

j r Sw(f-fw)       -. 
Hc{f) = S   (f) + 2N        \l ~ S   (f-f   ) + 2N * (125) 

g o      L w w' o J 

Therefore the weather clutter is processed by a separate filter that is an ad- 

junct to the ground clutter notch filter discussed in the previous sections.    It 

was shown that the optimum clutter filter was well approximated by a notch 

filter with an elimination band about DC to reject all signals due to both slow 

targets and ground clutter returns.     Therefore to a good approximation the 

output of the ground clutter filter can be assumed to be made up of signals 

due to faster moving targets,   receiver white noise and weather clutter returns. 

In other words the output of the ground clutter filter can be assumed to be 
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j2irv  nT 
r(nT   ) = v    g(nT    -T)e °      P+C(nT) + W(nT   ) (126) v      p'       'o 6X      p        o' wv      p' x      p' 

when a moving target is present and it is 

r(nT  ) = C   (nT  ) + W(nT   ) (127) v      p' wx      p' x      p 

when the target is absent.    In the latter case,   the filter having the transfer 

function 

S   (f-f   ) w w 
(128) S   (f-f   ) + 2N w w' o 

generates the minimum-mean-squared error (MMSE) estimate of the weather 

clutter waveform.     Therefore the processor in (125) has the following inter- 

pretation:   First eliminate ground clutter returns using the notch filter; then 

process the remaining weather clutter and white noise output to generate a 

MMSE estimate of the weather clutter signal,   referred to as C   (nT   ).     This ° w        p 

is subtracted from the composite signal in (127) to yield 

r(nT  ) -t   (nT   ) =  [C   (nT   ) -6   (nT   )] + W(nT   ) (129) p wv      p' wv      p' wx      p' P 

which shows how the weather clutter filter tries to eliminate the clutter wave- 

form. 

If the weather clutter spectral density is known then the filter in (124)  can 

be synthesized directly without recourse to the MMSE interpretation.     How- 

ever,   this is precisely the problem with weather clutter; it is a random pro- 

cess whose gross statistics change significantly from weather cloud to weather 
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cloud.    It is therefore essential that some adaptivity be built into the receiver 

to track the gross changes in statistics of the weather clutter process.     The 

MMSE filter realization provides the basic structure for deriving the desired 

adaptivity.    Since the key element in the weather clutter processor is a linear 

filter that generates the MMSE estimates of the weather clutter waveform 

when no target is present,   it can be replaced by a tapped delay line whose 

taps are up-dated recursively using,   for example,  the stochastic approxima- 

tion algorithm described in Ll9].    Since any weather cloud can reasonably be 

assumed to be a quasi-stationary process in the sense that its statistics do 

not change significantly over many scans of the radar,   many independent 

sample functions are available which can be used to adapt the filter to give 

near optimum MMSE estimates of the weather clutter waveform.     The compu- 

tational problem can be simplified somewhat by postulating a weather clutter 

spectral density whose form is  generally known except for a center frequency, 

a magnitude scale factor,   and a spectral spread factor.     The received sample 

functions can then be used to adaptively estimate these three parameters. 

Once convergence has been obtained the matched filter bank normalization 

factor in (56) and (A-13) can be computed.     This will insure that a constant 

false alarm rate (CFAR) receiver will result. 

This area of research is highly speculative since the ideas,   originally 

suggested in [9],   have never been applied to a practical problem.    However 

it does show what must be done to perform optimum weather and ground clut- 

ter processing and it may very well prove useful in the MTI processor of the 

future. 
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VII. INTRODUCTION TO PART II 

If the doppler frequency caused by the maximum target velocity is less 

than l/2 T    in magnitude then the digital MTI processor described in the pre- 

ceeding paragraphs comes very close to achieving optimum performance and 

can be implemented using current digital technology.    If on the other hand, 

the induced doppler shifts are larger than l/2 T   ,   as is the case with the ARSR, 

then the broad clutter notch at DC effectively folds over to eliminate from de- 

tection targets whose dopplers correspond to some multiple of l/T   .     In such 

a case the performance of the filter is quite unsatisfactory.     The reason for 

the aliasing is of course due to the uniform sampling pattern.    It is well 

known in classical MTI that staggering the PRF,   which means non-uniform 

sampling,   eliminates the so-called blind velocities so that targets moving 

with dopplers at n/T    can once again be detected Ll7].    Although this techni- 
ir 

que has been used for many years in practice no theoretical analysis of the 

phenomenon has been presented.    As a result the classical investigators 

failed to realize that non-uniform sampling not only enhances target detection 

capability but also permits the unambiguous resolution of target velocity.    In 

Part II of this paper it is shown that designing the staggered sampling pattern 

is equivalent to shaping the ambiguity function of a pulse train.    Hence stag- 

gering the sampling pattern reduces to a signal design problem which in con- 

junction with the optimum processor described in this paper leads to an MTI 

receiver that has never before been proposed for moving target indication 

It is the first time that this author has seen the maximum likelihood method 

lead to a receiver that some intuitive engineer had not discovered a decade 

earlier. 

57 



APPENDIX 

In Section III the likelihood function for the optimum MTI receiver was 

derived in terms of whitened versions of the transmitted and received signal 

sequence.    Since this is an inconvenient receiver structure to implement 

alternate realizations are sought.    It will now be shown how the likelihood 

equation can be manipulated to suggest the clutter filter,   matched filter real- 

ization.     The following notation is needed: 

R    (z) = Z[r   (nT   )] (A-la) 
w w       p 

S   (z; a) = Z[S   (nT   ; a)] (A-lb) w       — w       p   — 

§   (z; a) = Z[S*   (nT   ; a)]     . (A-lc) w       — w p   — 

Using the complex convolution theorem for sampled-data sequences  [ll],   the 

term in the numerator of (56) can be written as 

00 

S    r   (nT   ) S*   (nT   ; a) = r^-r rf> R   (z) §    (±    a) z"1 dz (A-2) 
U      w       p      w        p   —      2TTJ   J       W W

X
 Z    — x ' 

n= -oo 

where the integral is to be evaluated along some suitably defined path in the 

z-plane.     The denominator in (56) can be considered a normalization factor 

E<«>£    I     |S*w(nT   ;a) 
n= -oo 

2 
w^        p 

JL*£>   S    (z;£)^    (Ij^z^dz     . (A-3) 
2TT w       —'     w    z 
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For the input signals,   the following notation is needed: 

R(z) = Z[r(nT   )] 

S(z; a) = Z[S(nT   ; a)] 

S(z; a) = Z[S*(nT   ; a)] 

These functions are related to those in (A-l) according to 

R   (z) = H   (z) R(z) 

(A-4a) 

(A-4b) 

(A-4c) 

Sw(z; a) = HJz) S(z; a) 

&   (z; a) = H   (z) §(z; a) 
w w 

(A-5a) 

(A-5b) 

(A-5c) 

The last expression uses the fact that the impulse response of the whitening 

filter is real.    Then (A-2) becomes 

00 _    _ 

y    r   (nT   ) S*  (nT   ; a) = ~K 6    H   (z)R(z)     H   (-) §(-; a)\ z"1 

L>      wv      p'     wx      p   —'      2TT j   J wN v   'J       wx z z    —' I dz 

= 2ij^[Hw(z)Hw<i)R<z)]^i^)z"ld: 

=    Y    x(nT   ) S*(nT   ;£) (A-6) 
n=-oo 

where 
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x(nTp)=Z-1|^Hw(z)Hw(l)R(z)J    . (A-7) 

Similarly (A-3) becomes 

E^= zij $ [HJZ) HJbs(z; &] ^{h &z_1 dz 

go 

=    £    y(nT   ) S*(nT   ; or) (A-8) 
P P 

n= -oo 

where 

y(nTp) = Z"1 [HW(») HJ±) S(Z; O)J       . (A-9) 

For the problem at hand a s (v,   T) and 

j2irvnT 
S(nT   ; a) = g(nT    - T) e p     . (A-10) 

Since g(nT   ) is real, 

-j2TrvnT 
S  (nT   ; or) =  g(nT    - T) e P (A-ll) 

P P 

8 
hence 

S(z; a) = eJ"'""  z   ' ' ^p G(e rz) (A-I2a) . J*,T    -T/T -JW»Tp. 

, „ j 2TT V T 
S(z; a) = e"

j2lTVT z"T/Tp G(e Pz) (A-l2b) 

where G(z) = Z[g(nT   )].     Using (66) and (A-12) in (A-8) the denominator of the 

test statistic becomes 

8 T   is assumed to be a multiple of T   . 
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i     iX J2TTVT J2TTVT 
E(V«   T) = 2^j  T Hc(z) G(Z e P)G<ze P)z      dz 

= E(v)     . (A-13) 

Equation (A-13)  shows that the energy normalization factor depends only in 

the doppler frequency under test. 
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