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1.0 INTRODUCTION 

This report is the first semi-annual report on Con- 

tract No. DAHC 19-69-C-0032 with the Advanced Research Projects 

Agency entitled "Stress-Wave Propagation Through Earth-Water Sys- 

tems". The fundamental objective of this study is to develop nu- 

merical techniques to treat the general two-dimensional stress wave 

propagation problem through nonlinear earth materials including 

the effects of water flow through the earth materials. 

Prior to the beginning of this study, a numerical tech- 

nique was developed to treat the dynamic wave problem through arbi- 

trary nonlinear media (Ref. 5> 6 and 7) without including the ef- 

fects of water on the propagation process. This numerical approach 

is based upon the finite element method of analysis and led to the 

development of a large computer program (termed the SLAM Code for 

identification, the acronym standing for Stress Waves in Layered 

Arbitrary Media) to treat either the general axisymmetric or plane 

(stress or strain) geometric configuration.  The finite element 

approach has been taken in this development to allow the user a 

general flexibility in treating two dimensional problems of rather 

complex geometry (inclusions, material layering, complex bounda- 

ries, etc.) 



I 
I 
•     advantage can be considered a disadvantage for these cases. 

After the development of SLAM Code, various problems of 

interest were investigated to determine the effects of material 

nonlinearities on the wave propagation process (Ref. 5).  In gen- 

eral, two types of problems are of interest when studying dynamic 

processes through earth media.  In the first type, the half speice 

is subjected to high intensity pressure loadings caused by high 

energy explosions.  The resulting ground shock effects are hichly 

transient and are characterized by relatively short duration shock 

waves of high strength.  Of particular interest for this problem 

is the rate of deca^ of the shock front as it moves through the 

ground.  Clearly, nonlinear properties of the material signifi- 
I 

cantly influence the decay of the shock strength since large non- 

recoverable volume changes can decrease the peak pressures of the 

shock front.  In the second problem type, the half-space is sub- 

jected to long duration low intensity vibratory type loadings as- 

sociated with earthquake motions. Again nonlinear properties and 

volume changes of the earth material significantly alter the char- 

acteristics of the motion histories sustained at the surface of 

the around. 

En both of these problems, the stress r^nd motion histo- 

ries sustained at any point in the ground are significantly influ- 

enced by the nonlinecu: characteristics of the materials and the 

associated volume changes that occur.  However, for real problems 

of interest, the soil/rock media ofte:; contains entrapped pore 

fluid which, due to its relatively high stiffness, will delay these 

I 



volume changes from occurring, the amount of the delay being con- 

trolled by the imperviousness of the earth material to water flow. 

Thus to serioucly treat the time dependent response of earth media, 

the effects of pore water must be suitably taken into account. 

In the following developments, the effects of pore water 

arp included in the unite element analysis of SLAM Code with the 

eventual goal of treating the complete dynamic process.  In the 

first effort presented herein, only the quasi-static problem is 

considered; that is, inertial effects are neglected.  The problems 

of concern then are limited to (time-dependent) two dimensional 

consolidation situations including material nonlinearity effects. 

This course has been taken as a first step on the route to the 

complete development. The analyses and associated computer code 

developments can then be checked or compared with known solutions 

already available. At the end of this comparison phase, the inclu- 

sion of inertial effects can then be completed and solutions ob- 

tained for the various wave problems of interest. 
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2.0 GOVERNING SYSTEM EQUATIONS 

In Ref. 1, the derivation of the system of equations 

governing both the equilibrium of the nodes as well as the pore 

pressure seepage condition (based on the two-dimensional Darcy's 

Law) were presented in detail.  These lelations can be written 

symbolically in matrix form as 

(a) Equilibrium: 

(M -O-IW + LOW - WW 
KHtUMH^lW-UwlW (1) 

(b) Seepage Flow; 

(2) 

In equations 1, the vectors { F,^ and ^ Fu;] are the horizontal 

(a-direction) and vertical (w-direction) forces applied at the 

node points. The matrices kUÜL, kuur/ k^, k^are the usual elastic 

stiffness matrices and are used to compute the elastic components 

of the forces developed at the node points due to relative dis- 

placements of the element nodes.  The vectors {u\ and fur] are the 

horizontal and vertical displacements of the nodes of the mesh, 

while the vector JTT\ represents the excess pore pressures developed 

at the node points.  The matrices [ku"Jand [\J]  then convert the 

excess pore pressures developed at the nodes into equivalent node 

point forces. 

The forces at the node points, ( Fu\ and [FJ^ ,   have two 

components, namely. 

■ . 



where [*t\   ' {*£]    are the horizontal and vertical components of 

any forces applied to the nodes (from concentrated loads or pres- 

sures applied to specific surfaces in the problem) . The forces 

(F
NS

1  and \F*]     are the fictitious correction forces that are ap- 

plied to the nodes to account for any nonlinearities in material 

stress-strain behavior (or deviations from the elastic case). For 

completeness of this report, the formulation of the matrices are 

presented in Appendix 1. 

Equations 1 and 3 then represent the equilibrium of total 

stresses at a point in the half-space.  Equation 2 represents the 

equation controlling the rate of seepage through the body and is 

obtained from Darcy's Law. The Matrix ^H} is dependent upon the 

coefficients of permeability of the earth material (as well as 

properties of the finite element configuration used) and the vec- 

tors rä an<i W represent the horizontal and vertical node point 

velocities. 

The vector [P] represents the rate of volame change of 

the fluid associated with each node point. For incompressible 

fluid, these components are zero for interior node points (all 

fluid that flows into an element must flow out), while for some 

boundary node points (for which the excess pore pressure is zero), 

these components indicate the volume of water flowing out of the 

nodes.  Fo^ compressible pore water (due to the fluid compressibility 



itself or entrapped air) , these components indicate the amount of 

volume change undergone by the fluid (see Ref. 1). 

2.1 Solution Procedure_ 

At each node point (except at boundary nodes where either 

displacements and/or excess pore pressures are specified), three 

unknowns must be determined at any instant of time, namely the two 

node displacements (U and w) and the excess pore pressure CTT) . 

The solution is then marched out in time in a step-by-step fashion. 

The integration procedure used to obtain the numerical results to 

be presented is based on a simple linear velocity approximation 

during a "small" time step or 

where Xj represents a displacement at time i, icc.t    the displace- 

ment at the previous time, x; and *.., represent the corresponding 

velocities and At is the time increment between M and I .  Solving 

equation 4 for the current velocity 

XL- . - X..( -f- ^ iXi+tL.i) (5) 

Substituting equation 3 into equation 2, the seepage 

equilibrium equation can be written as 
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where the vector Urn is definod as 

(7) 

The subscript i in equations 6 and 7 represents the current time 

and (-1 represents the previous time. At the current time, then, 

the system of equations to be solved can be written as 

[ K*       kuur   -V 1 f ^ 
^ww.  ku/ur  -tu, y ) 

(8) 

or 

4'KIW: (9) 

The matrix [Kj[ of equation 9 is symmetric, and the usual solution 

procedures can be used. 

Considering an elastic porous material, at a particular 

time, the effective force vector of equation 9 is known.  The ap- 

plied loads are specified at the current time (F^ , F^ ) and the 

force component G can be computed from equation 7 since the solu- 

tion from the previous time step is known (obviously, the solution 

must start from a time when the initial conditions are specified). 

The unknowns ( )(.[ of equation 9) can then be obtained by, say, a 

simple elimination technique.  The solution at the following time 
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step can then be obtained using the current solution as input, etc. 

In this fashion, the solution is marched out in time. 

For nonlinear material behavior, this process has to be 

modified since the nonlinear correction forces (P*J , F* ) of equa- 

tion 8 are also functions of the current displacements. To over- 

come this situation, a modification of the above procedure is nec- 

essary. An initial trial solution is firsc obtained by using ap- 

proximate values for these correction forces (usually the forces 

from the previous time step). An iteration procedure is then super- 

imposed at each time step to check the adequacy of the trial non- 

linear force correction terms. 
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3.0 NUMERICAL RESULTS 

With the developed computer program, numerical results 

were generated for several soil configurations similar to the usual 

soil tests, consolidation and triaxial compression.  The first set 

of data assumed elastic soil behavior, since for these problems 

analytic solutions are available or can be easily developed for com 

parison purposes.  The first nonlinear soil model investigated made 

use of a Coulomb-Mohr elastic plastic model based on the concepts 

of the theory of plasticity. 

Although this model is often used, it Is not adequate for 

modeling stress-strain behavior (except in a crude sense) and would 

be of questionable value when studying pore pressure dependent prob- 

lems. A more detailed soil model was then investigated which ade- 

quately predicts stress strain bahavior of a particular sand sample 

and was developed by fitting the parameters of this model to avail- 

able experimental data. 

3.1 One-Dimensional Elastic Consolidation 

The first problem investigated was, naturally, that of 

the classical one-dimensional consolidation of elastic material. 

The analytic solution available for comparison is the standard 

Terzaghi solution (Ref. 2).  The problem parameters chosen for the 

investigation are shown in Figure 1.  The computed settlement-time 

history at the top of the soil surface is shown in Fig. 2 and com- 

parisons made with the exact analytic solution.  The excess pore 

pressures developed at the bottom of the layer are shown in Figure J 
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v;hile those at a point nearer the surface are shown in Figure 4. 

Again comparisons are made with the exact soiution and in all. cases 

they show excellent agreement.  The pore pressure distribution at 

various times through the layer is shown in Figure 5.  Since the 

pore pressure 1B assumed to vary linearly within a given element 

the distribution curves are piecewise linear.  If in the actual 

problem the pore pressure variation is sharp, smaller element sizes 

must be used to suitably approximate the solution. 

3.2 Triaxial Elastic Soil Configuration 

The second model considered was the triaxial soil con- 

figuration shown in Fig. 6a.  The soil model was considered to be 

elastic and a 50 psi vertical pressure applied at the initial or 

zero time.  The finite element model used is shown in Fig. 6b and 

consists of 28 rectangular elements to represent the upper quarter 

of the triaxial sample.  The elements are thus axisymmetric or ring 

elements. 

To obtain the analytic solution, it was assumed that 

strain conditions in the sample are uniform.  The initial pore pres- 

sure developed in the sample (prior to drainage occurring) is founrl 

from the following analysis.  The volume change per unit soil volume 

for the elastic soil is 

(10) 

where the barred stresses represent, the intergranular stresses, and 
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E and 7S are the elastic modulus and Poisson's ratio, respectively. 

Since no seepage occurs during the initial conditions, the volume 

change is zero or 

In addition, 

ffr-- <fa-- "f 

(11) 

(12) 

where p is the excess pore pressure and Q^. is the vertical applied 

stress. Combining equations 11 and 12 leads to the solution 

I ''* (13) 

f = V3 

The initial compression of the soil sample is simply 

•i-I^C^) «14, 

The final stresses in the soil system are. obtained when 

p is zero (no pore pressure) and 

rr - cr a5) 
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while the final compression of the soil sample is 

. 

^ • V 
I       where L is half the original sample height (height of the finite 

element model).  The settlement from the initial condition to the 

j      final condition is governed by the one-dimensional consolidation 

model (since one-dimensional seepage occurs through the top surface 

only) with the modification that the definition of the coefficient 

of consolidation is 

c -i JL 
'  C3(u20) (17, 

The solution to the particular problem of Fig. 6 was ob- 

tained numerically using a time increment of 0.1 seconds.  The pore 

pressure distribution along the centerline elements is shown in 

Fig. 7 together with comparisons with the analytic solution.  As 

can bo seen, the comparisons are excellent, except during the early 

part of the solution.  In an attempt to uncover the cause of the 

discrepancies, the same problem was investigated with differing 

time increments, and the results are shown in Fig. 8.  As may be 

noted by comparing Figs. 7 and 8, the early time oscillations found 

for the top element (Element 1) are related to the time step. As 

the time step is decreased, the oscillations disappear.  A compar- 

ison with the exact solution shows that the computed solution is 

slightly lower and this can be attributed to the fact that the pore 
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pressure profile is assumed to be linear across the element while 

the actual pressure profile is curved, particulirly at the early 

times. 

The comparison with the middle element (Element 4) is not 

as clear cut, however. As may be noted from Fig. 8, this pore pres- 

sure shows an initial increase in pore pressure before the antici- 

pated decay occurs, and this increase is independent of time incre- 

ment of the integration.  Since this phenomenon did not occur in 

the elastic plane problem discussed previously, it must be concludecl 

that this variation is concerned with the coarseness of the finite 

element mesh in the radial direction for this axisymmetnc problem. 

No further numerical studies have been conducted on this problem 

as yet, however. 

3.3 Triaxial Coulomb-Mohr Model 

The first triaxial problem including nonlinear material 

properties that was investigated was the same model shown in Fig. 6 

but with nonlinear properties described by the Coulomb-Mohr yield 

condition (Ref. 3).  For stresses within the yield surface, the 

soil is assumed to behave elastically, where the yield surface is 

defined by 

*■ J. + /^V ^ (18, 

For the axisymmetric stress condition of interest for this problem. 



^ 

vTi = ov + cfe ■»■ cr^ 

J^ iV^r-^r* (^«-v* ^i-^f} * r^ (19) 

where the bar again indicates intergranular stresses.  The coeffi- 

cients (c*, Jc) are related to the usual strength parameters obtained 

from a tnaxial test series, 4) ,   the angle of internal friction, and 

c, the cohesion, by 

2   ai^^ 

(20) 

For stresses on the yield surface, plastic strain components are 

determined from the usual normality pnncioal. 

Prior to investigating this probier, numerically, the ana- 

lytic solution for the initial stress condition was obtained (no 

drainage allowed).  As the vertical stress is slowly increased, the 

soil behaves elastically and the previous solution applies.  Sub- 

stituting equations 12 and 13 into equations 19 yields 

For plastic yielding to begin, the critical vertical stress must 

reach the value 



qj • ß fe. 

24 

(21) 

For applied stresses larger than this critical value, plastic flow 

must be accounted for, making use of the normality relation 

(Ref. 3), which for this problem becomes 

•P 

(22) 

P *f where ( ^r , €, ) are the radial and vertical components of the plas- 

tic strain rate vector.  The plastic volume change is 

P     3 *   ^ P 

■    ^    9 
(23) 

(h-*' 
where f^ is the total plastic vertical strain, while the elastic 

volume change is 

^'.('T-KV^ (24) 

Knowing that the total volume change is zero (no drainage out of 

the sample is allowed), the solution can be readily obtained for 

any applied stresses greater than the critical, or 



2r 

£|    - i (^-21)^) (25) 

^r     ■ ^ * ^ 

The results for a particular undrained case are shown in 

Fig. 9.  The vertical pressure is applied "slowly" with a rise time 

of 50 seconds until it reaches a peak pressure of 50 psi.  The par- 

ticular properties of the soil chosen were 

E a I00O ss t 

1) ? 0.25 

e - 2o.8 fst' 

4) » 30° 

For this condition the critical vertical stress is reached when C„ 

is 43.4 psi and the corresponding pore pressure is 14.4 5 psi. As 

the vertical stress is increased to 50 psi, plastic flow takes place 

(along with plastic volume expansion) and the pore pressure reduces 

to 11.1 psi.  Five computer runs were made for this problem using 

different time steps as seen in Fig. 9.  In each case, the nonlinear 
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correction forces in the equilibrium equations were taken as the 

value computed during the previous txme step. As can be noted, 

the smaller the time step, the better the approximation, as expected. 

As an alternate to this procedure, the nonlinear correction forces 

in a given time step can be recomputed by iteration (obtain a trial 

solution, computed correction force, obtain new solution, etc.). 

For this problem of proportional loading, this procedure is equiva- 

lent to using smaller time steps without iteration during each time 

step. 

After the final equilibrium condition is reached under no 

drainage conditions, the drained situation can be achieved by let- 

ting the pore pressure decrease to zero by allowing drainage through 

the top and bottom surfaces of the soil sample,  it can be shown 

that for this soil model, the decay of the pore pressure will occur 

elastically; that is, the intergranular stress state will move off 

the yield surface as the pore pressure decreases, so that the decay 

rate will be as described in the previous elastic triaxial solution. 

The solutions for these cases are shown in Fig. 10 where 

the vertical intergranular stress is plotted as a function of the 

total vertical strain for various values of the cohesion and for a 

fixed value of the friction angle of 30°.  if the cohesion is 24.0 

psi or greater, the soil sample always remains elastic.  The ini- 

tial stress state when a vertical stress of 50 psi is applied and 

no drainage is allowed is ^ - 33.3 psi and p = 16.7 psi.  when 

drainage is then allowed, the pore pressure decreases to zero, and 

the vertical intergranular stress increases to the applied stress 
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of 50 psi. The final state is the same as would occur if the sample 

had been tested dry (no pore pressure).  If, however, the cohesion 

is lower, the initial undrained state causes plastic flow to occur 

with the drained condition occurring elastically, as shown. For a 

value of cohesion equal to 14.4 psi, the initial undrained state 

occurs with no excess pore pressure, and the drained state is the 

same as the undrained state. For values of cohesion less than 14.4 

psi, equilibrium under the applied loads cannot be maintained.  It 

should be pointed out that for values of cohesion between 14.4 and 

24.0 psi, the dry test will show no plastic flow, while the undrained- 

drained sequence will yield plastic strains. 

it is clear then that even for this relatively simple 

soil model, the stress-strain behavior between saturated and unsat- 

ui.dted soil samples will be different and will be influenced by 

the rate of loading (as compared with the rate of pore pressure 

decay). To investigate this analytic solution further, the pre- 

vious solution was nondimenaionalized in the following fashion. 

Non dimensional parameters are defined as 

i ^ cosxk 

(26) 

The upper and lower limits of cohesion for which a nonlinear solu- 

tion (stable plastic strains will occur) can be obtained for the 

undrained case are 



30 

(27) 

For any value of cohesion between these limits, the solution 

yields 

Ct) 
:i 

;3 

r3 

(28) 

After this initial solution occurs, the addition vertical strain 

that will develop as the excess pore pressure is allowed to decay 

to zero is 

V-'f^C*)] (29) 

so that the final strain is the sum of the strains from equations 



■<l 

28 and 29. The solutions for several parameter variations are shown 

in Figs. 11 through 14.  In Fig. n, the nondimensional vertical 

intergranular stress is plotted as a function of the ratio €*/C* 

where C^ is the vertical strain that would occur in the dry state 

and is simply 

d    p (30) 

As may be noted, the difference in limiting values of cohesion for 

this problem is relatively small, but the influence on the final 

strain is large (ratio of 6.25). Curves are shown for four equally 

spaced values of cohesion between the limiting values. 

The same solution is shown in Fig. 12, except that the 

friction angle was increased from 5° to 30°. As may be noted, the 

final strains are much lower than those of Fig. 11, and the associ- 

ated plastic strains occurring during the initial undrained state 

are much smaller. This is due to the fact that for the higher fric- 

tion angle the plastic volume expansion is larger than for the 

smaller friction angle causing the excess pore pressure to decay 

more rapidly as plastic strains develop. Fig. 13 shows the same 

results for a still larger frictxon angle of 45°, again showing a 

smaller difference in final strains. 

The results for a different value of Poisson's ratio 

(2>= 0.25) are shown in Fig. 14 for a friction angle of 30°.  As 

can be noted, the behavior is essentially different than that of 

Fig. 12. This is due to the fact that the elastic volume change 
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during the initial loading decreases as Poisüon's ratio increases, 

3.4 McCormick Ranch Sand Model 

It is, of course, well known that the relatively simpli- 

fied constitutive models, such as the Coulomb-Mohr model, can only 

crudely approximate the stress-strain behavior of real soils.  In 

order to properly take into account the influence of pore fluid on 

soil response, more realistic models must be developed. An example 

of such a model was presented in Ref. 4 wherein the parameters of 

the model were c)osen to match (as closely as possible) available 

experimental data on a particular sand sample, known as McCormick 

Ranch Sand. A rather extensive series of triaxial, uniaxial, and 

hydrostatic compression tests were conducted and an attempt was 

made to fit the analytic model so as to reproduce the available data. 

It was found that for the particular parameters chosen 

the stress-strain curve during the initial load-unload cycle could 

be adequately reproduced for the triaxial compression test (over a 

wide range of confining pressures) and for the uniaxial compression 

test. The soil model, however, was significantly stiffer under 

hydrostatic compression (although the shape of the load-unload curve 

was the same) than the experimental data. 

The model is based on the following analysis. The hydro- 

static and deviatoric stress-strain components are related by 

-p  = 3K e OD I 
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where S^j =  deviatoric stress tensor 

^t.. ■ deviatoric strain tensor 

"V  ■ hydrostatic pressure 

^ = volumetric strain xi (^ •*•£»"'"£*) 

and are related to the total stress-strain components by 

(32) 

wiiere ( 0^. , tf • • ) are the total stress-straxn tensors and dt'.' is the 

Kronecker delta.  The dots in equations 31 and 32 indicate the cor- 

responding rates.  The parameters K and G represent the bulk and 

shear moduli, respectively, and are taken as functions of stress 

history. 

The form used for the bulk modulus is: 

loading:  KL = K0 + K^ * K1« , for e>0 (33) 

unloading:  K^ = Ke^-♦• K^-p 

where the parameters K0, K, , K2, K0ül, K1M> are parameters found by 

fitting the experimental data.  In equation 33, volume compression 

is assumed to be positive.  The corresponding form useu for the 

shear modulus is 
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loading: 

C^. ♦?,/£♦ rtf^f* lr    fife 

unloading: 

(34) 

and 

h 
a 

C   *6c   -li* (35, 

where -ft is a critical hydrostatic pressure (positive In compres- 

sion and J, is the second invariant of the deviatoric stresses 

(equation 19). 

To match the specific test results for the sand sample, 

the following parameters were found to best reproduce all the data 

^o • B.O kii 0CU* 3.0   hi 

/c, -- s-.eskst &« --32,ö an' 

r, ■ -/ff-" ^«t Ki •^*^ te8<' 

7  tSoa.o 

The stress-strain behavior under umaxial compression is 
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shown in Fig. 15 under both initial Loading conditions as well as 

strain load/unload cycling. As may be noted, the stress-strain 

response exhibits the characteristic stiffening effect as well as 

the nonrecoverable behavior under load cycling.  The pressure ranges 

shown are higher than normally used but suitable modification of 

the data input would convert this typical response to lower stress 

ranges of interest. 

The behavior under triaxial comoression is presented in 

Figs. 16 to .9 and again exhibits much of the characteristics antic- 

ipated for a sand sample.  Durina the load/unlcad cycling, the 

model can be further improved to reproduce test data by modifying 

the shear m-lulus formulation under reload conditions to better 

match strain behavior with constant load cycling. 

The previous data were obtained for the Ranch Sand model 

in the dry condition.  To determine the behavior with pore fluid, 

similar problems were investigated including load cycling effects, 

in Fig. 20, the triaxial response is presented for a consolidated/ 

undrained experiment with load cycling in the vertical direction 

corresponding to the load cycles shown in Fig. 18 for the dry sam- 

ple.  In both cases, lateral or confining stresses were maintained 

constant.  As can be seen in Fig. 20, the effect of pore pressure 

is to decrease the axial strain increment between load cycles. 

That is, in the undra.ned state, the soil model "shakes down" to 

effectively a linear model, although strong nonlinear behavior 

again takes effect as the apolied load is finally increased beyond 

the load cycling reaime. 
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Similar behavior is shown in Fig. 21 where the applied 

vertical load is cycled through the complete load range from 0 to 

300 psi.  This test corresponds to the dry triaxial test shown in 

Fig. 19.  Again, it may be noted that within a load cycle, pore 

pressure effects cause the stress-strain behavior to "shake down- 

to an effective elastic state.  Of course this type of response 

can be modified by changing the definition of the reload shear mod- 

ulus as defined by equation 34.  A plot of the invariants of effec- 

tive stresses during the loading cycle for the triaxial tests is 

shown in Fig. 22, for both the consolidated undrained and drained 

tests.  As may be noted, J, is constant during the undrained test 

xndicating that the bulk modulus (equation 33) is constant with this 

model.  Therefore the cycling resr^nse will be completely dependent 

upon the variation in the deviatoric response, or the shear modulus 

behavior.  The cycling response will be essentxally elastic as long 

as the shear modulus is maintained as the unloading modulus within 

the cycling load range. 

Two other triaxial experiments were conducted where the 

samples were consolidated under a confining stress of 400 psi, 

loaded vertically in the drained state to 630 psi and then further 

loaded cycled between 575 psi and 690 ps. in both the drained and 

undrained states.  A comparison of the results is shown in Fig. 23, 

in which anticipated responses were determined. 
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Fig. 20 Triaxial Response, Ranch Sand Model, 

Consolidated, Undrained Test 
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4.0 SUMMARY 

Numerical results presented herein fall into two catego- 

ries. The first set of data presented are concerned with determin- 

ing the adequacy and characteristics of the numerical solutions for 

combined stress-seepage. These results indicate that the formula- 

tion and the associated computer code developed to treat these prob- 

lems are complete and debugged. The final set of data is concerned 

with attempting to evaluate the adequacy of some nonlinear soil con- 

stitutive models in predicting soil response to load.  The simple 

Coulomb-Mohr model is clearly inadequate except for some simple 

problems where strength alone is of interest,  However, for those 

problems where stress-history is significant, the Coulomb-Mohr model 

must be judged inedequate except possibly to judge grost strength 

behavior. 

The McCormick-Ranch model (or types similar to this) are 

of course a significant improvement since they will at least repro- 

duce some known experimental responses.  It can be anticipated that 

they would be adequate for various static problems of interest or 

for those with only one or two load unload cycles.  However, these 

models must be judged inadequate in predicting responses under 

cyclic loadings such as those encountered in seismic problems. 

Further experimental data must be developed for loading situations 

with many cycles. 
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APPENDIX A 

FOgMULATigN_OF SYSTEM EOUATIOM.q 

In the following presentation, the analysis win be e.r- 

^ed forth for a typ.cal element of the free-field mesh. The drs- 

Plaoement field for the element x, assumed to be Unear and the 

displacement of any point wrthrn the eiement oan be ..ritten as 

^c.^'Wl^ (A,1) 

wnere (u W are the horr.ontal and vert.oal displacement components 

and V«) , [p]  are each a set of arbitrary coeffxc.ents, with the 

number of ooeffroients equal to the number of element vertrces to 

provide the proper number of degrees of freedom for the element. 

The vector {%]  is formed by a proper >rt of ^^ ^ 

tien. and depend upon the element type berng consrclered. For a 

typical triangular element (E.g. A.1, thi. vector i. 

while for a typical rectangular element (Erg. A.2, 

(A.2) 

(A.3) 
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For a general quadrilateral element (Fig. A.3) the vector {A}  spec- 

ified by equation A.3 is used in the transformed coordinate system. 

By substituting the coordinates of the nodes into equation A.l, 

the coefficients (joi| , ^ A\ can be replaced as unknowns by the node 

point displacement components, or 

(A.4) 

This simple displacement function assumed for the element allows 

for determining any interior displacement in terms of the nodal 

displacements and ensures that the displacements between any two 

adjacent elements will be continuous for any arbitrary specifica- 

tion of nodal displacements.  Higher order elemenr formulations 

are also available to satisfy the above criteria. 

The strains developed at any point within the element 

can be determined from the strain displacement relations for the 

particular configuration, or 

^TVWW *[Bw]{ur] (A.5) 

where {Cr]  is the strain vector with components 

The superscript T in equation A.6 indicates total strains. 



For the combined stress/pore pressure problem, the intergranular 

stress are related to the pore pressure by 

W ■ {*] - Mil (A.7) 

where Iff") are the total stress in the body defined by 

{cr}--{(rr)<r6)crä)rr^ (A.8) 

[^■\  are the effective or intergranular stresses and TT is the pore 

pressure.  The vector fl\ is defined as ^1,1,1, Of .  The effec- 

tive stresses are related to the strains through the general stress 

strain relations 

^Mc]i^.^l (A.9) 

where r^j are defined as the nonlinear components of the total 

strain and [c^ is the usual elastic stress strain matrix which, for 

example, can be defined for the axisymmetric problem by 

UM 
(-0  ^  ^  0 

■j       -J      l-i)     o 

0 (A.10) 

and   g »E/(m)Xl-2i0 
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where E is Young's modulus and if  is Poisson's ratio. For relatively 

simple material models (such as The Mises or Coulomb-Mohr plastic 

models) , the nonlinear strains represent the nonrecoverable or 

plastic strain components.  For more complicated material models, 

the vector (fi^j represents a fictitious set of strains required to 

yield the proper stresses. 

To satisfy equilibrium conditions at the element nodes 

with the total stress field within the element, the usual virtual 

work principal is used.  The internal work performed by the stresses 

on a virtual total strain field is defined by 

li M ■ I u«Tl'W w 
(A.11) 

where the integral is taken over the element volume.  The corre- 

sponding external work performed by forces applied at the nodes is 

«FWe* (Su.)'{l^ *(WVVM (A-12) 

where \&^\   are the horizontal force components at each node and 

\R\S\  are the corresponding vertical force components.  Equating 

the internal and external work expressions and making us of the 

definitions previously described, the force components that must 

be applied at each node point to maintain equilibrium with the 

total stress within an element are 
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„ 

tM'L*^mtLbw]Wl-{Q-U^ (Ä■13, 

i 
|     The matrxces [h^, Lfc^, .te. a« the usual elastic .tiff»... 

matrices and are defined by 

r t^ fv WlcUBjl AS/ (A.i4) 

where the subscripts (i^j) take on the values of (u,w).  The terms 

[K]'   [^]   "^resent the correction forces to account for mate- 

rial nonlineanty and are defined by 

KV Il^VLcM«i4V (A.15) 

where again the subscript (i) takes on the values (u,w,.  The terms 

(^!MTC] rePresent the effects of pore pressure on the equilib- 

rium equc7tions and are defined by 

Wl' ( TT LBiVU} AV (A.16) 

in the computer program developed, the pore pressure variation is 

assumed to be a linear one over the element or 

Tr^> hVL^W] (A.17) 
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where the vector \^\  represents the nodal point pore pressures. 

Substituting equation A.17 into A.16 then yields 

"     where     1^1 ' £ ^'(iH^'W ^ 

(A.18) 

(A.19) 

where the subscript i represents both the u and w directions. 

To relate the pore presusres to the node point displace- 

ments (or velocities), seepage effects are considered.  The seepage 

equations are obtained by minimizing the functional (Ref. 8). 

The permeability components ferr, \r.,  ki <^e related to the prin- 

cipal permeability coefficients by 

kr^ sm&^e (fe^-k.) (At21) 

where (R^fe^) are the principal coefficients in two orthogonal 

directions and © is the angle from the I -direction to the r-direction 

positive in the clockwise sense. 

For a particular element, the variation of pore pressure 

over the element is assumed tc be linear or 
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TTCr^v ^V^lW 

bb 

(A.22) 

Substituting equation A.22 into A.20, the functional can be written 

as 

where the matrix [SJ is defined by 

The vector ( j) is defined as the voiume mttgrals 

l^'Ivq^a^ (A-25) 

where Q is the volume decrease per unit volume per unit time. 

The solution to the seepage problem is obtained by mini- 

mizing the functionA with respect to the nodal pressures leading 

to the conservation equation 

or to further condense notation 
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The vector \J^ can ts evaluated hy  considering the volume 

compression of the solids plus that of the water, or 

Q - - \«TVUl ^ p "^ (A.28) 

where Evis the effective bulk modulus of water and th' vector 

(4T|is the total strain rate vector.  The strain rates are related 

to the nodal velocities by 

[^--L^ulUVl^lW (A-29) 

Substituting the above into the conservation equation leads to 

WM •- Lte«.iv\ •• ro'w + [w*iw ,A•3o, 

where [K*]'WLT]L^ 
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•■ Fig. A.l General Triangular Element 
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Fig. A.2 General Rectangular Element 
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Fig. A.3 General Quadrilateral Element 


