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1.0 INTRODUCTION

This report is the first semi-annual report on Con-
tract No. DAHC 19-69-C-0032 with the Advanced Research Projects
Agency entitled "Stress-Wave Propagation Through Earth-Water Sys-
tems". The fundamental objective of this study is to develop nu-
merical techniques to treat the general two-dimensional stress wave
propacation problem through nonlinear earth materials including
the effects of water flow through the earth materials.

Prior to the beginning of this study, a numerical tech-
nique was developed to treat the dynamic wave problem through arbi-
trary nonlinear media (Ref. 5y 6 and 7) without including the ef-
fects of water on the propagation process. This nurerical approach
is based upon the finite element method of analysis and led to the
development of a large computer program (termed the SLAM Code for
identification, the acronym standing for Stress Waves in Layered
Arbitrary Media) to treat either the general axisymmetric or plane
(stress or strain) geometric configuration. The finite element
approacih has keen taken in this development to allow the user a
general flexibility in treating two dimensional problems of rather
complex geometry (inclusions, material layering, complex bounda-

ries, etc.)




advantage can be considered a disadvantage for these cases.

After the development of SLAM Code, various problems of
interest were investigated to determine the effects of material
nonlinearities on the wave propagation process (Ref. 5). In gen-
eral, two types'of problems are of interest when studying dyrnamic
processes through earth media. 1In the first type, the half space
is subjected to high intensity pressure loadings caused by high
energy explosions. The resulting ground shock effects are hichly
transient and are characterized by relatively short duration shock
waves of high strength. Of particular interest for this problem
is the rate of decay of the shock front as it moves through the
ground. Clearly, nonlinear properties of the material signifi-
cantly influence the decay of the shock strength since large non-
recoverable volume changes can decrease the peak pressures of the
shock front. 1In the second problem type, the half-space is sub-
jected to long duration low intensity vibratory type loadings as-
sociated with earthquake motions. Again nonlinear properties and
volume changes of the earth material significantly alter the char-
acteristics of the motion histories sustained at the surface of
the ground.

In both of these problems, the stress and motion histo-
ries sustained at any point in the ground are significantly influ-
enced by the nonlinear characteristics of the materials and the
associated volume changes that occur. However, for real problems
of interest, the soil/rock nedia ofte: contains entrapped pore

fluid which, due to its relatively high stiffness, will delay these
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volume changes from occurring, the amount of the delay being con-

trolled by the imperviousness of the earth material to water flow.

Thus to seriouzly treat the time depeadent response of earth media,
the effects of pore water must be suitably taken into account.

In the following developments, the effects of pore water
are included in the finite element analysis of SLAM Code with the
eventual goal of treating the complete dynamic process. In the
first effort presented herein, only the quasi-static problem is
considered; that is, inertial effects are neglected. The problems
of concern then are limited to (time-dependent) two dimensional
consolidation situations including material nonlinearity effects.
This course has been taken as a first step on the route to the
complete development. The analyses and associated computer code
developments can then be checked or compared with known solutions
already available. At the end of this comparison phase, the inclu-
sion of inertial effects can then be completed and solutions ob-

tained for the various wave problems of interest.




2.0 GOVERNING SYSTEM EQUATIONS

In Ref. 1, the derivation of the system of equations
governing both the equilibrium of the nodes as well as the pore
pressure seepage condition (based on the two-dimensional Darcy's
Law) were preserted in detail. These relations can be written
symbolically in matrix form as

(a) Equilibrium:
[FJ (koo J{o + Lot (o) - (R
(R L) ko] {0} - TR
(b) Seepage Flow:

()= (R (R T EA + 1)

(1)

(2)
In equations 1, the vectors {Fu\ and {Ed} are the horizontal
(W-direction) and vertical (w-direction) forces applied at the
nocie points. The matrices Kow '’ Xuwr Kyur Kuw are the usual elastic
stiffness matrices and are used to compute the elastic components
of the forces developed at the node points due to relative dis-
placements of the element nodes. The vectors {u\ and {u% are the
horizontal and vertical displacements of the nodes of the mesh,
while the vector {n% represents the excess pore pressures developed
at the node points. The matrices []i;land [}u;]then convert the
excess pore pressures developed a*+ the nodes into equivalent node

point forces.

The forces at the node points,{F@\ and {R“}, have two

components, namely,

e E—

T
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where &FW\ [ &Fl:‘} are the horizontal and Vertlcal Components of

(3)

any forces applied to the nodes (from concentrated loads or pres-
sures applied to specific surfaces in the problem). The forces
&F:\ and KPﬁ} are the fictitious correction forces that are ap-
plied to the nodes to account for any nonlinearities in material
Stress-strain behavior (or deviations from the elastic case). For
completeness of this report, the formulation of the matrices are
presented in Appendix l.

Equations 1 and 3 then represent the equilibrium of total
stresses at a point in the half-space. Equation 2 represents the
equation controlling the rate of seepage through the body and is
obtajned from parcy's Law. The Matrix [H] is dependent upon the
coefficients of permeability of the earth material (as well as
properties of the finite element confiquration used) and the vec-
tors {l.A)] and {U.u'\ represent the horizontal and vertical node point
Velocities.

The vector {P\ represents the rate of volume change of
the fluid associated with each node point. For incompressible
fluid, these components are zero for interior node points (all
fluid that flows into an element Must flow out) s while for some
boundary Node points (for which the excess pore pressure is zero),
these components indicate the volume of water f£lowing out of the

nodes. For compressible pore water (due to the fluid compressibility

—

s
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itself or entrapped air), these components indicate the amount of

volume change undergone by the fluid (see Ref. 1).

2.1 Solution Procedure

At each node point (except at boundary nodes where either
displacements and/or excess pore pressures are specified) , three
unknowns must be determined at any instant of time, namely the two
node displacements (w and w) and the excess pore pressure ().

The solution is then marched out in time in a step-by-step fashion.
The integration procedure used to obtain the numerical results to
be presented is based on a simple linear velocity approximat.ion

during a "small" time step or

({Liq M i\\ (4)

where X; represents a displacement at time 1, X, the displace-
ment at the previous time, ii and iiﬂ represent the corresponding

velocities and At is the time increment between -t and 1 . Solving

equation 4 for the current velocity

. 2
R T N TRY T8 (5)

Substituting equation 5 into equation 2, the seepage

equilibrium equation can be written as

(6= - (R ) - (R T fen - LRI (6)
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where the vector {Gil is defined as
{GL\ ‘A A": ({?L\ * LEu]T{&"L-\ *'Z?-:E b\(_\}

+ {wa&wi-\ ¥ fi: ur;_,} )

(7)

The subscript i in equations 6 and 7 represents the current time
and (- represents the previous time. At the current time, then,

the system of equations to be solved can be written as

r F: F:-‘il [ Rl&k& kuu‘ -_klk ( l&
G i Ok - T‘I - T’-Ir - ‘% H ] T

or

CE 1) = D )

The matrix [K] of equation 9 is symmetric, and the usual solution
procedures can be used.

Considering an elastic porous material, at a particular
time, the effective force vector of equation 9 is known. The ap-
plied loads are specified at the current time (Fa ’ Fg ) and the
force component G can be computed from equation 7 since the solu-
tion from the previous time step is known (obviously, the solution
must start from a time when the initial conditions are specified).
The unknowns ( X{of equation 9) can then be dbtained by, say, a

simple elimination technique. The solution at the following time
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step can then be obtained using the current solution as input, etc.
In this fashicn, the solution is marched out in time.

For nonlinear material behavior, this process has to be

N
w ’

modified since the nonlinear correction forces (F Fm.) of equa-
tion 8 are also functions of the current displacements. To over-
come this situation, a modificaiion of the above procedure is nec-
essary. An initial trial solution is first obtained by using ap-
proximate values for these correction forces (usually the forces
from the previous time step). An iteration procedure is then super-
imposed at each time step to check the adequacy of the trial non-

linear force correction terms.
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3.0 NUMERICAL RESULTS

With the developed computer program, numerical results
were generated for several soil configurations similar to the usual
soil tests, consolidation and triaxial compression. The first set
of data assumed elastic soil behavior, since for these problems
analytic solutions are available or can be easily developed for com-
parison purposes. The first nonlinear soil model investigated made
use of a Coulomb-Mohr elastic plastic modei based on the concepts
of the theory of plasticity.

Although this model is often used, it is not adequate for
modeling stress-strain behavior (except in a crude sense) and would
be of gquestionable value when studying pore pressure dependent prob-
lems. A more detailed soil model was then investigated which ade-
quately predicts stress strain bezhavior of a particular sand sample
and was developed by fitting the parameters of this model to avail-

able experimental data.

3.1 One-Dimensional Elastic Consolidation

The first problem investigated was, naturally, that of
the classical one-dimensional consolidation of elastic material.
The analytic solution available for comparison is the standard
Terzaghi solution (Ref. 2). The problem parameters chosen for the
investigation are shown in Figure 1. The computed settlement-time
history at the top of the soil surface is shown in Fig. 2 and com-
parisons made with the exact analytic solution. The excess pore

pressures developed at the bottom of the layer are shown in Figure 3

I L ™
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while those at a point nearer the surface are shown in Figure 4.
Again comparisons are made with the exact solution and in all cases
they show excellent agreement. The pore pressure distribution at
various times through the layer is shown in Figure 5. Since the
pore pressure is assumed to vary linearly within a given element
the distribution curves are piecewise linear. If in the actual
problem the pore pressure variation is sharp, smaller element sizes

must be used to suitably approximate the solution.

3.2 Triaxial Elastic Soil Configuration

The second model considered was the triaxial soil con-
figuration shown in Fig. 6a. The soil model was considered to be
elastic and a 50 psi vertical pressure applied at the initial or
zero time. The finite element model used is shown in Fig. 6b and
consists of 28 rectangular elements to represent the upper quarter
of the triaxial sample. The elements are thus axisymmetric or ring
elements.

To obtain the analytic solution, it was assumed that
strain conditions in the sample are uniform. The initial pore pres-
sure developed in the sample (prior to drainage occurring) 1is found
from the following analysis. The volume change per unit soil volume
for the elastic soil 1is

-

AV = .

[5”69 *Eg] (10)

where the barred stresses represent the intergranular stresses, and
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E and ? are tre elastic modulus and Poisson's ratio, respectively.
Since no seepage occurs during the initial conditions, the volume
change is zero or

Ty

- (Tr +To) (11)

In addition,

Ep= O-Q‘

..é

where p is the excess pore pressure and Q,. is the vertical applied

stress. Combining equations'll and 12 leads to the solution

a - 24y
Y /3 (13)
LR
The initial compression of the soil sample is simply
72 q,L ,
Arm = M
(*3 = (V+0) (14)

The final stresses in the soil system are obtained when

p is zero (no pore pressure) and

a.r‘(?e"'o

E} = 0 (15)

3
*
L,

R L o YT I, T T
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while the final compression of the soil sample is

q.L

A, : A (16)
u g

where L 1s half the original sample height (height of the finite
element model). The settlement from the initial condition to the
final condition is governed by the one-dimensional consolidation
model (since one-dimensional Seéepage occurs through the top surface
only) with the modification that the definition of the coefficient

of consolidation is

Cpr = (17)

R E
T 3 (1-29)
The solution to the particular problem of Fig. 6 was ob-
tained numerically using a time increment of 0.1 seconds. The pore
pressure distribution along the centerline elements is shown in
Fig. 7 together with comparisons with the analytic solution. As
can be seen, the comparisons are excellent, except during the early
part of the solution. 1In an attempt to uncover the cause of the
discrepancies, the same problem was investigated with differing
time increments, and the results are shown in Fig. 8. As may be
noted by comparing Figs. 7 and 8, the early time oscillations found
for the top element (Element 1) are related to the time step. As
the time step is decreased, the oscillations disappear. A compar-
ison with the exact solution shows that the computed solution is

slightly lower and this can be attributed to the fact that the pore
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pressure profile is assumed to be linear across the element while
the actual pressure profile 1s curved, particulirly at the early
times.

The comparison with the middle element (Element 4) is not
as clear cut, however. As may be noted from Fig. 8, this pore pres-
sure shows an initial increase in pore pressure before the antici-
pated decay occurs, and this increase 1s independent of time incre-
ment of the integration. Since this phenomenon did not occur in
the elastic plane problem discussed previously, it must be concluded
that this variation is concerned with the coarseness of the finite
element mesh i1n the radial direction for this axisymmetric problem.
No further numerical studies have been conducted on thais problem

as yet, however.

3.3 Triaxial Coulomb-Mohr Model

The first triaxial problem including nonlinear material
properties that was 1nvestigated was the same model shown in Fig. 6
but with noalinear properties described by the Coulomb-Mohr yield
condition (Ref. 3). For stresses within the yield surface, the
soil is assumed to behave elastically, where the yield surface 1s

defined by

« T, + [T =k (18)

For the axisymmetric stress condition of interest for this problem,
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\Tl_ a:r*(?;-r&—}
2 (19)

LG -q s Gom &) e (§-F T} v 7

where the bar again indicates lnterygranular stresses. The coeffi-
cients (&, k) are related to the usual strength parameters obtained

from a triaxial test series, ¢ + the angle of internal friction, and

c, the cohesion, by

sne

; V—_é (3‘5"\ 4’)

(201

s«
n

cos¢
(3-s51n¢)

-
1]
vl

For stresses on the yield surface, plastic strain commonents are
determined from the usual normality praincinal.

Prior to investigating this problem nurerically, the ana-
lytic solution for the initial stress condition was obtained (no
drainage allowed). As the vertical stress is slowly increased, the
soil behaves elastically and the previous solution apnlies. Sub-

stituting equations 12 and 13 into equations 19 yields
T=o

!
3)* %%

For plastic yielding to begin, the critical vertical stress must

reach the value




<4
=0k (21)

For applied stresses larger than this critical value, plastic flow
must be accounted for, making use of the normality relation

(Ref. 3), which for this problem becomes

éf : €g = -~ = (&-T)

(22)

1 - =

!P = -+ (& -Q‘r)

€ ol

where («ép, é’ ) are the radial and vertical components of the plas-
re=e¢

tic strain rate vector. The plastic volume change is

3 P

..(l ) c‘é (23)
-f—'-b-d

ayF=

where ﬁ; is the total plastic vertical strain, while the elastic

volume change is

W\ /= =
== >(¢5+2¢r> (24)

[
aVE s (
Knowing that the total volume change 1s zero (no drainage out of

the sample 1s allowed), the solution can be readily obtained for

any applied stresses greater than the critical, or
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3
5 cEEe ) s
§ (13}?: )8 +28)
eg = -é (T -22 3) (25)

The results for a particular undrained case are shown in
Fig. 9. The vertical pressure is applied "slowly" with a rise time
of 50 seconds until it reaches a reak pressure of 50 psi. The par-

ticular properties of the =0il chosen were 1

E=1000 ?SC
v': 0025

T Ny SR DT [N —

e = 20,8 Ppst

T

¢=30°

é

For this condition the critical vertical stress is reached when Q.-
is 43.4 psi and the corresponding pore pressure is 14.45 psi. As
the vertical stress is increased to 50 psi, plastic flow takes place
(along with plastic volume expansion) and the pore pressure reduces
to 11.1 psi. Five computer runs were made for this problem using

different time steps as seen in Fig. 9. 1In each case, the nonlinear
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correction forces in the equilibrium equations were taken as the
value computed during the previous time step. As can be noted,

the smaller the time step, the better the approximation, as expected
As an alternate to this procedure, the nonlinear correction forces
in a given time step can be recomputed by iteration (obtain a trial
solution, computed correction force, obtain new solution, etc.).

For this problem of proportional loading, this procedure is equiva-
lent to using smaller time steps without iteration during each time
step.

After the final equilibrium condition is reached under no
drainage conditions, the drained situation can be achieved by let-
ting the pore pressure decrease to zero.by ailowing drainage through
the top and bottom surfaces of the soil sample. It can be shown
that for this soil model, the decay cf the pore pressure will occur
elastically; that is, the intergranular stress state will move off
the yield surface as the pore pressure decreases, so.that the decay
rate will be as describad in the Previous elastic triaxial solution.

The solutions for thece cases are shown in Fig. 10 where
the vertical intergranular stress is plotted as a function of the
total vertical. strain ‘or various values of the cohesion and for a
fixed value of the friction angle of 30°. If the cohesion is 24.0n
psi or greater, the soil sample always remains elastic. The ini-
tial stress state when a vertical stress of 50 psi is applied and
no drainage is allowed is 63 = 33.3 psi and p = 16.7 psi. When
drainage is then allowed, the pore pressure decreases to zero, and

the vertical intergranular stress increases to the applied stress

W g v



)

(U}

Q

N
V)

N 50 1
(1))

)

|

4

] /G 1
L

9

)

C ok
e >
o1

L

)]

-+

R 2ot
®

il

<4

v

Q -

>

28

Drained
States

pei

0.05 0oe

Vertical S+rain

e ——

Fig. 10 Triaxial Compression Test, Coulomb-Mohr Material

i

e T el g e T owe AN s

TE N PEE T, T NPy

PRI

R




29

of 50 psi. The final state is the same as would occur if the sample
had been tested dry (no pore pressure). If, however, the cohesion
is lower, the initial undrained state causes plastic flow to occur
with the drained condition occurring elastically, as shown. For a
value of cohesion equal to 14.4 psi, the initial undrained state
occurs with no excess pore pressure, and the drained state is the
same as the undrained state. For values of cohesion less than 14.4
psi, equilibrium under the applied loads cannot be maintained. It
should be pointed out that for values of cohesion between 14.4 and
24.0 psi, the dry test will show no plastic flow, while the undrained-
drained sequence will yield plastic strains.

1t is clear then that even for this relatively simple
soil model, the stress-strain behavior between saturated and unsat-
urated soil samples will be different and will be influenced by
the rate of loading (as compared with the rate of pore pressure
decay). To investigate this analytic solution further, the pre-
vious solution was nondimensionalized in the following fashion.

Non dimensionali parameters are defined as
Fa I jL £o
VB L3 sind)

|$Ifiﬂ
) (26)

Pzt (—EH:,_"‘
[Lzsa)

Be* B«

The upper and lower limits of cohesion for which a nonlinear solu-
tion (stable plastic strains will occur) can be obtained for the

undrained case are

s .
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oo (27)
()% m

For any value of cohesion between these limits, the solution
yields

G}f) Qﬂr) P:' é; <'éi')
(%) = P %(%v)

- S _o9 (&
e (& 2v(¢hy] .
eg = -E’-"{(%(\ w)(g@ -g-.fr,}
Gg‘ = ef e‘;

After this initial solution occurs, the addition vertical strain

that will develop as the excess pore pressure is allowed to decay

to zero is

E} = qéf &(\-2»}(%)}

(29)

so that the final strain is the sum of the strains from equations
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28 and 29. The solutions for several parameter variations are shown
in Figs. 11 through 14. 1In Fig. 11, the nondimensional vertical
intergranular stress is plot:ed as a function of the ratio EJ/’E
where Cg is the vertical strain that would occur in the dry state

and is simply

D )
Eb = E? (30)

As may be noted, the difference in limiting values of cohesion for
this problem is relatively small, but the influence on the final
strain is large (ratio of 6.25). Curves are shown for four equally
spaced values of cohesion between the limiting values.

The same solution is shown in Fig. 12, except that the
friction angle was increased from 5° to 30°. as may be noted, the
final strains are much lower than those of Fig. 11, and the associ-
ated plastic strains Occurring during the initial undrained state
are much smaller. This is due to the fact that for the higher fric-
tion angle the Plastic volume expansion is larger than for the
smaller friction angle causing the excess pore pressure to decay
more rapidly as plastic strains develop. Fig. 13 shows the same
results for a still larger friction angle of 450, again showing a
smaller difference in final strains.

The results for a different value of Poisson's ratio
(= 0.25) are shown in Fig. 14 for a friction angle of 30°. As
can be noted, the behavior is essentially different than that of

Fig. 12. This is due to the fact that the elastic volume change

P rp—

e, ——
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during the initial loading decreases as Poisson's ratio increases.

3.4 McCormick Ranch Sand Model

It is, of course, well known that tle relatively simpli-
fied constitutive models, such as the Coulomb-Mohr model, can only
crudely approximate the stress-sirain behavior of real soils. In
order to properly take into account the influence of pore fluid on
soil response, more realistic models must be developed. An example
of such a model was presented in Ref. 4 wherein the parameters of
the model were cliosen to match (as closely as possible) available
experimental data on a particular sand sample, known as McCormick
Ranch Sand. A rather extensive series of triaxial, uniaxial, and
hydrostatic compression tests were conducted and an attempt was
made to fit the analytic model so as to reproduce the available data.

It was found that for the particular parameters chosen
the stress-strain curve during the initial load-unload cycle could
be adequately reproduced for the triaxial compression test (over a
wide range of confining pressures) and for the uniaxial compression
test. The soil model, however, was significantly stiffer under
hydrostatic compression (although the shape of the load-unload curve
was the same) than the experimental data.

The model is based oan the following analysis. The hydro-

static and deviatoric stress-strain components are related by

Sij = 26 €&

10

3K € (31)

R s o o o

B, A
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where ng = deviatoric stress tensor

deviatoric strain tensor

hydrostatic pressure

n -3

volumetric strain = % (& + €+ € )

and are related to the total stress-strain components by
=z &

CS.. (32)

waere (UB, ‘Qi) are the total stress-strain tensors and ig 1s the
Kronecker delta. The dots in equations 31 and 32 indicate the cor-
responding rates. The parameters K and G represent the bulk and
shear moduli, respectively, and are taken as functions of stress
history.

The form used for the bulk modulus 1is:
loading: K_= Ko +K,@ + K, €', for &5>0 (33)
unloading: K, = K4, + KM—?
where the parameters K,, Ky+» Kyv Kguv K, are parameters found by
fitting the experimental data. In equation 33, volume compression
is assumed to be positive. The corresponding form used for the

shear modulus is
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where-f% is a critical hydrostatic pressure (positive in compres-

, ', . . , .
sion and Jz is the second invariant of the deviatoric stresses

(equation 19).
To match the specifac

the following parameters were fo

G, - 8.0 RS(
Kk, 583 ksi
K,s 80 R

Y = 32.4
§,=-18.0 ykst
&, = 400

Z“ = 500,0

The stress-cstrain behavior under uniaxial compression 1S

&r 'P 5?‘
(34)
Lw'f>7'r<
&( 79£'Fc
br P> Pe
(35)

test results for the sand sample,

und to best reproduce all the data:

Go, = 8.0 kSL
Koy = 32,0 bs¢

K * 143

¥ =-10
K, ® 36,000 Rs(

%, - 185 Thsi




shown in Fig. 15 under both initial loading conditions as well as
strain load/unload cycling. As may be noted, the stress-strain
resconse exhibits the characteristic stiffening effect as well as
the nonrecoverable behavior under load cycling. The pressure ranges
shown are higher than normally used but suitable modification of

the data input would convert this typical response to lower stress
ranges of interest.

The behavior under triaxial compression 1s presented in
Figs. 16 to .9 and again exhibits much of the characteristics antic-
ipated for a sand sample. Durina the load/unlcad cycling, the
model can be further improved to reoroduce test data by modifying
the shear m~lulus formulation under reload conditions to better
matck strain behavior with constant load cycling.

The previous data were obtained for the Ranch Sand model
in the dry condition. To determine the behavior with pore fluid,
similar problems were investigated including load cyciing effects.
In Fig. 20, the triaxial response is presented for a consolidated/
undrained experiment with load cycling in the vertical direction
corresponding to the load cycles shown 1in Fig. 18 for the dry sam-
ple. 1In both cases, lateral or confining stresses were maintained
constant. As can be seen in Fig. 20, the effect of pore pressure
is to decrease the axial s.rain increment between load cycles.
That is, in the undra.ned state, the soil model "shakes down" to
effectively a linear model, although strong nonlinear behavior
again takes effect as the apolied load 1s finally increased beyond

the load cycling regime.
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Similar behavior is shown in Fig. 21 where the applied
vertical load is cycled through the complete load range from 0 to
300 psi. This test corresponds to thé drv tfiaxial test shown in
Fig. 19. Again, it may be noted that within a load cycle, pore
pressure effects cause the stress~strain behavior to "shake down"
to an effective elastic state. Of course this type of response
can be modified by changing the definition of the reload shear mod-
ulus as defined by equation 34. A plot of the invariants of effec-
tive stresses during the loading cycle for the triaxial tests is
shown in Fig. 22, for both the consolidated undrained ang drained
tests. As may be noted, J, is constant during the undrained test
indicating that the bulk modulus (equation 33) is constant with this
rmodel. Therefore the cycling resr “nse will be completely dependent
upon the variation in the deviatoric response, or the shear modulus
behavior. The cycling response will be essentially elastic as long
as the shear modulus is maintained as the unloading modulus within
the cycling load range.

Two other triaxial experiments were conducted where the
samples were consolidated under a confining stress of 400 psi,
loaded vertically in the drained State to 630 psi and then further
loaded cycled between 575 psi and 690 Psi in both the drained and

undrained states. A comparison of the results is shown in Fig. 23,

in which anticipated responses were determined.
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4.0 SUNMARY

Numerical results presented herein fall into two catego-
ries. The first set of data presented are concerned with determin-
ing the adequacy and characteristics of the numerical solutions for
combined stress-seepage. These results indicate that the formula-
tion and the associated computer code developed to treat these prob-
lems are complete and debugged. The final set of data is concerned
with attempting to evaluate the adequacy of some nonlinear soil con-
stitutive models in predicting soil response to load. The simple
Coulomb-Mohr model is clearly inadequate except for some simple
problems where strength alone 1is of interest. However, for tbose
problems where stress-history is significant, the Coulomb-Mohr model
must be judged inzdequate except possibly to judge gross strength
behavior.

The McCormick-Ranch model (or types similar to this) are
of course a significant improvement since they will at least repro-
duce some known experimental responses. It can be anticipated that
they would be adequate for various static problems cf interest or
for those with only one or two load unload cycles. However, these
models must be judged inadequate in predicting responses under
cyclic loadings such as those encountered in seismic problems.
Further experimental data must be developed for loading situations

with many cycles.




51

5.0 REFERENCES

1.

Cc. J. Costantino, "Stress Wave Propagation Thrcugh Earth-Water
Systems" Interim Report No. 70-409-1, The City College Research
Foundation for Advanced Research Projects Agency, Contract No.
DAHC 19-69-C-0032, March, 1970.

D. W. Taylor, "Fundamentals of Soil Mechanics," John Wiley and
Sons, Inc., 1948.

D. C. Drucker, W. Prager, "g0il Mechanics and Plastic Analysis
or Limit Design," Quarterly of Applied Mathematics, vol. 10,

1952.

I. Nelson, "Investigation of Ground Shock Effects in Nonlinear
Hysteratic Media; Report No. 2, Modeling The Behavior of a Real
Soil," U. S. Army Waterways Experiment Station, Report No.
s-68-1, July, 1970.

Cc. J. Costantino, »rwo-Dimensional Wave Propagation Through Non-
linear Media," Journal of Computational Physics, August, 1969.

C. J. Costantino, "Finite Element Apprcach to Stress Wave
Froblems," Journal, Engineering Mechanics Division, 7 SCE,
April, 1967.

c. J. Costantino, "Stress Waves in Layered Arbitrary Materials,"
Air Force Space and Missile Systems Organization Report No.

0. C. Zienkiewicz, "The Finite Element Method in Engineering
Science," McGraw-Hill Book Co., 1971.




= s

13

52

APPENDIX A

FORMULATION OF SYSTEM EQUATIONS

In the following presentation, the analysis will be car-
vied forth for a typical element of the free-field mesh. The dis-
placement field for the element 1s assumed to be linear and the

displacement of any point within th: element can be ~.ritter as
'

“rip) = {a}{«)
[

w63 = {9} (g}

(A.1)

waere (W,w) are the horizontal and Vertical displacement components
and %%}, {@} are each a set of arbitrarv coefficients, with the
number of coefficients equal to the number of element vertices to
provide the Proper number of degrees of freedom for the element,

The vector {%} is formed by a proper set of element func-
tions and depend upon the element type being consicered. For a

typical triangular element (Fig. A.1) this vector is

{aY- {1 ra] (3.2

while for a typical rectangular element (Fig. A.2)

INULT RS a9
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For a general quadrilateral element (Fig. A.3) the vector {%} spec-
ified by equation A.3 is used in the transformed coordinate system.
By substituting the coordinutes of the nodes into equation A.1l,
the coefficients {g}, ié\ can be replaced as unkncwns by the node
point displacement components, or

wing) {al' LD]{«l

(Ar.4)

wina) * {9y'(n] {wr]

This simple displacement function assumed for the element allows
for determining any interior displacement in terms of the nodal
displacements and ensures that the displacements between any two
adjacent elements will be continuous for any arbitrary specifica-
tion of nodal displacements. Higher order element formulations
are also available to satisfy the abcve criteria.
The strains developed at any point within the element

can be determined from the strain displacement relations for the

particular configuration, or

{ET‘& ' [B‘*“q + [ By, {wl (A.5)

where {QT} is the strain vector with components
T T T v
{e"}. {6,-)6., €a, % | (A.6)

The superscript T in equation A.6 i1ndicates total strains.
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For the combined stress/pore pressure problem, the intergranular

stress are related to the pore pressure by

(o} = {ol -]

where iﬁ} are the total stress in the body defined by

&ﬁ} are the effective or intergranular stresses and T is the pore
pressure. The vector {IX is defined as {1, 1,1, O}. The effec-
tive stresses are related to the strains through the general stress

strain relations

(7). [e]{em- e} (A.9)

where {E“tare defined as the nonlinear components of the total
strain and [C] is the usual elastic stress strain matrix wh.ch, for

example, can be defined for the axisymmetric problem by

T B VR VS
LBl YooY Y O
[C] v ) =) ©

o o o© (n_-%lJ> (A.10)

and & 2E/C40)(1-29)
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where E is Young's modulus and » is Poisson's ratio. For relatively
simple material models (such as The Mises or Coulomb-Mohr plastic
models), the nonlinear strains represent the nonrecoverable or
plastic strain components. For more complicated material models,
the vector %E“} represents a fictitious set of strains required to
yield the proper stresses.

To satisfy equilibrium conditions at the element nodes

‘'with the total stress field within the element, the usual virtual

work principal is used. The internal work performed by the stresses

on a virtual total strain field i1s defined by

JW, = _(v iéeT}’{cﬂs dV (A.11)

where the integral is taken over the element volume. The corre-

sponding external work performed by forces applied at the nodes is
{ r N
SWe = {Su} {'RU,\; + ié""'k {-\2‘& (A.12)

where &Ru} are the horizontal force components at each node and
{Rw} are the corresponding vertical force components. Equating
the internal and external work expressions and making us of the
definitions previously described, the force components that must
be applied at each node point *o maintain equilibrium with the

total stress within an element are
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(R = oy + Lot - (R - (R

. (A.13)
{RGY = [ R Lo} # Lo} - {02} - Rf

The matrices [hk;}‘Lhuwa' etcC. are the usual elastic stiffness

matrices and are defined by

UQ:_}] . rv LB;]'[C]L'BJ] AV (A.14)

where the subscripts (1,j) take on the values of (u,w). The terms
{Rﬂ, {E:_} réorresent the correction forces to account for mate-

rial nonlinearity and are defined by

{r} - J;[‘B;]'Lcl{e”} WY (A.15)

where again the subscript (i) takes on the values (u,w). The terms
{?E},{T{Z} represent the effects of pore pressure on the equilib-

rium equations and are defined by
P /
i?;}* };TTLB;]{I} AV (3.16)

In the computer program developed, the pore pressure variation is

assumed to be a linear one over the element or

Tny) s {4}'LD] () (Be17)
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where the vector'{ﬂ% represents the nodal point pore pressures.

Substituting equation A.i17 into A.l6 then yields

{'E:} ' Y__—k;._]{‘“'} (A.18)
wmere (Rl [, (BAT0}gY (00 av .19

where the subscript 1 represents both the u and w directions.
To relate the pore presusres to the node point displace-
ments (or velocities), seepage effects are considered. The seepage

equations are obtained by minimizing the functional (Ref. 8).

N - ( g {\er( )'+2 hré( Xaé ‘é\\Bg)J'WQ}A\/ (2.20)

The permeability components hrr’ hré’ bé} are related to the prin-

cipal permeability coefficients by
Rer = R, S0 + ;08?8

hra = SinG Ccs (\?z.' k.) (A.21)

hyy = R cos® + Ry S8

where (h‘,ht) are the praincipal coefficients 1n two orthogonal
directions and © is the angle from the | -direction to the ®f-direction
pesitive 1in the clockwise sernse.

For a particular element, the variation of pore pressure

over the element is assumed to he linear or

R LS ikl e B -




Tn) {8} Lol{m (A.22)

Substituting equation A.22 into A.20, the functional can be written

as

-~

ne eIt - (o)) (A.23)
where the matrix [S] is defined by

, Py ; b
"J j‘ hrr or s%_é*Zhé 3‘ é +bé BEL Q—%J‘% (A.24)

The vector’{J} is defined as the volume integrals

{J‘} > SV Q&aﬁ 4V (A.25)

where Q0 1s the volume decrease per unit volume per unit time.
The solution to the seepage problem 1s obtained by mini-
mizing the functionfl with respect to the nodal pressures leading

to the conservation equation

1'tsIel {m) « (s (A.26)
or to further condense notation

Lwl{m} = 008

(A.27)
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The vector iJ} can. be evaluated by considering the volume

compression of the solids plus that of the water, or
s v)! \
q=- (& " (A.28)

where E, is the effective bulk modulus of water and thr vector

&é*}is the total strain rate vector. The strain rates are related

to the nodal velocities by
iéﬂj : (_'BASLG.\ v B0 (A.29)
Substituting the above into the conservation equation leads to
nlimbem L) (o - (R )0+ Lot (8.30)
where [H"] » (7] 'LT]\_‘D-J
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Fig. A.l1 General Triangular Element
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Fig. A.2 General Rectangular Element
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