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NON-FPARAMETRIC ESTIMATION OF LOCATION

by
M. V. Johns, Jr.

1. Introduction.

The problem of "efficiency-robust” estimation of location for
symmetric contiruous distributions has been treated by a number of
authors (as noted in the text below) employing various optimality
criteria. The present paper develops & sequence of estimators, indexed
by an integer valued parameter k, exhibiting tre following rather
strong notion of asymptotic "efficiency-robustness”’: For any k the
corresponding estimator is consistent and asymptotically normally
distributed (as the sample size n increases) for any F in a large
subset 3 of the class of symmetric continuous distributions. Further-
more, for any € > 0 the variance of the limiting normal distribution
excee(.3 the Cramér-Rac bound for F by no more than ¢ uniformly for
all Fe®, for each sufficiently large ¥. Thus, for large k the
corresponding estimator is (nearly) Best Asymptotically Normal (gAN)
for al? FeF.

This concept of optimality is distinguished from some others des-
cribed below in that the class 3 is "non-parametric” and indeed con-
tains the simple parametric families used in other definitions.

Of greater significance is the fact that the asimplest non-trivial

estimator in the proposed sequence (corresponding to k = 2) exhibits

L Seehemininsehnatt hidbidentANTine Al il

e ot g L OAAS 8 S i A+ o e et 0 T et




quite high efficiencies for small to moderate sample sizes (n = 10,20,L40)
for a collection of diverse distributions consisting of the normal, the

Cauchy, the logistic, the double exponential, and the 104 contaminated

normal. These efficiencies relative to the best linear unbiased estimates
(BLUE) based on order statistics were obtained by Monte Carlo experiments.
The estimator seems slightly less efficiz-t for short-tailed distribu-
tions compared to some competitors designed particularly for use with
such distributions, but it does considerably better for the long-tailed
Cauchy case. The asymptotic efficiency of the estimator may be computed
by hand without difficulty.

This estimator is no more difficult to compute than, say, a one
sample t-statistic, and the calculation yilelds as a by-product a good
estimate of the variance of the location estimator so that approximate
confidence intervals and tests may be constructed. The author believes
this computational simplicity to be one of the most important features
of the proposed estimator since it enhances the possibility that it
may be found useful by statistical practitioners dealing with actual
data. Previously proposed procedures exhibiting comparable efficiency-
robustness require complex arithmetic manipulations and some involse
table lookups or matrix inversions. Considerations of simplicity have

previously motivated interest in very easily computable estimators such

as trimmed or Windsorized means, symmetric linear combinations of three
order statistics, etc. (see, e.g. Gastwirth and Cohen [7]). Such

estimators do not exhibit as broad a spectrum of efficiency-robustness
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as those considered in this paper, nor are they associated with natural
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non-parametric estimates of their variances.

The various epproaches to efficiency-robust estimation may for
convenience be classified into two catégories: (1) those achieving asymptotic
optimality for each member of a specified finite or parametric family
of distribution "shapes™ (with unspecified scale parameters), and
(2) tnose achieving asymptotic optimality for all members of a non-
parametric family of distributions limited only by regularity conditions.
Examples of the first category of estimation procedures are given by
A. Birnbaum and his associates in [2], [3], [4], J. Gastwirth and
H. Rubin [6], R. V. Hogg [8], and V. Mik€ [10]. In these papers *.e
estimators depend explicitly or the parametric collection.of distribu-
tion shapes chosen and "optimality" means the asymptotic achievement
of the Cramér-Rao lower bound for the variance of the estimator, or the
maximization of the minimum variance over tue specified family of dis-
tribution shapes,or admissibility with respect to the family. 1In sall
of these cases it is reasonable to expect (and has to some extent been
demonstrated) that the proposed estimators will be robust in the sense
of performing well for distributions which do not differ too much from
the families in terms of which they are defined. A related approach
uses the data to select one estimator from a small specified collection
of candidates. Such procedures have been proposed by P. Switzer [i2]
and L. Jaeckel [9].

The approaches falling into the second category mentioned above
are inherently more ambitious in their goals since they aim at asymp-
totic optimality for all distributions in non-parametric families

constrained only by regularity conditions. Estimators are regarded

3




as optimal if they achieve the Cramér-Rao bound asymptotically or 1f

they are BAN (or nearly BAN). The possibility of achieving this kind
of uniform efficiency was discussed as early as 1956 by C. Stein [11].
Recent proposals for such uniformly efficient estimators have been
made by P. K. Bhattacharya [1], C. Van Eeden [14] and K. Takeuchi [13].
The first two of these papers suggest estimators involving pointwise
estimates of density functions and are likely to require rather large
samples to be effective. Takeuchi's ingenious sequence of estimators
(indexed by an integer k) is not only asymptotically optimal for
large values of Kk, but shows good small sample efficiency-robustness
(for small values of k). A natural non-parametric estimate of the
v;riance of the estimator is also provided.

The estimators proposed in the present naper fall into the second
category described above and (like those o. Hogg [8] and Takeuchi) they
are "quasi-linear" in that they are based on linear combinations of the
order statistics with the optimal coefficients being estimated from
the sample. The basic statistic from which the proposed estimators are
developed consists of a linear combination of the order statistics with
the coefficients constrained to be equal within each of several sets
corresponding to blocks of successive order statistics. Thus, the
number of distinct values assumed by the coefficients is some number k
which i1s less than the sample size n, and one can hope to use the
full sample to approximate the k optimal values for the coefficients.
This type of statistic does not seem to have been considered before in
the literature although it is similar in spirit to linear combinations

of selected sample quantiles, and such statistics have been discussed

&
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&t length in many papers. The proposed gsstimstion scheme and its sy~
tetic yroperties are detailed in Section 2. In Bection 3 the special
case k =2 1s diseussed amd seme Meute Carlo resulta ars given. The
Proef of the theerem stated in Sectien 2 is outlined iu the Appendix.

2. The Prepesed Estimster.
let xl,xz. ,xn represent independent identically distridvuted

*hservations with commwn &istributien function Fy(x) = Mx-0) vhere

? is a mesber of & family J of symmetric continuous distributiens
ssAisfying certain regularity cenditiens described belew. Thus, &
represents the median of ¥, . Lat S TS A ernt the
ordered xi'Q (i.e., the "order statistics"). Suppose that n i@

even and let Ton*Try’ ***Tyy, P & Pertition of the :I.ntomr: 1,2,-+,0/2,
Where T, ~consists of t, successive integers, so that 1;:-1- -2 .

We first consider estimators of 9 of the ferm

: 1 k
(1) [ & -s:.'a': nz ¢ 8, . 9 ,‘Qwe

B, = J(Yn+Y )
in Je'l'mj n-J+1
and the ":‘h:" are constants satisfying
. n
(2) ®intin ~3 -

i=1

Osnditien (2) insures that ﬁn is a location invariaant estimator. Note

that the tOn smallest and largest order statistics have been "trimmed"

5




from the estimator ekn .

simpler formulse than would otherwise be possible. Suppose further that

This permits the development of substantially

cin -p ci, i = l,2,"',k, and tin/n —’Pi, 1 = O,l,2,'“,k, as n — ow,
. ‘ k
where for each i, p, >0 and Y ; =% . Then we must also have

' i=0
from (2)

k
1

(3) Legp; =cp' =3,

i=

vhere c = (cl,cz,---,ck) and p = (pl,pe,"',pk) . Under these assump-
tions and the regularity conditions on F given below, for fixed k
the sequence \/n (ekn-e) is asymptotically normally distributed with

mean gero and variance 012; given by

2 % %
(%) o, =2 c,c.a, . = 2cAec' ,
k 120 520 175743

vhere A = ((ai:j))kxk and the a,.,'s are defined as follows: Let

1J

¢, be the (po+pl+-u+p:.L quantile of F, i.e., F( gk) = Dy*Py*te By

for 4 =1,24 -**,k-1, and §k=0 . Then for 1 =1,2,--°,k

£y 3
8y = 2gi f F(x)dx - 2] i.xF(x)dx, and
1-1 €1

(5)




"The asympiotic normality of ekn and the expression for ci

follow
directly from Theorem 3, page 63, of Chernoff et al. [5].

At this point it is clear that since the é.i d's are invariant
under shifts,one could estimate them by replacing the § i's by their
sample analogs and F(x) by the sample c.d.f. Fn(x) . One could

then choose the ci

and use the resulting c

‘s so as to minimize (4) using the estimated aij's

4'8 in ekn . Such estimators would doubtless
be (nearly) BAN for all Fed for sufficiently large k and small Py
(the trimming proportion;. The computation of such estimates would,
however, be quite complicated and the minimization process would require
the inversion of a kxk matrix. We proceed, therefore, to introduce

some simplifying approximations.

For 1 =1,2,-°°,k 1let

i-1
1

(6) d =& -84 @nd by = d)=:Op;l * 5P
Let

bl’bl’”.’bl
(1) o | 02

bl’b2’“"bk
and

T




where the aij

Then if © = (31,22,.--,'Ek) =(cld1,c2d2,---,ckdk), and

2 = (p,/d),p,/4,,° 2 /d,), we have from (4), (7) and (8)

‘s are given by (5).

(9) O'i = ¢(B+R)e' ,

and condition (3) becomes

(10) P =

(M

It is shown in the Appendix that for the cases of interest the contri-

bution of GCRe' to 02 is negiigible for large k . Hence ve may

k

minimize o° approximately by minimizing c¢Be' subject to condition (10).

k

A matrix of the form (7) is non-singular if the bi's are distinct,

and a straightforward Lagrange multiplier argument establishes that the

vector ¢ minimizing cBc' subject to (10) is given by ¢ = %(53'15!)-13-15,,

and the corresponding approximate minimum of ci,
given by ;‘i = 20Bc' = %(SB-ls')ul . Now letting e = (el,e

where e, = d;lx (ith component of 3'15'), we may write

denoted by

(11)

and recalling that ey = Ei/d , the (approximately) minimizing vector

¢ 1is

2,---,

e

is

)

)

ol w0 =e A0 O G =N =R A e P




B s v

¢

The matrix B given by (7) is a Green's matrix and hence readily invert-

ible ylelding the Jacobi matrix B L = ((‘:>i~"))kxk vith

i,i+l _ bi+l,1 _ 2 , 1i=1,2,°°,k-1,

b
P;*Pi4g

11 lpgthe, 2o,

(13) ~ s
@po+p1) ( P,+P,)

i1 2Py _y*hpiepy

b =
(P P ) (Ry*Py ;.

s 1 =2,3,°",k-1

kk 2

b s
Py.1*Py

s

and all other bil = 0 . Thus the components of the vector e are

2p, (2p.+2p,+p, ) 2p,
1\ =¥ 7P 1 2 1

1 ~\(p,*p ) (P *D,) E B T

e

1
( L
(14) e 3

1

r 4
) tepi(pi-l+‘)Pi+Pi+l) 1 (Epi-l ) 1 _ (2P| 2
L -

(Py 2Py )(Ry*Py 50 & \Py3*Py |4y \Py*Py ] Ty |

1=2,3-"",k-1,

\
R B S O S U R

ko \Pk-1tP di Pt ) Y%

Note that for the special case Py =Py = *-* = Py the formula for

ey for 1 =2,3,°°°,k-1 simplifies to

(15) l1(2 1 1

iw&:’«mu;u- PR




The only quantities appearing in (14) which depend on the distribu-

tion F are the di's vhich are differences of quantiles which may be '
effectively estimated by their sample analogs. For each i 1let ?i “

be the sample quantile corresponding to ¢ i and let ﬁi = 'g‘ g - Ei-l

(More explicit formulas for the ai's are offered in Section 3). Let

A

€ be the vector whose components 'e‘:i, i=1,2,°°*,k, are obtained from

(13) by replacing the d;'s by 4 's . Then following (11) and (12)

1
let

(16) &, =™, ena

(17) -8 . \

The proposed estimator of 6 (by analogy with (1)) is

(18)
th A
vhere 81 is the 1 component of € .
It has been assumed so far that n is even. The case of n odd

may be treated in various ways, perhaps the simplest of which is to

delete the sample median from the order statistics and compute £ on

the basis of the even sample size n-1 . The coefficient Sk should

then be modified by multiplying by t /(t +1) and the sample
k,n-1 k,n-1

median should be added to S Expression (18) may then be used R

k, n-l '

with the 8§ 's replacing the Sin's .

i,n'l

10 i




A
To facilitate the discussion of the asymptotic behavior of 6 we

n
shall assume that for each Kk,

(19) ‘Pl =p2="'=pk=k-l(%"'Po)=qk)

i.e., each Sj_n for 1 >1 is a sum of (approximately) 2nqk successive

order statistics.

For any continuous, twice differentiasble symmetric distribution

F(x) with density £(x), the Fisher information for a location parameter

when the npo smallest and np 0 largest order statistics ha.wie been

deleted ( "trimmed") from a sample of size n is given by

o
(20) X(F,p,) = 2 fgo“'(x))e(f“‘))'l“x + 2201 )n;

where, as before, F(go) =P, (see, e.g. [5]). The untrimmed {full

sample) case is obtained by setting Py =0 (¢ =), and eliminating

0
the second term on the right of (20). The Cramér-Rao lower bound for
the variance of any estimator of location based on a trimmed sample of
size n 1is then (nI(F,po))d .

We now define more precisely the family of distributions for which

the proposed estimator is shown to be asymptotically (nearly) efficient.

Definition. Let & be a family of symmetric continuous distribution
functions F(x) with corresponding density functions f£(x) = F'(x)

such that

e o i




(a) f{x) and its first three derivatives exist and

are continuous with f£(x) >0 for all x, and
xf(x) 20 a8 X -+t «,
(b) f£(x) and its first three derivatives are uni-
formly bounded for all Fe&,
(e) I(F,0) given by (20) is finite and uniformly
bounded away from zero for all Fed, and
(d) for each FeF the conditions of Thecrem 3 of
[5] are satisfied for estimators of the form (1).
The asymptotic behavior of the proposed estimator is summarized
in the following
Theorem: If 61:n and 'c‘rfm
and (19) is satisfied with the trimming proportion P, held fixed,
then for any ¢ > 0 there exists a k€ such that for each k > ke’
for all Fe% the sequence ,/n( ’e\kn"gn) is asymptotically normally

distributed with mean zero and variance ri(F) s 88 N - «, where

2 1
(21) Tk(F) < W + €

and furthermore, with probability approaching one as n — o,

(22) & -2 <e .

' The proof of the theorem is deferred to the Appendix.

are given by (18) and (16) respectively'

-

-h




If the trimming proportion P, is allowed to decrease we have the

following immediate
Corollary: Under the conditions of the theorem, for any ¢ > O, there
exist a k€ and p_ such that if the trimming proportion Py = P
then for each k > ke’ for al1 FeF the conclusions of the theorem
hold with I(F,po) replaced by I(F,0) in (21).

Thus, for a suitable choice of k and po one can make akn as
near to being BAN a&s desired, uniformly for all FeF .

The actual family F for which the results of the theorem and its
corollary hold is larger than that described in the above definition.
It is shown in the Appendix tha* these results hold for the double expo-
nential distribution (which is not in F as defined), and by implication,
for other distributions having a finite number of simple discontinuities
in £ and £

One can conclude from the thecorem thet for any particular Fe 7,
there exist sequences knf « and pOn‘ 0, a5 n - x, such that the

corresponding sequence of estimators gk n (using trimming provortions
)
n

pcn) is BAN for F . Also Gi 0 is & consistent estimator of (I(F,0))"
n)

In order to assert the existence of a single pair of such sequences

1

yielding a sequence of estimators which is BAN for all Fe&F it is neces-

sary to further restrict ¥ so as to insure uniform convergence to
normality in the theorem cited from (5]. Questions concerning the rate
behavior of the kn and pOn sequences necessary for this uniform BAN
property can also be raised. These questions seem somewhat uninteresting
in view of the results of the next section wherein it is shown that very
small values of k suffice to produce good asymptotic efficiencies as

13




well as good small sample performance.

3. The Cases k =2 and k =3. Asymptotic efficiency-robustness is

only a theoretical curiosity unless it is accompanied by satisfactory
per;t‘ormnce for small and moderate sample sizes. The estimator 81::1
given by (18) reduces to the familiar trimmed mean for the case k =
80 we concentrate on the next simplest cases where k =2 or 3, with
. particular emphasis on k = 2.

It is convenient to introduce certain notational simplifications

appropriate to the case of . small k and n . Referring to the quantities

involved in (1), let r = Yyt 8=ty =ty = = tk-l,n’ and
t =1;lm =§-r- (k-1)s . Thus, for k =2,
Z (YJ n+l- j i
..... §-
T+s
(23) S),n = J=§+1(YJ+Yn+l-J) , .
néz
S2,n ~ J=NS+I(YJ+Yn+1-J) . oy
We now present explicit formulas for the estimates ai of . #
di = gi - 51-1 . Any sultably defined sample analogs of gi and 51-1 |
will suffice to define 31 but since ¢ i represents the quantile which v
is the upper endpoint of the quantile range corresponding to the sample !
quantiles contributing to Sin and the lower endpoint of the corres-
ponding range for S:l +1,n it seems reasonable to choose for Ei the .

midpoint between the largest order statistic contridbuting to Sin' and b
e

14




the smallest contributing to Si+1 n° This leads to estimates di
)7 ,
given by
d, = f (v, +¥ Y ¥
29 TR Yrrie M reistn n-r-(i-1)s "n-r-{i-1)s+l
(2h) - Yr+(1-l)s-Yr+(i-l)s+1_Yn-r-is-Yn—r-1s+l)’ 1=1,2, .+ 05k-1,

A

1
% = B | Ya/2)+ Y (o/2) 01 (ry2) 0 (/) -t e1]

Thus, for k =2 and even n, noting that Py = r/n, py = s/n, and

Py ™ t/n, we have from (14) and the definition of e,

a (23 Dr+2g+t ) 1 (Et 1

- L] L
2r+s)(s+t ai s+t alaé

(25)

D)
|

(2t 1 Jes 1
- = it l A A
2 stt 3? stt] & &

2 12

and from (16), (17), and (18),

(26) 82 . An — , and i
3= i
2(sel?te2) 3
A i
(27) s 9%,0"%%,n i
2,n A LA :

2(se1+te2)

Similar simple formuias result for the case k = 3.
For given values of Pg? pl, and p2 and any particular distri-

A
bution F, the asymptotic variance of € may be calculated by first

2,n

calculating the four aiJ'B given by (5) and ¢ = (cl,cz) given by (12)

15




and then applying (4). Asymptotic variances for five cases were computed
and the efficiencies relative to (I(F,O))-l are shown below.
1
Table 1

Asymptotic Efficlencies for ) when p. = .05, p. =p, = 225
2,n 0 1 2

Distribution Noml' C.N.(.10) | Cauchy | Dble. Exp. | Logistic

mCiency ( %) %oh 9’ 06 97.2 &05 97 n5

A Monte Carlo experiment was performed for the cases k - 2 and 3,
using 4000 replications, for the normal, contaminated normal (C.N.(.l0),
Cauchy, double exponential, and logistic distributions. (The C.N.(.10)
distribution is a standard normal with a 104 contamination by a normal
with mean zero and variance = 9.) Sample sizes n — 10,20, 40, and 80
were used, and the trimming proportion po (from each tail) was taken
to be .05 for all cases except n = 10 for which By = .10 . For the
case k =2, for n > 10, the quantities & and t were chosen in
three ways: 1) 28 =t, (ii) 8 =2t, and (ii1. 8 =t (subject to the

limitation that s and t must be positive integers with s +t == - r).

)

g

For n =10, 8 and t were set equal to two. The case k = *

computed for n = 20,40, and 80 with Py=-05 and s =t .
Table 2 shows the mean squared errors (MSE) and relative efficiencies

of 8 , and the means of 8° , for the case k =2, 8 ~t . Ideally
2,n 2,n

the small sample efficiencies should be computed relative to the variances

of the minimm variance location invariant (Pitman) estimators, but these

were only available for the double exponential distribution (from

16

i

C

L]




Table 2

. Efficiencies for Case k =2, 8 =t

. A
Sample Size Distribution Var({BLUE) MSE(GaJ o) Ggl S/ Eff.(6, )

n =10 Normal .1000 1184 0892 84,
C.N.(.10) .1358 .1488 L1245 91
Cauchy L3261 k229 L4841 17
Dble. Exp. .1399 .1645 .1399 85
Logistic 3073 k6 2750 89
n =20 Normal .0500 .0579 .052% 86
C.N.(.10) L0657 .0710 0712 93
Cauchy .1256 .1304 1429 96
Dble. Exp. L0637 .0703 L0707 91
Logistic .1520 .1668 .1573 9i
n = 40 Normal .0250 .0284 .0261 88
C.N.(.10) .0315% L0354 L0364 89
Cauchy .0500% .0589 L0646 85
Dble. Exm. L0297 ** .0333 .0353 89
Logistic .0750% .0817 .0822 R
n =80 Normal .0125 .0137 .01h7 91
C.N.(.10) .0157* .0170 .0186 9%
Cauchy .0250% 0269 .0300 93
Dble. Exp. L01h2%% .0155 L0174 R
Logistic L0375 .039% .0k2h 95
* Cramér-Rao bound " pitman estimator
17




Table 3
Confidence Interval Error Probabilities

Pl'6n|>73,m/\/3] s (k=2, 8 = t)

Distribution Semple Size(n) 7 =1.645 7 =1.960 7 =2.576
Normal 10 .208 .43 .07h
20 .145 .087 .039
40 .119 .066 .020
80 .095 .08 .011
C.N.(.10) 10 .196 .136 .068
20 .135 .083 .036
40 .117 .065 .021
80 .09 .050 .011
Cauchy 10 .148 .100 .ok7
20 124 .076 .030
40 112 .057 .017
80 .095 .ou8 .011
Dble. Exp. 10 76 .120 .058 -
20 .128 o7k .028
Lo A1l .061 .015
80 .09 .OkYy .090
logistic 10 .200 .138 .070 : i
20 .140 .088 .038 ‘
40 117 .065 .019 .
80 .094 .0k8 .011 ‘
..t
"t"-Dist. 10 .135 .082 -030 .. ‘
Pt .| >7) 20 117 .065 .019 L
40 .108 .057 .01k
80 .10k .054 .012
Normal s
X 2 1 -
P[lxn| > JH] all n .100 .050 .010 o
18




Table L
"Best Case" Efficiencies (k = 2)
Sample Size
Distribution n=20 n=40 n=80
A A
Best(s,t) Eff.(8, ) Best(s.t) EP£.(9, ) Best(s,t) Eff.(az’n)
Normal (3,6) 90% (6,12) G0% (12,24) kg
C.N.(.10)  (3,6) 95 (6,12) R (12,24) 9%
Cauchy (6,3) 100 (12,6) 87 (2k,12) 96
Dble. Exp. (6,3) 92 (12,6) 93 (24,12) 97
Logistic (4,5) ® (9,9) 92 (12,24) 96
Table 5
Ratio of Veriance for k = 3 to Variance for k =2

for the Case 8 =+t

Distribution n=20 n=40 n=80
Normsl 1.03 1.07 1.05
C.N.(.10) 1.04 1.05 1.05
Cauchy 1.19 1.11 1.08
Dble. Exp. 1.09 1.08 1.06
Logistic 1.03 1.07 1.06
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V. Mik€ [10]). For the other distributions the variances of the BLUE's
were used when available,and for the larger sample sizes the Cramér-Rao
bounds were used which accounts for the apparent slight drop in several
of the efficiencies at n=40 compared to those at n=20. The fact
<hat the efficiencies shown for the double exponential case are relatively
high compared to the asymptotic value given in Table 1 is & consequence
of the rather slow rate at which the variance of the Pitman estimator
approaches its asymptotic value as the sample size increases.

Table 3 chows the estimated error (non-coverage) probabilities for
confidence intervals of the form ag’n + 7n-l/262’n- The values of ¥
were taken (arbitrarily) to be percentage points of the standard normal
distribution. For comparison purposes the error probabilities are
given for each n for the corresponding confidence intervals based
on the t-distribution (assuming normally distributed observations).
The distribution of the "studentized" v:rsion of 32’n shows a some-
what greater spread than the corresponding t-distribution for the
smaller sample gizes. For each pair of values of n and » the error
probabilities are rather similar for all five of the distributions
considered, and they do not differ much from those for the corresponding
t-distribution for n=40 and 80.

Table 4 shows for each distribution the most favorable pair of vilues

of 8 and ¢t (among the three possibilities tested for each n) togetuer

with the corresponding efficiencies for n = 20, 40 and 80. For all

20




three sample sizes the large values of t, leading to large groups of :

central order statistics receiving weight 32

the relatively short-tailed distributions (normal, contaminated normal,

, tend to bte favorable for

and logistic), while the reverse is true for the long-tailed cases
(Cauchy and double exponential). This provides considerable justifica-

tion for the choice s =t as a suitable compromise.

A
Table 5 shows the ratio of the variance of 95 n to the variance
s
of 32 L vhen s ~t, for n =20,40, and 80, for each of the five
’

distributions. The uniform superiority of the estimator using k =2
must be attributed to the additional sampling fluctuation introduced
when an additional coefficient is estimated in the case k = 3, together
with the fact that the efficiencies are already high for the case k = 2.
In a preliminary Monte Carlo investigation, larger values of k were
considered and in all cases the variances of the estimators for a given

sample size tended to increase with increasing k .

In interpreting the Monte Carlo results given above it should be
borne in mind that the standérd deviation associated with each of the
efficiencies is on the order of two percentage points. It is perhaps
worth mentioning that .the ordinary congruence-type pseudo-random numbers
proved to be completely inadequate for this investigation, and it was
found necesgsary to introduce a suitable "re-randomization" procedure.

The possibility exists that the performance of the estimator 62’!1
could be slightly improved by a minor modification as indicated in the

following

Remark: The quantities 31 and @2 appearing in the definition (27)




A
of ee,n are of the form

o>
\

1° alaiz - aé(ai%)—l ’

2 513;2 - 52(3132)-1 ’

o>
W

where Gi,Bi, i =1,2, are determined by (25). Since the formulae given
in (25) were obtained by an asymptotic argument velid for large k, it

is remarkable that they work well for k = 2. It seems entirely possible

that a somewhat different choice for the Oli's and ﬁi's could result

in uniformly improved performance. The author conjectures that a slight

modification of @ (only) could lead to improved efficiency for short-

tailed distributions like the normal without materially impairing the per-

formance of the estimator for long-tailed distributions.

Acknowledgement. The author wishes to express his gratitude for the
significant contribution of Mrs. Elizabeth Hinkley who performed the

Monte Carlo experiments reported in this paper.
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. Aggendix .

To prove the theorem of Section 2 we first show that /o (ekn-a) is

asymptotically normal with mean zero and variance

2 1
(28) okgm+e,

for arbitrary fixed € > 0, for each sufficiently large k, for all

Fe ¥ , when 6., 1is given by (1) with the c,'s given by (12). The

i
validity of (20) follows from conditions (a) and (c) of the definition
of ¥, and asymptotic normelity follows from condition (d). By
virtue of expression (9) it therefore suffices to show (i) that (28)
holds with oi replaced by ?I'i given by (1), and (ii) that
[CRS'| < e for all sufficiently large k, for all Fe ¥.

To verify sssertion (i), let F-'l(u)‘=-G(.n), and referring to (19)

let r, = po+(i-1)qk- Then by definition (6) of 4

1 we may write

i

a, = G(ri+qk)-G(r1) s 151,2,.04,k,

[ o7
]

G(ri+2qk)-c(ri+qk) » i=1,2,...,k-1,

[7]
|

1-1 = G(I‘i)‘G(ri‘qk), 1=2’5,-|o,ko

Now let G;, G'j'_ and G'i' represent the first three derivatives of G
evaluated at r,- Then under conditions (a) and (b) of the definition
of ¥ , a straightforward Taylor's series expansion in terms of Qe

ylelds
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4 = gy ()™ - H6)) P 66y P - F o (e Pkl

11 = % (67 -0 Peyr (260 - F o () Pint el

[=7]
|

? -l 1 ] -2 L Y J; " 2 [ .5 l " [} "2 2

where { represents a generic uniformly bounded function of i, k,

and G. Hence by (15), for 1=2,3,...,k-1,

e, = - (2™

e ) {
i -Gi (Gi) ]+qu ¢

Letting fi’ f;, and f; be f and its corresponding derivatives

evaluated at G(ri) we have

6y = (£)7 o = -y(e), o = 5(e)(e) Duri(r )Y,

J -1 12 -2;
80 that e, = -[f}(fi) -(fi) (fi) J+§qk'

Also, writing
1 1
d-k = G(g)-G(§-qk))
4., = G(% -qk)-G(% - 2q,)

and referring to (14),we obtain by a similar calculation

(29) o = OB G v gq = - LO) L pg

24
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Hence, ag k —w ,

1
k - 1] ’ 2
(30) 9 _’_[2 {f’ Glu _Ifngu“! }du,
%o

R €y HEC 2 (6(4))

0
l)

= -fo { 52— log f(x)}f(x)dx =
G

2 (£ (x))%(£(x)) ax + £
('po) ox )

G(po

and the convergence is uniform for all Fe F.. Again referring to (14),

we obtain

1.1 .2

(31) e, =
1 0

Thus, from (11), (19), {20), (30) and (31) we have

k

i=1

M

as k -»%, uniformly for all Fe ¥F. This together with condition (c)
of the definition of ¥ implies the truth of assertion (i).
To prove assertion (ii), let the elements of the matrix R given

by (8) be denoted by r. ., 1,J=1,2,...,k. Then by (5) and (6) we have

i
for 1<

-1 fc(ri+ql(x))
r =r = qd fix)dx -b
13 31 1 G(ri) 1’

and !
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(ry+q,) G(r,+q,)
r,, = 2472 G(ri+qk) F(x)dx - x F(x)ax) -o

ii i i’
G(ri) G(ri)

- 1
where by (6) and (19), b=, +3q

Expansion in Taylor's series with respect to Qe yields for 1 < j,

) Loce ate2on 2
Fig = Tyt 5 QO f; *8ay -0 = 8ay s

and

2 1 2
bi+§q

= + ' = = + .
ryy = Tyt bt k-2 Uty

ki1

Since q = k-l(%- po) we see that r, , = O(k-z) uniformly in

iJ
1,) and Fe ¥ for ifj, and r, = o(k"Y) uniformly in 1 and
Fe F. Furthermore, since 31 = cidi where the c'is are given by

(12) we see that ?:'i = O(k_l) uniformly in i and Fe ¥, so that
~ -y -2 .
€Rc' = 6(k ), uniformly in Fe ¥ which proves sssertion (ii).
Conclusion (21) of the theorem follows from (28) provided that for
A
any fixed Kk, ,/H (ekn-ekn) - 0, in probability, as n - %, since then

'ri(F) = ci. But from (18) we have
k
A _ A 1
a(eme )= 3 (5 )= 8 ) -
i=1 n

Now the 31‘ s given by (17) are consistent estimates of the corres-
A
ponding ci's given by (12) since the di's are consistent estimates

of the corresponding di's. The desired result follows from the
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boundedness, in probabil.ty, ot the quantities 'Jé Sin’ as n -5 %,

Conclusion (22) now follows from the fact that Gi is a consistent estimate

~2
of o, which by assertion (i1) is uniformly close to ai

large k. This completes the proof of the theorem.

for sufficiently

We consider now the double exponential distribution with density

£f(x) = % e-lxl. The expressions for e

1 obtained above are valid for
1=1,2,...,k-1. From (31) we see that e, = { for this case. Also
82 k-1
T5 log f(x) =0, for x<0, sothat q ) e -0, as ke
ax i=1

Expression (29) for ey is not valid for this case since 'f'(x) is

not continuous at x = 0. Direct calculation shows that e, = hq;l+0(l).
Therefore, in the limit, the only non-zera c1 is ck,

kn is essentially an average of a decreasing proportion of

so that, as k

increases, 9

central order statistics. The conclusions of the theorem are clearly

A

correct for the corresponding sequence ekn even though the double 1
exponential distribution is not in the family % as defined. 1
E
3
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