2
s R-8
o

60-ARPA

November 1971

h__-_._-,

The Data Reconfiguration Service Ao

- —An Experrment in Adaptable
Process/Process Communrcatron

E F Harslem and J F Heafner

; NATIQNAI. TECHNICAL

INFORMATION SERVICE J

Sprl Qﬂ id, Vu. 2215|

A Report prepared for

ARPA ORDER NO.: 189-1

ADVANCED RESEARCH PROJECTS A‘GEN

DDEC.
ﬁ,ﬁ}—r\ ffr"ﬂ [{E_ Y

¢ am et |

el

SANTA MONICA. CA 90406

A

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views ur canclusions contained .in this study
- should not be interpreted as representing the official opinion or policy of Rand =

. orof ARPA, : :

DOCUMENT CONTROL DATA

1. ORIGINATING ACTVITY

The Rand Corporation

20, REPORT SECURITY CLASSIFICATION
NCLASSTFTED

2hb, GROUP

3. REPORT TITLE
THE DATA RECONFIGURETION SERVICE—-AN EXPERTMENT IN ADAPTABLE,
COVMMUNICATION

PROCESS/PROCESS

4. AUTHOR(S) (Lost name, first nome, initiol)
Harslem, E. ¥., J, F. Heafner

.
ik B

5. REPORT DATE
Novenber 1971,

31

60. TCTAL NO. OF PAGES

6b. NO. OF REFS.

7

7. CONTRACT OR GRANT MO.
DAHC15 67 C 0141

8. ORIGINATOR'S REPORT NO.
R-860-ARPA

90, AVAILABILITY/LIMITATION NOTICES
DDC-A

9b. SPONSORING AGENZY .
Advanced Research Projects Agency

{

10. ABSTRAGT

Al 3
“%glhe nationwide ARPA Network, composed of

widely separated computers that vary in
make, model, size, speed, and other hard-
ware and software features, was set up to
examine the intercommunication problems
that arise in resource shaving among dis-
similar, geographically scparate systems.
The Data Reconfiguration Service is a lNet-—
work experiment involving communication
between two autonomous but cooperating
processes with different input/output in-
terfaces. A DRS user defines forms that
specify the desired data transformations
in order for cach process to receive data
in an acceptable format. The two processes
then communicate as if they were directly
connected. The DRS, however, monitors
their dialog and performs the user-—sneci-
fied transformations on data passing be-
tween them. This report describes the
syntax and semantics of forms. Examples
are ‘given of simple representztive uses of
the DRS, e.g., field insertion, field de-
letion, variable length string processing,
string length computation, field transposi-
tion, and character packing and unpacking.

!

s

i

&
k)

11, KEY WORDS

3

£

Advanced Research Projects Agency
Computers

Networks
Information Systems
Computer Programs

o g iy g e

g 3

§

o—
2

IR piramaty e T OO

C—— 1 TS il T T R

RO PP it et s —or e et e g SR

ARPA ORDER NO.: 189-1

R-860-ARPA
November 1971

The Data Reconfiguration Service
—An Experiment in Adaptable,
Process/Process Communication

E. F. Harslem and j. F. Heafner

A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY

AT 3
A 10
v il
e
M
|

p SANT\ AO’\(CA C‘\ 90406

~1ii-

PREFACE

- This report describes the Data Reconflguration Servic%;—an experi-
ment beigg conducted on the ARPA Network by the ARPA Informq;ion Pro-
cessing Techniques (IPT) Project at Rand, UCsB, UCLA, apd/ﬁiT. Sponsored
by ARPA, the Project 1is an integral part ofhbothwthé"tiient's and Rand'sg
overall Program to-explore the utilization of computer resources appli-~
cable to ﬁilitary environments.

‘“23The problem addressed by the ARPA Network, and by Rand as a partic~
ipating node, is how to economically share heterogeneous computer re~
Sources that are separated geographically. Thig report describes one
of many avenues for rescurce sharing that are being investigated. 1In
particular, the Data Reconfiguration Service is intended for uge when

there are ™holes™ in standard communicationg Protocols and where com~

pliance with a standard is not desirable,

()
A

-—

SUMMARY

The ARPA Network is composed of different host computers at the
installations of various ARPA contractors across the nation. Informa-
tion flow over the Network is governed by user programs at the sites.

One goal of the Network is to fundamentally examine the inter-
communication problems that arise in resource sharing among dissimilar
systems. The Data Reconfiguration Service (DRS) is a Network experiment
directed toward such an examination. The experiment involves communica-
tion between two arbitrary, but cooperating, processes with different
input/output interfaces.

The DRS is applied as follows. A user defines forms that specify
the desired data transformations in order for each process to receive
data in an acceptable format. The two processes then communicate as
if they were directly connected. The DRS, however, monitors their dia-
log and performs the user-specified transformations on data passing
between them.

The DRS gets an input stream from one process, reformats the input
stream according to a form describing the reconfiguration, and ‘emits
the reformatted data as an output stream to the second process. (A form
is associated with each logical, unidirectional message path between the
process pair.)

This report describes the syntax and semantics of forms. The nota-
tion chosen and the complexity of the language were tailored to our
current network needs. :

Examples are given of simple representative usés of thé“DRS, viz.,
field insertion, field deletion, variable length string pProcessing,
string length computation, field transposition, and character packing

and unpacking.

_pagemhlagk |

-vii-

ACKNOWLEDGMENTS

This experiment is conducted cooperatively by several ARPA con-
tractors. The authors would like to thank the following persons for
their contributions to this experiment: R. H. Anderson, The Rand Cor-
poration, Santa Monica, California; Vinton Cerf, University of Calif~
ornia, Los Angeles, California; James Madden, University of Illinois,
Urbana, Illinois; Robert Metcalfe, Massachusetts Institute of Technology,
Cambridge, Massachusetts; Arie Shoshani, System Development Corporation,
Santa Monica, California; James White, University of California, Santa
Barbara, California; and David Wood, The Mitre Corporation, McLean,

Virginia.

Preceding page blank

- -

CONTENTS

PREFACE seviiecersnnsenannncaaanas Cestseccestscertecncnnns oo
SUMMARY 4.icecesecessessssscsnssssasancanannns sesesene eesana

ACKNOWLEDGMENTS Seeessstaseartesetteteasansaenssenens

Section
I. INTRODUCTION ..svevossssnccaaes sescaanssssessetasasas
The ARPA Network and Goals ...ieeeceveescsscccannse
Examples of Process Interface Disparities csaseses
The Data Reconfiguration Service (DRS) Approach ..

ITI. OVERVIEW OF THE DATA RECONFIGURATION SERVICE
Elements of the Data Reconfiguration Service
Network Connections ...cesececscesssesoscasassasnss
Requests Over the Control Connection ..eoeeeossess

ITI. THE FORM MACHINE 4vvvuvseeccssoscoscasancncccaasnnans
Form Machine SyntaxX ...veeeeeessscsccocscssasanses
FOIMS seveeeesnoncencssnasssssvsssssescnssnsnssnsns
RuleS cvcnvnsscsessscconacnscsnsassscnsssossnsonss

TOXMB seeasosonocnossosssnsosnsasascsnsanrcsssososnsss
Term Format 1 seesesceccacssesccnsocaconossccanss
Term FOrmat 2 s.eeeecscecescanssosscsscsossoncas
Term Format 3 ..vvveeseeosocosonscasonncsosannes
The Application of a Term .vesvesesessrsssonsons
Restrictions and Interpretations of

Term FunctionsS seeeeceesvecscscscscscscsssasass

Term and Rule Sequencingeeceeveecececsonoscosns

IV, EXAMPLES cuvevenncscscnnonssossoasosescocnnnsonanaes
Field Insertion seeeeessescsossessosssoacasosnsess
Deletion ceveeesccssosssesssseosscsocssnsannnsnnas
Variable Length Records .eeeovesecisreccionnnsnnss
String Length Computation euueeeeeeeeeseesosososes
Transposition seseececesescosssesresccsosssssscnnss
Character Packing and Unpackingceeoeesseeocss

REFERENCES nn.loooool:oooollllcoo;ooloooooon.looooooonoﬁ‘il

BIBLIOGRAPHY nno;looooollllooolol-o;ooo.ocooo;ooonloooo,ooo

| Preceding page hla{Ik :

Pty
-~ 18

N

(= Q0 N < -

16
16
16
17

18

21

T 23

e e —

THE ARPA NETWORK AND GOALS
T2 AND GOALS

L. INTRODNCT TN

. !
leased from the common carrierg, The IMPs yge store-and-forward switch-

ing to pass Messages among hosts. Hogt Computers vary ip make, model ,
size, Speed, and other hardware and software features, The Network ig

distributeq and traffic routing is éoverned adaptively by tHe iMTs over

redundant Network paths. Each participant cap reliably accesg such’
Various remote resources ag Programs, data, ang unique hardware facil-

ities, Individuyal Programs at the sites contro] information flow.

One goal ig to discover and validate techniqueé"permfffiug uniform
and easy accegs tg all available resources, independent of hardware and
software dissimilarities, Mbre25peeificéily; remote services should be

as easily accessible’ ag local ones, without a ﬁéticeable~degrédafisn'in

overall performance, Another ‘ypal ig to allow more fiexibilityvin the

use of Programming languages; necéuse’serﬁices“will'be offered remotely, i
Compatible languages allowing JTrogram transferabjlity afe'ndé'reQuifed. _
Such a network hzg many uses, 0f greategt interest, however, are 1 ')

-those that readily allowdexploratioh of communication pethdds‘aﬁd1g“

different Systems, One_ such generic use.ig Progran shdringﬁ7in‘which &

other is dgtq sharing, in which small.programg-or algorithms are trang- .

mitted to Operate on a:large, remotely located data base, - Ry _ N

=

to a remote service. For example, weather modeling programs will run
on the ILLIAC IV, using parameters transmitted from Rand; results will
be returned and reconfigured for graphical display and analysis. Al-
though some of these programs exist today, their Network and graphical
interfaces do not. Several remote job entry systems are now available
on the Network (i.e., UCSB and UCLA), vet minimal changes were made to
those systems, so that their data input/output (I/0) formats differ
considerably. At MIT, the special Evans and Sutherland graphic hard-
ware 1s offered as a remote service. It is desirable to use this
service from such various kinds of graphics terminals as the IMLAC and
ARDS.

To further amplify the protlem of different software interfaces,
many sites will have a minimal host configuration that will restrict
their data reformatting capabilities, but that should not restrict
their access to remote resources requiring different formats.

Examining the currently proposed and existing szrvices, the kinds
of data manipulations most frequently encountered are character set
conversions, prefacirg and stripping leaders of messages, packing and
unpacking repeated symbol strings, generating message counters and
flags to be inserted into the data stream, graphic device code conver-
sions, data field—transposition, and reformatting files. ,

This report discusses one recent approach for providing. the above
kinds ofﬁdata transformationszin a way thatqis transparent to the ter-

minals and programs involyed.
\

THE DATA RECONFIGURATION SERVICE {(DRS) APPROACH 3

Application programe require specific I/0 data formats that differ
-from program to.program:. ..One’ approach recently adopted for providing
rescurce ‘sharing of dlsparate programs is to develop specific dialogs
for classes of programs.' Each such program must then be” retrofitted
with one of the standard dialog“interfaces. The DRS exhibits a dif-
ferent view of coupling variegated processes and terminals. The pre-

mise underlying DRS is that the. Network should adapt to the. lndividual

"

Evans & Sutherland Computer Corporation, 3 Research Road Salt
Lake City, Ufah 84112 ,

l

Program requirements, rather than changing -each’program to comply with

a standard. This position does not preclude the use of standards that
describe the formats of Network message contents it ‘is merely an inter-
pretation of a standard as a desirable mode of operation,: but not a
necessary one. ek,

. In addition to differing program requirements,-a format. mismatch
occurs when users wish to employ many different:kinds of.. consoles. to
attach to.a single remote service program. It is likewise desirable to
have the Network adapt to individual console configurations, rather’ than
requiring unique software:packages .for each ‘console transformation.

One approach to providing .adaptation is for those sites with- sub-

. Stantial computing. -power to-offer a-data, reconfiguration services this

report describes such a service, the DRS, currently being implemented
at MIT, UCLA UcsB, and The Rand Corporation. The University of I11-"
inois, MITRE, and others will e"weriment with its use. ;
The envisioned deus operandi of the service .involves an. applica-
tions programmer, who defines fbrms that describe data reconfigurations.

The service- stores ‘the forms bv name. At ‘alater time (or immediately

‘thereafter), 'a 'user (perhaps ‘a non—programmer) employs the Service to

accomplish a particular transformation of a Network ‘'data stream passing
between ‘a using process and a serving process. He accomplishes this by
talling the form by name and identifying it with' the using and serving
processes. % : i

‘The DRS attempts to nrovide ‘a notation “for form definition tailored
to some specifically needed instances of data reformatting. At the same
time, theDRS' keeps the - notation and its underlying implehentation within

some utility range that is bounded on the]ower end’ by a notation expres- ,

sive enough, to make ‘the experimental:. service diseful, ,and ‘on: the ‘upper, end

by a. notation that is just short of ‘a general—purpose programming language.

..‘ i

vy
7ot

Py

7%y o

IT. OVERVIEW OF THE DATA RECONFIGURATION SERVICE

a5

ELEMENTS OF THE DATA RECONFIGURATION SERVICE

An implementation of the DRS'includes a module for Network connec—
tion protocols to establish logical message paths between the'end
processes that wish to pass data.’ It also includes a module (the Form

Machine) to.accept and apply the ‘definitions of 'data reconfigurations

‘(forms). “Lastly, a file management module exists for saving and ‘re-

trieving forms.
This section highlights connections and’requests. Section III
details the Form Mdchine language. File storage is not described be-

‘cause it is transparent to “the 'user and its implementation is different

at :each DRS host;,

NETWORK CONNECTIONS

There are three kinds of Network connections to the DRS (s-e Fig. 1).

1. _The control connection (cc) ., betweon an originating user and
| the DRS. It is 1nstigated by. the user, to define forms and, to
request the user, connection (UC) -and the _server. connection.’
(SC), along with the applicarion of. form(s) to data passing
between uc and SC., :
2.5 The 'UC, between a user process and the DRS. It is estab-
lished by the DRS at. the .request. of ‘the originating user.
3.“ The SC, between the DRS and the. serving process,: It, too,
o 1s established by the DRS at the request of the - originating

user.

The user?process’behaves‘as“ffwir werefeonnetted”diredtlyﬁto ‘the

serVer process,. and'vice"Versai The: DRS‘appears transparent to ‘both’

processes; its function is to reconfigure data that pass in each
direction between them into formats amenable to each of their proces-
sing requirements. Because the goal is to adapt the Network .to - user

and server processes, minimal requirements -are. 1mposed on* the UP and SC.

Y O

ORIGINATING

USER

A

CC =~a duplex connection
using a standard Network
protocol -

o

" DATA

-~ RECONFIGURATION "

SERVICE

— R

SN

.‘H‘“‘“H..

Simplex or
Duplex

Connections

USER
PROCESS

Fig. 1--DRS Ngtwprk Connectfons

SERVER
PROCESS

REQUESTS OVER THE CONTROL CONNECTION

Over a control connection, the dialog is directly between an
originating user and the DRS, where the user defines forms or assigns
predefined forms to connections for reformatting. Messages sent over
a control connection are formatted according to a Network standard.

When an originating user connects to DRS, he supplies an identi-
fier as a qualifier to guarantee uniqueness of his form names. The

user can request the following operations:

1. Accept a form definition;

2. Purge a form definition;

3. List qualified for& namés;

4. -List the source text of a form;

5. Make a simplex,orwdupléx_lggidél connection between a user
and a server process. .The connection can be made iﬁ several
ways, i.e., with or without.a Network standard connection
protocol; i

6. Abort a user/server connection.

When a user/server connection is severed either by the processes
themselves or by an abort request, the DRS sends an appropriate return

code to the originating user.

-]

ITI. THE FORM MACHINE

I1/0 STREAMS AND FORMS

This section describes the syntax and semantics of forms that
specify the data reconfigurations. . The Form Machine reoeives‘an input
stream, reformats it according to a form describing the reconfigoration,
and emits the reformatted ‘data as an output stream.

It 1is helpful to envigion the application of a form to the data
stream, as depicted in Fig. 2... An input stream pointer identifies the
position of data (in the input stream) being analjzed at any given
time, by a »urt of the form. Likewise, an output stream polnter lo-

cates data emitted in the output stream.

“ M e V
i FORM '
INPUT CURRENT CURRENT PART OF _ * curReNT__| | ourpur
STREAM POINTER | FORM BEING APPLIED POINTER .| STREAM

Fig. 2--Application of Form to Data Streams

FORM MACHINE SYNTAX+

form 1= {rule}}
1 1 1

rule ::= {INTEGER}, {terms}, {:terms}, ;

r]
terms 1= term \,term}o-
term 1:= identifier | {identifier}o descriptor | comparator

1

descriptor : 3= ({replicationexpr}o R datatype ». {concatexpr}, ,

1
{arithmeticexpr}o {:options},)
A ; | ! . 3
comparator :i= (concatexpr connective concatexpr {:options}o) i

- “ 1
(identifier *<=+ concatexpr {:options},).

connective ti= LJLE. | .LT. | .GE. | .6T. | .EQ. | .NE.
replicationexpr 1i= 4| arithmeticexpr

datatype 2= B| 0| X|E|A|ED]| AD| SB | T(identifier)
concatexpr ti= value| {|| valuelt |
value 1:= literal | arithmeticexpr

arithmeticexpr - primar&" {eperar;r primaryl}y

operetor L = al = %y

primary - i:: identifier] L(identifier) l

V(identifier) | INTEGER

' 256
literal 1= literaltype "{CHARACTER} ,
literaltype o’ B | o | x | A|E|ED | AD | SB
options HH ,sfur (arithmeticexpr) l

sfur (arithmeticexpr) ,» sfur (arithmeticexpr)
sfur 2i= § | F l U | sr l IR | UR
identifier ::= ALPHABETIC [ALPHAMERIC],

These syntactic statements are referred to in the fbilowing.
semantic descriptions. . 0 T

FORMS

A form is an ordered set of rules.

form ::= {rule}?

The curient rule is applied to the current position of the input
stream. If the rule fails to correctly describe the current input,
then another rule is made current and applied to the input stream.+
The next rule to be made current is either explicitly specified by the
current term in the current rule or it is the next sequential rule hy
default.

If the current input stream is correctly described, then some
data may be emitted at the current position in the output stream
according to the rule. The input and“0utput stream pointers are ad-
vanced over the described and emitted data, respectively; the next
rule is applied to the now current position of the input stream.

Application of the form is terminated when an explicit return,
e.g., UR (arithmetic expression) is encountered in a rule. The ‘user
and server connections are closed and the evaluated return code (arith—

metic expression) is sent ‘to the originating user.

RULES

A rule is a replacement, comparlson, and/or an assignment opera-

tion of the form shown below.
1 1 T
rule ::= {INTEGER}, {terms}o {:termsly ;

The ‘optional integer (rule name) exists so that the rule may ‘be
referenced elsewhere in. the, form for epriclt rule transfer of control.
Integers are in the range O 2 INTEGER = 9999 Rules need not be named

" in ascend1ng numerical® order

If only a part of the rule succeeds, the 1nput pointer 1s'not
advanced. - T : i

)

-10-

TERMS
The input stream is described by zero or more terms,
1
{terms}o
and the output stream is described by zero or more terms,
1 '
. {:terms}, 55 R VP

where

[e:]
terms ::= term {,term}, .

Terms are expressed in one of the formats indicated below.
[e i 1 4 | 2 o
term ::= identifier’l {idéntifier}o descriptor | comparator

Term Format 1

The first term format, zdentszer, is a symbolic reference to a
previously identified term (term format 2, below) in the form. It takes
on the same attributes (replication, type, value, length) as the term
by that name and is normally used to emit data.

Term Format 2 o T S »

The second term format, {identifier}o descriptor, is used o collect
input or to emit output.;v

v by

descriptor Pis ({replicationexpr}o . datatype) {concatexpr}o s

{arithmeticexpr}o {'aptions}o)

The above five descriptor elemente+ correspond to the attributes re-

plication, data type, value, length, and transfer of control respectively.

+See the IBM System Reference Library Form C28-6514 for a similar
interpretation of - the pseudo instruction Define Constant, after which
the descriptor was modeled. A Il e .

RN

-11-

The replicationexpr, if specified, causes the unit value of the
term to be repeated the number of times indicated by the replication
expression's value. The unit value of the term (quantity to be repli-
cated) is determined from the composite of data type, value expression,
and length expression attributes. The data type defines the kind of
data being specified. The value expression specifies a nominal value
that is augmented by the other term attributes. The length expression
determines the unit length of the term.

The terminal symbol # in a replication expression means an arbi-
trary replication factor. It is explicitly terminated by a non-match
to the input stream. Termination may result from exceeding the 256-
character limit,

A null replication expression has a default value of one. Arith-
metic expressions are evaluated from leftwto-right with no precedence.

The L(identifier) is a length operator that generates a 32-bit
binary integer corresponding to the length of the term named. The
V(identifier) is a value operator that generates a 32-bit binary inte-
ger corresponding to the value of the term named. The T(identifier) is

a type operator that generates a type-code for the term named.
The data type describes the kind of data that the term represents.+ -
Data Ezp Meaning Unit Length *

B Bit string ‘ 1 bit
0 Bit string 3 bits
X Bit string - . 4 bits
E EBCDIC character . 8 bits
A‘” Network ASCII character _ M8.bits
AD. ASCII encoded decimal 8 bits
ED * EBCDIC encoded decimal E 8 blts; |
SB . Signed binary - ; llhlt,

The value expresszan is the nominal value of a term expressed in
the format indicated by the data type.. It is repeated accprdlng_to the

—-'-—-—-—-—_—_

+It is expected that such additional data. types .as floating poin*
and user-defined eres will be added as needed. ;

-12-

replication expression. A null value expression in an input term
defaults to the data present in the input stream and generates padding
in the output stream according to the restrictions and interpretations
stated later. The input data must comply with the data type attribute,
however.

The length expression states the length of the field containing
the nominal value. . If the length expression is less than or equal to
zero, the term succeeds, but the appropriate stream pointer is not ad-
vanced. Positive lengths cause the appropriate stream pointer to be
advanced if the term otherwise succeeds.

Options is defined under Term and Rule Sequencing.

Term Format 3

The third term format is used for assignment and comparison.

1
comparator ::= (concatexpr coanective concatexpr {:optiOns}o) I
. ; " " 1
(identifier e<=s concatexpr {:optionsl}y)
The assignment operator +<=- assigns the value to the identifier.
The connectives have their usual meanings, Values to be compared must

have the same type and’ length attributes or an error condition arises
and the form fails,

The Application of a Tern

The elements of a term are applied by the following sequence of

steps.

1. The data type (datatype), value expression (concatexpr), and
length expression (arithmeticexpr) together specify a unit
value, x. ’ , Ts . S

2, The replication expression (repiicatiohexpt)'specifies the
number of times x is to be repeated The ualue of the con-
catenated x's becomes y of length R . At

3. If the term'is an input gtream term, then the value of y of
length L 1is tested with the input value beginning at- the

‘current: input’ pointer position.

:

R

T S T

-13-

4. If the input value satisfies the constraints of y over length

L, then the input value of length L becomes the value of the

term.

In an output stream term, the procedure is the same, except that

the source of input is the value of the term(s) named in the value ex-
pression and the data is emitted in the output stream.
The above procedure is modified to include a one-term look-ahead

where replicated values are of indefinitellength because of the arbi-
trary symbol f.

Restrictions and Interpretations of Term Functions

1. Terms having indefinite lengths because their values are re-

peated according to the # symbol, must be separated by some
type-specific data, such as a literal.*

2. Truncation and padding include:

a. Character-to-character (A ++ E) conversion, which ia left-

Justified and truncated or padded.on the .right with blanks;

b. Character-to—numeriq and_numeric-tornumeric conversions,

whick are right-justified and truncated or padded on the
left with zeros;

c. ”Numeric-ﬁo-character conversion, which is right-justified
and left-padded with bianq.fﬁ_g

3. The following are ignored in a form definition over the con-
trol connection.
a. Control characters.) B
b. Blanks;zexcept within dhotes}r “
c. /*'string */ is treated as comments,'gxcept within quotes.
4,

The following defaults prevail where one of the fields in a
term is omitted. :

a. The replication expression defaults to one.

b. # in an output stream ‘term deéfaults' to one.

A literal is not speéifipa;;y required, however. An arbitrary
number of ASCII characters could be terminated b&‘a non-ASCII character:

TN o DGR

~14-

¢. The value expression of an input stream term defaults to
the value found in the input stream, but the input stream
must conform to data type and length expression. The
value expression of an output strear term defaults to
padding only.

d. The length expression defaults to the size of the quantity
determined by the data type and value expression.

e. Control defaults to the next sequential term, if a‘term is
successfully applied' otherwise, control defaulta to the
next sequential rule. '

5. Arithmetic expressions are evaluated left-to-right with no
precedence, ' : : : ' '
6. The following limits prevail:

a. Binary lengths are < 32 bitg.
b. Character strings are’S 256 '8-bit characters.
c. Identifier names are = 4 characters.
d. * Maximum number -of - identifiers 18-S 256,
e. 'Label integers are = 0 Aﬁd*S‘9999'
7. Value-and length operutors produce 32-bit binary integers.
-The value Operator is currently intended for converting A or
E type decimal character strings t6-their binary correspondants.
‘For ‘example, the value of E'12" would be 0......01100. . The
value of E'AB' would cause the form to fail ' i

TERM AND RULE SEQUENCING

Rule sequencing may be explicitly_controlleq by using
‘{:bptione}o 3
defined as

options _:éf sfur(arithmeticexpr) |
__sfur(arithmeticexpr) 3 sfur(arithmeticexpr)

sfur ii= S | Flu | SR | FR | UR

E_-... y:. G e DS A ¥

-15-

respectively. The arithmetic expression evaluates to an integer;
thus, transfer-can be effected from within a rule (at the end of' a
term) to the beginning of anotier rule. R means terminate:the form
and return the evaluated expresgion to-the iritiator over the control

connection.

If terms are not explicitly sequenced, the following defaults
prevail' -

1. When a term fails,‘goito the next sequurtial rule.
2. When a term succeeds, go to the next sequential term within

the rule.

.3. At the end of a rule, ‘go to the neXt}Sequential'rule..

In the foliowing example note the correlation between transfer
of control and movement ‘of the input pointer.

1 XYZ(B,,8 S(2) F(3)) s

The value of XYZ is never emitted in ‘the output stream because
control is transferred out of the rule’ upon either success or failure.
If the term succeeds, the 8 bits of input are assigned ‘as the value
of XYZ and rule 2 is then applied to the ‘zame input stream data. That
is, because the complete left hand side of rule 1 was not successfully
applied the input stream pointer is: ‘Mot advanced

i

P b,

i

~16-

IV. EXAMPLES

The following examples (forms and also single rules) are simple
representative uses of the Form Machine.

FIELD INSERTION

To insert a field, separate the input into the two terms to allow
the inserted field betveen them. For example, if the input stream con-

tains pairs of numbers encoded as ASCII, éeparated by a slash (i.e.,
125/456/...), the following form labels them as X, ¥y pairs separated
by a line feed, and'a carriage return (i.e., X=123/Y=456 @ 000k

1 XVAL (h,4,,1), (A,A%/",1),YVAL (4,4,,1),(,4,A"/",1) : 5
/*pick up the x as XVAL and Yy as YVAL */
2 : (,A,A"X=",2),XVAL,(,A,"/YE",3),YVAL H
/*emit the labels followed by the values of X, vy %/
. 3.t GX,X"0A0D" L4: UQL)) 5 m—_s 3
T [*emit the line feed, carriage return and loop back for the
2 next pair #*/ r__i . :

DELETION

Daté to be deletédﬁshould?beiisolated as separate “terms on the::
left in order to be omitted (by not emitting them) on the right,

(,B,,8), /*isolate 8 bits to ignore*/

SAVE(,A,,10) ‘ /*extragt,lo ASCII characters from

input stream#*/

:(,E,SAVE,); ./*emit the ‘characters in SAVE as
. EBCDIC chzracters whoEéﬁleﬁgth

' defaults to the length of SAVE

(;.e., 10), and advance to the

. next rule*/

Py i PR DR S e r F p e

In the above example,

-17-

if either input stream term fails, the next

sequential rule is applied.

VARIABLE LENGTH RECORDS

Some devices, terminals, and programs

records.

generate variable length

The following rule picks up variable length EBCDIC records

and translates them to ASCII,

CHAR(#,E,,1),

(,X,X"FF",Z)

:(,A,CHAR,),

(,X,x"oD",2);

/*pick up all (an arbitrary number of)
legal EBCDIC characters in th:
stream*/

input

/*followed by a hexadecimal literal,
FF (terminal signal)*/

/*emit them as ASCITI*/

/*emit an ASCIIﬁcarriage return*/

STRING LENGTH COMPUTATION

It is often necessary to prefix a len
long character string.

Q(#,E’,l),
TS (,X,X"FF",2)

:(,B,L(Q)+2,8),

Q,

TS;.

The following rule
with a one-byte length field.

*/emit the characters ®/

gth field to an arbitrarily
prefixes an EBCDIC string

/*pick up all legal EBCDIC characters*/
/*followed by a hexadecimal 1itera1 FF*/

/*emit the 1ength of the characters plus
the 1ength of the 1itera1 plus the 1ength

of the count - field itself in an 8-bit
field*/

/emit the terminal/ |

-18-

TRANSPOSITION

It is often desirable to reorder fields, such as the following
example,

Q(,E,,ZO), R(,E,,lO) » S(sEssls)s T(sEsss) : Rs T’ ‘Ss.Q;
The terms are emitted in a different order.

CHARACTER PACKING AND UNPACKING

In systems such as HASP, repeated sequences of characters are
racked into a count followed by the character for more efficient

storage and transmission. The first form packs multiple characters

and the second unpacks them. il

/*form to pack EBCDIC streamg#*/
/*returns 99 ithK, input exhausted#*/
/*look for terminal signal FF which is not a-legal EBCDICH/
f:/*duplication count must be 0-254*/ e
l1 (e X"FF" 2 SR(99)) | |
/*pick up an EBCDIC char/*
(CHAR(,E;,1) 5
ﬁ?}*get identical EBCDIC chars/*
LEN(#,E,CHAR,;)"‘--‘"
/*em;t gﬂc ccunt ;nd.the'cﬂar/#
(,B,L(LEN)+1,8), CHAR, (:U(1));

/*end of form*/"

et

-19-

/*form to unpack ERCDIC streams®/

/*1look for terminal*/

1 (,X,X"FF",2 : SR(99)) ;

/*emit character the number of times indicated#/
/*by the count, in a field the length indicated*/
/*by the counter contents*/

CNT(,B,,8), CHAR(,E,,1) : (CNT,E,CHAR,1:U(1));
/*failure of form*/

(:UR(98))

1.

2.

36

4,

5.

6.

7.

-21-

REFERENCES

Roberts, L. G., and B. D. Wessler, 'Computer Network Development
to Achieve Resource Sharing," AFIPS Conference Proceedinge, Vol.
36, 1970, pp. 543-549,

Heart, F. E., R, E. Kahn, S. M. Ornstein, W. R. Crowther, and
D. C. Walden, "The Interface Message Processor for the ARPA
Computer Network,' AFIPS Conference Proceedings, Vol. 36, 1970,
PP. 551-567.

Kleinrock, L., "Analytic and Simulation Methods in Computer Network
Design,'" AFIPS Conferencze Proceedings, Vol. 36, 1970, pp. 569-579.

Frank, H., I. T. Frisch, and W. Chou, "Topological Considerations
in the Design of the ARPA Computer Network,'" AFIPS Conference
Proceedinge, Vol. 36, 1970, pp. 581-587.

Carr, C. S., S. D. Crocker, and V. G. Cerf, "HOST-HOST Communica=-
tion Protocol in the ARPA Network," AFIPS Conference Proceedings,
Vol. 36, 1970, pp. 589-597. '

Interface Message Processor: Operating Manual, Bolt, Beranek and
Newman, Inc., Report No. 1877, February 1970.

Interface Message Procesgor: Specificationg for the Interconnec-
tion of a HOST and an IMP, Bolt, Beranek and Newman, Inc.,
Report No. 1822, October 1970.

Ifrec_eding page hlank |

— - T

-22-

BIBLIOGRAPHY

Baran, P., "On Distributed Communication Networks," IEEE Transactions
on Communication Systems, Vol. CS-12, March 1964,

Marill, T., and L. G. Roberts, "Toward a Cooperative Network of Time-

Shared Computers," AFIPS Conference Proceedings, Vol. 29, 1966,
pp. 425-431, '

ARSI

