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ABSTRACT

A nmumber of theoretical calculations of the
motion of a spherical underwater explosion bubble cscil-
lating in an incompressible homecgeneous unbounded in-
viscid fluid are presented, using various "models" for
the behavior of the bubble interior. The purpose of
this study was to tind an adequate representation for
use in axisymmetric calculations of underwater nuclear
explosion effects in which the bubble may become non-
spherical due to the effects of gravity and/or nearby
becundaries. The cases considered include (1) neglect-
ing the bubble atmosphere altogether; that is, trea ' .
the bubble as an evacuated cavity, (2) treating tae
bubble interior as an adiabatic homogeneous ideal gas,
but ignoring the inertial effects of the gas, (3) in-
cluding the gas inertial effects in the previous case,
(4) replacing the ideal gas behavior in case 2 with
equation~of-state data for real steam, and (5) revert-
ing to an ideal gas for simplicity, dropping the assump-
tion of bubble homogeneity; that is, the gas dynamics of
the bubble interior were followad by explicit numerical
integration of Euler's equations using a Lagrangian
finite-difference computer code. Except for case 1,
the results were found to be virtually identical and in
good agreement toth with experimental measurements and
with calculations performed by other investigators which
take into consideration the comprassibility of the water
outside the bubble.
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A number of theoretical calculations of the motion of a
spherical underwater explosion bubble oscillating in an incompressible
homogeneocus unbounded inviscid fluid are presented, using various
"models” for the behavior of the bubble interior. The purpose of this
study was to {ind an adequate representation for use in axisymmetric
caiculations of undeivater nuclear expliosion effects im which ths Subbls
may become non-spherical due to the effects of gravity and/or nearby
boundaries. The cases considered include (1) neglecting the bubble
atmosphere altogether; that is, tresating the hubble as an evacuated
cavity, (2) treating thae bubble interior as an adiabatic h snecus
ideal gas, but ignoring the inertial effects of the gas, {3) inclvaing
the gas inertial effects in the previous case, (4) replacing the ideal
gas behavior in case 2 with equation-of-state data for real steam, and
(5) reverting to an ideal gas for simplicity, dropping tha assumption
of bubble homogenaity; that is, the gas dynamics of the bubble interior
wers followed by explicit numerical integration of Euler's equations
using a Lagrangian finite-difference comguter code. BExcept for case 1,
the results were found to be virtually identical and in good agreement
both with experimental measurements and with calculations parformed by
other investigacors which take into consideration the comprsssibility
of the water outside the bubble.
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I. INTRODUCTION

Underwater expiosion effecis hLave bsen the subject of
extensive study for many years, particularly since *he baginning
of World war II. Most of the sarly research concerned the
characterization of the shock wave caused by the explosion and
its interaction with the water surface, the sea bottom, and
(especially) targets such as the hulls of ships and submarines.
The effects of the shockwave may be felt 2t very lar~e distances
and occur on & very short ¢ime-scale due tu the high speed ot
sound in water. The late-time cffects of the explosion (that is,
the pulsation and migration of the residual "bubble" of gas,
its eruption from the surface, the resulting water waves, and
similar phenomcna) received much less attention. This was, of
course, only natural, since the military importance of these
phenomena is usually relatively marginal for conventional under-~
water cordnance.

When nuclear (and later, tharmonuclear) explosives
were developed, however, the available ennrgy release of under-
water weapons increased by aseveral orders of magnitude. The
secondary late-time mass-motion effects consequently acquired
new significance, and therefore, in recent years, these effects
have been much more extensively studied than previnusly. One
of the effects of underwater nuclear explosions which immediately
conies to mind is that of the dispersal of the radioactive nuclear
depris; the transport of this residue from the point of burst to
the above-surface environment is governed by the late-time mction
of the steam bubble produced by the explosicn. Another effect
of military significance, particularly for large explosions, is
the generation of large water surface waves which could pose a
serious threat to naval unite or could even inundate a nearby
coastline.

The mass-motion effects of an underwater explosion, as
comparad to those of ths shockwave, are fairly miow an *sigtant,




- - - -

After the emission of the shock, the hot gases formed by the
explosion expand; if the explosion is shallow enoujh, this gas
bubble may erupt from the water surface during the first expan-
sion, Otherwise, the bubble will expand to a maximum size, then
contract to a minimum size, re-expan:d, and continue to pulsate
with diminishing amplitude. At the same time, the bubble will
migrate® upward toward the surface due to its buoyancy. For
nuclear explosions, this bubble oscillation-migretion phase
occurs on a time scale of several seconds as compared to milli-
seconds for shock wave effects, and therefcre the motion is
virtually always subsonic. The eruption 9f the bubble from the
surface will hurl large masses of water aloft, releasing the
cuntained fission products, generating large suiface waves that
thereafter propagate away from surface zero, and setting into
motion other familiar late-time explosion effects (the residual
upwelling along the explosion axis, the turbulent diffusion of
the radiocactive surface "pool", and so on).

Since the bubble pulsation, migration, plume eruption
and subsequent events are fairly slow-motion phenomena, the
water motion may be adequately treated as incompressible flow.
Even so, however, the problem is in yeneral at least two-dimen-
slor-1 (that is, axisymmetric) and time depencent, and involves
fr2e surfaces. Therefore, the theoretical treatment of the
motion is quite complicated, and consequently most of thea infor-
Letion available today has baen collected by experimental mcans.
Recently, however, the development of modern high-spead third
generation digital comput-ra has renderad purely theoretical
calculations of sxisymmetric bubkble motion feaaible.

The MACYL6 hydrodynamic code (Pritchett, 1970a) was
derigned specifically to compute the water moticen around a
pulsating, migiraiirg explosion bubble, including late-time
plume aruption and subsequent phencmena, by brute~-forcs numerical
integration using finite-differzence tachniques of the fundamental
governing equations of hydrodynamics in axisymmetric geometry.
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The computer program has been used successfully in the past tc
compute the late-time flow after various underwater nuclear
explesions, and agreement with experimental vesults (where
available) has been good (see, for example, Pritchett and
Yestaner, 1969; Pritchett, 1970b; Pritchett, 1971). It is now
being put to use to study the formation of surface waves by
deep underwater nuclesar explosions.

“n order to use the MACYLE code to describe an under-
water explosion, however, the boundary conditions must be
specified; air pressure is, of course, imposed at the air-water
interface and remains constant with time. At the bubble-water
interface, a pressure must also be prescribed in some realistic
manner. That is, the MACYL6 code computes the flow in the water
surrounding the bubble, but the gas dynamics within the bubble
its:.1f must be "modelled" in some approximate fashion so as to
supply the reguired boundary pressure. In the calculations
published to date, the bubble pressure was assured to be a func-
tion of bubble volume, and represents the equilibrium pressure
of an idezl gas undergoing adiabatic expansion and recompression.
In this report, various "mocfasls™ of the explosion bubble interior
are axamined to determine the extent to which various effects
alter the overall behavior, with the objective of avaluating the
error comnitted by adopting one or another of these models for
use in MACYLS6 calculations. In all cases, the water outside the
bubble is considered incompressible as in ths MACYLS cods, and
the bubble is assumed to remain spherical throughout its motion.
A bubble-interior "model” which adaquately describes a spherical
explosion bubble should describe the more general case equally
well.

Some of the explosion bukble models which will be
discussed in the subasquent sections have been investigsated in
the past by othar workers in the field. Tha "gasless” case dis-
cussed in section V FLas been studied by many authors, among them
Lamb (1932), Willis (1941) and Cole (1948). The ideal gas model




of section VI has been treated by Friedman (1247) and by Sray
and Christian (1952) at some length. Many of these early results
were, however, limited in precision since the solutions rnieces-
sarily involve extensive numerical integriationa. Therefore; the

results presented herein were all computred quite accurately
using very finely-resolved numerical inf.egration procedures on
a CDC-6600 computer. Furthermore, the results for all cases

are presented in a consistcnt way to facilitate comparison among
the various models of bubble behavior.

In the final section, the results of these calculations
are compared both with experimental measurements and with a few
compressible calculations of the water motion carried out by
other investigators; in general, the incompressible-water
approximation is seen to be good. Before proceeding to the
development of the various bubble models, however, the general
i'nenomenology of underwater explosions will be qualitatively
described.
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I1. FORMATION OF THE EXPLOSION BUBBLE

The detonation of a.asubmerged explosive sets into
motion a complex sequence of events of which the cha:acter
depends on the nature of the explosive, the encrgy released,
the depth of burst, and other snvironmental parameters. Nuclear
explosions are of primary interest in this study, but mcat of
the experimental information availiable concerning underwater
explosion effects was gathered using chemical explosives. There-
fore, in this discussion, both types of explosions will be
dascribed, taking note of the ditferences in effects.

First, we will consider an uncased spherical charge of
conventional high-explosive (ouch as TNT) initiated at the center.
As the detonation front expands through the charge, the solid
explosive encompassed undergoes chemical reaction and releases
energy to further drive the detonation shock. The detonation
wave spesd is typically in the range 6000-~7000 meters per
sacond for most explosives. Behind the detonation front, the
"burned" reaction products will include such materials as CO,
coz, Hzo, NO, CB4 and 52 as gasss, and C, Pb, and A1203 as
sclids. Ultimately, of course, the Getonation wave will reach
the charge surface and proceed into the water as a strong hydro-
dynamic shock wave at which time the chemical reactions will be
complete. For & given explesive type and packing density, the
total energy releaced by the explosion will be proportlional to
the charge mass; that is:

RS LI POT I VUV WUV U D N U

Y = ; " R} pg Q (IZ-1) , J

wnere
Y = yield; total explosion energy

R, = chaxge radius
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Pp = explosive packing density

Q = chemical energy released per unit explosive
mass,

Furthermore, the "reaction time" (time required for the detona-
tion process) will depend on the charge size and th. detonation
wave speed;

Q 3y 1/3

ty = - ————eee
R o] ]
det 41roEQCdet

(I1-2)

For TNT, for example, a typical packing density is about 1500
kg/m3 (that is, a specific gravity of 1.5) and Q is approximately
4.2 % 106 joules/kg. Therefcre, a spherical TNT charge with an
energy release of one kiloton (defined as 1012 calories or about
4.2 x 1012 joules) would be about 10.9 meters in diameter, and the
total reaction time would be slightly less than one millimecond
(see Figure 1).

Initially, the shock propagated into the water contains
about half the explosion energy; the remainder resides as both
kinetic energy associated with the expansion of the gaseous
"bubble" of reaction products, and as Internal energy (heat)
within the explosion products themselves. This shock travels
away rapidly, declining in strength. Near the original charge
position, the highly non-linear behavior of the shock causes
energy dissipation as heat tc the water. 9nce the shuck is
about 10 or 15 charge radii from the origin, however, this
dissipation process is largely complete; the shock thereafter
continues to travel away carrving with it about one-fourth of
the original explosion energy (sse Figure 2). The time interval
from the moment of explosion to the &nd of this "dissipation”
phase (defined for our purposes as the moment when the shock
has propagated 10 charge radii) is still fairly short, but is
about 25 times greatar than the “"reaction time".

12




CHARGE WEIGHT

1 pﬁgnd 1 tfn b ki}oton 1 mQthon
1 km T T 1 T T T ~T T T T 100 msec
100 m 10 msec
10 m 1 msec
lm 100 usec
10 om 10 usec
1 cn A ! L | 1 1 1 1 1 i 4 1 usec
10* 10! 10'* o' 10! 10t ettt

R g e ocara = wegw -

TOTAL YIELD (joulen)

PIGURE 1: TNT CHARGE RADIUS AND REACTION TIME V8. YIELD
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The difference betwean the effects of a chemicel
underwater explosion, such as described above, and those of a
nuclear or thermonuclear explosion arise from both the (usually)
higher yield in the nuclear case ard the far higher initial
explosion energy density. The nuclear reactions may be regarded
as essentially instantaneous; the materials which comprise the
nuclear device (largely metals, along with the reaction pro-
ducts of the high-explosive stage, any unburned nuclear fuel,
and the zradiocactive nuclear reaction products) are raised to
extremely high temperatures and ionized. The earliest energy
transfer mechanism to the surrounding water mass is therefore
radiation; since water is opague to bhomb-tamperature photons
(the mean free path is only a centimeter or so0), this radiation
transfer process may be adequately described as "radiation
diffusion”. The resulting high pressurs rsgion then forms an
extremely strong hydrodynamic shcck wave which expands, encom-
passing more and more water and raising its entropy. Near the
burst point, the internal energy increase per unit mass imparted
to the water im gtfficient that, upon expansion, the water will
vaporize. This internal energy jump declines as the shock
strength dacreases due to its increase in surface arsa, however,
and therefore the shock front energy density sventually becomes
low enough that no further water will be vaporised. It turns
out that this separation between the shock front and the bubble
front occurs at a radius roughly equal to that of a opherical
TNT charge of the same energy ralease ae the nuclear sxplosiva.
Thus, at this stage, we havs a physical situation not entirely
unlike that of the high explusive burst at the momert when the
detonation wave reaches the charge surface. The shock wave will
thereafter continue to propagate outward, dirsipating ensrgy as
heat at close-in distances, and rapidly beooming weaker, similar
to the high-explosivs case. A nuclear sxplosion leaves about
408 of its enargy behind as “initial bubble energy”; most of the
remainder is shockwave energy (of which a portion is dissipated
near the burst point) and a reslatively small fraction remains
as snergy to be released later by the decay of the radioactive

15




fission products. This may be compared with the 47-53% enerqgy
partition between the "bubble" and the primary shockwave for
TNT (Cole, 1948); for most conventional high-explosives, the
bubble energy fraction is between 40% and 60%. The difference
between the high-explosive and nuclear cases is, of course, that
the interior "atmosphere” of the bubble produced by a conven-
ticnal underwater explosion is initially roughly homogeneous
and is composed of the gaseous reaction products of the charge,
whereas in the nuclear case the bubble atmosphere consists of
steam and is non-homogeneous, being much hotter at the center
than at the periphery.
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III, DESCRIPTION OF BUBBLE PULSATION

By the end of the dissipation phasa, the shockwave
has propagated well away from the "initial bubble” which con-
sists in the conventional! high explosive case of the charge's
reaction products and in the nuclear case of the "potential
steam™ discussed above. After this point, there is a marked
qualitative similarity betwoen the two cases. If the explo-
8ion is gufficiently shallow, wf course, the bubble's expanaion
will rupture the surface, throwing up a hollow vertical column
of water, and violently expelling the bubble contents into
the atmosphere. A typical example of this sort of explosion
is the familiar CROSSROADS~BAKER nuclear test of 1946. For
deeper explosions, however, the bubble will not vent inte the
air, but will continue to expand, at first rapidly, and then
more and more slowly. The intezrnal pressure and temperature
wiil, of course, drop during this expansion, and at sona point
the average internal prassure will become equal to the ambient
hydrostatic pressure at the burst depth. The momentum of the
watei rushing away from the point of burst will, however, carry
the expansion even further. Eventually, the expansion will be
brought to a halt by the hydrostatic presaure, and the bubble
will begin to collapse. The interface will move inward with
ever-increasing speed and recompression of the bubble atmosphere
will occur until the motion is cnce again brought to a halt by
the high internal pressure; thereaftar, the bubble will re-
expand and the vhole process will ba repeated. The reversal of
the motion at the burble "minimum® is so abrupt as to appear
discontinuous on a time scale appropriate for tha expansion-
contraction cycle as a whole. On the other hand, the motion
near the "maximum" is, relatively speaking, extremely smooth
and leisuxely; the bubble radius is more than half the value
at the bubble maximum for over 0% of the period of oscillation.

During most of the expansion-contraction cycle, there
is little opportunity for energy exchange between the bubbie

17




interior and the surrounding water. Over the time periods in
question, heat conduction across the bubble boundary will be
entirely negligible, and hence the bubble atmosphere's expansicn
and recompression may be taken as adiabatic. Furthermore, a
one-kiloton nuclear explosion at a burst depth of 100 meters,
for exarple, will generate a steam bubble whose radius, at
maximum expansion, is about 65 meters and whose period of
oscillation is about 3.8 seconds. Thus, it can be seen that

the bubble-~pulsation effect is a relatively slow-motion
phenomenon and is confined to a fairly small region of

space, compared to the more familiar effects of the shock wave.
An overall "characteristic velocity" for the oscillation may

be taken as simply the maximum radius divided by the period of
oscillation, or about 17 meters/second in the above typical case.
This is two orders of magnitude smaller than the speed of sound
in water, and consequently the water motion may be adequately
treated as incompressible over most of the bubble cycle.

Near the bubble minimum, on the other hand, the
assumptions of water incompressibility and adiabatic gas behavior
begin to break down. First, very close to the minimum, the water
velocities adjacent to the bubble interface become very high,
and a woak prassure pulss is radieted away from the bubbile,
carrying wich it a few percent of che bubble's pulsation energy.
This "bubble pulse" is somewhat broader but is much lower in
amplitude than ti.e primary shockwave. Second (and much more
important), at the minimum, Tavlor instapility occurs at the
water-bubble interface. This instability is that of capillary
waves on the bubble surface: thus, the size of the perturbations
is quite small compared to the bubble size even at its minimum,
and furthermore, the instability is a fully three-dimensicnal
phenomenon. The resulting interface breakdown causes the forma-
tion of a spray of water droplets which penetrate the bubble,
cooling its interior. If the explosion is nuclear, this cooling
will cause condensation of a portion of the steam atmosphere,

18

i::;

PR3 [ YU !..““"*"W' TR

pres  powesy Pl pumel MEE ABE 2 EEER Ve
i R A R Y T T

s
PRI




thereby causing an additional energy loss. Finally, the in-
stability of the interface initiates the development of intense |
turbulence adjacent to the bubble, and the energy of this turbu-
lence is, of course, derived from bubhle energy. Thus, the second ;
cycle of oscillation is weaker than the first, and each subseguent
oscillation is damped even further. Experimental measuremsnts ]
have shown that if the bubble does not migrate upward appreciably |
due to gravity, the bubble energy available for the second cycle '
of oscillation is about 40% of that of the first in the high-
explosive case; the second cycle energy of a steam bubble,

with its condensible atmosphere, is only about 8% of the first
cycle energy under the same circumstances. In the high-explosive
case, the bubble may experience as many as eight or ten oscilla-
tions before becoming relatively inert; in the nuclear case,
however, the steam bubble will cenerally condense away completely o :
at the end of the third cycle. This bshavior is lillustrated in - . -
Figure 3. - L ST
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Iv. TWO~DIMENSIONAL EFFECTS

So far, it has been tacitly assumed that the bubble
remains spherical in form and that its center does not move
significantly during the motion. For most cases of interest,
however, these assumptions are not entirely valid. As has been
mentioned, if the explosion is shallow enough, the bubble may
rupture the surface early in its expansion and expel its con-
tents into the atmosphere. Furthermore, even if the aexplosion
is well underwater, if it occurs sufficiently close to (or,
particularly, in contact with) the sea bed, the motion would
be expected to be influenced by this solid boundary. Therefore,
in either of these cases, the motion is not one-dimensional
(that is, the state of the system is not definable at a parti-
cular time in terms of the distance from the burst point alocre)
but is axisymmetric (requiring two space coordinates, r in the
radial direction from the vertical axis of symmetry, and z,
the altitude).

Even if the explosion is deep enough that the surface
is not ruptured, and far enough from the sea-floor that the
presence of this boundary does not significantly influence the
flow, the bubble motion, in general, will still not be one-
dimensional. The reason for this is the effect of gravity; that
is, the buoyancy of the bubble. As a consegquence of this buoy-
ancy,. the bubble will tend to float upward toward the watar
surface &s it pulsates. The instantaneous buoyant force is
given by Archimedes' principle:

Fy = lo, = pglav (1v-1)
where

p., = density of water (conatant)

w

Pg = density of bubble jinterior
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g = acceleration of gravity {(constant)
V = bubble volume.

The upward momentum generated by buoyancy up to a time t* is
therefore simply:

(o

£
I=g [

o w pg)V dt (IV=-2)

During most of the bubble cycle, when V is large, pg (the gas
density) will be orders of magnitude smaller than Pu® There-

fore, for our purposes, we may say:

s il i emt DAt i hlimning. scims, W BRI At b

t*
1=p,9 [ Vat (1v-3)

Jroame  pels  peme U QS0 GENS G BB

o’

This momentum is accumuiated with time as the motion proceeds.
Near bubble maxima, when V is large, momentum is accumulated
most rapidly. The "hydrodynamic mass" or "mass of moving
water" i3, however, also very near maxima. At the tirst minimum, !“

on the other hand, the "hydrodynamic mass” ig small, but
posresses all the upward momentum accumulated during the first

cycie, that is,

T 4 T !5

I= Pwd j vV dt = 3 mp,9 J R34t (IV-4) i
o o

where T is the first osc’llation periocd and R is the bubble !g

radius. Therefore, the overall upward velocity is greatest at '

bubble minima.

The volume-time integral for the first bubble cycle
in equation (IV-4) may be taken as simply proportional to the
volume at the maximum times the oscillation period, for a pre-
scribed radius-time curve:

T N
j R'dt = BR! T (IV-5) ;
. A




where Rmax is the firet maximum bubble radius, and tha coeffi-
cient of proportionality B depends upon the exact shzpe of the
radius-time relation for the bubble oscillation. 1If a "charac-
teristiz momentum" for the bubble oscillation is defined as:

3
g " o, 5,},'-:‘& (IV-6)

the upward "buoyant" momentum may be normalized and presented
in dimensionless form:

2

I* = % (IV--’)
Rnax

which will be recognized as a reciprocal Froude number (increasing
with increasinc relative buoyancy effect). That is, two explo-
sions which produce bubbles such that that quantity I* is the

same will experience the same relative upward migration due to
gravity during the first cycle. Clearly, therefore, the quantity
B (which is a measure of the shape of the radius-time curve) is

an important parameter in the study of underwater explosion bubble
pulsation.

It has long been recognized experimentally that if
migration is strong (that is, if I* is large), the bubble,
while initially spherical, will become more and more non-
spherical as the motion proceeds. After the first maximum, ths
bubble bottom will tend to collapse back toward the explosion
point more quickly than does the top, thereby generating an
upward central jet of water which collides with the bubble top
just prior to the moment of maximum recompression. Therefore,
at the minimum, the bubble is torcidal rather than spherical in
form. If the migration strength is sufficiently great, the
bubble may remain toroidal thereafter; otherwiss, the central
jet will dissipate upon re-expansion but may re-form at sub-
sequent minima. Por very strongly migrating bubbles, the net
upwarad displacement by the end of the first bubble cycle may
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be comparable to the first maximum bubble radius.

The MACYL6 hydrodynamic code (Pritchett, 1970a), although
fairly general in application, was specifically designed to deter-
mine the bubble motion and associated phenomena following deep
underwater explesions. The MACYL6 code is a computer program for
solving viscous turbulent time-dependent incompresgsible axisym-
metric fluid flows involving free surfaces. The fundamental
ensemble-averaged Navier-Stokes eguations which govern all such
flows are numerically integrated using finite-difference methods
on an Eulerian mesh of computational grid points. Free surfaces
are treated using the MAC ("Marker-and-Cell") technique first
developed by Welch, Harlow, Shannon and Daly (1966) at Los Alamos.
In this procedure, the fluid is “"tagged" with a large number of
massless "marker particles” which are moved with the flow through
the Eulerian mesh at each time step using velocities interpolated
from nearby principal grid points. These marker particles there~ E
by delineate the positions of the free surfaces. A heuristic
model to determine the effects of turbulenc: was developed
separately (Gawain and Pritchett, 1970) and is an integral part
of the overall procedure. For application to the underwater 1
nuclear explosion problem, the fluid is taken as initially at 1 i
rest and the water surface is horizontal, but one or two "empty" i
cells at the explosion point contain a high internal pressure.
The co*e then calculates the subsequent water flow in a2 =tcpwise
fashicn using the finite~difference forms of the governing equa-
tions and, as boundary conditions, the fact that the air pressure
is constant and that the bubble internal pressure is a prescribed
function of bubble volume. For all such calculations published
to date, the bubble pressure ~ volume relation for a particular
cycle of oscillation was assumed to be that of the adiabatic
rarefraction and recompression of an ideal gas with y (the ratioc
of specific heats) equal ¢o 4/3, that is,

poed it

poeen e

4/3

PV = constant (Iv~-8)




As was discussed in section III, although the bubble's
expansion and recompression may be taken as adiabatic during
most of the oscillation cycle, energy is lost near the bubble
minimum due to two fundamental causes. First, near the minimum,
a weak pressure wave (often called the "bubble pulse" to dis-
tinguish it from the primary shockwave) is emitted from the
bubble and carries away a small fraction of the bubble energy.
This occi rs due to the compressibility of water; near the
minimum, the bubble interface velocity may instantaneously become
comparable with the speed of sound in water, even though ovexr the
remainder of the pulsation velocities are far below sound speed.
Second, the reversal of the motion at the minimum causes Taylor
instability of the bubble-water interface, which jenerates intense
turbulence in the water adjacent to the bubble and causes the
breakdown of the interface into spray, which in turn cools the
bubble interior and (for nuclear explosions) causes condensation
of a fraction of the steam interior. This instability is, how-
ever, a fully three-dimensional phenomenon and the scale of size
of the perturbations (i.e., the sapray droplets) is far smaller
than the bubble itself. It therefore seams clear that an incom-
pressible spherically symmetric or axisymmetric treatment of the
water motion cannot possibly predict the energy loss at the bubble
minimum. Fortunately, there is no particular requirement for such
rredictions; the fractions of the rubkle eneigy lost at each
minimum have been determined experimentally and have been presaented
by Phillips and Snay (1968) for steam bubbles and by Snay (1962)
for tne conventional high-explosive case. It turns out that the
fraction of the bubble energy lost at the bubble minimum declines,
in general, with increasing migration strength. 1In the MACYL6
code, the constant in equation (IV-8) is adjusted downward at each
bubble minimum in such a way that the fractions of the bubble
energy loat at each minimum correspond to Snay's empirical results;
thus, the decay of the bubble oscillation with time is properly
reproduced in the calculations.

e R G T BT s
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An earlier version of this code has been used with
coneiderable success in the calculation of the bubble motion
after the WIGWAM deep underwater nuclear explosion test of
1955 (Pritchett and Pestaner, 1969). The MACYL6 code itcelf has
been used more recently tc compute the bubble motion and subsequent
flow after extremely deep underwater nuclear bursts out to several
minutes after detonation (Pritchett, 1971) and is now being used
to study the formation of suxface waves by relatively shallow
fuclear explosions. As was seen above, however, the MACYL6 code
actually computes only the water flow outside the explosion
bubble; the gas dynamics of the bubble interior are represented
only in an approximate way (such as by egquation IV-8). Although
this procedure has been guite successful at accurately computing
bubble motion (Pritcghett, 1970b), it is certainly worthwhile to
investigate the adequacy of assumptions such as (IV-8), BO as to
ascertain whether or not an improved "bubble interior model” can
be formuiated which will significantly improve the results. For
this purpose, however, it is not necessary to make fully two-
dimencional (that is, axisymmetric) calculations. If the one-
dimensional case can be adequately treated using a particular
"model” for the bubble interior, the two-dimensional case in which
the bubhle may become non-spherical will also be adequately dea-
cribed by the same sort of model.

Therefora, we will consider the case of an explosion in
an unbounded meere of water in which the ambient hydrostatic pressure
is everywhere the same. The effectes of viscosity (which, in
reality, are exceedingly small} will be neglected, and furthermore,
the water ovutside the bubble will be considered incompressible.

As was inferred in the previous discussion, this assumption is
valid except for very brief time intervals near the bubble minima.
In any case, the objective of this study is to determine optimum
procedures for representing the effects of the bubble interior

in the MACYL6 code, and MACYL6 treats the water in the incompres-
sible approximation.
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V. SOLUTIONS NEGLECTING THE BUBBLE ATMOSPHERE

The first (and moet primitive) model for the bubble
interior which will be considered is that there is no bubble
atmosphere at all; that is, that the motion bugins with water
rushing away i{rom an infinitesimal point forming an evacuated
cavity. To derive the governing equaticns for the resulting
motion, we first impose Euler's momentum conservation equaticn
for an incompressible fluid in spherically symmatric motion:

Qs

u 1 3P

3 2..2 1
= + (zu”) = - &— (V-1)
t 7 3r Py T
where

u = radial velocity

r = distance from origin

P = pressure

Py = fluid density (constant), and

t = time.

Furthermcre, the continuity condition is:

1 3 2y) = : -
= T (r<u) 0 (V=2)

If at a particular time the radiuo of the bubble is
denoted by R and itg instantaneous valocity of expansion is R,
the velocity elsewhere in the water is just:

u ~ R(R/r)? for r > R V=3)

as can be seen from the above continuity condition. Inserting
this result into the momentum equation, we immediately obtain:

~ R RIR RIR* 1 3P
R(=)2 4+ 2 =—— ~ 2 - = = 0 (V-4)
r ra r| Ow 5!
27
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where

;zdﬁug—z-&
4t

ut?

as the governing equation.

To eliminate pressure, we try a solution of the form:

a a a a
A a, + Y + 2 + 3 + A (V-5)
Py r r? ry rt

50 that:
1 3P _ _ il _ 2a, _ 3a3 } da, (V-6)
Py °F r¢ ! " rt

Substituting the above into the governing equation (V-4), we
obtain:

R R® + 2 R®R

a, = - % R2R" (vV-7)

and therefore:

o 2 . 2t
P s BN, g B RS
Pw 2r*

(v-8)

Now, at r = s, the preassure is aimply the hydrostatic

pressure, PH:
Pmp at r = o (v=-9)

and thus:




L s oo oo . e ot ae Gl gt AL - g Py _ - g S = o

3, = 5 {Vv=10)

Therefore, the pressure field is given by:

n pi . B2t
Po P, 4+ p (&-“3_ + 2R R _ .E._R_) (v~11)
H w 'r T 2

If we define the instantaneous pressure at the bubble~-water
interface as Py, we may evaluate the above eguation at r = R
to cbtain an equation of motion for the bubble:

(V-12)

!
:l
3
1]
W
N

Now, if the bubble atmosphere is ignored, the bubble
pressure PB is always zero; thus, finally, we obtain:

P .
- _ H 3 R? -
R = [:R—’-IR—.} {(v-13)
It is also feasible to derive the governing equation
from the energy principle., The total energy in the system re-
mains constant, and is composed of two terms; the kinetic energy

of the moving water, and the total work done against external
forces (in this case, the hydrostatic pressure):;

Ey = Ex + W . {(V-14)
The total Kkinetic energy may be evaluated by
= 1 2 ® 2.2 .
EK ¥ I Py U dv = 21rpw RI rfu‘dr (V-15)
Using the continuity condition (equation V-3 above), this becomes:
dar

- L]
E, = 2rp _ RZR* I =
K w R r?

. 2npwﬁ2R’
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The work done against hydrostatic pressure to expand the bubble
from radius R, to radius R is simply:

W= JR P,A dR
R, ¥

where A is the instantaneous bubble area, or:

W= 41D R2dR

IR
H

o

= % 72, (R*-Ry%) (v-17)

In the present case, the bubble starts from zereo radius, and
therefore the total work done is just:

W e % nPHR’ (v-18)

Therefore, the energy eguation becomes:

§ 7P R? (V-19)

E, = 27p,, R2RY + H

0

If this equation is differentiated with respect to time, the
result is:

G = dnp,, R R R® + 6mp,, R'R? + 4ané R?

which may be solved algebraically for R:
R = - f °y . 3R
l pwﬁ TK

which is identical to the governing eguation derived from the
momentum principle (equation V-13).

A special case of the "gzsless" bubble solution is that
which is obtained if the hydrostatic pressure is ignored; that is,
in terms of enargy equation, the kinetic energy remains constant:
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Eq = 2mp, R2R!? {(v-20)

for which the solution may be obtained analytically:

25E
T Lﬁﬁiﬂ 7 «/2 (v-21)
In this case, the bubble radius increases monotonically with
time, and no bubble pulsation occurs due to the absence of hydro-
static pressure. This result is approximately valid at early
times, but becomes worse and worse as the bubble grows and the
work done against hydrostatic pressure becomes an important term
in the bubble energy balance.

This case is interesting, however, in that it permits a
rough estimate of the adequacy of the incompregsible assumption.
The error may be estimated as being of the order of the square of
the Mach number based upon the interface velocity, which may be
| shown from (v -21) to be:

Eg

32
pr C

2 . 1 -
M 37 {(v-22)
where C is the speed of sound in water. This quantity is plotted
in Figure 4 for the one-kiloton case discussed earlier; as can
be seen, at a radius corresponding to the TNT-egquivalent charge
radius, the local Mach number is significantly less than unity.
Similarly, tne square of the iccal Mach number as a function oif
time is:

/5 6/5

2
4 25 -
r : M2 & — ) x ¢t
25c Bmoy O

(Vv-23)

which is plotted for a one-kiloton explosion in Figure 5. The
incompressible approximation is clearly wr-ranted after abocut $
or 10 milliseconds; the overall oscillation period of the explo-
sion bubble is several seconds. Therefore, these results tend to
support the conclusicen drawn earlier than the water flow around

E the bubble may be adequately treated as incompressible motion.
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If the hydroatatic pressure is non-zero, of course, the
bubble will not expand indefinitely, but will oscillate in size.
If a "reduced radius" and "reduced time" are defined as follows:

PH 1/3
A= R (E") (V-24)
Q
pH5/6
T = t —Im (Vv-25)
pw EO

LG AL S A R G O A

and thesa variables substituted into equation V-19, the energy
eqguaticn may be written in dimensionless form:

W et amt @M U GES =S

4

21322 %+ T mAY =1 (Vv=-25)

smameq

where

———
»

: dA
- o

As can be seen, the maximum radius of the bubble will occur when
the bubble intexface velocity is zero: i
3 1/3
A= (I?) = 0,620 {Vv=26)
or, in dimensional form,

E_1/3 ' {

- == -
Roax 0.620 (PH) (v-27) ,
i
cJ
where
]
A = maximum dimensionless radius A L

Rmax = maximum bubkle radius

bubble energy (about half the total explosicn
energy)

hydrostatic pressure

(]
L}

o
i

The energy equation (V-.5) may be integrated numerically:
the resulting dimensicnless radius-time relaticn is illustrated in

N
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Figure 6. The relative contributions of the kinetic and internal
energy terms t0 the total enerny as functions of time are shown

in Figure 7. As is to be expacted from the form of equation v-25,
the solution is symmetric around the time of the bubble maximum
and there exist periodic singular discontinuities corresponding in
time to the bubble minima. The period of the oscillation in dimen-
gionless form is:

6t = 1,135 (v-28)

or, in dimensional form,

1/2 1/3 5/6
T = 1.135 o, E / Py (v-29)

(o]
where 6t is the 1 interval between successive zerces of A, and T
is the corresponding dimensional period of oscillation.

Another quantity of interest which has been discussed
previously is the "characteristic velocity™ associated with the
bubble oscillation. This may be taken as:

Uc - RNAX/T (V-30)
which, using V-27 and V-29, becomes:
A Py i/2
Us = 37 (5:) (v-31)

s0 that the corresponding dimensionless parameter is:
U= AsSt = 0.547 (v-32)
Therefore, the “characteristic velocity" is independent
of the explosion yield, and depends only on the hydrostatic pressure,

which in turn depends on the depth of the explosion (the wvater
density P is assumed constant). Numerically, this characturistic
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velocity is fairly low, as discussed in section III, and is far
below the speed of sound. Typical values for various explosion
depths, assuming that Py ™ 1000 kg/m3, g=9,8 m/nocz, and that
the air pressure over the water is one atmosphere (1.013 x 105
nowtons/mz) are listed in the following table:

Burst Depth

Characteristic Velocity Square of Overall

(Meters) {(Matars/Sec) Mach Number
10 7.7 2.7 x 10°°
30 10.9 5.3 x 107°
100 18.0 1.4 x 1074
300 30.2 4.1 x 104
1000 54.5 1.3 x 1073
3000 94.1 3.9 x 1073

Thus it seems clear that water comnressibility effects are not
important, even for explosions at very great depths.

One other parameter required for the proper description
of the bubble oscillation is the quantity B, which is needed to
determine the upward momentum generated by the bubble due to
buoyancy. b is defined as (see equation IV-5):

T 8t
I RY(t)at J Alr)'ar
o o

R;ax T AdsT

The upward momentum gensrated by the bubble during the firast
cycle of cscillation in normalized form is (see equation IV=-7):

-

and the value of B obtained from the integration of the energy
equation is:

E = 0.625.
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The very nature of the governing equaticn for this - s
relatively simple case assures that the radius-time relation [
which results is a universal function. 1In the more complicated L 3
treatments considered in the next few sections, the radiua-time i?i
relation will be found to depend on various parameters, so that 553

the constants which characterize the radius-time function, that is, "

i
A = 0.620 (7-33) o

’i'.
61 = 1.135 (V=34) ! ;

y = 0.547, and (V-35)

!

B = 0.625 {(V-236) i

will become functions of those parameters. In general, howvever, ?

the same system of nomenclature will be retained, so thlt results

may be readily compared with the present case. {
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VI. THE IDEAL GAS MODEL

In the case just diecussed, thes internal pressure of
the bubble was approximated as zerc. The bubble pressure is,
in fact, low compared to hydrostatic pressure during most of
the bubble cyclc. None the less, it seems clear that the
solution could be improved if some plausible method were used
to simulate the effects of the gas inside the bubble.

In particular, if we begin with a sphere of compressed
ideal gas with volume V, and with the fluid initially at rest,
the gas internal pressure may be defined by:

P V' = p V' = constant (VI-1)
B o o
that is, an adiabatic expansion. Here, Pp is the pressure
associated with bubble volume V, and Po is the initial pressure;
Y (the ratio of spscific heats) characterizes the gas. Further-

more, it will be assumed that the gas remains homogeneously dis-
tributed within the bubble throughout the motion, and therefore:

u=Rg for r <R (VI-2)
A8 before, of course, the velocity field outside the bubble is:

u = R (é)' for r > R (vi-3)

If the initial density of the gas is denoted by Pp’ than the
ga density inside the bubble at any time is:

R
Py = Pp (g for r < R {VI-d)
and, of cource, the watexr Aenaity is:

P ™ constant for » 2 R
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Th2 energy balance now consists of four components:

E + E + E

f -
KG W 1 + W = constant 'VI-6)

that is, the kinetic energy of the expanding gas, the water
kinetic energy, the internal (heat) energy of the bubble atmos-
phare and the work dcne against hydrostatic pressure. Two of

these have already been worked out (see eguations V-~15 through
v=-17):

Egw = 270 RR? (VI-7)
W= % "P, (R*-R3) (V1-8)

The gas kinetic energy is Jjust:

xc = % J Pg ulav
bubble
interior

E

Rz (R

- 2np — I r'dr
g R2

[~

2 23p)
R*R
"X TPy

and, using equation (VI-~4)
2 142 -
Eyg ™ ¥ "PgROR (vi-9)

The internal aenergy of the gas is simply:

PV

EI - 31 (VI-10)

Inserting (VI-1l), this may be written:
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(VI-11)

Initially, the systam is at rest and no work has vet
been dona against external forces. Therefore, the total energy
at t = 0 (the congtant on the right in equation VI-6) is just
the total internal energy initially present:

povo
EIO - T?:IT - EK + EKW + E + W {(VI=12)
The bubble osvilliation energy Eo is just the amount by which
the initial internal energy exceeds the internal energy required
to maintain the bubble against the ambient hydrostatic pressure:

Pavo

Eo = EI - =17

(¢}
(PG-PH’VO
'Y-

- §T$§IY ‘PQ'PB)Ré (VI-13)

Thus, for example, if the bubble cscillation snergy E, Were
zero, the initial bubble pressure would equal hydrostatic
pressure and no metion would occur. The energy equation may

.now be expressed explicitly be assembling aegquations VI-7, -8,

-91 "11' "1‘, anda -13

. PR’Y
- £2n 2 2259 4w 0 0
Eo = 2Moy KR+ ¥ Tog RRs + 3117 o 1T
+ & 0P (R'- R?) - 4T _ p_R? (VI~14)
I"n () 3iy-1) B%o

which may be compared with the energy equation for the previous
"gasless" case (V-19}). The corresponding momentum eguation is
wimply (compare to V-~13): .
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o [
R(L ++_-9) - B _H _ 3 (VI-15)
L3 Py R TR

w1 R_?Y 3
o -
R =g [3;.(p°:§—] ~ Py - 3 R?) /
] pE RO 3 _
1+ ¥ "';; ('R_) ] {(VI-16)

The terms involving g reflect the inertial effects
of the gas inside the bubble. For example, the ratio of the
gas kinetic energy to that of the water is:

E o} R
EEE = % _E (x2)? (VI-17)
KW w

For nuclear explosions, of course, the initial bubble density
(pE) would be taken as the same as that of water (Pw). Even
for high explosives, (DE/Pw] will rarely exceed 1.6 or so.
Furthermore, over mogt of the bubble oscillation, R is vastly
greater than Ro' Therefore, it would seem warranted at this
stage to neglect gas inertial effects; the effect of this
approximation will be examined later in this section,

If all terme involving tie gas density are rneglacted,
thec asnsxrgy egquation beccmes:

R} R_ 3(Y-1)
- v RR? 4 ) =2 -
E, zwnw R'R" + % m [7=I (Po S-m Py)
+ pH(R' - R')) (VI-18)
[+]
and, for the momentum equation:
R Y

- R ,--}; [z,l-; (P, g2 = By - 3 #) ——tvi-as)
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If the governing equation is non-dimensionaliszed in ’i

the same way as was deone in the previoua saction for the ' E
evacuated bhubble case by the introduction of the dimensionless i
bubble radius (A) and the dimensionless time (1), defined by: P
E_ 1/3 A

R = A2 .

| .

Vrn o 1

RO B 7 .

H Lt

1

the energy equation becomes: ]
A, Y e =

noy 2y 8 4 -] (o) o] !

2w +§1r{)\ 1+ (r—) "G':m';] 1

- 1 %}a 3 Y- rf

Sy A1 V1-20) '+
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which may be compared to equaticn (V-25) for the “gasliess”
case. The bubble energy is just:

P
T TRV VS

(p ~P )V (p_-P.)
- © "H o _ 4_ o H Y -
Eo =1 "3 ki -1 RO (vi-21)

ki

or, in dimrensionless form,

NI (VI-22)
° 1_;.(? -p.) .
3 o H
which may be used to eliminate Ao from the energy equation. To
facilitate presentation, we defins:

Eo

r: g—2— (VI=23)
T "PyRy

which, for the ideal gas case undexr discussion, is simply:

Po~Pp
T = m (VI-24)
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The whysical significance of { is that it is the racvio of the
buivble energy to the work reguired to form the initial cavity
of radius Ry against hydrostatic pressure PH' Thus, [ may be
regarded as & measyre of the "relative intensic.y" of the
explosion, or, for a given explosive type, as inversely pro-
portional to the hydrcstatic pressure, which in turn varies
vwith the barst depth. 1In particular, the range of interest of ¢
can be eatimated by using TNT as a standard explosive and taking
note of the fact that the initial bubble energy density for TNT
is about 3 x 109 joules/m3. Thereby, the foilcowing values of [
may be correlated {approximately) with explosion depth as
fol.iows:

& bDepth (meters)

100 3000

300 1000
1000 300

09 90
10000 20

Actually, as wili be ceen later on, =ve . higher values cf

are of scme interest, since much of the experimental information
concerning Lubble pulsati~ v 18 collected in labecratory-scale
test chambers in which a vac . was drawn over the water to
further reduce hydrost. :ic¢ ess8ure (see for exanple, Buntze..,
19¢d; 3nay, 1964; Pritchett, 1566). Thus, the range of variation
in ¢ could extend from about 100 to as hiyh as 100,000.

By use cf {J/I-22) ond (V1-24), the dimensionless energy
ewaticn (VI-20) may be written as follows: B

{1+ )
it 4 & —L=0g .
21227 + ] A 4 Tz' .”-\l)Y' ", T’(_Zm 1
\'j N e A
(VI-24)

As can be geen, the svlution is no longer & universal funcZtiown
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as was true in the "gasless" case discussed in section V, but is
a family of functions which depsnd on the values of the charac-

teristic parameters vy (which characterizes the gas) and ¢ (which
can roughly be correlated with explcaion depth).

Equation (VI-24) was numerically integrated, using a
large digital computer, for values of y varying between 1.) and 1.5,
and for [ ranging from 100 to 100,000. Qualitatively, the radius-
time celations obtained were quite similar to that of the "gasless”

~ case discussed in section V; the result for v = 4/3 and ¢ = 3000

is illustrated in Figure 8. The relative contributiong of the
various terms in the energy ejuation as functions of time for this
casz are shown in Figurs= 9. The principal qualitative distinction
between the two cases is that the bubble radius does not drop to
zero at minima. Quantitatively, however, the constants which
characterized the motion in the gasless case (reduced maximum
radius A = 0.620; reduced period 1 = 1,135; reduced velocity

p =~ 0.547; "shapa constant”™ B = 0,625) are, in the present case,
functicns of both vy and [. Contour plots of these functions are
to be found in FPigures 10 through 13. The reduced maximum rad.us

A 1is olways (as might be expected) less than that in the gasless
cage, and decroases with decreasing y and/or . The bubble
period, on the other hand, may be sither greater or less than in
the gasless case; the characteristic velucity pu{ = A/87) is there-
fore lower than the gasless value ovc , .st of the range consi‘ered,
but ie siigntiy larger for .arge values of Y and of . The rznge
of variation of A, 81, and u over the range of interest is consider-
able; about 178, 9%, and 12%, respactively. On the other hand,

the "shape parameter” B is fairly insensitive tc variations in vy
and/or ; the ove: 1.l range is only about 3%.

In ordexr to evaluate the srror caused by neglecting the
inertial effects of the gqas, tha same calculations were tren
repeated, oput using the ..n-dimensional forms of equations (VI-14)

and (VI-" . rathey than (VI-18) and (VI-1%}), and setting PE {the

[
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|
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FIGURE 8:

THE IDEAL GAS MODEL -~ THE DIMENSIONLESS RADIUS-TIME
RELATION FOR v = 4/3 AND RELATIVE INTENSITY L = 3000

FIGURE 9,

THE IDEAL GAS MODEL - THE BUBBLE ENERGY BALANCE FOR
Y = &4/3 AND RELATIVE INTENSITY [ = 3002
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initial gas density) sgqu&l to pw,(the density of water). The
results were almost idantical to the previous case, as shown

in Figures 14 and 15. Figure 14 is a contour plot of the pex-
centage deviaticn in u between the two cases and Figure 15 that
in B. Both y and B were consistently lower than the results
obtained using Pp = 0, but the deviations thamselves were only
fractions of a percent. An examination of the energy equation
(VI-14) revealds, furthermore, that the maximum bubble radius

is independent of Pps since the interface velocity R is zero

at the bubble maximum. Thus. there is no difference in A between
the two cases, and hence the deviation in u (which is just A/671)
shown in Figure 14 is also equal, numerically, to the deviation
in (1/67).

As these results shown, the error in u and B is
almost independent of y and depends principally on [, the
relative intensity of the explosion. For explosions at "reason-
able"” burst depths (that ix, ¢ = 1000 or more), the deviations
are less than one-tenth of ona percent; even considering the
entire range down to [ = 100, the deviaticns are generally less
than 18. Therefore, the postulate made earlior that tie
inertial effects of the bunble atmosphere do not signiticantly
affect the overall motion appears to be verified.
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FIGURY 10:

THE IDEAL GAS MODEL - THE DIMENSIONLESS MAXIMUM

BUBBLE RADIUS A AS A PUNCTION OF vy AND ¢
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VII. REAL-STEARM EFFECTS

, In the previous section, the bubble atmosphere was
treated as a homogeneous ideal gas, and the bubble pulsation
effecis were found to depend wsakly upon v (the ratio of speci-
fic heats for the ideal gas) and 7 (the explosion intensity).

It was also shown that the inertial effects of the bubble atmos-
phere are negligible over the range of interest of these para-
meters. Tn reality, of course, the bubble atmoaphere is not

an ideal gas; therefore, in this section, the effect of imposing
a more realistic equation of state will be examined.

Once again, we will consider the motion of a homogen-
eous sphere of gas which is initially at high pressure oscil-
lating in an incompressible fluid. The governing momentum
equation for the motion is therefore the same as used previously
{(see equations V-12 and VI-1l4}:

R= (-P-:LW-P—“-%&’) | (VI -1}
This equation may readily be integrated numericaliy if che
raiationship between bubble pressure (PB) #nd bubble volume

is known. In aectiocn V, it was zasumed that the bubble pressure
was always identically zarc:; in section VI, the adiabatic
expansion of an ideal gas was ured ez ths modsl for PBW in
order to improve the treztment still further for the nuclear
case, the equation of state data fur 323 ccllected by Bjork,
Kreyenhagen, and Wagner (1969) was used. ’

Az was done in section VI, the bublbie is taken as
homogeneous, the motion starts rsrom rest, and the expanailon is
assumed to be zdiabatic and isantropic. The initial state
weas taken as that corresponding to the injection of the bubble
energy (Bo) into a spherical volume of water of radius equal
to that of the "equivalent TNT charge”. With the equation of
state specified, the only remaining variable ls the hydrostatic
pressure, which determines the "relative explosion intensity”
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() discussed earlier. 'The equation of state data is in
graphical and tabular form and is therefore rather Aifficult
to use for calculations; consequently, only one case was
actually computed, corresponding to ¢ = 3270. This value is
near the middle of the range of intereat, and therefore the
relativa deviations of the resulte from the cases described
earlier should be typical of that to be expected from expleo-
sions at nominal burst deptha. The numerical res:clts are (in
dimensionless form):

=
]

0.6048

i i et . A Lt L R e

§t 1.1403

0.5304

v
]

o
B

0.6198

The deviations of the "gasless" values obtained in section V
from the above are +2,5%, -0.5%, +0.88%, and +3.1% respectively;
that is, the gasless calculatiocn tends to slightly overestimate
A, u, and B and to underestimate 6t, the bubble period. These
results for steam may also be compared with the ideal gas
results obtained in saction VI. The deviation of the ideal gas
values from the steam valuez are shown in Figure 16 as functions
of Y, the ideal-gas adizbatic exponent. As can be seen, the
deviations in all four quantities are under 1% for y between
about 1.29 and 1.38; the best overall value would appear to be
about 4/3. That is, for this case at least, the errors
involved in replacing the real steam equation of state with

an ideal gas with v = 4/3 are:

i
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AN = §.16%

aAdt = ~0,14¢
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5

1.4¢ 1.45

1.35
57

1.30
DEVIATION CF THE IDEAL GAS MODEL RESULT» FROM THE

REAL~STERM CALCULATION

1.25

FIGURE 1lé:

1.20



Ay = G.34%

AB = ~0.24%

The cuncilusion that must be drawn is thal the 1deal
gas treatment using v = 4/3 15 an adeguetc approximation to the
rual-steam eqguation of state ag far as the bubble dynamics is
cencerned. A8 will be seen later on, errors of this magnitude
are entirely unimportant in comparison with other effects and
are, in fact, of about the same order as tinse introeduced by
neglecting the inertial eflects of the bubble atmosphere which,
as hes been shown, are insignificant.
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VIII. SURBLE ATHOESAERE TYRAE (%

S far, the bBubbleé 1ataricy haa weer tre=ated ag if 3¢

—t

ware homogenesous sc that the internsl pressure is independant

¢f position within thie bubbie. As wag dipcussead rcravicusly,
¥ r

o et B

this necessarily implies that the internal]l velocity distribu-
ticnn is given by:

u =R (g for r < R (VIII~1)

at any time. In fact, however, it .ay easily be shown that the
bubble will not remain homegeneous, but that ccnditicns within
the bubble will vary with position as well as with time. 1In
the high-explosive case, the bubble may be roughly homcgenecous

Tlr? o i M Bl L b e e

initially, but there is certainly no guarantec that it will

; remain s8o; in the nuclear case, the bubble is markedly irhomo-

' geneous initially. Accordingly, in this section the effects
of bubble non-houmogeneity will be examined in an approximate
way to determine the consequences as concerns the overall water
moiion. As before, the water outside the bubble is treated as
incempressible, but the actual detailed motion within the bublie
will ha taken intec mocount in detarmining iis radius-vime his-

Froren
T U Aty

tory. i

| G

! The motion of the gas within the bubble comprises a
fully non-linear time-dependent problem in compressible s
dynamics and is therefore governed by Euler's equations:

g —

3B+ X }E (r*pu) = 0 (VIII-2)

(VIII-3)

(VIII-4)




P = £(p,HI} (VIII-5)
where

u = velocity

g = density

P = pressure )

E = tctal energy per unit mass = %— + H

H = internal energy per unit mass

r = radius

t = time

Equations VIII-2 through VIII-4 represent, respectively,
the principles of mass, momentwn, and energy conservation; equaticn
VIII-5 is the equation of state for the gas. To solve these equa-
tions, it is convenient to transform them to a Lagrangian formula-
tion (that is, coordinates which muve with the fleow, rather than
remaining fixed in space). Also, as was seen in the preceeding
section, an idezl-gas treutment of the bubble interior is adequate,
ana therefore the equation of state (VIII-5) is sinply:

P = (y-1)pH

where y will be taken as 4/3.

The resulting system of eguations must be solved sub-
ject to prescribed initial distributions of p, u, and H, and to
a boundary condition at tlre bubble perimeter which matches the
incompressible external moticn solved earlier and which may be
derived from the momentum equation (VI-15), which defines the
acceleration at the wall in terms of the locezl internal gressure,
velocity, and gas density.

To solve the resulting system of equaticens a finite-

difference method was employed which is essentially the same as

ST IR




that described by Mader Ané Gage (1867). The hycdicdynamic code

18 an explicit forward-time lagyiangian finite-difference &chame

empioying the Von Neumann-Richtm,er artificial viscosity techn)-
, que to avoid instabjilities asmociated with compression waves.
The datails of the method have been extensively described by
Mader and will therefore nct be repsatad here. Two cases were
actually calculated using this method; computer time limitations
precluded a more extenaive investigation.

For the tirgt problem run, the bubble interior was

i assuted to be initially homogeneous: p was taken as the same as

' that of water, and the "explosion intersity" f{ was 3000. The

l gaseous region within the bubble was dividea into 100 Lagrangian

| computational cells; as discussed above, the effects of the water
outsid¢ are taken into account by proper specification of the
boundary conditions at the bubble edge. Tie beginning of the
bubble expangion caused & rarefaction to form at the bubble

! edge and to propagate toward the interior:; the resulting pras-
sure wave continued to oscillate betwean the bubble center

] and bybble edge throughout the rest 5f the motion. Severai of

these interior pressure vave reverberations occurred during the

fir.t expansjion, superimposed on the general overall pressure

! decline. The integration was carried out through 15,000 compu-
tational steps, which required about 8 miiutes of TDC~660C

| computer time. Calcuylations were carried out well beyond the
point of maximum expansion and into the beginning of the

; bublLle collapse. Although the governing equations no longer

imply symmetry of the radius-time curve, the computed results
i thems2lvegs are symmetric to within small fractions of a percent.
i Accordingly, the bubble period was taken as juot twice the
time tc maximum expansion.

The maximum bubble radius in dimens:ionless form
computed in this way was Blightly less than that obtained
assuning a homogeneous bubble atmosphere, since the kinetic
enargy oi the bubble atmoBphere did not fall to zero at the
maximum; the oscillating pressure disturbance mentioned above
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was stlll present, although very weak. The dimensionless
results which described the oubble radius-time rolation are
shown in the fcliowing tabkle, wiich also lists the corres-
ponding values for the “gasless’ caase and the y = 4/3 homo-
geneous ideal-gas model at the t+ me value of f, both with

and without gas inertial effects considered:
MODEL
Dynamic ldeal Gas Ideal Gas
Bubble With without Gasless
RESULT Interior Inertial Effects Inertial Fffects Model
A 0.6053 0.6056 0.6056 0.620
St 1.1392 1.1394 1.1389 1.135
vl 0.5314 0.5315 0.3317 0.547
B 0.6177 0.6178 0.6180 0.625

As can be seen, the consideration cf the interior gax dynamica
made virtually no difference to the results, and consequently
the homogeneous approximation appears tc be guite adequate to
describe the motion. Although, in the dynamic calculation,
fairly large pressure fluctuations around the mean value
occurred at the bubble boundary, a sufficient number of fluc-
tuations occurred that. the average overall effect was about
the same as if there hed been no such fluctuations.

In the case juert discussed, however, “he bubble was
assumed to be initially homogenecus. As was discussed earlier,
a murlear explosinr would be saxvacted to produce an "initial
bubble" that is non-homogenecus, that is, hotter and less
dense at the center than at the edye. To evaluate the effect
of initial non-homoceneity of the bubble, the rRame Lagrangian
hydrodynamic code was used as in the previocus case, and all
input conditions were the same, except that for the innermost
fourth of the initial bubble radius, the deneity was set at
one-tenth of the previous value and the internal energy per
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unlt mags {which is proportional to temperature! wae multiplied

by ten. Foir the outer three-fcurths, the initial conditions
were tle same as in the previous case.

The second problem was not carried ocut in tima &5 far
as the first bubble maximum, since the results even at early
times were essentially identical (as far as the bubble radius-
time relation was concerned) w.th those in the previcus case.
The deviation never exceeded 0.04% in magnitude, and declined
glowly toward zero as the computation went on. The computa-
tion was stopped at T = §.,17, at which time the bubble radius
was 75% of the maximum value; at that point, the deviation
in bubble radius retween thc two cases had dropped to G.C27S.
The overall conclusicn which must necessarily be reached from
both of these calculations is that the explicit treatment of
the kukble atmosphere dynamics does not significantly alter
the results for the bubble radius-time relation from those
obtained using the homogeneous model discussed in section VI,

and that this ig true regardless of the initial energy distri-
bution within the bubble.




IX. COMPARISONES WITH CTHER RESULTS

To evaluate the adequacy of the models digcusssd in
the preceedins sections, it is necessary to consider experi-
mental results. As was just shown, the effects upon the radius-
time relation of a non-homogerecus dynamic bubble interior are
extremely slight. Furthermore, over the range of interast, the
effects of the deviations of real steam bechavior from y = 4,3
ideal gas behavior are unimportant, and the inertial effccts cf
the bubble atmosphere are likewise negligible. Of the various
models considered, only the results of the most primitive (that
is, the "gasless" model of section V) differ to any significant
extent from the rest, and even that case i3 generally within a
few percent of the others. The general conclusion that must be
drawn is that the bubble motion is guite insensitive to the
beliavior of the interior; that is, that the motion is dominated
by the water flow outside the Lubble rather than that of -the
gas inside.

In all cases considered, the water outside the bubble
was assumed to be incompregsibla. This asswnpiiun is appro-
priate in view of the overall purpose of this investigation and
has iwrther been shown by various plausibility arguments to be
at least approximately correct except for short time periods very
near the bubble minimum. None the less, it is certainly worth-
while to determine the eatent to which the ideal gas - incompras-
sible water model represents observed explosion bubble belhavior.

An enormous amouni of experimental data has been
acquired over the years concerning underwater exploeions. Even
80, precise measurements of the bubble motion are extremely
difficult to obtain. For large explosions in the field, the
only bubble par&meter which may be readily determined is the
period ot oscillation, that ias, the time interval between
the emission of the primary shockwave and the "bubble pulse"
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pressura wave amitted v the first re~ompressios: For high
explosives firad deep encugh that the pressuce vl the frame
surface does not significantly affect tive motion, the data may
be correlated by an empirical expreasion of the ferm (Cols,
1948):

WT(lb,)] 1/3

T{TE. (1X-1)

T(sec) = K [
where WT is the charge weight in pounds, 2 is the total hydro-
static preasure measured in feet of water (that is, the depth
of burst plus 34 feet representing air pressure), and X depsnds

upen the ;| .rticular type of explosive used. Forv TNT, for

i

example,

3

l /
LA (7X-2)

T(sec) = 4,36 [

will predict ohserved bubble periods within a few percent over

a wide range of charge weights and burst depths. If the initial

bubble energy for TNT is taken as 47% of the total explosion

energy (that ie, the total minus the observed 53% shuckwvave
tal explusion energy per unit explcosive mass

ig asaumed to be 4.2 x 106 joules/kilograme (see section II),

and vater density is taken as 1000 kg/m3, equation (IX-2) may

be expressed in dimensionless form:

T=1.126 Vo, Eg/° 7 p}/S (1x-3)
that is,

dr = 1.126
which, as was shown in section VI (see Figure 1l), agrees quite
well with the values obtained from the hamogenesus ideal-gas

model. Over the ragion of interest, the ideal gas results for
Y = 1.25 (the valuoc suggested by Snay (1957) as being most

approprirate for TNI! are illustrated in Figure 17. The deviation
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FIGURE 17: COMPARISON OF THE "AVERAGF" EXPERIMENTAL
DIMENSIONLESS OSCILLATION PERIOD FOR TNT
WITH IDEAL GAS MODEL RESULTS




over the range f{ = 1000 to ¢ = 30,000 (the vegion in which most
of the experimental data was acquircd) is always less than 0.15%,
far less than the scatter in the experimental data itself. <his
ratisr remarkable agreement between the ideal-gas results and
experimental measurements for TNT is probably somewhat fortui-
tous, but certainly indicates that the model can adequately re-
present experimental ‘esults for tha bubble oscillation period.

For nuclear explosions, experimental dzta is extremely
sparse. The only available direct measurement concerning nuclear
explosion bubble motion is the bubble period measured hydro-
acoustically at the 1955 WIGWAM test. Operation WIGWAM consisted
of the detonation of a 30 kiioton nuclear device (total ¢nergy
release 1.2 x 101'1 joules) at a depth of €10 meters in very deep
water in the open sea. The first bubble pexiod was 2.88
seconds; if the fluid density is taken as 1025 kg,’m3 (an "average"
value for seawater) and the initial bubble energy is taken as
40% of the total yield as discussed in section I1I, the dimension-
less bubble period is:

6t = 1.137

which may be compared with the results of the y = 4/3 ideal-gas
model (gsee Figure 18). The "reduced evnlosion intensity” 7

for WIGWAM was taken as 500, based upon the ussumption of an
initial bubble energy density equal t« that of TNT. The devia-
tion between the two is about 1%, which is within the precisiocon
of the WIGWAM oscillation period measurement.

There are, of course, no measurements of maximum bubdle
radii for underwatar nuclear explosions. Even for high explo-
sivesa, far less data exists for the bubble radius than for the
bubble psriod. What data is availaile may, howsver, he corre-
lated by the empirical fozmula:
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FIGURE 13: COMPARISON OF THE DIMENSIONLESS WIGWAM BUBBLE
PERsvi- WITH IDEAL GAS MODEL RESULTS
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1/3
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which is analogous to the empirical equation for the bubble
period (1X-1). For TNT, J = 12.6 fits most of the available
data within a fevw percent. This observed result may be trans-
formed to non-dimenseicnal form in the same way as was done with
the TNT kubble period; the result is:

A= 0,58

which may be compared with the ideal-gas model results uaing

Yy = 1.25 (see Figure 19). Again, the agreement is fairly good.

Many of the available meacurZ....... vf bubble motion
were taken on a laboratory ecale, using very tiny charges in
special test chambers in which the air pressure may be reduced
to provide Froude scaling, that is, similitude of bubble bLuoy-
ancy effects (sce, for example, Snay, 1964; Pritchett, 1966).
The purpose of these tests was, in general, to simulate the
buoyant bubble migration characteristics of large explosions.
For the present purpose, however, much of this data must be
regarded with some suspicion. The reason is that, at low
ambient hydrostatic pressures, the local pressure in the water

-
4

near the bubble interface may drop below varor prossur

bubble maxima and the surface of the bubble will then boil

ar
Figure 20 shows the pressure distribution in the water

fcr an explosion at i = 3000 and v = 4/3. The ideal-gas model
of section VI was ufed for this calculation, and the inartiail

effects of the gas were neglected. The pressure distribution was

then obtainea using equation V~12. As can be seen, at early
times, the presssure declinus with increasing distance, but once
the internal pressure drops below Py Ithe hydrostatic preasure),
the point of lowest instantanaous pressure is directly adjacent
to the bubble interface. Thus, if the interior pressure at the
maximum predicted by this theory is less than the water vapor
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pressure (which depends on tempurature), the water at the bubkle
boundary will begin to bol), increasing the amount of gas in

the bubble, ite maximum size, and ite period of oscillation. For
explosions at normal hydrostatic pressures (greater than one
atmogsphere), of course, this effect does not occur. If the

water is cooled sufficiently, bubble boiling will not occur even
for hydrostatic pressures less than cne atmosphere. The hydro-
static pressure at which bubble boiling at the maximum would be
expccted to begin as a function of water temperature is shown in
Figure 21. This result should, of course, be taken as approrimaty;
it was darived using the y = 4/3 ideal gas bubble model assuming
an initial bubble energy density equal to that of TNT. Actually, i
Figure 21 is quite conservative; experimental results indicate
that significant effects upon bubble behavior do not occur

unless hydrostatic pressures are about a faccor of four or so
smallier than indicated (Snay, 1964). The reason is simply that,
although the bubble interior pressure may drop slightly below
vepor pressure a: the bubble maximum, the amount of water actually
vaporized is fair'y small due to the > 'ﬁely short bubble
oscillation period, unless the interior pressure is well below
vapor pressure fo: a substantial part of the oscillation cycle.

A numbes of experiments using the "vicuum tank techni-
que” were performed at the Naval Radiological Defense Laboratory
during the earvly 1960°s using a very high energy density elec-
trically exploded metallic wire as the energy scurce (Buntzen,
1964; Pritchett, 1966). Such an explosion produces no permanent
gases, and therefore the steam bubble generated is similar to
that cf an unde;water nuclear explosion (Buntzen, 1961). Some
cf these tests occurred in the "danger zone" in which the bubble
boiling might be expected; of those which were not, however, the
bubkle radii and oscillation periods, as measured by high-speed
photography, agree fairly well with results predicted using the
ideal-gas model. The scatter in this data was, however, con-
siderable; due to the small size of the explosions, bubble periods
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were of order a few tens of milliseconds and bubble radii were
typically only a few centimeters. Furthermore, th2 tctal
explosion energy was difficult to reproduce, and could only be
determined within 10% or so. None the less, these results also
tend tc support the ideal-gas model for bubble pulsation.

Other measurements than tlie maximum radius and bubble
period have, of cource, been made. The scatter in the measured
results is considerable, however, due to the great difficulty
in experimentally de_ermining the bubble radius-time rclation.
The radius-time curve computed using the ideal-gas model falls
well within the band of experimental scatter. Measurement of
subtle parameters such as B(the "shape factor"™) would of cu *.uve
be extremely difficult, and has never been attuampted, to the
author's knowledge. The "characteristic velocity”™ u, on the
other hand, may be determined if the bubble maximum radius and
oscillation period are known. The "average" value which may be
derived from the empirical TNT equations (IX-2 and IX-4) is 0.51,
which falls in the middle of the range of values derived from the
ideal gas model. As has been pointed out by Snay (13€C) and
others, although the empirical coefficients J ind K depend
upon explosive type, the ratio J/K .3 relatively constant at
about 2.9 within a few percent, which implies y = 0.51,

As has been seen, the available experimental data, while
generally verifying the present results which assume incompres-
sible water, are sufficiesntly scattered that precise comparisons
are simply not poasible. In recent years, a few theoretical
calculations of one-dimensional bubble motion which include the
effect of water compressibility have appeared in the literature.
Two of these (Kot, 1964 and Bjork, Kreyenhagen and Wagner, 1969)
involved nuclear explosions, and two others, (Phillips and Snay,
1968 and Mader, 1971) represented smaller conventional explosions.
¥et considered three casss, all onse-kiloton nuclear esxplosions
at burst depths of 91, 305. arnd 610 meters. The eguation of
state data used war, regrettably, rathar primitive. Bjork, et.

75

ey JR— -

ek



al. ccnsidered only cne case =-- a 10 kiloton nuclear explosion
at 1830 meters. Unfcvtunately, the one-dimensional calculation
was terminated at 6.9 microseconds; a relatively poorly-resolved
two-dimensional method was usaed thereafter, but even this cal-
culation ended at 140 milliseconds, so that the bubble never
reached its first maximum. Phillips and Snay report the resulte
of five calculations of one-pound TNT explosions at burst depths
ot 24, 152, 305, 4220 and €822 meters. Mader's results repre-
sent the explosions of half-pound spherical Tetryl charges {a
conventional high explosive similar in characteristics to TNT)
at hydrostatic pressures corresponding ts burst depths of 89,
735, 4510 and 46,600 meters. 1In reality, of course, the average
depth of the ocean is only about 4000 meters and the deepest
point is about 11,000 meters (at the bottom of the Mindanac
Trench) so Mader's deepest case must he regarded as somewhat
hypothetical. The range of depths ¢f interest for underwater

explosions generally does not extend below 1000 meters or so.

The maximum bubble radii reported by Kot, Phillips
and Snay, and Mader (excluding his deepest case which is off-

[T e

for v

scale) are shown in dimensionless fcorm as functions of the
relative explosio: intensity ¢ in Figure 22. Also shown are

the results of the ideal gas model neglecting gas inertial
effects for v ranging from 1.15 to 1.40. The scatter in the

'-nuu
"0 o OISt ek LA b a0

"band" of compressible =-water computational results is about
108, but, as can be seen, the overall agreement is fairly good.
Similarly, the results of Kot, Phillips and Snay, and Mader
for the "characteristic velocity" u( = A/6§1) are compared with
the ideal-gas-model results in Figure 23. Also included is
the resuvlt of an earlier calculation by Keller and Kolodnexr
(1953) in which the water was considered compressitle, but the

bubble interior was treated as a homogeneous ideal gas with

y = 1.25. Once again, the agreement of the data with the
incompressible results appear as gocd as the agreament between
one set c¢f data and another.
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Although both the experimental measurements discuused
earlier and the theoretical resultas which include the effsct
of water compresaibility tend to agree with the incompressible-~
water calculations, the scatter in both is sufficiently great
that no clear choice based upon these results alone can be r:ade
among the various models discussed in the previous sactions. The
ideal-gas model results agree quite well wi_.h experiments and with
the compressible-water calculation® and, as has been shown,
further elaboration of that model (tc include gas inertial
effects, real-steam behavior, anc¢/cr bubble inhomogennity)
altere the results obtained by only fractions of a peicernt.
The deriations of the ideal-gas incompressible-water model
results from compressible-water calculations and from experi-
mental measurements are at least as great as the "improvement"
that could in principie be obtained by using a more elaborate
model for the bubble interior.

Tt is theretore reccmmended that the ideal jas model
neglecting gas inertial effects be adopted for the purpose of
making incompressible-water calculations of bubble motion. The
additional complications introduced by using a mure complex
model are simply nct warranted in viaw of the very slight gain
in accuracy, particnlarly since tha assumption of incompressible
water itself introducee errors of at least comparable size. As

vea ~ o~ - 4 -
was oceil -

sction VII, foi: atwan bubbles pruduceé Dy nuciear
explosions, vy = 4/3 seems to agree beat with the real-iteam
results; for h.gh-explosive calculations, a somewnat lower value

(such as 1.25) should probably be used.
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APPENDIX A: SYMBOLS AND ABBREVIATIONS

det

] M M o M & O O
7oA g e

n 0
o

[ ]

Lo
»

(o NN - IO I - R B SN B

instantaneous bubble surface area

"shape factor™ for bubble oscillation cycle =
T
( I R'at) / (R, T)
o]

spead of sound in water

detonation wave speed within the explosive
total energy per unit mass = % u + H
bukble nscillation energy

internal energy of bubble atmosphere
initial bub*le internal energy
kinetic ensrgy

kinetic energy of bubble atmosphere
kinetic energy of the water outside the bubble
buoyant force

acceleration of gravity

internal energy per unit mass

buoyant momentum

dimensionless buoyant momentum
empirical "radius coefficient”
empirical "period coefficient”

Mach number

pressure

initial bubble pressure

bubble pressure

hydrostatic pressure

chemical energy released per unit explosive mass
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v

V’

WT

A

u

radial coordinate

instantaneous

instantaneous

inscantaneous bubble interface acceleration

bubble radius

bubble interface velocity

initial butble radius

maximum bubb.ie radius

time

reaction time

of explosive charge

bubble oscillation period

velocity

characteristic velocity for bubble oscillation =

F&nax/T
bubkle volume

initial bubble volume

work done against external forces

charge weight

measured in pounds

yield; total explosion enexrgy

axial coordinate variable

hydrostatic pressure (P,) measured in feet cf water
H

dimensionless

ideal-gas adiabatic exponent (ratio of specific heats)

4imensionless
dimensionless
dimensionless
dimensicnless
dimensionless

(A/67)

bubble oscillation period

instantaneous bubble radius

instantaneous bubble interface velocity

initial bubble radius

mayximum bubble radius

bubble oscillation characteristic velocity
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p density

Pe expiosive packing dena.ty; initial bubble density
pg instantaneocus bubble interior density

Py water density

T dimensionless time

[4 dimensionless explosion "intensity".




