o

()

Ne

e\

Do

(ap) J

e

=

T
DDC
WERERLITII

H FEB 28 1912 ”
GIETT I
B

APPLIED DATA RESEARCH, INC.

/

- oo/ 475”937 %@5’7 fﬂj

APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARY ¢ WAKEFIELD, MASSACHUSETTS 01880 « (617) 245-9540

FOURTH SEMI-ANNUAL TECHNICAL REPORT
(14 July 1971 - 13 January 1972)
FOR THE PROJECT
COMPIT.ER DESIGN FOR THE ILLIAC IV

VOLUME II

Principal Investigator and Project Leader:

Robert E. Millstein Phone (617) 245-9540
ARPA Order Number ARPA 1554
Program Code Number 0D30
Contractor: Applied Data Research, Inc.
Contract No.: DAHCO04 70 C 0023
Effective Date: 13 January 1970
Amount: $916,712.50
Sponsored by

Advanced Research Projects Agency
ARPA Order No. 1554

Approved for public release; distribution unlimited.

APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK « WAKEFIELD, MASSACHUSETTS 01880 o {617) 245.9540

FOURTH SEMI-ANNUAL TECHNIGAL REPORT
(14 July 1971 - 13 January 1372)
FOR THE PROJECT
COMPILER DESIGN FOR THE ILLIAC IV

VOLUME 11

CA-7202-1111

Principal Invastigator and Project Leader:
Robert E. Millstein Phone (617) 245-9540

Approved ior public release; distribution unlimited.

L

I1.

1.

TABLE OF CONTENTS
" VOLUME 1j

Control Structures in ILLIAC IV FORTRAN

IVTRAN: A Dialect of FORTRAN For Use On

The ILLIAC IV

1. Introduction

2. Elements of IVTRAN

3. Constants

4. Variables

5. Expiessions

6. Statements

7. Program Units and Programs

Appendix A: Allocation

Functional Specification For The
ILLIAC 1V Link Editor

29
29
31
38
46
59
60
130
144

158

T e T T TN 0 s e

e o

CHAPTER 1

CONTROL STRUCTURES IN ILLIAC IV FORTRAN

i

o

-——'—-—--—-!—Hr—!

)

Part of our effort for the design and implementaiion of the ILLIAC IV
FORTRAN compiler has been the design of an extended FORTRAN, called
IVTRAN, which provides a suitable means of programming the ILLIAC.

The extensions to standard FORTRAN are statement forms for expressing
parallelism and data layout in an array memory. This chapter will describe
these sr.ructures; but it is primarily concerned with the rationale which led

to their creation.

The logical starting point is the hardware which makes up an ILLIAC IV
quadrant [1,2]. Let us review the features of the machine and pick out
unconventional parts which might be expected to affect language design.
The computing hardware consists of a control unit (CU) and 64 processing
units (PUs). Each processing unit consists of a processing element (PE)
and a processing element memory (PEM) of 2K 64 bit words. A PE memofy
access requires 1 cycle, and a normalized floating point add instruction
requires S cycles. A cycle requires 62.5 ns., so the. basic data rate is
64 bits per 62.5 ns. per processor, or 65x109 bits per second (bps) for a
quadrant of G4 processors. An average execution time of 312.5 ns. per
instruction per processor produces an instruction rate of 200 (3.1) million
instructions per second (MIP) per quadrant (processor). All instructions
are interpreted by the CU, which decodes each instruction and broadcasts,
synchronously, sequences of microinstructions to each PE That is,

the CU interprets an instruction and then each PE, simultaneously,

executes that instruction. One operand may be broadcast from the CU.
Other operands are available to thé PE from its own PEM or operating
registers. In addition, PEs may be disabled for the execution of any given
(sequence of) instructions. That is, any set of PEs can be (temporarily)
turned off during the ccurse of an instruction stream. Thus, if an add
instruction is broadcast by the CU, a given PE may execute it (on local
data) or ignore it. It is not, however, posslblé to execute a different
instruction. The first major unconventional feature of ILLIAC design 15 that
there is exactly one instruction stream for 64 processors which operate

synchronously on local data streams.

The CU is able to perform some integer arithmetic, primarily for loop
control and address calculation, but the major computing power resides in
the PE. The PEs can perform a standard repertoire cf fixed point, floating
point, and logical computations. Certainly the cor:puting capability of

each PE is conventional and poses no difficulty in lénguage design.

An ILLIAC quadrant has 128K of memory, all of which is accessible, in
conventional fashion, to the CU. Each PE, however, sees only 2K of local
memo}y. The memory structure is depicted in Figure 1. Instructions which
reference memory generate an effective address between 0 and 2047 10° This
address is used as a displacement in each PEM. For instance, an instruction
with effective address 100 would cause the 64 words marked by an asterisk

in Figure 1 to be referenced. Each PE contajns a local index register which

cun be used to modify the virtual a<dress field of an instruction. Thus,

if the index register of PEO contalhed 0, the lndex register of PE1 contained
1, etc., and the virtual address field cuntained 100, the 64 words marked

by a plus in Figure 1 would be referenced. Note, however, that a PE can
only reference words within its PEM. The II.LIAC-quadr_ant then, contains
powerful processors which have conventional access to only 2K of memory.

A routing instruction is provided to allow data transfers between FEs. The
PEs are, in effect, connected in a closed circular fashion. The rov.tlné
instruction transmits a word from each PE to the PE located n positions
distant around the ring. A total of 64 words are transmitted: PEQ 'sends

& word to PEn, PE] sends to PE((n+1)mod64), ... and PE63 sends to
PE((n+63)mod64), O=n <63. As many as 64 of the transfers may be useful,

or as few as], depending on data layout. Clearly, the routing instruction is
insufficient to compensate for the small size of the memory directly address-
able by each PE. This ls the second major unconvertional feature of the
ILLIAC IV: a very small,locally accessable memory with minimal -nter-me.nory

connections.

Just as 2K is a small memory for a 31 MIP processor, 128K is
a small memory for a 200 MJIP machine. To compensate for the small
overall memory a 16 million word disk file with a .5 x 109 bps transfer rate
is part of the ILLIAC quadrant. This enables a complete memory load to be
accomplished in 16 ms. (ignoring latency) and provides a throughput access
time per wc;rd of 128 ns., or approoi{mately l/;130 PEM speed. This access

concern is crucial to the problem of using the ILLIAC 1v efficiently.

== o<x
—_—

Since 20 ms. is enough time for 4 million instruction e€xecutions, this
problem is a serious one. This conventional disk latency, coupled with

an unconventionally high transfer rate, comprises the third pertinent

ILLIAC hardware feature.

These, then, are the three crucial machine cheracteristics which

influenced our language design:

) a single instruction stream controlling synchronous Operation
on 64 different data streams.

° 4 powerful, fast processor with only limiteq (2K) 1ocal memory
and only limited connections (via routing instructions) to
othe: high srsed memory,

® a total of only 128K of pProgram and data prﬁnary stdrage for a
200 MIP processor with a backup store characterized by

high transfer rate and (relatively) slow access rate.

Note that every one of these hardware featwres concerns data. This

BT N ——

S'a

L2
=

L

P R TR L - 0

b
!i-——---——-——-_—-—.....—_

1

— — T

part concentrateq on optimization of data organization rather than op*imization
of mac;une code sequences. The iLLIAC will only operate effectively if

data is laid out properly. Reorganizing data so that an operation can be
performed on 64 items simultaneously is clearly a more important goal than
utilizing index registers efficiently in a sequential instruction stream. This
1s not to say that conventional, code~-oriented, optimization techniques are
not applicdble to the IVTRAN compiler; but, such techniquas are of sé;ondary
importance to the optimization of data organization. In contrast to coﬁvén-
tional computers, the optimization problem for the ILLIAC is one of data

layout, not code reorganization.

Let us reexamine the hardware features listed above to see what

conditions they suggest for ILLIAC optimization.

® The first feature -- a sing'e instruction stream operating on 64
different data streams -- suggests that efficient ILLIAC code will be compiled
from program structures where a single code sequence is executed for many

different sets of data. In the case of FORTRAN, DO loops are clearly such

program structures. In fact, the part of our effort related to the detection

of parallelism in standard FORTRAN is concentrated on DO loops. Ignoring

. the question of data dependency, (Obviously, consideration of intra- and

inter-loop data dependencies is of paramount impori:ance to the problem of
parallelism detection, but we can ignore it here.) a DO loop can be regarded

as a single instruction stream operating on different data streams only if

. e pan ey smm pmm

—
)

each data stream is represented as a variant of a single syntactic skeleton.
That i{s, each data stream is a syntactic form that is distinguished bé an
index value. In FORTRAN, the only applicable form is the array. Therefore,
the first ILLIAC hardware feature implies that the structuring of arrays

appearing within DO loops will be crucial to efficient machine utilization.

) _'rhe second feature -- 2K of local mémory with limited locail
memory-lucal memory transfer capability -- suggests that the crucial data
structures -~ {.e., arrays -~ be allocatad so that elements cppearlnlg in
parallel data streams be located in. different PEs. Then each PE, which is
constrained to directly access only its local memory, will have direct access
to the data required fcr computation. A secondary implication is that data
be allocated so that memory-memory transfers -- accomplished by routing
instructions -- move as many “good" data words as possible. That is, a
routing instruction moves 64 words at a time; each word moves n PEs to
the right, end around. If PEi reJuires a word in PB(él mod 64), 0=i=63, it
can require 63 routine instructions (ignoring various clever ;:lgorlthms for
this case) to allocate data in appropriate PEs for use by perhaps only one
instruction. In this example, each routing instruction moved only one “good"
data word. Routing instructions require, on the average, 562.5 ns.; they

can transmit as many as 4096 bits or as few as 64 bits. Thus, the data

transfer rate can vary from as high as 7.3 x 109 bps to as low as .1l x 109

bps. Local memory accesses transfer bits at a rate of 65 x 109 bps, so it
is important to keep routing instructions at the high end of the scale to

preserve some semblance of a balance. (In fact, this discussion has
ignored the fact that routing instructions are register *o register operations
and require an initial local memory access. This access pushes the bit

rates into even greater imbalance.)

8o far, we have seen that the first two unconventional ILLIAC hardware

characteristics suggest certain conditions for data layout:

[arrays are crucial data objects.

® arrays should be allocated so that parallel data streams ﬁe
in different PEs.

o arrays should be allocated so that routing instructions move

as many “good" data words as possible.

The third hardware feature basically concerns global data layout. This
problem is not unique to the ILLIAC, and, further, is extremely sensitive

to operating environment as well as machine charaaerlsﬁcs. Hence, we
will not treat it further in this chapter. Let us now examine a data allocation
method which satisfies the above local conditions. Once we have exam-
ined this method it will be clearer how to provide control and allocation
structures that let a programmer describe code which meets the local data
layout restrictions imposed by the ILLIAC hardware.

Let us define a cross section of an array as the subarray obtained by
holding some indices fixed and allowing all other indices to range through
all permissible values. We recognize a special type of cross section,
called a slice, which is the vector obtained by ﬁ?dng n-1 indices of an
n-dimensional array. These data objects are the obvious generalizations
of the array elément, the subarray obtained by fixing all indices. The intent
of these definiticns is that a Cross section of an array ropresents exactly
4 cross section of parallel data streams‘. A natural requirement, therefore,
is that an array bhe stored so that any given cross section be accessible in
parallel -- i.e., les across the PEs. Of course, cross sections with more
than 64 elements can only be accessed 64 elements at a time.

A natural operation to perform on a cross section is to combine it,
oleme;lt by element, with another cross section of the same size. It is not
feasible to require that évery array cross section exactly line up (in the
PEMs) with every other cross section of identical slze.‘ However, we can
require that cross sections be separated by at most a single uniform route.
By "single uniforr route” we mean that a single routing instruction will align
the elements of one cross section with the elements of any other cross section.
Again, cross sections of more than 64 elements can only be aligned 64

elements at a time.

-

As implied by the two previous requirements, arrays with dimensions
greater than 64 must be allocatable by any acceptable storage method. in
addition, it is desirable that cross sections and individual elements he
accessible via simple and gehéral formulae, with as much calculation as
possible done either at compile time or else simultaneously in the PEs at

run time.

'The storage schema we devised t> satisfy these requirements is called
physlgal skewing [3,4]. For simplicity, we will describe it in terms of
slices. '(In fact, the method satisfias generalizations of the above require-
ments for slices. In addition, slices are expected to be by far the most
used cross sections.) Consider Figure 2. This depicts the storage of a
3 x 7 x 10 array, each element denoted by its subscript. As in Figure 1,
we view the ILLIAC memory as 2-dimensional, with the PEs running horizon-
tally and the individual PEMs running vertically. Thus, the element 111 is
in word 0 of PEO, etc. The reason for the name physical skéwing“ is -
obvious. A slice along each of the three possible axes is marked in the
figure. The slice along the first dimension is ; 3-vector whose elements
are enclosed by diamonds. The 7-vector along the second dimension has

its elements enclosed by rectangles. Finally, the 10-vector along the third

dimension has its elements in circles.

Note first that for each slice each element is in a different PE than
any other element of that slice. Hence, each slice can be accessed in

parallel. Second, there is a horizontal spacing of 1 between elements of

ey

L] ———
] + '

"
$-

Gk BN B & & & D R D N AN aEy aEy EEn e

— ——

a slice. Given any element, the next element is in the PE immediately to
the right; so, an n-element shce occupies n consecutive PEs. Hence, a
single routing command can move any slice into any other n consecutive
PLs so as to be aligned with any other n-element slice. For example, a
single route of -4 would inove the vector 151, 152,... into PEs 0 through 9
so that coresponding elements of that vector and the vector 111, 112, ...
would be in the same PE. Finally, given the first element of a slice,
succeeding elements can be located by moving 1 PE to the right and then
down 7, 1, or 0 memory locations depending on whether the sllcg is along
the first, secund, <.:r third dimensions. (7 is me;rely the size of the second
dimension, which determines the height of each 2-dimensional subarray.)

Hence, accessing slices can be done by a simple uniform procedure.

This method meets three of the four requirements, but the example had
no dimensions greater than 64. Let us now see how the physical skewing
method can be adapted to meet tha fourth requirement. Suppose that we had
to store this 3 x 7 x 10 array in a 4-PE machine. We can slice the amray
vertically into 4-element wide strips, as indicated in the figure, and stack
the strips on top of each other so that, for instance, the element 115 would
be in PEO, word 21; the element 119 in PEO, word 42, and so on. Elements

of a slice can stiil be accessed in parallel, but only 4 elements at a time

of course. The routing remains the same since routing left from PEO wraps

around to PE3 and conversely for routing right from PE3. The access
formulae are slightly more cémpllcated. When the succeeding element {n

a slice is 1 PE to the right of PE3, then we wrap around to PEO to locate

the correct PE, and we must also add 21, the product of the sizes of the
first and second dimensions to whatever number of locations down we
would previou.ly have used. For example, the first 4 elements of the slice
214, 224, ... are located as before. To locate 254 we rotate back to PEO,-
go down 21 locations because of the wrap around and then go down 1 more
location, because this is a slice along the second axis. With only a
moderate increase 1n the complexity of the acce'ss formulae, this method

does indeed satisfy the fourth requirement.

Unfortunately, it also wastes an immensa amount of space, so we
devised a method of packing the array. Consider Figure 3. This represents
the same array as before, with the same slices marked, packed into the
memory of a 4-PE machine. We obtained the packing by overlapping the
first and fourth, and the second and fifth 4-element wide strips. lfaranel
access and routing remain as before. The accé€ss formulae are again slightly
complicated. Just as locating the proper PE is done modulo 4, now locating
the memory location is done modulo 63, the number of rows of memory that
the matrix occuples. For example, the first 4 elements of the slice 151,152, ..
are located as before by moving 1 PE to the right and 0 eleinents down. The
next 4 .elements are located by wrapping around to PEO and _ooqntlng down 21.

The remaining 2 elocments are located by again wrapping around to PEO and

again counting down 21, which, modulo 63, brings us around to the top of
the storage area. This method still leaves some wasted space, but the
amount wasted is not impossibly large. Further, that space can be used
for the storage cf various compile-time-calculable constants, such as the
product of dimension sizes, which are required by- the access formulae, as

well as for the storage of other constants required by the program.

Now this storage scheme

° treats arrays as the crucial data object

° allocates parallel data streams into different PEs
° maximizes economical routing

so it éeems to satisfy the data layout conditions imposed by the ILLIAC °
hardware. We can therefore, introduce a statement to express parallel
computations since we have an acceptable Way of stoﬂng data for such
computations. In addition to ordinary DO loops (for expressing sequential

calculations), IVTRAN has the DO FOR ALL loop.

A DO FOR ALL statement is of the form:
DO k FOR ALL (11, o BB ,ln)/s

et SRS TR [AR PN Yt

where:

1) k is the statement label' of an executable statement. This statement,
called the terminal statement of the associated DO FOR ALL, must
physically follow and be in the same program unit as the DO FOR ALL
ltatement.‘

2) Each 1j is an integer scalar variable name called a control index.

(11 Iy .ln) is called a control multi-index. |

3) s is an n-dimensional logical array expression with an extent d.

Associated with the DO FOR ALL is a range defined to be those executable
statements following the DO FOR ALL from and including the first statement
following the DO FOR ALL to and including the terminal statement. We also
define the extended range by replacing (by body substitution) function and
subroutine calls by the referenced subprograms. This substitution is repeated

iteratively until all such calls have been replaced.

A DO FOR ALL statement is used to specify that certain assignment
statements within the extended range are to be executed for a set of values
in parallel. This set of values, called the index set, is defined to be the

set of n-tuples of integers (11 reee ,ln) such that s(ll o - - ,in) is true and

(11"“'111) ‘ d-

el

The extended range of a DO FOR ALL may not contain another
DO FOR ALL or any array ex_pfesslons. The control lncilces may not be
used in any statement within the extended range of the DO FOR ALL loop,
except as outlined below. Otherwise, any statement permitted elsewhere
in the prpcedure part of the program is permitted and has its usual interpreta-

uon.

Within a DO FOR ALL extended range, the control indices may appear
only in DO FOR ALL assignment statements. A DO FOR ALL assignment

statement is one of the following forms:
p=e
IF(f) p=e

where:

1) pis an array element reference with subscripts of the form:

|
or I+C
or I-C

where 1 is one of the 1j and C is an expression independent of the 1j 0

Further, if lj and i, both appear as subscripts, then j#k ~ i.e., the

same control index cannot appear in more than one coordinate position.

=14

2) e and f are each expressions which may or Mmay not depend upon
(11 B o e ,1n) - Within e and f, any array references are either of the

form 1) above Or are independent of the 1j .

ment of the expression e to the array element reference P for all valueg

(11 souo 'ln)- In the index set. The computation of the expressions e and f
makes use of values of p in effect immediately bsfore execution of the
statement. If the Second form of the statement is used, assignment is made
only for those values of (11 ¢+«+.4.) in the index set for which

£4,,.. «+1)=.TRUE,

For example, let A(1 J.K) be the array shown in Figure 2. The following
loop sets each element of A to its absolute value and then replaces that’

value by its £quare root.

DO 1 FOR ALL (I.J.K)/[l...sl.c.tl...7J.c.[1.-..10]
IF (A(1,],K).LT.0.0) A(L].K) = -aA(1,],K
1 A(Iolox) =SQRT(A(I.LK”

.C. is an abbreviation of .CROSS., the Cartesian crossg product operator.

The built in square root function computes 64 va!ues simultaneously, one

in each PE,

We now note that it is pos sible, within the data storage scheme, to
allocate a given array in sevéral different ways. Consider the previous
example; the array was stored so th.t vectors along the third dimension
(elements enclosed by a circle in Figures 2 and 3) lie on horizontal lines.

That is, the same effective address, computable at compile time and broad-

cast from the CU, locates each element of the slice. No PE indexing is

required as it is for slices along the first and second dimensions. This
allocation is most efficient if slices along the third dimension are accessed
most oftgn. Howe\.rer, if slices along either the first or second dimensions
are most often accessed, then the array should be rotated 8o that, for
example, slices along the second dimension lie on horizontal lines (see
Figure 4). Thus, for maximum efficiency, it is necessary that the program-

mer specify the precise allocation that he desires. Furthermore, physical

‘skewing aliows parallel access to any slice along any dimension. If only

slices along a single dimension need be accessed in parallel, then a
simpler storage scheme is more efficient. This scheme is the normal "block"

arangement for arrays, with the parallel dimension stored row-wise. This

. scheme can be incorporated within physical skewing to permit highly

efficient parallel access along some dimension, no parallel access along
the "perpendicular" dimension and physically skewed parallel access along
yet another dimension. Figure S depicts a3 x 7 x 10 array stored this way.,
In any event, many variations are possible in the allocation of any given
array.‘ Hence, we require a statement form that allows a programmer to
precisely specify the desired allocation. The allocation declération

provides this form.

S

The occurrence of an array variable in a DIMENSION, Type, or
COMMON statement may be accompanied by aﬁ (optional) allocation
declaration. Each variable may have no more than one such declaration
in any program piece. The syntax of an allocatien is

allocation :; =
[multi-index { ,‘multi-lndex]:]

multi-index :: =
(index { ,lndex}:) |
aligned (index{ ,lndex]: |
preferred (index{ ,lndex}:

index :: = integer consta::t
aligned :: = # .
preferred :: = §
An a)loﬁatlon is used to describe a desired storage map. Each index
deno;es a subscript positinn (e.g., index 2 denotes the second subscrlbt

position of an array A(I,],K)). The order of indices within a multi-index

is significant, but the order of multi-indices v ithin an allocation is not.

Gane s

If an index is preferred, then an increment of 1 in the index value will
increase the PE number by l,. but the row number will not change. If an
index is aligned, then an increment of 1 in the index value will not change
the PE number, but the row number will change. We will further describe
the allocation declaration by means of a series of examples. Conslder a

3 x § array A(I,]). The allocation for storing this array physically skewed
is [(1).(2)], which is aiso the default allocation (see Figure 6a). This
allocation can also be written [(1),$(2)], indicuting that subscript position
2 is the preferred 1pdex. This allocation permits paral'lel access along
either coordinate, but access to the second coordinate is less expensive.
It might be used to store an array A(1,]) which often appears in DO FORALL J
loops and occasjonally appears in DO FORALL 1 lcops. The opposite case
== many DO FORALL I loops and few DO PORALL J -~ suggests the transpose
storage map, obtained by the allocation [$(1), (2)] (Figure 6b). If only glices
along the second coordinate need be accessed in parallel, the aligned
storage map (Figure 6c) can be obtained by the allocation [#(1).(2)].

the array appears in the body of a DO FORALL I .J loop, then the most desir-
able storage map permits access to 1,] cross-sections (Figure 6d). The
aliocation [(1,2)] produces this storage map. In general, multi-indices
are used to ol?tain parallel access to cross-sections. (In the previous
examples, the c.oss~sections were 1 -dimensional slices, so the multi-
indices consisted of only 1 index.) In all cases, slicing into 64 element
wide sﬁps is done automaticaliy and is transparent to the user. As a final

example, the allocation [(1),$ (2), (3)] will produce the storage map in Figure 4.

Now an allocation, unfortunately, is not necessarily of the same
efficiency throughout an entire p@ram. The parallel data streams may
be along one dimension in one loop and along a different dimension in
another loop. It is up to the programmer to decide whether it is more
efficient to change allocations between loops, or to select a compromise

allocation. For this reason it is necessary to allow allocation declarations

to be associated not just with program pieces but with loops.

A programmer can associate an allocation for an array A with a loop

(or other program part) by the following technique:

¢ Define a dummy array A' with the desired allocation and the
same extent as A

® Substitute A' for A in the loop

® Insert A'=A before the loop

The compiler will automatically call a subroutine to transform Ainto A'.
This technique requires, of course, that twice A2s much space be given for
the storage of A as is strictly necessary (since two different forms of the
array are simultaneously defined). Often, such waste is not allowable.
Further, the original allocation of A may not be needed again. Hence, it
is desirable that 2 means be provided to realiocate A into its original

storage area. The OVERLAP statement provides such a means.

E

i

I
I
I
I
1
I
I
I
I
|
b
I
1
1
1
!

The OVERLAP statement is of the form:

OVERLAP (SI'SZ’ . .,sn)
where each s is an OVERLAP specifier of the form:
(e1 1850 e0s ,em)
and each e is an OVERLAP element of the form:
‘nl:nzl---lnk’ -

and each n is an array or scalar variable name.

Either all of the variables in an OVERLAP specifier 'nust be in the
same COMMON block or none of them may be in COMMON. The order in
which variables appear in OVERLAP elements is arbitrary. The order in which
OVERLAP elements appear in OVERLAP specifiers is arbitrary. The same

variable or array name Mmay appear at niost once in an OVERLAP statement.

Each OVERLAP specifier indicates sets of variables (overlap elements)
which the compiler may cause to share storage. Each of the variables in
an OVERLAP element can share storage with any of the vartabies in any
other OVERLAP element in the same OVERLAP specifier. Variables declared

in the same OVERILAP element do not share storage with one another.

If, in the previous example, the programmer wishes to conserve space,

then he can use the statement:

OVERLAP ((3),(A"))

e

| oy

.S pEm s En e

[04

- e evm. r. - o

The compiler will then automatically reallocate A (and rename the result A')

into the same storage area when the assignment A'=A 1s encountereq.

As a final example uslng.these language features, we present IVTRAN
code which reallocates a 3 x § array from the form shown in Figure 6a to
the form in Figure 6d, and then, simulteneously, multiplies each element

by 1 and computes the sine.

DIMENSION A(3,5) [(1),(2)] A1(3,5)[(1,2)]
OVERLAP ((a),(Al))
Al=p
DO 1 FORALL (1,])/T1...3).C.[1...5]
1 AI(I,])=SIN(3.1416*A1(1,]))

The allocation declariuon and OVERLAP statement, and the techniques
for using them to change allocations, provide the programmer with the ability
to adjust his data layout to best suit his algorithm. By using these state-
ments together with DO FOR ALL loops, a programmer may precisely express
both the parallel computations and the asséclated local data layout thyt

utilizes the unconventional ILLIAC hardware features,

e
-

AT T ———_—

- Wl
2

11 12 13 14 15
2 22 23 24 25
31 32 33 34 35

11 axn
12 22 32
13 23 33
14 24 3
15 25 35

11 1213 1% 15
21 22 23 24 25
31 32 33 3% 35

11 121314 15 21 22 23 24 25 31 32 33 34 35

=22~

PE63

+

E4 __PL1

ﬂ -y LN]

100* + |*

2047

Figure 1

wr

RN ape ittt e 1
»

P

e sl

e Wl (g

]

T, S N RS T e

ey o

g

111 112 113 114
121 122 123
131 132

14

21 212 213
221 222
23

N1 naz2
Ja

DOV

115 116 117 118
124 125 126 127
133 134 13

142 143 144 145

161 162 163

1N 172

2 215 216 217
223 225 226

232 233 3] 235
2u1 242 243 2 .

251 252 253

26 262

n

313 314 315 316
322 323 324 325
331 332 333 334
341 342 343
351 352

361

SO

119 11A

128 129 12A

137 138 139 13A
14¢ 147 148 149

164 165 166 167
173 174 175 176
218 219 21A

227 228 229 22A
36)237 238 239
25 2u6 247 2u8

255 256 257
263 265 266
212 213 14| 275
317 318 319 314
326 327 328 329
335 337 338
34U 345 346 347
353 354 355 356
362 363 364 365
371 372 373 374

14A

90

168 169 1677

177 178 179 17A

23A

249 2uA

258 259 25A

267 268 269 26A
276 277 278 279

32A
339 33A

348 349 34A

357 358 359 35A
366 367 368 369
375 376 377 378

Fi{gure 2

2TA

36A
379 37A

=

T pen pemy pemy

111 112 113 114

121 122 123

131 132

32A Ja

339 33A

348 349 3u4A

357 358 359 35A
366 367 348 369
375 376 377 378
115 136 117 118
124 125 126 127
133 134 135

142 143 144 145

8OO

161 162 163

241 242 243

251 252 253

—e

261 262

- 119 11A

313 314 315 316
322 323 324 325
331 332 333 334
T 3m 342 3u3

351 352
3 e

© 379 37A

128 129 124 -

137 138 139 134 .
146 247 418 149

6B

164 165 166 167
173 174 175 176
218 219 21A
227 228 229 22A
237 238 239
2li5 246 2u7 248
[255 256 257
263 @ 265 266
272 273 E 215
317 318 319 31A
326 327 328 329
335338)337 338
344 345 346 347
353 354 355 356
362 363 364 365
371 372 373 374

111 121 131 141 151 161
112 122 132 142 152

113 123 133 143

114 124 134

115 125

116

211 221 231 241 251
212 222 232 242

213 223 233

a4 224

215

311 321 331 34
312 322 332
313 323

3y

i
142
153
14y
135
126
117

261
252
243
234
225
216

351
342
333
32y
315

172
163 173
154 164 174
145 155 165 175
136 146 156 166 176
127 137 147 157 167 177 -
123 128 138 148 158 168 178
119 129 139 149 159 169 179
1A 12A 13A 14A 15A 16A 17A
27T
262 272
253 263 273
244 254 264 274
235 245 255 265 275
226 236 246 256 266 276
217 227 237 247 257 267 277
218 228 238 248 258 268 278
219 229 239 249 259 269 279
21A 22A 23A 24A 25A 26A 27A
361 371 |
352 362 372
343 353 363 373
274 344 354 364 374
325 335 345 355 365 375
316 326 336 346 356 366 376
317 327 337 347 357 367 377
318 328 338 348 358 368 378
319 329 339 349 359 369 379
31A 32A 33A 34A 35A 36A 37A

Figure 4

i e

11
122
13
14
151
161
n

112 113 114 1i5 116 117 118 119 11A

122
132
142
152
162
172
211
221
231
a5
251
261
N

123
133
143
153
163
173
212
222
232
242
252
262
272
311

124
134
144
154
164
174
213
223
233
2u3
253
263
273
312

125
135
145
155
165
175
214
224
234
214
254
204
274
313

321 322 323
331 332 333
341 342 343

126 127 128 129 12aA

136 137 138 139 13A

146 147 148 149 144 _

156 157 158 159 154

166 167 168 169 16A

176 177 178 179 17A

215 216 217 218 219 214

225 226 227 228 229 22a
235 236 237 238 239 234

245 246 247 248 249 247
255 256 257 258 259 25A
265 266 267 268 269 26A

275 276 277 278 279 27A
314 315 316 317 318 319 31a
324 325 326 327 328 329 324
334 335 336 337 338 339 334
344 345 346 347 348 349 34A

- 351 352 352 354 355 356 357 358 359 35A
361 362 363 364 365 366 367 368 369 36A

371 372 373 574 375 376 377 3718 3719 3'}3

e

AT

Allocation Declaration

11 1213 14 15
21 22 23 24 25
31 32 33 34 35
[(1).(2] or fl1).8(2)]

11 22
12 22 32
13 23 33
W 24 34
15.25 35

[30).(2)]

111213 1415
21 22 23 2 25
31 32 33 34 35

[#12).(2)]

111213 14 15 21 22 23 2% 25 31 32 33 34 35

[i2.2)] .

Flgﬁrg 6

e

CHAPTER II

- IVTRAN: A DIALECT OF FORTRAN FOR USE
ON THE ILLIAC 1V

- Em e e e

1. - INTRODUCTION

This manual describes the IVTRAN*language, a dialect of FORTRAN
for use on the ILLIAC IV computer. The IVIRAN language has been designed
both for use in converting existing FORTRAN programs for use on the
ILLIAC IV and for construction of new programs to make use of the unique
features the ILLIAC IV provides. The name ™IVTRAN" is used to refer both
to the language described in this manual and also to the language processor,
called the compiler, which translates IVTRAN language programs into
ILLIAC IV machine language.

1.1 The Language

To aid in program conversion-and programmer training, the IVTRAN
language incorporates many of the extensions to ANS standard FORTRAN
which are part of the IBM/360 and CDC/6600 FORTRAN languages. These
features are outlined in Appendix C.

A major feature of the IVTRAN system is the PARALYZER, a compiler
option for use in program conversion. The ?ARALYZER examines DO-loops
of a program to be converted for use on the ILLIAC IV and transforms the
DO-loops into equivalent but more efficient DO FOR ALL statements which
exploit the parallelism of the ILLIAC IV hardware. This feature is described
in Appendix D. :

The writer of new programs in IVTRAN has several features to aid
in producing efficient programs. The first and most important of these features
is the DO FOR ALL loop which specifies parallel operations on aggregates
of data. Array expressions and statements provide a natural shorthand for
certain commonly used parallel operations. Storage allocation for data can
be specified so as to achieve the most effective compromise between
storage sfficiency and the use of parallelism. Storage allocation consid-
erations are described in detail in Appendix B. Lastly, the user can aid

* pronounced "four-tran"

-29-

the cﬁmpller in optimizing his program by specifying expected execution
frequencies through the FREQUENCY statement and external procedure
side-effects through the EXTERNAL statement. :

1.2 The Compiler and Linkage Edltor

. The IVIRAN compiler, operating on the TENEX version of the
PDP-10, translates IVTRAN source program units into relocatable object
modules. The linkage editor combines one or more modules translated
by the compiler with any required library programs to form a load module
waich can be run upon the ILLIAC IV.

1.3 The Manual

This manual is oi':inized to combine both conciseness and read-
ability. Each language feature has its written form described in the body
of the manual in'English. Appendix A gives a formal syntax for the complete
IVIRAN language. The meaning of each language feature is given in
English in the body of the manual. Each section has examples of both
valid and invalid uses of the language features described.

Although this manual is a complete description of the IVTRAN
language, it can be more easily understood if the reader is already
acquainted with the FORTRAN language for another computer. A useftl n
source for this information is the set of programnied instruction texts
produced by IBM, "FORTRAN IV for IBM System 360", IBM Order Nos.
SR29-0080 through SR29-0087.

-i----————wr—er—wr—s

2. ELEMENTS OF IVTRAN

This chapter identifies the major structures of the IVTRAN
language and serves as an introduction to the subsequent chapters.

2.1 Programs and Subprograms

A IVTRAN program consists of a main program or a main program
plus one or more subprograms. Program execution begins at the first
executable statement of the main program. Thereafter, unless a control
statement {s encountered, control proceeds from one executable statement
to the next. Control statements cause control to transfer to another point
in the same program unit or to an entry point of a subprogram.

There are three types of subprogram: the subroutine subprogram,
which is referenced in a CALL statement; the function subprogram, which
is referenced within an expression and returns a value for use in that
expression; and the block data subprogram, which specifies initial data
values for COMMON variables.

) In IVTRAN, as with other FORTRAN systems, each program unit is
compiled independently allowing a single program unit to be updated. without
requiring recompilation of other program units. However, unlike oth.r
FORTRAN systems, the linkage editor checks the consistency of specifica-
tions across program unit boundaries. Thus a user who inadvertently
mis-matches actual and formal parameters or who uses inconsistent
common declarations is informed of his errqrat the time of linkage editing..

2.2 Statements

A IVTRAN source program consists of a set of statements each of
which performs one of two functions:

-~ it causes operations to be performed (e.g., arithmetic operations,

input/output, or branching) or .
-- it specifies program or data characteristics (e.g., array size

or number and type of subprogram arguments).

—-— e v
. -

The first type of statement is called an executable Statement; the second
is called a specification statement.

The statements of a program unit must be written in the following
order:

== Subprogram statement (BLOCK DATA, FUNCTION, or
SUBROUTINE), if any.

== IMPLICIT statement, if any.

-- other specification statements, if any. .

-- Executable statements, at least one of which must be present,
except in a block data subprogram, where executable statements
are not allowed.

-~ Debug statements, if any.

-- END statement.

The FORMAT, NAMELIST, and DATA statements may appear anywhere after
the IMPLICIT statement, if present, and before the END statement.

Statement Lay..ut

A program unit occupies one or more lines which are in turn
divided into the following fields:

-- Label field - character positions 1to 5. This field contains the
attached label (statement number) or is blank. The label, if
present, occupies one to five adjacent columns and is preceded
or followed by one or more blanks. Blanks may not be imbedded
within the label.

' == Continuation field - character position 6. This field is blank
or zero if the line begins a statement and contains some other
character if the line is the continuation of a statement begun

~ on a previous line.

-~ Statement field - character positions 7 to72. This field contains

the body of the statement.

~32-

-=- Identification field - character positions greater than 72. This
field is ignored by the compiler and may be used for whatever
purpose the programmer desires. Traditionally, this field is
used for identification and sequencing.

Comments are an exception to the above field usage, beginning
with C,$, or * in the first character position and having any characters
whatever in the remainder-of the line. Comments are ignored by the

-compliler and are used to improve the readability of the program. A comment
may not be.continued on a subsequent line through use of the continuation
fleld. _ -

Statements are separated by the character $ within a line or by the
end of the line followed by a comment line or a line whose coatinuation
field is blank or zero.

Examples:

Comment:

C THIS IS A COMMENT
Multi-line statement:

109 A=B+

1 C*D -
Multi-statement line: .)
FUNCTION TWICE(X) $ TWICE = 2.0 * X $ RETURN $ END

Combination of multi-statement line and multi-line statement:

25 IF(B.LT.C)GOTO 190 $ BI¢ =C $K =

X K/2$L=L+1

2.3 Exgrésslons

The expression is used to compute 2 value to be stored in a vari-
able, to be output, or to direct flow of control. Expressions are formed by
combining operators (e.g., +,-,*,/) and operands (e.g., variables,
constants, and function references). An expression may be elther an
array expression or a scalar expression. A scalar expression computes
a single value. An array expression computes a set of values. '

2.4 Tokens

Tokens are strings of characters which represent the objects and)
actions described in the language. There are the following types of tokens
in the IVTRAN language: ' '

-- constant (e.g., 6.023)

-- identifier. An identifier is a letter or a letter followed by one
to five alphanumerlc characters. An alphanumeric character
is a letter or digit. (e.g., TTLTA)

--"label. A label is one to five decimal digits. (e.g., 2300)

-- operator (e.g., .OR., .AND., +, -) -

-- separator (e.g., comma, parentheses, colon)

-~ alternate return (e.g., &12)

~- keyword (e.g., DIMENSION « RETURN, INTEGER)

Unlike the blank in most other FORTRAN languages, the blank char-
acter in IVIRAN is significant. That is, blanks may not appear within a
given token nor may a token be continued upon a second line (with the
exception of the Hollerith constant). Blanks and continuations may be
placed between any two tokens for purposes of readability. A blank or
continuation must appear between two tokens if the first ends with a letter
or digit and the second begins with a letter or digit.. This convention is
used in writing English sentences to pravent ambiguity and improve read-
ability. For example, AN ICE HOUSE is different from A NICE HOUSE and
neither is correctly written ANICEHOUSE.

To facilitate conversion of existing programs, the compiler is pre-
pared to accept a single keyword in place of two adjacent keywords. For
example, GOTO and GO TO wili be considered equivalent as will
BLOCKDATA and BLOCK DATA.

The formal syntax (Appendix A) does not take into consideration
the effect of blanks. That is, it defines tokens and the legal combina-
tions of tokens in a program unit, but does not define the optional or
required blanks between any two tokens. :)

2.5

Characters

The characters used to write a IVIRAN program are the prlnﬁng

characters of the seven bit ANSI character set which are found on the
ASR 33 keyboard plus blank (space); tha is, codes 0404 through 137,
In addition, when lines are input through the teletype, the following
characters serve to delimit lines:

2.6

types:

== carriage return, line feed. This is the standard line terminator.
.The following, though acceptable, are not normally used.

-~ line feed |

-~ form feed

== vertical tab

-~ altmode (escape)

Data Types

A variable or function may have one of the following seven data

-~ integer

== double integer
-~ real '

-~ double precision
== complex

== double complex
-- logical

Constants may be any of the above types and may also be of the following
three data types: '

-- Hollerith
-= Octal
-- hexadecimal

The properties of data of each of the data types is given in Table 1.

Y

The data type of a constant is implied by the form in which it
is written. The data type of a variable or function may be specified in

one of three ways:

-~ Predefined specification contained in the IVTRAN language

-= IMPLICIT statement
-=- Explicit specification statements

1]
An explicit specification statement overrides an IMPLICIT statement,

which, in-turn, overrides the predefined specification.

The predefined specification declares a varialie or function to
be of type integer if the first letter of its name is I,J,K,L,M, or N and

type real otherwise.

The IM'PLICIT statement allows the brogrammer to associate a data
type with an initial letter in much the same way the predefined specifica-
tion does. The appearance of an initial letter in an IMPLICIT statement

overrides the predefined specification.

’ A type or FUNCTION statement may specify the type .
of an identifier for a variable or function. Both methods of association
of a data type with an identifier are described in greater detail in

section 6.2.

-36-

¥9 10 Z¢
¥9 10 Z¢

$1930RIRYD JO Jequmu
Yl ST U eJeym ‘ug

I
8¢l

b9

ct

14°)
¢t

[F31q) peainbay eoedg

266y-01¥58"8 S popgq2-

0e6p0T*5E 2= p0eg?

07-0TX1L T = oo
(T-gp0)- T-gp?
(T-gy0)- =gy

siequmu UoTsToaid 9[qnop omi S SwIes

L

+¢

Jyroidn
+u 03 dn

UoTs1093g
30 8161

S$JoqumUu [veJ OM] S awes

$8e9T-CF ¥8£91 °%
g9-%* 79t
:-ovs- T-g3 ¢

(1= z2- 1-pt
#ON[CA "UTIN ¥dNBA XU

wﬁoaxmn.m = va
SS90TL°9L6°VLV 182 = mvN
912°LLL'9T = vmu
[."ﬂu|oz..
Jeb6ajur Joexe uoguovoxo.n
1abeyuy J0uxe . w00
burns selowIRyd YIre1I0H
aster io ann TeoTB0T
ESaqumu [eas jo Xerdwoo
Ied v o] uopnvwnoxdde orqnop
Jaqumnu [ead jo
Ied 2 o von ewmadd g xo1dwod
uoyrsyoeid
*ou [vas 03 uonewgxoidde erqnop
‘Ou 1eel 03 uoneunrxoidde 1981
Jabajurt
Jabajur o exs e[qnop
Iabajur 10 exa Jabajug
SdxI @eq

-37-

%
e

B

§ ot

—

S
[]
i

B 3. CONSTANTS

The data type of a constant is determined by the way in which a
constant is written, constants of different types having different forms. -
A constant of integer, double integer, real, or double precision type may
be signed. A signed constant is a constant of integer, double integer,
~ real or double precision data type preceded by a plus or minus character.
An optionally-signed constant is an unsigned constant or a signed constant.

T

3.1 _ Inte'ger Constani

An integer constant is a string .of decimal digits whose value is
. between zero and 16,777,215.

k]

Examples:

Valid integer constants:
0
4754170
01810

SO

l Irfvalld integer constants:
' ' 1, (contains decimal point)
! 1,234,567 (contains commas)

20555000 (too large)

3.2 Double Integer Constant

A double integer constant is a string of decimal digits whose value
is between 16,777,216 and 281,474,976,710,655. For smaller values, the
programmer may use the integer constant and conversion will be performed.

Examples: o

Valid double integer constants:
.23456789
100000000000000

Invalid double integer constants:

0 (too small)
1000000000000000 (too large)

Y

3.3 .. g_ga.l Constant

A real constant consists of a basic real constanf, a basic real
constant followed by a real exponent, or an integer constant followed by a
real exponent. A basic real constant is a string of digits preceded by,
containing, or followed by a deélmal point. A real exponent i5 the character
E followed by an optionally-signed integer constant. The value of a real
constant is the value of the basic real constant or integer constant

“interpreted as a decimal fraction times ten to the value of the real

exponent, if present. A real constant may assume values from approx-
imately 2 .71E-20 to 9.22E18 and zero.

Examples: ‘)
Valid real constants:
0.
23.32
34.56E3 (=34560.) .
34.56E-3 (=.03456)
+45E+15 (=450000000000000.)
32E1 (=320.)
Invalid real constants:
99 (no decimal point)
6.025E23 (too big)

9.1066E-28 (too small)

3.4 Double Preci’sion | Cbnstant

A double precision constant consists of a basic real constant
followed by a double precision exponent or an integer constant followed by
a double precision exponent. A double precision exponent is the gharacter
D followed by an optionally-signed integer constant. The value of a double
precision constant is the value of the basic real constant or integer’
constant interpreted as a decimal fraction times ten to the valu2 of the
double precision exponent. A double precision constant may assume
values from approximately 2.35D4930 to 8.85D-4932 and zero.

-39

Examples:

Valid double precision constants:
6.023D23

l 9.1066D-28

¥

, 300D+4900
Invalid double precision constants:
2.3D (missing exponent)
41.1D5000 (too big)

3.5 Complex Constant

A complex constant consists of a pair of optionally-signed real -
constants representing, respectively, the real and imaginary parts of a
complex number, separated by a comma and enclosed in parentheses.

2

g

1
i
l gxanigles:
: Valid complex gonstants: '
I (1.,-2.) (=1-21, where 1=,Fi) .
(-.7071,-.7071)
l (+34.5E10,-.22E-2)
g [n.valid complex constants:
N l (2. 3.) (missing comma)
(1,1) (neither real nor imaginrary part a real constant)
‘ : (2.1E4,4.2D7) (imaginary part not a real constant)
[
|
[
[

3.6 Double Comgl'ex' Constaht

A double complex constant consists of a pair of optionally-signed
double precision constants representing, respectively, the real and imaginary
paris of a complex number, separated by a comma and enclosed in paren-

theses.

Examples:

| ‘ Valid double complex constants:
(1D0, 2D0)
(-.0001D4,+1.000D-4)
(4D4000,5D-4000)

Invalid double complex constants:
(3.,2.D30) {real part not a double precision constant)
(.001D-1,.001E-1) (ilmaginary part not a double Precision constant)

3.7 Logical Constant

There are both logical scalar constants and logical arrav constants.

- The former represents a single logical value. The latter represents an

armrray of logical values.

3.7.1 logical Scalar Constant - - .

A logical scalar constant is either the string of characters . TRUE.
or the string of characters .FALSE.. The abbreviations, .T. and .F. are
also allowed.

Examé les:
Valid logical scalar constants:

.TRUE. .T. (both represent the value true)

.FALSE. -F. (both represent the value false) .
Invalid logical scalar constants:

.TRUE (decimal point is missing)

F . (both decimal points are missing)

2,7.2 ical Constant

There are two forms of the logical array constant.. Both forms
specify which of the array elements are to assume the value true. All
elements of the array which are not specified assume the value false. In
either form the extent of the constant may either be implied by the basic
logical array constant or explicitly attached.

3.7.2.1 Enumerated Logical &raz. Constant

An n-cimenstonal enumerated logical array constant is written as a
List of n-dimensional index values, separated by commas and enclosed in
brackets. An n-dimensional index value iy written as exactly n integer

P)
e T j ‘w

constants, separated by commas and enclosed ln parentheses. A One;
dimensional index value may be optionally written as integer constant
without enclosing parentheses. The extent is determined from the maximum
value of the integer constants appearing in each index position.

Examples:
Valid enumerated logical array constants: _
constant extent true value false value
((1.2,3),(.2,2)] (2,2,3) (1,2,3),(2,2,2) (1.1.1).(1.1.2),(1.1,3) :
‘ R (llzll)l (112:2)
(zllll)l(zlllz)l (2 1113)
(2.2.;). (2,2,3)
()] (2) (2) (1) |
[1.3,5,7] @ 0.6.6.0 @),6),6
[144.6) (4,6) none all
[1,31(e) (6) M.06) (2),(4).(5).(6)
Invalid enumerated logical array constants:
(1] (Extent cannot be determined.) .

[((2,1),(4)] (Conflicting dimensionality for index values)

(Q.1),(,2).(3,3)1(4) (Explicit extent does not agree in dimen-
sionality with index values)

((3.2,).(1,2,3)1(2,2,2) (Index values exceed the extent)

3.7.2.2 lterated Logical Array Constérit

An iterated logical array constant speciﬁes_a one dimensional array
(vector) of logical values. It is written in one of the forms:

(1,s...f]
or

(i...1]

where i,s, and f are integer constants representing the initial, second, ana
final index values for the true elements. If s is not specified, it is assumed
to be i+1. The true values are all those elements j for which

L)

-42-

AR

r

i

and

1=y sf .

j=1+n(s - i)

where n is a non-negative integer. The initial, second, and final values
must be in increasing order of magnitude. That is, '

0 (i{ s (f.
Valid iterated array logical constants:
constant extent true values _ false values
(1...5] (5) M.(@),3),(4),(5) None :
(1...51(0) (10) M.2).6).4).6) (6),(7),(8),(9), (10)
[2.4...10] (10) (2),(4).(6).(8),(10) (0.(3),(5),(7),(9)
[1,4...9] (9! - .4,), ®),(5),(6),(8), (9)
Invalid iterated array logical constants:
(10...11 (Final value less than initial value) '
[-10...03 (Initial and final values must be greater than zero)

3.8

{1...50](10) (Final value larger than explicit extent)

(1,3,....,44] (Extra commas) . ,

((,1,(2,2)...00,100] (Only one-dimensional arrays can be
specified with this type of constant)

Hollerjth Constant

There are two forms of the Hollerith constant. Each represents a

character string of one or more printing characters and blanks. Hollerith
constants are permitted only as initial values in the DATA statement and as
arguments of a subroutine call or function reference.

3.8.1 Count-delimited Hollerith Constant

The count-delimited Hollerith constant is written as an integer con-

stant with value n=255 followed by the character H followed by exactly n
characters which constitute the value of the constant. Blanks are legal
within the n character string and are included in the count, n. End of line
is permitted within the n-character string and is not included in the count .
This allows Hollerith constants to be created which have more than 69

characters.

i I

= . -

Examples: -
Valid count-delimited Hollerith constants:

2HIV
7H$199.95
14HFERDINAND FOCH
SHWON'T
Invalid coun -delimited Hollerith constants:
2HELP (count too small)
SHHELP (count too large, unless trailing blank is

) included)
10 HEXECUTIVES (blank not permitted between n and H)

3.8.2 Quote-delimited Hollerith Constant

The quote-delimited Hollerith constant is written as string.of n=255
characters enclosed in apostrophes.* Within this string, an apostrophe is
represented as a pair of adjacent apostrophes. End of line and blank are
permitted within the string. Blank is a part of the string. End of line is not.

Examples:
Quote-delimited Count-delimited equivalent
'TEXT' 4HTEXT . .
'DON*'T' SHDON'T ' |
'FO''C''S''LE’ 9HFO'C'S'LE
'$ IS A DOLLAR SIGN' 18H$ IS A DOLILAR SIGN

3.9 Hexadecimal Constant

The hexadecimal constant represents an integer or double integer
value as a number with radix 16. The digits with values 10 through 15 are
represented by the letters A through F. A hexadecimal constant is written
as a string of hexadecimal digits immediately preceded by the letter Z. If
the value of the string, interpreted as a number in the hiexadecimal number
system, is less than 224 the constant represents a value of inteqer data
type. If the value is greater than or equal 224 but less than 248 the con-
stant represents a value of double integer type. In no case may the value

* Called "single quote" by some programme:s.

-44~

[
!
!
I
I
|
i
|
|l
I
i
1
|
|
|
l
l
l
l

exceed or equal 248. The hexadecimal constant is p°rm1tted only as an

initial value within the data statement

Valid hexadecimal constants:
ZA (=1010)
ZFF (=255m) :
ZFACECABOS4CA (=a double integer)

Invalid hexadecimal constants:

ZBRA (R 1s not a valid hexadecimal digit)
. ZAAABBBCCCDDDE (too large) -

zZ12 (blank not permitted)

3.10 Octal Constant

The octal constant represents an integer or double integer value as
& number with radix 8. An octal constant is written as a string of octal
digits either preceded by the letter O or followed by the letter B. If the
value of the string, interpreted as an octal number, is less than 224 the
ccnstant represents a value of the integer data type. If the value is greater
than or equal to 224
double integer data type. In no case may the value exceed 248. The octal

constant is permitted only as an initial value in tha DATA statement.

and less than 248 the constant represents a value of the

ggamgles:
Valid octal constants:
077 77B (both = 6310)
077777777 (=224.))
1000000008 (= 224, a double integer value)
Invalid octal constants:
0377600B (either the O or the B but not both are permitted)
010000000000000000 (too big) | :
789B (8 and 9 are not octal dlglts)
-45-
d

SR aad o T o

4. VARIABLES

A variable is a quantity whose value may change during the execy-
tion of a program. A variable is associated with a storage area within a
program. Both scalar and array variables have an associated data type
which is determined through the use of the type statement, the IMPLICIT
statement, or through the predefined type. Array variables have as assoc-

-iated extent which must be declared in a specification statement and an

associate d allocation which is either defined in a specification statement
or is the predefined, default allocation. Throughout the body of this manual,
default allocation is assumed. Other allocations are described in Appendix B.

4.1 Scalar Variable

The scalar variable represents a single quantity and is associated
with a single storage location. A scalar variable is referred to by an
identifier. '

Examples:

Valid scalar variable names:
A
PITCH
VAT69
ICURYY
Invalid scalar variable names:
99THMP (does not begin with a letter)
PRESSURE (over six characters)
CAS$H ($ not a letter or a digit)

4.2 Amray Varia; ble

An array variaple represents a collection of values of a single data
type and is associated with a set of storage locations. i‘he number and
structure of the values is determined by the array extent. The arrangement
in storage is determined by the array allocation. A complete array is referred
to by an identifier. A single array element is referred to by writing the array
name followed by a subscript. Subarrays of the array are referred to
by an array cross-section which fixes one or more subscripts while
allowing the remainder to vary.

-4 6- .

- — . p— —

4.2.1 _Agraz Extent

An n-dimensional array has an extent which is written as a list of
n non-zero integer constants, each called a dimension, Separated bf
commas and enclosed in parentheses. The number of elements in the array
is the product of the dimensions. Each dimension determines the maximum
value of the corresponding subscript position in array element references
and array cross-section references. An array which is a dummy parameter
to a function or subroutine ‘may have one or more variable dimensions.
Each variable dimension is an integer scalar variable passed to the function
or subroutirie as a parameter or in a common block. A variable dimension
may not be modified within the function or subroutine and must have the
same value as the corresponding dimension of the actual argument. i

Extent Legal subscrig' t values

(s) (1),(2),(3).(4),(5)

3.4 (1,1),2,1,(3,1)
(1,2),(,2),(3,2)
(1,3),(2,3).(3,3)
(1,4),(2,4),.3,9

(3.2,3) (1,1,1,(@,1,1),(,1,1)
(15201)1(20211)1(302l1)

(10112)0(21112)1(31112)
(10202)0(20202)1(30202)

(15103)5(21153)1(31113)
(10203)1(21203)1(30203)

-47-

- TN MTNNG, AIET T ————-— a e

Rt o T

[——

—

4.2.2 Array Element

An array element is referred to by writing an n-dlmensional array
name followed by an n-dimensional subscript. An n-dimensional subscript
is a parenthesized list of n scalar expressions of type integer separated
by commas. Double integer, real, anddouble precision scalar expressions
are also permitted and will be converted to integer type before accessing
the array element. At the time the array element reference is executed the
scalar expressions must each evaluate to an integer between 1 and the
corresponding dimension of the array. The result is a scalar value of the
same data type as that of the array name.,

Examples:

Valid array element references:
- PRIDE(LIONS)
GRID (I+1;] -3)
GROSS (12, 12)
Invalid array element references:

Array Lxtent Reference
DOZEN (12) DOZEN (-3) (subscript value must
be between 1 and 12)
SPACE (3,3,3) SPACE(1,]) (dimensionality of sub-
script must equal
. dimensionality of array)
-48-
[2
. Sl T e —

-Lﬁ.r—i—--.-

+

4.2.3 Array Cross-Section

An array cross-section is referred to by writing the array name
followed by a parenthesized list of subscript expressions and asterisks
separ~ted by commasc. Each subscript expression is a sczlar integer
expression corresponding to a fixed subscﬂpt. Each asterisk corresponds
to a subscript which varies over its allowable range. The subscript
expressions may be of double integer, real, or double precision data
types and will be converted to integer type before accessing the array
cross-section. The result is an array of the same data type as the array
cross-section name with an n-dimensional extent where n is the number
of asterisks in the reference. The ith dimension of the resultant array is
'the same as the jlth dimension of the base array, where j { is the index of
the ith asterisk.

Examples: . .
Extent Cross-section Result Extent
(5,60) B(I,*) (60)
B(*,]) (5)

(300,20,4) A(1,],% (4)
A(1,*,K) (20)
A(L,*,%) (20,4)
A(*,],K) (300)
A(*,],%) (300,4)
A(*,*,K) (300, 20)

-49-

SRR

_a =™

e S R N am En o pay ey e

5. - EXPRESSIONS

An expression computes a value or set of values for use within

a statement. A scalar expression computés a single value. An array

expression computes a set of values. A scalar expression has of one
of the declarable data types: integer, double integer, real, double pre-
cision, complex, double complex, or logical. An array expression has
one of the declarable data types and an extent.

5.1 Expression Form ' -

An expression is composed of operators, which specify operations
to be performed, and primaries (operands), which specify the values upon
which the operations are to be performed.

5.1.1' Primaries

A primary is a constant (chapter 3), a variable, array element, or

cross-section (chapter 4), a function reference (section 7.3), a set selector

(section 5.1.1.1), or a parenthesized expression.

Examples: .
(-3.2,4E-6) - complex constant
(3*1-14) parenthesized expression
SIN(X) function reference
A variable
A(I-1,7+1) array element
A(*,K,L-1) cross-section

((m/T1...50):1.LT.]] set selector

§.1.1.1 Set Selector

A set selector is written:
((0/ s:B]
where I is an integer scalar variable, S is 1-dinensional logical array
expression and B is a logical scalar expression which may depend upon 1.

[4

§i...

‘F-F-F-F—g

———— m—emEn i -

=S s oy S o o o om o

e R

Within B éll array element references must be either.ihdependent of 1.
or have exactly one subscript of the form:

I
or

1+C
or

I-C

where C . s an expression independent of I.

The result of evaluating a set selector is a one-dimensional logical
array with the same extent as S and whose values (J) are true if S{J) is
true and B is true when evaluated with I=].

Examples:
Valid set selectors: '
Set selector ' Result Value
((m/[1...10):1.GT.7] (8,9,10](10)
[(D/[1...100]:1**3-6%1*%*24+11*]1-6 .EQ. 0] £1,2,3](100)
{((p /[1...50]):1.LT.14.AND. I.GT.7] [8,9,10,11,12,13](50)
((W/01...99]):L .EQ.L+1] i 1(99)
Invalid set selectors:
[an/0e,n,2,2)]1:143.Q.2)] (Invalid with default alloca~
tion. See Appendix B.)
(m/01,1,2,2)]:1.G6T.1] (logical array expression
'mt'lst be singly dimensional)
[(M/[1...100]): A(2*D).BQ.1.0] (improper use of I in array

reference)

5.1.2 Complete Expressions

An expression is either a primary, a unary operator followed by an
expression, or an expression followed by a binary operator followed by an
expression. The order of operations is determined by the precedence between
operators, the operator with the greater precedence being evaluated first,

If the precedence of operators is the same,non-cummutative operations are
performed in left~to-right order and comifutative operators may be performed
in arbitrary order. A unary operator may Zanly follow an operator of lower
precedence. The legal operators, operands, and precedence are given in
Table 2. '

-51-

\W-w._

*Jcjesado aArIRINWWOD-UON (¢
‘g 9rqel sss (z
*UorsToex arqnop Jo ‘yeas ‘iebajuy 8[qnop ‘Jebajur sueaw xerdwod Jdeoxs osnaunpIfay
*x91dwod Srqnop Jo ‘xerdwod ‘uoyrsyoasd e[qnop ‘tess ‘Isbajur 9rqnop ‘Iebajur sucew SReuITIY (1

'$OI0N
(Areurq yioq)
[eorb0o71 [eo1601 10 @Arsn[oX® [ROTHOT °X*‘"yox°
[eot1bo1 Tearbor wns teorboy ‘O° ‘0O’ (3semor) 1
(Areurq yioq)
Tesrboy Teo16071 nmuco._mmﬁv 1ed16071 ‘a’‘-ana
Teo1601 Tes1607 3onpoad teorbor Y/ aNy’ (4
. (A1eun)
K [eot1bor Teat6071 mcoﬁommc [ed1bor - °N°‘°ION* £
(Areurq) :
Aeaze eotbOT _ LAewe resybor muunvo.a §60I0 °D°’°gSOYD° 2
. :8103010d0 1007807
. Teo1bo1 xordwoo 3deoxa orlowyijie Tenbs Jo uey3 Jo3e816 N
.Teorbor x81dwod 1deoxe orIawyyfie € uey} i19jeaib r1o°
Teo16071 orjswnnIe € 1enba jou *IN°
[ea1b601 onlswyitIe 1enba O3
: Teorbor ' xeydwoo jdeoxe opleunpyie 03 renbe Jo ueyy sser *q7°
1eo1601 Xo1dwod 3dsoxs onaunpIe - e ueyj ssey IT S
$(Ateurq) saojezadp TRUORIRISY
Nudosﬁrn OTiIswyirie mcoﬁumbnsm (Aseurq) -
Nuﬁosﬁﬁm onlawyjrie uorIIppe (Areurq) +
Nuzosﬁﬁm or9unpyIe) guorniebau (Ateun) -
Nuﬁwscuﬁm dSrowyirie mnmqm aaTTsod 3.5:3 + 9
Noﬁmsﬁﬂo orjewnyyjie gUOISTATP (A1eurq)/
. Nunosﬁﬂn onswyiyIe Uonedjidrirnw (A1eurq), ¥
N.uﬁvsﬁtm orlawyirIe mcoﬁmﬁn.oconxm Abmﬁ& P (Isaybry) 8
:s101033d 0 oRBWYITIY
©d&T 3 J I[NEoY aw.mﬂalvlc.n.l..w.m.o.. buraesyy Iojededp 9dUspodalg

-52-

RS 5 W

¥

1))

N e e oo mm o

Exampies:
Valid expressicns: Equivalent expressions:
A+B
SIN(X)/ COS(X+1.0)
A*B+C (A*B)+C
A+B*C A+B*C
A/u’C a/B)/C
A*B*C (A*B)*C
or A*(B*C)
or (A*C)*B

A.LT.B+C.OR.TEST.AND.GUESS (A.LT.(B+C)) .OR.TEST.AND.GUESS)
FLAG.AND.NOT.-A+B .LT.-A*B FLAG.AND.(.NOT.(((-A)+B).LT. (-

(A*B))))
Invalid expressions:

A*-B - (unary operator follows operator
with hlghér precedeice)

A.LT.B.GT.C (.LT. gives logical result but .GT.
requires arithmetic operands)

A+8 .OR. C/D (+ and / give arithmetic results but
.OR. requires logical operands)

A .NOT. .LE. B (use .NCT. A .LF. Bor

A .GT. B instcad)

$.2 Expression Type

The type of a parenthesized expression is that ofits operand. The
type of a relational or logical expression is logical. The type of an arith-
metic expression is determined by the type of the operand(s). The type of
an arithmetic expressiun formed with a unary operator is that of the operand.
The type of an aritametic expression formed with a binary operator is given

in Table 3.

-53-

*91dwod xX1dwo)d Xo1dwoD
erqnoq @ 1qnog eiqnog
xo1dwo) xo1dwo)
e1qno g x1dwo)d erqnog
xo1dwo) xo1dwo)d uoysioelagd
erqnoqg e[qnoq e[qnoQg
xordwo) - uojsjoeld
erqnog xo[dwod eqnog
xe1dwo) xo[dwo) uoysyoald
e1qnog eiqnog e1qnodg
xo1dwon uolsioald
erqnoQg xo1dwo)d arqnog
xe1dwo) Xe1dwo) = . uoIsIoald
eIqnog eIqnog

x.1dwod
eiqnog

xe1dwon

uoys|oaid
erqnog

ey

uoysyoalg
eqnodg

Tesy

ey

¥o1d".00
alqnog

yo1dwos
eIqnoQg

uorsIoal1g
arqnog

uoysIoaig
eIqnog

Jabajuj
e1qneq

Jobaul
eqnoQg

Ioboju]
e1qnod

X91dWoD Xa1dwon
erqnoa a[qnog
onEoO. xa1dwo)d
UoISsJoaxg uorsioeld
eqnog erqnodg
Tesy ey
J9693u] Jobojur
elrnog eIqnoQg
Jabajul Jabajug
Jobau] 1 puriadQ

iz puesado

PR
L

mt——

Exambnles:)
Let I be integer, D{ be double integer, R be real,
DP be double precision, C be complex, and
DC be double complex.
Expression "~ Result Type
I+DI DI
C+L1 DC
R**R R
I*R+DI DP
DI+R+C DC (note that the result type is
indepencent of the order of
execution of commutative
operators)
/1 I

5.3 Expression Extent

The extent of a parenthesized expression is that of the operand.
The extent of an expression formed with a unary operator is that of the
operand. The extent of an expression formed witi. & binary operator is
given in Table 4 for all binary operators except .CROSS. For that operator,
the extent is the concatenation of the ..xtents of the two operards.

Example: :
A has extent (3,40) and B has extent (500,6000).

A.CROSS.B has extent {3,40,500,6000).
B.CROSS.A has extent (500,6000,3,49).

TABLE 4: Expression Extent for BlnarLOperatorg_

Operand 1 Operand 2 Result Exter.c
Scalar Scalar Scalar.
Scalar Array Same as that of operand 2.

Operand 1 is applied to each
: element of Operand 2.
Array Scalar S8amon as that of operand 1.
Each element of operand 1 is
applied to Operand 2. ‘
Array Array Same as that of operands 1 and 2,
which must have identical extents.

m—— emeemy

o mny

mple:
Let A, B and C be real arrays with extent (3) and the following

values:

A(l) =0.0 B(1) = .25
A =1.0 B(2) = .5

A Q@) =2.0 B{3) = 1.0

C=A/B vields
c(l) =
.€C(2) =
C(3) =2.0

C = (A+B)*4.0 yields
C(l) =
c@) =
C@3)=12.0

C=2.-A yields

c(l) =2.0
Cc(2) = 1.0
C(3) = 0.0

5.4 Operators
Each operator listed in Table 2 has a dlfforent interpretauon and
set of legal valuszs.

5.4.1 Arithmetic Ogerétors

Each of ths arithmetic uperators has the usual : :nathematical inter-
pretation. When operands of dissimilar data types are combined, the
operands are first converted to the result data type and then the operation

is performed.

-56-

:

i

Integer and double integer division produce a result which is
truncated to the nearest integer whose magnitude does not exceed the
magnitude of the mathematical value represented by the division.

Division by zero is not defined. '
A negative base may not be raised to a noun-integral power ﬁnle ss
either the base or the power or both is of complex or double complex data

type. A zero valued base may not be raised by a zero valued exponent.

No result may be evaluated which vields a value outside the range
of values permitted for the result data type.

i
i
|
|
i
1
]
!
|
i
!
!
[

Bxamples:
Valid arithmetic operations: Result:
3+4 7
2.5%4.0 10.0
1/3 0
1./3 .33333333
1/3. .33333333
1./3. .33333333
15/7 2
(1.1,-2.2)-(.9,4.0)*2 (-.7,-10.2)
Invalid arithmetic vperations: -
2/0 (division by zero not permitted)
(-3.)**(.5) (negaiive base may not be raised to
non-integral negative power unless complex)
0 ** o (zero base may not be raised to zero
exponent)
2%%100 (value out of range)
1E18*2E18 (value out of range)

5.4.2 Relational Operators

The relational operators perfc - comparisons between arithmetic
values. The result is true if the re! -on is satisfied and false otherwise.
When types are dissimilar, the comparison is performed after conversion
to the result type shown in Table 2.

Examples:
Valid relational operations: Result:
3.5 .LT. 4.5 true
1+1 .EQ. 2 true
14,1 JEQ. .2 (may not be true due to round-off
and truncation error)
1/3 .GE. 1./3. false (1/3 = 0)
(1.,0.) .EQ. 2 false
Invalid relational operations: i
(1.,0.) .LE. 2 (complex only valid for .EQ. and .NE.)

5.4.3 Logical Operators

. The result of each of the logici. operators except .CROSS. is
given in Table 5. The result of A.CROSS.B is an array C whose elements
are defined by the following equation:

C(Il,lz 20 00 ,InlIIIIZ 2000 ,Im) - A(II’IZ’ L) ,In) .AND.BUI!IZ 2 000 'Im) .

Example:
Let A=[1,3,4].

Let B=[2,3,5].

A.CROSS.B = [(112)1(113)1(11 S)r
3.2),3,3),6,5,
(4,2),(4,3),(4,9)]

&

TJABLE 5: Results of Logical Operators -

Operand 1: false faise true true
Operand 2: faise tue . false true_
Operator:
.NCT.,.N, true —— -—- false
.AND., .A. fa'se false . false true
.DIFF.,.D, false false true false
.OR.,.0, . false true true true
.XOR., .X. false true true false
Examples:

Let Y = .TRUE. and N = -FALSE.
Valid logical operations: Résult:

Y .AND, N false

Y .OR. N true

N .XOR. Y true

Y .AND. .NOT. N true

[1...100] .AND. N [] (100)

(2,4...20] .aAND, [3,6...20] (6,12, 18]
(2,4...20) .DIFF. [3,6...20] (2.4,8,10,14,16,20]
-NOT. 1,3...10] (2,4...10]
[1,2,3.5,8,13](100).AND.[1,3...100] (1,3,5,13](100)
[2.3].C.[3,4].X0R.[1,2] .C.[3] [(1,3),(.49,3,3),3,4)
[1(20).c. [] (20) [10,20
Invalid logical operations:
(1,2,3,s5,8, 12].AND.[1,3.. .100] (extents of operands not
equal. Use[1,2,3,5,8, 13](100).)
Y¥.NOT. .ANL/. N (use .NOT. Y .AND. N,
Y .AND. .NOT. Nor
.NOT. (Y .AND. N) instead)

T pe. pen

]

D pumy pums pmee

6. STATEMENTS

A statement is an executable statement or a specification statement.'
Executable statements specify actions; specification statements describe
the characteristics of and arrangement of data, editing informati~.,, state-
ment functions, and the characteristics of and classification of program
units.

6.1 Executable Statements

There are four types of executable statements:
1) Assignment statements

2) Control statements

3) Input/Output statements

4) Debug statements

6.1.1 Assignment Statements

There arc three types of assignment statements:
1) Arithmetic assignment statement '
2) Logical assignment statement
3) GO TO assignment statement

6.1.1.1 Arithmetic Assignment Statement

An arithn otic assignment statement is one -of the forms:

v=s
or a=s
or a=e

where v is an arithmetic scalar variable or array element reference, s is
an arithmetic scalar expression, a is an arithmetic array or array cross-
section reference, and e is an arithmetic array expression. Execution of
the statement causes the expression s or e to be evaluated, converted to
the data type of v or a according to Table 6, and assigned to v or a.
The extent of a must be the same as the extent of e. If the second form is
usec, the value of s is assigned to each element of a.

-60-

e

L= _af =
S AT i £ . g

TR L

4t

Examples: .
Let A be a real array with extent (5,6),

B be a real array with extent (5),

1 be a scalar integer, and

J and K be double integer scalars.
Valid arithmetic assignment statements:

J = K*2 assigns the value of the expression
K*2 to].
1=] converts the value of J to intecer type
and assigns it to I.
A=4.5 assigns the value 4.5 to each of the
elements of A.
A(*,1)=B asssigns ecach element of B to the corres-
ponding element of the cross-section of A.
B(D) =J+A(1,3)-]**K converts the value of the expression to

real type and assigns it to the array
element B(I).
Invalid arithmetic assignment statements:
A=B (incompatible extents)
K = .TRUE. (incompatible data types)

6.1.1.2 Logical Assignment Statement

A logical assignment statement is one of the forms:

v=s -
or a=s
ol a=e

where v is a logical scalar variable or array element reference, s is a
logical scalar expression, a is a logical array cr array cross-section, and
e is a logical array expression. Execution of the statement causes the
expression s or e to be evaluated and assigned to v or a. The extent of
a must be the same as the extent of e. If the second form is used, the
value of s {s assigned to each element of a.

" P91IBAUOD §T wIRp B YOTyMm o3 ad4y oyy 103 ebuel erqemoOrR 9Y3 Jo eprsino
UuRDd 3}sjIeise ue yjm PO3JIRW suojeradp,

®J% YoTym 3nses ued senea ‘sj 194l ‘moreao uy jrnsea

*POUTRIAI ST onea 943 30 ued 19603u
°UoT8I8AUOD JO sseo01d Y3 ur pasurelex oq TIIMm 83161p uedyTUbYSs sow @

‘onreA 831 Surbuwyd MnoyMm wnjep ayj jo uLoy oy3 mocozo 03 suesw WeAUO) (T

sWed
- 48300uUNI] ued rees oye; Teax ejeounay ,ued 191 X713
ued

HSAUOD == TR URAUOCO uRd [wel o3 ,red 1201 X3
HaAUuOD »0300Uny -- »9300UnIy »XT3
HOAUOD HBAUOD HSAUOD - »XT3
HSAUOD eIedunyy HIAUOD ejeounyy --
H3AUOD HBAUOD HBAUOD HIAUOD HIAUOD
xo1dwos xXordwoy . - UOTSToa g o0y Jobajuy
e[qnoQg e[qnog eIqnoqg

sMRd e x73
sHRd [901 X33
£29%¢

5 XT3

+39AUOCD

Jobojuy

ior

T 8U3 ATuo jey3 suvew x13 (¢
Y3l ATuo jey3 suesw ojedunay (2

{SOI0N

xordwon
srqnoQq

Xa1dwon

uorsToRIg . . & _u, S
elqnog ...w.

W
L 3 e

Tesy g4

JaSajur A &
sIqnogq

Jobajur
‘Swoxg

NOISYIANOD IdAI VIvVa

*9 379VL

"l'l--ll'll[[[__

L

—ay|

-

L

k-

AR pam em e e — —

K

e i e T T R

Bramples: .
Let I be a logical array with extent (9)

S be a logical array with extent (9,2), and
T be a logical scalar.
Valid logical assignment statements:
L=T
8=(1,4,9).CROSS.[2]
8(*,1) = L.DIFF.[4](9)
T = ,TRUE.
80.%) = .FALSE.
Invalid logical assignment statements: -

8=[1,4,3] (incompatible extent)

L=[1,4)] (incompatible extent; use
[1,4](9) instead)

L=3.5 (incompatible data type)

6.1.1.3 GO TO Assignment Statement

A GO TO assignment statement is of the form:

ASSIGN k TO {)
where k is a statement label and i is an integer scalar variable name.
After execution of such a statement, subsequent execution of ary assigned
GO TO statement using that integer scalar variable will cause the state-
ment identified by the assigned statement labelk to be executed next, provided
there has been no intervening reassignment of the varlablp . The statement
label must refer to an executable statement in the san.e program unit in
which the ASSIGN statement appears. Once having been mentioned in an
ASSIGN statement, as integer scalar variable may not be referenced in any
statement other than an assigned GO TO statement until it has been re-
assigned a numeric value.

Example: _
ASSIGN 32 TO Kz At this point the label 32 is assigned

to the Integer scalar variable named KZ.

GO TO KZ,(451,7,32,110) At the execution of this statement control
is transferred to the statement labellgd 32.

b

gy

3
At acmo e Wt

6...2 Control Statements

There are seven types of control statements:
1) GO TO statements

2) IF stateients

3) CALL statement

4) RETURN statement

5) CONTINUE statemer*

6) Progran: control statements -

7) Loop statements

The statement labels used in a control statement must be associated with
executable statements within the same progran unit in which the control
statement appears.

6.1.2.1 GO.TO Statements

There are three types of GO TO statement:
1) Unconditional GO TO statement

2) Assigned GO TO statement

3) Computed GO TO statement

6.1.2.1.1 Unconditional GO TO Statement

An unconditional GO TO statement is of the form:

GO TO k '
where k is a statement label. Execution of this statement causes the
statement identified by the statement label k to be executed next.

Example:
GO TO 1066

6.1.2.1.2 Assigned GO TO Statement

‘An agsigned GO TO statement is of the form:
Go To 1' (kl'kz' LY 'kn)

H_ﬁ--_

e ————

where { is an integer scalar variable referance, and the k's are statement
labels. The use of the comma after the integer scalar variaple reference
is optional. The order in which the k's are written is optional,

Parenthesized list, and such an execution causes the statement identified
by that stateme..t label :0 be executed next.
mple:

GO TO CHOICE, (123,5813.2235,5792.141)

6.1.2.1.3 Computed GO TO Statement

A computed GO TO Statement is of the forn:
GO TOKy.ky, ...,k).1

where the k's are 'statement labe!s and 1 1s an integer scalar varfable

reference. The use of the comma be;ore the integer scalar variable reference

is .optional. Execution of this statement causes the statement identified by
the statement label kj to be evaluated next, where j is the value of 1 at

the time of éXecution. This statement is defined only for values of j such
that l<j=<p,

Example:
I1=3 .
GO TO (3,17,45,4,9),1
Control ig transferred to the Statement labeled 45.

6.1.2.2 IF Statements

. There are three types of IF statement:
1) Arithmetic IF statement

2) Logical IF statement

3) Two-branch IF statement

"y -

+ ! . ' ' - - - ’ i

n———

- —

6.1.2.2.1 Arithmetic IF Statement

An arithmetic IF statement is of the form:

IF(e)kl,kz,k3

where e is a scalar expression of type integer, double integer, real, or
double precision and the k's are statement labels. The arithmetic IF is
a three-way branch. Execution of this statement causes evaluation of
the expression e following which the statement identified by the state-~
ment label k.l’kz’ .or k3 is executed next as the value of e is less than
Zero, ~ero, or greater than zero, respectively.

Examples:
Control transferred to:
VALUE = 3.7

* IF(VALUE)J6, 1,42 " 42

VALUE = -43E+17

IF(VALUE)96, 1,42 96
VALUE = 0.0
IF(VALUE)96. 1,42 1

6.1.2.2.2 Logical IF Statement

A logical IF statement is of the form:

iF(e)s
where e is a logical expression and 8 is any executable statement except
a DO, DO FOR ALL, or another logical IF statement. Upon execution of
this statement the logical expression e is evaluated. If the value of e
is false, statement S is executed as though it were a CONTINUE statement.
If the value of e is true, Statement S is executed.

Examples:
Yalid logical IF statements:

IF(A .LE. 0.0) GO TO 17
IF(FROST) ALPINE = TUNDRA

IF(SIN(X) .GT. .5) Y(I) = COS(X)
IF(P .OR. Q) IF (L+M)4,2,7

T iy VA e

L
N
I
I
I
1
|
1
|
[
[

|

R ‘nﬁ -,

e A Lw

Invalid logical IF statements: - .)

IF(4+1) GO TO 405 (4+1 1s not a logical expression)
IF(A .LT. B) IF (P .NE. 2.) I=A+B (object of IF must not be another’
logical IF)

6.1.2.2.3 Two-branch IF Statement
s~ branch 1F Statement

A two-branch IF statementis of the form:

IF(e)k 1k, ’

where e is‘a logical scalar expression and kl and k2 are statement labels.
Execution of thig statement causcs evaluation of the expression e following
which the statement identified by the statement label k 1o kz is executed
nex* as'the value of e is true or false, respe stively.

mple:
IF(A.LT.B) 43,80

6.1.2.3 CALl, Statement

A CALL statement is one of the forms:
. CALL s(al,az,...,an)
or

CALL s
where s is the name of a subroutine or subroutine entry point and the a's
are actual arguments (7.1.2). The inception of execution of a CALL statement
references the designatec subroutine or subroutine entry point. Such a
reference causes execution to proceed with the firgt executable statement
in the subroutine or the first executable statement after the corresponding
ENTRY statement, respectively. Return of control from the designated
subroutine completes execution of the CALL statement,

Examples:

CALL ME(ISH,MAFL)
CALL OUS(SIN (X) *P-COS(X)*Q)
CALL IOPE

PR =

6.1.2.4 RETURN Statement

A RETURN statement i3 one of the forms:
RETURN -

RETURN {
where i is a scalar integer expression. The RETURN statement marks

the logical end of a main program or a function or subroutine subprogram.
The second form may only be used in a subroutine subprogram .

Execution of this statement when it appears in a function sub-
program causes return of control to the current calling program unit. At

this time the value of the function is retumed asthe value of the functlon
reference.

Execution of this statement when it appears in a subroutine sub-
program causes return of control to the current calling program unit. If
the first form is used control is transferred to the first 2xecutable state-
ment which follows the corresponding CALL statement. If the second form
is used, the expression i is evaluated and control is returned to the jth
alternate return, where j is the value of i. If the number of alternate
retums ir n then j must be greater than zero and less than or equal to n.

Execution of this statement when it appears in a main program is
equivalent to the execution of a STOP statement..

6.1.2.5 CONTINUE Statement

A CONTINUE statement is of the form:

. CONTINUE
Execution of this statement causes continuation of the normal execution

sequence.

6.1.2.6 Program Control Statements

There are three program control statements:
1) STOP statement

2) PAUSE statement .

3) END statement

ST I RV, A Datiegy

6.1.2.6.1 STOP Statement .

A STOP statement is one of the forms:
STOP n
or

STOP
Where n is an integer constant. Execution of this statement causes

termination of the executable program. At that time n, if specified, is
Output. °r -

6.1 2.6.2 " PAUSE Statement

A PAUSE statement is one of the forms:

PAUSE
or

PAUSE n
or :

PAUSE h’

where n is an integer constant and h {s a Hollerith constant. This state-
ment is provided for compatability only and in IVTRAN hag the same effect
as a CONTINUE statement. In other processors, this statement would
cause cessation of the program in such a way that resumption would be
at the discretion of the operator. '

6.1.2.6.3 END Statement

The END statement is one of the forms:

END
or

END s
where s is the name of the subprogram of which the END statement is a
patt. The END statement must be the last statement, physically, in any
program unit. The complete END statement, including the subproyram
hame, must appear on a single lin2; it may not be continued onto a
second line through the use of the continuation field.

- Execution of the END statement is equivalent to the execution
of a RETURN statement in a function or subroutine subprogram. It is
equivalent to the execution of a STOP statement in a main program.

€.1.2.7 Loop Statements

There are two types of loop statements:
1) DO statement
2) DO FOR ALL statement

6.1.2.7.1 'DO Statement

A DO statement is one of the forms:
DOnli= ml,mz,m3

or
DO n 1 = m1,m2

where:

1) n is the statement label of an executable statement. This statement,
called the terminal statement nf the DO loop, must physically follow and

be in the same program unit as the DO statement. The terminal statement
may not be a GO TO of any form, arithmetic IF, two-branch IF, RETURN,
STOP, or another DO statement. :

2) 1 is a scalar integer variable name; this variable is called the control
variable.

3) m 1+ called tle initial parameter; m,. called the terminal parameter; and
m,, called the incrementation parameter, are each either an integer constant
or an integer scalar variable name. If the second form of the DO statement
is used so that m3 is not explicitly stated, “a value of one i3 implied for
the incrementation parameter. At time of execution of the DO statement,
ml,m2 . and m, must each be greater than zero.

Associated with each DO statement is a range that is defined to
be those executable statements from and including the first statement
following the DO, to and including the terminal statement associated with
the DC. In case the range includes another DO statement, the range of the
contained DO must be a subset of the containing DO.

=70=

A DO statement is used to define a loop. Theé action succeeding
execution of a DQ ‘;tatement is described by the following six steps:

1) The control variable is assigned the value represented by the initial
parameter. This value must be less thar or equal {o the value re resented
by the terminal parameter.

2) The range of the DO is executed. .

3) If conticl reaches the terminal statement, then after execution of the
terminal statement, the control variable of the most recently executed DO
statement associated with the terminal statement is incremented by the
value répresented by the associated incrementation parameter,

4) If the value of the control variable after incrementation is less than or
equal to the value represented by the associated terminal paramenter, then
the action described starting at step 2 is repeated, with the understanding
that the range in question is that of the DO whose control variable has
been most recently incremented. If the value of the control variabls is

_greater than the value represented by its associated terminal parameter,

then the DO is said to have been satisifed and the control variable becomes
undefined.

5) At this point, if there wer: one or more other DO statements referring to
the terminal statement in question, the cont-ol variable of the next most
recently executed DO statement is incremented by the value represented
by its associated incrementation parameter and the action described in
step 4 is repeated until all DO statements referring to the particular term-
ination statement are satisfied, at which the first executable statement
following the terminal statement is executed.

6) Upon exiting from the range of a DO by a transfer of control as opposed
to satisfying the DO, the control variable of the DO is defined and is equal
to the most recent value attained as defined in the preceding paragraphs.

»

P,

i

e e
-

—— e aFwL e

An alternative but equivalent definition of the execution of the
DO statement is the following:
1) Replace each DO statement of the form:

DOni=m 1'm,

by
DOni =m1,m2,m3

- where m, is the integer constant 1.

2) Replace, starting with the innermost DO, each DO loop uof the form:
. DOni= my,m,,m,

range
n terminal statement
by

i= m,
k - CONTINUE

range, with all occurences of n replaced by nl '
nl terminal statement

i =1+ m,

IF(i .1E. mz) GO TO k
n i=7?

where nl and k are labels not appearing elsewhere in the program unlt
and ? is an integer constant of unknown value .

Both of the above definitions permit transfcr out of the range of
the DO and subsequent re-entry by transfer of control to a statement
within the range of the DO loop. The statements executed between the
transfer out of the range of the loop and 'the subsequent re-entry are
called the extended range of the DO. Control may not be transferred into
the range of a DO except through the execution of the DO statement or
through the use of an extended range.

The control variable, terminal parameter,. and incrementation
parameter may not be assigned values within the range or extended range
of a DO loop.

B .

Examples:
Valid CO loops:

1)

DO3K=1,9,2

3 A(K =B(K*2.0

is equivalent to:

or to:

2)

nl

4

K=1
CONTINUE

A(X) =B(K)*2.0
K=K+2

IF (K .LE. 9) GO TO k
K=1?

A(1) =B())*2.0

- A@3) = B(3)*2.0

A(5) = B(5)*2.0
A(7) = B(7)*2.0
A(9) = B(9)*2.0

NI = N-1
DO 41=1,N1

I1= +1

DO4J=1I1,N

IF(A(D .LE. A())) GO TO 4
T =A(D)

A(D) = A()

AQ) =T

CONTINUE

— - e

is equialent to: -

kl

k2

nl

n2

4

‘Nl=N-1

I=1

CONTINUE

I1=1+1

J=11

CONTINUE

IF(A() .LE. A(J) GO TO nl
T = A(D)

A(D = AQ)

AQ) =T

CONTINUE

J=J+1

IF(J .LE. N) GO TO k2
J=2?

I=1+1

IF (I .LE. N1) GO TO k1
I1=7

Invalid DO loops:

1) 3

2)

3)

4)

CONTINUE
AD =1
DO31I=1,10

DO31=1,N
DO4J=1,M
AlD =1
B(O) =)

GOTO 7
DO41=1,N
A(D =1

B(D) =1-1
CONTINUE

DO11I=0,N
A(I+]l) =1

(Terminal statement must follow DO)

(Inner DO must be completely contained
in outer DO.)

(Transfer into DO not permitted except
as part of an extended range)

(DO pa:-ameters must be positive
non-zero integers)

5) .DO112jJ=10,1 | (Initial parameter must not exceed
12 AQ+1) = A() final parameters)
6) DO IS KP = N,M, 2 (DO parameters and index may not
A(KP) = SIN (B(KP)) : be modified within loop)
KP = KP-]

15 A(KP) = cos (B(XKP) _

6.1.2.7.2 DO FOR ALL Statement

A DO FOR ALL Statement is of the form:

DO k FOR ALL (i)/s
where: .
1) k is the statement label of an executable statement. This statefnent,
called the terminal statement of the associated DO FOR ALL, must physically
follow and be in the same program unit as the. DO FOR ALL statement.
2) 1 1s an integer scalar variable name called a cont:ol index.
3) s 1s an one-dimensional logical array expression with an extent (d).

Associated with the DO FOR ALL is a range defined to be those
executable statements following the DO FOR ALL from and including the
first statement following the DO FOR ALL to and including the terminal
statement associated with the DO FOR ALL.

It is not pen:itted to transfer control into tﬁe range of a DO FOR ALL
loop except by executing a DO FOR ALL statement. It 18 not permitted to
transfer out of the range of a DO FOR ALJ, loop except by executing the
terminal statement which allows flow to proceed to the first executable
statement following the loop.

A DO FOR ALL statement ig used'to specify that certain assignment
statements within its range are to be executed for a set of values in
parallel. This set of values, called the index set, i3 defined to be the
set of integers 1 such that s(i) 18 true and 1 s{=d.

_ The range of a DO FOR ALL may nbt contain another DO FOR ALL
Or any array expressions. The control indices may not be used in any
statement within the range of the DO FOR ALL loop, except as outlined -

-

e

AR T TR Dt e,

]

= ~
e e T ="

—

in the following paragraphs. Otherwise any statement permitted elsewhere
in the procedure part of the program is permitted, and has its usual
interpretation.

Within a DO FOR ALL range the control indices may appear only
in DO FOR ALL assignment statements. A DO FOR ALL assignment state-
ment {s one of the following forms:

p=e
of .
IF(f)p = e
where '
1) pis an array element reference with exactly one subscript of the form:
I
or I+C
or I-C

where I is the control index and C is an expression independent of I.

2) e and f are each an expression which may or may not depend upon 1.
Within e and f any array element references are either of the form 1) above
or are independent of I.

Execution of a DO FOR ALL assignment statement causes parallel
assignment of the expression & to the array element reference p for all
values I in the index set. The computation of the expressions e and f
makes use of values of p in effect immediately before execution of the
statement. If the second form of the siatement is used, assignment is
made only for those values of I in the index set for which £()) = true.

Examples:
Yalid DO FOR ALL loops:

1) DO 1 FORALL (1)/[2...99]
1 A(D = A(I-1)*A(1+1)

2) . 'DO46 FORALL (K)/[1,3...100]
46 IF (VAR(K) .LT. 0." VAR(K) = - (VAR(K)

3) DO 77 FORALL ()/ B(M,*,N)
BIG() = 0.0
DO771=1,M
77 IF(A(1,)) .GT. BIG()) BIG() = A(1L,))

(o=

LT

L S e

Invalid DO FOR ALL loops: S

1)

64

2)
10

3)
900

4)
1971

5)

515

6)
|

DO 64 FORALL (L)/(1...100)
DO 64 FOR ALL (M)/(1...100]
A(L,M) = B(L, M) '
DO FOR ALL loops may not be nested.

DO 10 FOR ALL (1Z)/ LARR
A(Izo*) = B(*,IZ)
A DO FOR ALL loop may not contain array expressions.

DO 900 FORALL (D/(1...40]
A(2*]) = A(1+40)*1 .

A DO FOR ALL index must be of the form I1,I+C, or
I-C when used in a subscript. 2*I is not of one of
these forms.

DO 1971 FOR ALL (1)/ P

A(L,) = 0.0
Only a s!ngle subscript in an array reference may
depend upon 1.

DO 515 FORALL (J)/ Q

IFAQ)) 2,2,1

AQ) = 0.0

GO TO 515

AQ) = A()/BQ)

CONTINUE :

A DO FOR ALL index may not appear in any statement

except for a DO FOR ALL assignment statement. The

use of J in the arithmetic IF statement is therefore

illegal.

DO 1 FORALL (D/([1...50]

AQ) = B(D

The left-hand side of a DO FOR ALL assignment state-
ment must use the DO FOR ALL index.

I

1

pn

o N R

6.1.3 Input/Output Statements L -

There are three types of inp_ut/output statement:

1) READ and WRITE statements

2) ENCODE and DECODE statements

3) Auxillary input/output statements -

The first type consists of the statements that cause transfer of
records between files and internal storage. The second type consists
of statements which cause conversion of data within internal storage.
They are cla's sed with the input/output statements because the conversion
they perform is identical with that performed for formatted READ and
WRITE statements. The third type of statement consists n{ the BACKSPACE,
RBWINb, and FIND statements which provide for positioning a file and
the ENDFILE statement which provides for demarcation of an external file.

The forms of the input/output statements are given in Table 7.

6.1.3.1 Transmission Options
There are three transmission options for use in Input/Output

statements:
1) Record input/output
2) Formatted input/utput
3) Namelist input/output
The transmission options specify the manner in which data is transtormed

during transmission.

For record input/output, data is transmitted without being trans-
formed. Each input or output statement causes a single record to be
transmitted. Each recard consists of a string of data values in internal
representation.

Execution of a record READ statement causes a record to be read
from the specified input unit, and if an ipput list is specified, the values

)|

TABLE 7: INPUT/OUTPUT STATEMENTS o

READ/WRITE Statements

Type of Type of
dccess Transmission

sequential record

formatted

namelist

Form of READ

READ (u)

READ(u, END=g)

READ (u, ERR=h)

READ (u, END=g, ERR=h)
READ(u, ERR=h , END=g)
READ (u)K
READ(u,END=g)K
READ (u, ERR=h)K
READ(u,END=g, ERR=h)K
READ(u, ERR=h , END=g)K

WRITE (u)L

READ(u, f) WRITE(u, f)
READ(u, f, END=g)

READ(u, f,ERR=h)

READ(u, f,END=g, ERR=h)
READ(u, f,ERR=h, END=g)
READ(u, f)K
READ(u,f,END=g)K -
READ(u,f,ERR=h)K
READ(u, f, END=g, ERR=h)K
READ(u, f,ERR=h, END=g)K

WRITE(u,)K

WRITE(\I:“)

READ(u, n)
READ(u,n,END=g)
READ(u,n,ERR=h)
READ(u,n,END=g, ERR=h)
READ(u,n, ERR=h, END=g)

Form of WRITE

m—

ey

Table 7 (Continued)

Type of Type of
Access Transmission

—_rT

Form of READ

direct record

formatted

naméllst

READ(u'r)
READ(u'r,ERR=h)
READ(u'r)K
READ(u'r, ERR=h)K

READ(u'r, f)
READ(u'r,f, ERR=h)
READ(u'r, f)K
READ(u'r,f,ERR=h)K

not permitted

ENCODE/DECODE Statements

BNCODE(C) fp V)

DECODE(c, f,v)

ENCODE(c,f,v)K DECODE(c,f,v)L

Auxiliary Input/Output '

REWIND u
BACKSPACE u
FIND u'r
ENDFILE u

Notes:

Form of WRITFE,

WRITE(u'r)L

WRITE(u'r,)

WRITE(u'r,f)L

1) u is an integer scalar expression which designates the inputyoutput

unit (file) to be used.

2) ' g is the statement label for an executable statement in the same
program unit as the READ statement in which it appears. Transfer will
be made to that statement if the end of the file is detected while reading.

e

Table 7 (Continued)

3) h s the statement label for an executable statement in the same
program unit as the READ statement in which it appears. Transfer will
be made to that statemecat if an error is detected while reading.

4) f 1s either the label of a FORMAT statement or the name of a
singly-dimensioned array contalning format information .

S) n is the name of a aamelist established in a NAMELIST statement.

6) r is an integer scalar expression which specifies the record number
for direct access input/output. '

7) c is an Integer scalar expression which gives *he number of
characters in v. '

8) v is the name of a singly~dimensioned array containing a character
string.

9) K is an input list.

10) L is an output list.

s w s

read are assigned to the sequence of elements specified by the list,
The sequence of values required by the input list may not exceed the
sequence of values from the record .

Execution of a record WRITE statement causes a record consisting
of values obtained from the output list to be written upon the specified
output unit. If the record did not Previously exist, a new record is

" created.

2 o

LR T I

Examples: -

READ (3) A(D,B,C(1,%) -
WRITE(UNITS) A(1,*)*B(*,D,1.3, SIN(E) ;

6.1.3.1.2 Formatted Input/Qutput

Under formatted Input/Output, data is transmitted under control of
a FORMAT statement (6.2.3) which specifies the manner in which internal
data is to be transformed from or to a character string respectively. Each
input/output statement Causes one or more records to be transmitted.
Each record consists of a string of characters and appears on a separate
line when printed. '

Execution of a formatted READ statement causes input of one or
more records from the specified unit. The information is scanned and
converied as specified by the indicated format statement or format array.
The resulting values are assigned to the elements specified by the list.

Execution of a formatted WRITE statement causes the values
specified in the output list to be converted according to the format spec-
ification and written as one or more adjacent records on the specified unit.

Examples:
77 FORMAT(4E14.4)

READ (4,77)A,B,C,D
WRITE.(7, 77)A+B,B-C,C*D,D**A

e §, e

| Ze—1

6.1.3.1.2.1 ENCODE and DECODE Statements

The ENCODE and DECODE statements transmit data between an
input/output list and the first ¢ characters of a singly-dimensioned
array variable under control of a format statement or format array.

The ENCODE statement converts data from the singly-dimensioned
array variable into internal form and assigns the converted values to
the input list items. The 1nput list and format statement must not
specify that more characters be converted than are specified in the
character count c. If fewer characters are called for than are spec-
iffed by c, the remainder are ignored. The character slash in the .
FORMAT statement has no effect for ENCODE.

The DETODE statement converts data in internal form from the
output list to a tharacter string which is placed in the singly-dimensioned
array. The input list and format statement must not specify that more
characters be converted than are specified by the character count c:;
If fewer characters are called for than are specified by ¢, blanks are
placed in the remaining character positions. The character slash in
the FORMAT statement has no effect for DECODE.

PR g

6.1.3.1.3 Namelist Input Output

Under namelist input/output, data is transmitted under control
of a NAMELIST statement (6.2.3) which specifies the names of data to
be transferred. Both the name of the data and its value appear in the
character string which is read from or written to the input/output unit.
Each input/output statement causes vne or more records to be transmitted.
Each record consists of a string of characters and appears on a separate
line when printed. |

6.1.3.1.3.1 Namelist Input

Input data must be in a special form in order to be read using a i
NAMELIST list. The first character of each record to be read is igaored
and will usually be blank. The second character in the first record of a
group of records must be a $ or an & fo.'lowed immediately by the
NAMELIST name. Ths NAMELIST name must be followed by a blank and
must not contain any embedded blanks. This name is followed by data to
be read and converted. The end of the data group is signalled bya $ or
an & either in the same record as the NAMELIST name, or as the second
character of any succeeding record. The remainder of the record following
the terminal $ or & ig ignored. Data items must be separated by commas
and be of the following form:

§=K
or

A= xl,xz, B 'Km

where S is a scalar variable name or an array element reference, A is an
array variable name or array cross-section, and each of the K's is a con-
stant of integer, double integer, real, double precision, complex, double
complex, or logical data type. Logical constants may be written in the
form T, .T., or .TRUE. and F, .F., or .FALSE. A series of r identical
constants may be represented by r*k where r is an integer constant and

k is the repeated constant. Logical, complex, and double complex con-
stants must be associated with variables of identical type. The other-
types of constant \nteger, double integer, real, double precision) may be

read into any type of variable (except logical, complex, and double com plex)

and will be converted to the type of the variable.

The variable names specified in the input data must appear in the
NAMELIST list, but the order is not significant.

e T

Embedded blanks are not permitted in constants. '.l‘ralllnq blanks
after integers and exponents are treated as zeros.

Example: .
REAL A(3) -

LOGICAL EE
COMPLEX III(5)

= P s e g

—

NAMELIST / ROSE/ A,EE,IIl

READ (4, ROSE)

could read input data of the form:*
4 & ROSEAA=3,5.6,4,EE= .TRUE. ,IlI=4*(]. 3,-4.2), (0.,0)
A &END

i

k

A

6.1.3.1.3.2 Namelist Qutput

When a namelist WRITE statement is executed, all variables and
arrays specified in the associated NAMELIST statement are output. An
array is output with its leftmost subscript varying mosi rapidly. The out-
put data is written so that the data fields are large € 10ugh to contain all
significant digits and so that the output can be read using namelist input.

6.1.3.2 Access Options

There are two access options for use in input/output statements:
1) Sequential access
2) Direct access

okl

* .The"character A represents the character blank.

mmwmmymw

—

6.1.3.2.1 Sequential Access

Sequential Access files permit records to be written and read
only in sequence from first to last. A sequential READ or WRITE statement
processes the record or records which immediately follow the record last

processed.

In addition to sequential READ and WRITE statements, the REWIND,
BACKSPACE and ENDFILE statements may be applied to sequential files.

The REWIND statement causes a subsequent sequential READ or
write statement to read from or write to the first record of the specified
unit. Not all units can be rewound (e.g., printers, card readers). For
tt_xese units the REWIND statement is ignored. '

The BACKSPACE statement causes the .specified unit to backspace
one record. If the unit is already at its initial point, the statement has no
effect. If the unit (e.g., a teletype) can not be backspaced, the statement
has no effect.

The ENDFILE statement defines the end of a file of data on a unit
by writing a unique record called an end-of-file record.

6. l_.3 .2.2 Direct Access

Direct access files permit records to be written and réad in random
order. A direct access input or cutput statement processes a specified
record and those records which immediately £ollow it. In addition, it makes
available the record number of the record which follows the last record
processed, and so permits a form of sequential processing of records as
a special case.

The DEFINE FILE statement (6.2.3) is required for each direct access
unit. In it are defined the characteristics of the unit and an associated

integer variable which is set to the number of the record following that
last transmitted on the conclusion of each direct access READ or WRITE
statement, and is set to the number of the record found at the conclusion
of a FIND operation.

The FIND statement overlaps record retrieval from a direct-access
unit with computation in the program, thereby increasing execution speed.
The program has no access to the record that was found until a READ
statement for that record is executed. (There is no advantage in having
a FIND statement precede a WRITE statement.)

6.1.3.3 Input/Output Lists -

READ, WRITE, ENCODE, and DECODE statements permit the use
of an input/output list to specify tha data values to be written or the data
locations into which data is read. :

6.1.3.5.1 Ouiput Lists

An output list element is a

1) scalar expression

2) array expression

3) a parenthesized output list

4) an output implied DO of the form:
(I'l i= ml'mz)

or

(L: i= ml'mz ,513)

where L i3 an output list and i and the m's.are the implied DO control
variabie and parameters, respactively.

An output list is one or more output list elements, separated by
¢..amas.,

3

-
5

{

|

i

|
|
[
i
|
I
'
I
1
|
|
r
|
[

wa i S L -

&mgles:

A,C(1,*,])
A,B(1,]) ,SIN(X)

(A@D,1=1,6) . (=A(1),A(2),A(3),A(4) ,A(5),A(6))
(B(.)),1=1,2),1-1,2) (=B(1,1),B(1,2),B(2, 1) ,B(2,2))
3.5,5.7,-7.9,2%*]

6.1.3.3.2 Input Lists . -

An input element is a
1) scalar variable name
2) array element reference ' -
3) array variable name
1) array cross-section reference
5) a parenthesized input list
~ 6) an input implied DO of the form:
L,i= m, ,mz)
or (L,i= ml,mz,ms)

where L is an input list and { and the m's are the implied DO control
variable and parameters, respectively,

An input list is one or more input 'ust elements separated by commas.

Exarples:
x‘*o*omo Y, z(D .
(T(IJ) 1=1,5 02) (‘T‘l l” lr‘s v” lr‘s v”)

6.1.4 Debug Statements

The debug statements enable the user to locate errors in a IVTRAN
source program. The debug statements provide for tracing flow within a
program, tracing flow between programs, displaying the values of variables
and. arrays, and checking the validity of subscripts.

o Aaedh ek o

~ The debug statements consist of a DEBUG specification statement,
an AT debug packet identification statement, the TRACE ON and TRACE OFF
statements, and the DISPLAY debug output statement.

Debug statements are placed after the body of a program and
before the END statement. This permits easy removal of the debug state-
ments when debugging is complete. If debug statements are present they
must appear in the following order:

1) DEBUG statement

2) One or more debug packets (if any) each consisting of an AT debug packet
identification statement, followed by one or more executable debug state-
ments (TRACE ON, TRACE OFF, DISPLAY) and other IVTRAN statements
(executable, NAMELIST, FORMAT, and DATA statements.)

The program unit being debugged may not transfer control to any
statement in a debug packet; however, the statements in the debug packet
may transfer control to the program or return from it.

6 .‘l .4.1 DEBUG Statement

The DEBUG statement. is of the form:
DEBUG Sl,sz, ces ,sm

where each 8 is one of the debug specifiers:

1) UNIT(u), where u is an integer constant specifying the output unit for
debug output. If this option is not specified, debug output is placed on
a standard 6utput unit.

2) SUBCHK or SUBCHK (ml,mz, oo ,mk), where the m's are array names.
If this option is specified array subscripts are checked for validity. If
the first form is used all array references are checked. If the second

form is used, only references to the specified arrays are checked. If this

option is not specified, no subscripts are checked.

3) TRACE. This specifier must appear if traclnc; is desired. If thig

option is omitted, no tracing will take place. Even when this option is
used, a TRACE ON statement must be executed before tracing can commence .
4) INIT or INI'I'(ml,m2 - s .mk) . where each m is a variable or array name.
When this option is specified, variables and array values are output when

a statement which could modify its value (assignment, READ, and DECODE
statements) is executed. If the first form is specified, all modifications

~ are displayed. If the second form is specified only modifications to

the named variables and arrays are displayed. If this option is not
specified, no modifications are displayed.

§) SUBTRACE. If this option is specified, the subprogram name is dis-
Played when the subprogram is entered and the message "RETURN" is
displayed when contrcl returns to the calling program.

Each of the debug specifiers may appear at most once. The debug
specifiers may appear in any order.

Example:

DEBUG TRACE, SUBTRACE, UNIT(4)

6.1.4.2 AT Statement

An AT statement is of the form

AT k
where k is the statement number of an executable statement in the same

pProgram unit. The AT statement identifies the beginning of a debug packet
and indicates the point in the program at wilich the debug packet.is to be
activated.

When control reaches the statement labelled k, control is trang-
ferred to the first executable statement following the AT statement. After

the last statement of the debug packet is executed (provided it does not
transfer control out of itself) control returns to the statement labelled k,

which is then exXecuted.

= -,

Kl

F

Example: o

L]
..

ABR = ACAD*AB+RA
2 CALL DJINN (ABR)

DEBUG
AT 2
DISPLAY AB,ACAD,ABR,RA
END

The assignment statement is executed first, followed by the DISPLAY
statement ar.d then the CALL statement.

6.1.4.3 TRACE ON Statement

The TRACF ON statement is of the form:
TRACE ON '

The TRACE ON statement initiates the display of statement flow
by statement number. Each time a labelled statement is executed, a
record of the statement number is made on the debug output unit. This
statement has no effect unless the TRACE speclﬁér was used in the
DEBUG statement. For a labelled statement which has a debug packet
associated with it, the actions within the debug packet are executed before
the label trace is output. Tracing oontinues‘through each level of sub-
program call until a TRACE OFF statement is executed, provided the sub-
program in question has the TRACE option specified in a DEBUG statement.

6.1.4.4 TRACE OFF Statement

The TRACE OFF statement is of the form:
TRACE OFF

Fxecution of the TRACE OFF statement suspends program flow
tracing initiated by the TRACL ON statement. ’

I+ U

t1 A

e S S .

6.1.4.5 DISPLAY Statement

The DISPLAY statement is of the form:
DISPLAY ml,mz, eeomy

whe 2 each of the m's is a non-dummy variable or array name. Tle
DISPLAY statement outputs the values of the named variables and arrays
on the debug output unit.

The effect of the DISPLAY statement is similar to the following
two statements: '
NAMELIST / m/ Mmyomy, oo m

WRITE (u,m} i
where m is a namelist name not used elsewhere in the program and u
is the debug output unit number.

mple:
DISPLAY PDA,PDQ . PDL

6.2 Specification Statements

There are five types of Specification statement:
1) Data attribute declaration stutaments

2) DATA statement

3) Input/output specification statements -

4) Subprogram specification statements

5) FREQUENCY statement

6.2.1 Data Attribute Declaration Statement
== natnlonle Yeclaration Statements

There are seven types of data attribute declaration statement:
1) IMPLICIT statement '

2) Type statement

3) DIMENSION statement
4) COMMON statement

5) OVERLAP statement

6) EQUIVALENCE statement
7) DEFINE statement

-

-. The extent of an array must be s pecified by using an extent
specifier in a type statement, a DIMENSION statement, or a COMMON
statement. The extent spectfier is written:

(d1'd2' .0 o'dn)

where the d's are the dimensions of an n-dimensional array.

The type of a variable may be specified through either the type
statement, the IMPLICIT statement, or the use of the built-in type
convention.

Relations between different variables are specified through the
use of the EQUIVALENCE, OVERIAP, and DEFINE statements.

6.2.1.1 IMPLICIT Statement

The IMPLICIT statement is written in the form:
IMPLICIT sl,sz, . .,sn

where each of the s's 1s an implicit specifier of the form:

t(I.l,L2 TRTP A,
where each t is one of the type declarators given in Table 8 and each of
the L's 1s a single letter or a range of letters denoted by a pair of letters
separated by a hyphen (minus sign). The first letter in a range must
precede the second in the alphabet. The same letter may only be specified
once within an implicit statement.,

The IMPLICIT statement must be the first statement following the
subprogram statement if present. There can be at most one IMPLICIT
statement in a given program unit. The IMPLICIT statement declares the
data type of variables within the program unit by specifying that variables
beginning with the designated letters are of the designated type.

B .

ol 3 A AR

TABLE 8: TYPE DECLARATORS

Data Type Ix' E. Declarators

integer INTEGER, 1, INTEGER*4

double integer DOUBLE INTEGER, DI, INTEGER*8

real REAL, R, REAL*4

double precision DOUBLE PRECISION, DP, DOUBLE, REAL*8
~ complex ' COMPLEX, C, COMPLEX*8

double complex DOUBLE COMPLEX, DC, COMPLEX*16

logical B LOGICAL, L

Example:

The IMPLICIT statement:

IMPLICIT INTEGER(I-N) ,REAL(A-H,0-2)
defines the same types for undeclared variables as the built-in typing
convention,

The statement:

IMPLICIT DOUBLE COMPLEX(A-F) ,LOGICAL(X,Z)
specifies that variables beginning with the letters A,B,C,D,E, and F are
to be of type DOUBLECOMPLEX and that variables beglmung with the
letters X and Z are to be of type LOGICAL unless they appear in a type
statement. Variables which begin with other letters are typed according
to the built-in typing convention.

The statement:

IMPLICIT DI(A-Z), R(K)
is invalid and should be written:
IMPLICIT DI(A-J,L-Z),R(K)
instead.

el

: “
Tt sy Pk ke

6.2.1.2 Type Statement

The type statement {s of the foim:
t '1'32'.."sm

where t is one of the type declarators given in Table 8 and each of the
8's ic a type specifier of one of the forms:
m
or
me
where m is a variable, array or function name and e is an extent specifier.
The tyle statement declares each i to be of data type t.and to be
an array with the attached extent, if present. An ildentifier may appear in
at most one type statement in a program unit. Typing in a type statement
takes_ precedence over the built in type conventions and those established
in an IMPLICIT statement. '

Examples:

DOUBLE COMPLEX CO,NU,ND,RUM
INTEGER UNIT(40,30) ,ITEM(100)

REAL FACT

DOUBLE PRECISION EXACT(133)
LOGICAL L(10000)

DP M,K,z

6.2.1.3 DIMENSION Statement
=ole YN olatement

A DIMENSION statement is of the form:
DIMENSION mlel,mze2 reee ,‘mkek

where each m is an array or function name and each e is an extent
specifier. The DIMENSION statement specifies that each m is an array
variable or array function with extent e, '

Examples:

DIMENSION HERCM(90,55,90)
DIMENSION F(10),F1(400) .F2(40, 10)

[T ——

6.2.1.4 COMMON Statement

The COMMON statement is-written in the form:

COMMON /b,/ 5:7,8yns04.,8
17 ®11'°12 lm.../bk/s 148k s+ Sy

where each of the b's is an identifier representing a COMMON block
name or is blank. If bl is blank the slashes may also be omitted. Each
of the s's is of one of the forms:

N

or

M e _
where N is an array or scalar name, M is an array name, and e is an
extent specifier.

The COMMON statement in IVTRAN is used to allow access t6
variables used by more than one program unit. In IVTIRAN a COMMON
block used by more than one program unit must be declared identically
except for names in cach of the program units. A variable in a block of
COMMON may not be declared in two different program units unless the
following match in both program units:

1) Its position in the COMMON block
2) Its data type
3) Its extent

The same number of variables must be declared for a given COMMON

block in each program unit in which it is used. In ad-ition, the OVERLAP
statement (6.2.1.5) when referring to COMMON variables and arrays must
cause identical overlapping to occur in each program unit.

If a COMMON block is declared more than once in a program unit,
the effect is the same as a single COMMON statement wh.lch contained all
the variables and arrays.

—_— e

Examples:

Assume the following for all.examples:

IMPLICIT I(1), R(R), DP(D), G(C), L(L) ,
Valid COMMON statements: _ ' e
1) In program unit 1: '

COMMON / GLOBAL/ 11(1000),D, C(14, 16)
In program unit 2:
DIMENSION 12(1000)
COMMON / GLOBAL/ - 12,DI,CE(14, 16)
2) In program unit 1:
COMMON /STOCK/ 11,12,13 / BOND/ CC,LL(10)
In program unit 2:
COMMON /BOND/ CQ / STOCK/ 11,5
COMMON / BOND/ LE(10)
- COMMON / STOCK/ T
3) In program unit 1 (see 6.2.1.5 for OVERIAP statement):
COMMON / PLACE/ DP(10), R(100), 1(40)
OVERLAP((R), (DP,I))
In program unit 2;
COMMON / PLACE/ DP1(10), R1(100), 11(40)
OVBRLAP ((1,DP1), (R1)

invalid COMMON statements:
1) In program unit 1:
COMMON / 1AW/ R(10), R1(10), 1(l0, 10)
In program unit 2:
COMMON / 1AW/ R2(20), 11(100)
Items in COMMON must match exactly, not just in length.
2) In program unit 1:
COMMON / NAIL/ R(40)
In program unit 2:
COMMON / NAIL/ 1(40)
Data types must match in corresponding items in COMMON.

fred s me St o

3) In program unit 1 (see 6.2.1.5 for OVERLAP statement);
COMMON / NOUN/ (C(1000), R(500), I1(500)
OVERLAP ((C), R,D°
In program unit 2:
COMMON / NOUN/ C{1000), R1(500), I1(500)
Overlap statements, if present in one program unit, must be
present in all program units and must overla p identical sets of
items. -

6.2.1.5 ‘OVERIAP Statement

The OVERLAP statement is of the form:
OVERIAP (51'52' ces ,sn)

- where each s is an OVERLAP specifier of the form:

. (El!Ez'.."Em) . .
and each E is an OVERLAP element of the form:
(nl,nz, n.. .nk)

and each n is an array or scalar variable name.

Either all of the variables in an OVERIAP specifier must be in the
same COMMON block or none of them may be in COMMON. The order in
which variables appear in OVERIAP elements is aribtrary. The order in
which OVERLAP elements appear in OVERLAP specifiers is arbitrary. The
same varjable or array name may appear at most once in an OVERLAP
statement. ’

Each OVERLAP specifier indicates sets of variables (overlap elements)
which the compiler may cause to share storage. Each of the variables in
an OVERLAP element can share storage with any of the variables in any
other OVERLAP element in the same ¢ VERLAP specifier. Variables declared
in the same OVERLAP element do not share storage with one another.

¥

1

T8l

—_— . e

Example: -

Assume that in the initial part of a program, an array C with
extent (100, 100) is needed; in the final stages of the program C is no
longer used, but arrays A and B with extents (50,50) and 100, resoectively,
dre used. Storage space can be saved by using the statement:

OVERLAP ((C),(r,B))
vhich permits the compiler to overla P part of the array C with part or
all of arrays A and B.

6.2.1.6 EQUIVALENCE Statement

In IVTRAN the EQUIVALENCE statement is of the form:
EQUIVALENCE El'gz oo 'En

where each E is an equivalence specifier of one of the forms:
‘81'82" ..,sn)
or
(al,az, . ..,an)
or
(el,sl,sz,.. .,sn)
where each s is a scalar variable name, each a is an array variable
name, and e is an array element of the form a(c 19Cg 0" '°m) where
each c is an integer constant and m is the dimensionality of a. All
of the variables in an equivalence specifier sharq the same storage.
Equivalence is mathematical equivalence if the items are of the same
data type and storage equivalence otherwise. ’

8ee the OVERLAP statement (6.2.1.5) for broader storage equiv-
alence capabilites and the DEFINE statement (6.2. 1.7) for broader
mathematical equivalence capabilities.

The same scalar variable may not appear more than once in an
EQUIVALENCE statement. Only certain combinations of data types are
permitted as indicated in the following table:

.—.mwmwwa il

Data Type Can be equivalenced to:

integer integer, real

double integer double integer, double precision, complex
real integer, real _ :
double precision double integer, double precision, complex
complex double integer, double precision, complex
double complex double complex

logical logical S

A most one of the variables in an equivalence specifier may be
declared in COMMON. If the third form is used, only the array element
@ may belong to a COMMON block.

Examples:

- Assume for all examples the following. declaration:
IMPLICIT I(I) ,DI(]) ,R(R) , DP(S) .C(C),DCc(D),L(L)
Valid BQUIVALENCE statements:
1) DIMENSION 1(2,2)
EQUIVALENCE (I(1,1),29, (1(1,2) , Ixy) , (1(2, 1), T¥X) , (1(2, 2) , mn
2) DIMENSION I(40) ,R(40),7(100) ,S(100)
' EQUIVALENCE (L,R), §,5)
COMMON / SENSE/1,S
3) EQUIVALENCE (10,10), (DII,D11)
4) COMMON / WEALTH/ 1(100) ,JK1
BQUIVALENCE (1(1),11,10, 0K,JK1,])
Invalid EQUIVALENCE statements:
1) EQUIVALANCE (12,]2)
Incompatible data types.
2) COMMON / CAUSE/ 11(40),12(4,10)
EQUIVALENCE (I1,I2)
a) Two arrays in COMMON may not be equivalenced to one another.
b) The extents of two equivalenced arrays must be identical.

-100~

3) COMMON /TIME/ L1 -
DIMENSION L2(100)
EQUIVALENCE (L2(19),L1)
A logical array element may not be equivalenced to a COMMON
scalar.
4) COMMON /ROOM/ RING(41)
EQUIVALENCE (RING(1),RING(41)
Two array elements may not be equivalenced to one another.
5) EQUIVALENCE (I11,12), (12,13)
The same scalar or array name may not appear twice in the same
or different equivalence statements.

6.2.1.7 DEFINE Statement

The DEFINE statement is of the form:

DEFINE ae, = b1 ' 2e2 = b2' cee ,akek = bk
where each of the a's is the array name of the item being defined, each
of the e's is the extent of the array, and each of the b's is a base item of
the form:

n(P]_:Pz: ---:p)
where n is the name of the base array and each of the p's is a subscript
expression of one of the forms:

c
or

$k
or

$k+c
or

$k-c

where c i{s an integer constant and k is an integer constant between one
and the dimensionality of a. '

The DEFINE statement declares one or more arrays with extent e

which are based upon arrays having storage. Each occurrance of a refer-
ence a (51'52 seeld sn) to a defined array can be replaced by an equivalent

-101-~

2]
3

sk

reference n (tl’ gree ity) to the base array, where each’ t, equals
P with $k replaced by 8y -

Bach $ from $1 to $n must appear exactly once within the base
item. The defined array name,.a, must not appear in any other specifica-
tion statement. The defined array has the same data type as the base
array.

Mmgles'
Valid DEPINE statements:
1) DEFINE ROW1(10) = A($1, 1) ,ROW2 = A($1, 2)
A reference ROWI1(D) is equivalent to a reference A(I, 1) and a
reference ROW2(I) is equivalent to a reference A(I, 2).
2) DEFINE OFFSET(47,40) = ARRAY($1+2, $2-1)
A reference OFFSET (I11+3,12+2) is equivalent to a reference
ARRAY(I1+4,12+1).
3) DEFINE TRANSP(100,100) = BASE($2,$1) .
A reference TRANSP(I,]) is equivalent to a reference BASE(J,I)
Invalid L iFINE statements:
1) D:FINE A(10,10) = B($2)
Both subscripts must be used in the definition; that is, both $1
and $2 must appear in the base item.
2) DEFINE DIAG(100) = ARRAY ($1,$1)
Each subscript may be used at most once -in the base item.
3) COMMON / PEOPLE/ A
DEFINE A(100) = B($1+1)
The defined item, A, may not appear in any other specification
-statement.

6.2.2 DATA Statement
The DATA statement is of the form:
DATA vl/ di/ ,vz/ dz/ foee ,vn/ d.

where each v is a list of scalar variable names, array elen_xent references,
array cross-section references, or array names and each d is a list of
optionally-signed constants (integer, double integer, real, double precision,

-102-

L

v

complex, double complex, logical, Hollerith, octal, or haxedecimal)
any of which may be preceded by r*, where r is an integer constant indj-
cating the number of times the following constant is to be replicated.

The constants in the data list must match the items in the varfable
list in number and type, with the following exceptions:

1) An integer constant may be used to initialize a double integer variable
or array element.

2) An octal or hexadecimal consrant may be used to initialize an integer
or double integer variable or array element.

3) A Hollerith constant may be used to initialize variables and array
elements of any type but logical. The number of characters must match
the data type as given in the following table:

mmber of characters number of characters

data type for scalar for n element array
integer lto4 - 4n-3 to 4n
double integer lto8 8n-7 to 8n

real lto4 4n-3 to 4n’
double precision lto8 8n-7 to 8n
complex ltos) 8n~7 to 8n
double complex 1tol6 16n-15 to 16n
logical ' none

4) A logical array constant may initialize a’logical amray or array
cross-section.

PR

PO R

s Eniiol S bk B Rl S

L

W

_—

%mgl_es:

Assume for all examples the statement:

Valid DATA statements:

1)

2)

3)

4)

IMPLICIT I(1) , DI(J),R(R),DP(S) ,C(C) ,DC(D), L(L)

DATA 11,12,13 / 44,35,26 /, J1,J2 / 2*0 /

I1,12, and I3 are initialized to 44,35, and 26, respectively.
J1 and J2 are both initialized to zero.

DIMENSION R1(4), SA(40, 40)

DATA RI1(1),R1(3), SA /4.0,5.0,160*1,000 /

DIMENSION L(128),L1..y)

DATA L/ .T.. .F., .T., 125*.F. /, L1 /[1,4...40]/
DIMENSION J(4) '

DATA] / 26HMULTIPLE PROCESSOR SYSTEMS /

Invalid DATA statements:

1)

2)

3)

6.2.3

DATA DCl, DC2 / (1.202,3.403) /

Number of constants must equal number of variables.
(1.2D2,3.404) is a single double complex constant.

DATA S85/2.5/ ,

Data types must match. A real constant may not initialize a
double precision variable.

DIMENSION L(128), LI(128)

DATA L,L1 / S8HABCDEFGH, 4*ZFFFFFFFF /

Neither Hollerith, Octal, nor Hexadecimal constants may be
used to initialize logical data.

Input/Output Specification Statements

There are three input/output specification statements.
1) FORMAT st»:ement

2) NAMELIST statement

3) DEFINE FILE statement

6.2.3.1 FORMAT Statement

The FORMAT statement is of the form:
FORMAT (CI‘CZ"“‘Cn) 4

where each C is one of the format codes:
rlw
rDlw
rFw.d . _ ' ' e -o-
r DF w.d
rEw.d
rDw.d
rGw
rGw.d
raw
rOw
i' Lw
rAw
Tp
sP
w X,
is a Hollerith constant, or is a repeated group of the form:
r (cl,cz, ce0/Cy)
where:

' r, an optional repeat count, is an integer constant indicating the
number of times a format code or repeated group is to be used. If r is
omitted the code or group is used once.

w is a non-zero integer constant specifying the width of a field
in characters.

d is an integer constant that specifies the number of digits to the
right of the decimal point.

P is a non-zero integer constant specifying a column position.

8 is an optionaily-signed integer constant specifying a scale '

" factor.

The FORMAT statement is uBed in conjunction with the formatted READ and

WRITE satements and the ENCODE and DECODE statements. The FORMAT |

statement specifies the type of conversion to be performed for each iten:
in an input or output list. ‘

e o

-] - - S

L2

6.2.3.1.1 General Rules for FORMAT Statement --

1) FORMAT statements must be labelled. The label of a FORMAT
statement may only be referred to in a READ, WRITE, ENCODE, or
DECODE statement. :

2) A comma separating two format codes may be replaced by a series
of one or more slashes. Each slash indicates the end of the current reccrd

~ and the beginning of a new record. A series of one or more slashes may

precede the first format code or may follow the last format code in a
FORMAT statement. In either case, each slash ends the current record
and begins a new record.

3) .'l‘he comma is optional following the P and X format codes, the
count-delimited Hollerith constant, and the repeated group.

" 4) A complex or double complex output list item requires a format

code to convert the real part and a second format code to convert the

imaginary part.

5) When formatted output is prepared for printing, the first character
of each record is not printed but has tae following interpretation:
Character ' Interpretation
blank Advance one line before printing
0 Advance two lines before printing
1 Advance to first line of next page
+ No advance

For output to other units, the first character of the record is treated as
data.

6) There are two types of format codes: data codes which correspond
to input/output list items and non-data codes which are processed between
the processing of input/output list items. The data codes include

1, DI, F, OF, E, D, G, Z, O, L, and A formats. Non-data codes written
after the last used data code are processed up to either the next data code
or the final right parenthesis, whichever occurs first. |

-l iEaE L

T

7) If there are more data codes than input/output list items, the
remainder of the FORMAT statement is ignored. If there are more list items
than data codes, the FORMAT statement is rescanned beginning with the
repeated group terminated by the right-most right parenthesis, or if

exists, with the beginning of the FORMAT statement. When rescan occurs,
the current record is ended and a new record begun.

" Examples: ' -

a) 20 FORMAT (12,13)
1s equivalent to
20 FORMAT (12,13/12,13/ 12,13/ .../ 12,13)
b) 30 FORMAT (2X,2(14,3(4X,14)) _
: is equivalent to
30 FORMAT (2X,2(14,3(4x,14)) / 2(14,3(4X,14))/ . ..)

8) An array may be used instead of a FORMAT statement. The content
of this array may be initialized by a DATA statement or a READ statement,
for example. The contents of the array is a character string in the same
form as a FORMAT statement, except that the word FORMAT and the state-
ment number are omitted.

Example:

DIMENSION A(2)
DATA A/ 8H(2X,110) /

READ (4,A) K

6.2.3.1.2 Non-data Codes

There are five non-data codes:
1) Tp

2) sP

3) wx

4) Hollerith Constant

5) Slash

6.2.3.1.2.1 TIp Code
The T format code specifies the character position in the record
where transfer of data is to begin or continue.

Example:
READ(IUN, 40) 1,],K
40 FORMAT (T20,15,T10,I2,T60,1I5)

will cause I to be read from characters 20 to 24 of the record, J from
10 to 11 and K from characters 60 to 65 of the record.

6.2.3.1.2.2 sP Code

The P format code specifies a positive, negative, or zero scale
factor for use on real and double precision data with E,D,F,DF,and G
data format codes. The effect of the scale factor for input and output is

external number = internal numtrer x 10°

A scale factor remains in effect until the end of the input/output statement

or until superseded by another sP code.

Input: A scale factor may be specified for any real data, but takes effect
only if an exponent is not specified in the input record.

Examples: | _
Code Input ‘Internal Value -
-2PF7.4 1.0E2 100.0
-2PF7.4 12.34) 1234.
3PF7.4 1.0e2 100.0
3PF7.4 12.3¢ .01234

Output: A scale factor can be specified for real numbers output with or.
without exponents. For numbers without exponents the relation between
internal value and external value is the same as for input. For numbers
output with exponents, the decimal point is moved and the exponent

adjusted to account for it.

%1 L

- Examples:

Code Internal Value Qutput
F9.4 12.34 12.3400
2PF9.4 12.34 1234.0000
-2PF9.4 12.34 .1234
E12.3 3928.6 0.393E+04
2PE12.3 3928.6 39.286E+02

-2PE12.3 - 3928.6 0.004F: 06

6.2.3.1.2.3 wX Code

The X format code skips w characters on input and writes w .
blanks on output. ‘

Example:
- WRITE (I,50)1,],K
50 FORMAT (I5,10X,15, 10X, IS)

cause I to be written in character positions 1to 5, Jin 16 to 20, K in 31
to 35 and blanks in positions 6 to 15 and 21 to 39.

6.2.3.1.2.4 Hollerith Constant

Both count-delimited and quote delimited Hollerith constants are
permitted in FORMAT statements. The data is read or written directly to or
from the FORMAT statement. If a quote-delimited Hollerith constant is
used. an apostrophe in the data is represented as two apostrophes.

Input: Information read from the input record replaces the characters
of the Hollerith constant.

Example:
400 FORMAT ('HOLLERITH')
READ (7,400)

Nine characters are read from the input record and replace the characters
H-O-L-L-E-R-I-T-H. . '

Output: The constant i{s written on the output record.

Example: _
1000 FORMAT(13H1PAGEAHEADING)
WRITE(4, 1000)
The thirteen characters following the H are written on the output record.
If the record is printed, the first character will cause skipping to the top
of a new page.

6.2.3.1.2.5 Slash

The élash specifies the end of a record on input or output.

Input: The remainder of the current record is ignored and further input
begins with tiie first character of the next record. Initial, final, and

adjacent slashes cause skipping of whole records.

Qutpui: The current record is terminated and a new record begun. Initial,
final, and adjacent slashes cause blank records to be written.

Example:
WRITE(3, 17)1,]
17 FORMAT (SHLINE1//SHLINE3)
cause the following output:
LINE1
(blank line)
LINE3

6.2.2.1.3 Data Codes

There are eleven data format codés:

1) Iw : 7) Gwand G w.d
2) Dlw 8) aw
3) Fw.d 9) Ow
4) DFw.d 10) Lw
6) Dw.d
-110-
g\w;ﬁmﬂzﬂiax i
.v.:;'w;; !' i e xf’ir
it ! t-

Each data format code corresponds to an item in an input or output list
and specifies the form of the corresponding data field in a record. If w
characters are insufficient to hold a number on output, the field is filled

with asterisks.

6.”.3.1.3.1 Iwand DIw Codes

I and DI format codes are used for transmitting integer and double

integer data, respectively.

with leading blanks.

Example:

WRITE(S , 6) 432
5 FORMAT (14)
cause A432 to be written.

6.2.3.1.3.2 Fw.d and DFw.d Codes

precision data, respectively.

| i.

it+e i.+e
i-e i.-e
iEe i.Ee
iEte . i.E+e
iE-¢ i.E-e
iDe i.De

iD+e i.Dte
iD-e i.D-e

-111-

-

Input: Input is in cne of the following forms:

i.f
i.f+e
i.f-e
i.fEe
i.fEte
i.fE-e
i.fDe
i.fD+e
i.fD-e

Input: The input field consists of w decimal digits and blanks. Embedded

and trailing blanks are interpreted as zeros.

Output: The number is output right justified in a field of w characters,

The F and DT codes are used for transmitting real and double

f+e
f-e
.fEe
fE+e
.fE-e
.fDe
.fDte
.fD-e

ol

where 1, f, and e are strings of decimal digits representing the integer,
fraction, and éxponent parts of a real number, If the decimal point {s not
specified, the decimal point is asstimed to be d digits from the right hand
side of i. In other words, the internal value is 10-d times the externa)
value. A scale factor (6.3.1.2.2) applies only if e is not specified.

Examples:
Format Code Input) Interna Value
F5.2 41,23 _ 1.23
F5.2 1.234 1.23
F5.2 4A123 1.23
F5.2 41234 _ 12.30
1P F5.2 Al.20 0.123

1P F5.2 1.2+1 12.0

Output: The output is written as a sign (if negative), an integer part,
a decimal point and d fractional digit- right-justified in a field of w
characters. If a scale factor (6.3.1.2.2) has been specified, it is applied.

Examples:
Format Code Internal Value Output
F5.2 0.001 40.00
F5.2 | 0.01 3 40.01
F5.2 0.12 A0.12
F5.2 1.23 A1.23
F5.2 12.34 12.34
F5.2 123.45 *k*%% (overflow)
1PF5.2 .123 Al,23
-1P F5.2 . .123 40.01
F5.2 99.996 .100.00
F5.2 -99,996 k**%x (overflow)
F5.2 -12.5 **%x* (overflow)
F6.2 -12.5 -12.50
~112-
- mﬂw_—— R - .,y__"

PR v

6.2.3.1.3.3 Ew.d and Dw.d Codes

The E and Ii codes are used for transmitting real and double

precision data, respectively.

Input: Input for Ew.d is identical tc Fw.d input. Input for Dw.d is

identical to DFw.d input.

Output: The output is written as a minus sign (if signed), an integer

part, a decimal point, d fractiona! digits, and an exponent part, right-
justified in a field of w characters. The form of the exponent part
depends on the magnitude of the exponent as given in the following table.

Exponent Value ' Exponent Form
0to9 E+ Oc
10 to 99 E+ ee
100 to 999 _+ eee

1000 to 9999 + eeee

If a scale factor (6.3.1.2.2) is specified, it changes both the exponent

and the aumber of integer part digits.

Examples:
Format Code Internal Value
El2.4 12.34
2P E12.4 12.3456
-2P E12.4 12.34
El2.4 12.34E+20
E12.4 12 .34E+300
El2.4 12 .34E+400
E10.4 -0.01
Ell.4 -0.0!

6.2.3.1.3.4 Gw and Gw.d Codes

. Qutput
AA0.1234E+02

412.3456E+00
AA0.0012E+04
4A0, 1234E+22
440.1234+302
40.1234+4002

RhkkkRkhtkR

-0,1000E-01

(over-flow)

The G format code provides for transm.ssion of integer, double
integer, real, double precision, and logical data according to the type

spe~ification of the correspcnding variable in the input/output list.

-113-

———

Input: The action of G format for input is given by the following table:

1/0 list data _type

integer

double integer
real’

double precision
logical

Equivalent format

Iw (d ignored if present)
DIw (d ignored if present)
Ew.d
Dw.d
Lw (d ignored if present)

Output; The action of G format for output is given by the following

table: '
1/0 list data_type
integer
double integer

real
double precision
logical

Equivalent format

Iw (d ignored if present)
DIw (d ignored if present)
Fw.s,4X or Ew.d

DFw.s,4X or Dw.d

Lw (d ignored if present)

For real and double precision data, the form of output depends upon the

value of the number to be output.

If the value is less than 0.1 or greater

than or equal to 10d, Ew.d or Dw.d format is used. Otherwise the number
is output without an exponent, the action of the scale factor is suspended,
and a total of d significant integer and fraction digits are output.

Examples:

Format Code
Gll.4

G11.4
Gli.4
Gll1.4
Gl1.4
Gll1.4
Gl1l.4

1P G11.4
1PG11.4
G5

G5
G10.4
G10.4

Value Output
0.0123 40.1230E-01
0.1234 A0.1234A0048
1,2340 AA 1.23454040
12.340 A 12.34A000
123.40 AA 123 .4A0404
1234.0 A48 1234.A004
1234¢C.0 A0.1234E+05
12.340 AA 12 .34A0404
12340.0 A1.2340E+04
12 ABA12
.TRUE. ALAAT

-1.0 -1.0004444
5.1 *kakrkwrws (overflow)

-114~

)

6.2.3.1.3.5 Zw and Ow Codes

The Z and O format codes are used to transmit, from a field of
w characters, hexadecimal and octal representations of data of integer,
double integer, real, double precision, and logical data type.

Input: A within the input fields only the following characters are
permitted:

O input: 0,1,2,3,4,5,6,7, and bla.nk
Z input: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, and blank.

In either case embedded and trailing blanks are treated as zeros. If the
value read is too large for the input data type, leading digits are lost.
The number right-justified with leading zeros is the new internal value

for the input list variable.

Output: The octal or hexadecimal number is output right-justified in a
field of w characters.

Examples:
Format code Value Output
02 430 53
Z2 4315 2B
Z3 4950 3 A2B

6.2.3.1.3.6 Lw Code
The L format code is used to transmit logical data.

Input: The first npn-blank character in the field must bea T oran F.
The remainder of the characters in the field are ignored. T represents

true and F, false.

Output: A T oran F is placed in the output field, preceded by w - 1
blanks, for true and false output, respectively.

TR | R T N N RO b=

s e

P —

6.2.3.1.3.7 Aw Code

The A format code is used to transmit character data stored in
variables of integer, double integer, real, and double precision data type.
The number of characters which can be stored in a variable is given in the
following table:

Data Type Number of Characters
integer ' 4
double integer 5 8
-real 4
double precision 8
complex 8 (must be output
as 2 reals)
double complex : 16 (must be output
as 2 double precisions)
logical . none

Input: w characters are read and stored left-adjusted with trailing
blanks. If w is greater than the number of characters which can be stored
in the variable, the leftmost characters are lost.

Output: The characters in the variable are right-adjusted in a field of
w characters with leading blanks. If there are more than w characters
in the variable, the leftmost characters only are printed.

Example:
DATA A/ 4HQRST /

WRITE (5,15) A,A A
15 FORMAT (A3/A4/AS5)
cause the following output:
QRS
QRST
AQRST

kst

e, Fi %

AT IIIPOS VNP W TR A i

6.2.3.2 NAMELIST Statement

The NAMELIST statement is of the form:
NAMELIST /nl,/v1 ,/n /v ee.. /n /v

where each n is a namelist name and each v is a list of scalar and array
variable names. The NAMELIST s tatement is used with namelist input/
output transmission (6.1.3.1.3).

Example:
~ NAMELIST /SOME/A,C,E/ALL/A,B,C,D,E

' SOME and ALL are namelist names and each can be used in READ
and WRITE statements.

6.2.3.3 DEFINE FILE Statement
A DEFINE FILE statement is of the form:

DEFINE FILE '“l(nl‘sl‘fl‘vl)""‘“m(nm S fm,vm)

where:
u is an integer constant representing a direct-access input/output
unit. Each direct access input/output unit must be declared in a DEFINE

FILE ;tatement.
n is an integer constant representing the number of records on

unit u. ‘
r is an integer constant representing the maximum record size and

specifies a word count if formatted input/output is not used and specifies
a character count if formatted or mixed input/output is used..

f is one of the characters E, U, or L indicating formatted,
unformatted, or mixed transmission, respectively.

v is the name of an integer scalar variable. At the ‘conclusion of
each direct access input/output operation on unit u, v is set to the record
number of the next record. At the conclusion of a FIND operation v is
set to the number of the record found.

The DEFINE FILE statement is used with direct access input/output unifs.
Its use is described in section 6.1.3.2.2.

-117-

.

S RS S -

6.2.4 Subprogram Specification Statement

There are four classes of Subprogram Specification Statements:

1) Subprogram header statements which describe the characteristics of

the program unit in which they appear.
2) The EXTERNAL subprogram statement which describes the characteristics

of a subprogram referenced in the program unit in which it appears.

-3) The statement function definition which defines a function for use in

the program unit in which the definition appears.
4) The ENTRY statement which defines an entry point to a function or

subroutine.

6.2.4.1 Subprogram Header Statements

There are three subprogram statements:

1) SUBROUTINE statement
2) FUNCTION statement
3) BLOCK DATA statement '

6.2.4.1.1 SUBROUTINE Statement

A SUBROUTINE statement is of one of the forms:
SUBROUTINE N

or _
SUBROUTINE N (sl 1Sgree. ,sm)

where N is the subroufine name and each s is an argument specifier of

one of the forms:

VALUE

VALUE

* v oo < <

~118-

i R

e i

where v is a scalar variable name, a is an array variable name, ang p '
i8 a subprogram name. The various argument specifiers have the following
interpretations: ‘

1) Use of the word VALUE specifies argument passage by value, that is,

‘storage is assigned for the variable or array in the subprogram. A value

parameter may not be used *o return a value to the calling program.

2) Writing a ‘scalar Or array variable name by itself specifies that it will
be referred to by location. In reforence by location, the subprogram
reserves no storage for the dummy argument. The subprogram uses the
corresponding actual argument each time the dummy argument is réferenced.

3) Writing an asterisk specifies that the actual argument is an alternate
return, which can be referenced with a RETURN i statement.

A SUBROUTINE statement is used to begin a subroutine sub-
program.

6.2.4.1.2 FUNCTION Statement
The FUNCTION statement if of one of the forms:
FUNCTION f (sl,sz,...,sm)
t FUNCTION f
e FUNCTION f (s1 1Spren. ,qm)
te FUNCTION f

(31-152: ces lsm)

(51'82"' .,sm) .

where t is one of the type declarators given in Table 8, e is an extent,
f is a function name, and each s is an argument specifier of one of the
forms: ‘

v
v VALUE
a
a VALUE
p

where v, a, and p are as descriled in Section 6.2.4.1.1.

A FUNCTION statement is used to begin a FUNCTION subprogram.

-119-

6.2.4.1.3 BLOCK DATA Statement

A BLOCK DATA statement is of the form:

BLOCK DATA
A BLOCK DATA statement is used to begin a block data subprogram .

6.2.4.2 EXTERNAL Statement

The EXTERNAL statement is of the form:

.EXTERNAL sl,sz,...,sm)

where each ‘s 1s an EXTERNAL specifier of one of the forms:

n
n (al'aZ'...'ak)
n (al,az,...,ak) s

where n is a function or subroutine name, each a is an érgument s'pecifier,
and s is a side-effects specifier. ’

If the first form is used, actual and dummy arguments must match
in data type for each reference to n. If the second or third form is used,
an actual arcument of any arithmetic data type (integer, double integer,
real, double precision, complex, or double complex) can be matched with
a dummy crgument of any similar or dissimilar arithmetic data type and
conversion will be performed automatically. Such converted arguments
may only be passed by value (6.2.4.1.1) and may not be used to return
values to the calling program.

If the first form is used actual and dummy arguments must match
in extent. If the second or third forms are used to specify a scalar function
one or more scalar dummy arguments may correspond to array actual argu-
ments with identical extent. The result of the function h'gs the same extent

as the array actual arguments.

-120-

An argument specifier is of one of the forms:
LABEL |

SUBROUTINE R .
t FUNCTION

te FUNCTION

t

t USED

t SET

t USED SEY

t SET USED

te .

t e USED

t e SET

t e USED SET

t e SET USED

where t is a type declarator (Table 8), and e is an extent specifier.

The LABEL option specifies that the argument is an alternate
return.

The SUBROUTINE option specifies that the argument is a sub-
routine name. g

The FUNCTION option specifies that the argument is the name
of a function with given type and extent.

The USED and SET options indicate that a given argument is input
or output to the subprogram, respective ly. If neither is specified, function
arguments are assumed to be USED and subroutine arguments are assumed
to be both SET and USED.

-121-

N s

L

S s pma pam

A side-effects specifier is one of the farms:

USES (ul Upoeee .uk)

SETS (:l,sz, . ..'sk) ,

USES (u,u,,...,u) SETS (sl.sz,...,sk)
where each u is the name of a common block, scalar, or array whose
value(s) is (are) used by subprogram n, and each s is the name of a
common block, scalar, or array whose value(s) is (are) modified by sub- -
program n. In either case k may be zero, indicating that no variables
are used or set. If the USES or SETS option is not specified, it is assumed
that a function neither uses nor sets any common variables and that a
subroutine can both use and set any common variable.

An EXTERNAL statement must be used in each of the following

situations:

1) Any external subprogram name used as an actual argument must be
declared in an EXTERNAL statement. Built-in functions need not be so

declared.

EXTERNAL FUNC1, FUNC2

CALL SUB (FUNC1)
CALL SUB (FUNC2)

2) A subprogram which is to he referenced with actual arguments of
different type than the corresponding dummy arguments must be declared

in an EXTERNAL statem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>