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ABSTRACT

In this report losses in systems of parallel round conductors are

studied. Both the normal skin effect loss and the additional loss due to

the close proximity of adjacent conductors are considered. The results

obtained for the parallel conductors are used to evaluate the radiation

efficiency of electrically small multiturn loop antennas.



SECTION I

ANALYSIS OF SYSTEMS OF PARALLEL

ROUND CONDUCTORS

1. Introduction

In a system of parallel conductors the distribution of current over

the conductor crcss section is determined by two effects--the normal

skin effect and a proximity effect. Both are the result of the same

phenomenon, eddy currents in the conduct6rs. The former is usually

considered to be the result of the net current in a single conductor while

the later is due to the currents in neighboring conductors. For close

conductor spacings, the distribution of current due to the proximity

effect can cause an increase in the ohmic resistance which is larger

than the skin effect resistance alone, i. e. larger than the ohmic

resistance of the isolated conductors.

The skin effect in round conductors is discussed in most texts on

electroma rtic theory [1], [2], [3]. The proximity effect has received

much less attention. Most of the theoretical and experimental works on

the proximity effect deal with two wire systems where the wires carry

equal currents in oppcsite directions. For examples, see the work of

Kennelly [41, [5], Carson [61, and Dwight [7], [8]. This geometry has a

direct application in the problem of wave propagation along parallel wire

transmissioni lines.

The only investigations of the proximity effect in systems with

more than two conductors appear to be those done in conjunction with



determining ohmic resistance and Q of inductance coils. Of the

theoretical treatments, Butterworth's discussion of the alternating

current resistance of cylindrical conductors and solenoidal coils is the

most thorough [9], [101, [111. His work is considered the standard

theoretical approach and is summarized in several places (12], [131, [141.

The experimental work of Medhurst, however, indicates that Butterworth' s

calculations of the radio frequency resistance of coils are not valid over

as large a range of parameters as expected; for certain dimensions,

errors as large as 190% were observed [15].

In the remainder of this chapter, systems composed of various

numbers of in-line, parallel conductors are analyzed. All the conductors

have the same circular cross section and carry eqtal currents in the

saime direction. Only the high frequency case where the currents are

confined to a thin layer near the surface oi the wires is considered. This

report is an extension of the investigation of the two turn loop antenna

reported in 1161.

2. The Nature of the Current Distributions in a System of Parallel

Conductors

A. Proximity and Skin Effects

In the system of pArarllel conductors illustrated in Fig. 1-1 there

are two factors which determine the distribution of current over the

cross section. The first is the normal skin effect which, for high

frequencies, causes a concentration of the current near the outer surfaces

of the condiuctor. This is depicted in Fig. 1-Za for a single, isolated,
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FIG. 1-1 PARALLEL WIRES OF CIRCULAR CROSS-

SECTION CARRYING EQUAL CURRENTS IN

THE SAME DIRECTION.
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round conductor. Secondly, there is an additional redistribution of the

current due to the proximity effect. This is caused by the magnetic

field present at any one conductor due to the currents in the other

conductors of the system. The proximity effect for two parallel, round

conductors carrying equal currents in the same direction is illustrated

in Fig. l-2b. In the two conductors, the proximity effect forces the

current to the outside edges, much as the skin effect forces the current

to the outside surface of the single conductor.

B. High Frequency Approximation for the Current Distribution and

Resistance

At sufficiently high frequencies the skin depth ds for a good

conductor is a small quantity compared to the cross sectional dimensions

and most of the current in the conductor is confined to a thin layer near

the surface. The magnetic field external to the conductor is approximately

the same as the field of a perfect conductor of the same shape carrying

an equivalent surface current. An expression for the time average power

loss per unit surface area of the good conductor, in terms of the component

of the magnetic field Bt tangent to the surface of the perfect conductor, is

I~ Rs IBtI 2~R I B .i 2- 0 Watts/(moter) Z  ll

In terms of the surface current Ks on the perfect conductor

P R ' IK5 12 Watts/(meter) (1-2)

[
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where R8 is the suriace resistance.

R _d (I -3a)a cd

d(l-3b)

If te conductor is cylindrical and K is an axial current density, the
5

power loss per unit length of the conductor is

p I f KsJ 2 dw Watts/meter (1-4)

where the iniegral is over the periphery of the conductor.

For the isolated, circular, cylindrical conductor of radius a

carrying total current I, rotational symmetry applies. Equation (1-4)

reduces to the familiar "Rayleigh formula" for the high frequency

resistance per unit length of a circular conductor

p 4 1112 Watts/meter (l-Sa)

R - 0 Ohms/meter (I -Sb)
Rayleigh ira = 2iia 2o

which is valid for

a/d >> 1 (1-6)
s

With more than one conductor present the current distribution and

external fields for each conductor are no longer rotationally symmetric;

therefore, equations (I-5) no longer apply. Further investigation
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is necessary to determine conditions like (1-6) which insure that the

high frequency approximation expressed in (1-4) is valid.

Consider a system of long, in-line, parallel conductors carrying

equal currents in the same direction (Fig. 1-1) with parameters such

that

a <<h , 0a < < 1 (1-7)

2: 2 2
n c << h0 n c << I

c >a (1-8)

Neglecting displacement currents as compared to conduction currents,

the axial component of the volume current density Jmz interior to theI th cylinder must satisfy the following partial differential equation in

cylindrical coordinates (r, 0, z).

82883r a j amm 2 
r (r ) + + i0r = 0
r Or 2 mz

(1-9)

An e time dependence is used. The solution to (1-9), obtained by

the method of separation of variables, which has the desired symmetry

and remains finite at the origin is

(r, = (- l)Cm M (1 -I-) e dScos(PO)Jmz~r E M P d)

P=O (1-10)

where Mp and 0p are the modulus and phase of the Kelvin functions

(berp + i bei p) [17, p. 379]. The Cp are functions of z only. The total
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current at a given cross section of the conductor is Irm(z); therefore

Ire (z} =f f Jm (r,O,z) rdOdr CmM1/t s)e "
1(z) =r=O O= -w i4 i 1%'r=00=-W(1-11)

and ei a)

-m m/#d I(---- (I-12)
mO -lirad a

S

The volume density of current extrapolated to the surface of the

conductor is

I ) M (42,-) -it eo() /-) --

Jmz(a,O,z) d -  e 8 S

42"'iad M (,
S

[I+ a' cos (pO)I (1-13)
p 1

With (I-12) and (1-13) substituted in (1-10), the current density becomes

I (Z) Mo( A-A) -i[ () (4 ) - o (R -)]
Jrnz(r, 0, z) as= e s s

S

COD M (F - Mp( -f-)

1 + a' s cos (pO)

p.-) p(,/2-

-ie o (,,i,,--),- e(z a + o/' l(1-14)
e (I-14)a
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Where a = a - r is the radial distance into the conductor from the scwrfce.
la the present analysis, the coefficients a, are assumed to be ccmplex

MP
numbers.

When the current distribution at the surface of the conductor is

sufficiently smooth, a finite number q of the Fourier series terms in

equation (1-14) are adequate to approximate the current density. If, in

addition, the frequency and conductivity are high (a/d s >> 1, s << a) the

large argument asymptotic formulas for Mp and 0p apply ['1. In-

serting these into equation (i-14) yields

SI - tz) 0 -- q

e m(Z) -- 1+ a' Cos (PO)

- t/ -= Ip__ 2
* ~~~-i [ (-()e ) -Ij d8-1

(1-15)

which simplifies to

Csq

Jmz(r, 0z) I z)[ + ... a. cot; (p0)] (1-16)
r2 vrad, 4TTa/a pz

for

pdS 2
a- - << 1 , p1, 2- -q (1-17)

jp2 k'T-
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With these conditions satisfied, the current, although non-uniform in 0

is confined to a thin layer near the surface much as in the case of an

isolated cylinder. The power dissipated per unit length in the m th

conductor is then

a

on= 1 f Jmz(r, 0,z)I 2 rdrdO

12 z) q
L ( [1 4 1 EI a i Watts/meter (1-18)

p-- I

If the cylinders are now made perfectly conducting, the current

on the mth cylinder will be of the form.

I (z) I (z) q

Kz(0 , z) ) gM(t) + a Cos (PO)
m fa MZia E mp

p=
(1-19)

where g n(0) is the normalized surface current density. Using the

approximation expressed in equation (1-4), the power loss per unit length

for a good conductor expressed in terms of the coefficients a for themp

perfect conductor is

p qs
1  (z) 2  I (z)R 1 2

S 1 )(s)adO . -- [I 1 ±am

0 r p:.1

Watts/meter (1 -20)



For large values of a/d 5 this expression is a good approximation to the

correct relation equation (1-18), that isLI
a ~at
SMP a/d >1-21)
P -1 ,

~provided

pds 2

<< p =, 2--q (1-22)
2 s

The first term in equation (1-20) is the power loss in the rth

conductor due to the net current I in that wire. This is the normalm
skin effect loss. The sum in (1-20) represents the loss due to nonuniform

currents induced by other wires in the system. It is the additional loss in

the mth wire due to the proximity effect. Since the coefficients a in themp

sum are a function of the net currents I 1 in all wires of the system, the

1 2equation for P cannot be written as P R ( I ) if R is to be onlym m i" m m

a function of the physical parameters of the system. As a result, the

usual circuit definition of the ohmic resistance of each wire (Rm =

m/-Im) makes no sense.

When all conductors carry the. same total current at each cross

section the ohmic resistance per unit length of the system of wires is a

useful quantity. Using the series definition of the current (I-19) the

ohmic resistance per unit length of a system or n parallel wires is given

by



- J2-

R E R n [1 .l ' amp 2) Ohms/meter (1-23)

m= p= I

If the separation between conductors is large enough that each cars be

considered as isolated from the others, (1-23) becomes

.R
s9

y-_ = n Ra Ohms/meter (1-24)

The additional ohmic resistance per unit length due to the proximity

effect is then

Rp = R- R° = 4a am2 Ohms/meter (1-25)

m=l p=1

Normalized quantities are useful when comparing different configuraticns

of conductors.

A q -
R1 + lal2 (1-26)
R. 0

R 0 m (1-27)
rn-1p= 1

In the present analysis a smooth conductor with a uniform surface

resistance is assumed. Recent research by A. Sanderson [18] indicates

that surface roughness in the form of scratches transverse to the

direction of the current can significantly alter the equivalent surface
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resistance. The type of wire used in practical applications is usually

formed by a drawing process, such as drawn copper wire. Surface

scratches are in the same direction as the current flow and are expected

to increase the ohmic loss much less than equivalent transverse

imperfections would. Calculations using Sanderson's theory indicates

that surface roughness can be ignored at the frequencies of interest

(< 100 MHz. ) in this study.

3. Formulation of the Integral Equations for the Tr&sver-se Current

Distributions

Consider each of the long, parallel cylinders id Fig- 1-1 as being

perfectly conducting. The surface current density on the Ith conductor

is then

K (O', z1) g 1 g 1() f(zl) I = 1, z -- n (1-28)

The dimensionless quantity g1 (O) is the normalized surface current

density. In (1-28) the same z' dependence f(z') is assumed for the

current distributions on all cylinders. The conductors are composed of

three sections; the length z-d<z',< z+d and the two end sections

z+d 4z' h, -h 4z' -z-d. In addition to the inequalities presented in (1-7)

and (1-8) the following const-aints are placed on the length d

Po d << 1 (1 - 30a)

2 22

d2 >> n c (1-30b)

This makes the current distribuions at every cross section along the
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length z-d, ,z' %Vz+d approximately the same.

K1(G~~,z' g 2 gt(O) f(z), z dz'~zd(-1

The Helmholtz integral for the vector potential component

A z(r.,z) at a point just off the surface of the m t conductor is

a~7 1& 0 1 +a 9 ) ~
A mZ(r.O Z) 0- ________R dO'dz'

z'=z..d i=-

z-d h iOm

+ 91(01~) ffz') e ~ d

where~ zhz+ I ~~'~ iOm]c~z

r, 2 21/2 2 2 2
Lm (zz)' + r n. [(z-z') + 4(m-1)c+

r 2 +a 2 -Zar cos (0-0' + 4(m-I)c(r cos 0 - a cos 0)1l/2

(1-33)

If terms of order Pdor less are neglected in the first integral and

setting

R I (Z-z') 2+ 4(m-1) 2C' 1/ (1- 34)

in the last two integrals, equation (1-33) reduces to
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f(Z)E R dO'dz'

z'=z-d 9'=- -

z- ip[(ZZl)2 +(-)2 c2 1/21

+ 2v~Zf(z') E e [(z-.z') 2+ 4(m-1) 2 2]1/ dz

(1-35)

The z' integration in the first integre can be evaluated directly [19,

p. 50, 200. 01]. The result is

?,+dJ f dz' = 2 sinh'l(.) -- 2[In(r t ) ' In(2d)] (1-36)

z'=z-d

where terms of order n2 c2 /d 2 are dropped in the last expression.

With (1-36), equation (1-35) becomes

Amzlr, 0, z) -2i(z) I01) fnlrrn)]dO'

+ 4fi nin(2d) + A'r(z) (1-37)

The term Az(z) represents the last two integrals in (1-35).

The normalized surface current density is given by the boundary

condition
-2ffa DA Me ~(r, 0, z)

g(O) - - (1-38)
• 0oIf(z) 8r r= a
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The next step is to substitute the approximate expression for the vector

potential (1-37) into (1-38) to obtain

I' " m 't 1 ('r-cos(0-
gm (0) ' lir _ _" _ _" _, dO'

r -,. + 1 - 2,rcos(0-0')

+ n' +!? [2(m-1) (c/a) cos 0-cos (0-0)g1(0 (139

f i-. (r~n)

f/rn

where

= r/a (1-40)

and

r -[4(m-1) 2 (c/a)2 + 2 - 2cos(O-0,) + 4(m-1)(c/a)(cosO-cos0')] 1/'
(1-41)

The first integral, which represents the self term, is indefinite when

= 1; therefore, the order of the limiting and integration processes are

not interchangeable. For values of r near unity the integrand has the

behavior

Integrand Z- 2 + (1-42)
A +0

where

A < '-1 << 1 (1-43)
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Comparing this with the following definition of the Dirac delta function

0(0) -- rn (1-44)
A-0 

+

it is evident that in the limit the integrand becomes

Integrand = (0) + 1 (1-45)

Substituting (1-45) into (1-39) and rearranging yields

gm(0) = 1 + f (0 0 ,6') g(0 ')d0' (1-46)

0 -r 1=1

where

Km (00') + Z(m-1) c/a coa) - cos (,-0') (1-47)

Symmetry about the center of the system of wires requires g n+lm()

gm (r-) which reduces the number of terms in (1-47) to n/2 for n even

or (n+l)/Z for n odd.

n even

IT,

g (0 ) = K1mn-O') g (0t)dO' + 1 + 1
m VT M,/I - m IT

[Of 7rI= 1 mff )-

S•[KmPI(OfOf) + K m, n+l.-I10,7r-0') ] g,(0')dO' P m = It 2 -- n/2

(1-48)
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n odd

hmm

gi(0) = him} K n+.(0,f-01) gm(0I)dO' I+

m'-l M.m n' = -

[K11.1 O'l Kn.lom- O']fO'd' n , (n I)/2 I0 ' O)gln+lliO)dO

(1-49)

where

h(m) 1 m j (n+l)/2

= 0 m= (n+l)/2 (1-50)

Equations (1-48) and (1-49) represent, respectively, a system of n/2 and

(n+l)/2 coupled integral equations whose solutions are the desired

surface current densities, gi(0).

4. Solution for Two Conductors

The simplest geometry for examining the proximity effect is two

parallel circular conductors carrying equal currents. Exact expressions

for the current distribution and ohn-ic resistance for this simple case

are given in Technical Report No. 612 [16]. The normalized current

distribution on the two wire system is graphed in Fig. 1-3 for vario is

conductor spacings c/a. The distributions will prove useful in developing

approximate solutions for systems with two or more conductors.
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NFIG. 1-3 THE NORMALIZED SURFACE CURRENT DISTRIBUTION ON

TWO WIRES VARIOUS WIRE SPACINGS c/d
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5. Approximate Solution of the Integral Equations for Two or More

Conductors

A. The Method of Undetermined Coefficients

1. Reduction to a Set of Algebraic Equations

For systems with more than two circular conductors approximate

methods must be used to obtain the current distribution and resulting

ohmic resistance per unit length of the system. In this section one such

method, undetermined coefficients, is applied to the previously derived

system of integral equations (1-48), (1-49).

As the previous analysis suggests, a trigonometric series is the

natural choice for an expansion to represent the normalized surface

current density.

q

gin(0) 1 + E amp cos (pt) (1-51)
p-1

Further evidence for this selection is found by examining the exact

solution for the two wire case. A Fourier analysis of the current

distribution (Fig. 1-3), for the limiting case c/a -: 1, indicates that the

first two cosine terms in the series are adequate to predict the correct

value of the additional loss due to proximity R p/R to within 1%. For

large spacings, c/a >> 1, the current distribution is of the form 1 + a1 cos 0

as is evident from Fig. 1-3. This last statement is also true for

systems with more than two wires and is easily understood if the

magnetic field due to external currents is considered a constant over the

cross section of each conductor. The magnetic field B normal to themy



axis of the mth conductor in a system of n conductors would be

Bmy =i (n- (1-52)

1= 1
I/rn

and the resulting current distribution becomes

n
• a V "  I

n(0) 1 1 + (2 )Cos 0 (1-53)
1=1

I/m

Substituting (1-51) into the integral equations (1-48), (1-49), one

obtains

n even

ap [-Cos (pO) + K m m(Op 0, cos (pO, dO'
MP m n+l -p= 10

+ p [Km (OO') + (-)PK

IT ] KM nos (p osm)=d)O

TJ'j",n+.. (OO') + LK,(OO') +Km n+l(O 0 '0 1)] dO'

I/M

(1-54)

m 1, 2, --- n/2
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n odd

q~ amp [-c osOS P9 r/(n+1)/Z I., k- 1L h(m) J M, n-I-rn 0 I~ o~ O'd

I ( / 2pO m=(n+l)/2

+ ±al K , (9, O')+(-1)PK, (Blll, B')]coslpO')dB'

/-: pl

7

+ anl h_ Km,(n+l)/2(O,,)osZp,)j,=. h(m)Km, n+l1m( 0 , 0 ,

77 1 O)cos)P ( 0, 0')dB' ~ O'dO

P.=1 Z 9 Z'f f

(n-l)/z '
+ [Kin (iOO,) + K, n (09') do m -- I1,2,- - -(n+ 1)/Z

S(1-55)

where the same number of harmonic terms q is used to represent the

surface current on all conductors. Due to symmetry about 0 - ?T/2, only

even harmonics appear on the center conductor of a system with an odd

number of conductors.

The definite integrals in equation (1-54) and (1-55) are of the

form
iT

I(L),m-fp) 1 +(f[+2(m-)(c/a)cos 0 - (cos 0 cos 0'..
'T [4(m-I)Z(c/a) 2 + 2 + 4(m-)(c/a)cos 0

0 ' -r

f sin I si i 0') cos (O') dO
(4(ni-f)(c/a) + Zcos(')) co: U,'- 2 si'n0 sin-5o
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Appendix A contains a detailed evaluation of this integral, the results of

which are

1 2
2 p [As 2 + Bs + C] p= 1,2,--q

I(Om-Ip) = ((1-57a)
-1 2[Bs+C] , p=Os(l -s2)

where

s = (4(m-1)2 (c/a)2 + 1 + 4(m-1) (c/a) cos 0)1/2 (1-57b)

A = cos (0 - (p - 1) ) (I- 5 7c)

B = 2(1 + 2(m-I) (c/a) cos B) cos (p4,) (1-57d)

C = cos (0 +(p+ I) l) (1-57e)

I#.tan-I1 sin 0 ) ' (m-1) = 1--
'Z(m-1)(c/a) + cos0

I I -sin 0

2(n-) (c/a) + cos 0) (rn-I) = -1,-2,--

The principle value of tan' is used in (1-57f). For the case n even the

system of equations (1-54) with (1-57) becomes
q n/2 q

I ap [- Cos (pO) + (-l.)P 1 (0, 2m-n-1,p)] + I / ap

p=1 = I p=1
I/rn

[1(0, rn-, p) + (- 1)1 1(0, m + I-n-1,p)] = - f I(9,2rm-n-1,O)

n/2

+ [1(O,rn-1,O) + I(0,m+I-n-1,o)]}

m= 1, 2, -- ,I/2 (1-58)
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This is a set of n/2 equations, one for each conductor, involving qn/2

unknowns (a mp) the coefficients of which are functions of the variable 0.

In order to solve the system a set of qn/2 conditions is necessary. Two

procedures which yield such conditions were used, the methods of

collocation and least squares [251.

2. Solution by the Methods of Collocation and Least Squares

In the method of collocation, the a are chosen so that equationmp

(1-77) is satisfied exactly at q points 0 mk (0 <0mk 4 1, k 1 1, 2, -- q) on

each conductor, more specifically for n even

q

I amp [- csp k)+ (-I) p 2 k m- n-1, p)]cos(Pemk)+ IOk

p=1

n q

+ I a [nk1()n"-'P) + 1)P COmk, m+1-n-1.p)

1-I p-IIm

n/2
"I(Omk, 2mn'l, O ) +  I I(Omk, n1",O ) +I(Omakp m+1n-'1,O)] }

m 1,2, - -n/2

k - 2, -- q (1-59)

With the definition of the new variables tm tin 1 and s equation
kp' kp' ink'

(1-59) becomes

q n/2 q

pa 1- p:

I/M



In matrix form, the system of algebraic equations (1-59) is now

T 1 1  T 1 2 T- T 1 n/ A1  1

IT2 1  
T 2 2 - -- T 2 n 2  

A2  
S2

T T T /2n2- ~/- L/- (1-61)
n 2 n/2 A!

where

a.1  -- 1 5 ii (1-62c)

a. i ti- t (1 -62a)

of te adTmte ar rel thrfoe euton (- 1) ca e(-6b
write as two seart equaion

[T (a r]lS 
(1 -63a)

A,.S
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[T] [A]1 0 (1 -63b)

where A r contains only the real part of the coefficients Re(a )and A1
nip

contains only the imaginary part, In-(a ).For a unique solution of
mip

(1-63a), the T matrix must be nonsingular. A nonsingular T matrix

indicates a trivial solution for the homogeneous equation (1-63b), i. e.

all Im(amnp) 0. The normalized current distributions gm()are

therefore real quantities.

The method of least squares differs from collocation in that the

a are chosen in such a manner that equation (1-58) is satisfied in amip

least squares sense over the interv'al 0 41- c 7r rather than satisfied

exactly at specific points, namely

I1 [-ipcos (pO) + (- 1)P 1 (0, 2m- n- 1, p)]j + I/ am a Ip [1(0, ni-1, p)

6. p= I 1l p4

n/2 Z
+ (-l)P 1(9, m+f-n-1, p)] + 1(0, Zrn-n-1, 0) + [1(0,mi-1, 0) +I1W,nm+I-n-l, 0)ljO

I/rn

minimum mn = 1,2 --- n/2 (1-64)

Differentiating the left hand side with respect to each coefficient a p

and setting the results equal to zero yields

fI-cos(kO)+(-l) k W(,Zm-n-l,k)j 1 -o~O -)If,2in1 )

0- 0 I

n/2 q

1 a1 I(m-P)+-)~ (,+--p) + I(O,Zni-n-1,0)II
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n/2

+ [I(0,m-1,O) +I(0, m+l-n-1,O)] dO = 0 (1-65)

M/m m= 1 2,---n/q

k = 1, 2,---q

After rearranging terms and performing integrations, (1-65) becomes

8(k, P) - f [(- 1)P cos (kO)I1(0, 2m-n- 1,p) + (_1)k cos (PO)(0 2m..n.1, k)
p=1 0=0 n/2

-(-IIP+kjlO, 2m-n-l,p)Il0,2am-n-l, k)]dO + I 'v atp

I/

f [cos(kO) -(-l)kI(o, 2m-n-1, k)][I(O, m-l, p) + -)IOm+i-n-1, p)]dO

0=0

Sn/2

f [cos(kO)--_1)k 1(0, 2m-n-l,k)] I(0,2m-n-lO)r+ [ lrn m-IO)

0=0 I

I/m

+ I(Om+l-n-1,0)] dO (1-66)

m: 2f,---n12

k = p ,2, --- q

which can be written as

q n/2 q

a ta m  trr+ a , t k 5  (1-67)
p= 1 1=1 p= 1

I/rn
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The variables t, and smk enter the matrix equation (1-62) in

the same manner as in the method of collocation.

B. Numerical Results

1. Comparison of the Two Methods of Solution

For the collocation solution, the same matching points

(8ik = 0 0 < 0k 4 7r) were used on all cylinders except the center

cylinder in a system with n odd. The current on the center cylinder has

symmetry about 0 = i/2, ir; therefore only points in the first quadrant

are needed. These were chosen to be 0k/2. Several different

combinations of matching points were used in (1-59) and the resulting

matrix equation (1-61) was solved for the coefficients a using armp

standard Gaussian elimination algorithm [261. The additional ohmic

resistance due to the proximity effect R p/R0 was calculated from (1-27)

for various numbers of harmonic terms q. No particular distribution

of points gave a best rate of convergence of R /R for all numbers of
p 0

conductors and spacings. The final set of matching points settled on is

k~ q even

k( V 4) 2k

q odd(k+ 1) k > qI (1-68)
2

For an even number of harmonics, the points are equally spaced and

internal to the region 0 4 0 k 4 7r. With an odd number of harmonics, a

slightly better rate of convergence was found when the set of matching

points did not include 0k . 7/2.
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The least squares procedure requires the evaluation ot the de-

finite integrals in equation (1-66). Due to the complexity of the

1(0, m-I, p) functions in the integrand, an exac't evaluation wa! unob-

tainable and approximate numerical integration necessary. A typical

integration from (1-66) was performed using three different numerical

integration routines: Romberg, Simpson's rule, and Gauss quadrature.

The six-point Gauss quadrature formula [27] required the least time for

the desired accuracy. The interval 0 -0 < ?r was divided into k+l or

p+l panels, whichever was larger, and the six-point formula applied to

each panel. With the integrals evaluated, the resulting matrix equation

(1-61) was solved using the same algorithm as for the collocation

solution.

A comparison of the two methods is presented in Fig. 1-4, where

R p/R and the computation time for the 1. B. M. 360/65 computer are

graphed as a function of the number of harmonic terms used in the

solution. The results are for 4 cylinders with a spacing c/a = 1. 10.

Least squares is the more elegant of the two procedures, converging to

the limiting value of Rp/R 0 when the number of harmonic terms is less

than half that required in the collocation solution. In terms of

computation time the collocation method is much faster--roughly 6q

times faster for a given number of harmonic terms. Thus the limiting

value of R p/RA is obtained in about one-tenth the computation time

needed for the least squares solution. Similar time savings are found

for other numbers of cylinders and spacings. For this reason, the

majority of t:he calculations for this work were do,,e by the method of
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collocation. Listings of the computer programs for both methods are

in Appendix B.

2. Transverse Current Distributicns

The number of harmonic terms used for the current distribution

on a given system of conductors was determined by observing R p/R o .

If increasing the number by two produced less than a 0. 10% change in

Rp/Ro, the number of terms was deemed sufficient. The normalized

surface current densities g(0) for systems with 3, 4, 5 and 6 conductors

and various spacings c/a are plotted in Figs. 1-5 through 1-8. The

distributions for 2 conductors are not plotted, since they are identical

to those in Fig. 1-3. In systems with three or more closely spaced

cylinders there are both positive and negative currents on the surface

of the outer conductors. These currents in opposite directions add

nothing to the net current in the wire; they just increase the ohmic loss.

When the spacing between cylinders is very close, currents on adjacent

surface.s of two conductors tend toward equal values with opposite sign;

for example: for 4 wires, spacing c/a = 1. 1, g(7) I - 2 on cylinder 1,

while on cylinder 2, g(Ir) +2.

3. The Additional Ohmic Resistance Per Unit Length Due to the

Proximity Effect

Computed values of the additional ohmic resistance per unit length

due to the proximity effect R p/R for systems with various spacings c/a

and up to eight conductors are presented in Fig. 1-9 and Table I-1.

Calculations of R p/R were not made for extremely close spacings, i. e.
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Table 1-1. Normalized Addi-donal Ohmic Resistance Per Unit Length

Due to the Proximity Effect R p/R o.

Number of Conductors
Spacing c/a

2 3 4 5 6 7 8

1.00 0.333

1.05 0.316 0.748 1.231

1.10 0.299 0.643 0.996 1.347 1.689 2.020 2.340

1.15 0.284 0.580 0.868 1.142 1.400 1.693 1.872

1.20 0.268 0.531 0.777 1.002 1.210 1.401 1.577

1.25 0.254 0.491 0.704 0.896 1.068 1.224 1.365
1.30 0.240 0.455 0.644 0.809 0.956 1.086 1.203

1.40 0.214 0.395 0.546 0.674 0.784 0.820 0.965

1.50 0.191 0.346 0.470 0.572 0.658 0.732 0.796
1.60 0.173 0.305 0.408 0.492 0.561 0.620 0.670

1.70 0.155 0.270 0.353 0.428 0.485 0.532 0.573
1.80 0.141 0.241 0.316 0.375 0.423 0.462 0.495

1.90 0.128 0.216 0.281 0.332 0.372 0.405 0.433

2.00 0.116 0.195 0.252 0.295 0.330 0.358 0.392

2.20 0.098 0.161 0.205 0.239 0.265 0.2S6 0.304

2.40 0.032 0.135 0.170 0.197 0.217 0.234 0.247

2.50 0.077 0.124 0.156 0.180 0.198 0.213 0.225

2.60 0.071 0.114 0.144 0.165 0.182 0.195 0.206

2.80 0.061 0.098 0.123 0.141 0.154 0.165 0.174

3.00 0.054 0.085 0.106 0.121 0.133 0.142 0.150

3.50 0.040 0.062 0.077 0.087 0.095 0. 101 0.106

4.00 0.031 0.048 0.058 0.066 0.072 0.076 0.080
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3 and 4 wires, c/a less than 1. 05; 5 or more wires, c/a less than 1. 10.

The reason for this will be evident after a closer examination of the

approximation already made.

In the limit as c/a approaches 1. 0, the surface current devilops

large spikes at adjacent points on successive cylinders. This is

illustrated for 3 wires with spacings c/a = 1. 10, 1. 05, and 1. 01 in Fig.

1-10. For wires with finite conductivity, a change in the form of the

current distribution in the radial direction is expected to accompany

these areas of high current density. As a result, the radial decay rate

will differ from the high frequency skin depth ds in these regions. This

is basically the same idea expressed in equation (1-22). Spikes in the

surface current require high harmonic content (p large) which, from (1-22),

require very small skin depths (high conductivity) for the high frequency

skin effect approximation to be valid.

In Fig. 1-11 the resistance R/R is plotted against the number of

harmonic terms used in the series representing the current. The

coefficients a obtained by either of the approximate methods, unlike
MP

the Fourier coefficients, are a function of the number of terms q used

in the series. They approach the exact coefficients in the limit as q

becomes large or, in terms of the resistance, as R p/R converges to the

limiting value. For this reason the coefficients used in constructing

Fig. 1-11 are those found for the limiting value of Rp /R . From Fig.

I-Ii, 6 harmonic terms are sufficient to give R p/R to within 1% of the

limiting value for the minimum conductor spacings presented in Table 1-1.

Using equation (1-22) with 6 harmonic terms, the high frequency skin

effect approximation will be valid provided
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a/d >> 1 (1-69a)

a
d1 (<111-69b)

(1-9-)

These conditions are satisfied by most wire sizes used in practical

antennas operating at frequencies above I M z . ; for example: 1/8 inch

radius copper wire has the following values

(3ds/a)Z

Frequency (MHZ.) a/d s  (l9d 1/a)

1 34 1. 1 x 10 2

10 107 8. 5 x 10- 4

100 340 8. 0 x 10 5

The failure of the skin effect approximation for extremely close

conductor spacings places no serious restriction on the usefulness of the

solution, since in practical applications the minimum spacing, deter-

mined by the thickness of the wire insulation, is usually within the range

of values covered in Fig. 1-9 and Table 1-1.

4. Comparison with the Work of Butterworth

As previously mentioned, Butterworth has calculated the ohmic

resistance of systems of paralle] wires. In this section two of his

formulas, rewritten in the form Rp/Ro, are compared with the present
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calculations of additional ohmic resistance due to the proximity effect

(Fig. 1-9). The first graph in Fig. 1-12 is a comparison with Butter-

worth's "semi-empirical formula" which, for high frequencies, can be

written as [10, p. 709, equation 53]

R 1 . u a/c)2

R wn(a/c)4 + n (1-70)
2(l- 1 v(a/c()2

4 n

where un, Vn, and wn are constants which depend on the number of

conductors in the system. This formula gives results which are in fair

agreement with the present calculations.

In the second graph of Fig. 1-12, the present theory is compared

with another of Butterworth's formulas, one which is often found in

handbooks on coil design [11], [13], and [14]. This formula is derived

by making assumptions siniilar to those already discussed. Consider

each conductor to be in a uniform magnetic field due to the other

conductors. With (1-53) and (1-4), the power loss per unit length in the
th

m conductor is

. 12 R s I1 + -!(a/c) 2 ( Watts/meterPm = i a L 2ac (=1) (-1

1=1 (1-71)
1/in

and the resulting ohmic resistance due to the proximity effect becomes

R (a/c)[ 1 1
ni= 1=1m

1/rn
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As seen in Fig. 1-12, this formula gives results which are obviously in

error for spacings in the range 1 i< c/a c 2. It is applicable only in a

region (c/a >> 1) where the proximity effect is of little interest, since

values of R p/R are small and fairly independent of the number of wires.

5. Optimum Conductor Spacing when the Cross Sectional

Dimensions are Restricted

In certain applications a given number n of parallel, in-line

conductors must fit within a specified length . ; see Fig. 1-13. It is of

interest to ask for which wire radius a, or spacing c/a, is the resistance

of the wires a minimum. If there were no proximity effect, making the

radius of the wire as large as possible (a = 2/2 n) would minimize the

skin effect resistance. With the proximity effect present, increasing

the wire radius increases the loss due to proximity and a minimum

resistance point is reached where the decrease in skin effect loss is

just balanced by an increase in proximity loss. In Fig. 1-13, the

dimensionless quantity 27r 2 R/nR s , which is proportional to the ohmic

resistance per unit length of the system of conductors, is plotted against

the normalized wire radius a/I. The points of minimum resistance are

clearly exhibited in Fig. 1-13 and the corresponding conductor spacings

are listed in Table 1-2.

Number of a/1 c/a 2n.R
Conductors n R s

2 0.250 1.00 5. 33
3 0.148 1.19 10.41
4 0.098 1.37 16.07
5 0.071 1.50 22.01
6 0.056 1.59 28.10
7 0.046 1.66 34.30
8 0. 039 1.71 40.57

Table 1-2. Conductor Spacings for Minimum Resistance.
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6. Conclusion

Systems of equally spaced, in-line conductors carrying equal

currents in the same direction have been studied. A set of integral

equations was formulated to determine the transverse distribution of

axial current at high frequencies when the current is confined to a thin

skin near the conductor surface. Using the integral equations, an

approximate solution for the current in the form of a trigonometric

series was obtained. For two wires, the approximate solution for

the current showed good agreement with an exact expression obtained

by a conformal mapping procedure.

With the current distribution determined, the high frequency

resistance per unit length cf the system was calculated for various

numbers of conductors and spacings. The results of these calculations

may be summarized qualitatively as follows:

i. For small numbers of conductors, the additional ohmic

resistance due to the proximity effect Rp/R increases either with an

increase in the number of conductors or with a decrease in the conductor

spacing. This was checked for systems with up to eight wires and

spacings as close as c/a = 1. 1.

ii. For closely spaced conductors the additional ohmic resistance

due to the proximity effect can be greater than the resistance of the

isolated wires.

iii. When the cross sectional length I = 2 a + (n-1) c of the group

of conductors is restricted, there is a definite wire radius that will

give a minimum resistance per unit length for the system.
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Oniy cylinders carrying equal currents in the same direction were

considered in this chapter. With a timple scaling of the harmonic terms

on each conductor tae present theory and associated computer codes

could handle systems of wires with different net currents in each wire.

Such a solution would be useful for making computations for multiwire

transmission lines where the wires carry currents with equal

magnitude but in opposite directions.



SECTION H

THE ELECTRICALLY SMALL MULTTURN LOOP ANTENNA

L Introduction

The single turn loop has been the subject of much investigation

and from the practical standpoint adequate design data are avail-

able for this structure [29], [29 The multiturn loop, with no

restrictions on electrical size, has received much less attention.

The solutions available are for the "one dimensional" current

distribution and therefore, strictly speaking, only valid for

loops with spacings between turns large compared to the wire

diameter [30J. [311

In practical applications, the electrically small loop ic

often used because it has a desirable field pattern as compared

to larger loops whose patterns have many lobes. The ohmic

resistance of small loops is in general much larger than the

radiation resistance, thus radiation efficiencies are very low

and greatly dependent on the ohmic resistance. In an effort to in -

crease the radiation efficiency multiturn structures are often

used. The radiating properties (radiation resistance and field

pattern) of electrically small single or multiturn loops are

easily derived, either directly from the integral form of Maxwell's

equations [28], [32] or aw a limiting case of one on the more

general analyses mentioned above. These methods are usually

concerned with perfectly conducting wires and thus provide no

information about ohmic loss of the antenna.
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The ohmic resistance of a small loop is usually taken to

be the same as that of an equivalent length of atraigbt conductor.

This assumption, although adequate for the single turn loop, is

not for the multiturn case. In a multiturn loop, the distribution

of current over the conductor cross section is determined by the

same effect3 discussed in Chapter I - - proximity and skin effects.

The increase in ohmic resistance due to the proximity effect,

which is normally unimportant in large antennas, has a dramatic

effect on calculations of the pvwer radiated by electrically small

transmitting loops.

2. Review of Small Loop Theory

The properties of electrically small loop antennas covered

in the literature are briefly discussed below. For a more

detailed discussion, see King [321 or King and Harrison [28].

The model chosen to represent the multiturn loop antenna

is illustrated in Fig. 2-I. All turns of the loop are circular and

lie in parallel planes. The straight segments of wire interconnecting

the turns and the feed wires of the delta-function generator are

short, parallel and closely spaced. These are assumed to have

negligible ohmic resistance compared to that of the overall

circuit, and to contribute negligibly to the radiation resistance

since parallel segments carry equal and opposite ly directed currents.

The dimension Zc is exaggerated in Fig. 2-1.

The nmltiturn loop with n tarns will have essentially the

sanji total current (I) at any conductor cross section, provided
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the total length of the loop is much less than the free space wave-

length at the operating frequency. More specifically,

I (s) ---1 (2-l)

when

onb l (2-2)

For this analysis, the following additional constraints are placed

on the wire radius a and the turn spacing c.

a b , oa .<<l (2-3)

n c z<.b 2 c-a (2-4)

A real power equation expressed in terms of the scalar and

vector potentials 6 and A for the loop antenna is

Re J = Re dv -iW JAdv - iw Ids (2-5)( Jf "dv)

V V V S

where J represents the free current density, tj the free surface

charge density, a the conductivity of the antenna wire, and E5

the electric field of the delta-function generator. The first three

integrals are over the volume occupied by the loop conductor and

generator while the fourth is over the surface of this volume. An

e time dependence is assumed.

Fig. 2-2 shows sections of two typical loop turns and the

coordinates associated with them. Making use of (2-1), and

assuming the transverse current distribution to be the same at
th

any cross section, the current density on the m turn becomes

r
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3 J(r, B, cp) = 3r (r, 8)c (2-6)

Sm Jrnep r 26

where

TT a

af m (r, A) rdrde = I 
(2-7)

A r=-JTr--O

The assumption of constant current also precludes the possibility

of a charge accumulation on the loop turns, Therefore,

=0 (2-81

With (2-6), (2-7) and (2-8), and the definition of the delta-function

generator

E6 = - V (s) (2-9)

(the distance s is shown in Fig. 2-1), (2-5) becomes

n a

IV ~ f f 3 2J c(r, a)rdrda
rnl f- r

TT a1

+ Re [ -i2nbw jJ n (r, a) An), q rdrd]j (2-10)

0)=-TT r=0

A is the component of the vector potential tangent to the axis of
th

the conductor of the m turn.

Referring to Fig. 2-2, the vector potential at point A due

to the current element at point B is
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dA~rooeie°) =

dA (r, a, cp) 0 eoR m j (r', ')(b+r' cost')

cos (9- e') rd dd'd (Z-11)

where

LI MA = 4b 2sin [( -d)/2 ] +4(m-) 2 c2 +r 2 +r' 2

+ Zrr' cos ( - p' ) (2-12)

The vector potential at A due to the current in all turns is then

At P r' ') eiOORm1

A=l if J
CP'=-Tr 8 t=." r'=0

cos ( - e') (b + r' cosep') r'dr'de'dgdp] (2-13)

Introducing the condition on the donductor length described in

(2-2), the exponential in the integrand of (2-13) is expanded in

a power series in $oR M Keeping the first two imaginary terms

in this series yields

Im e Io M1 (2-14)

and the imaginary part of (2-13) becomes

n r T a 3

mcp T -' jC 6
p =-T e=nT r=O

cos(q- O')(b + r' cos cp) r'drdeldplj (2-15)
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For the purpose of calculating the second integral in (2-10), the

radiation term, and approximate value of the vector potential

A is used. Subject to the restrictions on the conductor radiusmCP

expressed in (2-3), A is approximately the vector potentialMCP
that would exist on the surface of the wire with the loop current

I located along the axis of the conductors. King [33] discusses

the validity of this type of approximation when used in calculating

the vector potential. With this simplification, (2-15) reduces

to the following
n T, "B3R

~Ib RT3
Im(A 7- - m cos(Cp- cp')dcp' (2-16)

CP -TT

where
m = {4bsin [(0- 61)/2 ]+4(rn-A) 2 c +a2 (2-17)

and (2-10) becomes

n TT a 2

L b1

F0 0"

0 R 1 cos(, - ')d(28)

r';valtating the secotid integral, (2-.18) becomes
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Vo-I2r mprdrdg + ?()-,fn2 ob~2

V0  0.f~~~~='T r =0 + O)rre
I [ROhmic  + Rad.(29)

where the two terms on the right hand side of the equation are

identified as the ohmic and radiation resistances.

The radiation efficiency of the n turn loop is now

244

RRad. 20 n2  ob (2-20)
E 0 24
EA R + =

R Rad. ROhmic 244
20Rm n 0 0 b + ROhmic

This simple form is a consequence of the constant current

assumption which makes the ohmic and radiation resistances

appear as circuit elements in series.

3. Transverse Current Distributions

To evaluate the expression (2-20) for the radiation

efficiency the transverse current distribution is needed. If

the skin effeci approximation applies, a/ds >> 1, the ohmic

resistance term in equation (2-20) can be replaced by

n T a 2 n
ZrrMW (r, 0)=bR s,,,)rdrdel 

2 7m=l- rom- --
TT r=0 (2

gmcp (de
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where g (o) is normalized surface current density oil',-

ILo
equivalent perfectly conducting loop.

Using a procedurc similar to that in section 1-3, the

transverse current distribution g (0) can be derived. The

integral for the vector potential component A at a point

th
(r, 0, Cp) just off the surface of the m turn is

o n g

niep 8rr MA
CP =-TT =I-TI

C-S11" --- CP doZ

,.cos( p- de'dcp (2-Z2)

where

R2 2 2 2 2
RmL = 2b + 4(m- c + r + a + 4(m-)c (r cos O- a cosq') .4
- Zb (r sing + a sing ') - Zar cosacosq'] - 2[ (b - r sing) (b - a sing')

cos( '" =Jq- p cos(ep- D)I (2-23)JS

compared to unity. Dropping terms of this order, (2-22) becomes

VrT
Loib ( gj(') cosllb- q)

Am(r, 0, W1) ~- r J L- 'pd (2-24)
mCP 8r f .' TT O'-TT 1A q -p c se - )

This is equivalent to considering the quasistatic fields as the

primiry factor in determining the transverse current distribution.

The integration with respect to ed may be expi.zssed in the form
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Ib n

A r(r, CP) KIk)

Iy (k de Z ~:~:-' £

where K and E are the complete elliptic integrals of the firs and

second kind [3,1 ]. The modulus k and complimentary modulus k'

of the elliptic 'ntegralx Rre

p +q(Z6a)
/

(W I -k (2-26b)
//

/

Subject o tle restrictlon. .mposed "a/(2-.) and ;Z-4)

(k')2  (4.2"F/I + o-- rO(1 . L) + ]

where

- r-

t2 +f, 2 2 r 2 -"" n- mc(r con - a co--,')

Zar cos (2 - ') ]= (2-28)

%22
Since rmL is of the order of 2 (m-l)c, (k') z is a small quantity

(k) = 0 <(M-)C « (2-29)

and the power series representations for K and E are useful [35].
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K2 9 7 . 14K Tk . L '- + - ,-- , "--- (2-30a)

F, 1+ -y k + k3 +.4~ -~ -

-,.. in+(-) {2 -30c0

-ubst cuting -ne above serie ,, (2-25) and dropping all terms

s- All corn-ared to uniy a/b, (ri-1) c /b or less, the integral

ir the vctor pot,. nti 1 become a

,ioi n
(r, I [r,,,) lnl

rn81BT (Im j

+4vnn [ln(8b)- 2] (2-31)

Ex'ept for a ierm with only z dependence and an additive constant,

this expression is the same as that for Amz(r, i, z) in the

equivaletit system of parallel, straight conducto-:s, eq.ition (2-30).

Due to the syi:,-metry already assumed in th-s F rolblem.

only fhe A component. of the vectoi potential is inw.Aved in the

P.r."P.o- .... ;, .- rfac~e curvent density, g(.

.2() ZA (r, q, cp)9 ,(0) M14 - 2 (-Z

r --a

With (2-31) substituted into (2-3Z), the resulting equation for the

current density is identical to that for the straight conductors (1-39).

Subject to the inequalities pre3ented in equations (2-2), (Z-3)

and (2.4), the transverse current distributions on the loop turns
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and the ohmic resistance per unit length are thesame as those for

a system of parallel, straight conductors which have the same wire

radius and spacing.

4. Radiation Effictency

With the restlts of the last section and equation (2-Z0), the

radiation efficiency of an n turn electrically c-nall loop is

2 24 4
20v2 n 0 b

= (2-33)

Rearranging terms, the efficiency becomes

A.4. 1  [(2-34)

I + - ------- ~
rifb') a' 1

where a' and b' are the radius of the wire and the radius of the

loop normalized to the free space wavelength, fMHz is the

frequency in megahertz, and ar i s the ratio of the conductivity

of the loop wire to that of copper (ocu = 5. 8 x 107 / ohm-m). In

Fig. 2-3, the efficiency is plotted as a function of the dimensionaless

quantity (b) 3 a/ MHzr and the number of turns. The dashed

iines are for no loss due to proximity (R /R = 0) while the solid

li!.eB include the proximity effect for a spacing c/a = 1. 10. For

most practical applications, these two lines will give an upper

and lower bound on the efficiency obtainable with various turn

spacings,

Neglecting the proximity effect can lead to large errors in

the calculation of radiation efficiency. For example, from Fig.
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2-3, without the proximity effect, the calculated efficiency of

a three turn loop can be larger than the actual efficiency of an

eight turn loop of the same size with close conductor spacing

(c/a = 1. 10). When the loop is used as a transmitting antenna

the radiated power is directly proportional to the radiation

efficiency. Neglecting the proximity effect can make the computed

efficiency for a small loop in error by a factor of two or larger.

thus errors in the calculation of radiated power can be as large
as one hundred percent.

In some applications a constraint is placed on the volume

the loop antenna can occupy. If the depth of winding I is

restricted to a value much smaller than the diameter of the

loop (I << b, see Fig. 2-4) the results of section I-5 can be

used to optimize the efficiency. With no proximity effect, the

maximum efficiency is obtained when a = I/2n and is independent

of the number of turns n.

E (2-35)A 1. 70x 10 9  fM1,,

1+ 3

If the proximity effect is included, the antenna has optimum

efficiency when the turn spacings tre those presented in Table

1-2

AE- 8l 1 4 T Z. . (2-36)

+ "n(b,) 3 (
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where f' = */I and (2 r1R/R s) is the value given in Table 1-2.

Both equations (2-35) and (2-36) are graphed in Fig. 2-4.I I 2rrR\
As the number of turns is increased, the term- 2 R s

in (2-36) increases, causing a decrease in the efficiency.

With the antenna restricted. to a volume of this shape, it is

better, then, to optimize the wire size rather than to increase

the- number of loop turns. At a first glance, this last statement

seems contrary to the common notion that increasing the number

of loop turns increases the radiation efficiency. It must be

kept in mind that one usually speaks of increasing the number of

turns while keeping the wire radius and spacing constant, so-ne-

thing which is impossible to do when the depth of winding I is

also fixed.

Power is usually supplied to electrically small antennas

through a suitable matching network. The components in the

matching network often introduce losses as large as the ohmic

loss of the antenna. The overall radiation efficiency of the

antenna-matching network combination is then

E = EA EM. (2-37)

where EA and EM are the efficiency of the antenna and matching

network individually. In this chapter, only EA is considered;

for a discussion of matching network efficiency, see Wheeler [36].
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5. Conclusion

The analysis in this chapter has shown that the results obtained

for the ohmic resistance per unit length of a system of straight

wires are applicable to the electrically small multiturn loop when

the depth of winding of the loop is small compared to the loop

radius, (nc) < < b2 . Two separate calculations of the radiation

efficiency of small multiturn loops were made: the first includes

the added resistance due to the close proximity of turns and the

second neglects all proximity losses, i. e. considers the ohmic

resistance of the loop to be the same as that for an equivalent

length of etrzight conductor. A comparison of the results for

these two cases indicates that the proximity effect is an important

factor in making accurate calculations of radiation efficiency,

especially for loops whose efficiency is below 10%.

The problem of optimizing the radiation efficiency of an

electrically small loop confined to a fixed volume was also

examined. The special case of a circular, multiturn loop

restricted to a volume whose 41epth is small compared to the

loop radius ff <b) was treated. For this geometry there is

an optimum wire radius which gives maximum radiation efficiency

for a given number of loop turns. With the optimum wire radius

used for each number of turns, the radiation efficiency v\'as

found to decrease with an increase in the number of turns, indi-

cating that, from the efficiency standpoint, it is better to optimize

the wire radius than to increase thot nuniber of turns.
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The change in the transverse distribution of current due

to the proximity effect will also alter the loop inductance. The

inductance of the loop, however;. does not have to be known to

a high degree of accuracy in no'Yst applications, since it is

usually made to resonate with a variable capacitance in a

matching network.

41
r
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SECTION li

EXPER IMENTAL INVESTIGATION

L Description of Experimental Avpsratus

To verify the results of Section I. experimental apparatus

was constructed for measuring the transverse distribution of'

current on a system of parallel round wires, see Figs. 3-1 and 3-2.

The parallel wires are modelled by 34" long copper tubes inter-

connected with wire braids so that they carry equal currents in

the sam- direction. A 100 Watt, 100 KHz transmitter drives a

current of the order of 1-2 Amps. throtgh the model, which for

matching purposes is fed in series with a S Ohm load. The

current distribution is measured by sampling the transverse

magnetic field with a sniall loop probe moanted on one of the

tubes. This tube has plugs fitted with beryllium copper finger

stock at both ends; these maintain electrical contact as the tube

is rotated (Fig. 3-3 ). The voltage at the terminals of the

loop probe is Fmplified and metered using a General Radio

model 123Z-A Tuned Amplifier and Nuik Detector.

At 100 KHz the t1' copper pipes are about 200 skin depths

in diameter; thus the axial currents are confined to a thin

layer near the outside of the tube. The tubes are also about

20 skin depths thick, so they are electrically equivalent to solid

conductors.

To maximize the angular resolution oi the measured

current distribution, the radial dimension of the loop probe

Preceding page blank
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was made as small as possible (0.0501). Sirme the fields are

fairly uniform over small lengths near tLe centc:r of the tube.

the axial dimension of the loop could be a few inches lnug. Using

j the theorv of Whiheside sad ICing [37] the voltage at the terminals

Iof the rectangular loop when the tube carries a total current of

one Ampere is

4 z z[(z-xo Rl) .o,
IV' ~~K = .~l-L[1L 0 volts (3-1)I! 3.3 U0 + Amp.

Xo = 6. 38 I0" [,1. r +In. [ra,
I + Z(r- D-L 2. zi

aj
- where Jr. fa are the radial and axial dimensions of the locp in

inches,, r the loop wire radius in inches, and R- the load impedence

at the probe terminals which is about 50 K Ohms for the G. R.jY Z-A. From ( 3-1 1, the 3" x 0. 0S0" leop probe constructed

of 28 gage wire provides a 0. 6 m voltlAmp signal This is more

than adequWe', for metering on the G.R. 1232-.A, since it hat a

maximum. sesiftivity of 10 g Volts for a full scale deflection at

WV) KHz. For rigidity a polyfoam support was placed between

the loop and the tube (see Fig. 3-3 ).

7nitial measurements indicated that the metering circuit

waa picking up a very strong signal induced by the large loop

formed by the tab.-s and interconnecting wires. To eliminate

this interference, the meter was completely enclosed in a
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copper box and all cables used were doubly shielded.

The G. R. IZ32-A Tuned Amplifier and Null Detector was

calibrated at 100 KHz using a pair of Hewlett Packard precision

attenuators as a standard. Fig 3-4bis a schematic of the circuit

used for the calibration. The linear scale meter reading is

plotted against the attenuator setting in Fig. 3-4a. The small

vertical lines indicate the experimentally deterinined points;

a * unit reading error is assumed. The solid line was constructed

by fitting polynomials to the experimental points over three ranges.

The polynomials in the form csed to correct the experimental

data are

v ,63V< V <130 ( 3 -3a)

z -4 2V = V + 3 .5-4.8 x 10- (V -16)-5.7 x to-(V -16) 16<Vm< 63 (3-3b)
in i m mn i

tM = V +3.5 a 0< V < 16 (3- 3c)

where V is the meter reading and V' the corrected meter
M M

reading. This correction is apparently only a function of the

meter circuitry and not the linear amplifier section of the

instrument, since the same correction applies over a 40dB. range

of amplifier gain.

Since the theory predicts both positive and negative currents

on closely spaced tub -, a method was devised to experimentally

verify a 1800 phase shift in the current density. Referring to

Fig. 3-1 . a small tcrrice loaded loop is used to sample the field

of the l:,rge- loop for-ned bv the tub-s and the interconnecting wires.

7:is r-fert-re signal is added to t~he signal from the current probe
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in a resistive summing network and then metered. The phase of

the current on the tube is determined by noting if the signal from

the current probe adds to or subtracts from the reference signal.

2. Correction for Interconnecting Wires

In addition to the net currents in the tubes, three other

current elements influence the current distribution on the tube

cross section. They are currents in the horizontal and vertical

interconnecting wires and negative line currents which represent

the absence of a continuation of the axial current beyond the ends

of the tube. Referring to Fig. 3-5. these currents can be treated

as filamentary elements since each is at a distance from the

probe which is large compared to the tube radius (a = 20a,

w = 60a). As a result, their effect on the transverse distri-

bution of current is additive in the sense that it may be subtracted

from the measured data to obtain results for direct comparison

sith the theoretical distributions.

The vector potential at a point (r, 9, z) near the center of

th
the m tube is

iT

mr,o.z )  AA + YA = A g- r $mmz MY L Ti'~

S

ln(rm ] dqt z'd + A' (z) ' d-' od

0=0

d- + ._ _ dj (3-4)
Z'Rm Rm Rm

.f= M=1 m13 m=1
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EXPERIMENTAL MODEL



-76-

Rm I = [(w-rsiS)*2 + (Z(m- c + r cose) + (--)2] (3-5)

Rm9Z = [(z-z) z + (z(m-Qc + r coss)2 + (r sing)]Z (3-6)

t = (s-z) + (z(m-J$c + r cos ) + (y-r sine) (3-7)

[(s)= + (Z m-J)c + r cosp + (y-r sine 2 (3-8)

MA 4~ + (Zym4 sie)1

g~e(a) is the normalized surface current density induced in the

cylinders by the three external current elements. It is the term

which must be subtracted from the measured current for comparison

with theory.

The following boundary condition relates A m and gmc"

m-gmI~a) -2a- 2 sine 1v r3-a

I 2r 2A ~

Substituting (3-4 into (3-1% yieldsf Im gMC(') r" cos (a'-) del

mc f -r + T co (-')

1

+ i Km 1(1, 0) g~c (0) dg 7...) (ai/w + 2(m-( c /w)

Erz =-0
n

t,--m

ss

z =0 m1

no W n

z =s A=(My=O x (i
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where

2 2
= [(l-(a/w)sine) + (2(m-j)(clw) + (a w)cosO) + (z'Iw)2] (3-11)

r' = [(z'I/s) 2 + (2(m-1)(c/s) + (a 8) cosO) + (a/s) (sina)Z (3-12)

m12

r' :I + (2(m-1)(c/s) + (a/s)coso) 2 + (y/s - (a/s)sing) ]z (3-13)
mt 3

The first integral in (3-10) was evaluated in section 1-3; the other

integrals are a standard form [19, p. 50, 200. 03]. Performing

these integrations, (3-10) becomes

gmc(E) = M--lf' i Ki e' ') gj(C ')d ' - 2(a/w)(s/w)

(a/w + 2(m-L)(c/w) cose - sin ).(I (.a /w)s9in )z + (2(m- t)(c /w) + (a/wlcoso) ] [ (1-(a/wlsino) z + (2(m-A
n

.... ... 12 - Z(a/s) (a/8' + (m-)(c/s)cosC)

(c/w) + (a/w)coso) 2 +(/w) 2  [ (2(m-t)(c/s) + (a/s)

on) + ) zZ ] siigzI +(2(.. /s) + (/) oe)Z + (a/s)

, +Z(a/s)sinq .
(sing) / [I + (2(m-t)(c/s) (als)cos4

(w/s)(I - (a/w) sine +

(LI + (w/s) (-(a/w)sing) + (2(m-t)(c/s) + (a/s)cosn) 2 12

(a/s)sinq z (3-14)+, 1,,(,,-,)(c/.) + (a-/. o. q- + (a/.)ina,, )
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When terms of order (a/s)2 or less are dropped, equation (3-14.

reduces to

L. K ISiy Kfwgj(O 4 d2- + Z(als)

1. .. (sw(si - Z(m-$1 (c/w)cosA
[+ (slw)z + 4 (m-Zlc LZ ) '(-I+ 4(m-A" (clw) 1

+ ZI as (als + A4m-t)(CI. cosO+ ) -77

+ 4Nm-)al) +4(m-oi)(cis)

+ 4Im-.lcls)lals) + [+ 4(m-Z(cls)Z ( )

If the interaction between the induced ctrrrents on the tubes

is ignored, that is, each tube is considered as isolated from the

others, the integral in (3-151 disappears, and a first order

approximation for the current results.

n

zMC/() Z(a/s)

~ [1+ (si1w) + 4(m-~ (c /w) 1

(s/w) 2 i - Zm-hIOC/w)c.2!i + sina

f I + 4(m- 1)1(c /w) I 1+ 4(m- L) Z(CleY"

[ ~~(/ + 2(/s m-ALcst'os -

2(a/9 [(a/a) z+ 4(ni- (C /) + 4(m-A(c/s)(a/s)cose



f jI _ 1 f (3-16)
+[l (,-L)_cis) ]

The three terms in (3-16) are due to the curzents in the vertical

interconnecting wires, horizontal interconnecting wires and axial

tube extensions, respectively. The currents induced by the

horizontal wires are the major factors since they are about

2.
(wis) 1 10 times greater than those due to the vertical wires and,

for large spacings (cls) = I, at. least 3 times greater than those

due to the tube extensions.

To solve for the current in the complete expression (3-15),

wkich includes interactions between tubes, a trigonometric

series is posutlated for gmC(6 ). Since the average value of

gmc(0) is zero and'it is not symmetric about the lines O: or

n/2: 304Z the series has no constant term and contains both

sine and cosine terms.

q

gmc(() = [a cos(p4) + b sin(pO)] (3-17)
mc [mcp mcp

Substituting (3-17) into (3-15), the following results are obtained

n even

q - 11 T

am p [-cos(pa) + (- fr K(, , d) cos (p&)d'JE m, n+l-m

q TY

+__ bmP si'O K(t3, o') sin(pu')d'
bmc41 m, n~l-m
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+~ ak ii-~[K (13. + (..E)i' X ' (6J0 cos(pO'3d&

n/2 q
+ E - jJz 9g - (-l)P K (9. ' sir(pcfldf

P; bc[KM, ni1-.t

nn

[I 9w (al) ( [(a/u) + 4(m-4 (c/) 4r-( s

+ 4(m-4 )r.

mfl, 2, --- n/Z

n odd

q a osp.J, m f(n+1)/2 + ~m

P~e'p ,10 mn = (n+11/Z

m, n+t-m E t2(p+l)e, mr nl /



sjnjp5)d9 +
I&

1, -- 81-

I mivw.Al~r gin

J [K (9 ' ()P K6e')~l')g + a,

/IT
~Jn, m, rK(. .) .lPK(9 ' I + j a1  p

=-TIl

(h(Jfl)K( ) cos(Zpq,')de'J + >
in, (n+!)I A cp,

6=-r ~J =I

n

K (a. ~ sin(2p+1) e)d9' I =-Z(als)1
m, (n+1) /2 1 [+(s + 4(in-4(i)

(s/W sinO - 2(m-.Q(c/w) cosni + sine 3
n

+ Z(a /s) (a/s + 2(m-.q ic/s) COBB)

A -- [(a/s) + 4(m-1) (cls) + 4(m-jQ(c/s)(a/s) cosol

1 + 4(m-J)(2 S

m =1, 2, --- (n+l) /2 39
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The dcfinitc integrals which appear in (3-18) and (3-19) can be

reprexemted by two forms. The integrals contai. ng cos(W ) terms

are thne same as tle integrals deoted by ](!, an-I. p) in section

!-5 and evaluated in Apperudi A. The integlals in-olving sin(p!')

terms are of the form

m- . p I I + Z1m-jO(cla)cou - (C -!0s cos.

4(m-1) z(cla) z + +4(m-Lt)(ca)cos2

- (4(m-E)(c.'a) 2 cos(') cosG' - Z sine sins' I

p = lZ - - - {3-2Ob

An evaluation of this integral is in Appendix C, the results t.-f which

are

I' (,m-Lp) =(I [A's +B's +C' 13-21a)

where

2 2£(4{r.-1) (c/a) + I + 4(m-l)(c /a) cosu) (3-Zlb)

A' = sin(a - (p-1) ;) (3-Zc)

B' = -2(1 + 2(m-l)(c/a) coso; sin(pj) (3-d21 ,

C' = -sin(9 + (p+l) t) (3-Ze)

(Z(m-L)(c!a) +cosq (-

!' =sinpI '  (3-21f)
2(mI)-(c/a) + coo ) (m-L) --- 2, --

The principle vlhte of tan - I is ustd in (3-21f).
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With 13-Z1). the sYst*= Of equati*--S (3-18) flor th~e case a wven

becomes

q 012 q

-a f -cos(p-) (-1)p Ig Zzi-M-t9 P)l + acp

.12 q

I(9, Zmi-n-1, p)] + -b fig~ ~gP)

A n
(-Op I fig. M+A-u-1, viJ z Z~aIz)

j01

1 s 1w) [ sine - m*(c/w)Colin

*~~~ I + sw 4(m-£)(l)J

singz.... + 2(als) Ws (l+ 2(M-lt)(cls) Cosa)
I1 4(m-O !c/l)(/sl 4(rni-) (C is)

j ___________)Cosa (c/9)__ __

rn 1,)/2(-2
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SImilar results are obtained for the case n odd. Formula (3-ZZI

represents a set of n1Z equations rclat ng the qn unknowns. This

system of eqations can be solved by either of the two approxiinai

mmethods disccssed in section 1-5, methods of collocation and least

sqcares.

Appendis D contains a listing of a compater program whicb

solves for the coefficients amcp and bMC by the method of

collocation. The qn natching points in the intertal 0 Zvare

chosen as

k(-, n k=l, 2o-q (3-23)

on all cylinder& except the center cylinder in a system with n odd

where the oints are

? k=!. 2--q (324)

Examples of the correction currents gm awe plotted in

Fig. 3-6. Both the fall correction current (3-17) and the first

order correcti.on current (3-15) are shown. A comparison of the

two curves indicates C - the interaction between induced currents

on the tubes m. ust be included in any accurate expression fcr the

correction current.

3. Results of the Measurements

Current distributions were measured on systems with up

to six cylinders and spacings ranging from c/a = L 10 to c/a = 2. 50.

After correcting for meter calibration, the measured values were

normalized. The procedure for n-.rmalizing was first to measure



0 0i 20

-0

SIX WIRES C/o1.0

FIG. -6 NOMAUZD CURENTS FULLTH CORRtECTION TR

- IRS RE

C a o

K 
TR

_0311

* TWO WIRES C/o 1.10

FIG. 3-6 NORMAUZED CURRENTS FOR THE CORRECTION TERM



-86-
I

the current distribution on the system of conductors with the meter

gain held constant and a known current flowing through the model. i

The system of conductors was then replaced by a single conductor

and the current distribution measured with the meter gain and

current through the model the same as in the previous measurement.

The normalized currents on the multiwire system were obtained

by dividing the measured currents by the average value of the

measured currents on the single cylinder.

The measured currents, with the correction current gmc

subtracted wit after they were normalized, are compared with

the theoretical distributions in Figs. 3-7 to 3-II. The circles

about the measured points indicate the range of error ( + 2 scale

units) associated with the repeatability of the measurements. The

measurements are in good agreement with the theory.

The minimon spacings used in making the measurements

were restricted to c/a = L 10 for two wires and c/a = 1. 25 for

three or more wires. For three or more wires, the currents at

adjacent points on consecutive cylinders are quite large when the

spacings are small. The radial dimension I of the loop probe

is a significant fraction of the distance between cylinders; for

example, when c/a = 1. 10 the gap between the cylinders is only

three times as large as fr. As a result, the loop responds to the

currents on both cylinders giving an erroneous interpretation of

the current density. The problem is not as severe for two wires

since the currents at adjacent points on the two cylinders approach

zero as c/a goes to I.
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4. Conclusion

An experimental apparatus was constructed to measure the

transverse distribution of current on systems of parallel conductors.

After correcting the measured data for equipment calibration

and extraneous sources, good correlation between theoretical

and experimental current distributions was obtained.
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Appendix A

Evaluation of the Integral I(0, m-1, p)

I I + 2(m- 1)(c/a) cose - cosjenrp')]cosjpn')d-' "

4(m- L) (c/a) + 2 + 4(m- )(c/a)cos - (4(m-i)

(A - 1) .
(c/a) + coso) cose' -2 sing sina'

Using the trigonometric identity cos(A 4- B) = cos A cos B - sin A sin B

to combine the cose' and sino' terms, the denominator oi the integrand

becomes

2
D r A s + +2s cos(O' +) (A-2)

where

S (4(m- .)2(c/a) 2 + 1 + 4(m-.)(c/a) cosA)a (A-3a)
t sinA

n-tan 2(m-A)(c/a) +cose (m- 1) =1, 2, - - (A -3b)
= -sing

2(mrn )(/a) + cosO (m-L) = -1, -2, - -

The principal value of tan 1 is used in (A-3b). The quantities s and t

are identified with the geometry of the system in Fig. A-I. Applying

standard trigonometric identities the numerator of the integrand is

expanded, giving

N = A cos[ (p-l(4' + i)] + B cos [ i' + i)]

- C cos [(p+)(a, + E] - sin (p-1)(0 , + ,i)J

+ F sin [p(a' + ,)] - G sin [(p+l)( ' + *)] (A-4)

I,
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where

A = coo(O - (p-1) *) (A-5a)

B = 2(l + ?(m-L)(c/a) coso) cos(pt) (A-5b)

C = cos(g + (p+l) ) (A-5c)

E = sin(g - (p-) (A-5d)

F = 2(l + 2(m-A)(cla) cosa) sin(pt) (A-5e)

G = sin(O + (p+l) ) (A-5i)

In terms of the new variable (tft) equation (A-I) is

iT

I f -Acy..P-A)oo[ -)&] +B cospI1I, m-s, p = 1 ++2scos()

C cos [(p - ) ] +,Esin []-F sin [(p + )j]da' (A-61

The sin [( ) ] terms integrate to zero and the remaining terms are

in the form of a definite integral which is readily evaluated

[19, p. 219, 858. 536]

cos(Ag) Hjp '1 -IF, .
I +'H cs d = z

1 +HZ) , p (A-7)

Substituting (A-7) in (A-6) and rearranging, I (a, m-1, p) becomes
1 2

(1-s )(,P+l [As +Bs +C], p = 1, 2 - - -
I(1, )(-s, p1 =

-1[Bs + 2C] p 0 A )

s(1- s2)

LX



FIG. A-1
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Appendix B

Listings of Computer Programs

This appendix contains two computer programs written in

Fortran IV language for use on the I. B. M. 360/65 computer.

I Both programs compute the coetficients amp of the trigonometric

series for the normalized surface current densities, gin' and

the normalized resistance per unit length, R/R o . The input/

output formats for both programs are identical and specify

the following parameters: the number of conductors n, the number

of harmonics q, a-d the spacing c/a.

.d p b

Preceding page blank i

'4,I



C FUaKTMAN~ IV AROGI4AN FOu4 SOLUTION BY Tl-E METHOD OF COLLOCATION
C
C
C rTS Pk0%O.RAM USES THE METHOD UF COLLCCATION To SOLVE A SYSTEM OF EQUATIONS
C FO. TilE LOEFFICIENTS OF TRIGONOMETRIC SERIES. THE SERIES REPRESENT THE

CNOUtMALILED SURFACE CURRENT DENSITY ON EACH WIRE IN A SYSTEM OF NW EQUALLYI
C SPACED, PARALLEL* PERFECTLY CONDUCTING WIRES. USING THIS CURRENT AN
CAPPROXIMATE VALUE LF THE NORPALILED 1-IGH FREQUENCY RESISTANCE U.F THE SYSTEM4
CIS CALCULATED. THE NUMI3ER OF HAkMONIC TERMS USED TO DESCRIBE THE CURRENT ON

C EACH wIRE IS NH. THE RATIO CA IS EQUIVALENr TO THE SPACING BETwEEN WIRE
CCEN~TERS DIVIDED BY THE WIRE DIAMETER. FOR NW WIRES AND AND Nh HARMUNICS THE

C SILE OF TI-E MATRIX TitIj) M~UST BE AT LEAST AS LARGE AS TINWI*NH+19NWI*NH)
C wHcRE NwIzNW/2 FOR NW EVEN AN) NWl=INW.1)/2 FOR NW ODD.

LOGICAL LSCLVE
DOUBLE PRECISIOJN Pi.THETAtaEP,CAtS0URCEtTsSWIN
CCMMCN THETAtSEP#PL/.AATRIX/1c48t49)
WRI TE(6ti

I F(GRMATIIHI)
Pi=3. 14L5S265358974300

2 READ(5931 NWNHtCA
3 FCRi4AT(IIL3XI293XO!5.3)

WRITE(6#41 NiECAtNH
4 FORMAT(///35XII921I WIRESt SPACING CAzF6.3,4'9 912tIOH HARMON
IICS)
NW20=(2*NW+I+(-l)**(Nw+11 1/4
t4W2E=(2*Nw-1I(-I)**NW)/4
NSI IE:NW2C*NH
NAUG=NH*NW2O. I
00 14 L-19NH
NRI=(.W2O-1 )*NH4L

C SEFTINfb COLLOCATIUh POINTS
THETA=PI*IDFLOATIL)lIDFLOATN-+1))
IF(2*INH/2) .NE.tNH.Af4V.L.LE.(NI4-'i1)/2) THETA= PI*FLOAT (L) /FLOAT (NH+21
IF(2*INH/2) .NE.NH.ANU.L.GT.(Nii.1)/2) THETA.PI*FLUATILtl)/FLUAT(NH.

DO 14 PsLtNA1,Nh
NKWs1. tM-LI /NH
IF (NW2C.EQ.NW2EI GO TO 5
IF (NKW.E4.NWZOI THETA-THETA/2.ODO

5Nsw-aI
NI=NH
DG L4 N=19NAUG
IF (N.EC.NAUG) CO TO 11
IF (N-Nil 1,7,6

6 NLINI.NH-
Nbw=NS%41

7 NSHN-NHO(NS%-i)
IF I h.EQ.NSW) GO] TO 9
SEPzCA*OFLJAT(NSW-NR.E)
IF (2*NSW)oEQ.4NW4IIJ) GO U

bEP=CA*UFL-3AT(Nh4I-NbW-NRW)

GO TO 14
Ii IM,h)=-SWINf?*t.SIH

i.,U TO 14
9 IF ((.)*NSW).EC.(NW+iLJ GC TO IC

SE&'uCA*0FLUA J(Nh'L1-2tRW)
T (M.N)=U(,OS(OFLOAT(4SH*TiETA) )/2,ODO-(-1.0OO)**NSH*SWIN(NSH)



GOTO1

GO TO 14

11 SURCE=O.OD0

12CON TIN UE[ 00 13 LO2*INW20
IF (LU?.IEQ.NRW) GO TO 13
SEP =CA*CFLUAT(LC2-NRWiI
SUUKCEaSoURCE4SWIN N.SELF4i)

13 CONTINUE
TI(tN)wSURCE

14 CLDNTINUE
15 IF(LSULVEINSIZE)i GO TO 24

C CALCULATING THE NORMALIZED RESISTANCE
RESN=I.O
NCS aNw2E*NH
00 16 NC=I*NCS
RESN-URESN.I (T(NCNAUtiI)**2)/1:LCATINWI

16 CONTINLE
IF (N42a.EQ.NW2E) GO TO 18
NDBaNCS-61
00 L? hNO08NSIZE
RESNzeESN+I IT(NCNAUG) )**2)/FLCAT(2*NW)

17 CONTINUE
I8 WRITI169191 RESt
19 FORMATI/40X23H NORMALIZED RESISTANCE 9F7.41

W141TE(6,201
20 FURNA'T(/40X3IH-THE HARMCNIC COEFFICIENTS ARE-)

00 23 Lx1.NW2C
taNH* IL -14- 1
NaNH*L
WRITIN6,21) L

21 FCI4MAT(51X6H WIRE PI1)

22 FGRMAT (5Xs12FIC*5)
23 CONTINUE

GO TO 26
24 WttITE(6;25)
25 FORMAT(//53H THlE T MATRIX IS SINGULAR. NU UNIQUE SOLUTION EXISTS.)
26 GO TC- 2
27 STOP

E NO
C THIS FUNCTION SUeACUTINE EVALUATES THE ANALYTIC EXPRIESSION FOR THE OFFINITE
C lilfEGIAL SWIN.

DOUBLE PRECISION FUNCTION $WikN(IHAR)
DOUBLE PRECISION THETAtSEPPltl#CAtPSItHBtCcEtG
COMN(JN ThETAvSEP9PI

50 IF (SEP$ 51,55.52
51 PSIzOATANIDSINIIHErA)/I-2.OU0*SEP-DCOSITHETA)))

60O TC 53
52 PSIuPI-OATAN40SINITHETA)/I2.0DO*SEP*DCOS(THETA))
53 52OUQRT4.000*(SEP)*241.COO044.OCO*SEP*DCUS(T1ETA))

A=O.50C*UCOS(THLTA-PSI*DFtUAT( IHAR-l))
Ii=(1.000+2.0DC*SEP*DCUSTtiETAI l*OCCS(PSI*DFLUAT(IHARll
C=0.5OO*OCUSITHETAPI*Cfi.O)AT(I WAR.1) I
It- (IHAK.EQ.O) Cu TU 54
ShI.4(A*S*2)+e*S+(.I/(I,UUOS**2*(-S)**I II4AR+Il)



Idd

AVS, sbIv-Ga.s~z.coscluns95 zaaS01

ING 1.15 I123 SM(x5TI1f SCLWS A SYSTEM OF N LINUSX EQUATIONS IN N UKINMiS
D TWSAb GloSSIM tLIX1.7TICNV WITH CZLiP PIVOTING.

OUMiE OMCISIC36 SEPoflwagS".TEPTO.ER
COMM S X&ISSIU0949

41 SswlhASKgIIw i.j3

62 42 AISt.
IF IIESUP.LE.LLEI G TO 42

ifIS £Ewo.49T~R GO To

*0 e3 3M%.mP1

63 T1lI&MP.IJ-EPV
4400 &5 IsKPIlk

00 &5 JAKPiIOSI.

1IMSIVINAIA.EGLEA) Go TO To

00 45jz*6

W9 47 Joj*3

49 LSCLWE-.FMkSE.
T- Ia 71

.1 itS-TUR.in



C FORTRAN IV PROGPRAM F~OR SULUTIUN EY TIEt METHOD OF LEAST SQUARES

C THIS PROGRAM USES THE METHOD OF LEAST SQUARES TO SULVE A SYSTEM4 CF EQUATIONE
C FIXt THE COEFFICIENTS OF TRIGCNOMETRIC SERIES. TIE SERIES REPRESENT THE
C NORMALIZED SURFACE CURRENT PEN.SITY ON EACH WIRE IN A SYSTEM OF NW EQUALLY
C SPACED* PARALLEL, PERFECTLY CONDUCTING WIRES. USING THIS CURRENT AN
C APPROXIMATE VALUE CF (HE NORPALIZED HIGH FREQUENCY RESISTANCE OF THE SYSTEM
C IS CALCULATED, THE NUMB~ER CF HARI'ONIC TERMS USED TO DESCRIBE THE CURRENT ON
C EAGH WIRE IS NH. lHe RIATIO CA IS EQUIVALENT TO TPE SPACING BETWEEN WIRE
C CENTERS DIVIDED BY THE WIRE CIAMETER, FOR NW WIRES AND AND NH HARMONICS THE
C SIZE OF THE MATRIX T(ItJ) MUST BE AT LEAST AS LARGE AS T(NWI*NH+1,NWI*NH)
C WHERE NW1-NU/2 FOR NW EVEN AND NWI=(NW+11/Z FOR Nim ODD.

LOGICAL LSOLVE
EXYERNAL FltF2*F3*F4tF5
CCNON P1,CASEPSINSEPMUTSEPMIM/IqATRIX/T(28,29)//NW2ONW2ENRWJ

L*NSWHPNSWH29NW
WRITE(691)

I FCRMATII)A
PIz3* 141593

i REAO(593) Nti.NHvCA
3 FORMATIII3XIZ.3X&F5.3)

WRI TE96941tW.CA*NH
4 ORMATI///35X11,21H WIRES, SPACING CAaFb.3,AH# 912,10H HARMON

NICS) Z*NWI1-I)**tNW*15 1/4

NWZEsl2*NW-I41-II*#NW)/4
NSIZE-hW2G*NH
NAUGNSIZE'1
00 10 NRW*ItNWZO
SEPSIM3CA*FLOAT tNW+1-2*NRW)
DO 10 J=LNH
NRUW*(hRW-1 )*NH+J
0O 9 NSWlIvNk20
S6PMUT-CA*FLOAT INSW-NRWI
SEPM4IM=CA*FLJAT tNW4+-NSW-NRWI
00 9 NSWH-19NN
NSWH2=2*NSWH
NCLL(NSW-1 )*Nt44NSWH
DEL-O.O

IF(NW2O.NE.NW2E.AND.NRW.EQ.NW2C) JI=Z*Jt
I~iJ.EC.NSWHI DEL=PI/8.O
IF(NRW.EQ.NW2O.AND.NW2E.NE.NW2O) 6O TO I
IrifNIW.EQ*NSW) GO TO 6
IF(NSW.EO.NW20.AND.NW2EohE.NW2C) GO TO 5
T INRCW#NCOL)--ALSQI IJ*NSWHsPi)
GO To 9

5 TINACGW.NCg.iL)-ALSOlIJNSWHZ.F2)
60 TO 9
I, (NAOWNCOLI=CEL-Oo5*ALSQIIJNSWHF3I

GO Tb 9
7 IF(NRW.Eg.NSWI GO TO 8

T (NRCdNCOL)z-O.S*ALSQIIJlNShi,-F4)
Go To 9

i8 T INRCti*NCOL)=DEL
9 CONTINUE

fINRCwNAUGI=ALSUI (J. .JP5J
10 CUJ4TiNUE



IF(LStJLVE(NSIZE)) (oi TO 19
vvk TEl 6,11)

I1I FO~iqAT(/40x3lh-THE HAI4MCNIC LLEFFICIENTS ARE-)
J)O 14 L:1.Nw20

M=NH*I L-1 )+l

12 FR4AT(3IXbH WIRE oil)
IS FLR'IAT15X,12FI0.S)
14 CGNrINUE

C CALCULATINGi THE hOkMALILt~l RESISTANCE
RLSNI.C
NCS=NW2E*NH
DO 15 NC=1,NCS
RESiz14ESN&( (T(NCNAU.,)*$*2)/I-LCAT(NW)

15 CUNTINUE i
IF(.,v%2E.EG.Nw2O) GO. TO] 17
NC~s NC S.1
00 16 NO=NCSoNSIZE
RESN=RESNI( ITINDNAUGI )**2IiFLCAT(2*NW)

16 CONTINUE
17 wsRITE(6*181 RESk j
18 FCRMATf/40X23H NORA4ALILEL; RESSTANCE tF7.4)

GO TC 21
19 WRITE(6920)
20 FORMAT I//53H THE T MATRIX IS SINGULAK. NJ UNIQUE SOLUTION EXISTS.)
21 GO TO 2
22 S TtP

E NI)
C THIS FUNCTION SUBROUTINE EVALJATES TI-E DEFINITE INTEGRALS WHICH ARISE IN THE
C ELEMENTS CF THE MATRIX T.

FUNCTICN ALSOI(JPNSWri.F)

EXTERNAL. FIPF2,F3tF4tF5

COMMON P1Iv
T HETA 1=0.0
THiErA2=P[/12.0.FLOATI,4P))
THETA3= PI-THETA2
OTHETA=2.0*THETA2
ALS%;I=C.0
00 30 IP=19MP
ALSOJI=ALSQI. GAO SS6(THE TA 1,THE TA2, F)
THE TA1=THETA2

30 THETA2=ThETA2+OTHErA
AISQI=ALSC14GAOSS6ITHETA3#PI ,F)

9 RETUR4N
END

C Fl. F2v F39 F4 ANO F:5 AR~E AUXILIARY FUNCTION SUORCUTINES USED TO SIMPLIFY THE
CINfEGIANUS OF THE DEFINITE INTEGRALS 14HICH ARE EVALUATED NUMERICALLY.

FUNCTICN FI(THETA)
COHMN P1 ,CASL-PSIMSEPMU#TSLPI)l4.NW2ONW2ENRW,-NSWHNSWH2.NW
Fl=C0.5*C[S(FLI3AT(J)*flETA)-(Il.0)**J*SINTGL(THETASEPS1M,)J))*lSIN

uiGLITHETASEPPOToNSWH) *l-1.O)**NSWH*SINTGL(THETASEPM1MNSWH)
RETUORN
END
FUNCTICN F2ITIIETA)
CuNI4UN P1 ,CASIEPSM9sEPMLTSEPMt~lNW2CNW2ENRWJNSWHNSWH2,NW
F2=l0.54*CCS(FLUATIJ)*THETA)-l-1.0)**J*SINTCLIThETASEPSIM.JI )*(SIN
I ;tL(1HEfAtS1:PPU1sN )W42)
KET.JKN



FNcrc 3(IE
ENC F(IE
CCHMON PI 9CA9 SEPS1I Ms!EPM~oTtSE PPil 1W2O NW2E NRW9 JtNSWH*NSI1Z, NW
F3z1-l.03s*J.SINTGL(THETA.SEPSIM.J)*COSIFLOAT(NSWH)*THETA)s(-l.O)s
k*NSwH*SINTGLI THETA. SiPSIMNSWI*CCSIFL0AT(J)STI-ETD)-2.0*C-I.0I**IJ
L.NS)*SITGLTI-ETA.! EPSi1J)*SINTCL(THETASEPSI4,NSWH)
R~ETURN
END
FUNL.TICN F4(I-htTA)
CCMMCN PI.CA.SEPSli4.SEPMUTI.PPIM.NW2ONW2&.9NRWJNSWHtNWZNf
F4=COSI2.O*FLCA1IJ)*THETA)*(ITGL(THETA, SEPML~tNSIEH).(-1.O)**NSWH

L*SINTGL1THE TA*SEPMINWi))
RETUR'
END

FUNCTIEN F5(TIIETA)I
COMM4ON PI.CA,SEPSIMtSEPHLTS EPP0IM.NW2CNW2LNRWJNSWHNSII2.NW

NULL-0
F5-LER&C
DO 4C gxl*NWZE
SEPMU.TmCA*FLOAT (K-NKW1
SEPMZI4=CA*FLOAT INW*I-A-NRh)
IF(K.EC.-W) GO TO 40
FSzF5*SINTtL(TI.ETAgSkPIU!,NULLI'-SINTGLITHETA.SEPIIMNULLI

40 CONTINUE
SEP MLT=CA*FLOAT INWZO-NRWI
IF(NW2O.NE.NW2E.AND.NRW.NE.NW20I FS51F5SISNTt;LITHETA.SEPMUTtNULL)+

ISINTGLITHETAtSEPSIMtNULL))*I0.5*CCS(FLOAT(JI*Tt-ETA)I-L-.0)**J*SINT
10L(1 TE1ASEPSIM9JI)
[F(Nw20.EQ.Nw2E) FSIFS+S;4TGLTHETASEPSIMNULL))*(.5*COS(FLJAT(
LJ)*THETA)-(-J.0)**J*SINTGLT1ETA, SEPSIMJ)I
IF(NvZC.NE.NW2E.AND.NRw.EQ.NW2O) F5=F5*I0.5*CUSIFLUAT(J)*2.0*THETA

I))
RET URN
END

C THIS FUNCTION SUBRO'UTINE EVALUATES 714E ANALYTIC EXPRESSION FOR THE DEFINITE
C INTEGRAL SINTGL*

FUNCTICN SINTGL(THETASEPIHAR)
j COMMCN PI

50 IF (SEP) 51.55#52
5L PSI=ATAN(SIN(TF-ETA)/(.'2.0*.SEP-COS(THETA))I

GO3 TG 53
52 PSI=PI-ATAN(SIN(THETA)/(2.0*SEP+COS(THETA)))
53 SUSQkT(4.C*ISEP)**241.044.0*SEP*CGSITHETA))

A*0 *5*CLS(ITHETA-PS I*FLUAT (AHAR-1))
Ba(l.042.0*SEP*COS(TrIE7A))*CUS(PSI*FLOAT(IHAR)ICi.*C(HY#SIFUIIA*)
IF (IHAR.EQ.01 GO TO 54
SINTGL=(A*(S**2),B#S+C)/((i.O-S**2)*t-SI**(IHAR+1)
GO TO 55

54 SINTGL=-IB*S*Z.0*C)/(S*(1.0-S**2)
55 RETURN

END
C GAUSS6 IS A FUNCTICN SUBUUUTINE W1IICH COMPUTES AN APPROXIMATE VALUE OF THE
C INTEGRAL OF FIX) OV~ER THlE INTRbiVAL FRCP X=XL TO X=XU. EVALUATION IS i)ONE BY
C MEANS OF A 6- POINT GAUSS QUAURATURE FORMUJLA.

FUNCTICN GAUSS6(XLtXUF)
A=. 5*( XU4XL I
B=XU-XL
Ca. 466234 8*13
uAUSS6x.oe566225*(F(A4C)4F(A-C)



4

C=. 330604 7*8
tAUSS6=GAUS56.1803808*(F(A+CJ+F(A-C)I
C:. 1193096*8
uAUb So=b*(GALS~i6+.2339570*(F (A +C) F(A-C) I
RETURN

L. 1THI FUNCTION SUERCUTINt: SOLViS A SYSTEM OF N LINEAR EQUATIONS IN N UNKNOWNS
L BIY USIN, GAUSSIAN lhLIM~INATICS will- COLUMN PIVOTING.

LWAICAL FUNCTIOIN LSULVLIN)
CCMMGN /tATRIX/A(2dv29I

ilL ol 1=1,N
00 a! J~l,,

)t SUM=SUt+ADS(A(IJJ)
rUL~k= (SIJ!/FLCAT (NI**2 )*1 .JL-6

NMI=N-1
00 b6 K=1,NMI
KP-K, 1
TEt4P=ABSIA(KtK)) t
I TEMP=K
00 62 I=KP1,N
I L (ABSIAI!,K)).LE.TkMP) GO TO 62
TEMP=AeS( A I K) I
I TiMP I

62 CONTINUE
IF- (rEMP.LE.TOLERI UJ TO 70
IF (ItFI4P.EQ.K) GO TO 64
00 63 I=K*NPI
TEMP=A(K. I)
A(K. I) A( ITEMP. I)

b3 A(ITE?4P#I)=TE4P
b4 O b5 I=i(P1,N

A(It KI=A( I#KI/A(KK)
00 b5 J=KPlNPL

65 A(ItJ)=A(IvJl-A(ItK)*A('CJ)
66 CONTINUE

IF(ABSCA(NN)).LE.1OLER) GO TO 70

AiNiNPI )A(NPNP1)IA(N#Nl i
00 67 J1I
L=NPl-J

67 A(KNPI)=A(KNPI)-A(KtL)*AIL, NPl)
68 AIK#NPI)=A(KNP1)/AI. K)

k69 LSOLVE=.FAL SE.
GO TO 71t

70 LSOLVE%.TRUE.
71 RETURN

END



Appendix C

Evaluation of the Integral I (03, mn-1, p)

T1

I- ) I + Z(m -)(c/a) cosn -(cosr cos ' .

it, -,p [ 4(m-') 2 (c/a) + 2 + 4(m-L)(c/a) co,)

+ sin sine" I sin(pl')d'_ . (C-I)

- (4(m-1)(c/a) + 2 coso ) cosa' - 2 sino sino' ]

The evaluation of I' (a, m-I, p) closely follows that for I(0, m-i, p)

carried out in Appendix A. Using standard trigonometric identities

the numerator and denominator of the integrand are reqritten as

N 2 -A' cos [ (p-l)(ol' + i)] + B' cos [ p(a' + 4)] " C' cos [ (p+l)(n' +

-El sin [ (p-1)(S' + # ]+ F1 sin [p(01 + )]"G' sin [(p+l)(o' + ]

fJ

D s +I +2s cos('+ +) (C-)

where

A' = sin(a - (p- 1 ) ) (C-Za)

B' -2(1 + 2(m-1)(c/a)coso) sin(p ) (C- 2b)

C' -sin(O + (p+l)) (C-2c)

E I cos(, - (p-1)) (C-2d)

F' 2( + 21 cose) cos(pf) (C-2e)

G' cos(a + (p+l) f) (C-Zf

s s + + Zs cos(q' +i4) (C-3a)
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- tan ( cos; (C- 3b)Z~m- Plc /a) + c
0 /.-I1 sina

(a 'm-4(c/a) + Cose , (m-L) =-1, -2, --

The principle value of tan- I is used in (C-3b).

With equations (C-2), (C-3) and the aew variable (=1' + s)

(C-I) becomes

rr
I) -A cos[ (p-1) J] + B cos (p

i, (o, n-,, p = - s4 n Z ++Zs-cos( )

- Ccos[ (p-l) ] +E sin[p] - F sin[(p+)j]da' (C-4)

The sin [ ( ) 4] terms integrate to zero and the remaining terms

are in the form cf a definite integral which is evaluated in Appendix

A, equation (A-7). With these integrations performed I' (0, m-I, p) is

I' m, i-, p) = 1 [A's2 +B's +C'], p=l, 2-- (C-5)
GI s 2)-)~



Appendix D

Listing of Computer Program

This appendix contains a computer program written in

Fortran IV language for use on the I. B. M. 360/65 computer.

The program computes the coefficients a and b of
mcp mcp

i I the trigonometric series for the normalized correction current
ti I densities gmc

mc,,

A



C FORTRAN IV PROGRAM FOR CALCULATING THE CURRENT DISTRIBUTIONS CAUSED
C BY INTERCON'iECTING WIRES IN THE EXPERIMERTAL MODEL.
C
C
C THIS PROGRA4 USES THE METHOD OF COLLOCATION T3 SOLVE A SYSTEM OF
C EQUATIONS FIR THE COEFFICIENTS OF TRIGONOMETRIC SERIES. THE SERIES
C REPRESENT THE NORNALIZED SURFACE CURRENT DE4SITY ON EACH WIRE IN
C SYSTEM OF NO WIRES. THE NUMBER OF HARMONIC TERMS USED TO DESCRIBE
C THE CURRENT ON EACH WIRE IS tile THE RATIO CA IS EQUIVALENT TO THE
C SPACING BETOEEN WIRE CENTERS DIVIDED BY THE WIRE DIAMETER. THE
C NORMALIZED OIMENSIONS CAH2 AND CHL2 ARE THE TUBE RADIUS DIVIDED BY
C THE TUBE HALF HEIGHT AND THE TUBE HALF HEIGHT DIVIDED BY THE LENGTH
C 3F THE INTERCONNECTING WIRES*

LOGICAL LINEGN
COMMON THETASEPPI/MATRIX/A(36,37)
WRITE1691)

I FORMATIll)
P1-3.141593
C AHZ .. 48645
CHL 2=0.3*0824

2 REAO(5931 NWvNH*CA
3 FORMATfILs3X,12,3X#F5933
WRITE(6o4) NWvCANH

4 FORMATfI//35X11.,2IH WIRES, SPACING CA=,F6.3,AH, #12910H HARMON
Iics)

NW2-I2*NW-l+(-1 )**NWI/4
NSI ZEaNW21*NH
NAU)G=NH*.'4W21 +1
00 17 LzLNH
NRI= (NW21-11*NH+L

C SETTING COLLOCATION P014TS
THETA=P1S2.**FLOAT(L))/(FIOAT (NH.1lI
0O 17 M=L*NRINH
NRW=1+ *Li/NH
IF (NW2loEQ*NW2) GO TO 5
IFINRW.EJ.*NW211 THETAu(THETA-PI)12.0
IF(THETA*LE9090) THETA=2.D*Pt*THETA

NIuNH
00 17 N=LNAUG
IF (N.EQ.NAUG) GO TO 15
IF (N-NI) 7,7,6

6 NlaN1+NH
NSW.NSW+1

7 NSIHaN-NHOINSW-11
IFf N&EQZ*(N/2)) NSHwNSH/2
IF(N*NE*2*(N/2)) NSH(NSN+11/2r IF (NRW*EQ.NSW) GO TO 11
SEPoCA*FLa3ATI NSW-NRW)
IF i(2*NSWI*EQ*(NW,1)l GO TO 9
IFIZ*IN/Z)*EQ.N) GO TO B
AIM N) -- A INEt NSH)

SEPaCA*FLUAT (NW~o--NSW-NRW)

AIMNJ-I( MN)-(-1.O)**NSHWAINE(NSH)

SEPmCAOFLOAT(INW+1-NSW-NRWI
A(MN)'AI MN)4(-1.O)**NSH*&INES(NSHI



r GO TO 17
9 IFIZ*(N/Z).EQelJ GO TO 10

AIN*N) z.%INE(2*NSH)
GO TO 17

10 AIM9Nlu-AINES12*NSH-1)
GO TO 17

11 IF I(2*NSw)*EQ.INW,1)l GO TJ 13I SEPaCA*FLOAT INmI*1-2*NRWI
IF12*IN/Z)*EQ*N) GO TO 12
AIN,Nlu(;OSIFLJAT(NSr4i*THETA) )/2.0-I-1.O)*NSH*AINEINSHI
GO TO 17

12 A(MNI=I-SINIFLOATINSH)*THETA) I/2.*I-1.O)*eNSH*AINESINSH)
£ GO TO 17

1,3 IF12*(N/2).EQoN) GO TO 14
AitNN)=t:JS(FLUAT(2*'4SH)OTHETA) 1/2.0
GO TO 17

14 A(NNiut$iN(FLOATI20'4SH-1)uTHETA))IZ.O
(6i TO 17

15 SOURCE=0*O
00 16 l.01u1,NW
SEPaCA*FLLJAT (LDI-NRWI
SOURCI x (CAH2/S.IRTI1.3,(CHL2)**2,4.OS(SEP*CAH2*CHL2)**2))*((C
LHL2)**2*(SINITHETAI-Z*O*SEPP:AH2*CHL2*COS(THETA))/(1*0+4.**SEP*CA
&H20CHL2).,2)+SINITHETA)/I1.0O4*0.*(SEP*CAi42)**2))-I(1.O,2.osSEP*COS
I(rHETA))/190.4.O*SEP**2,4,OPSEP*COS(THETA)))*I1.O-1.O/SQRTI1.O,4o
LO*(CAH2)0*2*SEP**21)
SOURCEavSJURCE+SJURC1

16 CONTINUE
AIM, Nl=SJURCE

17 CONTINUE
18 IF (LINEJNINSIZE11 Gil TO 21

WRITEI69L9)
19 FORMAT(/*tUX31H'-THE HARMUNI; COEFFICIENTS ARE-)

DO 22 LzLNWZ1
MsNH*( L-L I+L
N-NH*L
WRITE16,ZOI L

20 FORMATISIX6H WIRE 911)

21 FORMATISA,12F10.5)
22 CONTINUE THAMAIXSSIGLR N3UQU SOUINESS.

GO TO 25

26 STOP
END

C THIS FUNCTI)N SUBROUTIRE EVALJATES THE ANkLYTIC EXPRESSION FOR THE
C DEFINITE INTEGRAL AINE.

FUNCTION AINE(IHAR)
COMMON TAETAqSEP9PI/MATRIX/A136,37?

50 IFISEPI 31954952
51 IF(THETA.LE.PII PSIO-ATAN(SPilITHETAI/I.2.O*SEP.COS(THETA)))

I F1THETA* 65.Pl) PSI=*ATAN(-SIN (THETA) /I -2,o 3SEP-COS(THETA) )I
GO TO 53

52 IFITHETA.£LE.,PI) PSISPI.ATAN(SINITHETA)/12.O*SEPCOSITHETA)I) I
IFITHETA.@GE*PI) PSImPI-ATANI-SIN(THETA)/I 2.O*SEPCOS(THETA)))

53 HuI1,O,.O*SEPSCOSITHETA))SCUS(PSI*FL2ATi 1MAR11
B.-0.5*CJSITHETA-PSIOFLOATI IHAR+1))
Cu-O.5*CJS(THETA+PSI;FLOATi IHAR-1l)

Es4#.O*I 5-Pj S*2*2.O.4.O*SEP*CiJS(THETAI



Gual (1O-F**2)**0.5-I*O)/F
AINE=(G*,(IHAR-1))*(H*GB*(G**2),C2/lESI(1.0-F**2)**0.51)

54 RETURN
END

C THIS FUNCTIJN SUBRUUTINt EVALUATES WIE ANALYTIC EXPRESSION FOR THE
C UEFINITE INTLGRAL AINES.

FUNCTION AINESI IHAR)
COMMON THETASEPPI/MATRIX/A(36,371

80 IF(SEP) slt84982
81 IF(THETA.LE.PI) PSI=-ATAN(SIN(THETA)/-2.*,EP-COS(THETAf)

IF(THETA.GEoPI) PSI=ATAN(-SIN(THETA)/l-2.OD3tP-COS(THETA)I)
GO TO 83

82 IF(THETA.LE.Pi) PSI=PI*ATAN(SIN(THETA)/(2.3*SEP4COS(THETA)I
IFI rHETA.uE.PI) PSI=PI-ATANI-SIN(THETA)/(Z.O*SEP+COS(THETA)))

83 Hl=(1.O4.2.0*SEP*COS(THETA))PSIN(PSI*FLOATl1HAR))
81=-O. 5*5INC PSI*FLJATI IHAR+L)-THETA)
C1.-O.*5*SIN( PSIsFL3Art!HAR-1).THETAI
E=4. O*lSIP)**Z+2.*4.0*SEPCJ3SITHETAI

4Fz(Z.0*k- 3..04*O.5)/E

A 64 RETURN
END

C TF-IS FUNCTIJN SUBROUTINE SOLVES A SYSTEM OF N LINEAR EQUATIONS IN
C N JNKNOWNS tsY US1'dG GAUSSIAN ELIMINATION WITrI COLUMN PIVOTING.

LOGICAL FUNCTION LINEQN(N)
CG%4MON TiETA#SEP9PI/MATRIX/AI36t37)

00 SUN=O.O
DO 61 14.*N
D0 61 J=L.N

61 SUM=SUM4A.SIA(IJi)
i uLER ISUM/FLOAT(N)**2)*1.oE-6
NPI=N+l
NMI=N-1
D0 66 Kzl*NM1
KPlzK41
TEMP=ABS At KK) I
I TEMPzK
00 62 I=KP19N
IF (ABS(A11,K)).LEeTEMP) GJ TO 62
TEMPmABSIA(IKI)
ITEMPzI

62 CONTINUE
IF (TE14P*LE*TOLER) Ga TO 70

4' IF (ITEMP*EQ*Kl GO TJ 64
00 63 !I(.9NPl
TEMP=A(K.1I
ACK, I)=AI ITEMP, II

b3 AIITEMPti*llTEMP
6400O 65 Il'(P1,N

All ,K)-Al I#)/AlKoK)
DO 65 J=KP19NPI

66 CONTINUE
IFIABS(A(N*N))*LE.TULER) GJ TO 70
A (N, NPI)zA(NoN P11/A (NN)
D0 68 I=L#NMI
KmN-I
00 67 Jul.I
L=NP1-J

67 A(KNP1)-A(KNP13-A(KL)*AlLNPl)
68 A(KNPIAIKNP1)/A(KK)
69 LINEGNueFALSE*

GO TO 71
70 LINEUN=*TRUE*
71 RETURN

E-40
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