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ABSTRACT

In this report losses in systems of parallel round conductors are
studied. Both the normal skin effect loss and the additional loss due to
the close proximity of adjacent conductors are considered. The resuits
obtained for the parallel conductors are used to evaluate the radiation

efficiency of electrically small multiturn loop antennas.
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SECTION 1
ANALYSIS OF SYSTEMS OF PARALLEL
ROUND CONDUCTORS

1. Introduction

In a system of parallel conductors the distribution of current over
the conductor crcss section is determined by two effects--the normal
skin effect and a proximity effect. Both are the result of the same
phenomenc:, eddy currents in the conduciors. The former is usually
cousidered to be the result of the net curreat in 2 single conductor while
the 1at’ar is due to the currents in neighboring conductors. For close
conductor spacings, the distribution of current due to the proximity
effect can cause an increase in the ohmic resistance which is larger
than the skin effect resistance alone, i.e. larger than the ohmic
resgistance of the isolated conductors.

The skin effect in round conductors is discussed in most texts on
electromagastic theory [1], {2}, [3]. The proximity effect has received
much less attention. Most of the theoretical and =xperimental works on
the proximity effect deal with two wire systems where the wires carry
equal currents in oppcsite directions. For examples, see the work of
Kennelly {4], [5], Carson 6], and Dwight {7], [8]). This geometry has a
direct application in the problem of wave propagation along parallel wire
transmission lines.

The only investigations of the proximity effect in systems with

more than two conductors appear to be those done in conjunction with



P .

——— SRS W 4 b vy oy,

-2-

determining ohmic resistance and Q of inductance coils. Of the
theoretical treatments, Butterworth's discussion of the alternating

current resistance of cylindrical conductors and solenoidal coils is the
most thorough [9], [10], [11]. His work is considered the standard
theoretical approach and is summarized in several places [12], [13], [14}
The experimental work of Medhurst, however, indicates that Butterworth's
calculaticns of the radio frequency resistance of coils are not valid over
as large a range of parameters as expected; for certain dimensions,
errors as large as 190% were observed [15].

In the remainder of this chapter, systems composed of various
numbers of in-line, parallel conductors are analyzed. All the conductors
have the same circular cross section and carry eqgnual currents in the
same direction. Only the high frequency case where the currents are
confined to a thin layer near the surface of the wires is considered. This
report is an extension of the investigation of the two turn loop antenna s

reported in {16}

2. The Nature of the Current Distributions in a System of Parallel

Conductors
A. Proximity and Skin Effects

In the sysiem of parallel conductors illustrated in Fig. 1-1 there
are two factors which determine the distribution of current over the
cross section. The first is the normal skin effect which, for high
frequencies, causes a concentration of the current near the outer surfaces

of the conductor. This is depicted in Fig., 1-2a for a single, isolated,

rewe:
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round conductor, Secondly, there is an additional redistribution of the

current due to the proximity effect. This is caused by the magnetic
field present at any one conductor due to the currents in the other
conductors of the system. The proximity effect for two parallel, round
conductors carrying equal currents in the same direction is illustrated
in Fig. 1-2b, In the two conductors, the proximity effect forces the
current to the outside edges, much as the skin effect forces the current

to the outside surface of the single conductor.

B. High Frequency Approximation for the Current Distribution and
Resistance
At sufficiently high frequencies the skin depth ds for a goad
conductor is 2 small quantity compared to the cross sectional dimensions
and most of the current in the conductor is confined to a thin layer near
the surface. The magnetic field external to the conductor is approximately
the same as the field of a perfect conductor of the same shape carrying
an equivalent surface current, An expression for the time average power
loss per unit surface area of the good conductor, in terms of the component
of the magnetic field Bt tangent to the surface of the perfect conductor, is

Bl ,

8 -[—-—) Watts/(meter)z (1-1)
Ho

<1
P-'ER(

In terms of the surface current Ks on the perfect conductor

2

Pz %Rs IKSI Watt:s/(meter)z (1-2)
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where R~ is the suriace resistance.

R® - —- ' (1-3a)
s
[z
4, = o (1-3b)

If t:e conductor is cylindrical and Ks is an axial current density, the

power loss per unit length of the conductor is

P R |Ks | 2 dw Watts/meter (1-4)

N L

where the inicgral is over the periphery of the conductor,

For the isolated, circular, cylindrical conductor of radius a
carrying total current I, rotational symmetry applies. Equation (1-4)
reduces to the familiar ''Rayleigh formula'' for the high frequency

resistance per unit length of a circular conductor

P R IIIZ Watts/meter (1-5a)
4ra
_R® 1 [
RRayleigh = Zra = Z7aN Zo Ohms/meter (1-5b)
which is valid for
a/ds >3 1 (1-6)

With more than one conductor present the current distribution and
external fields for each conductor are no longer rotationally symmetric;

therefore, equations (1-5) no longer apply. Further investigation
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is necessary to determine conditions like (1-6) which insure that the
high frequency approximation expressed in (1-4) is valid.

Consider 2 system of long, in-line, parallel conductors carrying
equal currents in the same direction (Fig. 1-1) with parameters such
that

a<<h , ﬁoa <<'1 (1-7)

nz(:2 << hz , ﬂonc << 1

c>a (1-8)

Neglecting displacement currents as compared to conduction currents,
the axial component of the volume current density sz interior to the
mth cylinder must satisfy the following partial differential equation in

cylindrical coordinates (r, 8, z).

2
8J 9 J
9 mz mz . 2 =
A TR sa2 | R0 ;g = 0
(1-9)
rs2
An e time dependence is used. The solution to (1-9), obtained by

the method of separation of variables, which has the desired symmetry

and remains finite at the origin is

e o) 2
10 _ W2 =)
J_(r,6,2) = E (-1)Pc:mp M WZ e P s’ cos(PO)
P=0 s (1-10)

where Mp and ep are the modulus and phase of the Kelvin functions

(berp +1i beip) {17, p. 379]. The Cp are functions of z only, The total



current at a given cross section of the conductor is Im(z); therefore

a ¥ Zra.d -i © «E.?.)
1¥°d
1 () = [ [ 3ngtr,8,2) rdddr - 5 C_oMHV2 5 e s
r=0 O=-g (1-11)
and i @ (J’Z_'i-)
1@ ¢
(1-12)
\/_' 27ad,  M,(JZ )
s
The volume density of current extrapolated to the surface of the
conductor is
@MW -il O WZE - Gl(ﬁg—s)l
I ,(2,0,2) = °— ¢ s
ﬁﬂadle(ﬁa-s-)
o)
(1 + Z a;np cos (pf)] (1-13)
pl

With (1-12) and (1-13) substituted in (1-10), the current density becomes

L (2) MyW252) i 8,28 - 8, (/23]
8 8 8

J_(r,0,2) = — e
me V2'rad M, (y2 3 )
o) O(Fd ' M (f
1+ 8 cos (p9)

ot *mp M, \/“a-im (J“—)

-il 9 V2D - 8 (2 o So(fd)- oVEFH]
e % " oo
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Where s = a-r is the radial distance into the conductor from the surfice.
Ia the present analysis, the coefficients ‘;np are assumed to be ccmplex
numbers.

When the current distribution at the surface of the conductor is
sufficiently smooth, a finite number q of the Fourier series terms in
equation (1-14) are adequate to approximate the current density. If, in
addition, the frequency and conductivity are high (a/d, >> 1, £ << a) the
large argument asymptotic formulas for Mp and Gp apply {1?7] In-
serting these intc equatior {i-14) yields

8 M
. Im(z) eq(l-z) q »
3 (r,0,z) 2 I+Za' cos (pf)
ma ' Fxa, fi-s/ Ly e
pd 1
="
-i0 T+ - -
28 8,2
(1-B°D D)
e a 1 1+0 23 T t- -
28
1-&°-5
(1-15)
which simplifies to
-;;’—(1-1)
I (r,02) % ‘m(z) ® [+ Eq: a'__ cos (pf)) (1-16)
mz"’ ﬁnad 1 - s/a. mp
p=1
for
pds 2
Ty
— e «1 p=1 2--gq (1-17)
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With thess conditions satisfied, the current, although non-uniform in 6,
is confined to a thin layer near the surface much as in the case of an
isolated cylinder. The power dizsipated per unit length in the mth

conductor is then

a  J
P: = j} f lsz(r,O,z)lzrdrdO
=0 =¥
I (z) R 3
r o [ - lea mp Watts/meter (1-18)
p-

If the cylinders are now made perfectly conducting, the current

on the mth cylinder will be of the form.

I (z) 1_(z) 3
sz(l), z) = ;a gm(8) : -i';l;- ns+ Z amp cos (p8)]
(1-19)
where gm(G) is the normalized surface current density. Using the
approximation expressed in equation (1-4), the power loss per unit length

for a good conductor expressed in terms of the coefficients amp for the

perfect conductor is

m'?
. _l_ 2 8
pm T2 ( 2na s R

TR TS
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For large values of a/d' this expression is a good approximation to the
correct relation, equation (1-18), that is

a z at
mp
a/d_>>1 (1-21)
P_: P ¢
m m
provided
pd
( s)Z
«<1 p=1,2--g (21-22)

(a-&%-2
a

The first term ir equation (1-20) is the power loss in the m
conductor due to the net current Im in that wire. This is the normal
skin effect loss. The sum in (1-20) represents the loss due to nonuniform
currents induced by other wires in the system. Jtis the additional loss in
the mth wire due to the proximity effect. Since the coefficients amp in the
sum are a function of the net currents I, in all wires of the system, the
1,2

(1I°)if Rm is to be only

equation for Pm cannot be written as Pm = Rm L,

a function of the physical parameters of the system. As a result, the
usual circuit definition of the ohmic resistance of each wire (Rm =
Pm/-% Ifn) makes no sense,

When all conductors carry the same total current at each cross
section the ohmic resistance per unit length of the system of wires is a
useful quantity, Using the series definition of the current (1-19) the
ohmic resistance per unit length of a system or n parallel wires is given

by



-]
10

R’ - 1 3 2
2ra Z +3 Z lappl”] Ohms/meter (1-23)
m=1 p=1

If the separation between conductors is large enough that each can be
considered as isolated from the others, (1-23) becomes
. RS
R, 2 3=mn=n RRayleigh Ohms/meter (1-24)

The additional chmic resistance per unit length due to the proximity

effect is then

n

R® N 2
Rp = R - Ro * Ira Z lampl Ohms/meter (1-25)
m=1 p=1

Normalized quantities are useful when comparing different configuraticns

of conductors.

n q
R 1 2
R - Z 1+ Z |amp[ ] ‘ (1-26)
m-1 P
n q
R )
_p . 1 & -
R, ® 2 z 2 mp (1-27)
m=1 p=1

In the present analysis a smooth conductor with a uniform surface
resistance is assumed. Recent research by A, Sanderson [18] indicates
that surface roughness in the form of scratches transverse to the

direction of the current can significantly alter the equivalent surface

3
3
3

9

]
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resistance. The type of wire used in practical applications is usually
formed by a drawing process, such as drawn copper wire. Surface
scratches are in the same direction as the current flow and are expected
to increase the ohmic loss much less than equivalent transverse
imperfections would. Calculations using Sanderson's theory indicates
that surface roughness can be ignored at the frequencies of interest

(< 100 MHz. ) in this study.

3. Formulation of the Integral Equations for the Traasver-se Current

Distributions

Consider each of the long, parallel cylinders ia ¥ig. 1-1 as being
perfectly conducting. The surface current density on the lth conductor

is then
K,0',2") = 5= g0 £z"), f=1,2--n (1-28)

The dimensionless quantity gl(G') is the normalized surface current
density. In (1-28) the same z' dependence f(z') is assumed for the
current distributions on all cylinders. The conductors are composed of
three sections; the length z-d<z'sz+d and the two end sections

z+d Sz'Sh, -h €z'<z-d, In addition to the inequalities presented in (1-7)

and (1-8) the following constraints are placed on the length d
Bod <1 (1-30a)

d? 5> nc? (1-30b)

This makes the current distribu:ions at every cross section along the
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length z-d <z' €z+d approximately the same.
K(0,,21) = 3T 80N f(z),  2-G <z ezed {1-31)

The Helmholtz integral for the vector potential component

Az(r,ﬂ, z) at a point just off the surface of the m':h conductor is

iByR

= n mi
. P'ol 8!(9')0 s
Amz(r,O,z) = ;17 f(z) E le do'dz
1=1

z'=z-d 0'z=-g

z.d h 3 : i8R
2 g0tz e O™
+ Z R do'dz
1 mf
z'--h z'-z+d Yaeq
{1-32)
where
le = [(z-z')z + rlznlll/z [(z-z')z + 4(m--l)2 c2 +
rz+a.2 - 2ar cos (0-08") + 4(m-f)c(rcosf - a,cose')]l/2
(1-33)

If terms of order ﬁod or less are neglected in the first integral and

setting

R, ¢ [(z-z') + 4(m-n° /2 (1-34)

in the last two integrals, equation (1-33) reduces to

LRt
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z+d
. ot g,(O')
Amz(r, 2) ¢ —3 f(z) Z do+dz’
8z
z'=z-d 0'=-y
z-d n 150[(1:-2') + 4(m- l)z 21/2
+ 2x£(z') < dz’
1 [(z-z')r + 4(m- !)Z ¢1/2
z'=-h 2z'=z4d -
(1-35)
The 2z' integration in the first integ»2l can he evaluated directly {19,
p- 50, 200.01]. The resultis
2td
o dat = 2sinh”t &9 & 20n(r_ ) - ta(2d)] (1-36)
m{ Tmt
z'=z-d
2 2,.2 . .
where terms of order n“c“/d“ are dropped in the last expression.
With (1-36), equation (1-35) becomes
L Z[
Amz(r, 0,z) ¢ -8:-2— -2i(z) gl(G )m(rm)]de'
(]
9‘=-1:
+ 47 nin(24d) + A;nz(z) ‘ (1-37)

The term A;nz(z) represents the last two integrals in (1-35).
The normalized surface current density is given by the boundary
condition

-27a 8A (r,0,2)
mz'?? (1-38)

@) =
fm b olflz) or
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The next step is to substitute the approximate expression for the vector

potential (1-37) into (1-38) to obtain

T
g_ (2% (1 - cos(0-8"))
g (0) ¢ il" lim el 4
m o Tl 77+ 1 - 27 cos(8-9")
0'=-n
" n
[1+2(m-#){c/a)cos B - cos (0-9')]&(0')
0,__ ﬂ"l (r;nl)

=T gfm

where
Tz rfa (1-40)

and

v, = [4m-t)¥(c/a)? + 2 - 2cos (8-6") + 4(m-t)(c/a)(cos b- cos on)}/2 1
(1-41)

.

The first integral, which represents the self term, is indefinite when
7= 1; therefore, the order of the limiting and integration processes are
not interchangeable. ¥or values of 7 near unity the integrand has the

behavior

Integrand ~ [—-r,‘-A-;)-i- + 3] (1-42)
A+

where

A= r-1<<] (1-43)

PO

Yy
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Comparing this with the following definition of the Dirac delta function

6 = —hm[ (1-44)
A0 Z+92]

it is evident that in the limit the integrand becomes

Integrand = [r8(9) + -%-] (1-45)

Substituting (1-45) into (1-39) and rearranging yields

T
n
SURETERN B DRV
o
where
K 1(9’9,) . 1+2(m-g) c/a coas?d - cos (0-0') (1-47)
o (x! g

Symmetry about the center of the system of wires requires Bntl _m(e) =
gm(‘tr-()) which reduces the number of terms in (1-47) to n/2 for n even

or (n+1)/2 for n odd.

n even
= 7 - 1
Em® = 7 Km,n+1-m(6'Tr 9') sm(O')de' + 1l ]
9 =T 1;:11 0'="1r
[Km, 1(9,9') + Km, n+1_1(9,1|'-6')] gf“""‘"' , m=1, 2--n/2

(1-48)
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a odd
y @/
g0 - E%E-')- [Km,nﬂ-mw’““e') g, (07)d0" - 1+-}r- ) /

T
L ) h m t t ]
(K, 1000+ K o420, 7-01]8,(0")d0"+ ) e/ K, (n+1)/2199"8(n41 /2101140
=-q

{(1-49)

where

i
[=

h{m) m § (n+1)/2

m = (n+1),/2 (1-50)

n
o

Equations {1-48) and (1-49) represent, respectively, a system of n/2 and
(n+l)/ 2 coupled integral equations whose solutions are the desired

surface current densities, gm(G) .

4, Solution for Two Conductors

The simplest geometry for examining the proximity effect is two
parallel circular conductors carrying equal currents. Exact expressions
for the current distriimtion and ohmic resistance for this simple case
are given in Techrical Report No. 612 [16]. The normalized current
distribution on the two wire system is graphed in Fig, 1-3 for variois

conductor spacings c/a. The distributions will prove useful in developing

approximate solutions for systerns with two or more conductors.
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5. Approximate Solution of the Integral Equations for Two or More

Conductors
A The Method of Undetermined Coefficients

1. Reduction to a Set of Algebraic Equations

For systems with more than two circular conductors approximate
methods must be used to obtain the current distribution and resulting
ohmic resistance per unit length of the system, In this section one such
method, undetermined coefficients, is applied to the previously derived
system of integral equations (1-48), (1-49).

As the previous analysis suggests, a trigonometric series is the
natural choice for an expansion to represent the normalized surface

current density,

q
gm(B) 1+ Z a'mp cos (pt) (1-51)
p-1
Further evidence for this selection is found by examining the exact
solution for the two wire case. A Fourier analysis of the current
distribution (Fig. 1-3), for the limiting case c/a - 1, indicates that the
first two cosine terms in the series are adequate to predict the correct
value of the additional loss due tc proximity Rp/Ro to within 1%. For
large spacings, c/a >> 1, the current distribution is of the form 1 + 3, cos 0
as is evident from Fig, 1.3, This last statement is also true for
systems with more than two wires and is easily understood if the
magnetic field due to external currents is considered a constant over the

cross section of each conductor. The magnetic field Bmy normal to the
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axis of the mth conductor in a system of n conductors would be

n

. Fol ]
Pmy © re 2 {m-1) (1-52)
=1
H#m

and the resulting current distribution becomes

n

g0 2 1+6& 2 Gx%—_n)cose (1-53)
t=1
#m

Substituting (1-51) into the integral equations (1-48), (1-49), one

obtains
n even
q b n
z 3mp [- cos (pf) + 3-71-)— Km, ntl-m'0s 8" cos (pf') d6]
p=1 6'=-q

n/2 q m
+ 2 alp )-}r- /[Km’ I(B,Gv) + (-1)me’ n+1_,(9,9')]cos(p9')d9 i .
p= f'=-

£=1
m n
L
T m, n+l-m(e’e') * [Km, !(9’0') ¥ Km, n+l~.¢(0’9')] !de'
9'='; =1

fm
(1-54)

m = 1, 2, -=-n/2
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n odd

3 :
2 pd mf(ntl)/2 1P
2 a__[-cos + 1)y h(m) K 1 (8,0")cos(pht)do’]
~ P 2p9 m=(n+1)/2 T m, n-1-m
p=1 o=- !
(n-1)/2 q 7
¥ 2 E alP ;If /[Knu, 1(9,8')4-(-1)me, n+1-!(9’ 9')]‘:08(?0')(18'(
21 p=1 d
t/m 0=-1
q 1/ 1)
¥ 2 201 2 [h;n f Km, (nH)/Z(G,0')cos(2p9')d9'] c - %/,h(m)l{m, n+l-mw’6')
p;l 2! P %= g 0'= -1
(n-1)/2 '
¥ z (K, 8,01+ Kpy pi1-28, 0] s 6@ m-1,2,---(ntl)/2
€1
£/ m (1-55) .
where the same number of harmonic terms q is used to represent the ‘

surface current on all conductors. Due to symmetry about 8 - 1/2, only
even harmonics appear on the center conductor of a system with an odd
number of conductors,

The definite integrals in equation (1-54) and (1-55) are of the

form
T

10, m-0,p) - + / [1+2(m-1)(c/a)cos @ - (cos 6§ cos 0

a [4(m-l)z(c/a)2 + 2 + 4(m-t){c/a)cos ¢
o' -

bosin ¢ sin 0Y)] cos(pd') do'!
~d(m-0){c/a) ¥ 2 cos(0") co: O' - 2 sin B sin 0]

t1-50)

X ot )

P
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Appendix A contains a detailed evaluation of this integral, the results of

which are
1 2
5 571 [As"+Bs+C], p=1,2,--q

(1-87)(-8)
(8, m-4,p) =

—L [Bs+C], p=0

s(l1-8")

where

s = (@m-02 (c/a) + 1 + 4(m-1) (c/a) cos 6)}/?
A= coslf-(p-1DY)

B = 2(1+ 2(m-1) (c/a) cos ) cos (py)

C = cos(0+(p+1)y)

1 sin 8 ), (m-f) = 1,2, --

GmeD){c/a) ¥ o5 @

7 - tan”

<
n

-1 -8in 0 _
‘tan (Z(m-l) (c/a) + cos g), (m-l) = -1,-2,--

(1-57a)

(1-57b)

(1-57c)

(1-57d)

(1-57e)

(1-57f1)

The principle value of tan"1 is used in (1-57f). For the case n even the

system of equations (1-54) with (1-57) becomes

q n/2 q
> 8mp [+ €08 (0) + (-1P 1 (6, 2m-n-1,p)] + ) S ay
p=1 =1 p=1
#m
(16, m-2,p) + (-1)P (6, m+t-n-1,p)] = - {16, 2m-n-1,0)
n/2
¥ z [1(6, m-1, 0) + 1(, m+t-n-1, 0)]}
i1
tfm m=1,2,--a/2

(1-58)
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This is a set of n/2 equations, one for each conductor, involving qn/2
unknowns (amp) the coefficients of which are functions of the variable 6.
In order to solve the system a set of qn/2 conditions is necessary. Two
procedures which yield such conditions were used, the methods of

collocation and least squares [25],

2. Solution by the Methods of Collocation and Least Squares
In the method of collocation, the %mp are chosen so that equation
(1-77) is satisfied exactly at q points gmk (0 Semk €7, k- 1,2,--q) on

each conductor, more specifically for n even

q
P
Z 2mp [- cos(pf_, )+ (-7 LB ., 2m-n-1,p)]
p=1
n 9
+ Z z 3y, [I(()mk, m-t, p) + (-1)P Iwmk’ m+f-n-1, p)]
=1  p-1
##m

n/2

- { 6 o 2m-n-1,0) + z [I(Gmk, m-4, 0) + I(omk’ mtf-n-1, 0)]}
£=1
27m

m = 1,2, --n/2

k = 1,2, -=-q (1-59)
With the definition of the new variables tkmp’ t:;l, and 8k’ equation
(1-59) becomes
q n/2 q
o amp kp * 2 Z i © ik (1-00)
p-l -1
t#m
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In matrix form, the system of algebraic equations (1-59) is now

where

ii

T

!

T2

Ty

aiq

-t Tln/Z

- -T2

T s - Tn/Z n/Z'J

Siq

o -

For the case n odd, a similar matrix equation results.

-Sl —1
S,
usn/z_ (1-61)
ij |
- -ty
- o) -
t;q (1-62a)
- - -t -
aq- (1-62b)
(1-62c¢)
(1-62d)

All the elements

of the S and T matrices are real; therefore, equation (1-61) can be

written as two separate equations

[T) [AT] = [S]

(1-63a)



-26-

[T]1Al] = o (1-63b)

where A' contains only the real part of the coefficients Re(amp) and Ai
contains only the imaginary part, Im(amp). For a unique solution of
(1-63a), the T matrix must be nonsingular. A nonsingular T matrix
indicates a trivial solution for the homogeneous equation (1-63b), i.e.
all Im(amp) z= 0. The normalized current distributions gm(B) are
therefore real quantities,

The method of least squares differs from collocation in that the
amp are chosen in such a manner that equation (1-58) is satisfied in a
least squares sense over the interval 0 €0 < 7 rather than satisfied
exactly at specific points, namely
J|

0.0 P*

z amp [~cos(pb) + (-1)P 1(0, 2m-n-1,p)] + z Z alp [1(0, m=£, p)
=1 p-1
t£m

q nf2 q
21

n/2 2

+ (-1)P 18, mtL-n-1, p)] + 1(§, 2m-n-1,0) + z [1(8, m-2, 0) + 1{0, m+£-n-1,0)}| a0
£-1
/m

= minimum m= 1,2 ---n/f2 (1-64)

Differentiating the left hand side with respect to each coefficient a_

and setting the results equal to zcro yields

m q
f [-cos(k9)+(-l)kI(t),Zm-n-l,k)i Sam [-cos(pd) +(-1)P1(#, 2m-n-1,p)]
< P

f-0 pl!

n/2 q

. _ P -n-1, pj} + 1(8, 2m-n-1, 0)

by Zalpil((?,m 1,p) + (-1)P 18, m#2-n-1,p)} + 1(0, 2m-n

t.1 p=1l

I/m
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n/2

+ z [1(6,m-£,0) + I(6, m+2-n-1,0)] td6 = O
=1
:;(m m = 1,2, ""n/q

k = 1,2, ---q

(1-65)

After rearranging terms and performing integrations, (1-65) becomes

q 14

z %mp |5 80K, P) - [ 1-1)P cos(k6) 1(6, 2m-n-1, p) + (-1)* cos(pf) 1(6, 2m=-n-1, k)

p=1 g=0
n/2 q

=1 21 alp
= pP=
#m

(-1)P** 10, 2mon-1, p) 10, 2m-n-1,k)] dd | +

w
f [cos(kd) - (-l)kI(G, 2m-n-1,k)][I(6, m-¢, p) + (-l)pI(G, m+f-n-1, p)]dh ‘

=0
T n/2
= f [cos(kO) - (-l)kI(B, 2m-n-1,k)] { 1(6, 2m-n-1,0) + Z [1(8, m-¢, 0)
6=0 =1
#m

+

1(6, m+i-n-1,0)] ( dé

m = 1,2, ---n/2
k = 1,2, ---¢q
which can be written as
q nf2 q o
m
z amp tkp+ Z a'lp 1:kp ® ®mk
p:l =1 p:].

#m

(1-66)

(1-67)
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The variables tﬁ; , tkn;: and s mk enter the matrix equation (1-62) in

the same manner as in the method of collocation,

B. Numerical Results
1. Comparison of the Two Methods of Solution

For the collocation solution, the same matching points

(0 9k’ 0 $9k < 1) were used on all cylinders except the center

mk
cylinder in a system with n odd. The current on the center cylinder has
symmetry about 6 = 7/2, 7; therefore only points in the first quadrant
are needed. These were chosen to be 0k/2. Several different
combinations of matching points were used in (1-59) and the resulting
matrix equation (1-61) was solved for the coefficients amp using a
standard Gaussian elimination algorithm [26]. The additional vhmic
resistance due to the proximity effect R.p/R0 was calculated from (1-27)
for various numbers of harmonic terms q. No particular distribution

of points gave a best rate of convergence of Rp/Ro for all numbers of

conductors and spacings. The final set of matching points settled on is

T
k(q+l) q even
- . qtl
0, = k(q+z) ks 45
q odd
(ct1) () k> S (1-68)

For an even number of harmonics, the points are equally spaced and
internal to the region 0 < 9k € . With an odd number of harmonics, a
slightly better rate of convergence was found when the set of matching

points did not include 9k : /2.
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The least squares procedure requires the evaluation of the de-
1 finite integrals in equation (1-66), Due to thic complexity of the

1(6, m-1, p) functions in the integrand, an exac: evaluation wa: unob-

X

tainable and approximate numerical integration necessary. A typical

integration from (1-66) was performed using three different numerical

e SE O ehT
e

integration routines: Romberg, Simpson's rule, and Gauss quadrature.
The six-point Gauss quadrature formula [27] required the least time for
the desired accuracy. The interval 0 S0 < 7 was divided into k+l or
ptl panels, whichever was larger, and the six-point formula applied to
each panel. With the integrals evaluated, the resulting matrix equation
' (1-61) was solved using the same algorithm as for the collocation
solution,

A comparison of the two methods is presented in Fig, 1-4, where

v dueviip ksl

. Rp/Ro and the computation time for the 1. B, M. 360/65 computer are
graphed as a function of the number of harmonic terms used in the

solution. The results are for 4 cylinders with a spacing c/a = 1, 10.

Y vyt N —
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3 Least squares is the more elegant of the two procedures, converging to

the limiting value of R P/RO when the number of harmonic terms is less

ety v
R e

than half thut required in the collocation solution. In terms of

. computation time the collocation method is much faster--roughly 6q

ST

times faster for a given number of harmonic terms, Thus the limiting
value of Rp/R'o is obtained in about one-tenth the computation time

needed for the least squares solution, Similar time savings are found

I

et

for other numbers of cylinders and spacings. For this reason, the

majority of the calculations for this work were doue by the method of
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collocation, Listings of the computer programs for both methods are

in Appendix B.

2. Transverse Current Distributicns

The number of harmonic terms used for the current distribution
on a given system of conductors was determined by observing Rp/Ro.
If increasing the number by two produced less than a 0. 10% change in
Rp/Ro, the number of terms was deemed sufficient. The normalized
surface current densities g(f) for systems with 3, 4, 5 and 6 conductors
and various spacings c/a are plotted in Figs. 1-5 through 1-8, The
distributions for 2 conductors are not plotted, since they are identical
to those in Fig. 1-3. In systems with three or more closely spaced
cylinders there are both positive and negative currents on the surface
of the outer conductors. These currents in opposite directions add
nothing to the net current in the wire; they just increase the ohmic loss.
When the spacing between cylinders is very close, currents on adjacent
surfaces of two conductors tend toward equal values with opposite sign;
for example: for 4 wires, spacing ¢/a = 1.1, g(n) £ - 2 on cylinder 1,

while on cylinder 2, g(r) & +2.

3. The Additional Ohmic Resistance Per Unit Length Due to the
Proximity Effect
Computed values of the additional ohmic resistance per unit length
due to the proximity effect Rp/Ro for systems with various spacings c/a
and up to eight conductors are presented in Fig. 1-9 and Table 1-1,

Calculations of Rp/Ro were not made for extremely close spacings, i.e,
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Table 1-1. Normalized Addidonal Ohmic Resistance Per Unit Length
Due to the Proximity Effect Rp/Ro‘

Number of Conductors

Spacing c/a

3 4 5 6 7 8

1.00 C. 333

1.05 0.316 0,748 1,231

1. 10 0.299 0.643 0.996 1.347 1,689 2,020 2.340
1. 15 0.284 0.580 0.868 1.142 1.400 1.693 1.872
1.20 0.268 0.531 0.777 1.002 1.210 1.401 1,577
1. 25 0.254 0.491 0.704 0.896 1.068 1,224 1.365
1. 30 0.240 0.455 0.644 0.809 0.956 1.086 1,203
1. 40 0.214 0.395 0.546 0.674 0.784 0.880 0,965
1.50 0.161 0.346 0.470 0.572 0.658 0.732 0.796
1. 60 0.173 0.305 0.408 0.492 0.561 0.620 0.670
1. 70 0.155 0.270 0.353 0.428 0.485 0.532 0.573
1. 80 0.141 0.24]1 0.316 0.375 0.423 0.462 0.495
1.90 0.128 0.216 0.281 0.332 0.372 C.405 0.433
2,00 0.116 0.195 0.252 0.295 0.330 0.358 0.392
2,20 0.098 0.161 0.205 0.239 0.265 0.286 0.304
2.40 0.032 0.135 0.170 0.197 0.217 0.234 0.247
2.50 0.077 0.124 0.156 0.180 0.198 0.213 0.225
2,60 0.071 0.114 0.144 0.165 0.182 9.195 0.206
2,80 0.061 0.098 0.123 0.141 0.154 0.165 0.174
3.00 0.054 (.085 0.106 0.121 0.133 0.142 0.150
3.50 0.040 0.062 0.077 0.087 0.095 0.101 0.106
4. 00 0.031 0.048 0.058 0.066 0.072 0.076 0.080
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3 and 4 wires, c/a less than 1.05; 5 or more wires, c/a less than 1. 10-
The reason for this will be evident after a closer examination of the
approximation already made.

In the limit as c/a approaches 1.0, the surface current devslops
large spikes at adjacent points on successive cylinders. This is
illustrated for 3 wires with spacings c/a = 1. 10, 1.05, ard 1.0} ir Fig.

1-10. For wires with finite conductivity, a change in the form of the

current distribution in the radial direction is expected to accompany
1 these areas of high current density. As a result, the radial decay rate

will differ from the high frequency skin depth ds in these regions. This

LT e abteN At i a1 24 )
Ty 8

T

is basically the same idea expressed in equation (1-22). Spikes in the
surface current require high harmonic content (p large) which, from (1-22),
require very small skin depths (high conductivity) for the high frequency
skin effect approximation to be valid.

In Fig. 1-11 the resistance R p/Ro is plotted against the number of

harmonic terms used in the series representing the current. The

coefficients amp obtained by either of the approximate methods, unlike

the Fourier coefficients, are a function of the number of terms q used

in the series. They approach the exact coefficients in the limit as q
becomes large or, in terms of the resistance, as Rp/Ro converges to the
limiting value. For this reason the coefficients used in constructing

Fig. 1-11 are those found for the limiring value of Rp/Ro' From Fig.
1-11, 6 harmonic terms are sufficient to give Rp/Ro to within 1% of the
limiting value for the minimum conductor spacings presented in Table 1-1.
Using equation (1-22) with 6 harmonic terms, the high frequency skin

effect approximation will be valid provided



FIG. 1-10 NORMALIZED SURFACE CURRENT DISTRIBUYON FOR
THREE WIRES WITH CLOSE SPACING.
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a/d’ > 1 (1-69a)

d

8,2
——————9(-‘—) <« 1 1-6
3 (1-69b)

s
(1-925)
These conditions are satisfied by most wire sizes used in practical

antennas operating at frequencies above 1 MH z° ) for example: 1/8 inch

radius copper wire has the following values

‘3"./"2
Frequency (MH,.) a/ dg (1-9d_/a)
8

1 34  1.1x10°°
10 107 8.5x10°%
100 340  8.0x 107>

The failure of the skin effect approximation for extremely close
conductor spacings places no serious restriction on the usefulness of the
solution, since in practical applications the minimum spacing, deter-
mined by the thickness of the wire insulation, is usually within the range

of values covered in Fig. 1-9 and Table 1-1.

4. Comparison with the Work of Butterworth
As previously mentioned, Butterworth has calculated the chmic
resistance of systems of parallel wires, In this section two of his

formulas, rewritten in the form Rp/Ro’ are compared with the present
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calculations of additional ohmic resistance due tothe proximity effect
(Fig. 1-9). The first graph in Fig. 1-12 is a comparison with Butter-
worth's ''semi-empirical formula'! which, for high frequencies, can be

written as [10, p. 709, equation 53]

2
R 1 u (a/c)

<P - w (a/c)? + n - (1-70)
R, 8 'n 2(1- 3 v _(a/e)%)?

where u_, v, and w _are constants which depend on the number of
conductors in the system. This formula gives results which are in fair
agreement with the present calculations.

In the second graph of Fig. 1-12, the present theory is compared
with another of Butterworth's formulas, one which is often found in
handbooks on coil design [11], [13], and [14]. This formula is derived
by making assumptions similar to those already discussed. Consider
each conductor to be in a uniform magnetic field due to the other
conductors. With (1-53) and (1-4), the power loss per unit length in the

tll ]
m  conductor is

2 |' 2 2
o 1 8 1, , .2 1
Pm * 43 R L1 +-2'(a/c) (Z m) ] Watts/meter
=1 (1-71)
#m

and the resulting ohhmic resistance due to the proximity effect becomes
R - 2
Pl 2 z 1 .
3 (a/c) [ ( b (1-72)
° 1 t=1

n
[
Lt
1= 2=

#m

n
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.1-12 THE ADDITIONAL OHMIC RESISTANCE DUE TO THE
PROXIMITY EFFECT-COMPARISON WITH
BUTTERWORTH'S SOLUTICNS.
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As seen in Fig. 1-12, this formula gives results which are obviously in
error for spacings in the range 1 <c¢/a < 2. It is applicable only in a
region (c/a >> 1) where the proximity effect is of little interest, since

values of Rp/Ro are small and fairly independent of the number of wires.

5. Optimum Conductor Spacing when the Cross Sectional
Dimensions are Restricted

In certain applications a given number n of parallel, in-line
conductors must fit within a specified length g; see Fig. 1-13. Itis of
interest to ask for which wire radius a, or spacing c/a, is the resistance
of the wires a minimum. If there were no proximity effect, making the
radius of the wire as large as possible (a2 = £/2 n) would minimize the
skin effect resistance. With the proximity effect present, increasing
the wire radius increases the loss due to proximity and a minimum
resistance point is reached where the decrease in skin effect loss is
just balanced by an increase in proximity loss. In Fig., 1-13, the
dimensionless quantity 27 £ R/n Rs, which is proportional to the ohmic
resistance per unit length of the system of conductors, is plotted against
the normalized wire radius a/f. The points of minimum resistance are
clearly exhibited in Fig, 1-13 and the corresponding conductor spacings

are listed in Table 1-2,

Number of 2miR
Conductors n a/t c/a RS
2 0. 250 1,00 5.33
3 0. 148 1.1¢ 10. 41
4 0.098 i.37 16.07
5 0.071 1.50 22.01
6 0. 056 1.59 28.10
7 0. 046 1. 66 34,30
8 0.039 1,71 40, 57

Table 1-2. Conductor Spacings for Minimum Resistance.
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6. Conclusion

Systems of equally spaced, in-line conductors carrying equal
currents in the same direction have been studied. A set of integral
equations was formuilated to determine the transverse distribution of
axial current at high frequencies when the current is confined to a thin
skin near the conductor surface. Using the integral equations, an
approximate solution for the current in the form of a trigonometric
series was obtained. For two wires, the approximate solution for
the current showed good agreement with an exact expression obtained
by a conformal mapping procedure.

With the current distribution determined, the high frequency
resistance per unit length of the system was calculated for various
numbers of conductors and spacings. The results of these calculations
may be summarized qualitatively as follows:

i. For small numbers of conductors, the additional ohmic
resistance due to the proximity effect Rp/Ro increases either with an
increase in the number of conductors or with a decrease in the conductor
spacing. This was checked for systems with up to eight wires and
spacings as close as c¢/a = 1.1,

ii, For closely spaced conductors the additional ohmic resistance
due to the proximity effect can be greater than the resistance of the
isolated wires.

iii, When the cross sectional length £ = 2 a + (n-1) c of the group
of conductors is restricted, there is a definite wire radius that will

give a minimum resistance per unit length for the system.
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Only cylinders carrying equal currenis in the same divection weve
considered in this chapter. With a timple scaling of the harmonic terms
on each conductor ii-e present theory and associated computer codes
could handle systems of wires with different net currents in each wire.
Such a solution would be useful for making computations for multiwire
transmission lines where the wires carry currents with equal

magnitude but in oppcsite directions.
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SECTION I
THE ELECTRICALLY SMALL MULTITURN LOOP ANTENNA

L Introduction

The single turn loop has been the subject of much investigation
and from the practical standpoint adequate design data are avail-
able for this structure [28], [29). The multiturn loop, with no
restrictions on electrical size, has received much less attention.
The solutions available are for the “one dimensional" current
distribution and therefore, strictly speaking, only valid for
loops with spacings between turns large compared to the wire
diameter {30], [31].

In practical applicaticns, the electrically small loop iz
often used because it has a desirable field pattern as compared
to larger loops whose patterns have many lobes, The ohmic
resistance of small loops is in general much larger than the
radiation resistarce, thus radiation efficiencies are very low
and greatly dependent on the ohmic resistance. In an effort to in-
crease the radiation efficiency multiturn structures are often
used, The radiating properties (radiation resistance and field
pattern) of electrically small single or multiturn loops are
easily derived, either directly from the integral form of Maxwell's
equations {28], [32] or ay a limiting case of one on the more
general analyses mentioned above, These methods are usually
concerned with perfectly conducting wires and thus provide no

information about ohmic loss of the antenna.
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The ohmic resistance of a small loop is usually taken to
be the same as that of an equivalent length sf straight conductor.
This assumption, although adequate for the single turs lcop, is
not for the muititurn case, In a multiturn loop, tke distribution
of current over the conductor cross section is determined by the
same effects discussed in Chapter I - - proximity and skin effects.
The increase in ohrnic resiatance due to t¥e proximity effect,
which is normally unimportant in large antennas, has a dramatic
effect on calculations of the prwer radiated by electrically small

transmitting loops.

2,  Review of Small Loop Theory

The properties of electrically small loop antennas covered
in the literature are briefly discussed below. For a more
detailed discussion, see King [32] or King and Harrison [28].

The model chosen to represent the multiturn loop antenna
is illustrated in Fig, 2-1. All turns of the loop are circular and
lie in parallel planes., The straight segments of wire interconnecting
the turns and the feed wires of the delta-function generator are
short, parallel and closely spaced. These are assumed to have
negligible ohmic resistance compared to that of the overall
circuit, and to contribute negligibly to the radiation resistance
since parallel segments carry equal and opposite ly directed currents,
The dimension 2¢ is exaggerated in Fig, 2-1,

The multiturn loop with n turns will have essentially the

samc total current (I) at any conductor cross section, provided



3 Qad
s e

UNN3INV d00T NYNLILINW 3HL 804 13A0W 1-2 914

]

[}
t

AL
Chndiaairi A

D
=
—

PPN PIE JUvPn

—<}
=
—<

-0=S
(S)QoA-=3
10}b4dudo
uoioun 4
bijag

W ..




e —

-50-

the total length of the locp is much less than the free space wave-

length at the operating frequency. More specifically,

I(s) =1

when

Brb<<l
For this analysis, the following additional constraints are placed

on the wire radius a and the turn spacing c,

aceh , 3Oa<<l

22 2
nec <««b , csa

A real power equation expressed in terms of the scalar and

vector potentials 3 and A for the loop antenna is

— - 2 -
Re( Je Eédv) = Re ( T dv - J Adv - iw n&ds)

¥

where J represents the free current density, n the free surface
charge density, ¢ the conductivity of the antenna wire, and E

8
the electric field of the delta-function generator, The first three
intagrals are over the volume occupied by the loop conductor and
generator while the fourth is over the surface of this volume., An
e” ™ time dependence is assumed,

rig, 2-2 shows sections of two typical loop turns and the
coordinates associated with them, Making use of (2-1), and

assuming the transverse current distribution to be the same at

. . th
any cross section, the current density on the m turn becomes

(2-1

(2-2)

(2-3)

(2-4)

(2-5)
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_ A
T (72 00 0) = T (r,0) %

where

m a
/ f Jm(r, 8) rdrdg = 1
*q=-m “r=0

The assumption of constant current also precludes the possibility

of a charge accumulation on the loop turns, Therefore,

=0
With (2-6), (2-7) and (2-8), and thc definition of the delta-function

generator

E6 = - Voa(s)

(the distance s is shown in Fig, 2-1), (2-5) becomes

n o a
v, = z _";g_‘l/ [ J‘fw (r, a) rdrde
m=l] Azery r=0

i1

+ Re [ -~i2nbw f me (z, a) An% 9) rdrde]j

f=-m1 r=0

Am is the component of the vector potential tangent to the axis of
the conductor of the mth turn,
Referring to Fig, 2-2, the vector potential at point A due

to the current element at point B is

(2-6)

(2-7)

(2-8)

(2-9)

(2-10)

sl 2 10
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“’o eisoRmL

dA (r, 0, @) = g J (r', 8')(b+1' cos §')

cos (p - 8') r'dy d§'dy' (2-11)

where

Rmf: = {4bzsinz [(9 - d )/2 ] + 4(m-£)2 cz + rZ + rlz
1
+ 2rr' cos (¢ - @' )} z 212
The vector potential at A due to the current in all turns is then

iR
Amcp -z--— z [[ f f .6 (r', §" ella:mrt

=em §'=-n 1r'=0

cos (9 - ') (b +1' cosg') r'dr'de'dq>'] (2-13)

Introducing the condition on the donductor length described in
(2-2), the exponential in the integrand of (2-13) is expanded in

a power series in soR Keeping the first two imaginary terms

m{
in this series yields
3.3
ig R 8 R
Im(e mz) = BoRmz - ._9..6._’_“.!'_ (2-14)
and the imaginary part of (2-13) becomes
i n a
n 3.2
: H [ 1 BO Rmf»
Im(Amw) ’W z sz(r ’ Q') so' —T——)
Il

P ==7 9':..-" r'=0

cos(g- ¢')(b + ' cos ¢') r'dr'da 'dgp'l (2-15)
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For the purpose of calculating the second integral in (2-10), the
radiation term, and approximate value of the vector potential
Am:p is used, Subject to the rcstrictions on the conductor radius
expressed in (2-3), Amcp is approximately the vector potential
that would exist on the surface of the wire with the loop current

I located along the axis of the conductors, King [33] discusses
the validity of this type of approximation when used in calculating
the vector potential, With this simplification, (2-15) reduces

to the following

Wy 3.2
p.OIb B R
Im(Amw) = y z ——-z———— Cos(c@- Ndey' (2-16)
=1 "=
where
Rmz = {4bzsin2 [(o- /2 ]+ "e(m-l,)Z c'Z + az} (2-17)

and (2-10) becomes

n’ a
2
nl (r, 8 )
vV =1 rdrdg
(o)
I
r:

L 9 b a 2
+ ._.9_179___... E - Rmz cos(a - g ')de'] (2-18)
£ =1 '

8'=wn

Fvaluating the sccond integral, (2-18) becomes

[T RYOWS -t N

e e N O S A AP

.
L= et
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b1} a
B, 2z p)
. { m=l - -
g=-m T=

=1 [Rohmic + RRad.]

22 4
"nBo

where the two terms on the right hand side of the equation are

identified as the ohmic and radiation resistances,

The radiation efficiency of the n turn loop is now

E - RRad. ) 20n2n234b4
A - R R - 2
Rad, Ohmic

]
20m nza :5)4 * ROhmic

This simple form is a consequence of the constant current
assumption which makes the chmic and radiation resistances

appear as circuit elements in series,

3, Transverse Current Distributions

To evaluate the expression (2~-20) for the radiation
efficiency the transverse current distribution is needed, If
the skin effecti approximation applies, a/ds s 1, the ohmic
resistance term in equation (2-20) can be replaced by

T a

> [em Trol® 8 R <
S [ [ ] mR gL S
ms= . /r=0 I m=

M,

y

§=-m1

b

(2-19)

(2-20)

(2-21)

K
2
E
=
k.

Dy N Py - . T R A N Ty
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where gmm(e) is normalized surface current density; oner -
equivalent perfectly conducting loop,

Using a procedure similar to that in section 1-3, the
transverse current distribution gm(g) catt be derived, The
integral for the vector potential component A_ ata point

{r, 8, @) just off the surface of the mth turn is

n n ig R
Wb /1  [elene ™
A(r, 9, @) = = ) 2 "

®'=

ny 8 ] my

cos(yp - cp');} dg 'dey'

where

4
Rmz =([ zbz + 4(m.oZ CZ + rZ + aZ + 4(m-¢)c (r cosg - a cosg B

- 2b(r sing + a sing ') - 2ar cosgcosg'] - 2[ (b - r sing) (b - a sing’)

”

i

o pcortor o}

. 7 -
Woikth the raaditine 47 1 a0 e FEL ST, Q) 2T maiuat

compared to unity, Dropping terms of this order, (2-22) becomes

q - pcos(p- ) *

(2-22)

(2-23)

n 11
u b < [ 845" cos(p- )
Arn (r, 3, ») = —0-2" ( 2 2( + |dg'dy’ (2-24)
® 8n j =1
o =em

g'=-m

This is equivalent to considering the quasistatic fields as the
primary factor in determining the transverse curreant distribution,

The integration with respect to ¢f may be expi:ssed in the form

.
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a,.

: n
u Ib 4
A (1,8, 0 = ..""..z.. =P __
Iy M B Zl \l; +q
e':-ﬂ»

o [wm - (A

]C(k)] ds-

where K and E are the complete elliptic integrals of the first and
second kind [3%], The modulus k and complimentary modulus k'

of the elliptic 'ntegrals are

\p+q

s

7

s
-
/
e

/

)Z 2

(kY =1k

Ve
Subject > the restrictions :mposed *4'(2-2) and [2-4)
2 »
2 _(*my l' a tme- s =2
(k" = <-2-S—)L1 * 0() '°(L";2L_‘ +

2
_0_/ le,
- br

\
where
2 2 2 ,
r = féim-l.\.zc +a +r +4iim-fc(r cosy - a comnl)

M,

1
- 2ar cos (g - @") ]°

Since Ty is of the order of 2(m-1)c, (k')z is a small quantity

\2
(kl)z = 0 (.(.n;)_'&).g) cel

and the power series representations for K and E are useful [35],

{2-26a)

(2-26k)

(2-27)

(2-28)

(2-29)
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A7 inCgr)
Subst :uting ine above series int.: (2-28) and dropping all terms
N 22,2 .
sr- .1l corapared to unily a&a/b, (ri-l) cZ/b or less, the integral
‘sr the vdctor potr. utiz; ; becomes

|101 (
Amg™ 80 ®) ¥ =7 9 -2

lal

* 3

1P

[0 1n ()

i

+ 41mn Lln(8b) -

\—JN\J

Except for a term with only z dependence and an additive constant,

this expression is the same as that for Amz.(r' a. z) in the

equivalent system of parallel, straight conduciors, eqaation {2-30).

Due to the symmetry already assumed in this prot:lem,
only tha &, component of the vectoi potentia! is inv.lved in the
exnrrgsign 7fov tha sarface curvent density, gm(s 3.

2A__(r, 8, o)
Y A1) my
gﬂl(e) - uOI 2r

r=a

With (2-31) substituted into (2-32), the resulting equation for the

current density is identical to that for the straight conductors (1-39),

Subject to the inequalities presented in equations {2-2), (2-3)

and (2-4), the transverse current distributions on the loop turns

(2-302)

{22504

12-30¢<]

(2-31)

XV

(2-32)
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and the ohmic resistance per unit length are thesame as those for

R S R L LA S PN ¢ P

a system of parallel, straight conductors which havethe same wire

radius and spacing,

4, Radiation Effic{engg
With the regults of the last section and equation (2-20), the

radiation efficiency of an n turn electrically cmall loop is

20 2 Z a4 b4 23

E, = -
A 20 2231b4+R( )(+ ) :
Rearranging terms, the efficiency becomes
E, = 1 (2-34)
A 8.48 x 10710 \(T——— R

1+ -y 1+ -R-B-

nib')"a' o '
¥

where a' and b' are the radius of the wire and the radius of the
loop normalized to the free space wavelength, fMHz is the
frequency in megahertz, and Op is the ratio of the conductivity
of the loop wire to that of copper (o, = 5,8 x 107 / ohm-m), In
Fig. 2-3, the efficiency is plotted as a function of the dimensionaless
quantity (b')3 al/ fMHzor and the number of turns, The dashed
iines are for no loss due to proximity (Rp/Ro = 0) while the solid
liLes include the proximity effect for a spacing c/a = 1,10, For
most practical applications, these two lines will give an upper
and lower bound on the efficiency obtainable with various turn
spacings,

Neglecting the proximity effect can lead to large errors in

the calculation of radiation eificiency, For example, from Fig,
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2-3, without the proximity effect, the calculated efficiency of

a three turn loop can be larger than the actual efficiency of an
eight turn loop of the same size with close conductor spacing

(c/a =1,10), When the loop is used as a transmitting antenna

the radiated power is directly proportional to the radiation
efficiency, Neglecting the proximity effect can make the computed
efficiency for a small loop in error by a factor of two or larger,
thus errors in the calculation of radiated power can be as large

as one hundred percent,

In some applications a constraint is placed on the volume
the loop antenna can occupy, If the depth of winding £ is
restricted to a value much smaller than the diameter of the
loop ({ <<« b, see Fig. 2-4) the resvlts of section I-5 can be
used to optimize the efficiency, With no proximity effect, the
maximum efficiency is obtained when a ={/2n and is independent

of the number of turns n,

1
E =
A -9
1,70 x 10 ,If g, !
1+ - MHz"r
(b~ ¢

If the proximity effect is included, the antenna has optimum
efficiency when the turn spacings ire those presented in Table

1-2

1+

A 8,48 x 10710 Ny <2an>
n(b’;3 A

(2-35)

(2-36)

L
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where §' = /) and (2n/R/R°®) is the value given in Table 1-2,
Both equations (2-35) and (2-36) are graphed in Fig, 2-4,

2
As the number of turns is increased, the term-—lr;- <-—1-T-£4B~/\
R

in {2-36) increases, causing a decrease in the efficiency,

With the antenna restricted to a volume of this shape, it is
better, then, to optimize the wire size rather than to increase
the number of loop turns, At a first glance, this last statement
seems contrary to the common notion that increasing the number
of loop turns increases the radiation efficiency, It raust be

kept in mind that one usually speaks of increasing the number of
turns while keeping the wire radius and spacing constant, snome-
thing which is impossible to do when the depth of winding { is
also fixed,

Power is usually supplied to electrically small antennas
through a suitable matching network, The components in the
matching network often introduce losses as large as the ohmic
loss of the antenna, The overall radiation efficiency of the

antenna-matching network combination is then
E=E,*E

where E A and EM are the efficiency of the antenna and matching

network individually, In this chaptei'. only E A is considered;

for a discussion of matching network efficiency, see Wheeler [36],

(2-37)
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5, Conclusion

The analysis in this chapter has shown that the results cbtained
for the ohmic resistance per unit length of a system of straight
wires are applicable to the electrically small multiturn loop when
the depth of winding of the loop is small compared to the loop
radius, (uc)2 << bz. Two separate calculations of the radiation
efficiency of small multiturn loops were made: the first includes
the added resistance due to the close proximity of turns and the
second neglects all proximity losses, i. e, considers the ohmic
resistance of the loob to be the same as that for an equivalent
tength of strzight conductor. A comparison of the results for
these two cases indicates that the proximity effect is an important
factor in making accurate calculations of radiation efficiency,
sspecially for locps whose efficiency is below 10%,

The problem of optimizing the radiation efficiency of an

AU i p et et

electrically small loop confined to a fixed volume was also
examined, The special case of a circular, multiturn loop
restricted to a volume whose «epth is small compared to the

loop radius /£ << b) was treated, VFor this geometry there is

an optimum wire radius which gives maximum radiation efficiency
for a given number of loop turns, With the optimum wire radius
used for each number of turns, the radiation efficiency v-as

found to decrease with an increase in the number of turns, indi-
cating that, from the efficiency standpoint, it is better to optimize

the wire radius than to increase the number of turns,
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The change in the fransverse distribution of current due
to the proximity effect wil} also alter the loop inductance. The
inductance of the loop, however: does not have to be known to
a high degree of accuracy in most applications, since it is
usually made to resonate wilh a variable capacitance ina

matching network,
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SECTION I
EXPERIMENTAL INVESTIGATION

L Deacri&g’ e of ?_Erimenhl Appuratus

To verify the results of Section I, experimental appsratus
was constructed for measuring the transverse distribution of
current on a system of paralle! round wires, see Figs. 3-1 arcd 3-2,
The paralle} wires are modelled by 34* long copper tubes inter-
connected with wire braids so that they carry equal currents in
the sam- direction. A 100 Watt, 100 KHz transmitter drives a
current of the order of 1-2 Amps. through the model, which for
matching purposes is fed in series with a 52 Ohma load. The
current distribution is measured by sampling the transverse
magnetic field with a small loop probe moanted on one of the
tubes. This tube has plugs fitted with beryllium copper finger
stock at both ends; these maintain electrical contact as the tube
is rotated (Fig. 3-3 ). The voltage at the terminals of the
loop probe is zmplified and metered using a General Radio
model 1232-A Tcned Amplifier and Nuii Detector.

At 100 KHz the 11" copper pipes are about 200 skin depths
in diameter; thus the axial currents are confined to a thin
layer near the outside of the tube, The tubes are also about
20 skin depths thick, so they are electrically equivalent to 2olid
conductors,

To maximize the angular resolution of the measured

current distribution, the radial dimension of the loop probe
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was made as sm:all as possible (0. 050*). Siuce the fields ars
fairly oniform over small lengths near the center of the tabe,

the axial dimension of the loop could be a few inches long. Using
the theorv of Whiteside aad King [37] the voltage at the terminzls
of the rectangular loop when the tube carries a total cerrent of

one Ampere is

4 2 . 2\%
-3 (RL' Xo RL) Volts (3.1
5v| = 3.55810 ‘r “{ Rz " 2— m L} )
L xo
Y] ] 4L 7 2
. - -3 5 . ra (3-2)
Xy = 6.38 x 10 ’erln lm ‘I'I‘m [@J

+ Z(r-D-la-er)

where 11_. ‘z are the radiai and axial dimensions of the locg in
inches, r the loop wire radius in inches, and R, the load impedence
at the prcbe terminals which is abcut 50 K Ohms for the G.R.
232-A. From( 3-1 1, the 3" x 0, 350" lcop probe constructed
of 28 gage wire provides a 0. 6 m volt/Amp signal. This is more
than adequate for mstering on the G. R. 1232-A, since it has a
maximum seasitivity of 10 y Volts for a full scale deflection zat
V0 XHz, For rigidity a polyfoam support was piaced between
the loop and the tube (see Fig. 3.3 ).

Initial measurements indicated that the metering circuit
wag picking up a very strong signal irduced by the large loop
formed by the tubss and interconnecting wires., To eliminate

this interference, the meter was completely enclosed in a

w4 W————
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copper box and all cables used were doubly shielded.

The G. R, 1232-A Tanaed Amplifier and Nuil Detector was
calibrated at 100 KHz using a pair of Hewlett Packard precision
attenvators =s a etandard. Fig. 3-1bis a schematic of the circuit
used for the calibration. The linear scale meter reading is
plotted against the attenuator setting in Fig. 3-4a. The small
vertical lines indicate the experimertally determined points;

a ¥ unit reading error is assumed. The solid line was constructed
by fittirg polynomials to the experimental poirts over three ranges.

The polynomiais ix the form csed to correct the experimental

data are

V' =V , 63<V_ < 130 (3-3a)
m m -— m -

V. =V +3.5.4.8x10°5V_-16-5.7 x 10°%V_-16)%, 16<V_< 63 (3-31)
m m m m m

V =V +3.5_, 0<V < 16 (3-3c)
m m - m -

where Vm is thc meter reading and V'm the corrected meter
reading. This correction is epparcatly only a function of the
meter circuitry and not the linear amplifier section of the
instrument, since the same correction applies over a 40dB. range
of amplificr gain,

Since thc theory predicts both positive and negative currents
on closely spaced tub -, a method was devised to experimentally
verify a 180° phasc shift in the current density. Referring to
Fig. 3-1, a small 1crrite loaded loop is used ¢o sample the field
of the large lonp forined by the tubes and the interconnecting wires.

“his reference signal is added to the signal from the current probe
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in a resistive summing network and then metered, The phase of
the current on the tube is determined by noting if the signal from

the current probe adds to or subtracts from the reference signal,

2. Correction for Interconnecting Wires

In addition to the net currents in the tubes, three other
current elements influence the current distribution on the tube
cross section. They are currents in the horizontal and vertical
interconnecting wires and negative line currents which represent
the absence of a continuation of the axial current beyond the ends
of the tube, Referring to Fig, 3-5, these currents can be treated
as filamentary elements since each is at a distance from the
probe which is large compared to the tube radius (s = 20a,

w = 60a). As a result, their effect on the transverse distri-
bution of current is additive in the sense that it may be subtracted
from the measured data to obtain results for direct comparison
with the theoretical distributions,

The vector potential at a point (r, §, z) near the center of

the mth tube is

n
. A A A -uol ,
Rron = A, + 9a,, =43 (85 o0
=1
! =T
s )
. n
-u I 1
In(r )} dg'd' + A’ My 1 dz' - Y
m§ z mzt? Z = -
z'=0 lf-"l mﬂ
\_‘ 1 1 uOI 9 1 1
VA sl QAR A T 27— - = dy ¢ (3-4)
2=1 mg =1 mg3 mMJ
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1
H

R o= [(w-rsirg)z +(2(m-fc +r cosgz +(z-2 )2] (3-5)
, 2 2 . 213
R g2 = {(z'-2)" 4+ {z(m-Pc + r cosg)” + (r sing)” ] (3-6)
2 2 . 2213
R g3 = {(s-2)" +(z(m-fc + r cos9)” + (y-r sing” ] (3-7
2 2 3213
R o= [(s42)” + (2(m-fHc + r cos®d” + (y-r sing” ] (3-8)
. ~{6) is the normalized surface current density induced in the
cylinders by the three external current elements, It is the term
which must be subtracted from the measured current for comparison
with theory,
The following boundary condition relates A_and g__ .
m mc
-21a ZA ZAm ] (3-9)
gmc(u) = ——-.“01 T—-—- - sind ’T—zz r=a -
z=0

Substituting {(3-9 into (3-9 yields
m

Bnel®) [1-cos (86 ] 4
g Z
mclf T -’1 .,Z +1- 27 cos (8-8")

g=-n

n

o
+ f Z Km’z(a,e') 84c (¢) ad : -(—:37) (a/w +2(m- 4 c/w)

g L
s n ’

cosfp - sin9> Z l' dz' -(—-s:az—-) (a/s +2(m- £ (c/s) cosq)
S

" Z --—L-)-3 dz' + «mg/ Z 3 dy (3-10)
r

. 2=l (mﬂz y=0 =1 m£3

. e v A i o
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where
rla = [ (1-(a/w)sing)” +(2(m-t)(c/w) +(a/w)cosg)” +(z'/w) ]
1
e = [(2'/8) +(2m-Dc/s) +(2/) coz;e)Z +(a/3)z(,im)z 12
mi2 '
z .1
g 3 = [1+(2m-2)(c/e) + (3/3)‘:“9)2 +({y/s - (a/s)sine)‘ ¢
mf

The first integral in (3-10) was evaluated in section I- 3; the other
integrals are a standard form [19, p. 50, 200,03]. Performing

these integrations, (3-10) becomes

n ' n
8.l = -T:— z K, £6:0" 8,(07d0" - 2(a/w)(s/w) 2
g'=r li#m Fl

(a/w + Z(m-l,)(c/w) cosg -~ 8ind)

[(l-(a/w)sme) + (2(m- g)(c/w) + (a/w)cosa) ] [(l-(a/W)smo) +(2{m-§
3 — - 2(a/s) 5‘ (2/8' +2{m-~g)(c/8s)cost)
(c/w) +(a/w)cose)” +(s/w)" ]2 ;l [ (2(m-g)(c/s8) + (a/s)

1
-
<:os¢:s)Z + (a,/s)z(siue)z ] { [14(2(m-2Mz/8) + (a/s)c:os@n)z + (a/s)z

n
— 4+ 2(a/s)sina L
(sing)” ]° ; 2 [1+(2(m-2)(c/s) (a/s)cosd” ]

x|
(w/s)(l - (a/w) 8ing +
[1+ (w/s) (1-(a/w)sina) +(2(m-g)(c/s) + (a/s)cosn) ]a
(a/s)sing

[l+!2(m-.¢.)(c/8)-!-(a/s)cosg) +(a/s) (sing)" ]-’- )

(3-11)

(3-12)

(3-13)

(3-14)
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When terms of order (als)z or less are dropped, equation (3-14)

reduces to
n a n
Smc('-‘!) = -‘%—' f Z Km, {!-‘9‘) g‘c(g) d: + 2als) 2
831 £=1
a'=em m
1 o s/w ¢ sim - 2(m-gt){c/w)cosa
1+ (slw)Z + ﬂm—:)z(civ:)t 15 [1+4m-9" (c/w)” ]
n
+ sing - 26als) Z als + 2{m-t)(c/s) cos
1 *4(m-z)z (CIa)rl =1 [ tal/3)" + H{m-£) (c/s)
| 1 - L (3-15)
+ 4(m-0(c/s)(a/s) ] [1+4Hm-0"(c/98) }°

If the interaction between the induced currents on the tubes
is ignored, that is, each tube is considered as isolated from the
others, the integral in (3-15) disappears, and a first order

approximation for the current results,

n

1
g (o) = 2(al/sj -
me ; 1+ (s/w)* + 4(m-°(c/w)° 1
(s /W)2 [sing - 2(m- f(c/w)cosa ] + sind
{1+ 4(m-2)%(c/w)° ] [1+4(m-0)°tc/e) ]

n

- 2(a/s) (a/s +2(m-f(c/8) cosf)
: ; [ («':l/ts)2 + f’:(rn-ﬂ?'(c/s)2 + 4(m-f(c/s)(a/8)cosa ]
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| :
{

[+ Hm-0 (el )?

The three terms ic (3-1£} are due to the curreats in the vertical
interccnnecting wires, horizontal interconnecting wires anc axial
tube extersions, respectively, The currexats induced by the
horizontal wires are the major factors since they are about

{w/ s)z Z 10 times greater than those due to the vertical wires and,
for large spacings (c/s) =1, at least 3 times greater than those
due to the tube exteusions,

To solve for the current in the complete expression (3-15),
wkich includes interactions between tubes, a trigonometric
series is posutlated for €, c(ﬁ). Since the average value of
gmc(e) is zero and it is not symmetric about the lines O:nor
n/2 : 3n/2 the series has no constant term and contains both

sine and cosine terms,

q
g0 = 2 [ 8 cp SO8(P) + by sin(pd) |
P

Substituting (3-17) into (3-15), the following results are obtained

n even

q o

E amcp [- cos(pd) + L;-%L K{Jy, 9') cos (pe')du']
o m, n+l-m

P §' =-1r

n
q
P

- m, n+lem
P [} zem

(3-16)

(3-17)



nIZ q n 1Y
: Z 2 a. 1 [K 3, s +(-0P K (3. 0% ] cos{p'}d&
£=] p:l P " m, 2 m, atl-£

n/2 q »
1 P
+ Z b -_— K9, ) - (-DP K (3, ") ] sin(pdid¥
- fcp e ]: m( m,n¥l-2 o
it

plw[zlsin - 2;m~l‘c!w)cosé

= -2(a/s)
) ; 1+(slw> +4m-2 e/ TF | [1+4m-8" (c/w)” ]

n
+ sino 2 . + 2{a/s) (als -l-ZQn-l.)(cIs)cosa
[1+4m-23 (c/2) ] [(ala) + 4m-4 (cls) + Hm-2{c/s)
. 1 (3-18)
() cost] [1+4m-2°(c/8) ]
m=1, 2, - - -n/2
a odd
q ¢ /2 n
pJ, m § (n+l) P
2 a _ [~cos E +j:9-—-h(m)
= ™ 2po, m = (n41)/2 K \
P 8=

Ly P, m #(nH)/2
K(u, ¢') cos(pu')de'] + L b . [ - sin3
m, n+l-m = mep 2(p+1)8, m = (n#l)/2
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P e (n-nf2
- ED oy K@, & sinps')ad ] + C 2
w j m,n#-m gl Z kp
¥ =-u pra® p=1
n
[ . 3 (i-nlz q
] P ’'d L ] [] N
I~ K (5. 0" +(-0P K (s, &'} Jcos(p)d’ { + D Py
\ - m, 1 m,ntl-2 £1 o=l
i4m
Lif ) a
1 .
= K (5, ) - (-DPK (@, ¥) ] sin(p')ds" ( + 2
{ﬁ g m, £ m,ntl-£ j pz=l -r-rz}l cp
A =-17
i q ﬁf
[Dim) K(0. ¢) coszp)as'] + » b . (M=
m, (n+1) /2 -1 2 ©CP
§ =-nt pP= g =-n

1

n
K (a, @) sin(2pH]) 5)dg ] = -2(a/s) z
1

m, (n+1) /2 [1+(s/w)° +4(m-9(c/w)°]°

Ls/g)z [sind - 2(m-f(c/w) cosa] + sind
[1+4m-0° (c/w)° ] [1+4m-0° (c/5)°]

n

2{m-
+ 2(a/s) z > {a/s + Z(m H (ZC/S) cosf)
[(a/8)” +4(m-9" (c/8)” + 4m-9(c/s)(a/s) cos(]

4=1

1
[1+4(m-0%c/a) |2

1-

m=1, 2, « - - (n+l)/2 (3-19)
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The dcfinitc integrals whick appear in (3-15) and (3-19) can be
reprezenied by two forms. The integrals coataising cos{pf’) terms
are the same as tae integrals dexcted by X2, m-i, pj ia settion

-5 and evalvated in Appexdix A. The integrals involring sin{pz2’)

texms are of the form

14
f {1 +2m-5)(c/a)coss - (c-82 cose’

i
l’ (n_. me- z- ) = o
g " j [ «m-l)z(cla)z +2 + 4{m-tj{c/a)cos=
of=-n

+ sink siea’)] siofp='jdg’

- [4{m-2)(c.a} * 2 coslc") cos5' - 2 sing sing' }
F= 1,2+ - -

An evaluation of this integral is in Appendix C, ike resalts of which

are
I'{g, m-%, p) = v3 1 1] [A'sz +R's+C’!
(1-5°) (-9)P
where
2 2 3
s = (d{m-D"{c/a)” +1+ Hm-{c/a) cosy)
A' = sin(a - (p-1) 3)
B' = -2(1 + 2(m-1)(c/a) cosa; sin(p«)

C' = -sin(g + (p+l) ¢)

' -1 sing =
Jﬂ-tan <Z(m-z)(c,73) ¥ cosq) o (m-2) =1, 2, - -

tan! / -sino
( an Qz(m-l)(da) +cosa) . (m-g) 3-1,-2, - -

The principle value of t:am-l is used in (3-21f),

£3-20%

(3-21a)

(3-21%)
(3-21c)
3-8

(3-21¢)

(3-219)



SR i 1
aleg

" WY,

RAEGETA S ix et WooA?
T W IR T s, e g

g\ cyr oy ctven
bt "

v e I
o WL NI PRI SOV Py - oL
1 ] 1]

e

BT

-83-

Witk {3-2i), the systiem of egzatiozs (3-18) for the case n vven

becornes
q nf2 q
21 % nep [ - coslpe) +{-9P 115, Zm-n-1, )} + ; Zz, 2
p= = P
s
q
[1G, m-¢, p) +(-B° 1(5. mien-t p)) + B [~ sinlpg-(-1F
p=1
nf2 q
1 - < > -
I'(5, 2m-n-1, P} + z Y by, [T, =2 B
£ pal
sm
n
-(-DPI'(5, misn-i, p] = - Aale) 3
P=|
2 .
1 (s/w) [ sing - 7{m-A{c/w)} cos2
[1+(s/w) 4 sm-0)2(ciw ]2 { [1+4m-8° (</%)°]
n
+ sing 5 . +2(a/s) z a-ls + 2(m-t){c/s) cosa
[1+4m-9"c/8)7] o1 [tals)” +4m-)(c/s)
1
1- 722
4(m-2L)(c/s)(a/s) cosa] [1+4m-2"(c/5) ]
m=1,2, ---n/2

(3-22)
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Similar results are obtained for the case b cdd. Formala (3-22)
Tepresects a set of n/2 equations relating the qn unknowns, This
system of egations caz be solved by either of the two appraximate -
metheds discessed in section I-5 rmethods of collocation and least
sgoares.
Appendix D contaics a listing of a compater program whick
solves for the coefficients ‘mcp and bmcp by the smethod of

collocation. The ga matching poirts in the internal 0 < €< Zrare

chosen as
9!— = k(‘ng;-i-)' kzl, Z"—“ (3°23)

on all cylinderas except the center cylinder in a system with n odd

where the peints are

2k-1
B = -(-T)("a;lL). k=1,2--q (3-249)

Examples of the correction currents g 27 plotted in
Fig. 2-6. Both tke full correction current (3-17) and the first
order correction current {3-15} are shown. A comparison of the
two curves indicates t. - the interaction between induced currents
on the tubes must be included in any accurate expression fcr the

correction current,

3. Results of the Measurements

Current distributions were measured on systems with up
to six cylinders and spacings ranging from c/a = 1,10 ¢to c/a = 2,50,
After correcting for meter calibration, the measured values vere

normaiized. The procedure for n.rmalizing was first to measure
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the current distribution on the system of conductors with the meter

EITLN LA 18 I Wt 2410 s U et MY of JRTINS S pAtapey

gaia held constant aad a known curzrent flowing through the model,

The system of conductors was then replaced by a single conductor

L FRIRN

anc the carrent dietribution measured with the meter gain and
current through the model the same as in the previous measurement,
The normalized currents on the multiwire system were obtained
by dividing the measured currents by the average value of the
measured currents on the single cylinder,

The measured currents, with the correction current e
subtracted cit after they were normalized, are compared with

the theoretical distributions in Figs, 3-7 to 3-11, The circles

about the measured points indicate the range of error ( i 2 scale
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units) associated with the repeatability of the measurements, The
measurements are in good agreement with the theory,

The minimum spacings used in making the measurements

were restricted to c¢/a =1, 10 for two wires and c/a =1, 25 for
three or more wires, For three or more wires, the currents at
adjacent points on consecutive cylinders are quite large when the
spacings are small, The radial dimension !r of the loop probe

is a significant fraction of the distance between cylinders; for

P O A T 2 L P RSSO B A AR 8 2w V) B

example, when c/a = 1,10 the gap between the cylinders is only

LR 0 =

WELL

three times as large as £. As a result, the loop responds to the

currents on both cylinders giving an erroneous interpretation of

PR e AT

the current density, The problem is not as severe for two wires

since the currents at adjacent points on the two cylinders approach

RN R R PN T

zero as c/a goes to 1,
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4, Conclusion

An experimental apparatus was constructed to measure the
transverse distribution of current on systems of parallel conductors,
After correcting the measured data for equipment calibration
and extraneous sources, good correlation between theoretical

and experimental current distributions was obtained,
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Appendix A
Evaluation of the Integral I(g, m-1, p)

i
14 2(m-2)(c/a) cosp - cos(a-a')]cos(pa’)de’
{ 4m- !,)Z(cla.)2 +2 + 4m-4g)(c/a)cosa ~ (4(m-2)

I, mg, p) = =

§'=~m
(A-1)

(c/a) + & cosg) cosg’ - 2 sing sing’

Using the trigonometric identity cos(A + B) = cos A cos B - sin A sin B

to combine the cosg' and sing' terms, the denominator of the integrand

becomes

2
D=r ,6 =5 +1 + 25 cos(8' + ) (A-~2)

where

[P

S = (‘l(m--lz,)z(c/a)2 +1 + 4(m-g)(c/2) cosn) (A-3a)

-1 sina -
metan | pI)Nera) Feosg 0 (WeH =L 2 - - (A-3b)

¢ = -1 -5ing
tan * Ji(c/a) Teoss ¢ (m-A =L -2, - - J

The principal value of t::m"1 is used in (A-3b). The quantities s and {
are identified with the geometry of the system in Fig, A-1l, Applying
standard trigonometric identities the numerator of the integrand is

expanded, giving

N = %{-A cos[ (p-1(8' + )] + B cos [ iyt + )]
- C cos [ (p+)(a! +{)] - E sin [ (p-1)(g' + ¢)]
+F sin [ p(a' + )] - G sin [ (p+)(8' + w)]} (A-4)

Sa L it ds bt Y VENIRIY “i b -

P AT

Sy S du i tanblarih 2,

4
19
ke
Y
3
3
%
%
;
«
7
7
§
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where
A = cos(g ~ (p-1} ¥)
B = 2(1 + Am-f)(c/a) cosa) cos(p})
C = cos(p +(ptl) 4
E = sin(y - (p-1) ¢)
F = 2(1 + 2(m-f(c/a) cosg) sin(p})
G = sin(8 + (pH)y)

In terms of the new variable { = (ar+§) equation (A-1) is

-A \.os[ (p - l)gl + B cos [p&]
I -2, p) = z
. m P f s -3-I+Zscoa(§,)
§ =-n

-Cecos[(p-0§I+Esin[p§]-F sin[(p+1)§lda

The sin [ ( )§] terms integrate to zero and the remainiang terms are
in the form of a definite integral which is readily evaluated

[19, p. 219, 858, 536]

ZTT Zﬂl‘ll - HZ -1 P
HP J1-H » P=L 20 -
cos(p§) d€ =
1+Hcos¢ 217 =9
2372 » PF
=0 (1 - HY

Substituting (A-7) in (A-6) and rearranging, I(e, m-l, p) becomes

/ 1

2
(1_82)(_s)p+1 [As" +Bs +C], p=1,2---

I(g, m-¢, p) =
-1

8(l ~s)

- [Bs +2C], p=90

(A-5a)
(A-5b)
(A-5¢)
(A-54d)
(A-5e)
(A-51)

(A-6;

(A-T)

{A-8)

oo et
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Appendix B

Listings of Computer Programs

This appendix containa two computer programs written in

AR AR SN MG CUEQr 2T TRty ¢ 2 i toe ) RSt i b
4 4 v

Fortran IV ianguage for use on thel, B, M. 360/65 computer, .

Telsr

Both programs compute the coetficients amp of the trigonometric

series for the normalized surface current densities, &’ and

P R P
e,

the normalized resistance per unit length, RlRo‘ The input/
i { output formats for both pregrams are identical and specify
the following parameters: the number of conductors n, the number

: of harmonics q, and the spacing c/a,

At ki Nl e i b d

Preceding page blank
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FURTRAN LV “ROGRAM FOR SULUTION bBY THE METHUD OF COLLOCATIUN

THIS PRUGRAM USES THE METHOD UF CULLCCATION TO SOLVE A SYSTEM OF EQUATIONS
FOX THE COEFFICIENTS UOF TRIGONUMETRIC SERIES. THE SERIES REPRESENT THE
NUKMAL §ZED SURFACE CURRENT OENSEITY ON EACH WIKE IN A SYSTEM OF NW EQUALLY
SPACED, PARALLELs PERFECTLY CUNDUCTING WIRES. USING THIS CURRENT AN
APPRUXIMATE VALUE UF THE NORPALIZED FIGH FREQUENCY RESISTANCE UF THE SYSTEM
IS CALCULATED. THE NUM3ER CF HAKMUNIC TERMS USED TO DESCRIBE THE CURRENT ON
EACH wiRE IS NHe THE RATIO CA IS EQUIVALENT TU THE SPACING BETWEEN WIKE
CENTERS DIVIDEC BY THE WIRE DIAMETER. FOR NW WIRES AND AND NH HARMUNICS THE
SILE OF THE MATRIX T{leJ) PUST BE AT LEAST AS LARGE AS T{NWI¥NH#1,NW1*NH)
wHERE Nwl=NW/2 FOR NW EVEN ANU Nwl={NW¢l1)/2 FOR Nw GCD.

LOGECAL LSCLVE

UUUBLE PRECISION PI,THETAOEP ¢CA9 SUURCE»T¢SWIN

CCMMON THETA(SEPPI/MATRIX/T(48+49)

WRITE(6,1)
L FURMAT (1M1}

Pi=3.1415526535897930D0
2 READIS5,+3) NWoNH,CA
3 FCRAAT(ELe3X91243X905.3)

WRITE(6e4) NHyCAINH
4 FORMAT(//7/735X11+,214 AIRES, SPACING CA=yFb6.3y4Hy 11291 0H HARMON

11CS})

NW20=(2#NW+1l ¢ (=108 (NN+l) )/ 4

NWZE={ 2%Nn-1¢(~1)®=NW)} /4

NST2E=NW2 C®NH

NAUG=NH®NW20+1]

DO 14 L=l,NH

NRL1=(NW20~1)#NH4L

C SEIFTING COLLOCATIUN PUINTS

THETA=PI* {DFLOATIL } 1/ (DFLOAT{NF+1))
LEC2#(NH/2) eNEJNHoARDWLoLE. (NF41)/2) THETA=PI*FLUAT(L)/FLOAT(NH#2)

TFE2%INH/2) JNENHoANULL +GTo (INH+1)/£2) THETA=PI$FLUAT{L+1)/FLUATINH¢
12)

DU 14 ¥P=L4NR1yNH
NRWs1¢{M=L) /NH
IF (NH20C.EQ.NW2E) GU TU 5
IF (NKW.ER.NW20) THETA=THETA/2.000
5 NSwsl
N1=NH
DG L4 N=1,NAUG
IF (N.EC.NAUG) CO TU 1}
IF (N=N1) 74746
6 NI1=NLl+Ak
NowahShel
7 NSH=N=-AH® (NSh~1)
IF (NRW.EQG.NSW) GO TU 9
SEP=CASOFLUAT(NSW-NRW)
IF L{2%NSW).EQ. (NW*1)) GG TU 8
T{MeN) ==SWININSH)
SEPZCASOFLIATINRS] NS W-NRW)
Ti{MeN)2TIMIN)=(~1e000) *sNSHES W ININSH)
6U TU 14
8 T{MoN)=~>HIN{2%ASIH)}
60 TU L&
9 LF ((2%NSW)EC. (NWel)) GC TU ]C
SEP2CASDFLUAT(NWSL~24NRW)
FAMoNI=(UCOSLOFLOATLASH)I®*THETA) I/ 2.000- (-1, 000) *ENSHESHIN(NSH)
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RAACRES (VLN £ rts Cut MY

Yo 7

GO T0 14
10 T(MWN)={DCOS(CFLOAT(2*NSh}*THETA))}/2.0D0
s 60 TQ 14
11 SOURCE=0.000
NSELFH=0 :
DO 12 LOL=1oNW2E %
SEP=CA*0FLOATINW+1-LD1=-NRW)
g SOURCE=SOURCE#SWININSELFH)
12 CUNTINVE
; N0 13 LD2=1,NW20
3 IF (LU2.E0.NRW) GO TU 13
SEPaCASCFLOATI(LC2=NRW)
SUURCE=SDURCESSWININSELFY)
i3 CONTINUE
T{MoN)=SOURCE
14 CUNTINUE
15 IF(LSUOLVEI(NSIZE)) GO TO 24
C CALCULATING THE NORMALIZED RESISTANCE
RESN=1.0
NCS =NwW2E*NH
DO 16 NC=14NCS
RESN=RESN®{ (T(NCyNAUUL) ) #22) /FLCAT(NK)
16 CONTINLE
IF (NA20.EQ.NW2E) GO TO 18
NDB=NC S+1
00 LT NO=NDByNSEZE
RESN=RESN+{ {TINCyNAUG) )*22) /FLCAT (2*NW)
17 CONTINUE
18 WRITE(6419) RESH
19 FURMAT(/40X23H NORMALIZED RESISTANCE +FT.4)
WRITE(6420)
20 FURMAT(/40X31H-THE HARMCNIC COEFFICIENTS ARE-)
D0 23 L=1,NW2C
MaNHs(L-1)+1
{ NaNHsL
3 WRITHI6421) L
¥ ’ 21 FORMAT(SLX6H KIRE 11}
s WRITE(6+22) (T(IoNAUG), I=MyN)
22 FCRMAT {5X,12F1C.5)
23 CONTINUE
GO TQO 26
24 WRITE(6:2%)
25 FORMAT(//53H THE T MATRIX IS SINGULAR. NU UNIAQUE SULUTION EXISTS.)
26 GU TC- 2
27 sStTap
END
C THIS FUNCTION SUBRCUTIENE EVALUATES THE ANALYTIC EXPRESSION FOR THE DERFINITE
C INTEGRAL SWIN,
DOUBLE PRECISION FUNCTION 3SwiIN(IHAR)
DUUBLE PRECISION THETASEP Pl s T9CAyPSIoHeByCeENG
COMMUN THETA,SEPWPI
50 IF (SEP) 51455452
51 PSI=DATANIOSINCTHETA)/(=2.0008SEP~-DCOSI THETA)}))
60 TC 53
52 PSI=pPL-CATAN(DSINC(THETA)/ (2.000%SEP+DCOSITHETA)) )
53 S3VSORT(4,0D0*(SEP)*8241 ,()0+4.,0CO*SEPSDCOSITHETA))
A=0,500%DCOS(THETA-PS I *DFLOAT { [HAR-1))
=0} .,000¢2,0DC*SEPSDCOSITHETA) }*OCCS(PS I*DFLOATLIHAR))
C20.500%0CUS{THETA*PSISCFLUOAT( IHARSL))
. I+ (IHARLEQ.O) CU Tu 54
Skl q={AS(S»82)eE8S4() /({1,000 -S*n2)e{-S)es{ [HAR+1))

T

RIS A ey

Rideiie s aay paa o ss Tl

TR

P Sbtiviecy

s
p it

Ehpre st L s o

AL

i LS KA s sy

[R5 STV DR VRS,

sy

oo oo
<o

T AT e L




T O™

LARA TR % 24 iy

TNy

T

X N ke

ERREIEN A ShaS U ASAD I S 15t hansam e ul o

AR P aae & Japa gar 2s oo

EARRGA® e e |

A6

&
<
u

/07

UL SRS
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So Snlin-C8eS5e2,.0000CH /IS8 1.300—5092)}

55 REFuRN :

[+ :
IS FUNCTESR SCORCUTINE SCLWS 5 SYSTEN GF N LINEAR ESUATIUNRS IN N UNKNOWNS :
XY TSIAG CAGSSIAN RLINIMTICN wiTh CRURY PIVCTING. s

LOCICAL FURCTZIA LIOLVEIN) .

DAISLE FULELISICA SEPL,PILT oSN, TERP,TOLER

TONIY METAL X T(58.46D)
®2 SN, CC0

o0 &l Isl.%

0 el sl N
1 SUNsSTweTARSLTI1,97)

T ELs (SOMTOFLOAT (N)e02)0],.Cus~12

MPIsAc]

sl

oG &6 E=l AN}

EPisKel

TP ARELTEIN,K))

LTEMPsK

o0 62 IxPl.N

IF (CA2SITCI X)) LE.TENP) SO TC 62

TORPaC S (T(1.X3)

1TEMPe}

o2 CORTENLE

EF STEMP.LE.TLERD) GO TO T

EF (1T .E2.X) GO TO é4

03 o3 IsX AP}

SENPsTiIN, 12

ik INSTEITEMPL])

63 TS ItnP 1 )=TEMP
o 00 65 IsKkPl.h

T2 K155 8 EoRI/TIXeX)

D0 65 Iskfle.NFl
&5 Tiledd=Tl1el)-TLiE007E(K,J)

6 COMTINLE

EFECASSIL EN,%)) LE.TGLER? GO 10 TO -

TINAPLI=T IR, NP1 I TIN5

G 68 I=1.ANC

[ o |

25 6T J*l.l

L=aPl-J
o7 TiaadPL3»TIX AP -TIK,L20T(L,AFL)
a3 TIK AP I=TIK AP LD /T (K K]

69 LSTULYE=.FAMLSE.

£ 15 73
T LSCLvE=  TUE,

71 meifuRm
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FORTRAN IV PROGRAM FOR SULUTIUN BY THE METHOD OF LEAST SQUARES

THES PROGRAM USES THE METHOD UF LEAST SQUARES TO SULVE A SYSTEM CF EQUATIONS
FOt THE COEFFSCIENTS UF TRIGCNOMETRIC SERIES. ThE SERIES REPRESENT THE
NOKRKAL 1 ZEC SURFACE CURRENT NENSITY ON EACH WIRE IN A SYSTEM OF Nw EQUALLY
SPACEDs PARALLEL, PERFECTLY CONOUCT ING WIRES. USING THIS CURRENT AN
APPROXEMATE VALUE CF fHE NORPALLI ZED HIGH FREQUENCY RESISTANCE OF THE SYSTEM
IS CALCULATED., THE NUMBER CF HARMONIC TERMS USED TO DESCRIBE THE CURRENT ON
EALH WIRE (S NHe THE RATIO CA §S EQUIVALENT TO THE SPACING BETWEEN WIRE
CENTERS DIVIDED BY THE WIRE CIAMETER. FOR NW WIRES AND AND NH HARMONICS THE
SIZE OF THE MATRIX T(X,J) MUST BE AT LEAST AS LARGE AS TINWLl*NH¢l,NWl®NH)
WHERE NUWL1=Nw/2 FOR NW EVEN AND NWils(NW+¢1)/2 FOR Nw 0DD,

LOGICAL LSOLVE

EXTERNAL FL,F24F34F4,F5

CCMMON PI2sCAoSEPSEIMoSEPMUT,SEPMIM/MATRIX/T(28429)//NH20¢NH2E NRWoJ
Lo NSuWHo NSHH2 o NW

HRITE(6,1)

FCRMAT (IH])

PI=3,141593

READ(S5+3) NueNHoCA

FORMAT(E1e3Xe12¢3X,F5,.3)

WRITE( 694 INWoCA oNH

FORMAT (//7735X11421H WIRES, SPACING CAa¢Fba394H, e 12+10H HARMON
11ICS)

NW2O=( 20NN+ 1+ (=118 (NN¢]1) )/ 4

NW2Es{ 2*NW-14(-1)oeNK) /4

NSIZE=Aw2GeNH

NAUG=NSIZE+1

00 10 NRu=}),NH20

SEPSIM=CASFLOAT (NW+1-2%NRK)

DO 10 J=1eNH

NROW=(ANRW=1 ) SNHeJ

D0 9 NSw=1,NW20

SEPNUT=CASFLOAT (NSW-NRW)

SEPMIM=CASFLUAT (NW#1~NSW~NRW)

DU 9 NSWH=] oNH

NSWH2=29NSWH

NCOL=( NSW~]1 ) sNHANSWH

DEL=0.0

Ji=J

FFENW20NENN2E cAND.NRW,EQ.NH2C) Ji=2ed]

IFLJLEC.NSWH) DEL=PI/8.0

IF(NRW +EQ.NW20,AND NW2E NE.NWN20) GO TO 7

Ir{NRU.EQ.NSN) GU TO 6

1FE(NSH cEQNW20. AND.NW2E . NE.NN2C) GO TO S

TINRCHoNCOL )==ALSQI(JoNSUHH:FL )

S WA o

60 10 9

5 TINRGH oNCGL I==ALSQIEJsNSWH2F2)
60 T0 9

o TINRGH¢NCOL)=CEL~0.5%ALSQILJ ¢ NSHHF3)
GO TL 9

7 IFINKW.EQ.NSK) GO TO 8

TINRCWoNCOL )=-0+5%ALSQI(JLsNShEF4)
60 Y0 9

T INRCW ¢ NCOL ) =DEL

CONTINUE
TINRCWoNAUG ) =ALSQI(Ji e JoFS)

10 CUNTiNUE

L9
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IF(LSULVEINSIZEY) GO TU 19
nKITE(6,11)
11 FUKMAT(/40X31H~THE HARMCNIC CLEFFICIENTS ARE-)
OC L4 L=1,8n20
M=NH®{L=-1)¢] '
wWENHSL
*RITE(6e12) L
12 FURMAT (51 XoH WIRE ,i1)
WRETE{6s13) (TU14NAUG),1=MyN)
13 FCRMATI5X,12F10.5)
14 CONTINUE
CALCULATING THE NORMALIZEL RESISTANCE
RLSN=I oC
NCS=AW2E®NH
DO 15 NC=1,NCS
RESV=RESNS( (TINCNAUG) ) *%2)/F LCAT (NW)
15 CUNTINUE
IF{NW2ELEC.NW20) GU TO 17
NCS=NCS+1
DU 16 NO=NCS,ASIZE
RESN=RESN#{ (T(NDyNAUG) ) ##2) /FLCAT { 28NW)
16 COUNTINUE
17 wRITE(6418) RESN
18 FCRMAT(/40X23H NORAALIZEL RESISTANCE ,F7.4)
GU TC 21
19 WRITE(6420)
20 FORMAY (//53H THE T MATRIX 15 SINGULAR. NJ UNIQUE SOLUTION EXISTS.)
21 Gu 19 2 ;
22 STup A
END 3
THIS FUNCTION SUBROUTENE EVALJATES THE DEFINITE INTEGRALS WHICH ARISE IN THE
ELEMENTS CF THE MATRIX T.
FUNCTICN ALSGI{JyNSHH,F)
EXTERNAL FLloF2+F3,F4sF5
CUOMMGN PI
MP=MAXOL(J o NSKH)
THETAL1=0.0 ¢
THETA2=P1/(2.0%FLOAT(MP)) .
THETA3= Pl-ThETA2
OTHETA=2,0#THET A2
ALSQI=C.0
D0 30 [P=1,Mp
ALSU1=ALSQI+GAUSSOITHETALTHEYA2,F)
THETAL=THETA2
30 THETA2=ThETA2+4DTHETA
ALSQI=ALSCI*GAUSS6(THETA3,PLF) H
RETURN :
END %
Fle F2, F3, F& AND F5 ARE AUXILLARY FUNCTION SUBRCUTINES USED TO SIMPLIFY THE i
INTEGRANDS OF THE DEFINITE INTEGRALS WHICH ARE EVALUATED NUMERICALLY. H
FUNCTICN FL{THETA)
CGMMGN PI,CAySEPSIMeSEPMUT,SEPNIMoNW20y NH2E ¢NRW ¢ J o NSHH NS WH2 o NW i
F1=(0s5%CCSIFLOATIII®THETA)= (=10} *SINTGLI THETA,SEPSIMoJ) ) ${SIN :
LiGLETHETAGSEPMUT,NSWR) +(=1.0}**NSHHESINTGL (THETA,SEPMIM, NSWH))
RETURN .
END
FUNCTICN F2(THETA) 2
CUMMON PJ oCA,SEPSIMy SEPMUT,SEPMIM¢MW2C, NW2E yNRWy Jo NSHHy NSWH2 o NW E
F2=(0s54CCSUFLUAT(J)STHETA)-(=1,0)%%)¢SINTCLE THETA,SEPSINJ) ) #(SIN
LTGLETHETA 4SEPNUT NSWiH2) ) t
KETURN
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A . >
2 3
I ENV
g FUNCTICN F3(TRETA)
Lt CCMMON P1oCA2SEPSIMoSEPMUT,SEPFIMoNW20) NW2E s NRW ¢ J o NSKHo NS HHZ o NW
3 F3z(=1,0)%J8SINTGLITHETA,SEPS IMy J)SCOS{FLOATINSHH) #THETA) #(~1.0)¢
3 LSNSHHESINTGLE THETA, SEPSIMNSWHISCOS(FLOAT(J)STHETS)=2,08(~1,0)%e(J
i LONSAR) $SINTGLITHETALSEPS Iy J ) #SINTCLETHET Ao SEPSIMyNSHH) :
3 ] RETURN E
N ! END y
J FUNCTICN F4(TRETA) 4
b CCMMCN P oCAISEPSIMeSEPMUT,SEPMIMoAW20s NW2E o NRW ¢ J 9 NSWHy NS WH2 4 NW E
3 Fa=COS{2,00FLCAT(IISTHETA)IS{S INTGLITHET Ay SEPMLToNSHH)#(~1.0) $¥NSHH g
: LESINTGLITHE TAoSEPMI Mo NSHH)) ;
A RETURP )
: END ]
- FUNCTICN FS{ThETA) 3
3 COMMON PIsCA¢SEPSIMeSEPMLToSEPMIMoNW2Co NN2E sNRW s J g NSHHy NSHH2Z ¢ NW 5
< ZERU=0,0 3
4 NULL=0 3
3 Fo= LERC :
d DO 4C K=1,NW2E :
o SEPMUT=CASFLUAT (K~NRwW} P
g SEPMIN=CASFLOAT (NW*1-K~NRW) 3
: LFIKL.EC.KAW) GO TO 40 5
4 FSEFS+SINTGLITRETA, SEPMUT JNULL )45 INTGLUTHETA, SEPMIM,NULL) 5
g 40 CUNTINUE ;
- SEPMLT=CASFLOAT (NW20~NRW) E
’ IFUNW20ONE dNW2E JANDNRWNE.NW20) F5=(FS+SINTGLITHETA, SEPMUT (NULL )+ N
4 LSINTGL{THETASEPSTMyNULL ) )1%10 ,52CCSIFLOAT(J)STHRETA)~(-1,0)*%JeSINT !
Y LGLITHRETA, SEPSIMNGJ)) J:
: LFUNW20EC.NH2E) F5=(FS5+SINTGLITHETAySEPS IMyNULL ) )#{0.5%COS (FLOAT( %
3 L1SISTHETAY~(=) . 0)*® J*SENTGLLTHE TAy SEPSIM,J) ) &
: IFINAN2CoNELNH2E JAND NRWo EQ.NW20) F5=F5#(0.5%COSIFLOAT(J)*2,0*THETA
% 1))
4 RETURN
0 ENOD :
9 C THIS FUNCTION SUBROUTINE EVALUATES THE ANALYTIC EXPRESSION FOR THE OEFINITE :
S C INTEGRAL SINTGL. 3
B FUNCTICN SINTGLU(THETA,SEP,IHAR) #
; COMNCN Pl 4
Vo 50 1F (SEP) 5145552 z
A St PSL=ATAN(SINITFETA)/(2.093EP-COS(THETA))) E
: 50 TG 53 i
s 92 PSI=PI-ATAN(SIN(THETA}/(2.0*SEP+COS{THETA))) 5
3 53 $=SQRT (4o CH{SEP)*#2+1,0+44,0%SEPXCOSITHETA)) X
3 A=0.5%CLS(THETA=-PST #FLUAT(LHAR-1)) y
% B2(1.062,00SEP*COS(THETA) )2COS(PSI*FLOAT( IHAR)) 3
C=20,5%CCS (THEVA+PSISFLUAT(IHAR+1)) :
[ {F (IHAR.EQ.0) GO TO 54 3
] SINTGL=(A®(S##2)4B#S+C)/((1,0-S*%2)%{-S)es( [HAR®])) ;
: G0 TG S5 p
\ 54 SINTGL=-{B#5+2,0%C)/(S*(1,0-5%22)) 4
3 54 RETURN i
: END b
€ GAUSSe 1S A FUNCTICN SUBRUUTINE WHICH COMPUTES AN APPRUXIMATE VALUE OF THE .
C INTEGRAL UOF F(X) OVER THE INTERVAL FRCM X=XL TG X=XU. EVALUATION [S DONE BY !
C MEANS OF A 6= PUINT GAUSS QUADRATURE FORMULA. ;

FUNCTICN GAUSS6H (XLeXUoF)

A=, 58{ XU+XL)

B=XU~-XL

Cx.4662348%8
LAUSS6=.08566225%(F(A+C)+F(A-~C))
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C=43306C47%8
GAUDS6=GAUSSO+, 1803808%(FLA+C)+F(A-C))
C=.1193096*8
VAUSSO=B®{GALSYE+.23395T08(F LA+ C) +F(A-C)))
RETURN
END
C Trl> FUNCTION SUBRCUTINE SOLVES A SYSTEM OF N LINEAR EQUATIONS IN N UNKNOWNS
L 8BY USING GAUSSIAN ELIMINATICN WiTH COLUMN PEIVOTIRG.

LULICAL FUNCTIUN LSULVLIN)
CCMMON /MATRIX/ZA(28,29)

vl SuUM=C,0
DL ol I=1.N
DU o) J=Lloew

51 SUMSSUM#ADBS(A(L,J))
TOLEK= {SUN/FLCATIN)*%2)%).0L-6
NPL=Ne ]
NML=h-1
DO 66 K=1,NML
KPlaKel
TEMP=ABSIA(K,K) )
1TEMP=K
00 62 [=KPLl,N .
15 (ABSIA{LK})LLELTEMP) GU TO 62
TEMP=ABS{A(],K) )}
[TEMP=1]

62 CUNTINUE
[F (TEMPLLE.TOLER) LU TO 70
IF (ITEMP.EQ.K) GU TUO 64
DU 63 [=K NP1
TEMP=A(K, 1)
A(Ke [)=A{LITEMP, 1)

63 A(LTEMP,I)=TEMP

64 DU 65 [3KPLl,N
AlL K)=A( LoK)/A(KoK)
DO 65 J=KPl,NPL

695 Alled)=AtLrJ)=ALL K)*A(X J)

66 CONTINUE
LFLABS(AININ) ) 4LELTOLER) GU TO 70
AINJNPL)=AINNPL)/AINGN)
DO 68 I=1,NM]

RN | LU

4
i
)
4
'
!

1
H
5
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K=N=1 §

0U 67 J=l,l g

L=NP1~J i

67 A(RINPLI=AIKINPLI)=A{K LI*A(LIAPL) ?

68 ALK,NPLI=A(K,NPLI/ALK K) p

69 LSOLVE=.FALSE, B/

GO TG N b

70 LSOLVE=.TRUE, 4

71 RETURN ;

END ;

H
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; .
;

;
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Appendix C
Evaluation of the Integral I (n, m-1, p)

n
Ll + 2(m-4){c/a) cosa ~(coss cose'’

[ 4(m-1)2(c/a)® +2 + 4(m-g)(c/a) cosa

' = L
I {9, m-4, p) = =

a'=aq

+ sina sing' ] sin(pg')da’ (C-1)

- (4(m-g)(c/a) +2 cost ) cosa' - 2 sina sine’ ]

The evaluation of I' (r, m-1, p) closely follows that for I(a, m-1, p)
carried out in Appendix A, Using standard trigonometric identities

the numerator and denominator of the integrand are reqritten as

Z
"

%{-A' cos [ (p~-1)(a' + )] + B' cos [ p(a' +¢)] - C' cos [ (p)(o* + )]

- E'sin [ (p-1)(8' +¢)] + F' sin [ p(8' + ¢)] - G' sin [ (pH) (o' + \b)]}

D = s2+l+Zs cos(§' + {) (C-2)

where
A' = sin(a - (p-1) ¥) (C-2a)
B' = -2(l +2(m-1)(c/a)cosa) sin(py) (C-2b)
C' = -sin(@ +(p+)y) (C-2c)
E' = cos(¢ - (p-1)y) (C-2d) ;
F' = 2(1 + 21 cosg) cos(pi) (C-2e) ;
G' = cos(a + (pt) V) (C-29) §
s = sz +1+2s cos(8' + ) (C-3a)

PR SN RSN P AL RSN )
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-1 sing =
m- tan (Z(m-z)(cfa\ + cosa) , (m-§ =1, 2 ~- 3
l“ - 1 . (C' b)
- - 8ina _
tan (Z(vm-,o(c/a) ¥ cose) y (m-g) = -1, -2, --
The principle value of tan~! is used in (C-3b),
With equations (C-2), (C-3) and the aew variable §,= (a' +)
(C-1) becomes
T
I' (a, m-g, p) = 'ZLTT -A czosL(p-ILﬂ + B cos [p§]
s +1+2s cos (g)
§=-n
- C cos [(p-)§] +E sin [p§] - F sin [ (p +1)§] dn' (C-4) :
The sin [ ( ) §] terms integrate to zero and the remaining terms ;
are in the form cf a definite integral which is evaluated in Apprendix .
A, equation (A-7), With these integrations performed 1' (a, m-i, p) is g,
[A'sZ+B's+C'], p=l, 2 -- (C-5)

I' (Q, m"za P) =
(1 - s)(-5)PH
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4 Appendix D

: , - Listing of Computer Program

3

sk This appendix contains a computer program written in

: Fortran IV language for use on the I, B, M, 360/65 computer,
% The program computes the coefficients amcp and bmcp of

3 the trigonometric series for the normalized correction current
& densities €mc’
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FORTRAM 1V PROGRAM FOR CALCULATING THE CURRENT DISTRIBUTIONS CAUSED
BY INTERCONVECTING WIRES IN THE EXPERIMERTAL MODEL.

THLS PROGRAY USES THE METHOD OF COLLOCATION T) SOLVE A SYSTEM OF
EQUATIONS FIR THE COEFFICIENTS OF TRIGONOMETRIC SERIESe THE SERIES
REPRESENT THE NORMALIZEO SURFACE CURRENT DENSITY ON EACH WIRE IN
SYSTEM OF Nd WIRESe THE NUMBER OF HARMONIC TERMS USED TO DESCRIBE
THE CURRENT UN EACH WIRE 1S Nie THE RATIO CA IS EQUIVALENT TO THE
SPACING BETWEEN WIRE CENTERS DIVIDED 8Y THE WIRE DIAMETER, YVHE
NORMALIZED JIMENSIONS CAH2 AND CHL2 ARE THE TUBE RADIUS DIVIDED BY
THE TUBE HALF HEIGHT AND THE TUBE HALF HEIGHT DIVIDED BY THE LENGTH

OF THE INTERCONNECTING WIRES.
LOGICAL LINECN
COMNON THETA,SEPPI/MATRIX/AL3643T)
WRITE(6,1)
1 FORMAT(141)
Pl=23,141593
CAH220, 048645
CHL2=043+0824
2 READ(5+3) NWsNH,CA
3 FORMAT(IL+3Xs12+34,F543)
WRITE(6+4) NWeCAJNH
¢ FORMAT(///735X11+21H WIRES, SPACING CA=yF5¢304H,
11CS)
NM21l={ 2%N+1¢ (=1 )0E(NNs1) )/ 4
NW2 = (2®Nd~1+ (=1 ) **NW) /4
NSIZE=NW21%NH
NAUG=NH®NW21 +1
00 17 L=l oNH
NRL= (NW2L~1)®NH+L

+12910H HARNON

C SETTING COLLOCATION POINTS

THETASPI#2, 0% (FLOAT(L) )/ ([t OAT (NH+1))
DO L7 M=L ¢NR1yNH
NRWs1l+(M=-L)/NH
IF (NW2l.EQeNW2} GJ TO &
IFINRWeEI«NW2L) THETAs({THETA=P1) /2.0
IF(THETAsLEeOeO) THETA22,0%P1THETA
5 NSW=]
N1=NH
DO 17 N=l.NAUG
IF (Ne EQeNAUG) GO TO 15
IF (N=K1) 7,76
N1aN1+NH
NSW=NSW+1
T NSH=N=NH® (NSW=-1)
FFENeEQe2®IN/2) ) NSHeNSH/2
IFINGNES2#IN/2)) NSH=(NSH+1}/2
IF (NRM.ZQJNSW) GO TO 11
SEP=CASFLIATI{NSW=NRW)
IF ((2%NSW)oEQe (NW¢L1)) GO TO 9
IFL2%{N/2)+EQeN) GO TO 8
AN N} =~A INE(NSH)
SEPSCABFLUAT (NWeL=NSW=MNRW)
AtM NI =A( MyN)={ ~1o O) SENSHSAINE(NSH)
G0 TO 17
A(M¢N)=~AINES(NSH)
SEP=CABFLOAT (NW+)=NSW~NRW)
A(MeN)IZALMIN) #( =14 0)6BNSHBA INESINSH)

o

«©
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60 10 17

9 IF(2%(N/2)+EQe%) GO TO 10

A(MoN) =<2 INE (28NSH)
GG TO 17

10 A(MsN)==AINES{2®NSH~1)

11

12

14
15

16

17
18

19

20

21
22

23
2o
25
26

TH

G0 T0 17

I1F ((2#NSW)oEQe (NW¢LD) GO TO 13

SEP=CA®FLOAT(NW+1-2¥NRW}

IF(2%{N/23EQeN) GO TO 12

A(N;NlS(COS(FLJAT(NSH)*THETA)llZ.O-(-l.O)“NSH*AINE(NSH)

GO T0 17

A(MoN) ={SINSFLOATINSH)®THETA) ) /26 04{~140) *«NSH*AINES(NSH)

GO TQ 17

IF{2%{N/2)sEQeN) GO TO 14

A{MN) =(CUSIFLOAT(2%NSH) #THETA) 1 /2.0

6@ 70 17

A(MyNI=(SiN(FLOAT{2¥NSH=1)¢THETA) }/240

60 70 17

SOURCE=0,0

D0 16 LDl=1,NW

SEP=CA*FLJAT (LD1~NRW)

SQURCL = {CAHR2/SQRT(1ed+ (CHL2)%%244, 08 ( SEP®CAH2RCHL2)##2) ) %( (T
AHL2) 8328 SINITHETA) =2e O SEP#CAHZ®CHLZ#COS(THETA) )/ (1. 0¢40 O%( SEP*CA
LH2PCHL2)#%2 } +SINGTHETA)/ (1o 0+400%(SEP*CAH2) #%2) )= {14 0¢2, 0%SEP*COS
LOTHETA) )/ (1o Othe OBSEP+ %244, 0#SEP*COS(THETA) ) ) *(10=1+0/SQRT (1044,
LO®(CAH2)s#2%SEP w2 ) )

SQURCE=SJURCE+SUURCL

CONTINUE

A(MN)=SIJURCE

CONTINUE

IF (LINEJWINSIZE)) GO TO 23

KRITE{6419)

FORMAT (/40X31H~THE HARMUNIC COEFFICIENTS ARE-)

DO 22 L=1.NWZ2}

MaNH®{L=1)+2

NaNH=L

WRITE(6420) L

FORMAT {51X6H WIRE ,11)

WRITEL6+12L) LALT4NAUG) ¢ I=HyN)

FORMAT(5K+22F1045)

CONTINUE

GO TO 25

WRITE(6424)

FORMAT (//33H THE A MATRIX IS SINGULARe N) UNIQUE SOLUTION EXISTS.!}

G0 70 2

SToP

END
IS FUNCTIIN SUBROUTINE EVALJATES THE ANALYTIC EXPRESSION FOR THE

DEFINITE INTEGRAL AINE,

50
51

52
53

FUNCTION AINE(IHAR)

COMMON THETALSEP.PI/MATRIX/A(36437}

LIFESEP) 51454452

IFCTHETAGLE @ PI) PSIx=ATAN{SIN{THETA}/ (=2,0%SEP-COS{THETA) })
IF{THETA«GEePZ) PSISATAN(~SIN(THETA)/(=2, 3%SEP=COSLTHETA)))
60 TO 53

IFCTHETALLESP]) PST=PI+ATAN(SINETHETA)/Z (2,0%SEP+COS(THETA) )}
IF(THETAGEPI) PSI=PI-ATAN(=SIN(THETA) /12, 0# SER+COS(THETA}))
H=l1o0¢2, O%SEP*COSITHETA) )SCUSIPS IRFLIAT{ IHAR))
Bx~0s5#CIS{THETA=PSI®FLOAT( IHAR®1))
C==0e5%CIS({THETA+PSI®FLOAT( IHAR=1))

Esbe OB (SZP)*82¢2,0¢44 O%SEPSCUS(THETA)
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Fa(20%{c=1,0)%%0,5)/E
Gl (leO=F¥82 )880,5~1,0)/F
AINE=(G¥® ({IHAR=1) )= {HSG+BA(G#%2) ¢C)/(E*(( 1, O~FE»2})2%0,5})
54 RETURN
END
C THIS FUNCTIUN SUBRUUTIN: EVALUATES THE ANALYTIC EXPRESSION FOR THE
C OUEFINITE INTEGRAL AINES. k
FUNCTION AINES{ IHAR) N
COMMON THETASEPPI/MATRIX/A(364937)
80 IF(SEP) 31484482
81 IF(THETAsLELPL) PSI=~ATAN(SIN(THETA)/({-2,0¢ ,EP-COS({THETA) )}
IF{THETAeGEePI) PSI=ATAN(=SIN(THETA)/(~2:083EP-COS{THETA)})
60 7O 83
82 IF(THETACLELPI) PSI=PI+ATAN(SINCTHETA)/(2,I*SEP+COSI(THETA)))
IF(THETAs LS PI) PSI=PI=-ATAN(=SINITHETA) /{2, 0% SEP+COS(THETA)))
83 H1=(1e0¢2,0%SEP®COSITHETA)) ¢S IN(PSI*FLOAT(IHAR})
B81==045%3 IN(PSIFLIAT{ IHAR+L ) ~=THETA)
C1==045*3IN(PSI®*FLIAT( 1HAR=-1) +THETA}
E=4e 0% (SZP)#%242,0444 0%SEP#CIS({THETA)
Fz(2e0%8(c~1e0)%%0e5)/E
G=((1e 0=F€32)%80,5-1,0}/F
AINES=(Ge®( IHAR~L1) ) *(H1*G+3Ll #(Gx#2)4CL) /{E*({ Lo O~F%*2)%%0,5})
64 RETURN
€ND
C THIS FUNCTIJN SUBROUTINE SOLVES A SYSTEM OF N LINEAR EQUATIONS IN
C N UNKNJOWNS oY USING GAUSSIAN ELIMINATION WITA COLUMN PIVOTING.
LOGICAL FUNCTION LINEQN(N)
CGHMON THETAZSEPIPI/RATRIX/A(36y27)

60 SUM=0,0
DO 61 I=1.N :
00 61 J=l.N i

61 SUM=SUM+A3S(A(T1,J))

TULER= (SUM/FLOAT(N)*%2)%] ,0E=6
NPL=N+l

NML =N-1

DO 66 K=l.NML

KPlzK+1l

TEMP=ABSI A(KyX))

ITEMP=K

00 62 I[=XKP1sN

IF (ABS(a(loK))eLEsTEMP) GJ TO 62
TEMP=ABS{ A(I+K))

I TEMP=]

62 CONTINUE
IF (TEMP.LE.TOLER) GO TO 70
IF (ITEXPLEQeK) GO TI 64
DO 63 IaK NP1
TEMP=A(Ks1)

AlK+ 1)SACITEMP, 1)

53 ALITEMP,1)=TEMP

64 DO 65 IsXPlN
ALT oK)=AL T RIZASKIK)

DO 65 J=sKPlyNPL

65 All,J)=A01,Jd)=AC],K)sALIKyI)

66 CONTINUE
IFLABS(A(NIN))eLELTOLER) GJ TO 70
AINGNPL)=AINGNPLI/AIN,N)

00 68 I=1.NM1
K=N=1]

DO &7 J=l.l
L=NPLl~J

L O

2R A Ay e ey,

[T

I
p
8]

o

2

RISt vy N2

67 ALKoNPLE=zA(K NPLI=A(KoL)®AILINPL)
68 A(KoNPLI=A(K NPLI/A(KIK)
69 LINECN=+FALSE.
Go 1071
70 LINEQN=,TRUE,
71 RETURN
ENO
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