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ABSTRACT

This report is concerned with methods of approximating the chance-
constrained set S = {x|Pr[A x < B] > a} when the underlying distribution,
F(-) of the random variate (A, B) is non-normal. The resultirg sets are
completely distribution-free in that no assumptions are made about the
form of F(.) or any of its parameters.

The concept employed is the distribution-free tolerance region. This
is a sample based region containing 100a percent of the population, at
a confidence level, 8. The elements of the distribution-free sets satisfy
the chance-constraint, Pr[A x < B] > a with a confidence of at least g.
Furthermore, the sample size required to attain this level of confidence
is readily available in tabular or graphical form. The superiority of the
distribution-free approach over existing chance-constrained methods is

demonstrated using simulated gamma variates.
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CHAPTE!. I
z ~ INTRODUCTION

Consider the linear programming problem of the form

maximize Z = Cx

: subject to
4 A; x < B, i=1,..., 9 . (1.1)
x20

X is an n-dimensional column vector, and A and C are n-
dimensional row vectors. In real-world problems the ele-
ments of C, B and éi may be random variables and in such a

case the above formulation (1.1) has no meaning. The ran-

dom variable Z cannot be maximized and must be replaced

E - with some deterministic function. The most widely used

| | function is the expected value of Z, although other choices
“have been suggcsted in the literature [1,2,3]. This re-
search is concerned only with random variation in the con-
straints. In particular, the chance-constrained formula-
tion originally proposed by Charnes ¢t _al. [4] is con-
sidercd. For a review of other possible reformulations of
lincar programming problems subjoct to random variation,

the rcader is refer.cd to the survey paper by McQuillan [5]}.




Chance-Constraints

In chance-constrained'programming it is not required
that the constraints always be satisfied, but ratler that
they be satisfied with given probabilities. More precisely,
the chaqce-constrained reformulation of (i.1) associates
with each constraint a preassigned number a;, 0 < a; < 1,
i=1,.,., qsuch that Pr[A, x < B,] _>_‘ai, i=1,...,q.

The corresponding feasible solution set is then given by

i S = {x|PriL;(x) < 0] >a;, i=1,...,q; x>0 (1.2)
. where
Li.("x-)n'é'ii-Bi i=1,oao,q

It is desired to convert S into a form more amenable to
- existing mathematical progrdmming techniques. The method

of convérsion suggested by Charnes [2] yields the equiva-

lent form

'SQ‘ {:E_'E[Ll(?_(_)] + Kui U[Ll(?-(-)] <0, i=1,...,q, X > 9_}
(1.3)
where E[Li(i)] and °[L1(§)] denote the expected value and

standard deviation of Lj(i)» respectively, Ka is the
, ’ i
smallest number satisfying

Pr[Ti(i) < K“il > a;




where T;(x) is the standardized variate of Li(E)' (X,
: i

i.) When

Ku. >0, it can be shown [6] that SQ is convex. 1In such a
1 .

is often referred to as the quantile of order «

case éry one of a number of convex programming algorithms
could be used to solve the resulting problem.

The above appr&ach, henceforth called the Quantile
Method, is limited to a sbecial class of distributions which
are refcrred to as 'stable" [7]. The Eommon property of
this class is that the distributions are completely speci-
fied by two parameters ﬁ and V, and the convolution of any
K distributions F[(x - Ul)/Vll, eeey FI(x - UK)/VK] is
again of the form F[(x - U)/V].‘ One such distribution be-
longing to this class is the normal, thus giving the Quah-
tile Method scme appeal. Hdwever, many times the ele-
ments of éi}and B are not normal. For exampl:, the elements
of Ai may represent rates which have to be non-negative. In
such cases alternative approaches [8,9]} have becn broposed
for obtaining convex solution sets which approximate the
set SQ‘ The most general procedure is given by Sinha [9],
in that only the means, variances and covariances of the
random variables need be specified. Using the Tchebysheff
Extended Lemma [10], it is shown that SQ contains the con-
vex set

a. 172
5; = (ilﬁll‘i(y + [1.._1“_] » o[Li(x)) <0,

LY

1
i=1,...,q; x20} 1.4)

L e A
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This method of conversion shall henceforth be referred to

as the Tchcﬁysheff Method.

Motivation and Objccfive of this Research

Although the Tchebysheff Method makes possible the
solution of chance-constrained programs under non-normal
conditions, there still exists a reliance upon parameters
of the underlying distribution. In real! world situations,
the values associated with these parameters are estimates
derived from random samples. The accuracy of these esti-
mates can be measured in terms of levels of significance
or degrees of confidence, but there is no way of directly
inéorporating these measures into the set Sp- Thus, the
effect of bad estimates upon the solution obtained using
the Tchebysheff Method cannot be ascertained. A similar
situation also occurs with the Quantile Method when normal-
ity assumptions are sample Dbased.

The above discussion suggests a nced for a more gener-
alized thcory and method cf solving chancc-constrained
linear programming problems when random sampling is neces-
sary. The most general would be a method which could be
used regardless of the forms of the underlying distribu-
tions or any of their parameters. While such a requirement
precludes the use of any classical statistical techniques,

ther> exists a special class of so-called distribution-free




e G

o e S DT P SR, AT T B L ot g

techniques which are applicable in situations similar to the above.
The objective of this research is to develop methods for constructing
a distribution-free set from a sample of size N such that for any x
contained in this set, it can be asserted with a confidence level g, that
a constraint will hold with a certain probability, o. The concept to
be eﬁployed is that of a distribution-free tolerance region, similar to

the one used by Allen and Braswell [11].

. m:v D S
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CHAPTER 11

THEORY AND METHODS OF DISTRIBUTION-FREE
TOLERANCE REGIONS

This chapter deals with the development of the theory
and methods which serve as the statistical foundation for
Chapter III. The chapter begins with a definition of a
distribution-free tolerance region, then follows with a

general procedure for constructing such a region.

Definition of a Distribution-free
“Tolerance Region

Leé Y = (Yl,..., Yh) be an n-dimensional random vari-
able with a cumulative distribution function (c.d.f.)
HY(')' Let 0N = (Zk’ k =1,..., N) be 'a sample of size N
d;éwn from a population with c.d.f. HY(f). Let T be a
region that lies in the sample space ;f Y, and assume that
the exact shape and size of T depends upon the observed
values of ON‘ Define the coverage, U, of the region, T,
as the probability mcasure of T. Since T is random, U will
also be random. Now if the corresponding c.d.f. of U is

independent of Hy(+), and if for 0 < a <1, 0 < B <1

Pr{U > a) = 8

Bieniotn b e i e et

D T WOy e o




then T is called a 100a percent distril tion-free tolerance
region at a’probability level, 6 [12]. This concept was
originally introduced by Shewhart [13] in 1931.

Tﬁe abqve definition is interpreted by Fraser [14]‘as:
"In repeated sampling the probability is B8 that the region
T contains at icast 100a percent of the population.” Now
for a particular experimental value of Oy the correspond-
ing region, T, may or maf not contain at least a of fhe
populétion. However, one can assert with a confidence of
B that it does.

It should be noted that the term non-parametric has

also been used to describe the above region [14,15]; As
Noether [16] indicates, '"this term has come to refer‘to
methods that are valid in some seﬁse or othcr under less
restricfive assumptions than those of normality or another

specific distribution type." The terms distribution-frce

and non-parametric are not always synonymous, however; for

example, in testing statistical hypotheses, a non-parametric
test is one which makes no hypothesis about the value of a
parameter in é statistical density function, wherea; a
distribution-free test is one which makes no assumptions

about the precisec form of the sampled population [17].




Construction of Qﬂ)}[ﬁt:ﬁ{prrfon~f)xfi
. Tolerance Repion

One-dirensional Case

Tﬁc general method of constructing a distributicn-free
tolerance repion is best introduced by consideving the casc
of a one-dimensional random variable Y with continuous
c.dif. HY(~). -

Let [Y yeeo, Yool be the ovdew statistics of 2 ran-

(1) (N
den semple from & population with contiauous c¢.d.f. HY(~).
In 1941 Wilks [18] showed that the syuamctric interval
[Y(j)’.Y(N—j+1)] coald serve as a distriboviion-frec toler-
ance region, and in 1943 Wald [2%] derived simiiax results
for any two order statistics. Robbins [19] subscquently
showed that order statistics alonce could be used to con-
struct é distribution—ffce tolerance interval.,

The Dirichlet distribution is used in the construction
of a distribution-frec tolerance interval {and region), so
it is worthwhilc to revicw the definition of this distyi-
bution and two ol its properties,

Definition: let (Al,...,An) be an n-dimensionzl randen

variable with & probubility density function (p.d.f{.) of

p

the form




|
|

g £, f Oaeend) =

12 *°*"n .
: T(V +...4v_.,) v,-1 v -1 V_..-1
1. n+l 1 n U n+l
r(v)...r(\’n."].) Al oocAn (1 Al e An) ’(Al’...,)‘n)csn
0 , ¢ otherwise

where S is the simplex {(11,...,An)|xi >0, i=1,...,n,

i A Y AR W 2 e o T e

n
iz A < 1} in R Vi» i=1]...,n+1 are real and positive,
al -

and T(-) denotes the gamma function.
r‘ : A distribution having the above p.d.f. is called an

n-variate Dirichlet distribution and is denoted by

‘D(vl,...,vn; vn+1).

B s ..

The two properties of a Dirichlet distribution that

will be used in this section are the following [12].

Property 1: If (Al""'An) is distributed as the n-variate

Dirichlet D(vl,...,vn; vn+1), then the marginal distribution
of (Al,...,Ak) k < n, is the k-variate Dirichlet
D(vl,...,vk; vk+1+...+vn*1).

Property 2: 1If (Al,...,An) is distributed as the n-variate

. Dirichlet distribution D(vl,...,vn; vn+1), then the sum
Al+...+An is distributed as a beta distribution
B(vl*f’°*“n’vn*1)' | |

Turning now to the construction of a distribution-free

tolerance interval, consider the random intervals

(-=, Y(l)]' (.Y(l)v Y(Z)]"“’(Y(N)’ +=), and let Ui’
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?f i=1,...,N+1 denote the corresponding coverages associated
iy with these intcrvals. It can be shown [121 that the cover-
ages Ul""’UN are random variables having the N-variate
Dirichlct distribution D(1,...,1;1), which is completely

symmetric in the variables., It follows from symmetry and

Property 1 that any k coverages (k < N) have the k-variate
D1chhlet distribution D(1,...,1;N-k+1), and from this and
Propcrty 2 it also follows that the sum of any k coverages
18 has the beta distribution B(k,N-k+1).

Now for any two order statistics Y(kl), (k +k ), the
covnrage Uk associated with the random interval [Y(k )

2 1

Y(k )] is the sum of k, coveragcs and hence has the beta
distrlbutlon B(k ,N-k +1) Since this holds for any dis-

tribution, then with
Pr[Uk >a] =8B ' (2.1)

for 0 <a <1, 0c<B8 <1, [Y(kl), Y(k1+k2)] is a 1000 per-
cent distribution-free tolerance interval at probability

level B.

Using K. Pearson's [20] notation for the incomplete

beta function, (2.1) reduces to
%% 1, (Nk4l, k)) = 8 (2.2)

Now for fixed «, B, kz, there may exist no sample size N

ror which (2.2) holds exactly., Howcver, since the left-hand

g

side of (2.2) is a monotone incrcasing function of N, therc
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exists a smallest integer N for which
Il_a(N“kz"']., kz) 2. B

For example, for o = ,95, B = .99, k2 = 128, one could usec
the tables of the incomplete beta function [20] to find

N = 130. It should be noted that Murphy [21] gives graphs

of a as a function of N for fixcd values of B and n = N-k,+1

(number of interva}s excluded). Somerville [15] extends
Murphy's results in tabular form,

Scheff¢ and Tukev [22] extended the above results to
the case where Y is discontinuously distributed'by.showing
that the closed interval [Y(kl), Y(ki+k2)] could serve as
a 100a percent distribution-free tolerance interval at a
probability of at least B, and the opén interval [Y(kl),

Y(k1+k2)] at a probability level.of at most B.

n-dimensional Case

Wald [-3] extended the above method to the case of a
continuously distributed n-dimensional random variable Y.
His resulting distribution-frce tolerance region consisted
of the union of rectangular rcgions in Rn‘ In this secction
a generalization of this method due to Tukey [24] is pre-
sented. Further generalizations, Jdue to Fraser [14,25]

and Kempernan [26),do not concern this rescarch, The basic

underlying notion in Tukey's method is that of a "statistice

ally cquivalent block' which is the multivariate analogpue

of the intorval between two adjacent order statistics. To
J
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visualize the block conStruction, it is conveni~nt to think
of the random sample, Oy, as N points in R.. Let ¢i(zj,
i=1,...,Nbe numerical valued functions with continuous
c.d.f;;s. The exact choice of these functions will depend
6nﬁthe desired form cf the tolerance region to be constructed.
Suppose these functions are used to section Rn in the follow-
ing manner:

First divide R, into two complementary regionms, 8,

and Ei,such that

oy = (xloy () > W), | (2.3)

by means of the cut

2y = {yle; () = W)
where .

W, = max ¢, (Y.) = 6, (Y, )

which defines O
1
Let B, be divided into the two complementary regions

8, and_?i, such that

8, = {ylog(¥) < Wy, ¢,(x) > W,) | (2.4)
and B, by means of the cut

R, = {x|¢1(x) < W, 4,(y) = W,)

where -
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WZ = maX ¢2Q:1\) = ¢)2(sz)

1

Continuc this procedurc for the remeining sample points

where, in general, p < N

0y = lyleg () < Wy by g 00 < W g, ep () > WY (2.5)

and

Qp = {Z_ld)l (Z) _<__ "’yljuctgép_l(Z) < ‘vp_ll ¢p(z) = wp}

where

W= max 0, (%) = 6 (Y ) - - (2.6)
R F T N P P :

The resulting regions 0y,...,60,, 55 are the statistic-
ally equivalent blocks mentioned above. In Reference [12]
if is shown that the coverages Ul”"’UN associated with
the blocks PERRERYY have the Dirichlet distribution
p(1,...,1;1). Thus if Um denotes thc coverage of the sum
of any m blocks, then U is distributed as a beta distribu-
tion B(m, N-m+1). -

Let Uy ., be the coverage of the region Ty .4 formed

m+

by rcmoving m blocks from Ry If
Pr[Um <1 -aqa}] = Il-a(m’ N-m+1l) = 8
for some o,f{0 < a <1, 0 <8 <1}, then

lTm"-'m{} i‘al N ll-u(m' N-r+l) = R

i
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and TN-m+1 is a 100u percent distribution-free tolerance
region at pfobability level 8. It should bc noted that if
TN-m+1 35 foud by removing the first m blocks 6;,...,0,,
then 6hly the f?nctions ¢i(-), i=1,...,m need to be
specified. Furthermore, the graph: and tables for the one-
dimensional case can be used to relate the parameters a,
B, N, and m in the n-dimensional case. |
For the case of discontinuous distributions, Qi,
i=1,,..,N+1 are éefined as above with the exception that

(<) is replacel by (<) and (>) is replaced by (>). The

resulting region becomes a 100a percent distribution-free

tolerance region at a}probability level nf at least B.
The theoretical justification for such a statement can be
found in [27].

It should be noted that in dealing with discontinuous
distributions, a situation might arise in which two.or more
sample points minimize a paiticular ¢i(-). In such a case,
the construction procedure is no longer unique, and one
must specify in advance a rule for selecting among these
alternative points. Tukey [27] suggested such a rule using
the concept of'lexicographical ordering. (al,...,an) is
said to be less than (bl,...,Bn) in the lexicographic

sense if any of the following hold
1. ay < b,

2. 8~ bl, and_.az < bz
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n. a, = bi’

i< and a_ <
n, anc (n bn

By defining the functions ¢l, ¢2""’¢N as

Q’i(’) = {¢’i(')’ ‘:’14.1(')”--,‘1’}\1(')}

a tie-breaking rule would be to select the sample point
for whichﬁ@i(-) is minimized in the lexicographical sense.
For exanple, if r points minimize the function ¢1(-), then
: find the ry points among these r points that minimize the
§ function ¢2(-). If Ty = 1, then select the point which
J minimizes ¢2(-); otherwise find the r, points among the Ty
points that minimize ¢3(-). Continue the ﬁrocedurc until
E' r; = 1, 1< N,‘or ry 1. In the latter casc the method
of constructing the sample blocks will be the same regard-
less of the point selected among the TN points.

In conclusion, this chapter encompasses developments
and refincments of the theory and methods of distribution-
free tolerance regions specifically for application to

chance-constrained linear programming. Chapter III merges

this material vwith the theory and methods of linear pro-
sramning to formulate new procedures for chance-constrained

lincar programming with distribution-frec constraints.
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CHAPTER III
DISTRIBUTION-FREE CONSTRAINT SETS

In this chapter methods are developed for construct-
ing a distribution-free set S(a,B8) such that for any
X C S(a,B) it can be asserted with a preassigned confi-
dence, B, that a constraint will hold at least 100a percent
of the time. The required number of samples is a direct

function of the values assigned to o« and 8.

The Distribution-free Set

-

The meaning of a distribution-free set S is best ex-

plained by considering the chance-constraint
PrAx < B] > « " (3.1)

where A and B are random variables. Let C(l)""’C(N) be

the order statistics of a sample of size N from the distri-

bution of C = B/A., If Ul”"’UN+1 arc the coverage§ asso-
ciated with the random intervals (-M,C(l)], [C(l)’C(Z)]’
sees [C(N),+°) and U' is the sum of the coverages
Uz""'UN+1’ there exists a 8 for which Pr(U' > a] = 8,
The random interval [C(l)’*“) is a 100a percent distribu-

tion-free interval at probability level 8. Thus, if ¢

(1)

16
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is the obseryed value}ofic(l), it can be asserted with a
confidcnce,'B, that Pr[C > c(l)] > a. Then if S(a,B) =
{x|x < c(l)}, for any x € S(o,B) it can be asserted with
a confidence, 8, that Pr{C > x] > a or Pr[Ax < B] > .

For the genefal case of q chance-constraints it is
desired to find q distribution-free sets with the above
property. That is, for any x CISi it can be asserted with

a confidence of at least Bi that Pr['_.li_i x <

B;] > a.
Maximization of the objective function would then be over
the intersection of tﬁese q sets. The next seétion de-
scribes the fundamental apprnach to be taken in this re-
search for constructing a distribution-free set for a
particular constraint. For convenience the.superscript,
i, is omitted, and the right-hand side, B, fixed at one.

When B is random, the procedures which follow are applicable

to the random vector A/B.

Constructing a Distribution-free Set

The app}oach for cons*ructing a distribution-free set
can be described in two basic stépé. ,

1. Construct a 100« percent distribution-free toler-
ance region with confidence, B, from samples of the elements
of A. Denotc this region by T(a,B8).

2. Determinc the sct S(a,B) such that for any
x CS(a,B), AXx <1 ¥A CT(a,8). The justification for

taking these steps is that for any x ¢ S(a,8) the half-space
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{AlA x < 1} contains a 100a percent distribution-free
tolerance région with confidence 8. Hence, for any
X CS(a,B) it can be asserted with a confidence of at
least B that Pr{A x < 1] > a.

To illustrate the construction of a deterministic set
S(a,B) from a distribution-free tolerance region, let such
a region be constructed by removing a statistical block
with thé linear cutting function ¢ = A y. The elements

of y are assumed to be arbitrarily chosen and constant.

This region is given by

T(a,8) = {AJA y* < 1}

where
* = > J = e 9 @
Yj YJIW J 1: o 11
and
W= mzx ¢(§k) k=1,...,N

The desired set corresponding to this region would then be

given by
S(a,8) = {x|x =1y, 0 <x <1, x> 0}
Example 3.1 further illustrates this approach.

Example 3.1

Suppose it is desired to find a set s(.5, .95) such

that for any x = (xl. xz) C S(.5, .95) it can be asscrted
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with a confidence of at least .95 that

PriA;x; + Ajxy <11 > .50

- Choosing Yy = 1 and Yy = 2 (arbitrarily), the function
¢ = A1 + 2A, is used to generate a tolerance region Tl(.S,
.95). The required sample size is then the smallest

integer value N satisfying the relationship
I.S(l, N) >1 - .95

which can be shown to be N = 5.

To illustrate, a random sample of size N = 5 was taken
from a population of independently and identically distrib-
uted normal variates with means and fariancgs of 3 and 1,
respectively. The resulting sample values are (Al,l’ AZ,l)
= (3.485, 2.618); (A} 5, A, ,) = (4.345, 1.398); (A 3
AZ,S) = (.538, 1.534); (Al,4’ A2,4) = (3.043, .361); and
(Al,S’ AZ,S) = (2.084, 3.598). Then W = mix(Alk * 24,,) =
2,084 + 2(3.598) = 9,280, and T(.5, .95) = {Al’ A2|.108 A
+.216 A, < 1}.

A

1

The corresponding distribution-free set is then
S(.5, .95) =}{x1,x2|(x1,x2) = A(.108, .216),
0 <2 <1, (x55x) > 0}

A scatter diagram of the original sample points is given
in Figure 3.1, along with the tolerance region T(.5, .95).
Figurc 3.2 contains a graphical representation of the set

$(.5, .95).
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Figure 3.1. ‘T(.S, .95) for Example 3.1.

(.108, .216)

$(.5,.95)

1 1 -
A .2 X|

Figure 3.2. S(.5, .95) for Examplc 3.2.

. e
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The foregoing approach was used to illustrate the
notion of canstructing a deterministic set 5 from a distri-
bution-free tolerance region T. The relative merit of such
an app;oach is dubious when dealing with more than one con-
straint, since the choice of x is restriéted to points
along a vector in R, - The same cutting function must be
used for each constraint, otherwise the only choice for x
would beé the origin. The two methods thch follow provide
considerably more freedom in the choice of the shape of the

distribution-free regions corresponding to each constraint.

A Distribution-free Linear Constraint Set

It is possible to represent a distributiorn-free set
as a linear constraint set in the following manner. First
construct a distribution-free tolerance region TL(a,B)

using a sequence of cutting functions of the form

d. = A. j=1,...,n

The resulting rcgion would be given by

TL(;,B) = {A|A < W} | (3.2)

where the elements of W = (wl....,wn) are determined from

Eqs. (2.3) and (2.6) of thc previcus chapter. The desired

sct S, is then givenr by

S (a,B) = (x|W x <1, x>0} A (3.3)

—

KRR -
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as is evidenced by the following theorem.

Theorem 3.1

‘ o : A Let 5;, and TL be given by Egqs. (3.2) and (3.3), respec-
| tively. (For convenience the (a,B8) designation is delzted.)
Then a necessary and sufficient condition for Ax <1 ¥ACT,

is that x CSL'

i% Proof
(Sufficient)

Assume X CSL

Show

apiary i e e

4 Bx <1¥ ACT ‘ o (3.4)

Rewrite Eq. (3.4) as

——

Wx-1<sM-Nx B9

Now the r.h.s. of Eq. (3.5) is always greater than or equal
to zero VA C TL’ so the inequality will always hold pro-

vided the 1.h.s. is non-positive.

ég Since by definition of the set SL

Hx-1¢0

the sufficiency part of the proof is complete. The neces-

sary part of the proof follows since

AX<1¥ACT

i
]
z
!
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and in particular, the relationship
Wx <l

must be satisfied.

-Example 3.2

For comparative purposes the probiem stated in Example

3.1 will be used, alorg with the same five sample values.
Howsver, before proceeding it is necessary to increase the
sample size to N = 8, since this is the smallest number for

which
1.5(2, N-1) > 1 - .95

The additional simulated sample values are found to be
(2.502, 2.972), (2 341, 2.143) and (3.456, 4.116).
Figure 3.3 contains a scatter diagram of the eight

saﬁple values along with the resulting tolerance region

é : T

(-5, .95) = {A[,A,|A] < 4.345, A, < 4.116)

2

s A T

Thre desired linear set (shown in Figure 3.4) is then given

by

S, (.5, .95) = {xl,le4.345 xp + 4.116 x; <1, (x4,x,) > 0}

A major disadvantage of the above approach is that as
the number of variables, n, increases, so does the number

of required cuts, m. This in turn requires a larger sample

size N for fixed levels of a and B. As is shown in Table 3.1,
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As 4 Ao=4.116
i | # .
2 L | ' 3
3 e . .
nay
2 ° o
. P
L TL(.5, 95)
| 1 | |
F [ 2 3 5

Figure 3.4,

SL(.S, .95) for Example 3.2.
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with o = .90 and 8 = .95, the size of N for even modest
values of m is quite large. For the case of limited or

costly data, this restriction could be very significant.

Table 3.1 »
Values of m and N with a = ,90; B = .95

L N

5 96
10 155
15 21¢
20 275
25 335
30 390
40 500
50 600

The next section shows how a spherical cutting function
can be used to construct a convex distivibution-free con-

straint set without the above restriction.

A Distribution-free Convex Constraint Set

Suppose a distribution-free tolerance region is con-
structed via the cutting' function

n ? 1/2
¢(A) ~ A -d] = | Z (A - dy)

j=1

e

N
'
%
1
i
£
b
E2
H
i
{
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where d is a row vector of preassigned constants. The re-

sulting tolerance region is given by
Tg(o,8) = {A] A - d] < p) | (3.6)
vhere ' 1

P = max [A, - d]
kK k=

This region is the surface and interior of an n-dimensional
hypersphere centered at d with radius p. The ¢orre5ponding

distribution-free set is given by

Ss(@:8) = (x| Ix] < (1 - a4 x)/p, x > 0) §

Theorem 3.2

Let TS be given by Eq. (3.6). A necessary and suffi-

cient cdndition for Ax < 1.¥£ C TS is

Ix] < @ - dax)/0 (3.7)
Proof 4
(Sufficient) ‘

Assume Eq. (3.7) holds. Show that Ax<1 ¥A c:TS.

Ax=dx+(A-9)x
cdx ¢+ jA-d| x|
CAx IO - d W) o
.

a2




(Necessary)

Assume ‘A x € 1 ¥A CTg. Show that Eq. (3.7) holds.

|A - d]Ix| cos(A -4, x) <1-dx - (3.8)

Note that if Eq. (3.8) holds for points on the surface of
the hypersphere defined by Ts, then this relationship also
holds for all points containcd in this hypersphere. Thus

JA - d| can be replaced with p in Eq. (3.8) to give

x| cos(A - d, x) < @ - 2x)/p (3.9)

For Eq. (3.9) to hold, it must hold for an A* on the sur-
face of TS for which cos(A* - d, x) = ;. Such a point
exists and is given by A* = [(PE)/lil] + d. Replacing

cos(A - d, x) with cos(A* - d, x) =1 in Eq. (3.9) yields

Ix] < (@ -dx)/p

and the end of the necessary part of the proof.
The convexity of the sct Sg can be nroven by letting

x* = Axy * (1 - 1) X, where 0 < A <1 anl X),X, C SS. Then
xtl - (- dxM/p =

xy + (-2 %! - [1- Q0% *+ (- 2 x))/0
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< )‘lill ""(1 ’)‘)I?_c_zl " 1 - )\é 3_(_1 - (1 -1 iﬁz]/ﬂ

pha - dx;) + (1 -0 -4dx) -[1-2dx
- (-0 dx,le

<A+ (1-1) -1

<0

The relationship (3.7) can be described geometrically

as the surface and interior of a sphére, elipsoid, parabo-
loid or one nappe of a hyperboloid depending on ¢ (i.e.,
6§ =p, <0, = 0 or >0) where § = p - |d|. This is illus-
trated in Figures 3.5 through 3.8, where d varies and p
remains fixed at .5. Also included in these figures are
the corresponding tolerance regions described by Eq. (3.6).

Exémple 3.3 illustrates the foregoing method with

respect to the preceding examples.

Example 3.3

For convenience, the circular cutting function with
d = (0,0) is considered. Since only one cut is required,

the original five éample points are used to determine the

2 .1/2
22)

toleréhcé’fégion (shown in Figure 3.4) is given by

value of p = (Ai2 + A = 4.5. Then the resulting

Tg(.5, .95) = {(A,A (A2 « aD)1/2 ¢ 45

and the corresponding distribution-frce set (shown in

Figure 3.5) is given by
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Figure 3.5, TS and Ss with §
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Figure 3.6. Ts and SS with § < 0.
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Figure 3.7. Tg and Sg with é = 0.
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Figure 3.8. Ts’and Sg with § > p.
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S5(.5, .95) ..; (x5, (2 + x2) < 1/4.5, (xp.%,) 2 (0,0))

The tolerance regions and distribution-free sets of
the foregoing examples are shown together in Figures 3.9

and 3.10, respectively.

Expanding the Size of a Distribution-free Set

This section is concerned with the problem of expand-
ing the size of a distribution-free set, S(a,B), after it
has been constructed from a sample of size N. Such an
expansion might be motivated by an undesirable value of the
objective function obtained by maximizing over S(a,B). If
this occurs in the use of the Quantile or Tchebysheff
Methods! the sets can be expanded by reducing the pre-
assigned probability level, a, for constraint satisfaction.
This results in a smaller value of Ku or (a/l1 - a) and thus
increases the size of the respective sets SQ’ Sy as de-
scribed by Eqs. (1.3) and (1.4) in Chapter I. In the case
of a distribution-free set the problem could be similarly
resolved by reassigning lower levels of a and B and repeat-
ing the construction procedure with reduced sample Sizes.

- If there aré no samples available, then it may be possible
to obtain a larger set by reducing the original tolerance
region T(a,B) by taking additional cuts. The coverage of
the resulting region is describcd in the following theorem.

(The proof of theorem 3.3 is prcscntcd'in the Appendix.)
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Figurc 3.10. TL(.S. .95) for Example 3.3.
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Theorem 3.3

Let U™ be the coverage of the region T(a,B) constructed
. : '
from a sample of size N by removing m blocks. Let u™™ pe

the coverage of the region T'(a',B8') formed by removing m'

additional blocks from T(a,8). Then
Priv™™ > a'] =1 - I gn (N-m-m'+1, m') = g’ (3.8)

From the above theorem it is seen that the confidence
level, B', associated with the rcgion T(a',B') is dependent
upon the.coverage, Um, of the original region, T(a,B).

Once the sample has been drawn, U™ is a fixed but unknown
quantity. Thus, it is impossible to determine the value

of B' for a given level of a'. However, relationship (3.8)
can be used to approximate the coverage, Um+m" by replacing
U™ with a suitable ectimate. One such estimate is the

original value of a, since it is known with a confidence

of at least B that U" > a.
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CHAPTER 1V

EXPERIMENTATION AND COMPUTATIONAL RESULTS

This chapter includes the results of investigations
into the performance of linear and spherical distribution-
free cohstraint sets using simulated data from a non-normal
distribution. The value of such investigations is two-fold.
First, it provides a clearer understanding of the meaning
and interrelationship of the parameters o and 8. Second,
it provides a means of comparing the relative merit of a
digtribution—free set versus.one obtained using the Quantile

or Tchebysheff Method in the absence of any knowledge of the

underlying distribution.

Notation and Assumptions

Consider the single chance-constraint

PrilAx <1} > a, x>0 (4.1)

Let Ss(a,B) denote a convex distribution-frec set as de-
scribed in the previous chapter. All X C Ss(a,B) will
satisfy (4.1) with a confidence of at least 8. Let SL(u,B)

denote a lincar distribution-frce set with the same property.

ST(u)\nnd SQ(a) denote scts obtaincd by the Tchebysheff and

36




Quantilz Mcthods. The information required to construct
the above séts is based upon sample data from independent
and identically distributed gamma variates with parameters
= lb.and v = 5. These variates were generated on'an IBM
360-65 compute; using the FORTRAN program suggested'in

reference [28].

Construction of Ss(a,B), SL(a,B),
ST(Q) and SQ(Q)

Consider the case of n = 2, and suppose it is desired

to find a region in the positive quadrant of x = (xl,xz)

such that any point in this region will satisfy the chance-

constraint

Pr[A1 X * Al X, £ 1] > .90 | : ’

Such a region can be determined using a spherical cut- -

. ting function with a confidence of .95‘from a sample of

size N = 29. For the purpose of generality this region is
constructed using a spherical cutting function with 4@ = (0,0).
Tabie 4.1 contains the 29 simulated sample points (Alk’AZk'
k=1,...,29). The sixth sample value (.706, .734) yields

the maximum valus of p = (.706)% + (.738)% = 1.037. The

resulting distribution-free sct is

5690, .95) = {x),x, 12 + x})1/% < 03N/
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Table 4.1
‘29 Simulated Samples of (Al,Az)

1k P kK A Ay kK Ay Ay

1 .493 ,380 11 .288 .383 21  .492  .527
2,773 .405 12,615  .365 22 .623  .777
3 .490 .382 13 .,293 ,303 .23 .252 .565
4 .384 .472 14  ,358  .450 24  .405 .398
5 .277 .456 15 .651 .525 25 .718  .408
6 .706 .734 16 .685 .412 26 .484  .21S
7 .635 .416 17 .421 .070 27 .890  .399
'8 .446 .670 18 .489 .630 28 .317 .725
9 .172 .122 19 .650 .458 29  .232  .329

[
<

. 366 .625 20 .419 .592 -- -- --

- To illustrate empirically the meaning of o« = .90 and
B = .95,'the above procedure for constructing SS(.QO, .95)
was tépeéfcd for 99 additicnal sample sets of size N = 29,
- For each set, the surface point x* for which Xy = X, was
selected and in 1,000 realizations of the random variables
Ay,A,, the number of times that the relationship Ajx, o+
Ayx3 <1 was satisfied was rccorded, and denoted as ALPHA.
in BETA = 96 of the 100 trials, the value of ALPHA was
found to be greater or equal to 900.

Table 4.2 exhibits thesc values along with other ob-
served values of BETA for various values of ALPHA. These
obscrvations can be comparcd with actual values of « and 8

5

with N = 29 and m = 1 in Table 4.3.
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Table 4.2

‘ Oﬁscrved Values of ALPHA and BETA

ALPHA BETA
800 99
850 - 99
900 96
950 76
960 70
97¢ 59

Table 4.3

Actual Values of a and B
‘With N = 29 ang m=1

@ 8
.800 .998
.850 .992
500 .953
950 «775
960 .697

.585

870
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A linear distribution-free set SL(.QO, .95) would re-
quire addit{onal samplé points since two cuts are needed
(as opposed to one in the spherical case), Rather than
takiné.any more samples, the set SL(.QO, .83) is constructed
from the original sample of size 29. The maximum value of
Ay is given by A1,27 = ,890. The maximum value of Az,k
(after deleting A2,27) is A = ,777. The resulting

2,22
linear set is given by

§,(.90, .83) ='{x1,x2|.890 Xy *+ 777 x, < 1}

To construct the set ST(.QO) using the Tchebysheff
Method, it is necessary to calculate sample means and vari-
ances from the 29 sample values of Table 4.1. The result-

ing set is given by

Sp(.90) = {xl,x2].484 X; + .455 x, + 3.0(.033 xi

+ 028 x))1/2 < g}

Assuming (erroneousiy) Al and A2 to be independent normal
variates, the Quantile Method could be used to generate

the set

SQ(-90) = {x1,x,].484 x + .455 x, + 1.282(.033 xi

+ 028 xH/? < 0)
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Comparative Analysis

To illﬁ;trate geometrically the relative accuracy of
the above sets with respect to the true set S =
{xl,lePr[A1 X; + Ay x5 < 1] > .90} the brundary of this
set was approximated in the following manner. For a fixed
value of Xy, the value of X, was incremented in units of
.02 until such time that [ALPHA-900[ < 5. The procedure
was then repeated for incremental (.2) values of Xq. The
resulting values of X1 %5 and ALPHA are presented in Table

4.4,

Table 4.4

Approximate Boundary Points
of Actual Region S

Xy X, ALPHA

0 1.16 898
.2 1.06 903
4 .96 895
.6 .80 904
.8 .58 901

1 .32 896

Thesc points were used to approximate the true region
with the region S shown in Figure 4.1, which also contains

the scts SS(.QO, .95), SL(.QO, .83), ST(.QO) and SQ(.QO).
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Figurc 4.1. Comparison of chance-constrained sets with
no knowlcdge of the underlying distribution.
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The following observations are made from this figure.

A. The 'sets Sg, S;, S; are conservative with respect

S’
to the degree in which boundary points satisfy
the constraint more than 90 pe}ccnt of the time.

B. The set Sy obtained via the Tchebysheff Method is

the most conservative.

C. The set SQ obtained via the Quantile Method yields

"a considerably larger region, but points alrag the
boundary will violate the constraint more than
10 percent of the time.

D. The boundaries of the sets SQ and S; follow the
shape of the true boundary more closely than those
of either Sg or §;. |

The first three observations are illustrated numerically

by considering various points along the respective bounda-

ries and checking the constraint satisfaction with samples

of size N = 1,000. In particular, the points considered

are those which maximize the value of
z=c¢) X *+c, X,

for values of ¢ = (1,1), (2,1) and (4,1). The resulting
valucs X11%y and corresponding values of ALPHA for each set
arc prescnted in Table 4.5,

To determine if the observations A, B and C could be
made for higher éimcnsiohs, a similar analysis is first per-

formed for the case of n = 10. The boundary points considered
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Table 4.5

Empirical Constraint Satisfaction

c Set x4 X, ALPHA
(1,1) SS .69 .69 905
-8 .00 1.24 892
ST .54 .66 . 962
.70 .92 781
Sq
(2,1) SS _ .88 42 917
SL 1.12 .00 926
ST .92 .12 | 976
S 1.40 .00 826
Q
(4,1) SS .96 .24 922
SL 1,12 .00 " 926
ST .97 .00 973
S 1.40 .00 826
Q
, - 10
are those which maximize the value of z = I xj. The
. j=1

solutions are obtained using the Sequential Unconstrained
Minimization Technique (SU 'T) developed by Fiacco and
McCormick [29]. The resulting values of z are presented
in Table 4.6 along with the correspondin;; values of ALPHA.
These results relate to A, B and C in th: following manner.
A'. The sets SS and ST are still conservative, but
it is now possiblc to generate a sct 5y, which

can contain points viclating the constraint more
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Table 4.6
ﬁalues of ALPHA and z with n = 10

ALPHA

Run Ss SL ST

1 982 874 984

2 988 919 994

3 984 020 994

4 991 774 999

S 977 900 989

6 979 943 999

7 988 883 987

8 995 824 999

9 995 908 991

10 989 882 995§

i .

Run SS SL ST

1 1.526 1.309 1.494
2 1,473 1,132 1.391.
3 1.513 1,178 1.411
4 1,327 1.541 1,312
5 1,550 1.281 1.458
6 1.539 1.146 1.348
7 1.479 1.275 1.463
8 1,418 1.425 1,324
9 1.419 1.204 1,441
10 1.468 1.292 1.412
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than the preassigned level of 1-a = .10. [This
is{to be expected, since tte level of confidence
is only equal to .001 (see Table 3.1).]

B;; The set S; is still more conservative in the
majority of the trials, but not substantially so
when compared with the set SS.

C'. Depending upon the particular sample values drawn,
the corresponding set SQ may or may not contain

points on the boundary which violate the constraint

more than 10 percent of the time,
The above obLservations are further supported for the
case of n = 25; as shown by the résults presented for this
case in Table 4.7.

In observation D, the boundaries of the sets S. and S

Q T
were much more representative of the shape of the true
boundary.

The distribution-free boundaries were not nearly as
representative, since even before the samples were drawn it
was known that the resulting sets SS and SL would be cir-
cular and lincar, respectively. Although this will always
be the case for the latier set, it need not be for the
former set because the shape of this set can be controlled
by the choicc of the vector d. There is an infinite number
of choices f{or the valucs of the elements in this vector,

and there is no way of t:lling prior to sampling which

choice yields a more rcpresentative shape of the truc




Table 4.7
"Values of ALPHA and z with n = 25

. ALPHA

& Run SS SL ST SQ
1 995 502 1,000 859

2 972 797 990 930

3 992 440 987 859

4 1,000 795 989 865

5 996 904 999 885

: 6 998 696 989 832
E 7 961 777 967 900
8 996 662 982 911

9 993 756 988 931

F 10 991 883 992 956

z

Run SS SL ST SQ
1 1.582  2.103  1.411 1,819
2 1.672 1.469 1.577 1.726
3 1.614  2.272  1.594  1.829
4 1.430 1.471  1.616  1.828
5 1.569  1.234  1.477  1.753
6 1.457 1.760 1.605 1.831
7 1.702  1.516  1.652  1.778
8 1,573 1.745  1.535  1.781
9 1.598  1.604  1.583  1.748
10 1.625  1.299 1,480  1.726
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boundary. It should be noted, however, that the use of the
true mean véiues has worked exceptionally well. That is to
say that the set Sé generated by the cutting function

¢ = ItAl,AZ) - (.5, .5)| follows the shape of the true
boundary of S'. This is illustrated in Figure 4.2. This
figure also contains the sets SS’ S and S'T, where SS and

S are as in Figure 4.2 and St is a set obtained from the
Tchebysheff method using actual means and variances. From
Figure 4.2 it is seen that while the set Sé gives a better
approximation of the‘shape of the actual region, it is also
more conservative than the set Sg. The set St still remains

the most conservative.




Figurc 4.2. Comparison of chance-constrained secs with
knowledge of mecans and variances.
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CHAPTER V

CONCLUSIONS AND EXTENSIONS

In this research methods were developed to deal with the chance-
constrained set, S = {x|Pr[A x < B] > o}, when any information con-
cerning the random variables A],...,An and B must be derived from
actual samples. When existing techniques are employed, it
is not possible to relate the accuracy of sample informa-
tion to actual constraint satisfaction. The distribution-
free methods which were developed as a result of this re- %
search alleviate the problem by providing z lower bound on |
the confidence g, that one can associate with a value of
X satisfying the chance-constraint at the preassigned
probability level, a. The sample size, N, required to
meet the dcsired confidence is readily available in tabular
or graphical form.

Two methods of approximating the set § were developed

. using the theory of distribution-free tolerance regions.

The resulting sets, SL(u,B) and Ss(a,B), have the property
that any x contained in them satisfies the chance-constraint,

Pr[A x < B] > a, with levels of confidencc'BL and Bg- The

)
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advantage of the set SL(a,B) is that it is a linear con-
straiﬁt witﬂ exactly the same number of coefficients of the
original constraint. Furthermore, the values for these co-
effici;nts can be determined directly by inspecticn of the
. random Qamples. The disadvantage of the set SL(a,B) is

that for fixéd levels of a and B, the required sample size
increases rapidly as n, the dimension of A = (Al,...,An),
increases. The convex set Ss(a,B), on the otrer hand, does

not possess this functional relationship between N and n.

Another advantage is the flexibility which is provided for
choosing the general shape of the resulting distribution-
‘free set.

" . The superiority of the set Sg(a,8) over the sets

SQ(a) and ST(a) obtained via the Quantile and Tchebysheff

Methods was demonstrated using simulated gamma variates.

The Quantile Method, with normal variates, is superior

since the set SQ(o) is equivalent to the desired set, S,
whereas thevsets Ss(a,B) and ST are only small subsets of

; S. However, when the normality assumption dses not hold, it is
2 ’possible for the set SQ(a) to contain points which do not
satisfy the constraint at the desired level, a, as demon-
strated in Chapter IV, Thus, hefore employing the Quantile

Method, it is esscntial that the normality assumption be

carefully checked. If it is found that the underlying dis- _ﬁ
tribution is decfinitecly non-normal, then a distribution- ’
frce approach should be considered over the Tchebyshetf

Method for the following rcasons.

£
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1. It provides a way of measuring effect of the sampie
size, N, upén the confidance, B, associated with attaimaent
of the desired probability level, a. Witk the Tchebysheff
Methoa; it is Qifficult to decide on an appropriate sample
size to estimate the required parameters.

2. The results of Chapter IV indicate that the set
Ss(a,B) is not as conservative as ST(a); ¢ven for the rela-
tively high level of confidence level of B = 95. This
means that if points in S;(a) are expected to satisfy
the constraint with'alprobability of at least a, they actu-
ally satisfy them at least 100aT percent of the time, where
ar >> a. The corresponding value for the set Ss(a,B) is
closer to the desired level, a. This can be seen in Chapter
IV by caﬁparing the value of ALPHA obtained using the above
methods; |

Although the empirical results of Chapter 1V weré based
upon independently distributed random variates, the pro-
cedure for constructing the sets SS(Q,B) and SL(a,B) for
dependent variates is the same. This is not the case fo:
the set Sp(a), which requires estimates of the covariances.
It could be argued that the Tchebyshe<f Method is supewvior
tc a distribution-free method on the grounds that the
former is able to take advantage of more information regard-
ing the interdependence of the random variables in question.
In rcal-world situations, however, estimation f covariances

is much more difficult than that of mcans and variances, and
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the problem of asseSsing the effect of bad estimates upon
the set ST(;) is made considerably more difficultf

The simulated random variables in Chapter IV were con-
tinuoﬁgly distributed. Had discrete vﬁriates been used,
the only deviation from the method const?ucting distribu-
tion-free sets would have arisen in the case of ties;
that is, two or more sample pcints would yield the same
maximum value of the particular cutting function employed.
In such a case, the ties could be broken using lexicograph-
ical ordering rules as discussed in Chapter II. It should
be noted that the values of a and 8 do not depend upon th:
continuity of the variables in question.

The problem of increasihg the size of a distribution-
free set was investigated. With the Quantile or Tchebysheff
Methods; the size of the chance-constrained set can be ex-

'panded by decreasing the level of probability level, a.

For a distribution-free .thod, the same goal can be at-
tained by repeating the construction procedure at lower
levels of a and/or B, with reduced sample sizes. If re-
sampling is not possible, then one must work with randomly
chosen subscts of the original sample. While this does not
guarantece an expanded set, the only alternative is to take
additional cuts on the original tolerance region, This is.

not recommended since the resulting confidence level is

dependent upon a fixed but unknown quantity.
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There are several péssible extensions to the work pre-
sented in tﬁis paper. Certainly there is a need for more
experimentation with distribution-free chance-constrained
sets ﬁ;ing simulated data from distributions other than
gamma. Perhaps an even better insight into the usefulness
of these se¢ts could be derived by applying them to real-
world linear programming problems with random coefficients.

Further research is needed in determining appropriate
values for the elements of the shaping vector 4 for the
set Sc(a,B). This problem was investigated briefly in
Chapter IV, where it was shown that the choice of sample
means (as opposed to d = 0) resulted in a set S'(a,B) whose
shape was very close to that of the true chance-constrained
set.

The'notion of a distribution-free tolerance region
nmight prove to be beneficial in other areas of stochastic
linear programming. For example, in distribution problems,
the distribution of the optimal objective function valuc is
derived explicitly or by numerical approximation, then de-
cision rules are based on features of the dictribution.
The alternative distribution-free approach would be to base

decision rules on distribution-free toleorance limits.
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APPENDIX
PROOF OF THECREM 3.3

Theorem 3.3

Let U™ be the coverage of the region T(a,B) constru;ted
. : N
from a sample of size N by removing m blocks. Let u™™ be
the coverage of the region T'(a',B') formed by removing m'

additional blocks frow T(a,B). Then

Pr™™ 2 el = 1- I, e (mentel, mt) =

Proof

Lef U, be the coverage of el[as defined by (2.3) in
Chapter II]. Assign zero probability to 84 and normalize
to unity the portion of the original population contained
in ?i. Let-Ui be the conditional coverage of 6, given u,-
Continuing in this manner, a sequence of conditiornal cover-
ages Ul’ Ui,...,U& is obtained for which the probability

element (p.e.) can be shown [1Z] to be
N - upa-upVtola -vUﬁ)N'N du, duy ... duy

In particular, the p.c. of the distribution of the condi-

- tional covcrages Ué’l.....UA is

- - N ey e Ay
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Now the‘coverages Um+1""’UN of the blocks em+1,...,9N
are related‘to the rhwove conditional coverages in the foliow-

ing manner.

Ul

m
pe1 = Upa/t

) ool
Une2 = Um+2/(u i} Um+1)

L *

[ . L
.

L] ]

- m A
Uy = U/ (U7 - Uy~ Pz 7 o0 T Uy-1)

The Jacobian of this transformation is ' ¥
m\N-m . N-m+l
R A - ) e (- U8 )

and the co;responding p.d.f. of the coverages

' N-nm
(N-m) ! m
B
? 0 otherwise
|

Making th transformation Um*i = U V ij=1,...,N-m

il
the p.d.f. of the random variables, \"1,...,VN.,n is
o N-m
(N - m). Ovl ves va_‘m ’ ‘_t Vi f_ 1
- : i=1
0 | ~ otherwise

which is the (N-m)-variatc Dirichlet.
' ' '
The coverage Um*m can now be expressed as ™t .

] [}
u™ - U™ where U™ is the sum the m' additional coverages
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removed from T(a,B). It follows that

Priu™™ 5 o1) Priv™ < g™ - o]

=Prv™ <1 - (a'/U™)]

= Il-a'/Uﬁ (m', N-m-m’+1)
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