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ABSTRACT

This report is concerned with methods of approximating the chance-

constrained set S = {xIPr(A x < L B]a> ) when the underlying distribution,

F(.) of the random variate (A, B) is non-normal. The resulting sets are

completely distribution-free in that no assumptions are made about the

form of F(.) or any of its parameters.

The concept employed is the distribution-free tolerance region. This

is a sample based region containing lO00 percent of the population, at

a confidence level, a. The elements of thE distribution-free sets satisfy

the chance-constraint, Pr[A x < B] > a with a confidence of at least 8.

Furthermore, the sample size required to attain this level of confidence

is readily available in tabular or graphical form. The superiority of the

distribution-free approach over existing chance-constrained methods is

demonstrated using simulated gammw3 variates.
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CHAPTEA. I

INTRODUCTION

Consider the linear programming problem of the form

maximize Z C x

subject to

Aix<SB irnI,..., q (1.1)

x 0

x is an n-dimensional column vector, and Ai and C are n-

dimensional row vectors. In real-world problems the ele-

ments of C, B and Ai may be random variables and in such a

case the above formulation (1.1) has no meaning. The ran-

dom variable Z cannot be maximized and must be replaced

with some deterministic function. The most widely used

function is the expected value of Z, although other choices

have been suggcsted in the literature [1,2,3]. This re-

search is concerned only with random variation in the con-

straints. In particul,:r, the chance-constrained formula-

tion originally proposed by Charnes at al. [4] is con-

sidered. For a review of other possible reformulations of

linear program.ming problems subj-ct to random var iation,

the reader is refer.cd to the survey paper by McQuillan [5].

1
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Chance-Constraints

In chance-constrained programming it is not required

that the constraints always be satisfied, but ratfter that

they be satisfied with given probabilities. More precisely,

the chance-constrained reformulation of (1.1) associates
with e-ch constraint a preassigned number ai, 0 < ai < 1,
i - 1,.:., q such that Pr[Ai x < Bi] > a., i = 1,..., q.

The corresponding feasible solution set is then given by

S - Pr[(.) < 0]-> ai, i 1,..., q; x _ 0) (1.2)

wherert

Li() - A x - Bi i 13,... q

It is desired to convert S into a form more amenable to

existing mathematical programming techniques. The method

of conversion suggested by Charnes [2] yields the equiva-

lent formr

SQ- fxlE[Li(x)] + Ka oa[L(x)] < O, i - 1,..., q, x > 0)
(1.3)

where E[Li(x)] and o[Li(x)] denote the expected value and

standard deviation of Li(x.), respectively. Xa is the

smallest number satisfying

Pr[Ti(x) < Kai) > mi

n iq mnnmnumunumunpnunmm~l~unmn m ine mm n 2.
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where Ti(x) is the standardized variate of Li(x). (K.

is often referred to as the quantile of order ai.) When

KQ* ! 0, it can be shown [6] that SQ is convex. In such a

case ary one of a number of convex programming algorithms

could be used to solve the resulting problem.

The above approach, henceforth called the Quantile

Method, is limited to a special class of distributions which

are referred to as "stable" [7]. The common property of

this class is that the distributions are completely speci-

fied by two parameters U and V, and the convolution of any

K distributions F[(x - UI)/V 1], ... , F[(x - UK)/VK] is

again of the form F[(x - U)/V]. One such distribution be-

longing to this class is th6 normal, thus giving the Quan-

tile Method scýme appeal. However, many times the ele-

ments of Ai and B are not normal. For exampli, the elements

of Ai may represent rates which have to be non-negative. In

such cases alternativw approaches [8,91-have been proposed

for obtaining convex solution sets which approximate the

set S The most general procedure is given by Sinha [9],

in that only the means, variances and covariances of the

random variables need be specified. Using the Tchebysheff

Extended Lemma [10], it is shown that S contains the con-
Q

vex set

ST (xIE[ii(x) + a-[L ()] I 0f

i 1- 1 ... , q;_x _ 0) (1.4)
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This method of conversion shall henceforth be referred to

as the Tchebysheff Method.

Motivation and Objective of this Research

Although the Tchebysheff Method makes possible the

solution of chance-constrained programs under non-normal

conditions, there still exists a reliance upon parameters

of the underlying distribution. In rea:! ::crld situations,

the values associated with these parameters are estimates

derived from random samples. The accuracy of these esti-

mates can be measured in terms of levels of significance

ýA or degrees of confidence, but there is no way of directly

A incorporating these measures into the set ST. Thus, the

effect of bad estimates upon the solution obtained using

the Tchebysheff Method cannot be ascertained. A similar

situation also occurs with the Quantile Method when normal-

ity assumptions are sample based.

The above discussion suggests a need for a more gener-

alized theory and method of solving chance-constrained

linear programming problems when random sampling is neces-

sary. The most general would be a method which could be

used regardless of the forms of the underlying distribu-

tions or any of their parameters. While such a requirement

precludes the use of any classical statistical techniques,

ther: exists a special class of so-called distribution-free



techniques which are applicable in situations similar to the above.

The objective of this research is to develop methods for constructing

a distribution-free set from a sample of size N such that for any x

contained in this set, it can be asserted with a confidence level. , that

a constraint will hold with a certain probability, a. The concept to

be employed is that of a distribution-free tolerance region, similar to

the one used by Allen and Braswell [11].

5
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CHAPTER II

THEORY AND METHODS OF DISTRIBUTION-FREE
TOLERANCE REGIONS

This chapter deals with the development of the theory

and methods which serve as the statistical foundation for

Chapter III. The chapter begins with a definition of a

distribution-free tolerance region, then follows with a

general procedure for constructing such a region.

Definition of a Distribution-free
Tolerance Region

Let Y = (YI"". Yn) be an n-dimensional random vari-

able with a cumulative distribution function (c.d.f.)
OLt ON = (1k' k = 1,..., N) be a sample of size N

drawn from a population with c.d.f. 1yf.). Let T be a

region that lies in the sample space of Y, and assume that

the exact shape and size of T depends upon the observed

values of 0 Define the coverage, U, of the region, T,

as the probability measure of T. Since T is random, U will

also be random. Now if the corresponding c.d.f. of U is

independent of Hy(.), and if for 0 < a < 1, 0 < 8 1

Pr[U > a)]

6



then T is called a 100a percent distriL tion-free tolerance

region at a'probability level, k [12]. This concept was

originally introduced by Shewhart [J3] in 1931.

The above definition is interpreted by Fraser [14] as:

"In repeated sampling the probability is 0 that the region

T contains at least 100a percent of the population." Now

for a particular experimental value of ON' the correspond-

ing region, T, may or may not contain at least a of the

population. However, one can assert with a confidence of

0 that it does.

It should be noted that the term non-parametric has

also been used to describe the above region [14,15]. As

Noether [16] indicates, "this term has come to refer to

methods that are valid in some sense or othcr under less

restrictive assumptions than those of normality or another

specific distribution type." The terms distribution-frce

and non-parametric are not always synonymous, however; for

example, in testing statistical hypotheses, a non-parametric

test is one which makes no hypothesis about the value of a

parameter in a statistical density function, whereas a

distribution-free test is one which makes no assumptions

about the precise form of the sampled population [17].
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I O.An (X I-Xn)

r (vl+.. 4vn÷1) v1-.1 Vn-1 Vn -1 n)n
1' n 1

r I'v)...r'(vn÷1) xl .... l (~ 1")1"'')') pC)ii1"'"~nC~

0 •otherwise

where Sn is the simplex {C ,...,) > 0, i -,..,n,
an

< 1) in , vi, i = l,...,n+l are real and positive,i-I -

and r(.) denotes the gamma function.

A distribution having the above p.d.f. is called an

n-variate Dirichlet distribution and is denoted by

The two properties of a Dirichlet distribution that

will be used in this section are the following [12].

Property 1: If (A1 ....'Ad) is distributed as the n-variate

Dirichlet D(vi,...,Vn; Vn+i), then the marginal distribution

of (Al,...,Ak) k < n, is the k-variate Dirichlet

D(vl,...,vk; Vk+l+...+Vn+i)-

Property 2: If (A,...,An) is distributed as the n-variate

Dirichlet distribution D(vi,...,vn; Vn+l), then the sum

S.... rAn is distributed as a beta distribution
BCV,+÷"'÷•nl'vn+l)"

Turning now to the construction of a distribution-free

tolerance interval, consider the random intervals

(-as YC 1 )], (Yc) Y (2)1]"'.(Y(N) **a), and let Ui,
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i ,...,N+l denote the corresponding coverages associated

with these intervals. It can be shown [12] that the cover-

ages UI,...,UN are random variables having the N-variate

Dirichlet distribution D(1,...)l;1), which is completely

symmetric in the variables. It follows from symmetry and

Property 1 that any k coverages (k < N) have the k-variate

Dirichlet distribution D(1,...,1;N-k+l), and from this and

Property 2 it also follows that the sum of any k coverages

has the beta distribution B(k,N-k+l).

Now for any two order statistics Y(kl)s Y(k +k2 the

coverage Uk associated with the random interval [Y(k,)

Y(k1+k2)] is the sum of k 2 coverages and hence has the beta

distribution B(k 2 ,N-k 2 +l). Since this holds for any dis-

tribution, then with

Pr[Uk > a] = (2.1)
.2

for 0 < a < 1, 0 < 0 < 1, [Y (k) (R+k2)] is a 100a per-

cent distribution-free tolerance interval at probability

level 0.

Using K. Pearson's [20] notation £or the incomplete

beta function, (2.1) reduces to

I a (N-k 2 +l, k2) = (2.2)

Now for fixed a, a, k 2, there may exist no sample size N

ior which (2.2) holds exactly. flowever, since the left-hand

side of (2.2) is a mior, otone increasing function of N, there
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exists a smallest integer N for which

IIcL(N-k24 3., k2 ) > ,

For example, for a .95, 0 .99, k2 = 128, one could use

the tables of the incomplete beta function [20] to find

N = 130. It should be noted that Murphy [21] gives graphs

of a as a function of N for fixed values of 0 and m = N-k2+l

(number of intervals excluded). Somerville (15] extends

Murphy's results in tabular form.

Scheff6 and Tukey [22] extended the above results to

the case where Y is discontinuously distributed by showing
that the closed interval [Y(k), Y(k+k)] could serve as

a 100a percent distribution-free tolerance interval at a

probability of at least 0, and the open interval [Y(kl),

Y(kl+k2 )] at a probability level of at most 0.

n-dimensional Case

Wald [:3] extended the above method to the case of a

continuously distributed n-dimensional random variable Y.

His resulting distribution-free tolerance region consisted

of the union of rectaugolar regions in Rn. In this section

a generalization of this method 4ue to Tukey [24] is pre-

sented. Further generalizations, due to lrascor [14,25]

and KcitiperNman [2:6],do not concern this research, The basic

tnderlying notion in T"ukey's ,lethod is that of a "statistic-

al1)' equivi 11ent blo ck" which is the multivariate -inalog:ue

of the it ut, b I hetwcu, two adjcent order statistics. To
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visualize the. block construction, it is convenient to think

of the random sample, 0N, as N points in Rn. Let 0,(Y),

i = 1,...,N be numerical valued functions with continuous

c.d.f.'s. The exact choice of these functions will depend

on the desired form cf the tolerance region to be constructed.

Suppose these functions are used to section R in the follow-

ing manner:

First divide R into two complementary regions, 01
• ~and bFl,such that

j1 " ({j* 1 (y) > W1}, (2.3)

by means of the cut

Al (xI={ 1(Z) = W1 }

where

W max *1CXk) - )

which defines Y

Let 'I be divided into the two complementary regions

0, and 02, such that

e2 a (y01o(-) 5 WI1 * 2 W > '2 (2.4)

and W2 by means of the cut

"w heIrI(e) < W1) 02(y) W2)

whe0re
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w2 Max YyCk) C(k

Continue this procedure for the remaining sample points

where, in general, p <_ N

"Op {Wjk'l(D) < 'II.P-.., 1(,) < IV -i' P(x) > 11 (2.5)

and

p1
P P

where

= max p(k - p(Ykp) (2.6)

SThe resulting regions , are the statistic-

ally equivalent blocks mentioned above. In Reference [12]

it is shown that the coverages Ul,...,UN associated with

the blocks O81".'O'N have the Dirichlet distribution
D(I,...,l;l). Thus if Ur denotes the coverage of the sum

of any m blocks, then U. is distributed as a beta distribu-

tion B(a, N-m+l).

Let UN-m+1 be the coverage of the region fN-m+l formed

by removing m blocks from Rn. If

Pr[UPT < 1 - (m] I (m, N-mil) 8

for nol'wa,,Pr(O < t < 1, 0 < B < 1), then

'r [ I, .. , -
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and T is a lOOa percent distribution-free tolerance

region at piobability level 0. It should be noted that if

TN~m+l is fou.,d by removing the first m blocks

s~ecified. Furthermore, the graphn and tables for the one-

dimensional case can be used to relate the parameters a,

0, N, and m in the n-dimensioral case.

For the case of discontinuous distributions, Oi,

l - ,...,N+l are defined as above with the exception that

(C) is replace.1 by [c) and (>) is replaced by (Q). The

resulting region becomes a lOOa percent distribution-free

tolerance region at a probability level of at least 0.

The theoretical justification for such a statement can be

found in (27].

It should be noted that in dealing with discontinuous

distributions, a situation might arise in which two or more

sample points minimize a paiticular . In such a case,

the construction procedure is no longer unique, and one

must specify in advance a rule for selecting among these

alternative points. Tukey [27] suggested such a rule using

the concept of lexicographical ordering. (al,...,an) is

said to be less than (b 1 ,...,bn) in the lexicographic

sense if any of the following hold

1. a b

2. aI -b,, and a2 < b2

•m~munmnu ~ m • • • • • • m m mm • m m • • numnun



is

n i < n, and a < bn

13y defining the functions 411 P2'1 .... '4N as

a tiehi-cakirng rule would be to select the sample point

for which q.iC.) is minimized in the lexicographical sense.

For cxa:pple, if r points minimize the function 1() , then

find the r, points among these r points that minimize the

function If r, = 1, then select the point which

minimizes 42(.); otherwise find the r 2 points among the r,

points that minimize 43(.). Continue the proceduro until

rip - 1, i < N, or rN > 1. In the latter case th- method

of constructing the sample blocks will be the same regard-

less of the poin', selected among the rN points.

In conclusion, this chapter encompasses developments

and refinements of the theory and methods of distribution-

free tolerance regions specifically for application to

chance-constrained linear programming. Chapter III morg-es

this materi al with the theory and methods of linear pro-

aimnaing to for-mulatc new procedures for chance-const-r.ined

line:oir prograJmning with distribution-free constraints.



CHAPTER III

DISTRIBUTION-FREE CONSTRAINT SETS

In this chapter methods are developed for construct-

ing a distribution-free set S(a,8) such that for any

x C S(a,o) it can be asserted with a preassigned confi-

dence, 8, that a constraint will hold at least lOOa percent

of the time. The required number of samples is a direct

function of the values assigned to a and 8.

The Distribution-free Set

The meaning of a distribution-free set S is best ex-

plained by considering the chance-constraint

Pr[Ax < B] > c (3.1)

where A and B are random variables. Let C(1),...SC(N) be

the order statistics of a sample of s ize N from the distri-

bution of C = B/A. If Ul,...,UN+l are the coverages asso-

ciated with the random intervals (--,C(1 )], [C( 1 ),C( 2 )],

%..., [C(N),+w) and U' is the sum of the coverages

U,...,U N+1, there exists a 8 for which Pr(U' > a] a ] .

The random interval [C( 1 ),+0) is a lOOa percent distrihu-

tion-free interval 3t probability level S. Thus, if c(l)

16
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is the observed value of C it can be asserted with a

confidence, 0, that Pr[C > c( 1 )] c a. Then if S(a,S)

(xIx < c(1)}, for any x C S(a,O) it can be asserted with

a confidence, 0, that Pr[C > x] > a or Pr(Ax < B] > a.

For the general case of q chance-constraints it is

desired to find q distribution-free sets with the above

property. That is, :Eor any x CSi it can be asserted with

a confidence of at leas'c 0i that Pr[Ai x < Bi] >, ai.

Maximization of the objective function would then be over

the intersection of these q sets. The next section de-

scribes the fundamental appriach to be taken in this re-

search for constructing a distribution-free set for a

particular constraint. For convenience the superscript,

i, is omitted, and the right-hand side, B, fixed at one.

When B is random, the procedures which follow are applicable

to the random vector A/B.

Constructing a Distribution-free Set

The approach for cons"-ructing a distribution-free set

can be described in two basic steps.

1. Construct a lOOa percent distribution-free toler-

ance region with confidence, 8, from samples of the elements

of A. Denote this region by T(a,O).

2. Determine the set S(a,B) such that for any

x C S(a,8), A x< 1 IA C T(a,O). The justification for

taking these stcps is that for any _ C S(a,S) the half-space
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(AIA x f 1) contains a lOOa percent distribution-free

tolerance region with confidence 0. Hence, for any

x CS(ac,B) it can be asserted with a confidence of at

least 0 that Pr(A x < 1] > a.

To illustrate the construction of a deterministic set

S(a,B) from a distribution-free tolerance region, let such

a region be constructed by removing a statistical block

with the linear cutting function * = A y. The elements

of y are assumed to be arbitrarily chosen and constant.

This region is given by

• Z~aS) =(AIA •<_ 1}

where

1 yj/w j~yt = " = 1,...,n

and

W = max *(Ak) k =
k-

The desired set corresponding to this region would then be

given by

s(U,B) = Xy•=•, o <. X 5. 1, 01•_o

Example 3.1 further illustrates this approach.

Example 3.1

Suppose it is desired to find a set S(.s, .95) such

that for any x = (x 1 , x2) C S(.S, .95) it can be asserted
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with a confidence of at least .95 that

Pr[Alx 1 + A2 x 2 _ 1] ' .50

Choosing y1 = 1 and Y2 2 (arbitrarily), the function

* = A1 + 2A2 is used to generate a tolerance region T1 (.5,

.95). The required sample size is then the smallest

integer value N satisfying the relationship

I S(1, N) > 1 - .95

which can be shown to be N - 5.

To illustrate, a random sample of size N S S was taken

from a population of independently and identically distrib-

uted normal variates with means and variances of 3 and 1,

respectively. The resulting sample values are (A,, 1 , A2 91 )

= (3.485, 2.618); (A1 2 , A2 , 2 ) = (4.345, 1.398); (A1 , 3 ,
A2,3) = (.538, 1.534); (A,4, A2,4) = (3.043, .361); and

(A1 ,5, A2 S) = (2.084, 3.598). Then I = max(Alk + 2 Azk) =
k

2.084 + 2(3.598) = 9.280, and T(.5, .95) = {AI, A2 .108 A1

+ .216 A2 _I.

The corresponding distribution-free set is then

S(.5, .95) = {Xlx 2 1(xl,x 2 ) = )(.i08, .216),

0 < X < 1, (x 1,x2 ) > 0)

A scatter diagram of the original sample points is given

in Figure 3.1, along with the tolerance region T(.S, .95).

Figure 3.2 contains a graphical representation of the set

S(.s, .9s).
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A2  - "
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T (.51 .95)
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Figure 3.1. T(.5, .95) for Example 3.1.

x2
t (.108, .216)

.2

.I S(.5,.95)

. .2 X

Figure 3.2. S(.5, .95) for Example 3.2.
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The foregoing approach was used to illustrate the

notioi of constructing a deterministic set S from a distri-
bution-free tolerance region T. The relative merit of such

an approach is dubious when dealing with more than one con-

straint, since the choice of x is restricted to points

along a vector in R . The same cutting function must be

used for each constraint, otherwise the only choice for x

would be the origin. The two methods which follow provide

considerably more freedom in the choice of the shape of the

distribution-free regions corresponding to each constraint.

A Distribution-free Linear Constraint Set

It is possible to represent a distribution-free set

as a linear constraint set in the following manner. First f
construct a distribution-free tolerance region TL(a,B)

using a sequence of cutting functions of the form

0. = A. j = 1,...,n

The resulting region would be given by

TL(a,8) (AlA < W) (3.2)

where the elements of IV = (IV1 ....W ) are determined from

Eqs. (2.3) and (2.6) of the previous chapter. The desired

set SL is then given by

SL(QZ,0) =(XILV x 'I1 x 0) (3

IL __ ____ ____ ____ ____
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as is evidenced by the following theorem.

Theorem 3.1

Let S and TL be given by Eqs. (3.2) and (3.3), respec-

tively. (For convenience the (a,$) designation is deleted.)

Then a necessary and sufficient condition for A x < 1 A C TLI is that x CSL.

Proof

(Sufficient)

Assume x CSL

Show

SA.x < 1 V A*C TL (3.4)

Rewrite Eq. (3.4) as

W x - I < (W- A) x (3.5)

Nov, the r.h.s. of Eq. (3.5) is always greater than or equal

to zero VA C TL, so the inequality will always hold pro-

vided the l.h.s. is non-positive.

Since by definition of the set SL

Wx -1<0

the sufficiency part of the proof is complete. The neces-

sary part ol" the proof follows since

A x < 1 YA C TL
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and in particular. the relationship

Wx <1

must be satisfied.

Example 3.2

For comparative purposes the problem stated in Example

3.1 will be used, alopg with the same five sample values.

However, before proceeding it is necessary to increase the

sample size to N = 8, since this is the smallest number for

which

I.S(2, N-i) > I - .95

The additional simulated sample values are found to be

(2.502, 2.972), (? 541, 2.143) and (3.456, 4.116).

Figure 3.3 contains a scatter diagram of the eight

sample values along with the resulting tolerance region

TL(.S, .95) {A1 ,AZIAI < 4.345, A2 < 4.116)

The desired linear set (shown in Figure 3.4) is then given

by

SL(.5, .95) = x 1,x 2 f4.345 x1 + 4.116 x2 _ 1, (XlX 2 ) >l 0

A major disadvantage of the above approach is that as

the number of variables, n, increases, so does the number

of required cuts, m. This in turn requircs a larger sample

size N for fixed levels of a and B. As is shown in Table 3.1,

LiA . . . .
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A2  A2 - 4.116
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TL(.5, .95)

I _ tII I
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Figure 3.3. TL(.S, .95) for Example 3..2.* x2

.I.2 -

6'

SL(.5 0 .95)

*.2 X

Figure 3.4. SL(.S, .95) for Example 3.2.
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with a = .90 and 0 = .95, the size of N for even modest

values of m is quite large. For the case of limited or

costly data, this -restriction could be very significant.

Table 3.1

Values of m and N with a = .90; B = .95

j N

5 90

10 155
S15 215

* 20 275

25 335
30 390

40 500

so 600

The next section shows how a sphefical cutting function

can be used to construct a convex distribution-free con-

straint set without the above restriction.

A Distribution-free Convex Constraint Set

Suppose a distribution-free tolerance region is con-

structed via the cutting' function

A) .- I- di - (An - d,)2 1/2

- j=l
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where d is a row vector of preassigned constants. The re-
sulting tole'rance region is giver- by

T S(aE,0) {AJ IA 11 p) (3.6)

where

P amax 
-~

k

This region is the surface and interior of- ant n-dlmensionai
hypersphere centered at d with radius p. The corresponding
distribution-free set is given by

S(clsO) = (xf Jxfl < (1 -d l)p, 0)

Theorem 3.2

Let T S be given by Eq. (3.6). A necessary and suffi-
cient condition for A x < 1. 4A C T~ is

JJ_(1 -d x)/p 
(3.7)

Proof

(Sufficient)

Assume Eq. (3.7) holds. Show that A x < 1'ACT.
. S*

Axad x + (A,- d) )x

cd x + [( -d

<
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(Necessary)

Assume A x < 1 VA C TS'. Show that Eq. (3.7) holds.

A x <-1l

Sx+ (A ° )x< 1

(A" d) x < I - d x

IA - dl lxi cos(A - d, x) < 1 d x (3.8)

Note that if Eq. (3.8) holds for points on the surface of

the hypersphere defined by TS, then this relationship also

holds for all points contained in this hypersphere. Thus

IA- dl can be replaced with p in Eq. (3.8) to give

lxi cos(A - d, x) ( (1 - 3 x)/p (3.9)

For Eq. (3.9) to hold, it must hold for an A* on the sur-

face of TS for which cos(A* - d, x) = 1. Such a point

exists and is given by A* [(px)/Ixi] + d. Replacing

cosCA- d, x) with cos(A* - d, x) = 1 in Eq. (3.9) yields

Ix_ < (1 d x)/p

and the end of the necessary part of the proof.

Tha convexity of the set SS can be :.roven by letting

x* = 1xI + (1 - X) x2 where 0 < X < 1 an,1 x1,x 2 C SS. Then

Ix~l " (1 - d x*)/p -

ljxI - ] -(I - (_ x *
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_x l X + (1-x)f. 2f - [1 - Xd - (1 - E2 /p

,I(_ 1- d xl) + (I - A)(1 - d x2) - [1 d 1

"- (1 - A) dX21/PO

i +

S<0

The relationship (3.7) can be described geometrically

as the surface and interior of a sphere, elipsoid, parabo-

loid or one nappe of a hyperboloid depending on 6 (i.e.,

6 = p, <0, = 0 or >0) where 6 = p - jdj. This is illus-

trated in Figures 3.S through 3.8, where d varies and p

remains fixed at .5. Also included in these figures are

the corresponding tolerance regions described by Eq. (3.6).

Example 3.3 illustrates the foregoing method with

respect to the preceding examples.

Example 3.3

For convenience, the circular cutting function with

d = (0,0) is considered. Since only one cut is required,

the original five sample points are used to determine the

value of p (A•2 + A2 1/2 = 4.5. Then the resulting

tolerance region (shown in Figure 3.4) is given by

TS(.5, .95) = {(A,,A2)1(A2 + A2 )1/2 < 4.S)

and the corresponding distribution-free set (shown in

Figure 3.5) is given by
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Figure 3.5. Ts and S with 6 = p.
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Figure 3.6. Ts and SS with 6 < 0.
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Figure 3.7. Ts and S with 6 -0.

Lo
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A2

I.

1I -. 5 .5 1.A

3.

s s I

-1, 2I I, 2s XI

Figure 3.8. Ts and Ss with a > .

SI
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Ss(.S, .9s) . (x1 ,x 2 ~x• + 2) 1 1/4.5, (x1,x2) (0C,0))

The tolerance regions and distribution-free sets of

the foregoing examples are shown together in Figures 3.9

and 3.10, respectively.

Expanding the Size of a Distribution-free Set

This section is concerned with the problem of expand-

ing the size of a distribution-free set, S(a,O), after it

has been constructed from a sample of size N. Such an

expansion might be motivated by an undesirable value of the

objective function obtained by maximizing over S(a,S). If

this occurs in the use of the Quantile or Tchebysheff

Methods, the sets can be expanded by reducing the pre-

assigned probability level, a, for constraint satisfaction.

This results in a smaller value of K or (all - a) and thusa
increases the size of the respective sets SQ9 ST as de-

scribed by Eqs. (1.3) and (1.4) in Chapter 1. In the case

of a distribution-free set the problem could be similarly

resolved by reassigning lower levels of a and 0 and repeat-

ing the construction procedure with reduced sample sizes.

If there are no samples available, then it may be possible

to obtain a larger set by reducing the original tolerance

region T(a,a) by taking additional cuts. The coverage of

the resulting region is described in the following theorem.

(The proof of theorem 3.3 is presented in the Appendix.)
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Figure 3.9. SS(.5, .95) for Example 3.3.

A2
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Figurc 3.10. TL(.S, .9S) for Example 3.3.
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Theorem 3.3

Let Um be the coverage of the region T(a,S) constructed

from a sample of size N by removing m blocks. Let Um+mI be

the coverage of the region T'(a',0') formed by removing m'

additional blocks from T(a,8). Then

Pr[b > a'] = I - Iat/UUm (N-m-m'+l, m') 0 8' (3.8)

From the above theorem it is seen that the confidence

level, 0', associated with the rzgion T(a',0') is dependent

upon the coverage, U , of the original rngion, T(a,s).

Once the sample has been drawn, Um is a fixed but unknown

quantity. Thus, it is impossible to determine the value

of 8' for a given level of a'. However, relationship (3.8)

can be used to approximate the coverage, 0nm', by replacing

Urm with a suitable ectimate. One such estimate is the

original value of a, since it is known with a confidence

omof at least 0 that Um > a.



CHAPTER IV
EXPERIMENTATION AND COMPUTATIONAL RESULTS

This chapter includes the results of investigations

into the performance of linear and spherical distribution-

free constraint sets using simulated'data from a non-normal

distribution. The value of such investigations is two-fold.

First, it provides a clearer understanding of the meaning

and interrelationship of the parameters a and 0. Second,

it provides a means of comparing the relative merit of a

distribution-free set versus one obtained using the Quantile

or Tchebysheff Method in the absence of any knowledge of the

underlying distribution.

Notation and Assumptions

Consider the single chance-constraint

Pr[A x < 1] > a, x > 0 (4.1)

Let Ss(a,s) denote a convex distribution-free set as de-

scribed in the previous chapter. All x C SS(aa8) will

satisfy (4.1) with a confidence of at least S. Let SL(a,8)

denote a linear distribution-free set with the same property.

ST(a) and SQ(a) denote sets obtained by the Tchebyshcff and

36
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Quantil. Methods. Th'i information required to construct

the above sets is based upon sample data from independent

and identically distributed gamma variates with parameters

= 10 and v - S. These variates were generated on an IBM

360-65 computer using the FORTRAN program suggested inI+ reference (28].

Construction of Ssca,0), SL(aB).,

ST(a) and S (a)

Consider the case of n = 2, and suppose it is desired

to find a region in the positive quadrant of x = (xlx 2 )

such that any point in this region will satisfy the chance-

constraint

Pr[A1 x1 A1 x2 < 11.] >..90

Such a region can be determined using a spherical cut-

ting function with a confidence of .95 from a sample of

size N = 29. For the purpose of generality this region is

constructed using a spherIcal cutting function with d = (0,0).

Table 4.1 contains the 29 simulated sample points (Alk,A2k,

k=1,...,29). The sixth sample value (.706, .734) yields

the maximum valuiý of p - (.706)2 + (.734)2 = 1.037. The

resulting distribution-free set is

Ss(.90, .9s) (x13x2 l(x ., x2 ) 1/2 < (1/1.037)1/2)
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Table 4.1

29 Simulated Samples of (A1 ,A2 )

jk Alk A2k k Alk A2k k Alk A2 k

1 .493 .380 11 .288 .383 21 .492 .527
2 .773 .405 12 .615 .365 22 .623 .777
3 .490 .382 13 .293 .303 23 .252 .565
4 .384 .472 14 .358 .450 24 .405 .398
S .277 .456 15 .651 .525 25 .718 .408
6 .706 .734 16 .685 .412 26 .484 .215
"7 .635 .416 17 .421 .070 27 .890 .399

._8 .446 .670 18 .489 .630 28 .317 .725
9 .172 .122 19 .650 .458 29 .232 .329

10 .366 .625 20 .419 .592 .. ....

To illustrate empirically the meaning of a = .90 and

- .95, the above procedure for constructing SS(. 9 0, .95)

* was repeated for 99 additional sample sets of size N = 29.

For each set, the surface point x* for which xI = x2 was

selected and in 1,000 realizations of the random variables

Aj,A 2, the number of times that the relationship A1X. +

A2xM 1 was satisfied was recorded, and denoted as ALPHA.

In BETA = 96 of the 100 trials, the value of ALPHA was

found to be greater or equal to 900.

Table 4.2 exhibits these values along with other ob-

served values of BETA for various values of ALPHA. These

observations can be compared with actual values of a and P

with N - 29 and m = 1 in Table 4.3.
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Table 4.2
Observed Values of' ALPHA and BETA

ALPHA BETA

800 99
8S0 99
900 96
9S0 76
960 70
970 59

Table 4.3

Actual Values of a and 0W•ith N =2g and m

.800 .998
.8S0 .992
.900 .953
.9so .77S
.960 .697
.970 .585
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A linear distribution-free set SL(. 9 0, .95) would re-

quire additional sample points since two cuts are needed

(as opposed to one in the spherical case). Rather than

taking any more samples, the set SL(. 9 0, .83) is constructed

from the original sample of size 29. The maximum value of

Alk is given by A1 2 7 ' .890. The maximum value of A2 ,k

(after deleting A2 27 ) is A2 2 2 = .777. The resulting

linear set is given by

SL(. 9 0, .83) = {xl,X21.890 x, + .777 x2 < 1)

To construct the set ST(. 9 0) using the Tchebysheff

Method, it is necessary to calculate sample means and vari-

ances from the 29 sample values of Table 4.1. The result-

ing set is given by

ST(. 9 0) = {xlx 2f.484 x + .455 x + 3.0(.033 x2

I + .028x ) 1/2 < 01
÷ 0028

Assuming (erroneously) A1 and A2 to be independent normal

variates, the Quantile Method could be used to generate

the set

SQ(.90) {xlX 2 1 .484 + .455 x2 + 1.282(.033 x2

+ .028 21/<

il 2
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Comparative Analysis

To illustrate geometrically the relative accuracy of

the above sets with respect to the true set S

(X ,x 2 [Pr[A1 xI + A 2 x2 < 1) > .90) the bouandary of this

set was approximated in the following manner. For a fixed

value of xl, the value of x2 was incremented in units of

.02 until such time that LALPHA-9001 < 5. The procedure

was then repeated for incremental (.2) values of xI. The

resulting values of x ,X2, and ALPHA are presented in Table

4.4.

Table 4.4

Approximate Boundary Points
of Actual Region S

i2 ALPHA

0 1.16 898

.2 1.06 903

.4 .96 895

.6 .80 904

.8 .58 901

1 .32 896

These points were used to approximate the true region

with the region S shown in Figure 4.1, which also contains

the sets S5 (.90, .95), SL(.901 .83), ST(.90) and SQ(. 9 0).

L . • • • .{ •••• • .. . .
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Figure 4.1. Comparison of chancc-constrained sets with
no knowlcdgc of the underl)'ing distributions.
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The following observations are made from this figure.

A. The 'sets SS, S L, ST are conservative with respect

to the degree in which boundary points satisfy

the constraint more than 90 percent of the time.

B. The set ST obtained via the Tchebysheff Method is

the most conservative.

C. The set SQ obtained via the Quantile Method yields

a considerably larger region, but points alrng the

boundary will violate the constraint more than

10 percent of the time.

D. The boundaries of the sets SQ and ST follow the

shape of the true boundary more closely than those

of either SS or SL.

The first three observations are illustrated numerically

by considering various points along the respective bounda-

ries and checking the constraint satisfaction with samples

of size N = 1,000. In particular, the.points considered

are those which maximize the value of

Z = cI xI + C2 x2

for values of c = (1,1), (2,1) and (4,1). The resulting

values xl,x 2 and corresponding values of ALPHA for each set

arc presented in Table 4.5.

To determine if the observations A, B and C could be

made for higher dimensions, a similar analysis is first per-

formed for the case of n 10. The boundary points considered
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Table 4.5

Empirical Constraint Satisfaction

c Set x1 x2 ALPHA

(1,1) SS .69 .69 905

S1L .00 1.24 892

ST .54 .66 962
SQ .70 .92 781

(2,1) SS .88 .42 917

SL 1.12 .00 926

ST .92 .12 976

SQ 1.40 .00 826

(4,1) SS .96 .24 922

SL 1.12 .00 926

ST .97 .00 973

5 Q 1.40 .00 826

10
are those which maximize the value of z = Z x.. The

solutions are obtained using the Sequential Unconstrained

Minimization Technique (SU'T) developed by Fi3cco and

McCormick [29]. The resulting values of z are presented

in Table 4.6 along with the corresponding: values of ALPHIA.

These results relate to A, B and C in th- following manner.

A'. The sets SS and ST are still conservative, but

it is now possiblc to generate a set SL which

can contain points violating the constraint more
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Table 4.6
iValues of ALPHA and z with n = 10

ALPHA
Run sS SL ST SQ

1 982 874 984 764
2 988 919 994 1,000
3 984 020 994 913
4 991 774 999 912
5 977 900 989 841
6 979 943 999 918
7 988 883 987 886
8 995 824 999 958
9 995 908 991 968

10 989 882 995 954

z
Run S SL ST S

1 1.526 1.309 1.494 1.793
2 1.473 1.132 1.391 1.119
3 1.513 1.178 1.411 1.652
4 1.327 1.541 1.312 1.655
S 1.550 1.251 1.458 1.710
6 1.S39 l.i46 1.348 1.664
7 1.479 1.275 1.463 1.675
8 1.418 1.425 1.324 1.569
9 1.419 1.204 1.441 1.518

10 1.468 1.292 1.412 1.567
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than the preassigned level of 1-a = .10. [This

is to be expected, since t1e level of confidence

is only equal to .001 (see Table 3.1).]

B1. The set ST is still more conservative in the

majority of the trials, but not substantially so

when compared with the set S .

C'. Depending upon the particular sample values drawn,

the corresponding set S may or may not contain
SQ

points on the boundary which violate the constraint

more than 10 percent of the time.

The above observations are further supported for the

case of n = 25, as shown by the results presented for this

case in Table 4.7.

In observation D, the boundaries of the sets SQ and ST

were much more representative of the shape of the true

boundary.

The distribution-free boundaries were not nearly as

representative, since even before the samples were drawn it

was known that the resulting sets SS and SL would be cir-

cular and linear, respectively. Although this will always

be the case for the latýer set, it need not be for the

former set because the shape of this set can be controlled

by the choice of the vector d. There is an infinite number

of choices f)r the values of the elements in this vector,

and there is no way of t.11ing prior to sampling which

choice yields a more rcprecsentative shape of the true



Table 4.7

Values of ALPHA and z with n = 25

ALPHA
Run S, SL ST SQ

1 995 502 1,000 859

2 972 797 990 930

3 99.2 440 987 859

4 1,000 795 989 865
S 996 904 999 885

6 998 696 989 832
7 961 777 967 900

8 996 662 982 911

9 993 756 988 931
10 991 883 992 956

w

z
Run SL ST S

1 1.582 2.103 1.411 1.819
2 1.672 1.469 1.577 1.726
3 1.614 2.272 1.594 1.829
4 1.430 1.471 1.616 1.828

S 1.569 1.234 1.477 1.753
6 1.457 1.760 1.605 1.831

7 1.702 1.516 1.652 1.778

8 1.573 1.74S 1.53S 1.781

9 1.S98 1.604 1.583 1.748

10 1.625 1.299 1.480 1.726
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boundary. It should be noted, however, that the use of the

true mean values has worked exceptionally well. That is to

say that the set S• generated by the cutting function

*= I(A 1 ,A2 ) - (.5, .S)l follows the shape of the true

boundary of S'. This is illustrated in Figure 4.2. This

figure also contains the sets SS, S and SIT' where S. and

S are as in Figure 4.2 and S. is a set obtained £rom the

Tchebysheff method using actual means and variances. From

Figure 4.2 it is seen that while the set Sý gives a better

approximation of the shape of the actual region, it is also

more conservative than the set SS. The set S' still remains

the most conservative.

I,
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Figure 4.2. Comparison of chance-constrained sets with
knowledge of moans and variances.



"CHAPTER V

CONCLUSIONS AND EXTENSIONS

In this research methods were developed to deal with the chance-

constrained set, S = {xIPr[A x< B) > a}, when any information con-

cerning the random variables Al...,%An and B must be derived from

actual samples. When existing techniques are employed, Ji

is not possible to relate the accuracy of sample informa-

tion to actual constraint satisfaction. The distribution-

free methods which were developed as a result of this re-

search alleviate the problema by providing a lower bound on

the confidence 0, that one can associate with a value of

x satisfying the chance-constraint at the preassigned

probability level, a. The sample size, N, required to

meet the dcsired confidence is readily available in tabular

or graphical form.

Two methods of approximating the set S were developed

using the theory of distribution-free tolerance regions.

The resulting sets, SL S,B) and SS(a,a), have the property

that any x contained in them satisfies the chance-constraint,

Pr[A x < B] > a, with levels of confidence 8 and The

50
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advantage of the set SL(c, 0 ) is that it is a linear con-

straint with exactly the same number of coefficierts of the

original constraint. Furthermore, the values for these co-

efficients can be determined directly by inspection of the

random samples. The disadvantage of the set SL(a,0) is

that for fixed levels of a and $, the required sample size

increases rapidly as n, the dimension of A = (A1 ,..e.An),

increasbs. The convex set SS(a$,), on the other hand, does

not possess this functional relationship between N and n.

kAnother advantage is the flexibility which is provided for

choosing the general shape of the resulting distribution-

free set.

.The superiority of the set SS(a,$) over the sets

SQc(a) and ST(a) obtained via the Quantile and Tchebysheff

Methods was demonstrated using simulated gamma variates.

The Quantile Method, with normal variates, is superior

since the set SQ(o) is equivalent to the desired set, S,

whereas the sets SS(a,a) and ST are only small subsets of

S. Aowever, when the normality assumption do)es not hold, it is

possible for the set SQ(a) to contain points which do not

satisfy the constraint at the desired level, a, as demon-

strated in Chapter IV. Thus, hefore employing the Quantile

Method, it is essential that the normality assumption be

carefully checked. If it is found that the underlying dis-

tribution is dcfinitely non-normal, then a distribution-

free approach should be considered over the Tchebysheff

Method for the following reasons.
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1. It provides a way of measuring effect of the sample

size, N, upon the confidanze, 8, associated with attaini,,ent

of the desired probability level, a. With the Tchebysheff

Method, it is difficult to decide on an appropriate sample

size to estimate the required parameters.

2. The results of Chapter IV indicate that the set

Ss(ct,i) is not as conservative as ST(a), uvvn for the rela-

tively high level of confidence level of 8 - 95. This

means that if points in ST(a) are expected to satisfy

the constraint with a probability of at least a, they actu-

ally satisfy them at least lOOaT percent of the time, where

aT >> a. The corresponding value for the set Ss(a,S) is

closer to the desired level, a. This can be seen i.n Chapter

IV by comparing the value of ALPHA obtained using the above

methods.

Although the empirical results of Chapter IV were based

upon independently distributed random variates, the pro-

cedure for constructing the sets Ss(a,8) and SL(a,8) for

dependent variates is the same. This is not the case fol

the set ST(a), which requires estimates of the covariances.

It could be argued that the Tchebysheo.f Method is superior

to a distribution-free method on the grounds that the

former is able to take advantage of more information regard-

ing the interdependence of the random variables in question.

In real-world situations, however, estimation .f covariances

is much more difficult than that of means and variances, and
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the problem of assessing the effect of bad estimates upon

the set ST(a) is made considerably more difficult.

The simulated random variables in Chapter IV were con-

tinuously distributed. Had discrete variates been used,

the only deviation from the method constructing distribu-

tion-free sets would have arisen in the case of ties;

that is, two or more sample points would yield the same

mnximum'value of the partic-ilar cutting function employed.

In such a case, the ties could be broken using lexicograph-

ical ordering rules as discussed in Chapter II. It should

be noted that the values of a and 0 do not depend upon t0;

continuity of the variables in question.

The problem of increasing the size of a distribution-

free set was investigated. With the Quantile or Tchebysheff

Methods, the size of the chance-constrained set can be ex-

panded by decreasing the level of probability level, a.

For a distribution-free .ethod, the same goal can be at-

tained by repeating the construction procedure at lower

levels of a and/or 0, with reduced sample sizes. If re-

sampling is not possible, then one must work with randomly

chosen subsets of the original sample. While this does not

guarantee an expanded set, the only alternative is to take

additional cuts on the original tolerance region. This is

not recommended :;ince the resulting confidence level is

dependent upon a fixed but unknown quantity.
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There are several possible extensions to the work pre-

sented in this paper., Certainly there is a need for more

experimentation with distribution-free chance-constrained

sets using simuilated data from distributions other than

gamma. Perhaps an even better insight into the -usefulness

of these sets could be derived by applying them to real-

world linear programming problems with random coefficients.

Further research is needed in determining appropriate

values for the elements of the shaping vector d for the

set Ss(a,O). This problem was investigated briefly in

Chapter IV, where it was shown that the choice of sample

means (as opposed to d = 0) resulted in a set S'(a,O) whose

shape was very close to that of the true chance-constrainud

set.

The notion of a distribution-free tolerance region

might prove to be beneficial in other areas of stochastic

linear programming. For example, in distribution problems,

the distribution of the optimal objective function value is

derived explicitly or by numerical approximation, then de-

cision rules are based on features of the distribution.

The alternative distribution-free approach would be to base

decision rules on distribution-free tolzerance limits.



APPENDIX

PROOF OF THEOREM 3.3

Theorem 3.3

Let Um be the coverage of the region T(a,s) constructed

from a sample of size N by removing n blocks. Let U be

the coverage of the region T"(a',0') formed by removing m'

additional blocks froi,: T(a,$). Then

Pr[Ulm+m' > a] = 1 - Iu/Ur. (N-m-m'+l, mi') =

Proof

Let U1 be the coverage of 01 [as defined by (2.3) in

Chapter II]. Assign zero probability to 01 and normalize

to unity the portion of the original population contained

in Vi. Let Ui be the conditional coverage of 02 given U1 .

Continuing in this manner, a sequence of conditiornal cover-

ages U1 , Ui,...,U is obtained for which the probability

element (p.e.) can be shown [12] to be

N!(l -2 ... (1 - UA)NN dUI dUj ... dUN

In particular, the p.e. of the distribution of the condi-

tional coverages Um,...,Un is

(N - m)!(1 - (I)N'4l dU ,1 . dU

S6
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Now the coverages Um+,.',** N of the blocks 0 m+l,...,N

aTe related to the .%ove conditional coverages in the follow-

ing manner.

m•÷I+ Um+i/l

U+ 2  um+2 f(Uum+i)

Uk Us/(Um -U+I U.+. N-1)

The Jacobian of this transformation is

%e4m 1N-m+l (1 ukI)

and the corresponding p.d.f. of the coverages

N-UIF. iiI . dUN , N-r rn~i <Urn
(N)N-m) dUm+l "' UM

N-~M NUi

0 otherwise

Making th'; transformation Um4 i U' Vi, i ,...,N -

the p.d.f. of the random variables, V1 ,..,V N-m is

N-m
(N -m) 6Vi 1I .. V Vi < 1

S 0 otherwise

which is the (N-m})variatc Dirichlet.

The coverage Urnm' can now be expresbed as Umlmt

Um U Un where Um' is the sum the m, additional coverages
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Fremoved from T(0z,6). It follows that

Pr[Umm Pr[Um < jlf

*mPr[V`' < - (/U m)

_ayUm CmN-m-m'.l)
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