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ABSTRACT

Numerical results are presented for the
diffusive growth in time of a barium cloud in

a highly (but not infinitely) conducting iono-

sphere, Polarization effects produce steepening
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of the backside and a thinning and indentation on
the front side. A crude estimate of the time re-
quired for appreciable -distortion is given.

] Numerical results are also given for the
linearized equations of motion about an ellipsoi-
dal gaussian equilibrium distribution. A new

numerical method yields the fastest growing eigen-

value and eigenfunction and has been pushed to
‘ 49 x 49 size grids covering the cloud, The resul-
tant eigenfunctions (in the plane perpendicular to

the B field) are concentrated in the rear of the

cloud and are elongated parallel to the cloud drift
velocity. Finally, it is shown that results already
available in the original E X B instability paper
can be used to obtain an estimate of the striation

scale size and onset time,
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I, INTRODUCTION

We have previously reported(l) the development of an
analytic model for the slow diffusive growth in time of a
barium cloud, This model assumed a background ionosphere
which was highly conducting but no longer infinitely so.
This generalization of previous work(2) allowed polarization
charges to accumulate on the cloud and thus permitted the
cloud's shape to distort away from a gaussian ellipsoid.
In Section II of this report, we give details of numerical
calculations of this effect and present some illustrations
of it. We are also able to make a crude estimate of the
time required for appreciable steepening to occur, This
is described in Section III,

In an earlier technical report(3) we also described
numerical solutions of the linearized equations of motion
of the cloud. These equations were linearized about the
equilibrium gaussian ellipsoid derived in ref, 2. We also
noted in this report that the particular numerical scheme
used was rather inefficient and had been pushed close to
its practical limit by the time the cloud had been repre-
sented by a 9 x 9 grid. We have now changed to an entirely
different and much more efficiemt scheme. Details and

illustrations of the results are given in Sect. IV. Finally,
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Finally, we note that it is possible to make crude esti-
mate of the scale size of striations and estimate their
onset time by a simple extrapolation of results already
in the original 1963 paper on the E X B instability.(4)

Details are given in Sect. V.
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II. NUMERICAL CALCULATICN OF CLOUD DISTORTION

In the previous semi-annual(l), {hereafter referred to
as 1), an equation was derived for the growth by diffusion
and convection of a cloud immersed in a highly conducting
(but not infinitely conducting) background ionosphere,
We also noted some typical numerical results, The pur-

pose of this section is to further describe the numerical

scheme used,

The basic equation is equation (17) of I.
IN 2 <. o )
t é‘ (1-n) 4. VA/X;';M = 0

(1)
where N = A/(f-?i: i,
i~ )

and & , the first order correction (in the ratio of con-

ductivities) to the electric field is given by equation (14)
2
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where €= € # RS wdp

Thée initial state 6 dssumed to have & Gaussian profile

of width a,. dnd is normalized: to the total number of particles

5

| | YA
NA (!}L, C) ~ :Sc 2
a* ' (3)

To proceed further; we must fix a coordinate system,

We assume that the gxternaf electric field Ei points in the

positivecy_ direction, the magnetic field in the positive 2z
direction, and hence the E X B drift sis 4in the positive X
diréction, (We remind the reader ‘that the equations are
expressed in coordinates which move 'with respect to the rest
frame of the neitrals with velocity equal to the- 0'th order
drift given. by '
v 7‘(0("’) i(a - /(5g “Y x _[?,

cf. equation (12) of I)

We also reduce the equation to mnondimensional form by
measuring length in units of the initial Gaussian radius

and time in units of /4D, :
= Rfa

T = r (/(ﬁl_/d_z') ()

Substituting (2) into (1), specializing to our coordinate

system and using (4), we obtain our basic equation
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where the coefficients are given by:
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In the above we have neglected terms of order ﬁQTXF/(@Qf)

so that :§(I-n[)"‘:'> ,LQ'?);/A; and ig- —5/4: X

In addition we ‘have defined the two parameters:
+
v . € :50,/u¢
T Zpar
which. is the ratio of the cross=cloud -conductivity to that

of the background and
Y= el a
h 'f(f.;'fh)
which is the normalized external electri¢ field strength,
The solution therefore depends only upon the specification
of the three parameters (¢),_ , A and ¥,
Numerical solutions to equation (5) have been obtained
using the alternating direction implicit scheme (A.D.I).
In this method the differential equation (5) is replaced by

the following two coupled finite difference equations.

M M my | m ¢f M
/\I"-J - /\/"‘/,/ ) / TRV /V[_/ ;o= A A/t )
L SN AN Ly ,d :

AT  (ax)’
N M n
o Lo Ay W) e
()" 77

) -A; o (73)
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et - £ 8 o & :'""""""i.“‘- »e .y ( ’ d,
A7)

' mg/ SYTARY M L my)
A r.. . o . -
-8 Mg =Ny ) o Mg =47
‘ ot (7b)

where A/ refers to the time step and ¢ andc/. to the grid
point in X andcy respectively.

Netice that in the first equation (7a) the differences
in X are advanced one time step, whereas in the second the
differences in(77 are advanced one step. (The coefficients
A, B, and C are evaluated "in the middle", that is they
are evaluated at ¢ = (n+l) At for both equations.)

This method can be .shown to be much more stable than
explicit schemes in which all spatial differences are taken
at the present, known, time step, (For the case 'X_ = (,
A,D.I, gives an unéonditionally stable solution). On the
other hand, the method is computationally much simpler than
a completely implicit scheme in which the differences in
both: X and(7y are advanced at the same time, The reason,
as can readily be seen from equation (7), is that the set
of equations to be solved at each time step are tridiagonal

in form and are thus susceptible to solution by a very
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economical algorithm, We have used a double precision.
subroutine which employs Gaussian elimination with partial
pivoting.,

We set up the equations on a square grid, choosing
Q) = ‘%7' . 20834, which proved sufficiently small to guar-
antee accuracy, -and A7 as large as possible while still
ensuring stability. Some error was inevitably introduced
by the .use of a finite sized grid for a problem which is
defined: on an infinite plane. We adopted the scheme of
setting all of the grid boundary points to zero at each time
step, For several of the runs in which the cloud diffused
rapidly; we used an expanding grid scheme, that is as time
developed and the cloud grew, we increased the overall size
of the grid, 1In all cases the value of the density at the
boundary points was no greater than five orders of magnitude
less than the maximum value of the density,

In general, errors arose from three sources:

1.)  truncation error due to the finite grid spacing,

2.) machine round-off error, and

3.) error due to the finite size of the grid.
The first was checked by choosing different values of grid
spacing; the second by using two compilers, one which rounds

off to the next larger integer and the other to the smaller;




and the third by varying the grid size; The resulting -errors
from all causes. atre less than 10%.

Some computer results are shown in Figs. 1-5. In all
cases, we set A = 0.1, ("= 20 and varied 017')4 . The grid
scale in these plots is in kilometers with 4= 4,8 km. To
get some idea of the real time corresponding to the various
values of T used, note that ,J, % ,045 éMﬁéL(Secede 1, Dogwood)
and thus t (real) = (&1/4 .&)T' ¥ 127 ['seconds, Note the thin-
ning and indentation on the front side of the cloud and the
steepening in the rear, The arrow marked & represents the
actual direction of drift of the cloud relative to the neutrals,
Noté the symmetrical distortion of the cloud in the large
limit, This. symmetry is readily verified by examination of
the coefficients in Eq. (6) in this limit, The leading terms
in B are proportional to xzandcja wh;le those in < are pro-

portional to é; .




III. ESTIMATE OF STEEPENING TIME
One may also obtain a crude estimate of the "steepening

time" by examining the coefficients in Eq.. {6). In the large

,(:.Q?')_-/_ limit, the leading terms are in coefficients 73 and C

and are of order

Ay o
~ L Arn,
Hence the distortion time 7,; is
T, 2 = 4 (8)
A ¥ (ﬂ?‘)-;—

This is in units of the diffusion time &%/ . In redl

time, we have

2
~ < L/ = <

—

= oL X & @n, AN (9)
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1V,

NEW NUMERICAL RESULTS FOR THE LINEAR INSTABILITY »
EIGENFUNCTIONS

A: Linear Equation:

Some preliminary numerical calculations of the
fastest growing linear eigenvalues were presented
in an earlier semiannual report.(3) We now have
changed to a much improved numerical scheme and
report considerably changed resuicé on much larger
grids. The starting point for this calculation is
the same set of equations as shown in Eq. .(2.10)

of ref. 3 above. These are

[w v (22.) B, | Wx — D, 7.,_2(77()

——

g —
T (AX TN+ N 6) 4o XX
X[C P N - KERN-L £,x4 T

s - —_
”éﬂﬂiﬂtﬁy[AZZ PN+ ZMX‘Z@]

P [spi ul] £ P (TX)
[ e G, pui ] £ x b B (RE) =0

(10)
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where we have replaced

_.(¢) \v Ay
£ = —A 22

N
e = — Ve
and redefined
K = = H
L = -5 &

Otherwise, all symbols have the same significance as in
ref, 3. Next we reduce this equation to dimensionless form

by defining

2 = '43//4*
w = wT
¢ = @/A
3—_‘:’_ QEc(
A7)
- & Ly
= &2

and further simplify by dropping terms of order~(hﬁj+/?ﬁ77
. f -

(consistent with our expansion in powers of 12?//0” >.

The resultant equation in Cartesian coordinates, with £,

in the positivecy'-direction, is:

A r sz:k, / iglr %é%; . ij %ﬁ%: , ‘Z>:~;(

V)
N

R X
1E Ry 2T s e

D

N

(11)

where , .y
>
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_2~_ b3
and f - /ﬁf; = [ upper sign
AL

- 14 07)°
ar)_ r),

We take A/ to have a gaussian radius q at the origin of time.

—

N ~ /SX/’[~ /2’/(/”)_]

lower sign

Thus

B: Numerical Scheme:

The two coupled equations above can be written in the

form:

- *
L, X P L] @ = wX (13a)

Ly X + 4] ¢ = wX (13b)

13




If one replaces the differential operators by the finite

difference approximation,

Q_ﬁ — ¢‘.f/1 cz - 511'-//;('

%‘é— —> ‘/’QJ'// — ’/1',/7
o aax

X r .
the opérators / and /] become matrix operators. 'The set

of equations are closed by specifying homogeneous boundary
conditions on Xand ¢ . If we now subtract Eq. (13b) from

(13a) we obtain

@l-27)e = —(-4) %

(15)
Assuming<2;-lit)is nonsingular, we can invert the matrix and
substitute the resulting equation for @ back into (13a).

We can then solve (13a) for the eigenvalue and eigenfunction
by any of a number of algorithms,

This straightforward procedure was the method originally
employed for this problem(3). Unfortunately, it suffers
from the limitation of being very uneconomical, To see this
we observe that an Mmym grid .has nﬁpoints. (When we refer to
the dimensions of a grid, we do not consider the boundary
points which do not enter the matrix equations due to the
homogenous boundary conditions onXand ¢). Eq. (13) includes

one equation for each point and hence the coefficient matrices

14




will be arrays of dimensionn; by n:'for a total ofzﬂfelements.
The storage requirements of the computer therefore increases
as the fourth power of the grid dimension and the method

very quickly outgrows the capacity of the computer., Indeed

it was found{3)to be- impossible to consider grids with more
than 11 x 11 points., This is hardly a sufficiently fine mesh
to discern the complicated structure of an unstable mode.

To obtain a more economical procedure, we first observe
that most of the elements in the matrices of coefficients
are zero, Indeed, it is clear from Eq. (14) that there are
only 5 possible non-zero bands of elements running diagonally
across each coefficient matrix; a total of at most only.ﬁﬂlnon-
zero elements, The problem enters in the solutioa of Eq. (15)
since the inversion of the matrix (L;~Z;) will in general des-
troy the band structure and produce a full matrix.

Our solution to this problem involved & double iterative
procedure,* We Solved equation(iBa)for the eigenvalue and
eigenvector ¥ iteratively via the power method(S), obtaining
¢ for each iterate by solving the set of equations (15). That
is, an initial approximation for ¥ was randomly generated and
substituted into the R,H.S. of equation (15). The resulting
set of inhomogeneous linear equations was solved for { using
point successive overrelation(6), a variation of the usual

Gauss-Seidel with a parameter to accelerate convergence,

15




The result for ¢ was substituted into(}Bq}ahd‘a new iterate
for X was obtained using the power method, This was substi-
tuted back into the R.H.S, of Eq. (15) and then the process
was continued,

This process in general -converges to the eigenvector
corresponding to the eigenvalue with largest absolute magni-
tude(s). However, we desire the fastest growing eigenmode,

that is the eigenmode whose eigenvalue has the largest real

part. To obtain the latter eigenmode, we solved, in place

of the original equation which takes the form
A))L': wl

(Ais a matrix operator), the equation:

A+pl )X = wX (16)
where » is a real constant and I is the unit matrix, It is
clear that if we kept all of the original eigenvalues in the
complex plane, the effect of adding the pZ term in Eq. (16)
will be to shift all of the values parallel to the real axis
by an amount -4 . One can readily show by geometrical argu-
ments, that there always exists a value for the shift »°

which shifts the spectrum of eigenvalue such that the original

eigenvalue (or complex conjugate pair of eigenvalues) with the

largest real part becomes, after the shift, the one with the
largest absolute value. The process will then converge to

this eigenmode, and one can substract the shift 4 to obtain

16




the original value for the eigenvalue.
C: Results:

We have run .a series of numerical solutions for grid
sizes 13 x 13, 19 x 19, 25 x 25, 37 x 37 and 49 x 49, For
the purpose of these runs we assumed the following [parameter

values:

C{lr)+ = S
5/ - 20

202_5'“0

I~ = YN
7+

We also assumed that the grid covered three € -folding
lengths of the equilibrium density, i.e, we assumed ﬁ236+77 =3
where Aa,is the distance from the center of the grid along x
(bﬂcg) to the edge.

Figures 6 - 9 shww plots of the density (m=nY) for the
four grids: 13 x 13, 19 x 19, 25 x 25, and 37 x 37 for the
case 7= 2.0 (the 49 x 49 grid converged too slowly for a
reasonable result for the eigenvector; we have used -only the
result for the eigenvalue - see below), Notice that all four
grids show striations .along the lower left-hand corner of the
cloud. The amplitude of the perturbation density throughout
the rest of the cloud is smaller by at least three orders of

magnitude compared with the maximum value in the striations,

17




Moreover, the striations are directed approximately parallel
to the equilibrium drifc velocity: &, 4 £,v (r), ).
Hence, they point out the vear end of the cloud, a result in
accord with observation,

_In Table 1 we list the eigenvalues corresponding to .the
eigenfunctions shown in figure 6-9; We observe that the
eigenvalues are complex; but their real parts are of order
ten times their imaginary parts.

The question of convergence to a unique eigenvalue is
a matter of continuing concern. In figure 10 we plot the
real part of the eigenvalue as a function of grid spacing AX.
One would hope that as ax—>c¢ , the value of &2 A would level
off and achieve a constant value, Unfortunately, as can be
seen from figure 10, even for a 49 x 49 grid this has not
occurred. We therefore conclude that as we go to finer grids
we are picking up even faster growing modes. To test whether
this process converges, we plotted log 4x as a function of P
If the curve were concave downward the process would converge
whereas if it were concave upwards it would not. The results,
displayed in figure 11 show the curve to be very slightly
concave downward although the result does strain somewhat

the allowed errors placed upon the data points,

18




V. Approximate Model for Estimating Striation Scale
Size and Onset Time.

If one is willing to settle for use of a slab model
to represent the cloud, it should be possible to use the
results already present in Ref, 4, We shall show how to
do this using simple approximations. All notation will
follow that paper (includinggﬂ being the magnetic field
direction!)

The basic result in Ref, 4 is contained in Eq. (3.18).
Let us now simplify by assuming that the most unstable mode
is one with very long wavelength in the magnetic field direc-
tion, This 1is becausecy-yariation leads only to damping.

Heénce letting é;-é:; our result reduces to:

[ NPT - Oy () [l [ 7) ]

W, 5 i o b .2 ? ’ =
T ANEEY b () o, )
where
M- /Wc /\‘l /{ZDI 7/41 D.:)
o = - o /n—c AL/(-L-/“L# [0)7“}, f ﬁT)':] F

g,
. o 2 - - - .L+ .L_ dE y .
t %% A (DI/‘L hT). - 0_,_//1:%),) +/‘_’,é_“'__ ;:__[./ﬂj,uﬂﬂ.]%

2 . 2
Nz ki (T/)™
o2
where we already assumed 6d¢l_>>/. It is obvious ‘that the
second term in the denominator is small compared to the first

19
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for 6Q7ﬂ+ > | . Note that
2
°0w° (?‘”4/) < m;L 7\
and

2 . 2
/3@141\

Hence we drop this second term and also neglect,qz'compared

~
tO/{Jc
Let us compare the three terms in @& , The ratio of the

first term to the second is:

~ Edpt L bl
g_L*a&w/A“ ol

We assume that thlS is large compared to unity (in most cases,
it is of order 20 - 100). Hence, we neglect the second term.

By the same means, the ratio of the first to the third is
L— S—— L
z L A > NAL°
(&) (et

G~ -~ F,om NH e/

The resulting expression for the growth rate is:

Hence

2 ACDTIM DT B pt i
-\ + ...1._ Lo
AT RO, Ne M . (17)

The first term is recognized as the damping due to ambipelar
diffusion in the perpendicular direction (the result of taking

2 -
éb'TCv); the second term is destabilizing if £, alme is positive

aAx
(the usual necessary condition for the E x B instability).
There is a critical wavelength for given (,. To see this,

2
note that the damping term is finite for 43‘70 and goes to

20
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S
infinity as 43“7 ~”, The destabilizing term goes to zero

2 2
as 63‘50 and goes to a constant value as 4§"?“0. A

conceptual plot of these terms (for small & ) is shown below.

STABILIR INS
rERM

OESTABILIZ 1N¢
reRrd

3
A

1 /{; /C”/'e)2

Note that there is stability in this case, As /£, increases,

L]

the destabilizing term increases until the curves cross,
‘il 2 . . s =
This gives the threshold values of f% and ¢, . From the
shape of the curves and the fact that both have their turnover
5 3
in the vicinity of /4y ¥("/¢) it is obvious that the threshold
2 xU

value of 43 will be in the vicinity of Cﬁﬂf).

One can also view the onset of instability as a function
of the growth in cloud size while holding & fixed, Growth

-/

means that £ increases just as {‘MLO iM—,;%) does, Thus as the
cloud grows, the stabilizing term decreases at its lower end,
while the destabilizing term increases at the lower end and
decreases at the upper end. Again when the two terms cross,

we have the critical wavelength and the critical size of the

cloud (which can be related to an onset time for any given

21
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theory or empirical set of values of cloud size as & function
of time),

Note that in the derivation in Ref, 4, the length £ repre-
sents a distance in the direction of the density gradient over
which the perturbation extends in that direction, It is assumed
small compared to the demsity gradient itself, It may be possi-

ble to get useful estimates of scale size and onset times by

C'(I/Mo
(’Mo cb;(

For example, if we set ,é; :eﬁ@)and use the estimate above, it

arbitrarily assuming

is easy to calculate the critical scale size from Eq., (17).

Equaling the two terms on the r.h,s,, one has

1
1(1{" b, (H' %) = /CBEC.;T?,_ ,:)Ict

where
=/
A = /L d:“_c_)
/no M
Now
Lz s
Hence
A ep T YT0S) < B‘//’T)_t, r Lk
< Fe /-
~ JoecTt pr
= 1, ~
“ am (P E
where d
U, = Lo
B
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If we take typical values:

2
D,T”‘-_i Jo© /4-24-

4, -~ 2o m/ azc

Tf-l//_.. = 1/
we obtain

14
vt C17)_

A very crude estimate, of course, but not entirely unreasonable

since 6672_@;/0“.
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FIG. 11

LOG (AX) AS A FUNCTION OF THE REAL PART
OF A
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TABLE 1

List of Eigenvalucs esadb versus Grid Size

Grid Size Grid Spacing (aX) Eigenvalue
13x13 1/2 47.5%6.41
19x19 1/3 61,2%3.21i
25x25 1/4 71.2£4.,91
37x37 1/6 78.5#81
49x49 1/8 85.8+121
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