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ABSTRACT

Theoretical laminar flow solutions for heat transfer
and flow friction are of considerable importance in the
development of new types of compact heat exchangers. Gen-
erally the higher the degree of compactness, the lower is
the Reynolds number and the greater is the relevance of the
theory solutions.

In this report these solutions are compiled, using a
common format, for twenty one straight ducts and four curved
ducts. The steady state, constant properties, Newtonian
fluid flowing through a stationary, two-dimensional duct
is considered. The effects of free ccuvection, mass transfer
and change of phase are omitted. Some new analytical solu-
tions are obtained by writing a general computer program
for the following ducts: rectangular, isocceles triangular,
rounded corner equilateral triangular and sine ducts.

Application of the analytical solutions to the gas
turbine regenerator is discussed. Specific recommendations
are made for further work.

iit




ADDENDUM

The following important paper appeared in the literature
after the present report was almost completed.

J. E. Porter, Heat transfer at low Reynolds number

(highly viscous liquids in laminar flow) -- In-

dustrial research fellow report, Trans. Instn

chem. Engrs 49, 1-29 (1971).

With the cooperation of thirty industries, Porter com-
piled the laminar flow solutions for Newtonian as well as
non-Newtonian fluids with constant and variable fluid prop-
erties. The purpose of the survey was to identify those
areas which presented difficulties in thermal designs of
chemical, plastic, food etc. industrial problems. He sug-
ges.ed the best design equations available to date and made
specific recommendations for future investigation.

The present report is limited to constant properties
Newtonian gas flows in laminar regime, in contrast to the
very general problem considered by Porter, However, the
present report is much more exhaustive in the more limited
area and thus complements the work of Porter.

TO THE READER

An effort was made to compile the laminar flow analytical
solutions from all available literature sources. However,
it is probable that several important sources may not have
come to our attention, We will be grateful for any informa-
tion in this respect. Any other suggestions and criticisms
will also be appreciated.

R. K. Shah
A. L. London
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NOMENCLATURE .

English letter sym*-ls

R L R e V)

A heat transfer or flow friction area
A, flow cross section ares
i a radiug of a circular duct, half width of rectan-
kS gular duct, semi-major axis of the elliptical duct,
E half base width of triangular or sine duct, a > b
for rectangular and elliptical ducts with symmet-
ric heating
a' duct wall thickness
B;,B, constants; see Eq. (76)
f b half spacing of parallel plates, half height of
E ' rectangular duct, semi-minor axis of elliptical
H duct, half height of triangular or sine duct,
i b < a for rectangular and elliptical ducts with
i symmetric heating
b amplitude of cosine heat flux variation around
the periphery of a circular duct; see Fig. 7
C flow stream capacity rate, ch
cy a pressure gradient parameter, (dp/dx)/(k/g,)
¢y a temperature gradient parameter, (dt/dx)/a
- c3 thermal energy source parameter, S/k
1 cy a parameter, c;c,
1 2
1 Cq a parameter, c3/cua
4 cs a parameter, gc(dp/dx)/pcp(at/ax)
i cp specific heat of the fluid at constant pressure
Dh hydraulic diameter of the duct or flow passages,
D, = 4r
h h
, E(m) complete elliptical integral of second kind
; f "Panning" or "small" friction factor, for fully.
2
developed flow if no subscript, T/(pum/2gc), di-
mensionless
XX
L____________m_____________

ey p s o e



ave

b 4
app

average Fanning friction factor in hydrodynamic
entry length, defined by Eq. (26), dimensionless

ap Earent Fanning friction factor, defined by Eq.
), dimensionless _ T

;Darcy" or "large" friction factor, 4f, dimension-
ess

fluid mass velocity, pu,

proportionality factor in Newton's second law of
motion

boundary condition referring to constant and uni-
form axial -as well as peripherial wall heat flux,
also uniform peripherial wall temperature; boundary
condition valid only for the circular tube, par-
allel plates, and annular ducts

boundary condition referring to constant axial wall
heat flux with uniform peripherial wall temperature,
expressed by Eq. (7)

boundary condition referring tO'bcnstant axial wall
heat flux with uniform peripherial wall heat flux,
expressed by Eg.

boundary condition referring to constant axial wall
heat flux with finite peripherial wall heat con-
duction, expressed by Eq. (9)

boundary condition referring to exponential axial
wall heat flux with uniform peripheriel wall tem-
perature, expressed by Eq. (10)

convective heat transfer coefficient, for fully
developed flow if no subscript is used

mechanical to thermal energy conversion factor
Colburn heat transfer modulus, StPrd/3, dimensionless
Dean number, Re,/a/R , dimensionless

pressure drop increment due to hydrodynamic en-
trance region, defined by Eq. (35), dimensionless

K(x) evaluated at x - w , defined by Eq. (31),
dimensionless

xxi




Nux:( )

Nu

tu

flow friction modulus, fRe , dimensionless
heat transfe:r modulus, jRe , dimensionless

peripheral wall heat conduction parameter,
kwa'/kgh , dimensionless _

thermal conductivity, for fluid if no subscript
length of the duct

hydrodynamic entrance length, defined as the duct
length required to achieve the duct centerline
(maximum) velocity as 99% of the corresponding
fully developed magnitude when entering flow is
uniform

thermal entrance length, defined as the duct length
required to achleve the value of local Nusselt nunm-
ber Nu as 1.05 Nu

%;:;HSLOHlGSS hydrodynamic entrance length,
D, Re
h

dimensionless thermal entrance length, Ly /Dy, Pe
a parameter for elliptical duct geometry,

J1 - 1/a*?

Nusselt number, for fully developed flow if neither
X nor m appear as subscript, th/k s dimensionless

local Nusselt number for the thermal entrance re-
gion. The second subscript in ( ) designates the
associated thermal boundary condition. The local
Nusselt number is an average value with respect to
perimeter at any given cross section x

overall Nusselt number associated with QED bound-~
ary condition, defined by Eq. (49a), diméhsionless

number of heat transfer units, h A/Wc s St L/r._ ,
dimensionless

number of sides of a regular polygon or a cusped
duct

outer normal direction to the duct wall

xxii




b R S N

A e . .

dimensionless distarce n/Dh measured &long the
outer normal direction

wetted perimeter of the duct

Péclét number, Pe = RePr = D,u /a , dimensicnless
Prandtl number, ucp/k , dimensionless

fluid static pressure -
dimensionless pressure drop, Ap/(puﬁ/egc)

a parameter for the curved duct heat transfer,
(K?Pr)l/u, dimensionless

volumetric flow rate _

heat transfer rate per unit length ' e duct

heat flux, heat transfer rate per unit hest transfer
surface area of the duct

incident radiative heat flux

radius of curvature of the centerline of the curved
duct

.Reynolds number, GDh/u s dimensionless

dime?gignless wall thermal resistance, defined by
Eq.

boundary condition referring to finite thermel re-
sistance at the well, expressed by Eq. (11)

boundary condition referring to radiative flux at
the wall, expressed by Eq. (12)

radial distance inu cylindrical coordinates
hydraulic radius of the duct, AC/P

inner radius of concentric annular duct or radius
of circular centered core of a regular polygonal
duct

radius of heat transferring wall of the concentric
annular duct

xxiii




LTI, Y y 5T TN APy ,K.q.n.!ﬂmmwuw
K i
80 . !
o0 .‘_i
. 1

r*

St

X*

e

outer radius of a concentric annular duct or radius
of a circular duct having regular polygon as cen-
tered core

thermal energy source function, thermal energy
generated per unit volume of the fluid

Stanton number, h/ch s dimensionless
distance along the periphery I' of the duct
half of the tube bundle pitch; see Fig. 61

Bempergture"of the fluid, on the‘absolute.scale,
R or

boundary condition referring to constant and uni-
form wall temperature, both axially and peripher—
ally, expressed by Eq.

thermal boundary condition expressed by Eq. (1)

temperature of the fluid to a specified arbitrary
datum, ©F or °C

ambient fluid temperature; see Fig. 4
bulk average fluid temperature, defined by Eq (45)
wall or fluid temperature at the duct wall T

wall conductance with suffix w , i or o ; Uo
is defined by Eq. (48)

fiuid axial velocity, fluid velocity component in
x direction

average axial velocity, defined by Eq. (22)

fluid velocity component in y direction or radial
direction

fluid macs flow rate through the duct
fluid velocity component in 2z direction
103x+

1O3x*

xxiv
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N

axial coordinate in cartesian and cy,inurical
systems

dimensionless axial coordinate for hydrodynamic
entrance regioﬁ, x/DhRe

dimensionless axial coordinate for thermal entrance
region, x/DhPe

ox*

a spatial coordinate in cartesian coordinate system

a spatial coordinate in cartesian coordinate system

Greek letter symbols

a

a
W

a*

thermal diffusivity, K/pcp
absorptivity of wall material, dimensicnless

aspect ratio of rectangular, isosceles triangular,
elliptical and sine duct, a* = 2b/2a , for a
symmetrical geometry with symmetrical heating,
otherwise o¥* = 2a/2b , so that it ranges from O
to 1l

‘a function of x alone, defined by Eq. (104)

periphery of the duct

radiative wall heat flux boundary condition param-
eter, ewcTzDh/k , dimensionless

prefixes denoting a difference

a parameter, uclzDh3/k(bt/an)P

heat exchanger effectiveness, the ratio of actual
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