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gimultanec 18ly. Thus, for example, in determining the effectiveness of a . g

giving one stimulus to an experimental unit, what we obtain is not Just
one fésponae but several responses. In statistical lansuage. we deal with

-a multivarliate situation (many reeponses) as opposed to univariate situ=-

CHAPTER 1

i

INTRODUCTION .

il

1.1 Multivariate Experiments

‘Many experiments involve measuriﬁg a number of response variatles

new drug, a person's systolic and diastolic blood pressure may be observed,
before and after administration of the drug; also his pulse rate, tempera-

ture and other physioclogical data may be recorded. As a result of

ations (only_one response). An experiment is rarely so simple as des~-
cribed above. Usually, many stimﬁii. which will be called factors, are
considered at many levels in the same experiﬁént. Ultimately, the experi-~
menter has a large collection of data before him. The problem is how to

interpret the data. Depending upon the experimenter's objective, many

statistical techniques are available to analyse the data and to draw con-
clusions thgréftom; In the present work, we consider one such technique,
the identification of subgroups of individuals on the basis of responses,
i.e., 8 special case of cluster analysis. In the following sections, we.
revicw some of the problems or the subject and then outline the special

problem in the present dissertation,




1.2 Peview of the related literature

Consider an experiment where many responscs are recorded on each
experimental unit. We shall assume that there are u experimentzl unitae,
and, on each unit, p responses are measured. The resulting data can be
put in the form of an n x p matrix. Each row of this matrix corresponds

to one experimental unit. Each experimental unit can be represented by a

" point in a p~dimensional space. It is possible tlat some of these points

will be so close to one another that they form a "cluster."” The problem
of detééting ciusters has been cénsidered by many authors during the last
30 years. Tryon [37] in 1939 gave many algorithms based on the correla-
tion matrix of variables,‘for the related problem of assigning variables to
groups. The technique, much similar to the concept of the'"coafficient of

belonging”" described by Harman [14], was developed on the assumption that

_eorrelations among variables belouging to the same group should be much

higher than correlations between these variables and those not bélonging

‘to the group. nolzingér and Harman [15] defined their coefficient of

belongihg or B-coefficient as "160‘times the ratio of the average of the
intercorrelations among the variables of a group to their average corre-
lation with all the remaining variables.

Sokal and Michener proposed the weightéd meaQ-pair method to
identify clunters. This method was originally applied to an entoﬁoiogical
problem [35]. A more recent description of tﬁis method has been given by
Sokal and Sncath [34] who recommend it as "the best of a class of commonly
used methods of cluster analysis." The method operates on an N x ¥ .
gimilarity matrix. Those two individuals, i and j say, which have the

highest simflarity are paired togother, i.e., put in the same clustur:
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-vidual is assigned to one of the already existing clusters of previously

Any appropriate measure of‘similarity e.g., product moment correlation
coefficient, coefficient of association, etc,, can be used, although by

iar the most commonly used weaouie ia thé product soment corraletisn sa-

cfficieﬁt. After the individuals 1 and j have been paired together,

columns (and rows) 1 and j of the similarity matrix.are replaced by a

single column copsisting of the means of the elements in rows (and columns)

1 and J. The process is then repeated on the new natrix of order (N-1),

vhen either two new individuals have the highest similarity and form a .
new pailr, or the.exiating pair combines with a further individual to make

a cluster of three. The process continues and at each stagé a ne@

cluster consisting of a pair of individuvals is formed or the new indi-

cotbined individuvals.

Edwards anﬁ Cavalli-Sforza [7] suggest dividing the points into
two sets such that the_sum of squares of diétances between sets is a maxi-
mum, Thus according to this method, one can f;nd only two clusters, no
ﬁqre and no less. Since the total sum of squares is a constant for a
given sample, maximizing between-groups sum of squares is equivalent to
minimizing the within-groups sum of squares. The method consists of

examining all the A1

~ 1 two-set partitions of N individuals and
selecting the one which gives the minimum within-set sum of squares. The
method is not suitable for a large value of N as the time required-on a
computer to examine all the two-set partitions is cenormous. It was esti-
mated that Qith N = 21, the time required to examine all the partitions,
en a computer with 5 micro-second access tiwe would be 100 hours and that

for N = 41, it would be 54,000 years. Thus even with the help of. the

fastest computers, the method would be impracticable. One more algorithm
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based on ecological applications was proposed by Williams and Lambert
I38). Gower [12}) gives an excellent comparison of the last three men-—
tioned algorithms tozether with soma of his owﬁ modifications proposed
for theée algorithms.

Another important study was made by Neyman And Scott [27]). They
extensively stud}ed the clustering of galaxies in tﬁe universe and pre-
sented the theories of "simple clustering" and "multiple clustering."

"Simple clustering" was based on the assumption that galaxies vccur in

"elusters and that the cluster centers are uniformly distributed through-

out the universe. In "multiple clustering" it was assumed that the
cluster centers radiate from super clusters.

Fror the above discussion, it is clear that in the statistical
literature, we come across two types of clusters--{i) the clusters of

variables and (i11i) the clusters of individuals or points or experimental

units. Without ga;yg into the details of the confusion that these two
concepts have cre#éed and their uses and misuses, we only note that éiven
a nultivariate semple, it 1s possible to identify the underlying clusters
by applying any of the suitable techniques available.

We now describe in detaili an algorithm propoéed by Bargmann and
Graney {5] to determine clusters with the object of identifying mixed
sanples of multivariate normal distributions. With the help of methods
to be developed in the present work, we may then study the confiéuration

of such subgroups.

1.3 Real and Virtual Clusters

Real clusters are defined to be clusters of points in the original

space. Virtual clusters on the other hand are clusters of projections of
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pbints in a space of dimension lower than that of the original space. To
LoiioW un exampie irom Graney [lU), 1f one were to look for clusters of
stars as observed from the earth, one would be'dcaling with virtual
clustering. The observer perceives the stars as projections onto the
surface of the celestial sphere.. To determine the éeal clusters of stars,
it would be necessary to measure the distance of each star from the ob-

server. It is also obvious from the above example that, virtual clusters

may not necessarily be real clusters, and vice versa. One may tend to

think that real clusters would necessarily be virtual clusters also. This,

however, is not so. If one were standing in the midst of e real éluster.
he may not find any cluster at ali. In this connection, it should also
be noted that in the algerithm proposed by Graney [10]), if a cluster is
éentered at the center of the entire system, it would not be detected.
This is similar to identification of galaxies. Being a member of our own
galaxy, we do not obtain, by direct observation, a description of the con-
figuration of our gala#y. For that ﬁufpose. we will ha§e to malie calcu~
lations based upon distance measurements (or observe from a different

galaxy).

1.4 d-clusters and k-clusters

As experiemental units are assigned to clusters, a decisioﬁ has
to be made whether two units are close enough to justify their inclusion

in the same ciuster. One may look at this problem in two directions: The

so~called d-clusters and k-clusters. Consider a region S of fixed radius

d. This is said to be overdetermined at the a-level of significance if
the nuuber of points in the region excceds a value ko such that, under

the null hypothesis of uniform distribution of points,

O
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. P [ko or more points in S} < a
This type of cluster is known as d~cluster since it results from a region

- of fixed radius d.

(-,

The other type of clustering results when a fixed number of points

fall into a region with sufficiently small radius. Let there be a fixed ;

P RO T g v

number of points, say, k. Let d° be the radius of a sphere (or hyper-
sphere) just sufficient to enclose all these k points within the sphere.

It is apparent that d, the radius of the sphere is a random variable. If

P [d < do] < a

where o is the predetermined level of significance, then these K points

are said to form an overdetermined cluster. Such & cluster is known as
" - the k~cluster since it results from a fixed number of points falling with-

in a sufficiently small sphere.

. 1.5 Identification of Mixed Samples

»

Consider the case of k~cluster discussed above. As an example of

Ehi# type of cluster, consider an experiment in.which the nﬁmber of people s
given a drug from a certain class of drugs (which produce similar effects)
s limited. Then one would like to know if the éymptoms among some indi-
viduals are more closely alike than those of other individuals. In other
words, it would be appropriate to see if there are some individuals whose
symptoms are 8o close that éhey form a cluster. But this also implies that
we are looking for a principle qf classification which distinguishes this
_group of individuals. Such a sltuation can arise in linear anaiysis. For
the sake of simplicity, we shall describe the situation in terms of uni-
variate analysis, but it applies equally well to multivariate analysis.

In a two-factor experimeat one being applied at r levels and the other being
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Applied at 8 levels, we will have r x s cells; let us assume that there

are Ny observations in cell {1, j). Analysis of these data on the basis

of a linear statistical model assumes homogeneity of cell variances. The

hypothéeia of the equality of cell variances can be tested by application

of Bartlett's test. If thig hypothesis should be rejected, three possible

causes can be responsible: (i) The cell variances are not constant, 02,
but proporticnal to some known vij (a different one for every cell). A
variance-stabilization transformation, or weighted regression, or both,

can be employed to correct .this situation. (ii) There may bé "mavericks"
~-misclassified or improperly recorded items. They can be omitted before

the analysis of the data. (1ii) There may be a third factor of classi-

.fication pregent. If this is the case, what we regard as "error sum of
Asquates" is in fact not the error sum of squares but the variance coupo-
nent sum of squareé error, plus sum of squares due to the third factor
which we have not takeq into account., In m&ltivariate analysis of variance,

this quantity would be the (H + E) matrix instead of the E matrix alone

where E stands for the "error'' SSP matrix and H stands for the "hypothesis"

ssp matrix.l Hence the problem reduces to that of detecting the third

hidden factor. It is clear that the sample within eaéh cell comes from

two or more populations instead of from just one. It will be necessary to

"unix" the samples within each cell before a valid linear statistical

ahalysis cf the data can be performed. Instead of describing the technique

of unnixing the mixed samples, we.refer to Graney [10]), for a fuil des~-

eription of the technique, which also contains a number of illustratiomns.

. J'SSP . sum of squares and products, sometimes also called "ishare
nateix,.
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There has been, in recent years, a considerable resurgence of
interest in cluster analysis. Ling [23] has discussed many techniques
and he has tried to classify these. It is appérent that there is little
purposé in inventing yet new similarity indices, distance measures, or
search algorithms. The present dissertation deals éith a point inter-
mediate to the two problems which cluster analysis has attempted: (a)
classification of individuals, on the basis of responses and (b) classi-
fication of response variables assuming a homogeneous group of individuals
(really factor analysis). Cattell (6], and Stephenson [35] view the entire
complex as "factor analysis" and call the first problem the-"Q teéhnique."
the second problem the "R technique," and the combined problem, the "P
technique." Unfortunately, their techniques do not lend themselves- to a
study of configurations because in their attempt to regard every problem
a§ a correlational.one, the authors perform analyses which become self-
contradictory. For exgmple, sums of squareé and products can be used as
terms in estimates of correlation between variables only 1if the 1ndi§iduéls
are independent, and conversely, "correlations' between individuals can be
estimated by a product-moment approach only if the variables are uncorre-
lated. Quadratic forms would be needed otherwise, and the sums of squares
and products can be quite meaningless. The present study avoids this
confusion by separating, at each stage, the clustering problem (cluster

of individuals) from the problem of structures of variables within

clusters.
Guttman [1l]) has proposed a yet another technique to reduce the
dimensionality of data. The technique. "nonmetric'" in nature, works on an

n xn symmetric matrix R, and determines those transformations which yield
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an Euclidean coordinate system X (X : n x m), such that XX' = F for m
a8 minimum and, furthermore, satisfy all inequalities that whenever

-
-~

14 : g ihen fij >t for the non-diagonal elements of R and F,

(1 #3, k¥ 1l). This avoids the problem 0f communalities and "when some
lawful structure or pattern is present in the data, e.g., a simplex, a
circumplex, or a radex, a nonmetric analysis will reveal the configuration,
whereas a metric approach will obscure the lawfuiness." For detailed dis-
cussion of this approach and the algorithms developed in this connection,
refer to Guttman [1l] and Lingoes and Guttman [24]. It is clear that this
technique will reduce the dimensionality of alllthe data points. Again,

as in factor analysis, it will not be affected by mean shifts. It is thus
an alternative to structural and factor analyses and not an "in~between"

solution as proposed by us in section 1.6.

1;6 Definition of the Problem:

In the above sections, we have given a brief outline of traditional
approaches to cluster analysis. The discussion reveals that, givgn a
multivariate sample; it is always possible to detect some underlying
cluster structure an& to assign points (experimentalrunics) to the clusters
to‘which they belong. This is not the ouly kind of analysis that can be
performed. The same data could also be subjected to factor analysis,
which assigns response variables to classes. Cluster analysis will group

the individuals bringing out the mean effects and leaving the vatiable.

‘structure unaltered. Factor analysis will describe the data in terms of

" artificial variables without telling anything about the group means in-

volved. What we propose to do in the present work lies in-between these

two extremes. We first perform cluster analysis on p responses for *
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each unit, aﬁd sort ile expcrimantal units into groups. After assiéning
experimental units into groups, we look for those individuals whose total
response could be expressed in (p~l) combinations of original responses,
irrespective of the groups or clusters to which they belong. Thus ;ho
ultimate purpose of our analysié is to elicit more information from a set

of multivariate data than is possible by cluster or factor analysis alone.

Frequently both of these extrcmes prdduce trivial results. In medical
applications, cluster analysis tends to producing clusters of patients vwho
are healthy, slightly ill, and very 41l. By contrast, factor analysis

identifies a collective set of symptoms such as "fever," ﬁpain,“ and

3

Ychills,"
The algorithm developed in the present work begins by identifying

ciusters in the sense of estimating parameters of mixed multivariate
normal distributions with equal variance-~covariance matrices. If this
were noﬁ done the unit ellipsoids around the gran& mean would be affected,
uncontrollably, by mean shifts. Within each of these ellipsoids, we look

for well overdetermined subspaccs of lower dimensionality, in the sense

that we want a very significant number of individuals to fall into a region

close to these highly overdetermined subspaces. These will be called

"Simple Structure Planes.™

We use this term because of its similarity with one criterion

which Thurstone [36) used in describing a "simple structure" in the common-

factor space of factor analysis. If all priuncipal components of the
within-cluster matrix were calculated and "rotated,'” the resnults of our

study could also be produced. This, however, would be a trémendously

wasteful procedure.

i

e g

e b

i bl e 5

B

L e

e -

EVYN

il e bt b « o

el

4 oh B e ket i




R

Rawes b bzl Bt D T EERE R TTM

S

R LR

Y

# e —— v

[

Ay

Those individuals which have a large distance from the subspace,

yet belong to the original cluster, would differ from the others in that

they require at least orie additional diagnostic.

Geometrically, the Euclidean distance on a metric given by the
unit ellipsoid, is cbtained as follows: A.vector is passed from the center
of the ellipsoid (0) to the point in question (A). This vector intercepts
the unit ellipsoid at point (S). The Eudlldean distance 1s then
(length 0A)/(length 0S). For this reason, thé.éllipsoid is called hunit
ellipsoid.” It generalizes the concept of a "unit interval" in one dimen-

sion (hence metric). The computer output reports these distances as a

.

vector v.

Now, the largest projected distance of a point, onto & 2-dimensional
.ﬁubspace, from the simple structura unit ellipsoid, is at most equal to the
actual distance in p dinensions. Hence a point showing an appreciable
distance from the simple structure ellip;o;d, on any projection, would be
representative of a point requiring one variable more, for adequaté des~
cription, than the points lying in the simple structure region. This
property is not related to the clustering of the points. Points in the

same simple structure subspace may be far removed from each other; they

may belong to different clusters.

The éoints having a large (positive or negative) distance from
"each of these planes can now be scrutinized. They share some character~
istics, which makes them different f£rom the other points on this plane.
It is to be noted here that this procedure was not intended to find sub-

clusters--one could do that Ly tightening the control constants in the
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original program--but to study subspaces of lower dimensionality.2 Thus

the multivariate data are viewed from a new point of reference, and one

avaname Af avnari{mental

may identify principies permiiiiug a diffcrent tawensmy of av r
units (patients, plants, cl:c.).-

There is a certain analogy of techniques bet;een the subspace
solution and the "simple structure rotation" in factor analysis. This
1s expected in virtual clusters. The cosine of the angular distance be-
tween two vectors can bf regarded as a correlation i1f the vectors repre-

sent varfables. It ls in this sense that our n data points correspond

to n correlated variables of factor analysis and our variablgs them~
selves correspond to the factors., With this understanding we can apply
the r;tational techniques to the original data matrix in order to obtain
éoints lying on simple structure planes. .

In the present dissertation, we hgve synthesized these two
techniques--cluster analysis and simple structure identification--into a
single program. When the user subjects his'data to -this program, named
CLUSTR, hé gets clusters and simpie structure planes aé ghe output. Next,
ve have developed an interactive g:aphics program, named ELLIPSE, wﬁich
can be used to visualize the configﬁration of clusters and the underlying
simple structures. Configuration of multidimensional clusters.can bé
determined only if their dimensionality is reduéed. For this purpose, it
18 necessary to project the clusters onfo several 2 or 3 dimensional

subspaces. The emphasis in the present work is on projecting the clusters

2Those readers who assume that this is analogous to factor analysis

should be reminded that the latter increases the dimensionality from p corre~ -

lated to p + k {(at least partially) uncorrelated variables. There is. of
course, no relationship to an incomplete "component analysis" which produces

singular solutions.
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. above discussion that the determination of simple structure is equivalent
to the fact that the points lying on a simple structure plane need at least

-one varlabla less in their description. Thus if p variables have been

13

onto many 2-dimensional spaces and displaying them on the IBM 2250

Graphics terminal. If the plane of projection selected is orthogonal to a
simple structure plane,- the points lying on the particular simple structure
plane will make a band of narrow width more or less resembling a straight
line. The display program can also b= used in an exploratory manner, ‘The
uger can supply many different vectors., If, by using some vector of pro-
jection, he sees narrow bands as described above, the corresponding vedtér
is orthogonal to a simple structure plaue., Such visual determinatidn of
simple structure planeél however, is rather difficult especially 1if the
uger is required to make inferences on configurations in four or more di-

mensions, on the basis of 2-dimensional displays. It is implicit from the

measured on all the experimental units of the sample (p-l) variables are
adequate in the case of those experimental ' units which lie on a simple
structure élane. In Lhe case of these experimental units, one of the p
variables can then be expressed by a linear combination of the remaining

(p~1) variables. The statistical interpretation of this.phenomenon is

ecnsidered in Chapter 3.
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Sl CHAPTER 11
PRINCIPAL COMPONENT AND OTHER PROJECTIONS

2.1 Introduction

As stated in the previous chépter;'one of the goals of the present
work is to display many different projections of multidimensional clusters.
In this chapter, we giv; an account of projections along eigenvectors or
principal components of the metric ellipsoids onto 2-dimgnsiona1 subspaces.
The principal component projections are necessarily "ofthogonai." It is
worth.noting at the outset that very little information was gained by these
ﬁrincipal component projections. Not that we were surprised by this

finding, but some social scientists seem to attribute a lot mwore to this

particular mathematical reference frame than it deserves,

2.2 Principal Component Projections

‘ Let Z = (2 : n x p) be a data matrix of the multivariate 6bserva;
tions, The n data pointg can be represented in é p-dimensionql space.
It is assumed that the clusters formed by these n pointé have been |
identified as well as the points belonging to the clusters. It is further
asgumed that points, which cannot be assigned tﬁ one of these clusters,
have been eliminated. Now, if the data cone from a p-yariate normal distri-
bution (or a mixture of p-variate normal distributions with different mean
vectors but the same variance-covarlance matfix), the Elusters would be
elliptical in shape, and the ellipsoids would have the same orientﬁtion.

1f there are k clusters, and if we denote by gy Bys o ¢ o 5 My the
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cluster centers, the equations of the ellipsoids enclosing these clusters

can be written as
e | -
@-p) 27 &~ Y;) = constant

for i =1, 2, . . ., k, where x stands for the running coordinatea; The
points belonging to a particular cluster will be enclosed within the
regpective ellipsoids. In practice, sincé the population (ox populations)
from which the sample was drawn, will not be exactly normal, we will not
expect all the data.poiﬂts belonging to a particular cluster to lie within-
the corresponding ellipsoid. However, unless the population is far from
normal, the ellipsoidal f£it will be quite g&od. To viauélize how the
points.are distributed in p-dimensional space and how they look in ;elatioﬁ
éo their enclosing ellipsoids, we ueed to project the points onto sevaral
2-dimensional spaces. The technique is simple and classic and i{s spelled
out here for the sake of cqmp;gﬁeness. _Lét us take the equation of the ith

unit ellipsbidl
& - ﬂi)' it - =1 ©(.2.1)

Since I 1s a positive definite ( or at least positive semi~definite) matrix.

! there exists an orthogonal matrix Q such that

Q' £ Q=D | (2.2.2)

vhere DA is a diagonal matrix with diagonal elements equal to the character-

istic roots of I, and Q is the matrix of the eigenvectors of I. (2.2.2)

Yhis generalizes the "standard unit interval" in univariate -
analysis, : ‘
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can be written as

I=qD, Q' ' (2.2.3)

and heuce

~1 ,
where D1 /A is the inverse of DA' (The reciprocals of the characteristie

roots of T are the diagonszl elements of Dl'/A)' Substituting (2.2.4) into

' (2-201)’ we have
| (’.c-y_iﬁ' QD , Q' x~yy) =12 (2.2.5)

or, if we let 1_'1 = (x - B*i)' Q, this reduces to

1'1 Dl/k!i =1 (2.2.6) _

(2.2.6) is the standard principal axes reduction of the conic (2.2.1). The
'IL:ausquméL;«;u ¥ L " x - _g_i)' Q 1s the octhogounal totatlioa of the original
“reference axes in the direction of the principal axes of the ellipsoids,

The direction cosinos of the principal axes of all the k ellipsoids are

identical because of the assumption of equal metric (homogeneity o_f disper—
“. sion matrlces). If we write the matrix Q as

Q= lgys g5+ 0 v 80

where P PEREREN gp are the eigenvectors of I, the transf_ormation
x_'i = (x ~ .gi)' Q can be written as

PAPILILCIC0 RN T PRSPPI _g?]
Since Q is orthogcnal, _z_'J. Q will be coordinates of an original data
point __z_‘i, which is the ith row of the date matrix Z, with reference to

the new coordinate axes. In particular ;4_'1_:11, _z_'ig_z will represent the

BN

B LA T 2 T UL P

it i i 1 E

e

B |

Al MNP ot Ciitteen e ot WA Diond Ak

————
B

e i bt




17

orthogonal projection of the original data point gfi onto ihe 2-diweii-

ors vopen

sional planc dctermined by the eigenvectors 9 and P8 Let us assume that

the eigenvectors are arrenged in descending order, i.e., 94 is the eigen-

TR,

vector corresponding to the largest root, 4, that corresponding to the
second largest root, etc. Then the 2~d1meﬁsiona1 plhne determined by 9,
%f and 8, is the plane containing the two la{gest principal axes of the

» ellipsoids and we would be projectidg the data points onto this plane.

E We can take all the (g) = p(p~1)/2 pairs of eigenvectors and project the

data points on these planes.

2.3 ‘Principal Component Displays o .

ﬁ ; : - The IBM 2250 Graphics terminal was used to display projections on

. .the p(p-1)/2 2-dimensional planes formed by each pair of the eigenvéctors.
~a»INE 0Ata used by Graney |[I()} were taken, anc the three clusters ladentiliea
by him were projected on all the three 2-dimensional pairs formed by the 3
varisbles. The unit ellipses (i.e., projections of the unlt ellipsoid)
around the glusters were alsc displayed. The orientation of these
ellipses, is, in the casc of principal components, of course paraliel to
the axes of reference. -Ifg however, one of the axes is not a principal
, component, the inclination of the princiﬁal axes of the ellipses with the

reference axes can be displayéd. This inclination may present some evi-

_dence regarding the nature of the data points, which was obscured in the

principal component plot. Because of the disappointing lack of informa-

tion contained in the principal component plots, we did not cven bother to
! ) document the computer program. Instead, the program which. has been docu-
mented permits projectlon around arbitrary pairs of reference axes. These

computer programs are described in detail in Chapter V.
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Let the equation of the n-dimensional unit ellipsoid be

' 18 :
2.4 Other Projections ) 7

@-p) Fra-y) =1
4

vhere I is the p x p variance-covariance matrix, x are the running coordi-
nates and iy is the cluster center of the ith cluster. There will be as
many ellipsoids as the number of clusters -identified. For the sake of
notational convenience, we will drop the subscript 1 from By As allhthe
ellipsoids are referred to the same metric Z-l, they differ only with
respect to their location, In the discussion th:t follows, we are con-
cerned with the shape rather than the location. The matfix £, 'as a popu-
lation param~ter, is unknown and we will replace it by its unbiased esti-
nate, s, the matrix of mean squares and mean products within groups: The
projection on the 2-dimensional plane formed by the variables 1 and J can
be written as

o0, = upd? 4 M - up? 2t e - 2
vhere s:l:l is the (i, j)th element of s-l. These equaticns for various
values of 1 and j are employed in displaying the piojections. For th?;?ﬁ?*
poses of computer programming, th1§§equaqion is further simpligigé-i5éq o

siiyi2+ sjjyjz + Zsijyiyj =]

i
techniques, the coordinates to plot the ellipses can be easily calculated.

where x, ~ My Ty and xj - uj = yj. By employing the standard reduction

Further aspects on this phase of the computer program are treated in

Chapter V.
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CLUSTERS IN SUBSPACES--THE SIMPLE STRUCTURE SUBSPACE

3.1 The Problenm

The previous two chapters coﬂsidefeh the problem of cluster
identification and cluster configuration. We now come to the second
part of our 1nquiry--ideﬁtification of experimental units or points
which could be described by measuring a fewer nunber of variables on
them. Before we proceed further with the identification of thé points
lying ;n a subspace, we want to consider the situations where such é
ﬁroblem can arise. A familiar example would be one of medical diagnosis.
A number of patients are measured on a number of medical symptoms.
Sometimes these measurements are repeated.on the same patients for a
number of days consccutively. Here the symptoms measured are our vari-
ables and the patients are subjects or experimental units. If the measure-
ments are ;aken on different days, it would add a factor of classification;

let us assume that this factor (i.e;, days) has not been recorded. Of

[
course, from these data one can construct a variance-covariance matrix and

from that obtain a correlation matrix. This could be subjected to factor
analysis. Factor analys#s would reveal'groupings of the symptoms in these
data. Application of Thurstone's [36] principle of simplg structure could
reveal such groupings. Disappointing examples of this kind of analysis

resulting in the symptows like "elall," "“fever," and "pain" are not so

uncomnion.
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The data could also be subjected to cluster analysis to form
groups of patients. In this type of analysis, the patients would be
classified into groups depending upon the absence or severity of symptozs

they have in common with respect to other patients belonging to the sare

‘group. Thus, for the patients belonging to the sams group, almost all

the patients would be measuring equally on the average on different
symptoms; they may either measure high on the same symptom compared to
other patients belonging to different groups or measure low, etc. To
summarize, factor analysis wouid tell us about the symptoms, ana cluster
analysis would help us to group patients according to the "degree of

severity," say, of the symptoms. According to cluster analysis, we may

have two patients belonging to different groups perhaps because one

. measured low on one symptom and the other measured high on the same

synptom. It may happen that the particuldr symptom would have left the.
final diagnosis unchanged. '&o this extent, this-symptom could be dis-
carded so far as these two individuals are concerned and then they will
belong to the same "group." But neither the factor analysis nor cluster
analysis would bring oﬁt this fact; nor would it bring out the fact that
"days" is a hidden factor. We must extend both techniques before we can

identify such configurations. The problem is formulated in mathematical

terms in the next section where we present, in detail, a specific

approach,

3.2 Mnthematical Formulation

In previcus chapters we have dealt with the techniques of cluster
analysis. Tt was pointed out that given an n x p data matrix, it is

possible to identify the underlying clusters. We now ask the next
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question--are there any data points which instead of lying in the p-
6 maneinnal zeacs, 1is on the (p-i) dimensional hyperplane? This
question is important as an answer to it, among other things, will rcveal
the following th:lnés: (1) The points that lie on the (p~l)-dimensional
hyperplane. The determination of the points lying on the (p-1)-dimen~
sional hyperplane will help us to describe these points in terms of (p-l1)
variables instead of p variables. (ii) We will essentially devise a
"discriminant function" which helps us to split the original sample into
two groups of points--one group'which'needs all the p original variables
to describe the éoints belonging to it and another group which needs (p-1)
instead of p variables to describe the points belonging to it, In the
.second case, we have also to consider the question of which variable to
.discnrd ftém the original p varlables. Note that it is also implied in
the second case that the p x p variance-covariance matrix of the points

lying on the (p-l)-dimensional hyperplane will be singular, as its rank
will be (p-1) and not p.

3.3 A Basic Probability |

At the outset, let us make clear what we mean by points lying
"approxiwately' in a subspace. Our attempt will bebto look for those
points which lie close to a (p-l)-dimensional hyperplane in a p-dimensional

space. Clearly, any (p-l) vectors always lie exactly on a (p-1)-dimensional

hyperpiang, whereas a minimum of p vectors 1s necessary to overdetermine

a (p-l)-diménsional hyperplane. We will, therefore, look for those (p-1)-
dimensional hyperplanes which have p or more vectors lying close to them,
The singular case where p or more vectors lie, exactly, on a plane will be

ignored, since in this instance, those points lying on the hyperﬁlane will
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satisfy a linear relationship between the p-variables; this cannot happen
unless there is a deterministic linear relationship betwéen the p-variables
in the popuiation, and thus, any samplﬁ will refle;tithia relattonspip and
the p x p estimated variance-covariance matrix of any sample from such a
population will be singular. Since we require inverses of dispersion
matrices, we must exclude these redundancies., To determine, whether a
point overdetermines a hyperplane, we shall consider its Euclidean distance
from the hyperplane and examine whether this distance could be considered
negligible in a probabilistic sense. We need an expression for this
probability. The derivation follows the reasoning given by Bargﬁnnn [21].
Let P be a point in 2-dimensional space, We are interested in the ortho-
gonal distance of this point from a line, which is a hyperplane in 2-
dimensional case. Without loss of generality, we can assume the X-axis to
be this line (Figure 3.3.1). Let the vector OP subtend an angle 0 at thé
origin with the X-axis. We must now assume that fhe reference axes span a
Caréesian frame (orthogonal, equal units along each axis)f This implies
"that a Gram-Schmidt transformation of the original observations (using S,

the within estimated dispersion matrix as the original metric) must precede

* the calculation of probabilities of overdetermination. With this assumption

we can now draw & circle with OP as radius, Let M be the foot of the per-
pendlcular drawn from P on the X-axis. Then

"PM = QP o gin o]
Therefore, © = sinhlPM/OP = sin-IZPM/ZOP = sin-1§/2h '

Where a = PP' and h is the radius of the circle. Thus, the probability that

a point falls within the angle © on the circumference of the cifcle is given

by
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P. = 2 x length of arc generated by angle 20

2 circumference of the circle

= 2.0P.»20/20+0P
= 20/
w» (2/NM)arcsin(a/2h) (*:.3.1)

‘We can view the above probability either way--

(1) the probability of a point falling within an angle O as stated above
(i1) the probability of a point falling within the orthogonal distance of

+a/2 to -a/2.

The technique involved in generalizing the above probability to higher

dimensions, say k, is simple. We have to obtain the surface element of a

sphere of radius h in k dimensions and the surface elemen€ cut off by the

1k-dimensional arc which subtends an angle © at the center of the sphere.

We shall illustrate the procedure for 3~dimensions before generaiiziung iL
to k-dimensions. The 3-dimensional sphere can be obtained by revolving a
semicircle around itg diameter. The surface element generated by érc be=~
tween y =~a/2 and y = a/2 is twice the el ment generated.by arc between

y =0 and y = a/2 and hence the 3-~dimensional surface element between

y = -af2 and y = +a/2 can be expressed as

al2
c, = 2-2nfxds
(]

vhere x = Vﬁz - yz and ds = hdy/»’h2 - y2

a/2
Hence C, = 2-2ﬂf (h/h2 - yz)/(»/hz - yz) dy

o)

= 2[lah

= a:a:-r)-(ne\“
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and 83, the total surface element wlll be

-h -
2. f Y/ Ty C R
[+

_ = 4m?
&)
1 Hence, P, = 03/83 = a/2h (3.3.2)
23 :
b For k dimensions, the (k-1)-dimensional semisphere is required to be

revolved around a (k-2)~dimensional hyperplane. In the above notatica,

the probability Pk can be expressed as

alz s e
L} 2 2, k=2
kel . [ - yv) dy

2»
k-2 hZ - 42

=
n
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f : In the numerator of the above expression, substitute y = hsiné. Then,

i dy = hcos$d$ and the integral reduces to

a/2
, hk-zf cosk_2¢d¢
)

where o/2 = arcsin a/2h. By the same substitution, the denvminator could

be reduced to
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n/2
hk'-zf coak_2¢d¢
]

If wa let sin2¢ = 2z, this integral can be reduced to the complete Beta

I Y SRR SO

integral ' -

1
L (_1_. Lc_—_;.) -1 f M2 gy 32y,
: .
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22 2

and the denominator could be reduced to i

ainzulz

~1/2 . . i
1l 1=z oy (k=3)/2 : :
2 of ( z). dz ' j

Therefore, P, the ratio can be expressed as ' .

B, = B(sin’a/2; 1/2, (k~1)/2) N (3.3.3) ;

where the right side of (3‘3;3) is the incomplete Beta function. This is
the probability of a point falling within (=a/2, +a/2) in k dimensions.
We will nnw.make use of this probability expression in studying the pimple )

structure configuration. 5

3.4 Determination of Simple Structure Configuration

Let us assume that we have a total of n points in p-dimensional
space. As stated in the previous section, the probability, in p~dimensional

space, of a point falling within (-a/2, a/2) is given by

Pp'- B(sinzu/Z; L, (p-1)/2) , 3.4.1)
2

where a/2 = arcsin a/2h. Without loss of generality, h could be taken to be

1. We are interested in determining whether thece are points lying on a
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subspace. In a p-dimensional space, (p-1) points always lie on a (p~1)-
dimensional subspace. Thus out of a total of n peinis, we have avail
able only (n-p+l) frac points. Likewise, if wa are to make any statement
about r points lying on'a gubspace, we can only look to (r-ptl) points as
(p~1) of them will always lie on a subspace. If we denote by Pp the
probability of a single point lying within a fixed distance ta/2 from a
given (p-l)-dimensional hypersphere, in p-space, the probability that
(r—p+l) points will fall in that region out of (n-irtl) is given sy

n-ptl pt-ptl ;_nf=r
\r-ptl P

-Tﬁus, if a region is to contain more than r’ points, the probability. would

- be pfven by the cumulative hinomi‘n‘i diatrihntinn

I fnepHl\ | i-pHl '
:E: ( §+1) P (;-Pp)“"i . . T (344.2)
- - :

fm=x

Also on the basis of the (n-p+l) free points available, the expected

number of points (in excess of (p-l)'falling in a (p-1)-dimensional region

is

(n-ptL)P, (3.4.3)

The sum of binomial terms (3;4.2) can be evaluated by the incomplete Beta
function. The result cnﬁ be summarized as
P{r or more of n poiﬁts lie within fa2]

= B(Pp; r-p+l, n-r+l) ' (3.4.4)

where Pp itself is an incomplete Bota function. If this probability is

very small we shall say that the simple structure subspace determiued by
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the points lying on it is overdetermined. However, the probability of a
subspace being cverdetermined itself depends on the probability Pp. We,
theretere, need to consider the interval width and the probabilities, so
that the "probability of ovardeterminaticn' may be a meaningful cencept.
Bargmann {2], in studying the overdetermined subspacéﬁ in relation to
factor analysic fixed the ratio a/h to be $0:10. Thuse criteria, which
reflect common usage in factor analysis, did not suit our requirements,

The cbject of this test, as will be discussed in Chapter IV, is
to suggest to the viewer of a gfaphics display, some veciors which are
normal to overdetermined hyperplanes. If no such concentration were present,

the expected number of points, would be, (according to (3.4.3) and the dis~

cussion on free points) ' ' < : . L

— (n-P+1)P; + (p-1) : E (3.4.5) ;

After considerable experimentation, with' n  between 20 and 50, and p
between 2 and 5, we found that taking Pp such that the expected number of
points 1is (p+5), L.e.,

P, = 6/ (n-p+1) (3.4.6)

gave satisfactary results in the identification of overdetermined hyper- -

planes by the Beta test (3.4.4). A value of Pp smaller tpan this was too
stringent so that a considerable number of points would have to lie on a
subapace before it could be considered well determined. The suggested
value of Pp was fairly moderate. We compensated for this value by ’
tightening up the probability level for de;laring a subspace to be over-
datermined. We set this probability at 0.01.

The arbitrariness of choice of_P and levels of significance may
be disquieting to some readers. They may be reminded though, that we are

dealing wi:h a phasec oi data analysis which is exploratory. A sample from
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a p-variate normal distribution, with a dispersion matrix of rank (p-1),
will always be on a (p-1)-dimensional subspace, exactly. There is no
test for a hypotiesis in the populatien. Rather, we deal with an instance
vhere, after some linear travsformations of the original variables, one of
them has negligible variance, after some points havé‘been deleted fron the
pample. Consequently, a decision as to what is negligible, and what is
“elose to a plane”" is really as arbitrary as declaring that, viewed from
some point in the universe, most (but not all) of the stars of a galaxy lie
close to a plane. In the final analysis, only the graphic display of
certain projections will reveal such intuitive configurations.

In our examples, the subspaces were overdetermined at much smaller

values than 0.0l which points to the fact that (3.4.6) was quite useful.

For the rest, the choice of critical values is as arbitrary as "0.05 level"

e

““(because we have five fingers?) and the 0.0l level of significance. As a

guide for displaying configurations, our two levels of Pp and a were

“yseful."
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CLUSTERS IN SUBSPACES-~IDENTIFICALION

4,1 Introduction

In the previous chapter, we add£essed ourselves to the statistical
aspects of well determined subspaces and derived a few pertinent geometric
probability expressions which ﬁay gulde us to find such spaces. No men=-
tion was made of techniques for finding such configurations. Invthe
present chapter, we consider (?) the technique of determining points lying
F ' on a subspace; and (b) the problem of which variable could be discarded for

the points which describe an overdetermined subspace.

4.2 Ovardetermined Subspaces

The problem of determining subspaces in our case is rather similax

to the determination of simple structures in factor analysis. The

g

essential difference, however, lies in the fact that a factor analyst looks
for simple struéture among variables. From data points, he constructs a
correlacion matrix and gets a factor matrix by applying one of the many
suitable techniques available for this purpose. If he go desires, after
obtaining an initial solution of the factof matrix, he may obtain a
“"preferred" representation, e.g., Lawley's form [14), etc. For a factor
analyst such a solution may not serve his purpose if he is interested in
relating the artificial variables to observable ones. In that case he
will have to resort to some other forms of representation, such as the

simple structure technique. The number of artificial variables fequired
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to explain an observable variable is known as the complexity of the ob-
servable variable. For the purpose of interpretation of artifirial
variables, it is desirable that complexitics of cbscrvable variables he
low. Both analytié and geometrical techniques are available to a factor
analyst to express the final solution in a form suitable for interpre-~
tation.

We have a slightly different problem. First of all, we do not
look for any artificial variables éo represent the observable variables.
Thus whereas a factor analyst works on a factor matrix, we work on the

data matrix itself. The starting point for a factor analyst is the

correlation matrix obtained from the data matrix., A somewhat similar

- standardization is employed in our case, except that we standardize the

data matrix on the basis of cluster means and the “'within" matrix'and
then normalize the points to unit length. - After displaying these points,
and the unit eliipses around the cluster means, on all 2-dimensional
diiections, we proceed to single out those points which could be described
in terms of fewer variables. In this connection, it does not concern us
how far_apart'these pdints are, as long as they lie on a subspace of
lower dimensionality. Thus this technique h;s an advantage that it can
identify points lying on a subspace even though they may be belonging to
different populations, or clusters. This is precisely what we had in
mindf The technique of cluster analysis assigns points to the populations
to which they belong. Leaving this structure intact, our new teéhnique
determines points which lie on a subspace.

A discussion may be in order regarding the number of subspaces
one can find, If we can determine cne overdetermined plane, the chances

are that there are wany planes in the vieinity of a plane alréady found.
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The reason is that, by "tilting'" the plane already found, we can still
retain many of the points belonging to the original subspace found, pick
up a few new points and obtain another overdetermined plane. However,
we can reduce the multiplicity of subspaces by ignoring these additional
planes found which lie within a certain range of the original plane. This -
can be done by requiring a minimum angle between the normals to two dis-
tinct planes. What angle should be maintained between two planes before
declaring them as distinct is a matter of choice. The "orthogonality" .

preferred by some factor analysts is, at leabt for our problem, quite

useless.

R Sy Y

4.3 ldentification of Subspaces

In this section, the general identification technique willlbe

.descripea. LeT tnere pe TN eXperimental units, each with p measure~

ments. The data matrix of order n x p will be designated as X. This
matrix 1s subjected to a cluster analysis program. If the data are
normally disgributed, we need to use virtual clusters; hénce we used the
program developéd by Bargmann and Graney [5) for this purpose. After NG

(computer program notation) such ¢lusters have been found, we may define

a matrix A, with elements aij’ of order n x NG such that

a,, =1 1if unit 1 belongs to cluster j

13
= 0 ofherwise 4.3.1)

Let Dk (of order NG x NG) denote a diagonal matrix with elements kj'
§=1,2, ..., NG where kj is the number of points assigned to cluster

j. Subtraction of cluster centers or cluster means from each point pro-

duces a matrix Y, formally given by,
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(4.3.2)
(4.3.3)

Now we can obtain an estimate of the common dispersion matrix I, using

the within-cluster sample dispersion matrix

§ = (llne)Y'Y :

(4.3.4)

where n, = n-NG. For the determination of subspaces, we must first

transform our reference frame to a Cartesian metric (which is, of course,

merely a computational device, and never actually displayed).

As a con-

venient technique, we used the Gram-Schmidt ("Forward Doolittle")

reduction,

§ = IT'

transformed into

z = v@H™t

To find the "simple structure" subsﬁaces, we look for unit vectors t, such

that

It n ¥

(4.3.5)

where T is a lower triangular matrix with positive diagonal elements, hence

" unique. In terms of this Cartesian reference frame, the data matrix is now

(4.3.6)

(4.3.7)

and v has the property that as many elements as possible are close to

zero in the following sense:

LeF gi

¥. Then it is clear that

z't = v

=1 i

denote the ith row of Z and vy denote che ith element of

(4.3.8)

The ith element in v, namely vy is considered close to zero if

vilfzziz < sin a/f2

vhere sin a/2 is determined by (3.4.1).

(4.3.9)
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Let us now consider the gignificance of the expressions (4.3,8)
] YrOrm " ;
and (4.3.9). t is a unit vector and so is 51/ 2z, Their "inner ;
product " 3{5/{5&5;; therefore is the cosine of the angle between the vectors . ]
t and _z_i But _ | :
1 1 - Vz! *
_gi_t_//_;igi vil N (4.3.10)

and hence vilfgizi is the cosine of the angle between the vectors t and

g{. Since t 18 unit normal to the subspace (4.3.9) is established.

5 it e AR AL

For a given number of experimental units, =n, and p measuremeats
on each of them, we can determine Pp using (3.4.6) and hencé sin a/2 using

(3.3.4). (4.3.9) is then a test to determine if the vector correspending

SRPPAEIV R S

to a given data point (reduced in terms of z's) is close to the subspace

to which t is orthogonal. If the vector (and hence the d#ta point) is close
‘% L0 LOe subMpace, we rexard Lhe puiat as faliiug in ihe uverdeLchchd Lepiou,

and treat the corresponding element of y as "zero." We can examine each

elenent of y in this manner and determine how many ''zero" elements are

éhere. It 48 the count of these "zero elements" which we subject to the ]

Beta test (3.4.4). 1If this test is significant, we say that the subspace ‘

is overdetermined and report it aé a solution, provided it is not "close"

to any subspace already found.

The transformation vectors t are found in a manner analog&us to
Thurstone's "Analytical Metﬂod" combined with his earlier "Single Plane
Method" [36]). According to this methed, each row of the reduced data matrix

Z is used as a point of departure to find a vector t. Let us start with

. 1
the ith row vector 25 We shall assume that Zigs Zggr vt s zip are

elements of gi. Then £°, the initial approximation to t is obtained by

il i

normalizing 5%, i.e.,
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s

- = i 2
"1’ "1 "l. \Eo1?r o2t v v “op’
with this trial, the projections

%, = %,

are calculated and the elements voi are tested for closeness to zero.

ti
-0

_ If a value is very close, a large weight is assigned to the point, for the

subsequent weighted regression technique. If it is large, the weight may

be zero. TFollowing Thurstone, we use discrete (step) weights, as follows:
]

oi/{gi z; < sin a/2

= BND (BND, bound, initially 8).

I£ 0<v
¥y

1
If sin a/2 < voi//_g_1 ER 28in a/2

" BND-1

L}
1f voilfgi z > BND x sin af2

v, - 0. ‘
With these weights we can follow a weighted regression scheme to obtain an
improved vector 5 This can be further simplified by a relation (due to

Thurstone) which expresses

t -u
R - N |
tyy " 1o e (4.3.11)
n L
where u-1 3 ijvoi/wi ij/wi N | (4.3.12)
tij = tzjlfgi’gg are then

elenents of the new trial vector L. We calculate

Y=y

and once again the welghte are assigned following the scheme detailed above,
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Hﬁwever, before assigning these new weighis ihe DMD volue 4g reduced to
3, in the next cycle to 2 and then kept at 1 for the remaining iterations.
Beginning with Ev’ seven iterations are perfofmed which give rise to
;1,152; S T L The last one, Ly is retained as t and Zt = v
is formed. -If the number of “zero" entrics in this'y is significantly
large as explaiqed carlier, we will have determined a well defined sub~
space, to which t is normal. The entire process is repeated, with each
row taken as a trial value., A given row may or may not identify.a sub~
space. If it leads to an overdetermined subspace, the solution, except
for the first ome, is checked as explained in section 4.2 to ensure that
the subspace is "different" from-any of the ones already found from previous
rows. For this purpose,'we require'that the cosine of the angle between two
planes should not cxceed 0.7 meaning that the planes were apart by.at
least 45°, Once égain we would like to mention that this is an arbitrary
requirenment; we found.this useful in our ekperiméntal studies.
Now we must retransform to the original data frame, The vectors
t that we obtain above, are with reference to the matrix Z. Our original
objective was to remove mean shifts and then look for experimental units
which lie on subspaces. MNowever, in working with Z, we have removed the
mean shifts and also reduced the metric to an orthogonal Cartesian frame.
This was a matter of convenience. To restore the original metric, we must
obtain the solution in terms of ¥, This can be easily obtained as under.
(4.3.6) is the transformation of Y into Z and (4.3.7) is the simple
structure solution in terms of Z. Substituting (4.3.6) into (4.3.7) we
obtain
v ey : (4.3.13)

from which we conclude that (T')-¥£ is the transformation in terms of Y.

SRR Y PR
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Tﬁe computer program reports both t and (T')-{g. The vector t is reported
under the heading "Vector which transforms original factor matrix into the
above plane no. v_" and (T')'{g is reported under the heading "Transforma-
tion veétor to transfer raw data to simple structure." The corresponding
elements of v are also reported. We shall also refer to elements of v as
the "loadings" or "scores" of original points with reference to the simple
structure plane determined.

For each t, only the vectors (T')'yg are coﬁveyed to the display
program, since we plot the original data points, in terms of the observed
variables. As well be explained in Chapter 5, the display prograﬁ takes'
one nf the observed variables as one axis and some specified vector as
another axis. For a given choice of.a variable and a vector, the vector is
feduced in such a manner that it forms an orthogonal frame of reference with
the chosen observed variable. A question may be raised as to why one of the
2xes alvays correspondg to an obsetved variable. In this connection, it
should be pointed out that a vector spécified by the usef, is équivaient
to an artificial variable, a linear combination of the observable ones. The
elements of the vectof glven by the user serve as weights in forming this

linear combination. When we view the displays with .reference to an ortho=~

. gonal frame of reference consisting of an observable variable against an

artificial vériable, we can make an inference as to how an cbservable
variable compares with an artificial variable. If both reference axes were
to correspond to artificial variaBles, the displays would be hard to
interpret in a realistic sense. This is our main consideration in insisting
that one of the axcs correspond to an observable variable. Further, if we

thould permit a user to select any two vectors, these could be translated
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into an orthogonal frame of reference in many different ways leading to

utter confusion,

4,4 Elimination of Variables

One notable difference between the rotational problem in factor

analysis, and the problem presentéd in this dissertation, is the fact
that the former ‘focuses attention on those points (variables, in that
4 case) which are far removed from the subspaces. By contrast, the latter
Ef pays éttention to only those points which are so cluse to a subspace that

they define it. It is these data points only which require one variable

E' less for adequate description., It should be noted, again, that such a

b subspace is not a single region within the p-dimensional space., Rather,

- for each simple structure plane, there are as many (parallél) (P‘lj-
+-Aimensional hyperplénes as there are clusters. Points which, in tﬁiﬂ

? sense, fall into the same subspace may be far removed from each other,

?. . inasmuch as they may be in different clusters. But even with their

: distinct neighbors, they share the property that the same (p~1) variables

are sufficient to explain their characteristics. It is for this reason

that we expect entirely new principles of classification of data points,
different from what could be expected by varying or'refining cluster

analysis or facter analysis techniques.

Mathematicaily, we c;uld use for description, (p-1) linear combi-
nations of the original p variables, witb the combinations chosen within
the hyperplane orthogonal to the (T_l)’g_vecfor. For real life'interpréta~
{ tion, this procedurc would be useless. Surely we are better off with p
observable vari bles than with (p-1) artificial ones. The principle of

! parsimony is not just a principle restricted to dimensionality. It would
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scem reasonable, then, to eliminate, for the data points close to one of

the subspacers, ihat uvbservabls varinshle which contributes the least to

the deseription of this selection of data points.
| As a measure of proximity of each variable to the artificial
variable which defines the subspace, we propose to use the correlation
between the ofiginal variables and the artificial varlable. This can be
obtained as follows. Recall that Y is obtained from the original data
matrix after subtraction of the appropriate cluster means. Hence
't =g . (4.4.1)

where 1' 1s a row vector consisting of all 1's and 0' is a null row vector.

Also,
dlv=4'2t
- it (By (4.3.6))
=0 (4.4.2)
and y've= t'z2'zg
- “eE'IE
=, ' (4.4.3)

since t is a unit véctor. By virtue of the fact that Z2'Z = neI, and

because of (4.4.1) (1/ne)Yﬂ1 will be an unbiased estimate of the covarfances
between the original variables and an artificial one on which the data
points have scores which art the elements of v. There will be as many ¥
vectors as there are overdetermined subspaces (cach corresponding to a
different, but pousibly overlapbing, selecticn of data points): For cach

of these, we must determine its correlotions with the original variables.
Thus, 3f there are 4 variables and 3 different solutions (overdetermined
subspaces), we will have u total of 4 x 3 = 12 correlations. Now, for a

given v (a given subspace),
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Y'v = Y'Zt
- Y'Y(T')—l_t_ (By (4.3.6))
-n, rr'(':')"]‘_:_ '(Ry (4.3.4) and (4.3.5))
= n Tt Ch.b.b)

T 1s the same lower triangular matrix that was used in reducing the

metric underlyit}g the matrix Y to a Cartesian reference frame. From

(4.4.4), we conclude that
(1/n)¥'y = Tt

Hence the estimated covariances between the original variables and a

(4.4.5)

single rrtificial variable, are elements of Tt. To obtain the correla-

tions, we have to divide each of these elements by the square root of the

estimate of the variance of the artificial variabie and the square root

of the estimate of the variance of the observable variable. Using (4.4.2)

and (4.4,3), we conclude that the estimate of the variance of the arti-

ficial vaciable is

(llne)y_'_y, =1 (4.4.6)
since a sum of squares (y'v) must be divided by degrees of freedom to
produce a variance éstimate. Hence to obtain the correlations, we have to

divide the elements of Tt by the square root of the estimate of the vari-

ance of the obsecvable variable only. In the computer program, after the

ector t is obtained, the product Tt is formed and the correlations are
then calculated Ly division of each of the elements of Tt by the square
root of the estimate of the variance of the corresponding observable

variable. The cstimates of the variances ¢f the observables are still

avallable in the £inal step of the cluster analysis part of the program

T is also stc_n:ed.

)

and these values are stored for use at this time.
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Once the correlatibns between the original variables and their
scores with reference to a subspace (i.e., vecﬁor ¥) are avallable, it
is easy to determine which variable should be aiscarded. in discrimi-
nant a;alysis. we come across the concept of correlations between original
variables and the discriminant function. The discriminant function is
nothing but a linear combination of the original variables which dis-
crininates best between experimental units in a specified sense. The
purpose for which we want to discriminate is important as the discriminant
functions for different purposes are usually different. Given these things,
the variable which correlates most strongly in absolute value with the

discriminant function is the most important in discriminating. In our

~ study the vector t which transforms the original observations into ¥ plays

a similar role in the sense that the elements of a well defined subspace
represented by g_ﬁas most elements near zero (see section 4.3) and a few
far removed from zero. In analogy with discriminant analysis, v is the
Vector that produces the two groups of data points. Thus, the variable
which correlates most strongly with this artificfal variable, contributes
most to the disctimination process, It is this maximally correlated ob-
served variable which should be eliminated for, after it has been discarded
the other variables contribute far less to the discrimination betweeh these
two sets of data points. If only one variable is to be sought which would
explain the difference between these data points which fall into the sub-
space and those that do not, it would be this one which is closest (has
highest correlation in abscolute value) to the expendable artificial variable.
Note the exact opposite of this technique to discriminant analysis, where
we secck the best discriminator. Here we identify the "most expendable”

artificlal variable. DBy our corrclatisénal technique, we have identified,
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for each subspace, that observable variable which is closest to the

n the descripiivn of the selected data

subset. Note again, the need for this correlational interpretation.

If it were argued that the artificial variable itself ought to be dis-

carded, we would be left with (p-1) artificial variables, a rather un~

satisfactory situation. After the cprrelational approach, we have (p-1)

obseryed variables left.

Lae C e lee
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CHAPTER V

DESCRIPTIONS OF COMPUTER PROGRAMS

5.1 The Computer Programs

The algorithms explained in previous chapters have been synthesized
into two computer programs which are available at the University of Georgia,
The first program, named CLUSTR, and described in the next section,
identifies the clusters and overdetermined subspaces. The second one is

available as a conversational system for the IBM 2250 Graphics unit. In

- this chapter, we describe these two computer programs. The following

chapter will contain instructions regarding the use of these programs, and

- the interpfetation of graphical displays.

5.2 An Alporithm for Identification of
: Points Lving on a Subspace

In this program, beginning with the data matrix, we first fdentify

..the clusters. This is essentially the algorithm proposed by Bargmann and

Graney [ 5], However, the algorithm proposed by Bargmann and Graney stops
at the fdentification process. Since we also need to identify points
lying on an overdetermined subspace, we extend the algerithm further. A
complete listing of the program is contained in Appendix A. This program
can be logically divided into 2'parts. Up to statement number-811, it is
essentially the reproduction of the program developed by Bargmann and
Graney [ 5 ), where a complete documentation of this part can be found., We
have made a small change in the program to suit our needs. As explained

in Bargmann and Granev [ 5], their program makes three passes to identify
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10001, we standardize the original points and reduce them to zero mean and a

. change of the BND vériable) have been presented in sections 4.2 and 4,3
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L

élusters. The passes made in their program are controlled by the state-
ment immediately following statement number 444, 1In our program,
CLUSTR, this has been reﬁlaced by the transition to the subspace-identifi- ) £
cation.program. Further, the program developed by Bargmann and Graney

[ 5] does not calculate cluster means or the "within" matrix after three
passes. Their program computes these quantities at the beginning of the o
first pass, and after the first and second passes. We require these . ;
quantities for our search for the points lying on subspaces. These é
quantities are calculated in statements between number 811 and number
20001. At this stage, we also punch cards containing the means for each
cluster and each variable. These will be needed prior to the execution

of ELLIPSE described below. In statements between number 11020 and number

Cartesian metric. This, then, is the beginning of the second logical part
of the ptoéram. Here, we determine the pdints lying on subspaces, using
the method of weighted least squares together with Thurstone's “Analytical

Method" and the "Single Plane Method." The algorithms (including the

The output of this program consists of two parts--a print oﬁt and
a punched deck. The printed output contains the results of three passes
wade to find clusters. The results listed after the third pass are the
final results relating to cluster analysis. It shows which point belongs
to vhich cluster. It also shows at what level the point§ got included in
the cluster. The second part of the printed output gives various simple

structure solutions. It gives vectors which transform the original obser-

vations into simple structure planes. For each of these vectors, the

correlations between the original variables and the "scores" of poin*s

8 ftat iy
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with refetencé to this vectot. the number of points falling into the
simple structure plane corresponding to this vector, and the probability
of these many points falling into this simple ;tructure plane, are given,
A simple structure plane is not included as a solution if the probability
of the number o points falling into this plane is éreater than 0.0l or if
it 1s within 45° of a plane already found.

Apart from the printed output, a punched deck is also produced.

These are data cards which are later loaded into data sets, as described
below. The first few cards in this deck~-equal in number to .the number of
clusters formed--are the cards containing cluster means. The next set of
cards contains vectors which tranaform the original data points into
.simple structure solutions. The number of clusters is designated by NG
Iand the number of simple structure solutions is designated by NSOL.. This
program also reprdduces the cards for each data point with the following
additional information, For each data poiﬂt, the card concains a serial
number in columns 1-3, the number of the cluster to which it belongs in
columﬁ 4, and the simple structure planes in which it i3 included in columns
.5=14, 1In column 4, a '1' is punched if the point belongs to cluster number
1, '2' if the point belongs to cluster number 2, etc. '0' is punched in
column &4 if the point was not assignable to any of the clusters. The simple
structure planes to which the point belongs is indicated in columns 5-14 as
follows: A 'l' in column 5 indicates that the point falls into simple
structure numbc: 1, a '1' in column 6 indicates that the point belongs to
simple structure number 2, ete. (with provision for up to 10 solutions).
This is certainly more than adequate capability. Zeros or blanks in
columns 5 to 14 (the computer program punches zeros) indicate absencc of

this point'in the corresponding simple structure plane. Columns 15~70
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cbntain the original coordinates of each data point. The-entire punched
deck output is also printed out. The cluster means are printed at the end
of the third pass, and the vectors which transform the raw data into simple
struct&re solutions are printed immediately after the printout of the
corresponding solution. The information punched int; the last NP cards

of the punched deck is also printed as a final summary. The user may

find it helpful to keep this summary with'him vhile he studies the displays.

5.3 Loading the Data Set (Utility
Program IEBGENER)

After the user has subjected his data to the CLUSTR.progrém, he
should next run the IEBGENER program. This program supplies the output
of CLUSTR program as input to the ELLIPSE program. A header card, con-
taining the number of points, the number of variables, the number of
groups, and the nﬁmber of overdetermined subspaces identified by the
CLUSTR program, is put before the punched d;ck produced by the CLUSTR

program, and the LEBGENER program is eiecuted. A sample deck set-up for

~ the IEBGENER program is given in Chapter VI; this is a utility routine

which transfers the cards to disk.

5.4 The Display Program and the
Conversational System

The second program of the package serves to display projections
of the clusters and subspaces, on an IBM 2250 Graphics Display Unit. It
enables a user, at the console, to communicate with the system and to
manipulate displays appearing on the scope. The program, named ELLIPSE,
is capable of handling up to 8 variables, 50 data points, 10 simple

strdcture solutions and 5 groups or clusters. The numbering of the
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variables is implicit. The first coordinate, for each data point, is
regarded as variable number 1, the second coordinate as variable number
2, ete. |

Tﬁc program is an interactive one in the sense that the user, at
the console’ can decide on variations for later displays on the basis of
what he saw in the earlier ones., The input of the data is so formatted
and programmed Ehat, if a user wishes to reassign a point from one
cluster to another, or if he wishes to change cluster ceﬁters, etc., he
only needs to make a change to this effect in the corresponding data

cards. This capability gives the user an opportunity to redefine clusters

and subspaces on the basis of the displays generated. The interaction

between the user and the system is achieved through the use of the pro-

" grammed function keys and the alphameric keyboard which is a part of the

2250 Graphics Display Unit.

The_pfogram includes a main program and 8 subroutines. fhe main
program calls two subfoutines CALC and EXIBIT. CALC reads the entire in-
put into the ELLIPSE program. The fanput consists of a header card con-
taining the number of points, the number of variables, the number of
clusters and the number of simple structure solutioqs; cluster means for
each variable; vectors which transform the original data points (raw data)
into various simple structure solutinns; and the data points, together
with 1nforﬁation regarding the cluster to which a data point belongs and
whether or not it lies on a given overdetermined subspace. As explained
earlier, this input is given to the program through the execution of the
IEBGENER Utility routine. The first (executable) statement of the CALC
subroutine reads the header card. Following this, the DO 14 loop reads

cluster means, the DO 114 loop reads the transfurmation vectors and the
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DO 10 loop reads the data points. The array IG is used to store infor-
'mation regarding the cluster to which a data point beiongs. Recall that
for each data point, columns 5-14 contained 'l' to indicate the corres-
ponding simple structure plan‘.to which this point belongs. This-configu-
ration of 'l's and '0's is read as a 10 digit 1ntege} number and stored
in the first column of the two-dimensional array INNSOL. The serial
number of a data point 1s stored in the second column of INNSOL. In the
DO 422 loop, the array IG is examined to determine the size of each cluster.
The DO 429 loop, then, determines the total number of points assigned to
clusters, The subroutine COR2 is now calleq which yields the within sum
of squares and products matrix based on all the points belonging to
clusters. The upper triangular part of this symmetric matrix is stored,
Qolumnwise, in the array DSPROD. In the DO 434 loop, each element of the
array DSPROD is divided by nes the degreces of freedom, to yield an esti-
mate § of the cogmon varianceicovariance.matrix. L. Immediately following
the.statement number 434, SINV, a sub-routine from the IBM Scientific
Subroutine Package, is called to invert the matrix S, The inverse of this
matrix S, stored-as thevfirst columi of the two-dimensional array A, is
‘ the metric (based on all points belonging to clusters) employed for unit
ellipsoids around the clusters, The subroutnien CALC then calculates
uetrics correspondling to overdetermined subspaces. For each of the over-
determined subspaces, the ﬁO 426 loop calculates a metric correspondingr
to each of the overdetermined subspaces on the basis of the points be-
longing to it, The inner DO 427 loop examines the 10 digit integer num-

. bers stored in the first column of the array INNSOL to determine the

For each subspace, the suprou}:ine

points lying on a particular subspace.
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CURLS 18 utilized to caicuiate a newlwithin—cluster sum of squares and
éroducte matrix. In the DO 442 loop, each slement of this matrix is
divided by the number of points belonging to the overdetermined subspace,
to yleld an estimate of the variance-covariance matrix based on the

points belonging to the subspace only. The subroutine SINV is then

PRI TE R (M1 Blo

called to invert this matrix. The inverse matrix is used as the metric

for ellipsoids corresponding to the over&atermined subspace. The metric
corresponding to the overdetermined subspace number 1 is stored as the

sacond column of the two-dimensional array A, the metric corresponding to

S ————

the overdetermined subspace number 2 18 stored as the third columﬁ of the

array A, ete., This is accomplished in the DO 433 lcop. The DO 15 loop,

s T e

. ‘ - beginning at statement number 450, calculates the maximum and minimum
values for each variable. These maximun and minimum values are required
i . later for scaling purposes to accommodate each of the projected data

points within the screen limits. A flow chart for the subroutine CALC is

3 ! ' _given in figure S5.4.1.

" " Subroutine EXIBIT

The subroutine EXIBIT begins with a call to the DISPLA subroutine
of the GRAF (Graphics Addition To Fortran) package [16]. This results in

setting up GDSX, GDSY, GTEXT, GPOIXT, GDSE, GDSER and GINPUT as display

variables. .The subroutine LIGHTS of the GRAT package is next called to
turn on the lights corresponding to the programmed functioa keys numbered
1 up to the number of veriables, keys 27 to 29 and 31, After these pre;
; ‘ liminaries, the subroutine ﬁESSGE is called to display an informative
message about the program, for the henefit of the user. The subroutine

MESSGE returns the control to the subroutine EXIBIT as soon as the user
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presses any programmed funétion key. The message appearing on the

screen is erased, a variable NTEST (used later to register the depressed
key) 18 set initially equal to 1 and a variable NGG (a,K flag which is used
to 1ndi?ate change of vectors) is set equal to 0 and the control goes to
atat;menﬁ number 20. This statement is a call to the subroutine KEYIN,
with NTEST, the input srgument having been set equal to 1. The subroutine
KEYIN accepts from the user a vector and the number of a variable, in

order to form a 2-dimensional plane. The user indicates his choice of

. .the number of the variable by pressing the corresponding programmed

function key. The variable NAXIS_is used as an output argument of the
subroutine KEYIN and on return contains the number of the progranmed '
function key pressed by the user. As will be seen later, on return from
KEYIN, the varisble NAXIS must elther have # value equal to the number of
the variable the Qser wishes to utilize, or 30, If NAXIS equals 30, it is
implied that the user wishes to atop and th; display program comes to an
end. Otherwise, the subroutine ELLPSE‘is called with the'éurrent value

of NAXIS (the number of the variable) as input argument, The subroutine
ELLPSE displays the pfojectiona of the original data points, and the unit
ellipsoids havinélthe metric hased on all the points. belonging to clusters,
onto the 2-dimensional plane formed by the vector and the variable
supplied by.ﬁhe user, providad the#e is no singularity or redundancy in~
volved {sce ELLPSE Lelow). After the above displays appear, the user is
expected to press a programmed fﬁnctidn key. If he presses key 29 or 31,
the control comcs to statement number 80. This results in erasing the
current displays and then a call to the subroutine KEYIN, with NTEST,

the ‘input argument, befng 29 or 31, As before, the call to the subroutine

KEYIN is followed by a call to the subroutine FLLPSE and the cycle
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continues. If a key corresponding tc the number of an overdetermined

subspace was pressed, the control comes to statement number 61, and if

key 30 was pressed, the di-.play program comes to an end. If the rcontrol

........

comes to statement number 61, the subroutine REL 'SL 15 calicd i

the projections of the overdeteiruwined subspace. Tf none of the above

mentjoned keys {s pressed, an error message, as contained in the format

statement number 62, appears on the screéen. The error message continue .

to appear until the user presses a proper key or, in case of singular or

redundant situations, rectifies the situation. If the aubrqutine RELPSE

is called, after the pro;ections of the overdetermined subspace are dis-
played, the user is expécted to press a programmed function key. Once
-again, 1f key 29 or 31 is pressed,.the current displays are erased, the
Mcontrol comes to statement number 20 and the subroutine KEYIN is called.
The program terminates if key 20 was pressed. If the key corresponding to
the number of the overdetermined subspace was pressed, that part of the
-current display pert&ining to the projection of the overdetermined sub-
space is erased, and the subroutine RELPSE is called to display the pro-
Jections of the overdetermined subspace that is now being requested. An

error message appears 1f n.ne of the abovementicned keys is pressed, and

riile ¢cycle ontinreg in th¥e manner., A flowchart of the subroutine is

given in figure 5.4.2.

Subroutine KEYIN

The subroutine KEYIN accepts a vector and the number of the

variable from the user, to form a 2-dimensional plane. It has one input

argument, NTEST, and an output argument, NAXIS. The first statcment in

the subrqutine tests the valuc of NTEST. if it equals 31, chat part of
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the svhrrntine which accenta a vector from the user is skipped. and the
control comes to statement number 101. Otherwise, the control comes to
statcement number 99, and whatever appecars on the screen 18 erased to pre-
pare t§ accept a vector from the user, On the first call to the sub-
routine KEYIN, the input argument, NTEST, is set qual to 1 so that the
control invariably comec to statement 99. On subsequent occasions, how-
ever, NTEST will have a value of 29 or 31. The DO 110 loop displays the
transformation vectors suggested by the rotation (CLUSTR) program for the
information of the user. Tha message contained in the format statement
number 3000, requesting the user to supply a vector, th'n appears'on the
screen. The program now awaits the user to supply the vector. The
calls to SCTDV and DVIDM subroutines of the GRAF package transfer the
;cctor supplied by the user from the screen to the display variable table
and from there to the dummy unit 4. The vector is read frqm the dummy
unit 4 into the array RINPUT. Before, howe;er, tﬁe vector is read, the D0211
loop transfers the current values storéd in the RINPUT array to the RWRKNG
array. This 1s done to insure that the vector previously supplicd by the
user is not destroyed in case he wants to continue with that vector. ?he
DO 213 loop checks If the user supplied a null vector. If so (as is the
case when he just wants to continue with the previous vector), this is
always replaced by the previcus non-null vector as would be apparent from
the DO 216 loop. The only exception, as will be seen from the statement
following the statement number Zlé, is the first call to the subroutine.-

This would result in singularity and the user will receive an error

message instcead of the displays.,
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After the vector is accepted, the control comes to statcment

number 101. The message contained in the { ,rmat statewent number 1658
appears on the screen. The loop beginning with the statement number 60
insures that no value other than 30, or the number corresponding to the
_variable which the user wishes to utilize, will be returned as the value
of the output argument NAXIS, The user can, of course, go back to state~
ment 99, the beginning of the program, if he presses key 28. Thisg gives
him a chance to amend the vector already supplied. A flowchart of the

subroutine is given in fipure 5.4.3,

Subroutine ELLPSE

This subroutine is used to display projections of orxiginal data

points, and the unit ellipsoids having the metric bnced on a1l points be-

.loaging to clusters, onto the Z-dimensional plane rormea oy tie vectusr aud

" the variable supplied by the user. The DO 10 and DO 11 loops set up a

matrix R formally given by

0 a1
0 | a,
R= |. .
1 0
0 ' 5.4.1
° ap {(5.4.1)

where 1 in the first column appears in the row corresponding to the number

of the variable chosort by the uger, and (al, Bys o 0 0 0, « « ., ap) is

the vector supplied by the user and modified to form an orthogoﬁal axis
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with the desired variatle. If the user supplies a vector collinear with
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will have all zero elements. The DO 20 loop, and the statement immedi-
ately féllowing this loop, check for the above-mentioned possibility of
singularity. If no singularity is present, the cont;ol comes to state-~
ment number 211; otherwise, the error message, as contained in the format
gtatement number 1659, is displayed on thé screen, and control is returned
to the subroutine EXIBIT. At statement 211, the DO 21 loop is set up to
normalize the second column of the matrix R. The DO 12 loop picks up

the metric S-1 based on all points belonging to clusters and the éub~
routines MPRD and GTPRD of the IBM Scientific Subroutine Package are
called, to form the matrix product R’S-IR. The DO 13 loop, and the.state-
ment imnediately following it, calculate the matrix product XR, where X is
the matrix of oriéinal data points. For a projected data point, the
element of the first column of the matrix ié treated as its x-coordinate
and the element of the second column ié treated as y=-coordinate. The DO
110 loop creates orders to plot points with these sets of x and y coordi~
nates. The actual plotting is dor~ hy displaying, on the screen, at the
place where the point should appear, it- serial numbef, so that the user
may know which data point projects into what region of the 2-dimensional
display.

In the statements immediately following the DO 110 lcop, the semi-
axes of the ellipses to be displéyed are calculated. They are based on
the metric R'S-lR {of the projected ellipsoids). The cluster centers
(centers of ellipses) are likewise transformed into g‘iR. The points des-

cribing the circumference of the cllipses
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(' - 2R R'STR (g - R'y,) = 1 (5.4.2)

where x' = (xl, x2) are the running coordinates, are constructed by
angular sweep. Beginning with an initial angle of 5° the DO 150 loop
calculates 72 different points describing the :sircumference of the
ellipses. fhe DO 100 loop creates orders to plot these points and the
ellipses appear on the screen whon the statement immediately following
the DO 100 loop is executed. A flowchart of the subroutine is given in

figure 5.4.4

Subroutine RELPSE

This subroutine is used to display projections of ellipsoids
having metric based on the points belonging to the overdetermined subspace
being superimposed. 1f the metric for the ith subspace is denoted by
S;l, the subroutiﬁe calculates the points describing the circumference of
ellipses ‘ v

@' - uR) R'S;IR (2 - R'y) =1 (5.4.3)

where R is as defined in ELLPSE. The technique employed to calculate these
points is similar to the one employed before. Like ELLPSE, RELPSE also
checks for singularity. If it is present, no disPIst of ellipses appear.
It is to be noted that, if ghe user chooses one of the vectots suégested

to him in the display (the vectors ldentified in the CLUSTR program), the
ellipses constructed in RELPSE, if the user depresses the corre§ponding
key, is quite flat, as intended., It is conceivable that, in such an
instance, singularities could occur (though we did not see any in our

examples) and hence the program checks for them,
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Overlay Structure

To reduce storage requirements, an overlay structure was de-

signed as tollows:

_—

{ 5

4 S

1. (Root) contains the main program and Function KD.

2. Contains subroutine CALC
3. Contains subroutine COR1S
4. Contains subroutine COR2
5. Contains subroutine EXIBIT

6. Contains subroutine MESSGE
77. Contains subroutine KEYIN
8. Contains subfoutine RELPSE
9. Contains subroutine ELLPSE

Segment 1, along with the main program and function KD, also

contains the system support routines IBCOM#, ARIH#, FIOCS#, ADCON#, and
system utiiities IHCUATBL, IHCUOPT and IHCTRCH. Segment 5 contains all
of the GRAF routines required except BUFRS, CUR$$, RCUR$, READSC, SCNDVDK
and SCIDV, which are included in segment 7, With ths help of this overlay
structure and equivalencing-of a few arrays in the ELLPSE subroutine, it

was pessihle to reduce the storage requirements to 64K bytes.

Deck Layout for ELLIPSE
//STEP]1 EXEC FORTGC
J//FORT.SYSLIN DD USNAME=&&CHAIN(ROOT) , SPACE=(TRK, (150,10,5)), c
UNIT=5YShA,DISP=(NEW,PASS)

//FORT.SYSIN DD *

adk )
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ﬁain program here

e

//STEPS EXEC FORTGC

I/FORT;SYSLIN DD DSNAME=&&CHAIN(LINKA3),DISP=(MOD,PASS) ,UNIT=SYSDA
//FORT .SYSIN DD # '

Function KD Sou?ce Deck

Iz

//STEP2 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=&&CHAIN (LINKA),DISP={MOD.PASS) ,UNIT=SYSDA
//FORT,SYSIN DD *

Subroutine CALC Source Deck

/%

//STEP7 EXEC FORTGC

//FORT, SYSLIN DD.DSNAME=&&CHAIN(LINKAS),DISPu(MOD,PASS),UNIT=SYSDA
//FOKT.SYSIN DD * '

Subroutine COR1S Source Deck

1* _

/ {STEP6 EXEC FORTGC

//FORT.SYSLIN DD DSNAME=5&CHAIN (LINKA4) ,DISP=(MOD,PASS),UNIT=SYSDA
//FORT.SYSIN DD * |

Subroutine COR2 Souéce Deck" B

%

//STEP4 EXEC FORIGC

/ /FORT.SYSLIN DD DSNAME=&&CHAIN (LINKA2) ,DISP=(MOD,PASS),UNLT=SYSDA
//FORT.SYSIN DD *

Subroutine EXIBIT Source Deck
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Subroutine EXIBIT Source Deck
/*
//STEPO EZXEC PORTCC -
//FORT.SYSLIN DD DSNAMEw=&& (CHAIN(LINKAS) ,DISP=(MOD,PASS) ,UNIT=SYSDA
//FORT, SYSIN DD * | '
Subroutine MESSGE Source D..ck
Iz '
//STEP10 EXEC FORTGC
//FORT.SYSLIN DD DSNAME=&&CHAIN(LINKAS) ,disp=(MOD,PASS) ,UNIT=SYSDA
//FORT,SYSIN DD * '
Subroutine KEYIN Source Deck .
/%
//STEP3 EXEC FORTGC
//FORT,SYSLIN DD DSNAME==L&CHAIN (LINKAL),D1SP=(MOD,PASS),Uii1T=SYSDA
//FORT .SYSIN DD *
Subroutine ELLPSE Source Deck '
1%
//STEP8 EXEC FORTGC
//FORT.SYSLIN DD DSNAMEB&&CHAIN(LiNKK6),DISP-(MOD,PASS),UN1T=SYSDA
//FORT,SYSIN DD *
Subroutine RELPSE Séurce Deck
1*
//510 EXEC LKED,PARM=(LET,LIST,OVLY,XKEF)
//LKED, SYSIMOD DD DSNeSYS1,GRAPHLIB(ELLIPSE),DISP=SHR, Cc

/! SPACE= (TR¥, (0,0)

//1KXED.SYSLIB DD DSN=SYS1.GRAVLIB,DISP=SHR

o

ety




!
b
|
|

// DD DSN=SYS1.UGALIB,DISP=SHR

eve1 SSPLIB.DIsSP=SHR

Sa
13
t7
t3

o
et

-

/] DD DSN=8YS1.FORTLIB,DISP=SHR

// DD DSN=SYS1.LINKLIB,DISP=SHR

// oD nsn-svm.cwuua,msr-sxm

/ JLKED .MODULE DD DSN=&&CHAIN, DISP=OLD

e s ablbhitaa A Eion i

o

//LKED.SYSIN DD *

INCLUDE MODULE (ROOT)
INCLUDE MODULE(LINKA3)
INCLUDE SYSLIB(IBCOM#)

INCLUDE SYSLIB(ARITH#)

. INCLUDE SYSLIB(FIOCS#)

INCLUDE SYSLIB (ADCON#)

INCLUDE SYSLIB(IHCUATBL)
INCLUDE SYLIB(IHCUOPT)
INCLUDE SYSLIB(ERRMON)
INCLUDE SYSLIB(IHCTRCH)
OVERLAY ONE
INCLUDE MODULE (LINKA)
INCLUDE SYSLIB(SINV)
INCLUDE SYSLIB (MFSO)
' OVERLAY TWO
INCLUDE MODULE (LINKAS)
OVERLAY THWO
INCLUDE MODULE (LINKA4)
OVERLAY ONE

INCLUDE MODULE (LINKA2)
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TNCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
OVERLAY
INCLUDL

OVERLAY

SYSLIB(GAFERR)
SYSLIB(LIGHTS)
SYSLIB(WRFNT$)
SYSLIB(DETEKT)
SYSL1E(PLOT)
SYSL1B(DETAIN)
SYSLIB(DISPLA)
SYSLIB($$OVER)
SYSLIB(CHAR)
SYSLIB(POINT)
SYSLIB(LINE)
SYSLIB(PLACE)
SYSLIB($$$$BT)
SYSLIB($$INIT)
SYSLIB(DUMMY$)
SYSLIB($VOVER)
SYSLIB(CLOSE)
SYSLIB(LINES$S)
SYSLIB(UNPLOT)
SYSLIB(PLACES)
SYSLIB(POINTS)
SYSL1B(ERASE)
SYSLIB(BLANK)
SYSLIB(RFSLT)

TWOA

MODULE (LINKAS)

TWOA
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INCLUDE MODULE (LINKA9)

Et INCLUDE SYSLIB(SCNUVDK)
E INCLUDE SYSLIB(CURS$)"
éé INCLUDE SYSLIB(BUFRS)
TF INCLUDE SYSLIB(SCTDV)
INCLUDE SYSLLB(RCUR$)

INCLUDE SYSLIB(READSC)

OVERLAY TWOA
-} INCLUDE MODULE (LINKAG)
OVERLAY TWOA

INCLUDE MODULE (LINKAl)

..,...,..
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- - CHAPTER VT
USER'S GUILE

6.1 Introduction

The user who is interested in uqi;g the programs described in
the previous chapter would find himself in one of the following situations:
(1) He may not have analysed his multivariate data and may not yet have
identified clusters and subspaces. If so, he should first subject his

data to the CLUSTR program. The next section contains instructions.on

how to use (execute) this program.

(ii) ne way have analysed his dacu using ciie CLUSTR pruglam bul iws uui

loaded the data set for the ELLIPSE program. If so, he should execute the
IEBGENER Utility rou.. .e and load the data set. This is described in

section 6.3.

(11i) Finally, the user may have gone through the steps (i) and (ii)rabove
and may want to see the displays of projected clusters and subspaces. The
use of the ELLIPSE program including an indication of what to look for in
the displays is deseribed in section 6.4,

Section 6.5 contains an illustration.

6.2 The CLUSTR program

The analysis of the user's multivariate data begins with the
fdentification of clusters and overdetermined subspaces, if any. For this

purpose, the user must first analyse his data using the CLUSTR program,

v
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This is a batch program. The following data cards need to be

supplied:

Data Card 1

Columns 1-3, number of points (individuals or experimental units)

Columns 6-7, number of variables (responses) mecasured on each
experimental unit

Columns 8-11, alpha level for cluster core on first pass
(supgested value 0.90)

Columuns 13-16, 'alpha level for cluster extension on first pass
(suggested value 0.50)

Columns 18-21, alpha level for cluster core on second pass
(suggested value 0.90) ' .

Columns 23-26, alpha level for cluster extension on second pﬁss
(suggested value 0.50)

Columns 28-31, alpha level for cluster core on third pass’

e (suggested value 0.90)

Columns 33~36, alpha level for cluster extension on third pass
(suggested value 0.50)

Data Card 2

This is a variable format card and should contain the FORMAT by
which each experimental unit is to be read,

The remaining data cards contain the observations, one card (or record
vhich may consist of several cards) contains the coordinates of one point.

The numbering of these points is implicit, according to the sequential

order of these cards.

Cur suggestion above that 0.90 should be used as alpha level for
cluster core and 0.50 as alpha level for cluster extension is empirical.
0f course, he can use any .other set of values. For a detailed discussion

of this matter the reader is directed to Graney {10]. .
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The output of this program has been discussed at length in

ction 5.2 The punched deck produced by fhis program is required for

the ELLIPSE program.

6.3 IEBGENER Utility routine
As explained in section 5.3, it is necessary to execute the

IEBGENER Utility routine to load the output of the CLUSTR program into a

data set required as input to the ELLIPSE program, The deck set-up for

the execution of this utility routine is as follows:

(1) JOB card _
(i1) //STEPG EXEC PCGM=TELGENER '

(ii{) //SYSPRINT DD SYSOUT=A

(iv) [/SYSTIN DD DUMMY

(v) //SYSUT2 DD DSN=8YS1.,R2250,VOL=SER=UGA231,DI8P=SHR,UNIT=2314
V(Vi) //S8YSUT1 DD DATA,DCG= (RECFM=FB,LRECL=80,BLKS12E=320)

(vii) Data Cards
(vitl) /%

The data cards cieusist of a header card followed by the punched deck
produced by the CLUSTR program (of courée, the user could produée his

ovn data cards, and any assignment of points to clusters or subspaces
which he desires. 1n this respect the CLUSTR program is merely intended
to give him guidance---but a very strong one indeed), The header card is

made up as follovs (all numbers right justified);

Columns 1-4, numbere of poiunts (individuals or experimental units)

Columns 5-8, number of variables (responses)measured on each‘
experimental unit .
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Columns 9-12, number of clusters identified by the CLUSIR
program .

Columns 13-16, number of overdetermined subspaces (simple
struciure ooluticns) ideontified by CLUSTR program

After the IEBGENER Utility routine is executed, one is ready fur the

ELLIPSE progranm.

6.4 The ELLIPSE program

This program works under the control of GMS (Graphics Monitor
System). For greater detail on the operation of GMS see Penn [31]. 1In
order to be operational under the conversational GMS, the loa§ module of
the program has to be a member of the partitioned data set GRAPHLIB. The
usexr should verify, by typing the command SNAMES on the console typewriter,
that the program, in fact, is a member of the GRAPHLIB data set. .If not,
the user will first have to compile and link edit the program using the
deck set-up given in section 5.4, The user can then execute the program
using the command $LINK ELLIPSE to link co.it.

Photographs made during the use of the program are reproduced here.
The user will find it helpful to refer to them while studying the rest of
the section. Some of the photographs will be specifically discussed in
the next section.

The execution of ELLIPSE begins with the display of an informative
message, The user should carefully read the message. (Note especially
the use of the programmed function key 30. This is to be pressed only
when it is desired to stoup the exccﬁtion of the program.) The uscr should
then press any key other than 0 or 30. He is now asked to type the

coordinates of a vector which he wishes to utilize in order to form a

ot T i i

i L, o
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inlS PROGRAM DISPLAYS CLUSTERS BY PROJECTING THEM ON
yARTOUE 2-DIMENSTIONAL SUBSPACES.SIHPLE STRUCTURE
SOLUTIONS CAN ALSO BE INDICATED.REFER TO YOUR
{NSTRUCTION CHART .HAVE YOU ENTERED ALL NECESSARY
DATA VIA IEBGENER?

THE BOTTOM ROW OF THE PROGRAN
FUNCTION KEYS 1S L1IT UP, THEY WiLL £E USED
AS DIRECTED.THE. DARK ONE/KEY NO. 38.1S
THE PANIC BUTTON.IT WILL RETURN YOU TO THE

MONLTOR.

IN CASE OF PANIC PRESS KEY 30
WOi PRESS ANY KEV TO GET STARTED

T T T AT
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TO THE ROTATION PROGRAM THE
FDLL%&?:E‘ﬁgCTORS TRANSFORH RAH DATASINTU

€ SOLUTLIONS NC.1 TO
SIHPLE STPUCEUQE& 0_@ 309
3-0. ]
9-¢.3

NSFORMATION \ECTU
ggrﬁgPE ¥§2NS CHAPACTEQS:DEClNAL POLINT

ggg;Egg JU%EDLEY AFTER EACH COORDINATE

A NLDEIN -
T3t Vot Nt Nt N gt N N
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X
X
X
X
X
X
X
X
K3

vinus VECTOR DKuJU°T PRESS EOB
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ACCORDING TD THE BOTATION PROGRAM THE
FOLLOMING VECTORS TRANSFORN RAH DATA INTO
STHPLE STRUCTURE SULUTIONS NO.1 TO 3

-0.309-9.215 0.854-0.309 |
0.012 0.843-0.155 6.51b
-6.306-6.25%-01.31% 6.840

ENTER A TPANQFOPHAT!ﬂN VECTOR,

NO HORE THAN 17 CHAQACTCP [DECTNAL POINT
MUST BE TYPED )
DEPRESS JUMP KEY AFTER EACH CODRDINATE
-0,300b

-90.25% -
0.31b6

860

GO ST T DT =

TRt S WP W T D s s T0)

33 HEIEINIE ll H
G !

o

X
X
X
X
X
X
K
X
I

‘ﬁﬁﬂﬁmﬁﬁaa

2LV I0US VECTOR OK.JUST. PRESS EOB
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PRESS ONE KEV CORRESPONDING TO THE AXLS
- VARTADLE YOU UISH TO.SELECT, OR 30 IF
YOU WISH TO STOP.1F YOU WISH TOD HAKE
CHANGES IN YOUR VECTOR PRESS KEY 28,

Cd e e e e e e,
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2-dimensional plane, the other axis being an observable variable, Notice

that vectors which transforwm ithc criginal data points into overdetermined

subspaces appear in this display for the user's ready reference. The user

should try one or more of these vectors but he may also supply any number
of other vectors, if he feels that this would help him interpret the

structure of his data. The coordinates of the vector intended to be used
should be typed in through the alphémeric keyboard. The place where the

digit (or any character for that matter) typed will appear on the screen

is indicated by a cursor. The use of the "JUMP" key after one coordinate

is entered, will cause the cursor to move over to the place for the next

coordinate., After all the coordinates of a vector are entered, the user

should press EOB. This is done by pressing both the 'ALT' and the '5' key

of the alphameric keyboard. The first time the user is asked to supply a

vector, he must give a non-null vector. (Later on, null vectors will be

acceptable and simply mean that there is no change, At that time the user

would just press EOB when this display appears and thus indicate that he
does not wish to change the previous vector.)

After the vector is supplied, the user is asked to choose a vari-

able as the other axis of a 2-dimensional plane. The choice is made by

pressing the programmed function key corresponding to the number of the
variable; if variable nuwber 1 is desired, press key 1, etc.

After a vector and a variable-have thus been chosen, the desired
2-dimensicral plane will appear on the screen., The absciésa corresponds
to the variable, the ordinate correéponds to the chosen vector. The legend
(numbers given alongside the coordinate axes) indicates ﬁinimum and maxi-
mum values. The serial number of each data point is projected at th?

appropriate coordimates. Ellipses, {.e., projections of unit éllipsoids.
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based upon the within-cluster metric of all pointa, are drawn around

~~~~~~ 1

each cluster center. These ellipses geincial coneant of a atandard

unit interval in one dimension.

One aspect to be observed on the screen at this time is whether
the points which supposedly belong to the same cluster, are close to-
gether (regardless which axes or vectors are usecd), and whether one could
distinguish them visually from poiﬁts belonging to a different cluster.
There may be some oveglaps but the clusters should be visually distinct.
If cevtain points exhibit the above phenomenon in all displays, then they
can be regarded as forming a cluster.

The user has now a choice. He may wish to superimpose one of the
overdetermined subspaces, or he may wish to change the vector, or the
variable, or both. To change the vector, he presses key 29, to change
the nunber of the variable, he presses key 31, and to superimpose an cver-
determined subspace, he presses the key corresponding to the number of
that subspace.

Superimposition of an overdetermined subspace results in the
display of projections of unit ellipsoids having metric based on only
those points which belong to the Svcrdetermined subspace, If the plane
of: projection selected is orthogonal to the overdetermined subspace, the
projections of unit ellipsoids under reference will be flat and elongated.
Further, the projections of the poinfs lying on the subspace will make a
narrow band (almost resembling a straight line). The plane of projection
would be orthogonal to the overdetermined subspace, if the vector which

trans{orms the original data points into this overdetermined subspace is

supplied as the desired vector. As many different planes as there are
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dimensions can be constructed by taking this normal vector against each

of the variable axes,

The plane of projection, in a way, is Lhe dircction from which we

lcok at the ellipsoids embedded in the p-dimensional space. The ellip-

soids having'metric based on the points belonging to an overdetermined

subspace must necessarily be flat and elongated. However, they must be

viewed from the proper direction, 'Othexwise, this elongation may not

appear or, in some instances, they will appear as very small circles.
Once again, the user can press key 29 to supply a new vector, key

31 to change the numﬁer of the variable and the key corresponding to the

number of an overdetermined subspace to superimpose the subspace, .The

program continues in this manner. It can be terminated at any time by

pressing key 30,
It sliould be noved that the projections onto a plane formed by any

pair of observable variables is a special case. If the user desires to

have projections onto the plane formed by‘variables 1 and 2, say, all he

has to do is supply (1.0, 0.0, . . . , 0.0) as the vector and press key 2.
In fact, since the program does not necessarily require normalized vectors
as input, any vector of the form fa, 0,0, « « . ,0)where a¥ 0, results

in the selection of variable 1 as one of the axes.

6.5 An Illustration
The programs described above were used in the analysis of artificial

These data were

data. The data consisted of 45 points and 4 variables,

gencrated in the following manner. First, 180 normal deviates with zero
mean and unit variance were generated; they made up the 180 elements of a

45 x 4 matrix, numbered column~wise. The first 25 measurements on the 4th

%
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variable were then redefined by the relation

2{I) = 2(1)/10 + (2(1 - 135) + 2(L = 90) + Z(L - 45))/3
1=136, 137, . . . , 160
i.e., the first 25 observations on variable 4 were replaced by ome tenth
of the original observation plus the mean of th; first thiee variables.
Similarly, the last 25 observations on vafiable 3 were replaced by the
relation |
2(1) = z(I)/10 + (z(I - 90) + z(I - 45) + 2(1 - 45))/3
I=111, 112, . ., . , 135
The modification of the data matrix by these two operations bPil; in 2
aubspaces. In effect, the first 25 observations on variable 4 became

almost a linear combination of the remaining 3 variables and the last 25

" observations on variable 3 similarly became almost a linear combination

‘of the remaining 3 variables., Still, however, all the variables had zero

mean, and to intfoduce mean shifts, the vectors (3, 9, 5, 9), (5, 9, 7, 3)

“and (7, 3, 7, 5) were added to the first 15 observations, second 15 obser-

vations and the last 15 observations respectively. Thus the entire data
matrix became a simulated sample drawn from normal populations with mean
vectors (3, 9, 5, 9), (5,'9, 7, 3).and (7, 3, 7, 5) and two built in sub-
spaces. This data matrix was then subjected to the first program of
cluster identification and subspace determination. This program correctly
assigned the first 15 points to one cluster, the second 15 points to
another cluster and the last 15 points to a third cluster. The subspuce
identification part of the program éavc 3 overdetermined subspaces. This
was not at all surprising-since the two planes were alreaﬁy built in and,
as frequently happens in such instances (see section 4.2), a plane was

found somewhat in-between the two constructed planes. The cosines between
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the normals to these three planes were as follows:

1 2 3
i 1.80000 -0,20¢884 0.00A73
2 ~0.29684 1.00000 0.02303
3 0.00673 0.02303 1.00000

The planes identified were as under (serial numbers of points belonging to

the planes are given).

Plane 1: --12, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37,
38, 39, 40, 41, 42, 43, 44, 45, (24 points)

Plane 2: --2, 9, 14, 15, 17, 18, 29, 30, 32, 34, 37, 39, (12 points)

Plane 3: --1, 2, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 24, 25, (20 points)

Accerding to the built-in subspaces, one subspace should have contained the
last 25 points, i.e., points 21-45 and the 'other subspace should have con-
tained the first 25 points. Plane 1 given above did pick‘up 23 of the
last 25 points and an extra point number 12, Likewise, plane 3 picked up
20 of the first 25 points. Plane 2 picked up 6 of the points belonging to
plane 1 and 6 of the points belonging ta plane 3. Thus plane 2 is somewhat
of a ﬁixture of the planes 1 énd 3.

The results of the CLUSTR program were then displayed using the
ELLIPSE program. Notice especially the following displays in which the
2-dimensional planes were formed by relecting a suggested vector (-0.306,
~0.259, -0.316, 0.860) and an observable variable. The vector under con-
sideration is the vector 3: which transformed the original data points into

simple structure planc 3.
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(a) Variable 1 against vector 3--After normalizing, the Qectof reéuced to

(0.0, -0.272, ~0.332, 0.903). Plane 3 was superimposed. Points number

i}, 2, 3, 4, 5,7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

“22, 23, 24, 25, 26 can be seen to be lying on the simple structurc plane.
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"(b) Variable 2 against vector 3~-After normalizing, the vector reduced to
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1, 3, 5, 6, 7, &, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26 can be seen lying on the simple structure plane.
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(c) Variable 3 against vector 3--After normalizing, the vector reduced to

~ (~0.322, -0,273, 0.0, 0.906). Plane 3 was superimposed. Points number

'1-26 can be scen lying on the simple structure plane.
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(d) Variable 4 against vector 3--~The vector, after normalizing, reduced to

- {~0.599), -0.507, -0,619, 0.0). Plane 3 was superimposed. Points nucber

+1-27 with the exception of number 5 can be seen lying ou the simple

structure plane.
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Tha ahava 4 diaplavs pertain tolpach of the 4 variables amainst

vector 3 and superimposition of simple structure plane 3. Vector 3 is the
vector which transforms-the raw data into simple structure plane 3. Points
1-25 with the exception of 3, 5, 6, 12 and 23 lie on thig plane. Vector 3
is the normal to this simple structure plgne 3. Hence any plane passing
through vector 3 is orthogonal to the simple structure plane 3. When pror
Jjections onto this orthogonal plane are t;ken, the points lying on the
simple structure plane should fall within a narrow band (almost resembling
a straight line) and tﬂe above 4 displays clearly bring out this fact.
Variables 1, 2, 3, and 4 make 4 different planes, respeqtively, passing

through vector 3 and all orthogonal to the simple structure plane 3.

This can also be thought of as rotating a plane passing through vector

'3 around the vector 3., Projections are taken when this rotating plane

passes through the axis corresponding to each of the variables. Attention

should also be drawn to these displays.
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(e) Variable 1 against vector 3--The vector, after normilizing. reduced

to (0.0, -0.272, -0.332, 0.903). Simple structure plane 1 was superimposed.

Since the plane passing through vector 3 and the axis correspondiné to
“warlable 1 is not orthogonal to simple structure planc 1, we do not see

points lying on a narrow band resembling a straight line in this display.
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(f) Variable 2 against variable l--Plane 3 was superimposed. Once again,

for the reasons mentioned in (e) above, we do not see a good simple

L2 W

Tiructuns fa this display. Ve oimply arve not leoking ot the clifpsclds

from the proper position.




T

VARLABLE 2AGA3NST VECTOR
1,000 0.0 o

8.52¢
a3

' #"'""“».}_.l 4%
(S

' ¢
4o ":rg,......; f

a3

‘gELog:SSIHPLE PLANE ND, 3SUPERINPOSED)

s
2T, . yqs¥20

g g

2‘1 2 P‘"’"‘"ﬂ“—.

‘

( ) 12
a,._'-

L)
i
T L

LI

/ 1.18%
0.689

11.11

93




i

94

(g) Variable 4 against vector 1--The vector, after normalizing, reduced
to (-0.325, -0.289, 0.900, 0.0). Plane 1 was superimposed. Since any
plane passing through vector 1 is orthogonal to simple structure plane 1,

we axnect to nasr a gnnd aimnle structure in thia dianlav and wa dn.
- [*) & Y -

Points number 21, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39,

40, 41, 42, 43, 44, 45, lie within a narrow band resembling a straight

line.
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The user should find the other displays easy to understand, ‘A
good simple structure is seen only when a blane is selected which passes
through a vector that trsnsforms the raw data into a simple structure
solution, and the corresponding simple structure planc is superimposed.

It should, however, be noted that the clustering of ‘points is not affected

by this principle and hence, in all displays, the clusters can be easily

identified.
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APPENDIX B

Source Listings for ELLIPSE Program
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