
THE DATA RECONFIGURATION SERVICE—AN EXPERIMENT

IN AI-APTABLE, PROCESS/PROCESS COMMUNICATION

R. U. Anderson, V. Cerf, E. F. Harslem
J. F. Heafner, J. Madden, B. Metcalfe
A. Shoshani, J. White, D. Wood

July 1971

ycrtrov
m 18 W2

Approved for pobUc »•!•<»«
Daöibuüon UaMmlM)d

P-4673

-1-

THE DATA RECONFIGURATION SFRVICE—AN EXPERIMENT

IN ADAPTABLE, PROCESS/PROCESS COMMUNICATION

R. H. Anderson, V. Cerf, E. F. Harslem
J. F. Heafner, J. Madden, B. Metcalfe

A. ^hoshani, J. White, D. Wood

The Rand Corporation, Santa Monica, California

INTRODUCTION

THE ARPA NETWORK AND SOME OF ITS GOALS

The nationwide ARPA Network [1-5] is composed of different host

computers at geographically separated sites that are interconnected by

small, standardized computers (IMPs) [6-7] and 50K-bit communication

lines leased from the common carriers. The IMPs use store-and-forward

switching to pass messages among hosts. Host computers vary in make,

model, size, speed, and other hardware and software features. Tha Net-

work is distributed and traffic routing is governed adaptively by the

IMPs over redundant Network paths. Each participant can reliably access

such various remote resources as programs, data, and unique hardware fa-

cilities. Individual programs at the sites control information flow.

Of primary concern are the fundamental intercommunication problems

inherent in the marriage of autonomous hardware and software. No at-

tfmpt has been made to provide compatible equipment in order to trans-

fer, for example, large programs as a means of resource sharing.

Any views expressed in this paper are those of the authors. They
should not be interpreted as reflecting the views of The Rand Corpora-
tion or the official opinion or policy of any of its governmental or
private research sponsors. Papers are reproduced by The Rand Corpora-
tion as a courtesy to members of its staff.

The authors have the following affiliations: V. Cerf, UCLA; J.
Madden, the University of Illinois; B. Metcalfe, MIT; A. Shoshani, SDC;
J. White, UCSB; and D. Wood, MITRE; R. H. Anderson, E. F. Harslem, and
J. F. Heafner, The Rand Corporation.

This paper is prepared for presentation at the Second Symposium
on Problems in the Optimization of Data Communications Systems, spon-
sored by SIGCOMM of ACM and the IEEE Computer Society, Stanford Uni-
versity, 20-22 October 1971.

-2-

One goal is to discover and validate techniques permitting uni-

form and easy access to all available resources, independent of hardware

and software dissimilarities. More specifically, remote services should

be as easily accessible as local ones, without noticeably degrading

overall performance. Another goal is to allow more flexibility in the

use of programming languages; because services will be offered remotely,

compatible languages allowing program transferability are not required.

Such a network has many uses. Of greatest interest, however, are

those that readily allow exploration of communication methods among

different systems. One such generic use is program sharing, in which

data are transmitted to a remote program and results are returned. An-

other is data sharingy in which small programs or algorithms are trans-

mitted to operate on a large, remotely located data base.

EXAMPLES OF PROCESS INTERFACE DISPARITIES

The numerous instances of program and data sharing range from file

transmission and data management systems to program/terminal coupling

to a remote service. For example, weather modeling programs will run

on the ILLIAC IV using parameters transmitted from Rand; results will

be returned and reconfigured for graphical display and analysis. Al-

though some of these programs exist today, their Network and graphical

Interfaces do not. Several remote job entry systems are now available

on the Network (at UCSB and UCLA), yet minimal changes were made to

those systems and thus their data input/output (I/O) formats differ

considerably. At MIT, the special Evans and Sutherland graphic hard-

ware is offered as a remote service. It is desirable to use this

service from such various kinds of graphics terminals as the IMLAC and

ARDS.

To further amplify the problem of different software interfaces,

many sites will have a minimal host configuration that will restrict

their data reformatting capabilities, but that should not restrict

their access to remote resources requiring different formats.

Evans & Sutherland Computer Corporation, 3 Research Road, Salt
Lake City, Utah 8A112.

_— im - -- ___

'

-3-

Examining the currently proposed and existing services, the kinds

of data manipulations most frequently encountered are: character set

conversions, prefacing and stripping leaders of messages, packing and

unpacking repeated symbol strings, generating message counters and

flags to be Inserted into the data stream, graphic device code conver-

sions, data field-transposition, and reformatting files.

This paper discusses one recent approach for providing the above

kind« of data transformations <n a way that is transparent to the

terminals and programs involved.

THE DATA RECONFIGURATION SERVICE (DRS) APPROACH

Application programs require specific I/O data formats that differ

from program to program. One approach recently adopted for providing

resource sharing of disparate programs is to develop specific dialogs

for classes of programs. Each such program must then be retrofitted

with one of the standard dialog interfaces. The DRS exhibits a dif-

ferent view of coupling variegated processes and terminals. The pre-

mise underlying DRS is that the Network should adapt to the individual

program requirements rather than changing each program to comply with

a standard. This position does not preclude the use of standards that

describe the formats of Network message "ontents; it is merely an In-

terpretation of a standard as being a desirable mode of operation, but

not a necessary one.

In addition to differing program requirements, a format mismatch

occurs when users wish to employ many different kinds of consoles to

attach to a single remote service program. It is likewise desirable

to have the Network adapt to individual console configurations rather

than requiring unique software packages for each console transformation.

One approach to providing adaptation is for those sites with sub-

stantial computing power to offer a data reconfiguration service; this

paper describes such a service, the DRS, currently being implemented

at MIT, UCLA, UCSB, and The Rand Corporation. The University of Illinois,

MITRE, and others will experiment with its use.

The envisioned modus operandi of the service is that an applications

programmer defines forms that describe data reconfigurations. The service

 - -----—■ '— --——■-"

-4-

stores the forms by name. At a later time (or immediately thereafter),

a user (perhaps a non-programmer) employs the service to accomplish a

particular transformation of a Network data stream passing between a

using process and a serving process. He accomplishes this by calling

the form by name and Identifying it with the using and serving processes.

The DRS attempts to provide a notation for form definition tail-

ored to some specifically needed instances of data reformatting. At

the same time, the DRS keeps the notation and its underlying implemen-

tation within some utility range that is bounded on the lower end by

a notation expressive enough to make the experimental service useful,

and bounded on the upper end by a notation short of a general-purpose

programming language.

. —aiHinii ii ii nii'i ■

,--■"■

-5-

II. OVERVIEW OF THE DATA RECONFIGURATION SERVICE

ELEMENTS OF THE DATA RECONFIGURATION SERVICE

An implementation of the DRS includes a module for Network connec-

tion protocols to establish logical message paths between the end

processes that wish to pass data. It also includes a module (the Form

Machine) to accept and apply the definitions of data reconfigurations

(forms). Lastly, a file management module exists for saving ar. 1 re-

trieving forms.

This section highlights connections and requests. Section III

details the Form Machine language. File storage is not described in

this paper because it is transparent to the user and its implementation

is different at each DRS host.

NETWORK CONNECTIONS

There are three kinds of Network connections to the DRS (see Fig. 1)

1. The control connection (CC) is between an originating user and

the DRS. It is instigated by the user to define forms and to

request the user connection (UC) and the server connection

(SC), along with the application of form(s) to data passing

between UC and SC.

2. The UC is between a user process and the DRS. It is estab-

lished by the DRS at the request of the originating user.

3. The SC is between the DRS and the serving process. It, too,

is established by the DRS at the request of the originating

user.

The user process behaves as if it were connected directly to the

server process, and vice versa. The DRS appears transparent to both

processes; its function is to reconfigure data that pass in each

direction between them into formats amenable to each of their proces-

sing requirements. Because the goal is to adapt the Network to user

and server processes, minimal requirements are imposed on the UC and SC.

MMMMUMOiM

-6-

ORIGINATING
USER

CC —a duplex connection
using a standard Network
protocol

DATA
RECONFIGURATION

SERVICE

Simplex or
Duplex
Connections

USER
PROCESS

Fig. 1--DRS Network Connections

. - • - - - ■ -

-7-

REQUESTS OVER THE CONTROL CONNECTION

Over a control connection, the dialog is directly between an

originating user and the DRS, where the user defines forms or assigns

predefined forms to connections for reformatting. Messages sent over

a control connection are formatted according to a Network standard.

When an originating user connects to DRS, he supplies an identi-

fier as a qualifier to guarantee uniqueness of his form names. The

user can request the following operations:

1. Accept a form definition;

2. Purge a form definition;

3. List qualified form names;

4. List the source text of a form;

5. Make a simplex or duplex logical connection between a user

and a server process. The connection can be made in several

ways, i.e., with or without a Network standard connection

protocol;

6. Abort a user/server connection.

When a user/server connection is severed either by the processes

themselves or by an abort request, the DRS sends an appropriate return

code to the originating user.

- - _____

■■■■■MMn ■■§'

-8-

III. THE FORM MACHINE

I/O STREAMS AND FORMS

This section describes the syntax and semantics of forms that

specify the data reconfigurations. The Form Machine gets an input

stream, reformats the input stream according to a form describing

the reconfiguration, and emits the reformatted data as an output
stream.

It is helpful to envision the application of a form to the data

stream, depicted in Fig. 2. An input stream pointer identifies the

position of data (in the input stream) that is being analyzed, at any

given time, by a part of the form. Likewise, an output stream pointer

locates data emitted in the output stream.

AA

INPUT
STREAM

lyvl

tA
FORM

.CURRENT
POINTER

CURRENT PART OF

FORM BEING APPLIED
{CURRENT
[POINTER

KAI

OUTPUT
STREAM

Fig. 2--Applicat1on of Form to Data Streams

.a-._^lu_ai - -

" "I!1". H WJ^M ■

■nm

-9-

FORM MACHINE SYNTAX

form

rule

terms

term

descriptor

comparator

connective

repllcatlonexpr

datatype

concatexpr

value

arlthmetlcexpr

operator

primary

literal

literaltype

options

s fur

identifier

{ruleH

l i i
{lNTEGER}o {termslo {:terms}j ;

term {,term}o

identifier {identifier^ descriptor | comparator
i i

({replicationexpr}o , datatype , {concatexpr}o ,
I i

{arithmeticexprlo doptionslo)
i

(concatexpr connective concatexpr {:option8}o)
i

(identifier •<■• concatexpr {:options}o)

.LE. | .LT. | .GE. | .GT. | .EQ. | .NE.

| arlthmetlcexpr

B | 0 1 X | E | A | ED | AD I SB | T(identifier)

value) {|| value Io

literal | arlthmetlcexpr

primary (operator primary}o

+ 1-1*1/

identifier | L(identifier) \

V(identlfier) | INTEGER
256

literaltype "{CHARACTER} o "

B | 0 | X | A | E | ED | AD | SB

sfur (arlthmetlcexpr)

sfur (arlthmetlcexpr) , sfur (arlthmetlcexpr)

S | F | U | SR | FR | UR
3

ALPHABETIC {ALPHAMERIC}o

These syntactic statements are referred to in the following
semantic descriptions.

 _______ — __l_^. ~mmm

-10-

FORMS

A form is an ordered set of rules.

form ::- {rule}T

The current rule is applied to the current position of the input

stream. If the rule fails to correctly describe the current input

then another rule is made current and applied to the input stream.1*

The next rule to be made current is either explicitly specified by the

current term in the current rule or it is the next sequential rule by

default.

If the current input stream is correctly described, then some

data may be emitted at the current position in the output stream

according to the rule. The input and output stream pointers are ad-

vanced over the described and emitted data, respectively; the next

rule is applied to the now current position of the input stream.

Application of the form is terminated when an explicit return,

e.g., UR (arithmetic expression) is encountered in a rule. The user

and server connections are closed and the evaluated return code (arith-

metic expression) is sent to the originating user.

RULES

A rule is a replacement, comparison, and/or an assignment opera-
tion of the form shown below.

rule
i i i

:- {INTEGERlo (terms},, {:terms}o ;

The optional integer (rule name) exists so that the rule may be

referenced elsewhere in the form for explicit rule transfer of control,

Integers are in the range 0 ^ INTEGER * 9999. Rules need not be named

in ascending numerical order.

If only a part of the rule succeeds, the input pointer is not
advanced. r r

-11-

TERMS

The Input stream is described by zero or more terms,

{terms}o

and the output stream is described by zero or more terms,

{:terms}(

where

terms ::- term {,term}" .

Terms are expressed in one of the formats indicated below.

term ft« identifier | {identifier^ descriptor | comparator

Term Format 1

The first term format, identifier, is a symbolic reference to a

previously identified term (term format, 2 below) in the form. It takes

on the same attributes (replication, type, value, length) as the term

by that name and is normally used to emit data.

Term Format 2

l
The second term format, {identifier}o descriptor, is used tc collect

input or to emit.

i i

descriptor ::- ({replicationexpr}o , datatype , {concatexpr}o ,

i i

{arithmeticexpr}o {;options}o)

t
The above five descriptor elements correspond to the attributes re-

plication, data type, value, length, and transfer of control, respectively.

See the IBM System Reference Library Form C28-6514 for a similar
interpretation of the pseudo instruction. Define Constant, after which
the descriptor was modeled.

M—MiMWliMIMllMi l ■ — nmiM»»

-12-

The repllcationexpr, if specified, causes the unit value of the

term to be repeated the number of times Indicated by the replication

expression's value. The unit value of the term (quantity to be repli-

cated) Is determined from the composite of data type, value expression,

and length expression attributes. The data type defines the kind of

data being specified. The value expression specifies a nominal value

that is augmented by the other term attributes. The length expression

determines the unit length of the term.

The terminal symbol // in a replication expression means an arbi-

trary replication factor. It is explicitly terminated by a non-match

to the input stream. Termination may result from exceeding the 256-

character limit.

A null replication expression has a default value of one. Arith-

metic exoressions are evaluated from left-to-right with no precedence.

The L(identlfler) is a length operator that generates a 32-bit

binary integer corresponding to the length of the term named. The

V(lH;ntlfler) is a value operator that generates a 32-bit binary inte-

ger corresponding to the value of the term named, rhe T(identifier) is

a type operator that generates a type-code for the term named.

The data type describes the kind of data that the term represents.1

Data Type Meaning Unit Length

B Bit string 1 bit

0 Bit string 3 bits

X Bit string 4 bits

B EBCDIC character 8 bits

A Network ASCII character 8 bits

AD ASCII encoded dec imal 8 bits

ED EBCDIC encoded de cimal 8 bits

SB Signed binary 1 bit

The value expression is the nominal value of a term expressed in

the format Indicated by the data type. It is repeated according to the

It is expected that such additional data types as floating-point
and user-defined types will be added as needed.

-J--- -:--— -- MM ...

comparator :- (concatexpr connective concatexpr {:optionale)

(identifier •<-• concatexpr doptionsh)

The aaaignment operator •<-• «ssigns the value to the identifier.

The connectives have th^ir usual meanings. Values to be compared must

have the same type and length attributes or an error condition arises

and the form falls.

The Application of a Term

The elements of a term are applied by the following sequence of
steps.

1. The data type (datatype), value expression (concatexpr), and

length expression (arithmeticexpr) together specify a unit

value, call it x.

2. The replication expression (repllcatlonexpr) specifies the

number of times x is to be repeated. The value of the con-

catenated xs becomes y of length L.

3. If the term is an input stream term, then the value of y of

length L is tested with the input value beginning at the

current input pointer position.

-13-

replication expression. A null value expression in the input stream

defaults to the data present in the input stream and generates padding

in the output stream according to the restrictions and interpretations

stated later. The input data must comply with the datatype attribute,

however.

The length expreeaion states the length of the field containing

the nominal value. If the length expression is less than or equal to

zero, the term succeeds but the appropriate stream pointer is not ad-

vanced. Positive lengths cause the appropriate stream pointer to be

advanced if the term otherwise succeeds.

Options is defined under Term and Rule Sequencing.

Term Format 3

The third term format is used for assignment and comparison

— -.a^aB^BH -_^l

.14-

4. If the Input value satisfies the constraints of y over length

L, then the input value of length L becomes the value of the

term.

In an output stream term, the procedure is the same except that

the source of input is the value of the term(s) named in the value ex-

pression and the data is emitted in the output stream.

The above procedure is modified to include a one term look-ahead

where replicated values are of indefinite length because of the arbi-

trary symbol, it.

Restrictions and Interpretations of Term Functions

1. Terms having indefinite lengths because their values are re-

peated according to the // symbol, must be separated by some
t

type-specified data, such as a literal.

2. Truncation and padding is:

a. Character to character (A *-*■ E) conversion is left-Justified

and truncated or padded on the right with blanks.

b. Character to numeric and numeric to numeric conversations

are right-justified and truncated or padded on the left

with zeros.

c. Numeric to character conversation is right-justified and

left-padded with blanks.

3. The following are ignored in a form definition over the con-

trol connection:

a. Control characters.

b. Blanks except within quotes.

c. /* string */ is treated as comments except wichin quotes.

4. The following defaults prevail where the term part is omitted:

a. The replication expression defaults to one.

b. # in an output stream term defaults to one.

A literal is not specifically required, however. An arbitrary
number of ASCII characters could be terminated by a non-ASCII character.

■- -- ■

-15-

c. The value expression of an Input stream term defaults to

the value found In the input stream, but the input stream

must conform to data type and length expression. The

value expression of an output stream term defaults to

padding only.

d. The length expression defaults to the size of the quantity

determined by the data type and value expression.

e. Control defaults to the next sequential term if a term is

successfully applied; otherwise, control defaults to the

next sequential rule.

5. Arithmetic expressions are evaluated left-to-right with no

precedence.

6. The following limits prevail:

a. Binary lengths are £ 32 bits.

b. Character strings are £ 256 8-bit characters.

c. Identifier names are £ A characters.

d. Maximum number of identifiers is £ 256.

e. Label integers are ^ 0 and ^ 9999.

7. Value and length operators produce 32-tit binary integers.

The value operator is currently Intended for converting A or

E type decimal character strings to their binary correspondents.

For example, the value of £'12' would be 0 011Ü0. The

value of E'AB1 would cause the form to fail.

TERM AND RULE SEQUENCING

Rule sequencing may be explicitly controlled by using

defined as

{:options}o ,

options ::« sfur(arithmeticexpr) j

sfur(arithmetlcexpr) , sfur(arithmeticexpr)

sfur ::- S I F I U i SR I FR I UR

 .,. .—-—■■ . . ,. .

-16-

respectlvely. Tlie arithmetic expression evaluates to an integer;

thus, transfer can be effected from within a rule (at the end of a

term) to the beginning oi another rule. R means terminate the form

and return the evaluated expression to the initiator over the control

connection.

If terms are npt explicitly sequenced, the following defaults

prevail:

1. When a term fails, go to the next sequential rule.

2. When a term succeeds, go to the next sequential term within

the rule.

3. At the end of a rule, go to the next sequential rule.

In the following example, note the correlation between transfer

of control and movement of the input pointer.

1 XYZ(,B,,8:S(2),F(3)) : XYZ ;

2

3

The value of XYZ will never be emitted in the output stream be-

cause control is transferred out of the rule upon either success or

failure. If the term succeeds, the 8 bits of input are assigned as

the value of XYZ and rule 2 is then applied to the same input stream

data. That is, because the complete left hand side of rule 1 was not

successfully applied, the input stream pointer is not advanced.

- -■ --■ ■ - - ■—-- - -■ — • -

•

-17-

IV. EXAMPLES

The following examples (forms and also single rules) are simple

representative uses of the Form Machine.

FIELD INSERTION

To insert a field, separate the input into the two terms to allow

the inserted f^eld be :ween them. For example, if the input stream con-

tained pairs of numbers encoded as ASCII, separated by a slash (I.e.,

123/456/...), the following form labels them as x, y pairs separated

by a line feed, carriage return (i.e., X-123/Y-456 Ö) (CR)...)

1 XVAL (#,A,,1), (,A,AI7M).YVAL (#,A. .1) .(,A,A"/",1)

/*pick up the x as XVAL and y as YVAL */

2 : (,A,A"X-",2),XVAL,(,A,"/Y-",3),YVAL

/*emit the labels followed by the values of x, y */

3 : (^^"OAOD" ,4: ü(l))

/*emit the line feed, carriage return and loop back for the

next pair */

DELETION

Data to be deleted should be isolated as separate terms on the

left in order to be omitted (by not emitting them) on the right.

(.B,,8),

SAVE(,A,,10)

:(,E,SAVE,);

/♦isolate 8 bits to ignore*/

/♦extract 10 ASCII characters from

input stream*/

/*emit the characters in SAVE as

EBCDIC characters whose length

defaults to the length of SAVE

(i.e., 10), and advance to the

next rule*/

-■ ■■-■- ' ^

-18-

In the above example, if either input stream term fails, the next

sequential rule is applied.

VARIABLE LENGTH RECORDS

Some devices, terminals, and programs generate variable length

records. The following rule picks up variable length EBCDIC records

and translates them to ASCII.

CHAR(#,E,,1), /*pick up all (an arbitrary number of)

legal EBCDIC characters in the input

stream*/

(,X,X"FF",2) /*followed by a hexadecimal literal,

FF (terminal signal)*/

:(,A,CHAR,), /*emit them as ASCII*/

(vZ(Z
M0Dn,2)i /»emit an ASCII carriage return*/

STRING LENGTH COMPUTATION

It is often necessary to prefix a length field to an arbitrarily

long character string. The following rule prefixes an EBCDIC string

with a one-byte length field.

Q(#,E,,1), /*pick up all legal EBCDIC characters*/

TS(,X,X,,FF",2) /*followed by a hexadecimal literal, FF*/

:(,B,L(Q)+2,8), /*emit the length of the characters plus

the length of the literal plus the length

of the count field itself, in an 8-bit

field*/

Q» */emit the characters */

TS; */emit the terminal*/

■HMMIMMM mm ■ ■■! ■ i i—ii^———fm—nn

-19-

TRANSPOSITION

It is often desirable to reorder fields, such as the following

example.

Q(,E,,20), R(,E,,10) , S(,E,.15), T(,E.,5) : R, T, S. Q;

The terms are emitted in a different order.

CHARACTER PACKING AND UNPACKING

In systems such as HASP, repeated sequences of characters are

packed into a count followed by the character, for more efficient

storage and transmission. The first form packs multiple characters

and the second unpacks them.

/*form to pack EBCDIC streams*/

/♦returns 99 if OK, input exhausted*/

/*look for terminal signal FF which is not a legal EBCDIC*/

/♦duplication count must be 0-254*/

1 (,X,X"FF,,,2 : SR(99)) ;

/*pick up an EBCDIC char/*

CHAR(,E,,1) ;

/*get identical EBCDIC chars/*

LEN(#,E,CHAR,1)

/*emit the count and the char/*

: (,B,LaEN)+l,8), CHAR, (:U(1));

/*end of form*/

■M^MWMWMIiBBWMMIi

-20-

/*form to unpack EBCDIC atreama*/

/*look for terminal*/

1 (,X,l"ffM
t2 : SR(99)) ;

/*emit character the number of times Indicated*/

/*by the count, in a field the length indicated*/

/*by the counter contents*/

CNT(,B,,8), CHAR(,E,,1) I (CNT.E.CHAR.l:U(1));

/*failure of form*/

(:UR(98))

— - - —— ■ — '—~~—~~-~*~***—~——*~

■■ ■

-21-

REFERENCES

1. Roberts, L. G., and B. D. Wessler, "Computer Network Development
to Achieve Resource Sharing," AFIPS Conference Proceedings, Vol.
36, 1970, pp. 543-549.

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and
D. C. Waiden, "The Interface Message Processor for the ARPA
Computer Network," AFIPS Conference Proceedingst Vol. 36, 1970,
pp. 551-567.

3. Kleinrock, L., "Analytic and Simulation Methods in Computer Network
Design," AFIPS Conference Proceedings, Vol. 36, 1970, pp. 569-579.

4. Frank, H., I. T. Frisch, and W. Chou, "Topological Considerations
in the Design of the ARPA Computer Network," AFIPS Conference
Proceedings, Vol. 36, 1970, pp. 581-587.

5. Carr, C. S., S. D. Crocker, and V. G. Cerf, "HOST-HOST Conmunica-
tion Protocol in the ARPA Network," AFIPS Conference Proceedings,
Vol. 36, 1970, pp. 589-597.

6. Interface Message Processor: Operating Manual, Bolt, Beranek and
Newman, Inc., Report No. 1877, February 1970.

7. Interface Message Processor: Specifications for the Interconnec-
tion of a HOST and an IMP, Bolt, Beranek and Newman, Inc.,
Report No. 1822, October 1970.

•w- ■*..

- — — — —'—' '———^—^—^ h^m^lmm**u*m^t^i>mlt*ti^mmm^m^^^^^^^^M^^

1 ■,l ' '

r%

-23-

BIBLIOGRAPHY

Baran, P., "On Distributed Conmunlcation Networks," IEEE Transaotiona
on Comnrunioation Systeme, Vol. CS-12, March 1964.

^cu11*/;* and L' S* ^^f18» "Toward a Cooperative Network of Time-
Shared Computers," AFIPS Conferenoe Proaeedinge, Vol. 29, 1966
pp. 425-431. '

Preceding page blank

-

- ■■■Maadi - m^—mmm

