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INTRODUCTION 

THE ARPA NETWORK AND SOME OF ITS GOALS 

The nationwide ARPA Network [1-5] is composed of different host 

computers at geographically separated sites that are interconnected by 

small, standardized computers (IMPs) [6-7] and 50K-bit communication 

lines leased from the common carriers. The IMPs use store-and-forward 

switching to pass messages among hosts. Host computers vary in make, 

model, size, speed, and other hardware and software features.  Tha Net- 

work is distributed and traffic routing is governed adaptively by the 

IMPs over redundant Network paths.  Each participant can reliably access 

such various remote resources as programs, data, and unique hardware fa- 

cilities.  Individual programs at the sites control information flow. 

Of primary concern are the fundamental intercommunication problems 

inherent in the marriage of autonomous hardware and software.  No at- 

tfmpt has been made to provide compatible equipment in order to trans- 

fer, for example, large programs as a means of resource sharing. 
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One goal is  to discover and validate techniques permitting uni- 

form and easy access  to all available resources,  independent of hardware 

and software dissimilarities.     More specifically,  remote services  should 

be as easily accessible as  local ones, without noticeably degrading 

overall performance.    Another goal is  to allow more flexibility in the 

use of programming languages;  because services will be offered remotely, 

compatible  languages allowing program transferability are not required. 

Such a network has many uses.    Of  greatest interest, however,  are 

those  that  readily allow exploration of communication methods  among 

different systems.     One such generic use is program sharing,  in which 

data are  transmitted to a remote program and results are returned.    An- 

other is data sharingy in which small programs or algorithms are trans- 

mitted to operate on a large,  remotely located data base. 

EXAMPLES OF PROCESS  INTERFACE DISPARITIES 

The numerous  instances of program and data sharing range  from file 

transmission and data management systems  to program/terminal coupling 

to a remote service.    For example, weather modeling programs will run 

on the ILLIAC  IV using parameters  transmitted from Rand;  results will 

be returned and reconfigured for graphical display and analysis.    Al- 

though some of  these programs exist today,   their Network and graphical 

Interfaces do not.     Several remote job entry systems are now available 

on the Network  (at UCSB and UCLA), yet minimal changes were made to 

those systems and  thus their data input/output  (I/O)  formats  differ 

considerably.    At MIT,  the special Evans and Sutherland graphic hard- 

ware     is offered as  a remote service.     It  is desirable  to use  this 

service  from such various kinds of graphics  terminals as  the  IMLAC and 

ARDS. 

To further amplify the problem of different software  interfaces, 

many  sites will have a minimal host configuration that will restrict 

their data reformatting capabilities,  but  that should not  restrict 

their access  to  remote resources requiring different formats. 

Evans  & Sutherland Computer Corporation,   3 Research Road,   Salt 
Lake City,   Utah  8A112. 
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Examining the currently proposed and existing services, the kinds 

of data manipulations most frequently encountered are:  character set 

conversions, prefacing and stripping leaders of messages, packing and 

unpacking repeated symbol strings, generating message counters and 

flags to be Inserted into the data stream, graphic device code conver- 

sions, data field-transposition, and reformatting files. 

This paper discusses one recent approach for providing the above 

kind« of data transformations <n a way that is transparent to the 

terminals and programs involved. 

THE DATA RECONFIGURATION SERVICE (DRS) APPROACH 

Application programs require specific I/O data formats that differ 

from program to program. One approach recently adopted for providing 

resource sharing of disparate programs is to develop specific dialogs 

for classes of programs.  Each such program must then be retrofitted 

with one of the standard dialog interfaces.  The DRS exhibits a dif- 

ferent view of coupling variegated processes and terminals. The pre- 

mise underlying DRS is that the Network should adapt to the individual 

program requirements rather than changing each program to comply with 

a standard. This position does not preclude the use of standards that 

describe the formats of Network message "ontents; it is merely an In- 

terpretation of a standard as being a desirable mode of operation, but 

not a necessary one. 

In addition to differing program requirements, a format mismatch 

occurs when users wish to employ many different kinds of consoles to 

attach to a single remote service program.  It is likewise desirable 

to have the Network adapt to individual console configurations rather 

than requiring unique software packages for each console transformation. 

One approach to providing adaptation is for those sites with sub- 

stantial computing power to offer a data reconfiguration service; this 

paper describes such a service, the DRS, currently being implemented 

at MIT, UCLA, UCSB, and The Rand Corporation.  The University of Illinois, 

MITRE, and others will experiment with its use. 

The envisioned modus operandi  of the service is that an applications 

programmer defines forms  that describe data reconfigurations. The service 

 - -----—■  '— --——■-"  
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stores the forms by name. At a later time (or immediately thereafter), 

a user (perhaps a non-programmer) employs the service to accomplish a 

particular transformation of a Network data stream passing between a 

using process and a serving process. He accomplishes this by calling 

the form by name and Identifying it with the using and serving processes. 

The DRS attempts to provide a notation for form definition tail- 

ored to some specifically needed instances of data reformatting. At 

the same time, the DRS keeps the notation and its underlying implemen- 

tation within some utility range that is bounded on the lower end by 

a notation expressive enough to make the experimental service useful, 

and bounded on the upper end by a notation short of a general-purpose 

programming language. 

. —aiHinii ii ii nii'i ■ 
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II.     OVERVIEW OF THE DATA RECONFIGURATION SERVICE 

ELEMENTS OF THE  DATA RECONFIGURATION  SERVICE 

An implementation of  the DRS includes  a module for Network connec- 

tion protocols   to establish logical message  paths  between the  end 

processes that wish  to pass data.     It  also  includes a module  (the   Form 

Machine)  to accept  and apply the definitions  of  data reconfigurations 

(forms).    Lastly,   a file management module exists  for saving ar. 1  re- 

trieving forms. 

This section highlights connections  and  requests.    Section  III 

details  the Form Machine language.     File  storage  is not described  in 

this paper because  it  is  transparent  to  the user and its implementation 

is different at each DRS host. 

NETWORK CONNECTIONS 

There are three kinds of Network connections  to the DRS  (see  Fig.   1) 

1. The control  connection  (CC)   is between an originating user and 

the DRS.     It  is  instigated by  the user  to define forms  and  to 

request  the user connection  (UC)   and  the server connection 

(SC),  along with the application of  form(s)  to data passing 

between UC and SC. 

2. The UC  is between a user process  and  the DRS.    It is estab- 

lished by  the DRS at the request  of   the originating user. 

3. The SC  is between the DRS and  the  serving process.     It,   too, 

is established by the DRS at  the  request of the originating 

user. 

The user process behaves as if it were  connected directly to  the 

server process,   and vice versa.    The DRS  appears  transparent  to both 

processes;  its   function is to reconfigure  data  that pass in each 

direction between them into formats amenable   to each of their proces- 

sing requirements.     Because  the goal is  to  adapt the Network to  user 

and server processes,  minimal requirements  are  imposed on the UC and  SC. 

MMMMUMOiM   
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ORIGINATING 
USER 

CC —a duplex connection 
using a standard Network 
protocol 
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RECONFIGURATION 
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Simplex or 
Duplex 
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USER 
PROCESS 

Fig.  1--DRS Network Connections 

. - •   - -   - ■ - 



-7- 

REQUESTS OVER THE  CONTROL CONNECTION 

Over a  control connection,  the dialog  is directly between an 

originating user and  the DRS, where  the user defines  forms or assigns 

predefined  forms  to connections  for  reformatting.     Messages  sent over 

a control  connection are  formatted according to a Network standard. 

When an originating user connects  to DRS,  he  supplies an  identi- 

fier as  a qualifier to guarantee uniqueness of his  form names.     The 

user can request  the  following operations: 

1. Accept  a form definition; 

2. Purge a form definition; 

3. List qualified form names; 

4. List  the source text of a form; 

5. Make a simplex or duplex logical  connection between a user 

and a server process.     The  connection can be made in several 

ways,  i.e., with or without a Network standard connection 

protocol; 

6. Abort a user/server connection. 

When a user/server connection is  severed either by  the processes 

themselves or by an abort request,   the DRS sends an appropriate  return 

code to the originating user. 

- -   _____ 
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III.     THE FORM MACHINE 

I/O  STREAMS AND  FORMS 

This section describes  the syntax and semantics of forms that 

specify the data reconfigurations.    The Form Machine gets an input 

stream,  reformats  the  input stream according to a form describing 

the reconfiguration,  and emits  the reformatted data as an output 
stream. 

It is helpful to envision the application of a form to the data 

stream, depicted in Fig.  2.    An input stream pointer identifies the 

position of data  (in the input stream)  that is being analyzed, at any 

given time, by a part of the form.    Likewise,  an output stream pointer 

locates data emitted in the output stream. 

AA 

INPUT 
STREAM 

lyvl 

tA 
FORM 

.CURRENT 
POINTER 

CURRENT PART OF 

FORM BEING APPLIED 
{CURRENT 
[POINTER 

KAI 

OUTPUT 
STREAM 

Fig.  2--Applicat1on of Form to Data Streams 
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FORM MACHINE SYNTAX 

form 

rule 

terms 

term 

descriptor 

comparator 

connective 

repllcatlonexpr 

datatype 

concatexpr 

value 

arlthmetlcexpr 

operator 

primary 

literal 

literaltype 

options 

s fur 

identifier 

{ruleH 

l i i 
{lNTEGER}o   {termslo  {:terms}j   ; 

term {,term}o 

identifier       {identifier^ descriptor   |   comparator 
i i 

({replicationexpr}o   , datatype   ,   {concatexpr}o   , 
I i 

{arithmeticexprlo   doptionslo) 
i 

(concatexpr     connective    concatexpr  {:option8}o) 
i 

(identifier  •<■• concatexpr {:options}o) 

.LE.   |   .LT.    |    .GE.   |   .GT.   |   .EQ.    |    .NE. 

#   |   arlthmetlcexpr 

B  |  0   1   X   |   E   |  A   |   ED  |  AD  I  SB   |   T(identifier) 

value)   {||   value Io 

literal | arlthmetlcexpr 

primary  (operator primary}o 

+ 1-1*1/ 

identifier   |   L(identifier)   \ 

V(identlfier)   |   INTEGER 
256 

literaltype  "{CHARACTER} o " 

B | 0 | X | A | E | ED | AD | SB 

sfur (arlthmetlcexpr) 

sfur (arlthmetlcexpr) , sfur (arlthmetlcexpr) 

S   |   F   |   U   |   SR   |   FR   |   UR 
3 

ALPHABETIC     {ALPHAMERIC}o 

These  syntactic statements  are  referred to in the  following 
semantic descriptions. 

  _______ — __l_^. ~mmm 
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FORMS 

A form is an ordered set of rules. 

form  ::- {rule}T 

The current rule is applied to the current position of the input 

stream.  If the rule fails to correctly describe the current input 

then another rule is made current and applied to the input stream.1* 

The next rule to be made current is either explicitly specified by the 

current term in the current rule or it is the next sequential rule by 

default. 

If the current input stream is correctly described, then some 

data may be emitted at the current position in the output stream 

according to the rule. The input and output stream pointers are ad- 

vanced over the described and emitted data, respectively; the next 

rule is applied to the now current position of the input stream. 

Application of the form is terminated when an explicit return, 

e.g., UR (arithmetic expression) is encountered in a rule.  The user 

and server connections are closed and the evaluated return code (arith- 

metic expression) is sent to the originating user. 

RULES 

A rule is a replacement,  comparison,  and/or an assignment opera- 
tion of  the  form shown below. 

rule 
i i i 

:- {INTEGERlo  (terms},,   {:terms}o   ; 

The optional integer  (rule name)  exists so that the rule may be 

referenced elsewhere in the form for explicit rule transfer of control, 

Integers are  in  the range 0 ^ INTEGER * 9999.    Rules need not be named 

in ascending numerical order. 

If only a part of the rule succeeds,   the input pointer is  not 
advanced. r      r 
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TERMS 

The Input stream is described by zero or more terms, 

{terms}o 

and the output stream is described by zero or more terms, 

{:terms}( 

where 

terms  ::- term {,term}" . 

Terms are expressed in one of the formats indicated below. 

term ft« identifier | {identifier^ descriptor | comparator 

Term Format 1 

The first term format, identifier,  is a symbolic reference to a 

previously identified term (term format, 2 below) in the form.  It takes 

on the same attributes (replication, type, value, length) as the term 

by that name and is normally used to emit data. 

Term Format 2 

l 
The second term format, {identifier}o descriptor, is used tc collect 

input or to emit. 

i i 

descriptor ::- ({replicationexpr}o , datatype , {concatexpr}o , 

i i 

{arithmeticexpr}o {;options}o) 

t 
The above five descriptor elements correspond to the attributes re- 

plication, data type, value, length, and transfer of control, respectively. 

See the IBM System Reference Library Form C28-6514 for a similar 
interpretation of the pseudo instruction. Define Constant, after which 
the descriptor was modeled. 

M—MiMWliMIMllMi    l ■   — nmiM»» 
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The repllcationexpr, if specified, causes the unit value of the 

term  to be repeated the number of times Indicated by the replication 

expression's value.  The unit value of the term (quantity to be repli- 

cated) Is determined from the composite of data type, value expression, 

and length expression attributes.  The data type defines the kind of 

data being specified.  The value expression specifies a nominal value 

that is augmented by the other term attributes. The length expression 

determines the unit length of the term. 

The terminal symbol // in a replication expression means an arbi- 

trary replication factor.  It is explicitly terminated by a non-match 

to the input stream. Termination may result from exceeding the 256- 

character limit. 

A null replication expression has a default value of one. Arith- 

metic exoressions are evaluated from left-to-right with no precedence. 

The L(identlfler) is a length operator  that generates a 32-bit 

binary integer corresponding to the length of the term named.  The 

V(lH;ntlfler) is a value operator  that generates a 32-bit binary inte- 

ger corresponding to the value of the term named, rhe T(identifier) is 

a type operator  that generates a type-code for the term named. 

The data type  describes the kind of data that the term represents.1 

Data Type Meaning Unit Length 

B Bit string 1 bit 

0 Bit string 3 bits 

X Bit string 4 bits 

B EBCDIC character 8 bits 

A Network ASCII character 8 bits 

AD ASCII encoded dec imal 8 bits 

ED EBCDIC encoded de cimal 8 bits 

SB Signed binary 1 bit 

The value expression is  the nominal value of a term expressed in 

the format Indicated by the data type.  It is repeated according to the 

It is expected that such additional data types as floating-point 
and user-defined types will be added as needed. 

-J--- -:--— --   MM ...   



comparator     :-  (concatexpr    connective    concatexpr {:optionale) 

(identifier •<-• concatexpr  doptionsh) 

The aaaignment operator •<-• «ssigns  the value to the identifier. 

The connectives have th^ir usual meanings.    Values to be compared must 

have the same type and length attributes or an error condition arises 

and the form falls. 

The Application of a Term 

The elements of a term are applied by the following sequence of 
steps. 

1. The data type (datatype), value expression (concatexpr), and 

length expression (arithmeticexpr) together specify a unit 

value, call it x. 

2. The replication expression (repllcatlonexpr) specifies the 

number of times x is to be repeated.  The value of the con- 

catenated xs becomes y of length L. 

3. If the term is an input stream term, then the value of y of 

length L is tested with the input value beginning at the 

current input pointer position. 

-13- 

replication expression.    A null value expression in the input stream 

defaults to the data present in the input stream and generates padding 

in the output stream according to the restrictions and interpretations 

stated later.    The  input data must comply with the datatype attribute, 

however. 

The  length expreeaion states the length of  the field containing 

the nominal value.     If  the length expression is less than or equal to 

zero,  the term succeeds but the appropriate stream pointer is not ad- 

vanced.    Positive lengths cause the appropriate stream pointer to be 

advanced if the term otherwise succeeds. 

Options is defined under Term and Rule Sequencing. 

Term Format 3 

The third term format is used for assignment and comparison 

— -.a^aB^BH -_^l 
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4. If the Input value satisfies the constraints of y over length 

L, then the input value of length L becomes the value of the 

term. 

In an output stream term, the procedure is the same except that 

the source of input is the value of the term(s) named in the value ex- 

pression and the data is emitted in the output stream. 

The above procedure is modified to include a one term look-ahead 

where replicated values are of indefinite length because of the arbi- 

trary symbol, it. 

Restrictions and Interpretations of Term Functions 

1. Terms having indefinite lengths because their values are re- 

peated according to the // symbol, must be separated by some 
t 

type-specified data, such as a literal. 

2. Truncation and padding is: 

a. Character to character (A *-*■  E) conversion is left-Justified 

and truncated or padded on the right with blanks. 

b. Character to numeric and numeric to numeric conversations 

are right-justified and truncated or padded on the left 

with zeros. 

c. Numeric to character conversation is right-justified and 

left-padded with blanks. 

3. The following are ignored in a form definition over the con- 

trol connection: 

a. Control characters. 

b. Blanks except within quotes. 

c. /* string */ is treated as comments except wichin quotes. 

4. The following defaults prevail where the term part is omitted: 

a. The replication expression defaults to one. 

b. # in an output stream term defaults to one. 

A literal is not specifically required, however. An arbitrary 
number of ASCII characters could be terminated by a non-ASCII character. 

■- -- ■ 
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c. The value expression of an Input stream term defaults to 

the value found In the input stream, but the input stream 

must conform to data type and length expression.  The 

value expression of an output stream term defaults to 

padding only. 

d. The length expression defaults to the size of the quantity 

determined by the data type and value expression. 

e. Control defaults to the next sequential term if a term is 

successfully applied; otherwise, control defaults to the 

next sequential rule. 

5. Arithmetic expressions are evaluated left-to-right with no 

precedence. 

6. The following limits prevail: 

a. Binary lengths are £ 32 bits. 

b. Character strings are £ 256 8-bit characters. 

c. Identifier names are £ A characters. 

d. Maximum number of identifiers is £ 256. 

e. Label integers are ^ 0 and ^ 9999. 

7. Value and length operators  produce 32-tit binary integers. 

The value operator is currently Intended for converting A or 

E type decimal character strings to their binary correspondents. 

For example, the value of £'12' would be 0 011Ü0. The 

value of E'AB1 would cause the form to fail. 

TERM AND RULE SEQUENCING 

Rule sequencing may be explicitly controlled by using 

defined as 

{:options}o , 

options  ::« sfur(arithmeticexpr) j 

sfur(arithmetlcexpr) , sfur(arithmeticexpr) 

sfur  ::- S I F I U i SR I FR I UR 
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respectlvely.  Tlie arithmetic expression evaluates to an integer; 

thus, transfer can be effected from within a rule (at the end of a 

term) to the beginning oi another rule.  R means terminate the form 

and return the evaluated expression to the initiator over the control 

connection. 

If terms are npt explicitly sequenced, the following defaults 

prevail: 

1. When a term fails, go to the next sequential rule. 

2. When a term succeeds, go to the next sequential term within 

the rule. 

3. At the end of a rule, go to the next sequential rule. 

In the following example, note the correlation between transfer 

of control and movement of the input pointer. 

1 XYZ(,B,,8:S(2),F(3)) : XYZ ; 

2    

3    

The value of XYZ will never be emitted in the output stream be- 

cause control is transferred out of the rule upon either success or 

failure.  If the term succeeds, the 8 bits of input are assigned as 

the value of XYZ and rule 2 is then applied to the same input stream 

data.  That is, because the complete left hand side of rule 1 was not 

successfully applied, the input stream pointer is not  advanced. 

- -■ --■ ■ - - ■—-- - -■ —  • - 
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IV.  EXAMPLES 

The following examples (forms and also single rules) are simple 

representative uses of the Form Machine. 

FIELD INSERTION 

To insert a field, separate the input into the two terms to allow 

the inserted f^eld be :ween them. For example, if the input stream con- 

tained pairs of numbers encoded as ASCII, separated by a slash (I.e., 

123/456/...), the following form labels them as x, y pairs separated 

by a line feed, carriage return (i.e., X-123/Y-456 Ö)  (CR)...) 

1 XVAL (#,A,,1), (,A,AI7M).YVAL (#,A. .1) .(,A,A"/",1) 

/*pick up the x as XVAL and y as YVAL */ 

2 : (,A,A"X-",2),XVAL,(,A,"/Y-",3),YVAL 

/*emit the labels followed by the values of x,  y */ 

3 :   (^^"OAOD"  ,4:  ü(l)) 

/*emit the line feed, carriage return and loop back for the 

next pair */ 

DELETION 

Data to be deleted should be isolated as separate terms on the 

left in order to be omitted (by not emitting them) on the right. 

(.B,,8), 

SAVE(,A,,10) 

:(,E,SAVE,); 

/♦isolate 8 bits to ignore*/ 

/♦extract 10 ASCII characters from 

input stream*/ 

/*emit the characters in SAVE as 

EBCDIC characters whose length 

defaults to the length of SAVE 

(i.e., 10), and advance to the 

next rule*/ 

-■ ■■-■-  ' ^  
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In the above example, if either input stream term fails, the next 

sequential rule is applied. 

VARIABLE LENGTH RECORDS 

Some devices, terminals, and programs generate variable length 

records. The following rule picks up variable length EBCDIC records 

and translates them to ASCII. 

CHAR(#,E,,1),     /*pick up all (an arbitrary number of) 

legal EBCDIC characters in the input 

stream*/ 

(,X,X"FF",2)      /*followed by a hexadecimal literal, 

FF (terminal signal)*/ 

:(,A,CHAR,),      /*emit them as ASCII*/ 

(vZ(Z
M0Dn,2)i     /»emit an ASCII carriage return*/ 

STRING LENGTH COMPUTATION 

It is often necessary to prefix a length field to an arbitrarily 

long character string. The following rule prefixes an EBCDIC string 

with a one-byte length field. 

Q(#,E,,1),        /*pick up all legal EBCDIC characters*/ 

TS(,X,X,,FF",2)    /*followed by a hexadecimal literal, FF*/ 

:(,B,L(Q)+2,8),    /*emit the length of the characters plus 

the length of the literal plus the length 

of the count field itself, in an 8-bit 

field*/ 

Q» */emit the characters */ 

TS; */emit the terminal*/ 

■HMMIMMM mm ■ ■■! ■  i i—ii^———fm—nn 
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TRANSPOSITION 

It is often desirable to reorder fields, such as the following 

example. 

Q(,E,,20), R(,E,,10) , S(,E,.15), T(,E.,5) : R, T, S. Q; 

The terms are emitted in a different order. 

CHARACTER PACKING AND UNPACKING 

In systems such as HASP, repeated sequences of characters are 

packed into a count followed by the character, for more efficient 

storage and transmission.  The first form packs multiple characters 

and the second unpacks them. 

/*form to pack EBCDIC streams*/ 

/♦returns 99 if OK, input exhausted*/ 

/*look for terminal signal FF which is not a legal EBCDIC*/ 

/♦duplication count must be 0-254*/ 

1 (,X,X"FF,,,2 : SR(99)) ; 

/*pick up an EBCDIC char/* 

CHAR(,E,,1) ; 

/*get identical EBCDIC chars/* 

LEN(#,E,CHAR,1) 

/*emit the count and the char/* 

: (,B,LaEN)+l,8), CHAR, (:U(1)); 

/*end of form*/ 

■M^MWMWMIiBBWMMIi 
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/*form to unpack EBCDIC atreama*/ 

/*look for terminal*/ 

1  (,X,l"ffM
t2  : SR(99))   ; 

/*emit character the number of times Indicated*/ 

/*by the count, in a field the length indicated*/ 

/*by the counter contents*/ 

CNT(,B,,8), CHAR(,E,,1) I (CNT.E.CHAR.l:U(1)); 

/*failure of form*/ 

(:UR(98)) 

— - - ——    ■ — '—~~—~~-~*~***—~——*~ 



■■ ■ 

-21- 

REFERENCES 

1. Roberts,  L.  G.,  and B.  D. Wessler,  "Computer Network Development 
to Achieve Resource Sharing," AFIPS Conference Proceedings, Vol. 
36,  1970,  pp.   543-549. 

2. Heart, F.  E.,  R.  E.  Kahn, S. M.  Ornstein, W.  R.  Crowther, and 
D.  C.  Waiden,  "The Interface Message Processor for the ARPA 
Computer Network," AFIPS Conference Proceedingst Vol.  36,  1970, 
pp.  551-567. 

3. Kleinrock,  L.,  "Analytic and Simulation Methods in Computer Network 
Design," AFIPS Conference Proceedings, Vol.  36,  1970, pp. 569-579. 

4. Frank,  H.,   I.   T.   Frisch, and W.  Chou,  "Topological Considerations 
in the Design of the ARPA Computer Network," AFIPS Conference 
Proceedings, Vol.  36, 1970, pp. 581-587. 

5. Carr,  C.  S.,   S.  D.  Crocker,  and V.  G.  Cerf,  "HOST-HOST Conmunica- 
tion Protocol in the ARPA Network," AFIPS Conference Proceedings, 
Vol.  36,  1970,  pp.  589-597. 

6. Interface Message Processor:    Operating Manual, Bolt, Beranek and 
Newman,   Inc.,  Report No.  1877,  February 1970. 

7. Interface Message Processor:   Specifications for the Interconnec- 
tion of a HOST and an IMP, Bolt,  Beranek and Newman,  Inc., 
Report No.   1822,  October 1970. 

•w- ■ ....*.. 

- —     — — —'—' '———^—^—^ h^m^lmm**u*m^t^i>mlt*ti^mmm^m^^^^^^^^M^^ 



1 ■,l ' ' 

r% 

-23- 

BIBLIOGRAPHY 

Baran, P., "On Distributed Conmunlcation Networks," IEEE Transaotiona 
on Comnrunioation Systeme,  Vol. CS-12, March 1964. 

^cu11*/;* and L' S* ^^f18» "Toward a Cooperative Network of Time- 
Shared Computers," AFIPS Conferenoe Proaeedinge,  Vol. 29, 1966 
pp. 425-431. ' 

Preceding page blank 

- 

- ■■■Maadi - m^—mmm 


