A PRODUCTION FUNCTION FOR TRAINED RECRUITS

Rodney Weiher
Stanley A. Horowitz

Professional Paper No. 84
November 1971

CENTER FOR NAVAL ANALYSES
1401 Wilson Boulevard
Arlington, Virginia 22209
The ideas expressed in this paper are those of the authors. The paper does not necessarily represent the views of either the Center for Naval Analyses, the United States Navy or any other sponsoring agency. It has been reproduced by CNA as a courtesy to the authors, under the CNA Professional Development Program.
A PRODUCTION FUNCTION FOR TRAINED RECRUITS*

By

Rodney Weiher
Stanley A. Horowitz

*We would like to thank Judith Blaine and Eleanor Garges for their assistance in programming and data collection. Lt. William Carmichael, Jr. (USN) provided the indispensable liaison between the authors, BuPERS, and the Recruit Training Commands. Eleanor Noonan provided excellent secretarial services throughout the study.
A PRODUCTION FUNCTION FOR TRAINED RECRUITS
Rodney Weiher
Stanley A. Horowitz

I. INTRODUCTION AND BACKGROUND

The Navy operates 3 recruit training bases at Great Lakes, Illinois, at San Diego, California, and at Orlando, Florida. In these training operations resources are used to turn raw recruits into trained personnel. The resources used to produce these trained personnel include labor, primarily in the form of enlisted instructors, and capital, largely composed of barracks, but also including classrooms and other buildings, as well as training equipment.

The purpose of this study is to determine the output capability, or capacity, of the Navy's initial entry training bases under current and alternative operating policies, as well as under various output requirements associated with alternative force levels. It does this by estimating: 1) the feasible output of trainees that can be obtained with the resources currently at the recruit training bases; 2) the surge capability of the bases if extra instructors are assigned to the recruit training commands (RTC's); and 3) the capacity of the recruit training establishment for any combination of facilities and instructors at the bases. This permits estimates of potential trainee output in the long-run, in which facilities as well as instructors may be varied. This last result will allow calculation of the mix of capital and labor for which the Navy should strive, given the relative prices.
of buildings and instructors, to minimize the long-run costs of producing any desired number of trainees.

This paper will also examine the question of whether the Navy should have more or less than 3 training bases, and how output should be divided among these bases in the short-run. The basic framework of the study is an econometric estimation of a production function for trained recruits. A brief discussion of production functions is contained in the appendix. In the next section of this paper, a model of recruit training is presented, which is followed by the basic statistical results. The final section interprets these results.

II. THE MODEL

The analysis assumed that the number of recruits that a base can turn out in a year is given by:

\[T_i = f(K_i^t, L_i^t, R_i) \]

(1)

where:

- \(T \) = trained recruits
- \(R \) = recruit input
- \(K \) = replacement value of capital (facilities under control of the RTC in thousands of 1966 dollars)
- \(L \) = labor (enlisted-instructor) man-years

The subscript \(i \) indicates that an individual base is referred to. The superscript \(t \) indicates that the instructors and facilities are used for training.

This is the production function for recruit training. The process of screening, weeding out unsuitable recruits, is intimately connected with the process of training. Conceptually at least it requires the use of resources to decide who to weed out.
\[S_i = (K_i^s, L_i^s, R_i, \overline{T}) \] \hspace{1cm} (2)

where:

\[S_i = \text{number of men screened out} \]

\[\overline{T} = \sum T_i \]

The superscript \(s \) indicates that the instructors and facilities are used for screening.

\(\overline{T} \) is included in this equation as a measure of the demand by the Navy for trained recruits, since when the demand for trained recruits is high a smaller proportion of recruits is likely to be flunked out of boot camp.

It is difficult to divide the labor and capital, \(L \) and \(K \), at a base into a component used for training and a component used for screening. In order to avoid this problem we make several assumptions:

\[K_i^s \ll L_i^t \text{ and } I_i^s \ll I_i^t \] \hspace{1cm} (3)

Therefore equation (2) can be re-written:

\[T_i = f(K_i, L_i, R_i) \] \hspace{1cm} (4)

Also \(K_i^s \) and \(L_i^s \) are assumed to not be effective constraints on the screening process, that is:

\[K_i^s \sim 0 \text{ and } L_i^s \sim 0 \] \hspace{1cm} (5)

so that:

\[S_i = g(R_i, \overline{T}) \] \hspace{1cm} (6)
This function describes the screening behavior of the Navy at different input-requirement levels. The behavioral relationship is assumed to be of the form:

\[
\frac{S_i}{R_i} = A_i = g(T) \tag{7}
\]

where \(A_i \) is the attrition rate.

Thus, when \(T \) is known the attrition rate can be found. Knowing the number of trainees the Navy wants to turn out at a base, the number of recruits who must be sent to that base can be estimated. That is:

\[
R_i = h(T_i) \tag{8}
\]

and

\[
T_i = f(K_i, L_i, h(T_i)) \tag{9}
\]

or

\[
T_i = G(K_i, L_i) \tag{10}
\]

Equation (1) is not, strictly speaking, a production function because it incorporates the assumption that the Navy's policy with respect to attrition will continue to be what it has been in the past. Because of this the possibility of training more men by just taking in more recruits, without adding instructors or facilities, cannot be examined.

In line with the discussion above, equation (10) has the form:

\[
T = MK^\alpha L^\beta
\]

or

\[
\log T = \log M + \alpha \log K + \beta \log L \tag{11}
\]
Assuming unchanged screening behavior, this form allows estimates of the economies of scale \((a+b)\) and of the elasticity of trained recruits with respect to both facilities and instructors.

Equation (7) was assumed to have the form:

\[
A_i = N - \gamma \log T + \epsilon d_o
\]

(12)

\(N, \gamma, \) and \(\epsilon\) are positive constants to be estimated and \(d_o\) is a dummy variable which takes the value 1 when the base being examined is Orlando and zero otherwise. The dummy variable is meant to capture the fact that, perhaps because of its newness (Orlando has only been open since 1968), Orlando has had much higher attrition rates than either Great Lakes or San Diego. The results in section III lend support to the functional form in equation (12).

A possible difficulty with the model is that it may not estimate a production function for trainees of constant quality, but rather estimates how the Navy behaves when manpower requirements are changed and that this behavior may incorporate fluctuations in the quality of trainees as well as fluctuations in the quantity of inputs.

There are 2 possible responses to this challenge. First a behavior function is of some interest by itself. But second, the criticism does not seem to be valid. The model is a production function for men of the quality the Navy produced at any level of manpower requirements. An empirical examination of final written tests given at San Diego between 1966 and 1971 indicates no correlation between test score and number of
trainees (correlation coefficient = .00459). Thus it appears men of the same quality are produced at all levels of output. The production function seems to be a production function for men of constant quality.

III. STATISTICAL ESTIMATE OF RESULTS

The values of the unknown parameters in the model described above can be estimated. Annual data for the years 1964-1969 for each of the bases was used in both equations. Since Orlando's first full year of operation was 1969 there were 13 annual observations in our sample. The data used in this study is displayed in Table I.

Standard statistical techniques were used to fit the data in the sample to our specified functional forms. These techniques have the desirable property of minimizing the sum of squared deviations of the estimated level of output from the actual level.

The estimated equations are:

\[\log T = 1.636 + .244 \log K + .724 \log L \] \hspace{1cm} (13)

\[R^2 = .865 \]

and

\[A = 130.209 - 25.117 \log \bar{T} + 2.946 d_o \] \hspace{1cm} (14)

\[R^2 = .663 \]

The numbers in parentheses are t-values.
TABLE I

BASIC DATA ON RECRUIT TRAINING

<table>
<thead>
<tr>
<th>BASE</th>
<th>YEAR</th>
<th>CAPITAL</th>
<th>ENLISTED INSTRUCTORS</th>
<th>RAW RECRUITS</th>
<th>ATTRITION Rate %</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>1964</td>
<td>16800</td>
<td>586</td>
<td>43782</td>
<td>6.81</td>
<td>40800</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>16255</td>
<td>574</td>
<td>52139</td>
<td>5.07</td>
<td>49495</td>
</tr>
<tr>
<td></td>
<td>1966</td>
<td>17605</td>
<td>593</td>
<td>51006</td>
<td>2.87</td>
<td>49542</td>
</tr>
<tr>
<td></td>
<td>1967</td>
<td>16464</td>
<td>594</td>
<td>46211</td>
<td>2.22</td>
<td>45185</td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>15065</td>
<td>536</td>
<td>51979</td>
<td>2.85</td>
<td>50498</td>
</tr>
<tr>
<td></td>
<td>1969</td>
<td>14770</td>
<td>549</td>
<td>45866</td>
<td>4.27</td>
<td>43908</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>15770</td>
<td>521</td>
<td>33610</td>
<td>5.03</td>
<td>31921</td>
</tr>
<tr>
<td>G.L.</td>
<td>1964</td>
<td>29844</td>
<td>640</td>
<td>45809</td>
<td>7.38</td>
<td>42428</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>31230</td>
<td>637</td>
<td>61650</td>
<td>4.10</td>
<td>59122</td>
</tr>
<tr>
<td></td>
<td>1966</td>
<td>29741</td>
<td>618</td>
<td>65890</td>
<td>2.69</td>
<td>54118</td>
</tr>
<tr>
<td></td>
<td>1967</td>
<td>39690</td>
<td>547</td>
<td>59235</td>
<td>2.75</td>
<td>57606</td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>39212</td>
<td>573</td>
<td>68628</td>
<td>2.90</td>
<td>66638</td>
</tr>
<tr>
<td></td>
<td>1969</td>
<td>39552</td>
<td>654</td>
<td>56620</td>
<td>4.17</td>
<td>54259</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>38950</td>
<td>632</td>
<td>43203</td>
<td>2.92</td>
<td>41943</td>
</tr>
<tr>
<td>ORL.</td>
<td>1969</td>
<td>7122</td>
<td>182</td>
<td>16517</td>
<td>6.18</td>
<td>15407</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>11808</td>
<td>210</td>
<td>17687</td>
<td>11.32</td>
<td>15685</td>
</tr>
</tbody>
</table>

Capital is the replacement cost of barracks and other RTC facilities in thousands of 1966 dollars. Basic sources are NavFac P-164 and PERS C. Enlisted instructors are in man-years.
These results are striking, especially equation (13). All the coefficients are sizeable and have the expected signs. The percentages of explained variation of the dependent variables (R^2) are as high as can be reasonably be hoped for in regressions run on data from the real world. The average residual from equation (13) is only 10% of the actual number of trainees.

IV. INTERPRETATION OF RESULTS

1. **Returns to Scale**

 Most interesting is the strong indication of constant returns to scale. The sum of the coefficients of capital and labor in equation (13), .97, is so close to 1.0 as to be undistinguishable from it.* The implication of this finding is that there is no strong reason to increase or decrease the number of recruit training bases which the Navy has in operation.

2. **Present Capacity**

 The average quantities of instructors and facilities on hand at the recruit training centers in 1970 (the latest year for which data are available) were:

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Instructors</th>
<th>Capacity Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlando</td>
<td>11.81 million</td>
<td>210</td>
</tr>
<tr>
<td>San Diego</td>
<td>15.77 million</td>
<td>521</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>38.95 million</td>
<td>632</td>
</tr>
<tr>
<td>Total</td>
<td>66.53 million</td>
<td>1,363</td>
</tr>
</tbody>
</table>

*Slight changes in the capital variable used in this equation which we tried had coefficients which summed to 1.0 almost exactly. We chose the form shown here because of its slightly higher R^2.

- 8 -
Thus, according to equation (13), there is a total capacity to train 123,421 recruits in a nine-week course. Actual output in 1970 was about 90,000 men. However, an 11-week course was used from January, 1970 to May, 1971. Even so, if the eleven-week trainees used 11/9 as many resources as nine-week trainees, the capacity existed to train 11,000 more men in 11-week courses or 13,000 more men in 9-week courses.* Stated another way, there were 258 more enlisted instructors than were necessary to turn out the number of men produced in the existing facilities. This is simply a reflection of the fact that the number of instructors has not been reduced in line with the recent reduction in recruit requirements from the Viet Nam levels. It is assumed that the same seasonal variations in the recruit load will occur in the future as they have in the past. The number of instructors required is based on historical experience where the annual average number of instructors reflects this seasonality. Since the Navy cannot instantaneously adjust the number of instructors to monthly or weekly changes in the recruit load, it assigns instructors to the RTC's based upon some average workload to accommodate seasonal fluctuations. The same is true of these numbers. That is, if 258 instructors were to be cut from the RTC's, the remaining instructors would have larger companies in the summer and smaller ones in the winter, as they have in the past.

Finally, note that the number of recruits produced does not include a small number of reservists who go through a two-week course. Since the number of instructors is actual, they trained a slightly larger fraction of recruits than these numbers imply. Assuming that the short-course reservists continue to cycle into the RTC's as they have in the past, the required number of instructors will reflect and accommodate this.

*Since May, 1971 the RTC's have returned to a nine-week course.

According to equation (13) increases in the output of any training base in the short-run may be obtained by adding more instructors to the fixed facilities at the RTC's. Indeed any size increase in trained recruits may be gained in this fashion, but at increasing cost. Solving equation (13) for the logarithm of \(L \) shows that the number of instructors necessary to turn out the desired number of trainees, \(T \), at a base with capital of value \(K_o \) is given by:

\[
\log L = -2.26 + 1.38 \log T - .34 \log K_o
\]

(15)

where \(K \) is the replacement cost of barracks and other RTC facilities measured in thousands of 1966 dollars. Thus, the number of instructors needed to accommodate a surge of any desired size can be estimated. Table II shows the number of instructors that would be necessary at each of the recruit training bases to produce different numbers of trained recruits given the 1970 capital stocks at the bases. It is possible to go further than this, however.

If the Navy is producing the same kind of trained recruits at many training bases with fixed (in the short-run) facilities it can minimize the cost of any total amount of output by equalizing the marginal products of variable inputs at all bases. For any desired total number of trainees, \(T \), in a year, and any existing facilities at the three training bases, \(K_1, K_2, \) and \(K_3 \), equations (13) and (14), together with the equal marginal product rule, make it possible to calculate:

1. the optimum output of each of the training bases;
2. the optimum distribution of instructors among bases; and
3. the implied number of raw recruits at each base.

Table III shows the optimum way of distributing various numbers of total trainees among the three bases, given the 1970 level of facilities at the bases. The last two lines of the table show the optimum distribution of 1969 output among the bases, given the 1969 facilities and compare this optimum with the actual distribution of trained recruits. Note that a shift of recruits and instructors from San Diego to Great
TABLE II

SURGE CAPACITY WITH 1970 FACILITIES

<table>
<thead>
<tr>
<th>TRAINED RECRUITS</th>
<th>SAN DIEGO</th>
<th>GREAT LAKES</th>
<th>ORLANDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>71</td>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td>20000</td>
<td>185</td>
<td>137</td>
<td>204</td>
</tr>
<tr>
<td>30000</td>
<td>324</td>
<td>239</td>
<td>357</td>
</tr>
<tr>
<td>40000</td>
<td>482</td>
<td>356</td>
<td>531</td>
</tr>
<tr>
<td>50000</td>
<td>656</td>
<td>484</td>
<td>723</td>
</tr>
<tr>
<td>60000</td>
<td>844</td>
<td>622</td>
<td>930</td>
</tr>
<tr>
<td>70000</td>
<td>1044</td>
<td>770</td>
<td>1150</td>
</tr>
<tr>
<td>80000</td>
<td>1255</td>
<td>926</td>
<td>1383</td>
</tr>
<tr>
<td>90000</td>
<td>1477</td>
<td>1089</td>
<td>1628</td>
</tr>
<tr>
<td>100000</td>
<td>1708</td>
<td>1260</td>
<td>1882</td>
</tr>
</tbody>
</table>

Table entries are the number of instructors required to produce the specified number of trained recruits (row headings) at the specified base (column headings).
TABLE III

OPTIMAL DISTRIBUTION OF TRAINING WITH 1970 CAPITAL STOCK

<table>
<thead>
<tr>
<th>Total Trainees</th>
<th>Orlando Trainees</th>
<th>Orlando Instructors</th>
<th>Orlando Recruits</th>
<th>S.D. Trainees</th>
<th>S.D. Instructors</th>
<th>S.D. Recruits</th>
<th>G.L. Trainees</th>
<th>G.L. Instructors</th>
<th>G.L. Recruits</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>9,683</td>
<td>75</td>
<td>11,410</td>
<td>12,506</td>
<td>97</td>
<td>14,241</td>
<td>27,811</td>
<td>215</td>
<td>31,671</td>
</tr>
<tr>
<td>60,000</td>
<td>11,620</td>
<td>96</td>
<td>13,379</td>
<td>15,007</td>
<td>124</td>
<td>16,711</td>
<td>33,373</td>
<td>277</td>
<td>37,163</td>
</tr>
<tr>
<td>70,000</td>
<td>13,557</td>
<td>119</td>
<td>15,312</td>
<td>17,508</td>
<td>154</td>
<td>19,138</td>
<td>38,935</td>
<td>343</td>
<td>42,560</td>
</tr>
<tr>
<td>80,000</td>
<td>15,494</td>
<td>143</td>
<td>17,216</td>
<td>20,009</td>
<td>185</td>
<td>21,529</td>
<td>44,497</td>
<td>412</td>
<td>47,878</td>
</tr>
<tr>
<td>90,000</td>
<td>17,430</td>
<td>169</td>
<td>19,096</td>
<td>22,510</td>
<td>218</td>
<td>23,890</td>
<td>50,060</td>
<td>485</td>
<td>53,128</td>
</tr>
<tr>
<td>100,000</td>
<td>19,367</td>
<td>195</td>
<td>20,954</td>
<td>25,011</td>
<td>252</td>
<td>26,225</td>
<td>55,622</td>
<td>560</td>
<td>58,320</td>
</tr>
<tr>
<td>110,000</td>
<td>21,304</td>
<td>223</td>
<td>22,793</td>
<td>27,513</td>
<td>287</td>
<td>28,536</td>
<td>61,184</td>
<td>639</td>
<td>63,460</td>
</tr>
<tr>
<td>120,000</td>
<td>23,240</td>
<td>251</td>
<td>24,615</td>
<td>30,014</td>
<td>324</td>
<td>30,827</td>
<td>66,746</td>
<td>721</td>
<td>68,554</td>
</tr>
<tr>
<td>130,000</td>
<td>25,177</td>
<td>280</td>
<td>26,422</td>
<td>32,514</td>
<td>362</td>
<td>33,099</td>
<td>72,308</td>
<td>805</td>
<td>73,607</td>
</tr>
<tr>
<td>140,000</td>
<td>27,114</td>
<td>311</td>
<td>28,215</td>
<td>35,016</td>
<td>401</td>
<td>35,354</td>
<td>77,870</td>
<td>892</td>
<td>78,622</td>
</tr>
<tr>
<td>150,000</td>
<td>29,050</td>
<td>342</td>
<td>29,995</td>
<td>37,517</td>
<td>441</td>
<td>37,594</td>
<td>83,433</td>
<td>981</td>
<td>83,603</td>
</tr>
</tbody>
</table>

Optimal mix for 1969 production and 1969 capital stock

<table>
<thead>
<tr>
<th>Total Trainees</th>
<th>Orlando Trainees</th>
<th>Orlando Instructors</th>
<th>Orlando Recruits</th>
<th>S.D. Trainees</th>
<th>S.D. Instructors</th>
<th>S.D. Recruits</th>
<th>G.L. Trainees</th>
<th>G.L. Instructors</th>
<th>G.L. Recruits</th>
</tr>
</thead>
<tbody>
<tr>
<td>113,663</td>
<td>15,242</td>
<td>158</td>
<td>16,245</td>
<td>29,043</td>
<td>301</td>
<td>30,013</td>
<td>69,377</td>
<td>719</td>
<td>71,693</td>
</tr>
</tbody>
</table>

Actual mix for 1969 production

<table>
<thead>
<tr>
<th>Total Trainees</th>
<th>Orlando Trainees</th>
<th>Orlando Instructors</th>
<th>Orlando Recruits</th>
<th>S.D. Trainees</th>
<th>S.D. Instructors</th>
<th>S.D. Recruits</th>
<th>G.L. Trainees</th>
<th>G.L. Instructors</th>
<th>G.L. Recruits</th>
</tr>
</thead>
<tbody>
<tr>
<td>113,663</td>
<td>15,497</td>
<td>182</td>
<td>16,517</td>
<td>43,908</td>
<td>549</td>
<td>45,866</td>
<td>54,258</td>
<td>654</td>
<td>56,620</td>
</tr>
</tbody>
</table>
Lakes would have permitted the Navy to reduce the number of instructors by 207 with no change in trained recruit output. Since the billet cost of an enlisted instructor is about $18,000, this implies a possible saving of approximately $3.7 million. In addition to being bigger than the RTC at San Diego, the RTC at Great Lakes is also newer. As of 1969, 78% of the barracks area at Great Lakes was in permanent buildings constructed since 1958. Only 29% of the barracks at San Diego were permanent and none of them were built after 1956. It seems that there is a strong case for shifting recruits and instructors from San Diego to Great Lakes.*

Table IV displays the optimal distribution of recruits among the three bases in FY '73. The Navy plans to train 100,000 men in FY '73 and by then an entire new section will be open at Orlando, costing $12.9 million, just about doubling the recruit training facilities at the base. Additional $2.339 million are being built at Great Lakes. No change is planned at San Diego.

Equalization of the marginal product of instructors at two bases requires that:

$$\frac{L_1}{L_2} = \left(\frac{K_2}{K_1} \right)^{\alpha/\beta - 1}$$

where L_1 and L_2 are the number of instructors at the two bases. From this it follows that the relationship between the instructor-to-facilities ratios at the two bases should be:

*Although any changes in transportation costs that may follow from this result were not explicitly analyzed, it appears that the net change might actually reduce transportation costs.**

**α and β are as defined in equation (11).
TABLE IV

OPTIMAL DISTRIBUTION OF RECRUITS AND INSTRUCTORS WITH EXPECTED 1973 CAPITAL STOCKS

<table>
<thead>
<tr>
<th>Base</th>
<th>Expected Facilities</th>
<th>Trained Output</th>
<th>Recruit Input</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>$15,770</td>
<td>21,206</td>
<td>22,235</td>
<td>201</td>
</tr>
<tr>
<td>Orlando</td>
<td>22,900</td>
<td>29,489</td>
<td>30,919</td>
<td>279</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>40,961</td>
<td>49,305</td>
<td>51,697</td>
<td>467</td>
</tr>
<tr>
<td>Total</td>
<td>$79,631</td>
<td>100,000</td>
<td>104,851</td>
<td>947</td>
</tr>
</tbody>
</table>

replacement cost in thousands of 1966 dollars.
Thus, if there are constant returns to scale $(\alpha + \beta = 1)$, which there appear to be in recruit training, a good short-run rule is to equalize the labor-to-capital ratio among recruit training bases. In fact, the results in tables III and IV are quite close to what this simple rule would suggest. There is not exact correspondence because we estimated $\alpha + \beta = .97$ rather than 1.0.

4. **Long Run Capacity**

Equation (13) implies that the number of trainees turned out at a base can be produced with any one of an infinite number of combinations of facilities and instructors. Table V displays, for base outputs between 10,000 and 100,000, some of the feasible combinations of facilities and instructors. For instance, 30,000 trained recruits can be turned out with either 299 instructors and 20 million worth of facilities, 213 instructors and 55 million worth of facilities, or a whole range of other combinations.

These combinations of facilities and instructors also can be graphically displayed. For example, figure 1 demonstrates the smooth relationship among combinations of facilities and instructors which can turn out 50,000 trainees at a base in a year.

The question then arises: what particular combination of facility and instructors should the Navy use to produce the output desired at each base? The mix of inputs which produces the desired output at
Table V

Alternative Ways of Training Different Numbers of Men at a Base

<table>
<thead>
<tr>
<th>CAPITAL capitals of 1966 dollars</th>
<th>10,000</th>
<th>20,000</th>
<th>30,000</th>
<th>40,000</th>
<th>50,000</th>
<th>60,000</th>
<th>70,000</th>
<th>80,000</th>
<th>90,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>105</td>
<td>272</td>
<td>477</td>
<td>709</td>
<td>965</td>
<td>1242</td>
<td>1536</td>
<td>1847</td>
<td>2173</td>
<td>2514</td>
</tr>
<tr>
<td>10000</td>
<td>83</td>
<td>216</td>
<td>378</td>
<td>562</td>
<td>765</td>
<td>983</td>
<td>1217</td>
<td>1463</td>
<td>1721</td>
<td>1991</td>
</tr>
<tr>
<td>15000</td>
<td>72</td>
<td>188</td>
<td>329</td>
<td>490</td>
<td>667</td>
<td>858</td>
<td>1061</td>
<td>1276</td>
<td>1502</td>
<td>1737</td>
</tr>
<tr>
<td>20000</td>
<td>66</td>
<td>171</td>
<td>299</td>
<td>445</td>
<td>605</td>
<td>779</td>
<td>963</td>
<td>1159</td>
<td>1363</td>
<td>1577</td>
</tr>
<tr>
<td>25000</td>
<td>61</td>
<td>159</td>
<td>277</td>
<td>413</td>
<td>562</td>
<td>722</td>
<td>894</td>
<td>1075</td>
<td>1265</td>
<td>1463</td>
</tr>
<tr>
<td>30000</td>
<td>57</td>
<td>149</td>
<td>261</td>
<td>388</td>
<td>528</td>
<td>679</td>
<td>841</td>
<td>1011</td>
<td>1189</td>
<td>1375</td>
</tr>
<tr>
<td>35000</td>
<td>54</td>
<td>142</td>
<td>248</td>
<td>369</td>
<td>502</td>
<td>645</td>
<td>798</td>
<td>960</td>
<td>1129</td>
<td>1306</td>
</tr>
<tr>
<td>40000</td>
<td>52</td>
<td>135</td>
<td>237</td>
<td>352</td>
<td>479</td>
<td>617</td>
<td>763</td>
<td>918</td>
<td>1080</td>
<td>1249</td>
</tr>
<tr>
<td>45000</td>
<td>50</td>
<td>130</td>
<td>228</td>
<td>339</td>
<td>461</td>
<td>593</td>
<td>733</td>
<td>882</td>
<td>1038</td>
<td>1200</td>
</tr>
<tr>
<td>50000</td>
<td>48</td>
<td>126</td>
<td>220</td>
<td>317</td>
<td>445</td>
<td>572</td>
<td>708</td>
<td>851</td>
<td>1001</td>
<td>1158</td>
</tr>
<tr>
<td>55000</td>
<td>47</td>
<td>122</td>
<td>213</td>
<td>317</td>
<td>431</td>
<td>554</td>
<td>685</td>
<td>824</td>
<td>970</td>
<td>1122</td>
</tr>
<tr>
<td>60000</td>
<td>45</td>
<td>118</td>
<td>207</td>
<td>307</td>
<td>418</td>
<td>538</td>
<td>666</td>
<td>800</td>
<td>942</td>
<td>1089</td>
</tr>
<tr>
<td>65000</td>
<td>44</td>
<td>115</td>
<td>201</td>
<td>299</td>
<td>407</td>
<td>524</td>
<td>648</td>
<td>779</td>
<td>917</td>
<td>1060</td>
</tr>
<tr>
<td>70000</td>
<td>43</td>
<td>112</td>
<td>196</td>
<td>292</td>
<td>397</td>
<td>511</td>
<td>632</td>
<td>760</td>
<td>894</td>
<td>1034</td>
</tr>
<tr>
<td>75000</td>
<td>42</td>
<td>110</td>
<td>192</td>
<td>285</td>
<td>388</td>
<td>499</td>
<td>618</td>
<td>743</td>
<td>874</td>
<td>1011</td>
</tr>
<tr>
<td>80000</td>
<td>41</td>
<td>107</td>
<td>188</td>
<td>279</td>
<td>380</td>
<td>488</td>
<td>604</td>
<td>727</td>
<td>855</td>
<td>989</td>
</tr>
<tr>
<td>85000</td>
<td>40</td>
<td>105</td>
<td>184</td>
<td>273</td>
<td>372</td>
<td>479</td>
<td>592</td>
<td>712</td>
<td>838</td>
<td>969</td>
</tr>
<tr>
<td>90000</td>
<td>40</td>
<td>103</td>
<td>180</td>
<td>268</td>
<td>365</td>
<td>469</td>
<td>581</td>
<td>698</td>
<td>822</td>
<td>950</td>
</tr>
<tr>
<td>95000</td>
<td>39</td>
<td>101</td>
<td>177</td>
<td>263</td>
<td>358</td>
<td>461</td>
<td>570</td>
<td>686</td>
<td>807</td>
<td>933</td>
</tr>
<tr>
<td>100000</td>
<td>38</td>
<td>99</td>
<td>174</td>
<td>259</td>
<td>352</td>
<td>453</td>
<td>561</td>
<td>674</td>
<td>793</td>
<td>917</td>
</tr>
<tr>
<td>105000</td>
<td>38</td>
<td>98</td>
<td>171</td>
<td>255</td>
<td>347</td>
<td>446</td>
<td>551</td>
<td>663</td>
<td>780</td>
<td>902</td>
</tr>
<tr>
<td>110000</td>
<td>37</td>
<td>96</td>
<td>169</td>
<td>251</td>
<td>341</td>
<td>439</td>
<td>543</td>
<td>653</td>
<td>768</td>
<td>888</td>
</tr>
<tr>
<td>115000</td>
<td>36</td>
<td>95</td>
<td>166</td>
<td>247</td>
<td>336</td>
<td>432</td>
<td>535</td>
<td>643</td>
<td>757</td>
<td>875</td>
</tr>
<tr>
<td>120000</td>
<td>36</td>
<td>93</td>
<td>164</td>
<td>243</td>
<td>331</td>
<td>426</td>
<td>527</td>
<td>634</td>
<td>746</td>
<td>863</td>
</tr>
<tr>
<td>125000</td>
<td>35</td>
<td>92</td>
<td>161</td>
<td>240</td>
<td>327</td>
<td>420</td>
<td>520</td>
<td>625</td>
<td>736</td>
<td>851</td>
</tr>
</tbody>
</table>

Entries in the table are the number of instructors necessary to train the specified number of men (column headings) with the specified amount of facilities (row headings).

- 16.-
ALTERNATIVE INPUT COMBINATIONS TO 50,000 MEN

thousands of dollars worth of capital

instructors

FIG. 1
- 17 -
the lowest cost is that for which the ratio of the marginal products of the inputs equals the ratio of the prices of the inputs. That is,

\[
\frac{MP_X}{MP_L} = \frac{P_X}{P_L}
\]

(16)

In a single year, equation (6) tells us that:

\[
MP^O_K = \alpha \frac{T}{K} = .244 \frac{T}{K}
\]

(17)

and

\[
MP^O_L = \beta \frac{T}{L} = .724 \frac{T}{L}
\]

(18)

where \(MP^O_F \) is the marginal product of facilities in one year and \(MP^O_I \) is the marginal product of instructors in one year. In the case of instructors, the marginal product in the current year is bought for the current annual pay, \(P^O_I \). Thus \(\frac{P_I}{MP^O_I} = \frac{P^O_I}{MP^O_I} \). However, capital is long lived and continues to have a marginal product long after it is purchased. The marginal product of facilities in present value terms is:

\[
MP_K = \alpha \frac{T}{K} + \frac{\alpha T}{1+r} + \frac{\alpha T}{(1+r)^2} + \ldots
\]

\[
= \sum_{i=0}^{\infty} \frac{\alpha T}{(1-r)^i} = \frac{\alpha T}{r}
\]

(19)

where \(r \) is the fraction by which the Navy prefers a trained recruit today to a trained recruit next year. It is the Navy's discount rate.

Also the cost of facilities is not simply their price. Facilities depreciate at a rate \(\delta \) and require maintenance at a rate \(m \). The full price of maintaining facilities in present value terms is, then:
\[
P_K = P^O_K + P^O_K(\delta + m) + \frac{P^O_K(\delta + m)}{(1+r)^2} + \ldots
\]

\[
= P^O_K[1 + \sum_{i=0}^{\infty} \frac{\delta + m}{(1+r)^i}] = P^O_K[1 + \frac{\delta + m}{r}] = P^O_K\left[\frac{r + \delta + m}{r}\right]
\]

The depreciation and maintenance expenditures are discounted because the value of what the money spent replacing depreciated facilities and maintaining it in the future could buy is less than what the same sum (corrected for inflation) could buy today. Note that depreciation could have been subtracted in the marginal product equations rather than being added in the price equations. The result is the same. Writing a constant (undiscounted) stream of productivity requires that depletions in the stock of capital due to depreciation be replaced—which entails expenditures at the rate \(\delta \).

Equations (16) to (20) imply that:

\[
\frac{T}{P^O_K} = \frac{P^O_K(r + \delta + m)}{P^O_L} \quad \text{or}
\]

\[
\frac{.244}{.724} = \frac{P^O_K(r + \delta + m)}{P^O_L}
\]

The optimum instructor to plant ratio, \((\frac{L}{K})_o\), is

\[
(\frac{L}{K})_o = \frac{.724}{.244} \frac{P^O_K(r + \delta + m)}{P^O_L} = 2.97 \frac{P^O_K(r + \delta + m)}{P^O_L}
\]
The Naval Facilities Engineering Command has estimated $6 = .02$ for barracks. NAVFAC also has provided data which allows the estimation of $m = .03$. There has been considerable controversy over what the proper discount rate is for the Navy's use. There has been a tendency to use $r = .1$, although there is a question about whether an entity with an apparently infinite life expectancy and no ability to invest funds for monetary return should discount the future. We therefore calculated $\left(\frac{L}{K} \right)$ for $r = .1$ and $r = 0$.

If $r = 0$ is appropriate, equation (13) implies:

\[\left(\frac{L}{K} \right) = 2.97 \frac{1000(.05)}{1800} = .0082 \]

If $r = .1$:

\[\left(\frac{L}{K} \right) = 2.97 \frac{1000(.15)}{1800} = .025 \]

In fact, in 1970, $\frac{L}{K} = .033$ at San Diego, .016 at Great Lakes, and .018 at Orlando. For the recruit training establishment as a whole, $\frac{L}{K} = .02$. Table VI shows, for each of the three bases producing the same output of trained recruits that were turned out in 1969, the optimum mix of capital and labor inputs, both under the assumption that $r = 0$ and that $r = .1$. The actual input mixes are also shown and potential savings from mix changes are calculated. It is important to note that this table does not indicate the optimum way to operate the bases which now exist at San Diego, Great Lakes, and Orlando since
the bases cannot freely vary both facilities and instructors. It does indicate how to operate if the decision is made to aim for a long-run flow of output of about 110,000 per year distributed among three bases as the 1969 output was.

Table VI suggests that, regardless of the discount rate, the Navy appears to be using too many enlisted instructors, although the magnitude of this misallocation depends considerably on the discount rate. Column (2) shows that Navy recruit training should use more facilities if there is no rate of discount. Column (4) largely illustrates the previously noted fact that the plant at San Diego was overutilized in 1969 while that at Great Lakes was underutilized. Notice that the long-run optimum total number of teachers in column (4), 1305, is 127 more than the short-run optimum shown in table III. This is because the 1969 total facilities value is above the optimum total amount implied by \(r = .1 \).

Thus, it is difficult to determine whether Navy training was too capital intensive or not because of uncertainty about the appropriate discount rate. We can, however, say that there is money to be saved by equalizing the facilities-to-instructor ratios at the three bases.

V. **SUMMARY AND CONCLUSIONS**

1. *Navy training exhibits constant returns to scale. This implies that there is no reason to increase or decrease the number of recruit training bases.*
TABLE VI

THE ESTIMATED LONG RUN OPTIMAL MIX OF CAPITAL AND LABOR BY RECRUIT TRAINING BASE

<table>
<thead>
<tr>
<th></th>
<th>r=0</th>
<th>r=.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>Actual</td>
<td>Optimal</td>
</tr>
<tr>
<td>Total output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>113,663</td>
<td>113,663</td>
</tr>
<tr>
<td>San Diego output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instructors</td>
<td>43,908</td>
<td>43,908</td>
</tr>
<tr>
<td>facilities</td>
<td>14,680</td>
<td>46,470</td>
</tr>
<tr>
<td>cost</td>
<td>$10,616,000</td>
<td>$9,181,150</td>
</tr>
<tr>
<td>Great Lakes output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instructors</td>
<td>54,258</td>
<td>54,258</td>
</tr>
<tr>
<td>facilities</td>
<td>39,552</td>
<td>57,830</td>
</tr>
<tr>
<td>cost</td>
<td>$13,749,600</td>
<td>$11,423,500</td>
</tr>
<tr>
<td>Orlando output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instructors</td>
<td>15,497</td>
<td>15,497</td>
</tr>
<tr>
<td>facilities</td>
<td>7,122</td>
<td>15,846</td>
</tr>
<tr>
<td>cost</td>
<td>$3,632,100</td>
<td>$3,132,300</td>
</tr>
<tr>
<td>Total cost</td>
<td>$27,997,100</td>
<td>$23,736,950</td>
</tr>
</tbody>
</table>
2. In 1970 there was excess capacity. That is, there were more enlisted instructors than were necessary to turn out the number of men produced in the existing plant.

3. Tables II and III provide estimates of the surge capability of the training bases as well as a guide for responding to a surge in the demand for trained recruits.

4. Table IV is a guide to operation in FY '73. It says that, due to facilities expansion, fewer instructors will be needed by the RTC's.

5. The analysis suggests that the base at San Diego is used too intensively. Trainees and instructors should be shifted from there to Great Lakes. This might yield an annual saving of $3 million, or more.

6. Table V and figure 1 display alternative means of combining instructors and facilities to produce the desired number of trainees at a base.

7. The technique for calculating optimum capital-to-labor ratios at the three bases was outlined and such ratios were calculated under various assumptions. This ratio should be equalized among the three bases and the relative outputs of the bases adjusted accordingly. It does not matter where men are trained, because of constant returns to scale. Equalization of the capital-to-labor ratio among bases assures that men will be trained at minimum cost. Table VI illustrates this.
APPENDIX

PRODUCTION FUNCTIONS AND CAPACITY

The capacity of a plant, or a training base, is not uniquely determined simply by its physical size. A training base with a certain amount of equipment can produce more trainees if the plant is used more intensively, that is, if more instructors are added. Likewise a given number of instructors can produce a larger output if they have more capital at their disposal. It follows that a particular quantity of trained recruits can be produced using different combinations of facilities and instructors. Since, in most production processes, it takes longer to change the facilities used in production than it does to change the number of instructors, short-run fluctuations in output are generally accomplished by changing the size of the work force. Longer-run fluctuations in output will generally be accompanied by changes in training base size as well.

A convenient tool that mathematically combines the notion of capacity with the technological relationships underlying the production of a particular commodity is the production function. A production function associates a level of output, T, with each combination of inputs, F and I, where F may be facilities, I instructors, and R new recruit accessions:

$$T = f(F,I,R)$$

In general production functions have the characteristics that 1) an increase in the level of any input should produce an increase in the
level of output and 2) subsequent increases in the level of any one input, holding all other inputs constant, should produce smaller and smaller increases in the level of output. That is:

\[\frac{\partial T}{\partial F} > 0 ; \frac{\partial^2 T}{\partial F^2} < 0 \]

\[\frac{\partial T}{\partial I} > 0 ; \frac{\partial^2 T}{\partial I^2} < 0 \]

\[\frac{\partial T}{\partial R} > 0 ; \frac{\partial^2 T}{\partial R^2} < 0 \]

The form of the production function used in this study allows estimates of the percent by which output can be expanded by a one percent increase in the number of instructors or a one percent increase in the amount of capital at a base. These amounts of expansion are called the elasticities of output with respect to the varying input. Returns to scale in a production process can also be estimated. If there are increasing returns to scale (output more than doubles when the inputs are doubled) there is a case to be made for concentrating production at one location. If there are decreasing returns to scale (output less than doubles) many small operations are indicated. If there are constant returns to scale (output exactly doubles) the number of plants or bases in operation is essentially a matter of indifference.

There are a number of accepted forms of the production function which might be applied to training bases. This paper concentrates primarily on the form:

\[X = MT^\alpha I^\beta R^\delta \]

(A-1)
In this formulation the elasticity of output with respect to an input is the exponent of that input. The degree of homogeneity, which measures the returns to scale, is the sum of the exponents \((\alpha + \beta + \delta)\) and is not allowed to change with changes in input levels. The elasticity of substitution between factors is a measure of how well two factors substitute for each other at a particular level of all inputs. A value of zero implies that the two factors in question cannot replace each other at all. A value of infinity indicates perfect substitutability. The form used imposes a value of one on the elasticity of substitution, and thus does not allow independent estimation of this parameter.
List of CNA Professional Papers*

PP 1

PP 2

PP 3
Brown, George F.; Corcoran, Timothy M. and Lloyd, Richmond M., “A Dynamic Inventory Model with Delivery Lag and Repair,” 16 pp., 1 Aug 1969, AD 699 513

PP 4

PP 5

PP 6 – Classified

PP 7

PP 8
Rose, Marshall and White, Alex, “A Comparison of the Importance of Economic Versus Non-Economic Factors Affecting the Residential Housing Market During the Two Decades Subsequent to World War II,” 128 pp., 15 Jan 1970, AD 699 517

PP 9

PP 10 – Classified

PP 11

PP 12

PP 13

PP 14

*CNA Professional Papers with an AD number may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151. Other papers are available from the author at the Center for Naval Analyses, 1401 Wilson Boulevard, Arlington, Virginia 22209.
CNA Professional Papers — Cont’d.

PP 15

PP 16

PP 17
Brown, Lee (Lt., USN) and Rose, Marshall, “An Incremental Production for the End-Item Repair Process,” 17 pp., 3 Mar 1970, (Published in Annual Conference of the American Institute of Industrial Engineers Transactions, May 1970, Cleveland, Ohio) AD 702 453

PP 18

PP 19

PP 20
Brown, George F.; Corcoran, Timothy M. and Lloyd, Richmond M., “Inventory Models with a Type of Dependent Demand and Forecasting, with an Application to Repair,” 4 pp., 10 Feb 1970, (Published in Management Science: Theory Section, Mar 1971) AD 702 456

PP 21

PP 22

PP 23

PP 24

PP 25

PP 26

PP 27

PP 28

PP 29
PP 30

PP 31

PP 32

PP 33

PP 34
*Department of Economics, Massachusetts Institute of Technology

PP 35

PP 36

PP 37

PP 38

PP 39
Hardy, W. C. and Blyth, T. S.*, “Quasi-Residuated Mappings and Baer Assemblies,” 22 pp., 14 Jul 1970, (To be published by the Royal Society of Edinburgh)
*Mathematical Institute, University of St. Andrew

PP 40

PP 41

PP 42

PP 43

PP 44

PP 45
CNA Professional Papers — Cont’d.

PP 46
Hardy, William C. and Blyth, T. S.*, “A Coordination of Lattices by One-Sided Baer Assemblies,” 21 pp., Jul 1970, (To be published by the Royal Society of Edinburgh)
“Mathematical Institute, University of St. Andrew

PP 47

PP 48

PP 49

PP 50

PP 51

PP 52

PP 53
Kadane, Joseph B., “On Division of the Question,” 12 pp., Nov 1970, (Published in Public Choice, Fall 1971) AD 714 652

PP 54

PP 55

PP 56

PP 57
Lando, Mordechai E., “A Comparison of the Military and Civilian Health Systems,” 20 pp., Dec 1970, AD 716 897

PP 58

PP 59

PP 60

PP 61

Schwartz, Arnold N.; Sheler, James A. (LCdr) and Cooper, Carl R. (Cdr), "Dynamic Programming Approach to the Optimization of Naval Aircraft Rework and Replacement Policies," 39 pp., Mar 1971, (To be published in the Naval Research Logistics Quarterly) AD 720 363

PP 76

PP 77

PP 78

PP 79
Wilson, Desmond P. and Brown, Nicholas (Cdr), "Warfare at Sea: Threat of the Seventies," 14 pp., Nov 1971

PP 80

PP 81

PP 82

PP 83

PP 84