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FOREWORD 

This Quarterly report was prepared by RCA Laboratories, Princeton, 
New Jersey under Contract No. F30602-71-C-0356.  It describes work performed 
from 9 June to 8 September 1971 In the Communications Research Laboratory, 
K. H. Powers, Director.  The principal Investigator and project engineer Is 
D. A. de Wolf. 

The report was submitted by the author on 8 October 1971. Submission of 
this report does not constitute Air Force approval of the report's findings 
or conclusions.  It Is submitted only for the exchange and stimulation of 
Ideas. 

The Air Force Program Monitor Is Raymond P. Urtz, Jr. 
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ABSTRACT 

The average effective area of the focus of a laser beam In turbulent 
air (diffraction-limited in free space) has been computed. The results show 
that the focal spot can be decreased only to a certain extent by Increasing 
the transmitting aperture up to a critical size determined by the turbulence 

2 
'n Critical-aperture radius roc - l/2kL

1^2 K^/^Cn 
(k is wavenumber, L is pathlength, Km is inner-scale wavenumber).  If the 
aperture is made larger, the focal-spot area will fluctuate around a constant 
value close to a minimum value L/kroc Independent of the aperture size. This 
minimum is an atmospheric limit to the focussing power of a laser for applica- 
tions in which illumination is not shorter than a typical fluctuation time. 
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SECTION I 

SUMMARY 

A 
When Images are formed from laser beam? propagating through turbulent 

air, a variety of scintillation phenomena o« curs:  beam wander, intensity 
fluctuations, hot- and cold-spot formation. Image blurring, spot broadening, 
etc. The purpose of this project is to study these effects analytically, 
and thus to interpret measurements and predict performance in future laser 
systems, o«-* 

The difficulties of an analytic approach - aside from obvious mathemati- 
cal ones - lie in the present status of theoretical knowledge of the basic 
optics in turbulent air. The statistics of the irradlance (the prime quantity 
of interest) are uncertain, and in particular its variance and higher-order 
measures of fluctuations are not clearly established. 

Rather than starting a basic investigation in this first quarter into 
the full statistics of the irradlance of an idealized wave, we preferred to 
define and solve a more limited problem:  the limitations imposed by atmo- 
spheric turbulence upon the focussing of a laser beam.  It is quite clear 
that a primary factor in reconnaissance and weapons performance of laser 
beams is the ability to focus the beam.  In contrast to the non-linear and 
self-induced effects such as thermal blooming and distortion, atmospheric 
turbulence creates beam distortionc that are not a  function of beam strength. 
Furtheriftore the effects are random and therefore unpredictable. 

Previous work on this problem appeared to us to be incomplete, or 
- perhaps - not correct. We have defined an effective focal-spot ar^a of 
a laser beam, and have computed its average area in the presence of atmospheric 
turbulence. The analysis utilizes only those irradlance statistics that are 
well-established and agreed upon by most workers in this field. The results 
indicate that for sufficiently small aperture radii r0 one can get large 
focal spots with radius r^ ^ L/kr0 (L is pathlength, k is wavenumber) which 
can be made smaller by increasing r0 until the aperture radius approaches a 
critical size determined by the atmospheric-turbulence strength parameter 
Cn

2, namely roc = l/2kL
1/2K]Il

1/6Cn (k is wavenumber, L is pathlength, K is 
inner-scale wavenumber). There may be no advantage in increasing r0 beyond 
this critical size because the focal spot then fluctuates in size and on the 
average does not decrease in radius below L/kroc. Details of the analysis 
are appended in technical-report form in subsequent sections of this Quarterly 
Report. 

The results - given for so-called Kolmogorov turbulence - can be tested. 
Comparisons with data - to be made available yet - are contemplated in the 
future. If necessary, the results can be adapted to other forms of turbulence. 



SECTION II 

FOCUSSED LASER BEAM IN TURBULENT AIR:  INTRODUCTION 

The topic of this report is the effect of turbulent air upon the focussing 
of a laser beam aimed horizontally within a few meters of earth's or sea's 
surface of a receiver located a distance L from the effective optical aperture 
(with radius r ) of the beam-producing laser system. 

In free space, the focal spot is diffraction limited.  Its shape is 
dependent upon the way  the illuminating flux varies over the aperture located 
in the plane z = 0. Common to all practical cases is the property that the 
focal spot has an effective radius determined by the distance r^ ■ L/kr0 
(k is the wavenumber of the laser-beam radiation, which may be considered 
monochromatic without undue restriction).  It cannot be made smaller without 
modifying L, k, or r0.  In turbulent air, however, the phase relationships 
between rays emanating from different parts of the transmitting aperture to 
the focus are modified and the result is spot broadening beyond the diffrac- 
tion limit. 

A naive calculation of the effect can be given first. Consider the 
aperture of the laser-optics system producing a focussed beam as a lens. 
By exploiting the refractive properties of the lens, i.e., by choosing its 
material and shape, one attempts to direct all the rays penetrating it to a 
focal point. However, ray bending, or diffraction of rays, occurs around the 
edges of the lens and deflection of rays by an angle 9 ^ (kr0)~''- occurs. As 
a result, light from the edges of the lens which is Intended for the focal 
point on the central axis at distance L is mlsalmed by an angle of the order 
of 6. A blurring of the focal point into a spot of thickness r^ ^ L6 occurs. 
Of course this picture is only one of a number of other, equivalent, ways of 
describing diffraction. Now, when the rays must propagate through a random 
geometrical-optical atmosphere (i.e., a medium which is quite transparent but 
which deflects rays continuously with local radius of curvature very large 
compared to wavelength in randomly varying directions) the misaiming is by an 
angle 0+66, and the blurring occurs over a thickness rj, ^ L(9 + 69). Be- 
cause the average<L 69> • 0, the average blurring radius in one direction is 
as before: diffraction limited. The average area IT <rL^> is a measure of 
the net effect of the atmosphere, and it is easily observed that 

<rL
2> - L2 [92 + <(69)2>] (1) 

2 
The angular variance <(69) > in homogeneously turbulent air can be estimated 
by geometrical-optics formulas for ray curvature. Although the calculation 
is not new, it is not easily accessible and we provide a short derivation in 
Appendix II. We also set 6 = (kr )~1 and find 

<rT
2> *  (L/kr )2 fl + 3.9 C 2 k2 L <  1/3 r ^1 (2) 
L o   L       n       m    o j 



. 

This formula predicts that the effects of turbulence are negligible unless 
Cn2 approaches a critical value determined by the parameters 

(O crit. -1/3 T-l  -2 .-2 ^ K L  r   k m        o 
(3) 

In words, the broadening effect of turbulence is increased by utilizing 
higher frequencies and larger apertures. Lawrence and Strohbehn[l], however, 
have utilized another type of naive argument to predict a critical Cn , and 
their result amounts to 

(s.2) « T "3  7/3 
^ ^ L   r crit.   o   o (4) 

In contrast to the first line of reasoning, this result predicts a frequency- 
Independent broadening that deareaaes  with increasing aperture. There are 
perhaps some reasons to be apprehensive, especially of this latter line of 
reasoning, but a simplified argument such as the  above has little value other 
than to provide an intuitive interpretation for a rigorous derivation.  It 
should be accompanied by a rlgoron derivation.  In the following sections. 
Equation (2) will be derived rigorously for a focussed laser beam in turbulent 
air governed by a Kolmogorov spectrum of refractive-index fluctuations for 
propagation paths that exceed those for which the irradiance saturates[2]. 



SECTION HI 

FOCUSSED LASER BEAM IN TURBULENT AIR:  BASIC FORMULATION 

Consider the aperture of a laser system in the z = 0 plane. A point on 
the aperture is denoted by r^ ■ (pi,0). Schmeltzer[3] has shown that the elec- 
tric field E0(r) at location r ■ (p,L) in free space is given by the aperture 
Integral 

Eo^ = -hr2j
d\ Go (K) uo ('i) -p(-ikPi2/2R) •        (5> 

Here, G0(Ar) ■ lexp(ikAr)] /Ar, is the field of a spherical wave emanated at 
an origin and received at a vectorial location &r = r-r^ from that origin; R 
is the radius of curvature of the transmitted wavefront, and U0 is ehe aperture 
function weighting the amplitude of the transmitted field [it is chosen as a 
Gaussian in Equation (5) to conform with laser beams, but it can also be 
chosen differently to correspond to other optical systems that produce a 
positively or negatively (divergent) focussed beam].  It can be seen that the 
approximation 9G0/3z % ikG0 is excellent in Equation (5). This approximation 
ignores terms of order (kL)~^ and of order L/kr0^  in the electric field; it 
does not ignore the phase effects of the exponent of G . 

The formulation [Equation (5)] with 3G /9z replaced by ikG0 adapts it- 
self excellently to the problem of a laser beam In turbulent air. The fact 
that Equation (5) is a linear integral equation with kernel G0 over an effec- 
tive source function immediately establishes that in turbulent air 

tfo " - %fd2pl  G ('»'l) Uo (^l) ^p(-lkPi2/2R) • W 

where G(r,ri) is the spherical-wave field at r when a spherical wave is 
emitted from r0 in turbulent air. The field G(r,r^) reduces to G0(r-ri) as 
the turbulence vanishes and the medium is thus reduced to free space, conse- 
quently we find it useful to set G(r,ri) = B(r,ir1)G0(r-r^) so that B -♦■ 1 
as öe -»■ 0. 

If the beam Is focussed at L, i.e., R s L one can approximate 6 (r-r^) 
to first order in the exponent and to zero-th order in the denominator to 
obtain, 

E(r) = L"1 exp[lk(L + P2/2L)] • ^ [^^»^^i)  exp(ikp.p1/L) . (7) 



MnüM 

This formulation, which also Ignores terms of order kr0Vl^ Is very convenient 
for our purpose.  The received power at r Is proportional   |E|

2
.  We therefore 

form the Irradlance I ■ |E|
Z
 to find, 

I(r) = |(k/27rL)/*d2p1 B^r.rJ ^(rj oxp^lkp.^/L) |2        (8) 

The Irradlance distribution over the focus. I.e., the dependence of I(r) upon 
p for fixed L, determines the properties of the focal spot. The free-space 
properties are immediately apparent from Equation (8) because B = 1.  In that 
case, the insertion of Equation (5) for U0(ri) yields an easily performed 
Fourier Integral inside the modulus signs of Equation (8) : 

I 
o 
(r) - (kro

2/L)2 expF-(krop/L) 
21, (9) 

and it can be seen by making the integration-variable p^, non-dimensional for 
more general U0(ri) that I0(r) depends only upon kr0p/L, and so that I0(r) 
decreases (albeit not monotonically) with increasing kr0p/L.  It is obvious 
from Equation (9) and its generalization that the focal spot has a halfwidth 
rL that is easily related to L/kr0. The difficulty is in extending the con- 
cept to the case B^l, i.e., to turbulent air, because it is not possible in 
general to perform the random Fourier Integral. 



SECTION IV 

DEFINITION OF FOCAL-SPOT RADIUS IN TURBULENT AIR 

As with so many other randomly varying quantities, one can only hope to 
extract more Information about the behavior of l(t)  with the atmospheric and 
system parameters by calculating statistics. The random quantity I(r) In 
Equation (8) Is determined by the statistics of B(r,ri)B*(r,r2) at two aper- 
ture locations r^ and rj« The statistics of the normalized spherical-wave 
field B(r,ri) are uncertain to date, but the average of the above product, 
<B(r,ri)B*(r,r2)> the mutual ooherenoe factor  (mcf), has been determined by 
a variety of methods[4-6] for long propagation distances. 

00 -L 

<B(r,r1)B*^r,r2)> - exp  - ^p*- J   dKK*(K) jl - L"1/ dz Jo(2KzAp/L)l | (10) 

Ap = I ^-^"2 I 

Here, J0(KAp) Is a Bessel function (zero-th order), and the reciprocity 
theorem has been invoked to interpret B(r,r^) also as the normalized field 
for propagation from r to rj. The validity of Equation (10) is limited only 
by the conditions e 2 << k~2 Z^'2  and L << H^      aside from the usual opfleal 
(far-field and sagittal) assumptions. The region of validity includes that 
in which< [!(?)]2> is observed to saturate. 

Thus, <I(r)> appears promising as a statistic which yields information 
about rL. Unfortunately the computation of <I(r)> after inserting Equation 
(10) into the average of Equation (8) is still very difficult. Consider 
Equation (10).  For propagation over more than several meters under at least 
moderately turbulent conditions (Cn

2 > 10"15m~2'3) the quantity k2 e2L %> 1. 
It therefore follows that the coordinate [pi-p^l» which we abbreviate by Ap, 
need be specified in the Integrand only for Ap < L0 because <B(1)B*(2)> 
(another obvious abbreviation) becomes negligibly small otherwise. For 
ä0 <Ap< L0 it then follows that the exponent in Equation (10) is proportional 
to k2C2L(Ap)5'3, and to k2Cn

2LKin
1'3(Ap)2 for Ap < l0.    Even so, it appears 

that <I(r)> can be evaluated further only numerically. 

However, the form of Equation (8) suggests strongly that an integration 
over d2p, the plane of the focal spot, will simplify matters because a delta 
function in Ap (or something like it) follows when B(1)B*(2) depends weakly 
upon r. The first radius-like quantity we can form is 

rL
2> =f dZP   <I(r)> / <r, > = I  dp <I(r)> / <I(0,L)> (11) 



The numerator is easily evaluated - we shall do so presently - but the de- 
nominator is subject to the problems discussed in the preceding paragraph. 
Hence we define an effective radius with the next non-zero higher order 
weighted mean: 

<rL
2> ^/Vp p2<l^,L)>/fd2p<l(p,L)> (12) 

2 
The denominator of Equation (12) is easily computed because the d p integra- 
tion introduces a two-dimensional delta function in iJj-p2' Consequently 
<B(1)B*(2)> reduces to <B(1)B*(1)> - 1. What is left yields 

fd2p<l(p,L)>   - Trro
2 (13) 

2 
just as we expect from energy conservation (Trr0 is the power radiated toward 
the focus by the aperture). 

Tne numerator of Equation (12) requires somewhat more work. After per- 
formance of the d2p integral, we obtain 

- ij /d^ |d2p2 <B(1)B*(2)> exp[- (p1
2 + p2

2y2ro
2J 

fii^z) 

(14) 

We perform partial integration with respect to x^ and y^ twice in order to 
remove derivatives from the delta function. Because the boundary terms at 
xl = i 00» yi = i 00 are zero» the net effect is to transfer the differential 
operator in Equation (14) to the two other factors of the integrand. The 
presence of a delta function then requires that we know<B(l)B*(2)> only for 
infinitesimal (but non-zero) Ap in order to obtain the derivatives and then 
set Ap = 0. This is a considerable simplification. Referring to Appendix I, 
we observe that 

11m <B(1)B* (2)> -lim exp [-(k2c 2L/24Tr) M3. (AP)
2
 ] 

Ap-»-0 Ap-^0    L J 

- lim expf- 1.3 k2L K^3 C^  (AP) 
21 

(15) 



Here, we have utilized Equations (1-6) and 1-7) In the second step. Let us 
define ß = 1.3 k2!*,,,1'3Cn

2, so that Equation (14) reduces to 

L2 

k2 J d2pi J d2p2 ö2 (V^) * (a/k + afe/ (16) 
xe:cp[-0(Ap)2-(p1

2 + p2
2)/2ro

2] 

The differentiations are now easily performed, and after then setting Ap = 0 
we find   / 

fd2p p2   <l(p,L)>    - ir(L/k)2 (l + 4ßro
2) (17) 

The averaged effective rpiius  defined In Equation (12) Is thus given by 
Equations (13) and (17), ind the result is 

<rL2> =(L/k02(l + 4O (18) 

ß E 1.3 k2 L K 1/3 C 2 
m    n 

It is interesting to note that this is roughly equal to Equation (2) [the 
numerical coefficient of k'Llt l/3c 2(Ap)2 is 3 y (♦) Y (eZ)/8i * 3.9 In the 
former case].  The result shows the following: Given a laser system (L and k 
specified) and atmospheric conditions (Cn2 specified), it follows that the 
focal spot can be made smaller by increasing r0 until it approaches a critical 
value roc ■ l/2ß I/2. There is, however, no further decrease of average 
focal-spot area when increasing r0 above roc, because <Ti^> saturates rapidly 
to the value (L/kroc)

2 which is Independent of r . 

The derivation can be extended to non-Gaussian U(i* ) by defining an 
aperature radius 

-2 
r 
o -ldi°m*i/}°/fi2'v°v° 

The same result is obtained as before, namely Equation (18) with the above 
new definition of r , and the derivation does not differ essentially from 



that for Gaussian UoOr^). The only requirement Is that r as defined in Equation 
(19) is finite.* 0 

*The parameter r0~
2 defined In Equation (19) is Identical to the width of 

the spatial power spectrum of^U0(r) defined as the normalized second 
moment of |u0(K)|

2, where Ü0(K) Is the Fourier transform of ü0(r). It 
Is well known that certain Idealizations of U0(r) - such as ü0(r) ■ const, 
for r £ r0, and ü0 (r) » 0 for r > r0 - give difficulties in computing 
finite spectral widths. 



SECTION V 

CONCLUSIONS 

In the previous section we derived rigorously an expression for an Irra- 
dlance-welghted focal-spot area on the average. This area Is broadened by at- 
mospheric turbulence beyond the dlffraction-limited area IT (L/kr0) .  Surpris- 
ingly enough, the simple argument of Section I yielded exactly the same answer 
although It Ignores correlation of rays from different parts of the transmit- 
ting aperture and utilizes the ray concept as If there were no ray crossings 
and/or caustic effects before the focal point Is reached. We would like to 
understand this somewhat more.  Consider the electric field E(p,L) received In 
the^focal plane, and Fourier analyze It In terms of transverse random components 
dE(K,L) 

E(p,L) -/dE(K,L) exp(-iK.p) 

with <dE(K1,L)dE*(K2,L)> - (lnty~ld\dh2  ö^-KplCK.L)   (20) 

This Is tjje customary Fourier analysis for a homogeneous Isotropie random pro- 
cess and I(K,L) is the two-dlmensonal spectral density of E(p,L). From Equation 
(20) and the definition (12) it is then not difficult to find 

<rL
2>  .-[^(S.L)/«JJr.0/l(0.L) (21) 

2 
i.e., <rT > is determined by smallest-wavenumber components of the spectral 
density of E(p,L) in the focal plane. The main effect determined by small- 
wavenumber I(K,L) can only be due to a gross deflection of the entire beam. 
Apparently this is why the effect of atmospheric turbulence on «Cr^ > is so 
aptly described by a ray angle 66 as in Section I. 

If, then, the quantity <rji^> is any measure of the average effective area 
of the focal spot in turbulent air, one finds that the turbulence strength Cn^ 
must exceed a critical value given parametrlcally in Equation (3) in order for 
appreciable broadening beyond the diffraction limit. This differs from the 
conclusion of Lawrence and Strohbehn[l] in Equation (4). A corollary of our 
result is that the only restriction on aperture size for validity of the approx- 
imations is L << kr0^. We have used this restriction in developing Equation 
(6).  It has also been used in ignoring the fact in Equation (10) that r makes 
an angle 0r ^ r/L "v» (k^)"1 « (kL)"1/^ with the central axis (terms of order 
k~^L~l are discarded). The results [Equation (18)] are displayed in Figures 1 
and 2 for wavelengths X ■ 0.6 ym and A ■ 10.6 ym In the following fashion: We 
defined a critical-aperture radius roc * (43)  '  so that for given Cn and 
L the average focal-spot area is Just twice the diffraction area. Let 
rLc * ^^oc*  If ro < roc then the diffraction-limited radius rL ^ L/kr0 is 
a good approximation, and r^ >  rLc. When r0 > roc, then Equation (18) shows 
that rL is slightly larger than r^. Consequently <rI ,'■> is the smallest 

10 



100 cm 
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/Z7 
/ /  / 

VST   ST     MT 

/ /  / 

X = 0.6/1. 

 rLc 

m 

L in km 

Figure 1. Maximal aperture radius roc required to obtain 
a minimal focal-spot area with effective radius 
rLc. Radii roc and r^ as functions of path- 
length L for X • 0.6 ym, Km

_^ " 7 mm, and 
Cn

2 = IQ-^CMT), 10-15(ST), and 10-l6(VST) In 
m~2/3 units. 

average area of the focal spot to be obtained under atmospheric conditions 
prescribed by given values of C  . The definitions yield 

oc 
l/2kL1/2< 1/6 C m n 

rT     =2L
3/2

K
1/6

C Lc m n 

(22) 

-1 
and these quantities are plotted for Km  ^ 7 mm In Figures 1 and 2 for three 
values of C ^ corresponding to moderate (MX), strong (ST), and very strong 
(VST) turbulence. 

Finally, we compare our results to previous work. Gebhardt and Collins[7] 
have computed rT/r vs kr 2/L.  Their results show the same trend as ours for 
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100 cm 

10 cm 

L in km 

Figure 2, Maximal aperture radius roc required to obtain 
a minimal focal-spot area with effective radius 
rLc. Radii roc and r^ as functions of path- 
length L for A = 10.6 ]im,  Km~l ■ 7 mm, and 
Cn2 = 10-

14(MT), 10-15(ST), and 10-16(VST) In 
m-2/3 units. 

r0 « r  . but there is no saturation for larger r0. As a consequence, they 
conclude - in sharp contrast to us - that better focussing can be achieved by 
increasing r0 no matter how large C^  is. The difference in their work appears 
to arise from the use of weak-amplitude theory and a number of assumptions re- 
gard Vg the average log-amplitude. Lutomirski and Yura[8] compute a half-power 
angl. "V L^/^i^l/ör which is similar to our result for r^/L  (also a half-power 
angle) when r» > roc. The result appears to agree with ours only for large 

c-2c ~2ic_-5/3 paths L » k-2Cr 
km however. Their choice of aperture (equivalent to 

that discussed in the footnote on page 9) may make further comparison 
difficult. 

Note added in proof: after the completion of this work, it came to our 
attention that Varvatsis and Sancerfll] have found the same result. 
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M2.= / dKK
2$(K) - 2TI

2 (1-2) 

The Kolmogorov spectrum *(K) corresponding to the "two-thirds" law of ehe 
temperature structure function In the inertial subrange of turbulence, and 
modified to incorporate small and large wavenumber properties is 

*(K) = Y(*) Lo
3 (l + K2Lo

2)~11/6 exp^K2/^2) (1-3) 

L : macroscale of turbulence . 
Ä0: microscale of turbulence (i0  = 5.92 K^  ) 

Y(*): a normalizing constant obtained from Equation (A-2) and given to good 
accuracy by 4TrZr(ll/6)/r(3/2)I (1/3) *  15.7. 

APPENDIX I 

TURBULENCE QUANTITIES REQUIRED IN WAVE-PROPAGATION CALCULATIONS 

Different authors use differing nomenclature and normalizations of turbu- 
lence scales and spectra. To avoid confusion, we tabulate our own definitions 
for future reference. 

The basic quantity is the deviation from the mean dielectric permittivity 
6e(r).  Its lowest non-zero statistic is its variance [Öe(r)]z which may or 
may not be dependent upon location r.  In the case that it is not, we abbreviate 
the variance by the symbol  . 

In the case of homogeneous turbulence, the twe-point correlation 
<Sc(r^)  6e  (r2)> depends only upon the difference vector Ar ■ r^ -*2' 
We write this two-point correlation as zC(Ar),^thus insuring the normalization 
C(0) = 1, and define the turbulence spectrum ♦(K) as 

*(K) = /d3Ar C (Ar) exp(iK.Ar) (1-1) 

When there is no preferred direction^(lsotroplc turbulence), the spectrum 
depends only on the length of the vector K, and we will denote the argument 
as a scalar quantity. For some purposes, we prefer to give special attention 
to the direction of propagation: the z axis in our work. Vector K, for example, 
will then be denoted as K~., Kz in functional arguments (where K-j- is the projec- 
tion of K upon the z = 0 plane). 

Definition (1-1) implies for the case of isotropy that 
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An Important parameter Is the Integral scale i^,  defined as the first moment 
M-^ divided by 16 ir 

00 

V 167 / dKK*(K) = Y(£l)Lo (I-4) 
0 

Y(ä^), a constant obtained by inserting Equations (1-3) into (1-4) and given to 
good accuracy by 3 Y(*)/80ir * 1.88 

For some applications, it will be useful to have an expression for the first 
moment M.. itself: 

00 

M1 a J     dKK*(K) -|Y(*)LO (1-5) 

0 

The third moment M3 is obtained by inserting Equation (1-3) into its definition. 
Upon ignoring an error of order 2K ~^L0~ , we obtain 

CO 

M- E  / dKK3«(K) * 2.79Y(*)tc 1/3L "2/3 (1-6) 3   J m   o 
0 2 2 There is a connection between e  and the structure constant C  . By forming 

the refractive-index structure function D(r) by Tatarskl,s[J] Equations (1.38) 
we obtain in terms of our normalizations 

D(r) - -~ /d3K *(K) ri-cos(K.r) ] 
16Tr 

with *(K) given by Equation (1-3). We compare this to Tatar8ki,s[9] Equations 
(1.41) and (3.24) and obtain 

e2 H Y (e2) C 2L 2/3 v  -^ n o 

Y (c2) = 32ir3 x 0.033/Y(*) « 2.08 (1-7) 
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APPENDIX II 

SAY BENDING IN TURBULENT AIR: ANGULAR VARIANCE 

A brief derivation of the angular variance <(66) > for ray bending over 
distance L in turbulent air is given here.  In geometrical optics[11] the 
local radius of curvature is tlje inverse length of the vector n-^- v^n where 
n is the refractive index and V-j. is the gradient In the plane through the 
local portion of the ray, normal to the local propagation direction 
turbulent air, this vector is approximated well by VjSe/Z,  because 
n ■ (e)1'2 « 1 + 6e/2 with 6e « 1.    The geometry of Figure II-l s 

In 

ds = R d66 and consequently 

66 

shows that 

(II-l) 

Figure II-l. Radius of curvature Rc(s) at 
pathlength parameter s. 

15 



The vector notation (R is a unit vector) Indicates an Integration over direc- 
tion of 66 (i.e., over change of plane In which 66 lies) as well as  over the 
change In curvature. We form <(60)^> from (II-l), replace the gradient opera- 
tors at points s^ and S2 of the double Integral by the gradient operator with 
respect to Sj-S2> then apply the formulas of Appendix I to find 

00 

<(5e)2>     = (eh/s*)    J     dKK3$(K) 
0 (II-2) 

r3Y(*)Y(e2)/8Tr] C 2L K 1/3    «   3.9 C  ^ K 1/3 

L/'Jn       m n       m 
« 

The above equation is a geometrical-optics estimate of the mean square angular 
deviation of a ray in turbulent air with a modified Kolmogorov spectrum of 
refractive-index fluctuations. 
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