SONAR DOPPLER DISCRIMINATION IN HIGH NOISE ENVIRONMENTS

by

Paul F. Smith
Naval Submarine Medical Research Laboratory

and

Martha Koch
University of Connecticut

Released by:

J. E. Stark, CAPT, MC, USN
COMMANDING OFFICER
Naval Submarine Medical Center

10 February 1971

Approved for public release; distribution unlimited
Sonar Doppler Discrimination in High Noise Environments

Interim Report

Paul F. Smith
Martha Koch

10 February 1971
12
8

HF12,524,004-90100

Naval Submarine Medical Research Laboratory
Naval Submarine Medical Center

Approved for public release; distribution unlimited.

This experiment was concerned with the ability of anti-Submarine Warfare helicopter-borne sonarmen to perform doppler discrimination in the high background noise existing aboard rotary winged aircraft. Performance on a frequency discrimination task was measured under conditions in which the background noise was varied in intensity up to levels approaching those found aboard helicopters. The level of the signal was also varied such that under some conditions the signal was only slightly audible above the noise while under some conditions the signals were clearly audible. It was found that the intensity of the noise was not, of itself, related to the acuity of frequency discrimination. Rather, the differences between the signal level and noise level was most directly related to pitch discrimination performance. It was concluded that, if the signal level could be maintained well above the background noise level, doppler discrimination would not be seriously impaired.
Keywords

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doppler Discrimination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonar Operator Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASW Sonar, Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise Hazards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychoacoustics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Discrimination In Noise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch Discrimination In Noise</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SONAR DOPPLER DISCRIMINATION IN HIGH NOISE ENVIRONMENTS

by

Paul F. Smith
Naval Submarine Medical Research Laboratory
and
Martha Koch
University of Connecticut

NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY
NAVAL SUBMARINE MEDICAL CENTER REPORT NO. 651

Bureau of Medicine and Surgery, Navy Department
Research Work Unit MF12.524.004-9010D, 11

Transmitted by:

J. Donald Harris, Ph.D.
Head, Auditory Research Branch
NavSubMedRschLab

Reviewed and Approved by:

Charles F. Gell, M.D., D.Sc. (Med)
Scientific Director
NavSubMedRschLab

J. D. BLOOM, CDR, MC, USN
Officer in Charge
NavSubMedRschLab

Approved and Released by:

J. E. STARK, CAPT, MC, USN
COMMANDING OFFICER
Naval Submarine Medical Center

Approved for public release; distribution unlimited.
THE PROBLEM

To determine whether or not the high noise levels that exist in Anti-Submarine Warfare (ASW) helicopters interfere with the ability of sonar operators to perform doppler discriminations.

FINDINGS

For noise spectrum levels up to 75.5 dB, and for noise centered about the system transmit frequency, no serious deterioration in doppler discrimination will occur, provided signal levels are maintained at a level at least 15 dB above the detection level of the signal in the background noise. For lesser signal differentials doppler discrimination is impaired, with the degree of deterioration being inversely related to signal differential and directly related to noise level.

APPLICATIONS

These findings contribute to the specification of design criteria for ASW helicopter sonar work spaces and for sonarman head gear.

Administrative Information

This investigation was conducted as a part of Bureau of Medicine and Surgery Research Work Unit MF12.524.004-9010D --- Optimization of Auditory Performance in Submarines. The manuscript was approved for publication on 10 February 1971. The report was designated as Naval Submarine Medical Research Laboratory Report No. 651. It is Report No. 11 on this Work Unit.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL CENTER
Navy personnel who were young, inexperienced listeners performed a pitch discrimination task in quiet and in noise. The noise consisted of a 600 to 2400 Hertz band of white noise having band spectrum levels of from 58.5 to 75.5 dB re 20 μN/m². Pitch discrimination was measured for sensation levels of 5, 10, and 15 dB. Pitch discrimination was found to be relatively unaffected by noise level but greatly dependent on sensation level. A significant interaction between noise level and sensation level was observed.

The assistance of Martha Koch was furnished under ONR Contract with the University of Connecticut (N00014-67-A-0197-0001).
SONAR DOPPLER DISCRIMINATION IN HIGH NOISE ENVIRONMENTS

INTRODUCTION

On 15 August 1967, a conference on noise levels in ASW helicopters was held at the Munitions Building in Washington, D. C. Specifically, the conference was concerned with defining the acoustic attenuation properties of flight helmets which would permit airborne sonarmen to function optimally.

The meeting was called by Air Systems Command, Code 53303. Among the organizations represented were Air Systems Command, Naval Air Development Center, Naval Air Test Center, Naval Undersea Warfare Center, and Naval Aero-Medical Institute, Pensacola. Naval Submarine Medical Research Laboratory representation was requested through the Naval Underwater Sound Laboratory, now the New London Laboratory of the Naval Underwater Systems Center.

A number of attendees presented data on noise levels in helicopters and on the effects of noise levels on the hearing of sonarmen. It was shown that airborne sonar operators suffer temporary threshold shifts during missions. The high background noise levels in which airborne sonar operators work necessitates listening at very high noise levels. The types of discriminations required in sonar operation (intensity, doppler, etc.) have not been systematically explored at very high noise levels. Such work as has been done has not considered noise spectrum levels beyond about 45 decibels (dB) above 20 micro- Newtons per square meter (μN/m²).

Typically, airborne sonarmen are equipped with a protective helmet into which is incorporated a circumaural noise barrier which in turn encloses an earphone. The attenuation provided by such devices is limited to about 45 to 65 dB by the minimum audible body conduction level⁴. Consequently, further attenuation of the helicopter noise which gets into the sonarman's ear must be gained by isolating the sonarman from the aircraft. Such isolation has a weight cost which must be kept within well defined limits in order that the performance of the aircraft is not impaired. It is essential, then, that the degree of isolation required be very precisely determined.

Subsequent to the conference, a number of inquiries were received informally from NADC, Johnsville, and the New London Laboratory of the Naval Underwater Systems Center for further information on pitch (doppler) discrimination under high noise levels. Accordingly, a search of the literature was initiated which yielded but a single relevant report².

Jesteadt and Bilger² measured differential frequency discrimination (DF) at 1000 Hertz (Hz) in quiet and in the presence of a 700 to 1400 Hz band of noise at octave band Sound Pressure Levels (SPLs) of 60, 80, and 100 dB re 20 μN/m². Under all noise conditions and in the quiet condition the sensation level (SL) of the signal was 15 dB or less. That is, the level of 1000 Hz tone was not more than 15 dB above the
level at which the tone could be just recognized in the noise background. The DFs were obtained by means of a tracking task in which the subject controlled the extent of warble in the 1000 Hz tone. As had earlier studies using lower noise spectrum levels \(^3\), Jesteadt and Bilger found that regardless of noise level DF became smaller as SL increased. However, unlike the earlier studies they found that the higher noise levels had a detrimental effect on DF, especially at the lower SL values. Their findings are presented in Figures 1 and 2. The data in Figure 1 were obtained from inexperienced observers. Data in Figure 2 were obtained from three sophisticated observers. Jesteadt and Bilger called attention to differences in the procedures used in their study and in previous research and suggested that discrimination between pairs of steady pure tones, such as were used in the earlier studies, and the detection of frequency modulation may be quantitatively different tasks. Such task differences may underlie the lack of agreement between Jesteadt and Bilger’s work and that of earlier investigations. In order to check this possibility the present experiment was executed, utilizing a pitch memory task.

METHOD

Subjects. Forty-five male enlisted men were selected at random from among three groups of men who had passed the routine screening audiometric examination administered to Submarine School candidates. Subjects
were not screened further. The typical subject, however, was an apprentice with no sonar experience or other job experience requiring listening and the sample may therefore be considered as having consisted of inexperienced observers.

Apparatus. A tape recorded pitch memory test was used as a measure of pitch discrimination. Each of the 100 items of this test consisted of two 500 millisecond (msec) tones separated by an interval of 500 msec and followed by a 4.5 second response period. The second of the two tones of each item was either higher or lower in frequency than the first tone. The distribution of frequency differences (DF) for the tests is shown in Table I. The frequency of the standard (first) tone was 1150 Hertz (Hz). The test was recorded on one channel of a 1/4" tape (Channel A). The other channel (Channel B) contained bursts of noise which roughly coincided with the items. That is, the noise came on just prior to the onset of the standard tone and went off just following the offset of the second (comparison) tone. During the response period the noise remained on. The noise was a two-octave band (690 to 2400 Hertz) of white noise.

The test was presented with the apparatus sketched in Figure 3. The tape was played on a PR-10 tape deck with the outputs of the two channels (A and B) fed independently to Hewlett Packard 550-D decade attenuators. Attenuator A controlled the level of the test items and Attenuator B controlled the level of the noise bursts. The tones and noise were then mixed and led to an Altec Model 1569A amplifier which

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>FREQUENCY DIFFERENTIAL IN Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-30</td>
<td>25</td>
</tr>
<tr>
<td>31-60</td>
<td>20</td>
</tr>
<tr>
<td>61-80</td>
<td>15</td>
</tr>
<tr>
<td>81-90</td>
<td>10</td>
</tr>
<tr>
<td>91-100</td>
<td>5</td>
</tr>
</tbody>
</table>

![Fig. 3. Schematic for Experimental Apparatus. (See text)](image-url)
drove 16 matched PDR-10 earphones in a sound-proofed group testing room. A Ballatine Model 643 vacuum tube voltmeter was used to monitor the signal and noise voltage levels. The subjects recorded their responses on an answer sheet by crossing out an H or L for each item as appropriate.

Procedure. The subjects were tested in three groups with 15, 16, and 14 men in each group. As a partial control for possible order effects, the sequence in which the experimental conditions were presented was reversed for group 2. Otherwise the procedure for groups 1 and 2 were as follows:

The men were seated, the purpose of the experiment was explained, and the instructions for the test were read. Then, the pitch memory test was presented with no noise (Channel B at maximum attenuation). Next, Channel B was set to produce a noise level of 100 dB Sound Pressure Level (SPL) and the tape replayed. The subjects were instructed to raise their hands if they could hear the tones on each item. Channel A was then adjusted until about one half of the men in the group could hear the tones. This level was designated as the group recognition differential or sensation level of 0 dB (SL0). Then, varying the level of Channel A to produce sensation levels of 5, 10, and 15 dB (SL5, SL10, and SL15, respectively), three successive presentations of the last sixty items of the test were made. Then the noise level was adjusted to 90 dB SPL and Channel A reduced by 20 dB to yield an SL5. Three presentations (SL5, SL10, SL15) of the last 60 items of the test were then made at the 90 dB noise level. Between presentations, answer sheets were collected and fresh ones issued while the tape was reset. This process provided a three-to-four-minute break between conditions during which time the subjects removed their headsets. Total running time for the preliminary test and the six noise level conditions was about 70 minutes.

The third group was run under conditions in which the noise level was first set at 98 dB and then 108 dB SPL. Under the 108 dB noise condition, sensation levels of 5, 10, and 15 dB were used. For the 98 dB noise conditions the settings used for attenuator A were those appropriate for sensation levels of 15, 20, and 25 dB. In terms of the SPL of the signal, these settings produced the same three signal intensity levels as were used for the 108 dB noise level.

The pitch test was scored as four subtests: That is, items 41–60 were treated as a test of 20 Hz discrimination, items 61–80 as a test of 15 Hz discrimination, items 81–90 for 10 Hz, and items 91–100 for 5 Hz. Each subject's score for each subtest was one-tenth of the percentage of items correct. The subject's pitch discrimination score was the sum of the scores for the subtests for each experimental condition. These scores were used for all statistical analyses. The mean of scores for each subtest was then plotted as a function of DF and a 75% correct frequency discrimination point interpolated.
RESULTS AND DISCUSSION

The pitch discrimination scores for groups 1 and 2 were combined and were subjected to a Treatments by Subjects analysis of variance, the treatments being noise level and sensation level. The results of the analysis are shown in Table II. The effect of sensation level on pitch discrimination scores was highly significant (P < .001) but the effect of noise level was negligible (P > .10).

Table II. Summary of Analysis of Variance of Frequency Discrimination Scores for Groups 1 and 2 Combined (n = 31)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DF</th>
<th>MEAN SQUARES</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL*</td>
<td>1772.3887</td>
<td>2</td>
<td>886.1948</td>
<td>63.2016</td>
<td>< .001</td>
</tr>
<tr>
<td>Noise Level</td>
<td>38.8440</td>
<td>1</td>
<td>38.8440</td>
<td>2.0450</td>
<td>> .1</td>
</tr>
<tr>
<td>Interaction</td>
<td>282.3899</td>
<td>2</td>
<td>141.1949</td>
<td>11.6080</td>
<td>< .005</td>
</tr>
<tr>
<td>Error 1</td>
<td>841.3025</td>
<td>60</td>
<td>14.0217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error 2</td>
<td>569.8227</td>
<td>30</td>
<td>18.9940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error 3</td>
<td>729.8131</td>
<td>60</td>
<td>12.1635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>4986.9462</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>9221.5081</td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error 1 is the error term for SL; Error 2 for noise level; and Error 3 for SL by noise level interaction.

*Sensation Level
A significant interaction between SL and noise level did appear and is graphed in Figure 4. For SL₅ conditions, performance declined as the noise level was increased from 90 to 100 dB SPL. For the SL₁₀ conditions, a similar but more gradual decrement occurred. For the SL₁₅ conditions, however, performance was apparently enhanced under the higher noise level.

The data for group 3 were also subjected to analysis of variance with the results shown in Table III. In this analysis the treatments are noise level and signal level both of which produced significant differences in pitch discrimination scores (P<.001). No significant interaction between noise level and signal level appeared (P>.1).

The group 3 mean scores are presented in Table IV A. Although the differences in mean pitch discrimination scores for the two noise levels and three signal levels are quite obvious these same results, when listed as in Table IV B, are seen to be easily attributed to the varying SL. It is interesting to note that as SL increases up to SL₂₅ for the 96 dB noise level the pitch discrimination scores continue to increase. Performance at SL₂₀ and SL₂₅ does not differ significantly from the mean pitch discrimination score for this group in quiet.

The mean pitch discrimination scores of groups 1 and 2 under all conditions are listed in Table V along with the mean scores for group 3 under the 108 dB noise level. Since these groups were drawn from the same subject pool (Submarine School Candidates) direct comparisons among the effects of the experimental variables are justified. It has already been shown that the mean scores for noise levels 90 and 100 dB are not significantly different. Student's t for independent means was computed to compare the effects of 108 dB noise with 100 dB noise and with 90 dB noise. The computed t values were .387 and 1.068, respectively, neither being significant. Since the means are so
Table III. Summary of Analysis of Variance of Frequency Discrimination Scores for Group 3 (n = 14)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>SUM OF SQUARES</th>
<th>DF</th>
<th>MEAN SQUARES</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Level</td>
<td>903.2916</td>
<td>2</td>
<td>451.6458</td>
<td>24.7194</td>
<td><.001</td>
</tr>
<tr>
<td>Noise Level</td>
<td>550.2975</td>
<td>1</td>
<td>550.2975</td>
<td>30.7095</td>
<td><.001</td>
</tr>
<tr>
<td>Interaction</td>
<td>25.7916</td>
<td>2</td>
<td>12.8958</td>
<td>1.6103</td>
<td>>.1</td>
</tr>
<tr>
<td>Error 1</td>
<td>475.0416</td>
<td>26</td>
<td>18.2708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error 2</td>
<td>232.9524</td>
<td>13</td>
<td>17.9194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error 3</td>
<td>208.2082</td>
<td>26</td>
<td>8.0080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>982.1190</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3377.7023</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error 1 is the error term for signal level, Error 2 for noise level, Error 3 for the signal level by noise level interaction.

Table IV A

<table>
<thead>
<tr>
<th>NOISE LEVEL</th>
<th>98</th>
<th>108</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal level</td>
<td>88</td>
<td>22.29</td>
<td>24.14</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>35.79</td>
<td>29.32</td>
</tr>
<tr>
<td></td>
<td>98</td>
<td>36.29</td>
<td>32.54</td>
</tr>
<tr>
<td>X</td>
<td>33.79</td>
<td>28.67</td>
<td>31.23</td>
</tr>
</tbody>
</table>

The 75 percent correct frequency discrimination points (DF .75) for each noise level are plotted as a function of

obviously close this result may be interpreted as indicating that the respective variances are also similar. The effect of SL is similar at all noise levels. The interaction of SL and noise level noted for noise levels of 30 and 100 dB seems to exist through the 108 dB noise level, but it is somewhat attenuated.

The 75 percent correct frequency discrimination points (DF .75) for each noise level are plotted as a function of
These results may be compared with Jesteadt and Bilger's data in Figure 1 and 2. Very good correspondence exists between the data for the inexperienced subjects shown in Figures 1 and 5. The interaction effect between noise level and SL noted for the raw scores of groups 1 and 2 combined is reflected in the displacement of DF .75 for the 90 dB noise level for SL15 in Figure 5.

The interaction is also plotted in Figure 6 which shows DF .75 as a function of noise level for the various SL's. As did the raw scores in Figure 4, Figure 6 strongly suggests that as noise level increases for fixed but low levels

Table IV B

<table>
<thead>
<tr>
<th>SL</th>
<th>98</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24.14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29.32</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>29.29</td>
<td>32.54³</td>
</tr>
<tr>
<td>20</td>
<td>35.79</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>36.29</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>33.79</td>
<td>28.67</td>
</tr>
</tbody>
</table>

* Difference between means for SL15 is significant, (P<.05)

Mean pre-exposure score for group 3 was 26.96.

Table V

Mean pitch discrimination scores for three sensation levels at three noise levels.

<table>
<thead>
<tr>
<th>NOISE LEVEL</th>
<th>SL5</th>
<th>SL10</th>
<th>SL15</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>26.26</td>
<td>29.54</td>
<td>30.84</td>
<td>28.88</td>
</tr>
<tr>
<td>100</td>
<td>22.73</td>
<td>27.95</td>
<td>33.23</td>
<td>27.97</td>
</tr>
<tr>
<td>108</td>
<td>24.33</td>
<td>29.32</td>
<td>32.54</td>
<td>28.67</td>
</tr>
</tbody>
</table>

\[\bar{X}_{SL} = 24.44 \]
\[\bar{X}_1 = 28.94 \]
\[\bar{X}_{SL1} = 32.20 \]

\[\bar{X}_{SL} \] are the means for noise levels across sensation levels

\[\bar{X}_1 \] are the means for sensation levels across noise levels

NOTE: The mean pre-exposure pitch discrimination score over all subjects was 36.1
of SL, frequency discrimination deteriorates. However, as the signal level rises above the noise such that SL approximates 15 dB, pitch discrimination becomes relatively independent of noise level—at least up to noise band levels of 108 dB. The data in Table IV B suggests that above SL15 performance becomes a function of SL of signal level. In a no-noise (control) condition, Jesteadt and Bilger found DF to improve with increasing signal levels up to 96 dB SPL.

The Jesteadt and Bilger data of Figures 1 and 2 are also replotted to show DF as a function of noise level for the various SLs used in their study.

Fig. 5. Frequency Discrimination as a Function of Sensation Level for Three Noise Levels.

Fig. 6. Frequency Discrimination as a Function of Noise Level for Three Sensation Levels.
These data, shown in Figure 7, exhibit a similar interactive effect to that shown in Figure 6. That is, for low SLs the regression of DF SL noise level is quite marked, but for SL 15, DF is relatively independent of noise level. This progression seems to hold for both inexperienced and sophisticated observers. A similar effect appeared in Henning's results for performance on a 7 Hz discrimination task (Standard frequency of 1000 Hz), and is shown in Figure 8. These data are for a single observer and should be regarded with caution especially in view of the fact that Henning made no mention of these differences concluding only that noise level per se had little effect on performance. Note also that in the current experiment, 75 percent correct responses were being made at 6 to 10 Hz frequency separation for an SL of 15 dB. Nevertheless, the trend exhibited in Henning's data is similar to that shown in Figure 4 for pitch discrimination raw scores and in Figure 6 for DF. However, in Henning's data, the transition from noise level dependence to independence from noise level appeared between SLs of 30 and 45 dB. This discrepancy may be due to sampling errors or individual differences.

Harris, using noise levels sufficient to mask 800 Hz tones having sensation
levels of 25 and 45 dB, found that discriminability did not change for the worse when noise level was increased by 20 dB for SLs of 5 and 10 dB. Brandt and Small\(^6\), using a wider range of SL but noise levels similar to those of Harris, also concluded that pitch discrimination at 1000 Hz varied only as a function of SL. Loudness and overall sound pressure level per se had little effect on DF. The spectrum levels of masking noise used by Henning, Brandt and Small, and Harris, are considerably lower than the levels used in this study and overlap only the lowest level used by Jesteadt and Bilger. Perhaps these differences in masking level account for the lack of agreement. That is, it may be that the interaction between SL and noise level occurs only at high noise levels.

Although the findings of this study are defensible, there are a number of points which must be raised by way of qualification. First, the test of pitch memory used is not of sufficient difficulty or precision to permit drawing a psychometric function for each individual subject under any but the lowest SL conditions. Thus, the percentage of items correct on each subtest was summed across subtests to arrive at the raw "pitch discrimination" score for each subject. Although such scores are certainly correlated with pitch discrimination in terms of DF .75, it is very probable that the correlation is not perfect. Since statistical analyses could be performed only on raw pitch discrimination scores, it is not strictly legitimate to draw conclusions about DF .75. Second, the method used to determine SL\(_0\) implies that any SL is but an average SL. For example, at SL5, some subjects were operating at an SL perhaps approaching SL\(_{10}\) while others may have been operating at close to SL\(_0\). Such differences would detract from the precision of the experiment. Third, calibration data revealed that the signal levels were somewhat weaker at SL\(_0\) than one would predict on the basis of the spectrum levels used\(^8\). Specifically, for the 90 and 100 dB band levels, the spectrum levels were 57.5 and 67.5, respectively. For these spectrum levels the signal level at SL\(_0\) should have been about 75.5 and 85.5 dB rather than the 72 and 82 dB observed. An experiment using experienced observers on an individual basis is currently being conducted which will be free of the above-mentioned shortcomings.

With the foregoing reservations in mind, it may be concluded that, within the limits of the conditions of this experiment, pitch discrimination performance is not affected by noise level per se. Rather, performance seems to be more directly related to sensation level. However, an interaction between sensation level and noise level was observed. Specifically, for low values of SL, pitch discrimination scores vary inversely with noise level. At about SL\(_{15}\), pitch discrimination becomes independent of noise level, becoming rather a simple function of SL or, perhaps, signal level.

REFERENCES

