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'I..- Introduction and Review of Earlier Work. 

This paper deals-with, estimation problems in which one or more 

observations are made on a p-component vector X with mean vector 

%  X = 14 and covariance matrix 

(1.1) £(X) = |(X-y) (X-y)1 = Z , 

where y and £ may have linear structure. The mean y may be a 

linear combination 

r 
(1.2) y = J~   ß 2. 

j=l  J ~J 

of known p-component vectors, z1, ... , z , which are assumed (for 

convenience) to be linearly independent. The covariance matrix 

may be a linear combination 

m 
(i.3). s = 2ZZ CT G 

g=0  8 ~8 

of known symmetric p x p matrices G_, G,, ... , G , which are ~U ~L ~m 

assumed to be linearly independent; it is also assumed that there is 

at least one set 0„, 0., ... . O      such that (1.3) is positive u  i       m 

definite. The coefficients ß,, ... , ß  and ans CL, , ... , O      are 
X       r      U  1       m 

parameters. 

If E is known or known to within a constant of proportionality 

and one observation x is made on X , the model is the familiar one 

of regression analysis. The best linear unbiased estimates or Markov 

estimates of L ... , ß  are the solutions to the normal equations 



r 

(i-4> FT z' E~"L z^ ß- = zJ E"J" x > j=1 r • 
x=l  J 

If X has a normal distribution, (1.4) are the likelihood equations, 

obtained by setting equal to 0 the derivatives of the likelihood 

function with respect to 3, 3 , and the solution constitutes 

the maximum likelihood estimates.  In any case the estimates are 

unbiased,  ^.3. =3. , i=l» ... > r , and the covariance matrix of 

the estimates is 

(i.5) r^(3±, 3j)j = iz[ f1 z.r1. 

If there are N observations on X , say x.., ... , x~  , the best 

linear unbiased estimates and maximum likelihood estimates under nor- 

mality are the solution to (1.4) with x replaced by the sample mean 

-  1  N 

a=l 

and the covariance matrix of the estimates is 1/N times (1.5). 

Estimation of crn, a,, .... a  was considered by T. W. Anderson* 0  1m J 

(1969), (1970) when several observations were made on X and u was 

completely unspecified.  In this present review we shall assume initially that 

y is known and suitably modify the statements of the earlier papers. 

We assume that X has a normal distribution and that there are N 

observations x-, ... , XL. on X .  (N is not necessarily as large 

as p ; in fact, N may be 1 in some cases.) Let 

* The 1970 paper was written first, but there was a delay of four years 
between its receipt by the editors and its publication. 



(1.7) C = 4 XZ (x -ii) (x -ü)' . 
a=l 

Then maximum likelihood estimates of 0A, 0., ... ,0  are a solution (Jim 

of the likelihood equations 

g=0, 1 m ; 

£9^rSs-»(£8
hSh)-

158(g\5h)-1 

j
 these equations result from setting equal to 0 the derivatives of the 

\ likelihood function with respect to 0_, a,. ... , 0 . There is at 
« Ulm 

least one solution ön, 0., 9  to (1.8) such that U  1       m 

/ /\   m 
•' (1.9) Z = ]T^ ö G 

~  g=0  g ~8 

' is positive definite.  (The argument given by T. W. Anderson in (1970) 

f! was stated for C positive definite, but that assumption is not needed 
'••' ~ 

in general.  If there is more than one solution to the 

/ . likelihood equations, the absolute maximum to the likelihood function 

is attained by the solution minimizing j E| . The estimates 

1 8_, 6  ,   ... , 0  are consistent and asymptotically efficient as N*» ; 

\ ^N (ön-0A), /R (Ö,-0), ... , Ä (8 -0 ) have a limiting normal distri- / U U      1 1 mm 
b 

bution with means 0 and covariance matrix 

|) 
1 (1.10) [h  tr S-1 G^ E 1 G J"1 . 

~  ~n ~  ~g 
~i 
i 
i 

i These results follow from the usual asymptotic theory of maximum like— 

I lihood estimates. 



Now let us consider the estimation problem when both y given 

by (1.2) and Z given by (1.3) are unknown. We are to estimate 

$,, .... 3  and oni  a,, .... 0 . When X. is normally distri- V ' r      0  1       m        ~ J 

buted and x-, ... , xw are observed, the likelihood equations are 

(1.11) Y7    z! -  z. 3. = z' E_i x , j=l, ... , r , 

(1.12) tr(y~~   6.   GJY
1
 G    = trf r~   Ö,   G, V1 G   f 7~~   8,   G, V1 C  , 

Vfcö     h~W      ~8 l fco      h~h/      ~S\fcö     h~hJ      - 

g=0,  1,   ...   , m , 

where 

.       N 
<1-13) £ = | d cXa-5)ua-ö)V, 

a=l 

r      /% 
(1.14) tf-    _~_    ß,.z     , 

3=1      J  ~J 

and E is given by (1.9). Then the estimates are consistent and 

asymptotically efficient as N-*00 . Moreover, VN (3,-3, )> ••• , >f (H ) 

and VN (Un~on)   , VN (Ö.-an) , ... , VN (Ö -0 ) have a limiting 
U(J       ±± mm 

normal distribution in which the two sets are independent and each set 

has the covariance matrix given previously, (1.5) and (1.10).  (We 

note in passing that asymptotically as N-x» , C, C, and (1/N) J , 
          ^v 

(x -x) (x -x)' are equivalent; replacement of C in (1.12) by the 

last matrix above represents a simplification of the equations.) 

5, , ... , p The relation between the estimation of (3., ... , ß_ and 

\ I 

On,  O.,   ... , a      separately was indicated by T. W. Anderson (1969). 



Consider (1.4) for E known and consider (1.8) for ]i known.  In the 

case of normality the covariance between the i,j-th and k,£-th elements 

of C is 

(1.15) 

Let 

Gov(cij'   ck£>  = N  (Cfik ajA + °ll aiV? 

'11 

'22 

(1.16) c =  c 
PP 

'12 

"p-1, py 

.(h) 

, a => 

11 

22 

PP 

P-1» P 

Ih^ S 
(h) 

PP 

,(h) 
'12 

g 
(h) 
P-1» P/ 

where G ~  fg..   . Then %. c = a    and (1.3) can be written as 
~n  \ i] I ~  ~ 

m 
(1.17) ? • H 0* i 

h=0 h Sh ' 

which is of the form (1.2) with y replaced by a , ß. , ... , ß 

replaced by a
0» ^J ••• ' CT

m > fi> ••• » 5r replaced by gQ, g1, . 

and  £X = y by >£c = a . Then (1.15) can be written as 

-n 

(1.18) fc(c) = £(c-a) (c-0)* = « , 

where »•- (^. ^) for i < j , k < A and 



(1.18) is of the form (1.1) with X replaced by c , ji replaced by 

o  , and E replaced by $ . 

It was shown by T. W. Anderson (1969) that 

(1.20). g£ f1  c - J« tr E"1 Gh f
1  C ; 

that is, the bilinear form on the left-hand side of (1.20) is algebrai- 

cally identical to the right-hand side, which is a form appearing in 

the likelihood equations for ft-, 8,, ... , 6    .  Substitution of g 

for . c in (1.20) yields 

(1.21) g' f"1 go = h  tr E"1 G. 2"1 Go . 
~h ~  ~g       ~  ~n -  ~g 

Thus the "normal equations" 

(1.22)     r~ §h *  |f df = g£ $~
X c ,        h-0, 1 m 

f=0 ~  ' 

are identical to the equations 

.-1 „ „-1 (1.23) Y~~   6*  tr E  G S  G. 
f=ö  f   ~  ~8 -  ~f 

-1    -1 
— tr E  G EC,     g=0,1, ... , m , 

If the equations (1.23) were available, they would give "estimates" 

which were linear in C and unbiased, and among such "estimates" they 

would have minimum variance.  (Since C is sufficient for E , these 

would be minimum variance unbiased "estimates" of an.  a,, ... , a .) 
0  1       m 



The covariance matrix of the "estimates" would be 1/N times (1.10). 

However, these "estimates" are unavailable since E is unknown; in 

fact, the problem is to estimate E . 

The likelihood equations (1.8) for 6Q,  Ö.., ... , 8      can be 

written 

m     *^i    ^  t *" i ^ t 
(1.24)   } tr E  G 2  G 8 = tr E  G EC, g=0, 1, ... , m , 

£„Q ~     ~g  ~     ~X   X ~     ~g  ~     ~ 

A_, 

by multiplying the left-hand side of (1.8) by I = >   _Q d    Gf E  . 

These equations are similar to (1.23), but E in (1.23) has been 

replaced by E . As will be shown later, the form (1.23) suggests 

computational procedures and asymptotic properties. 

One of the probability models in which the covariance matrix has 

the form (1.3) is a moving average stationary stochastic process of 

finite order. Let 

m 
\X. ij / X  ^  /    (X     V  «, s t — • » « , •i, U, X,..f , 

C   g=0  8 t_g 

2   2 
where  ? v = 0 , £v = a , and  £ v v = 0 , t^s . Then %, x = 0 

v t US c 

and 

(1.26) ah = a_h = ^Xt x 
t-f-h 

o m—h 
= er  V  a a ., , h=0, 1, ... , m , 

= 0 , h = m+1, ... , 

The vector x = (x., ... , x )' has the covariance matrix (1.3) with ~    x       p 

5o = I • 



(1.27)    G±  = 

0 1 0 0        ... 0 

1 0 1 0 0 

0 1 0 1 0 

0 0 1 0      ... 0 

(1.28) Gn = 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

0 

0 ' 

0 

0 

etc.    ' iChen 

h °1 e • * a 
m 

0 • • • 

°\ 
r ao e   *   * a 

m- 1 
a 

m 
«    0   9 

0 

* • • 

ft 
• 

• 
• 

9 
« 

'• » * 0 • 
(1.29) s - 

a 
m 

a 
m- •1 

«   «   0 ao Gl *   •    * 0 

0 a 
m 

•   •  • °1 ao •   MS 0 

When Og, c^, ... , cr^ are defined by (1.26) for real aQ, o^, ... , am , 

2 
°    > P » 2 given by (1.19) is positive definite (of any order). 



If x » (x1, ... , x )'  is observed, the maximum likelihood estimates 

of 0„, 0., ... , 0  are defined by (1.8) or (1.24) where C = xx' 

(for U - 0 and N = 1), Then the right-hand side of (1.8) and (1.24) 

is 

—i    —1 —l    —i ? J- „  ^ •*- t _ „ I V -*• n  V •*• (1.30) tr £ x G• Z  xx* = x" E  G Z  x . \, ~  ~g ,. —   ~ ~  ~g ~  ~ 

In the case of the moving average model one may be interested in 

2 
the parameters a., ... , a , 0 , with a_ = 1 . If the estimates 

\ d-, cL, ... , d are  such that the estimated covariance matrix obtained \ 0  1'      m 

by replacing 0-, 0-, ... , 0  in (1.29) by 0Q, 8-,...., 8      is 

{ positive definite for (1.29) of every order, then the estimate of the 
'/ 

spectral density 
i •      . 

) -,    m 
(1.31) f(X) -.^ YZ   ag 

cos X8 
"j g=-m 

is positive and the equations (1.26) with 0O, 0.., ... ,0  replaced 

2 i by 6*Q1 Ö-, ... ,0  and a., ... , a  and 0  replaced by 6t, , . . . , ä 
\j W      JL ill J- -HI -L 

2 2 
Ö  can be solved for 6L , ... , 6t , 8    >  0 . The polynomial equation 

j\ m 
I associated with the moving average (1.25) is 

i m 

I (i.32) zz * 2m~s - ° • 
g=0  8 

If the roots are required to be not greater than one in absolute value, 

-'' 2 
ot_» ... , a  and o      axe uniquely determined by 0_, 0,, ... ,0 

, 1       m .01       m 

J [See Section 5.7 of T. W. Anderson (1971).] 

m ' 



In this case of the time series problem where N = 1 , we are 

interested in the asymptotic theory when p-*» .  These properties will 

be studied later. 

It was pointed out by T. W. Anderson (1969), (1970) that the model 

described above is appropriate for many problems of the analysis of 

variance. For example, let 

(1.33)     x±a = y + (y±-y) + ua + v±a , i=l, ... , p , 

a=l N » 

where V - tZ ±lx V
p ' <^ua = ° • ^via = ° * ^ua = °l  • ^L = °l  » 

and all u 's and v. 's independent. Then %•&.    = p. and the 
ot        xct icx   "*- 

covariance matrix of x, . ... , x   is given by (1.3) with Gn -  I 
lor    'pa    ° J ~0 

and Gn = ee' , where £ = (1, ... , 1)' » This is a mixed model in 

the analysis of variance.  The overall mean is y , the  (y.-y)'s are 

the fixed factor effects and the u 's are the random factor effects. 
a 

The factor analysis model when the factor loadings are known was 

studied by T. W. Anderson (1970). This model is particularly appro- 

priate for one form of Guttman's quasi-simplex. 

Hartley and Rao (1967) have given the derivative equations (1.4) 

and (1.8) for N = 1  when Gn, G,. ... , G  are generated by models 
~0 ~1     ' ~m     e        J 

of the analysis of variance. Their proposals for solution are different 

from the one presented by T. W. Anderson (1970) and the one presented in 

Section 2 of this.paper. Other references were given by T. W. Anderson 

(1969), (1970). 

10 



2,  Computation of Estimates for Covariance Matrices 

The set of equations (1.24) suggests an iterative method of solving 

the likelihood equations for 3n, d., ... , 6    . Let 0^  , 6.,  , ... , d u      A. m        u    J. m 

be an initial set of values; these may be values given a priori or they 

may be estimates obtained in another way. Let ö~  , 8- , ... , d be 

the solutions to 

m 
(2.1) H tr I't    6 l£ 6 

f=0 g 

i=l, 2, 

... , m 

where 

(2.2) 
m 

1-1   h=0  h 
(i-1) 

Sh' i=l, 2. 

The equations (2.1) can also be written 

(2.3) 
51 S\     -a •%  -j 

?Z §* £-i if öfs §> fi-i s 5=0, 1, m , 
f=0 

where $. n  is formed from E. «  as $ is formed from £ ~i-\L ~x-l 

Lemma 2.1. If /  , « 0, G,  is nonsingular 

(2.4) 
-trv£f CTh~h/   ~§15 

ah?h) ^f 

is positive definite. 

Proof.     For     (yQ,  y1,   ...   ,  y  )  /   (0,  0,   ...   ,  0) 

ü 'EI <^ GJ~ G<= y„ y 
h=0 h ~hj      ~f Jg Jf 

m j  m \ 

g,f=0 ^h=0 ' 

fEZ a
h?       TZ',y e        H a GJ     2Zy 

L\h«0.    n   n/       g=0     8   8J     L\h=0     h •"**        f=0 
= tr 

f ~f 

> 0 

11 



because Gn, G.. , ... , G  are linearly independent. Q.E.D. 

If S. .  is positive definite, the matrix of the coefficients of 

9_, Ö-, ... , Ö  on the left-hand side of (2.1) is positive definite, 

and hence there is a unique solution.  (The iterative procedure suggested 

here can be considered as an approximation to the procedure proposed by 

T. W. Anderson (1970) on page 6; the present proposal is computationally 

simpler and its properties can be studied more easily.) The iteration 

may be stopped at the i-th stage if d       , öj  , ... , 6 does not 

differ by much from 6^ . 8,   ..... 6 J Ulm 

Since %C  = E s given by (1.3), unbiased estimates of G-, a , ... , 

CJ  can be obtained as the solutions to m 

m 
(2.6)    T_    i tr 6 G 9 G = tr 6 G 9 C ,      g=0, 1, ... , m , 

fZQ t        ~ ~g ~ ~r     ~ ~g ~ ~ 

for an arbitrary positive definite matrix 0 . These estimates (under 

normality) have covariances 

9 m        €h 
(2.7)   W      6  ) = |   JZ mfh m« Cfc C£ tr 0 Gh 0 G£ 0 G 0 Gk , 

h,j,k,£=0 J 

f, g=0, 1, ... , m 

fh       -1 where (m ) = (m_, )   and 

(2.8) mfh • tr 9 Gf 9 G^ , f, n=0, 1, .... , m ... 

As W*0,  these estimates are consistent and *^N (on-0^)» ^  (6,-tf, ), ••• > 

v'N (Ö -O  ) have a limiting normal distribution.  [If y is unknown, C mm ° ~ '    ~ /\ 
in  (2.6)  could be replaced by    [N/(N-1)]C.] 

12 



The equations (2.6) can be obtained from (1.23) by replacing E 

by 0 . A particular choice of 0 is I ; this substitution corres- 

ponds to the Markov estimates when the variances of /N c.. are 

proportional to 2., the variances of VN C , i ^ j s are proportional 

to 1 and every covariance is 0 . 

To obtain asymptotically efficient estimates of <?«, a , ... , a 

only one step in the iteration is needed if the initial estimates are 

consistent.  See Section 4.  If N > 1 and y is unknowns C may be 

replaced by (1/N) } •-i (x -x) (x -x)'  in the computation; one may 

wish to multiply the solution by the factor N/(N-1) .. 

The solution of (2.1) requires evaluation of quantities such as 

(2.9) tr A-1 B A'1 L , 

where As B, and L are symmetric and A is positive definite. Finding 

—1 A   corresponds to solving 

(2.10) AX = I . 

The "forward solution" of a method of pivotal condensation or successive 

elimination corresponds to multiplying (2.10) on the left by a triangular 

matrix F to obtain 

(2.11) TX = F , 

where 

13 



(2.12) F . 

f21   1     ° 

f     f     1 
31    32 

(2.13) T. = FA = 

fpl   fp2   fp3 

'12 

'22 

'13 

'23 

"32 

"IP 

"2p 

PP 

Then 

(2.14)   FAF' = TF' = 

'11 
0 0 

fc22 
0 

0 t 33 

0 

0 

0 

pp 

that TF' has O's below the main diagonal follows from the facts that 

T and F' have 0' s below the main diagonals, and that TF * has 0' s 

above the main diagonal follons from the fact that TF' = FAF'  is 

symmetric.  Since FAF'  is positive definite, t.. > 0, i=l, ... , p . 

Let 

14 



/i 11 

(2.15)   D = 

0 

22 

33 

0 

0 

0 

PP 

and let H = D~ F . Then 

(2.16) 

(2,17) 

HAH' = I , 

A  = H'H 

(This development is given in more detail by T. W. Anderson (1971) in 

Section 2.3.) Note that only the forward solution is needed to obtain 

H . 

Then 

(2.18) tr A 1 B A-1 L = tr H'H B H'H L 

- tr H B H'H L H* . 

Thus the symmetric matrices HBH' and HLH' are computed. When N = 1 

and y = 0 , G = xx' and (2.18) with L replaced by C = xx1 becomes 

(2.19) tr H'H B H'H xx' = xf H'H B H'H x 

= (Hx)' HBH* (Hx) 

= (Fx)* D~2 F B F' D 2 (Fx) 

= (F' D~2 Fx) B p" D~2 Fx) . 

A. 

Given A = 2/ - , the data enter the equations (2.2) through HGH.1 . 

In the case of C = xx' , this involves only 

15 



(2.20) Hx = D_1 F x , 

which Is the forward solution applied to x, followed by the division 

of each element of the resulting vector by the square root of the 

diagonal element of FA = I . 

If (1.2) holds and 3,> ••• , 3  are unknown, initial unbiased 

estimates of 3,» ••• > 3  can be obtained from the equations 
-L       r 

•  r        ä       _ 

(2.21) YZ   z\  6 z4 K  = z! 0 x » J=1» • • • » r » 
1=1 ~J ~ ~i i  ~J ~ ~ 

where 0 is any positive definite matrix. The solution has a multi- 

variate normal distribution with covariance matrix 

(2.22) J (z] 0 zj~1(z! 0 E 0 z.)(z! 0 z.)"1 . 
N— j i'  ~j i ~j 1 

These estimates are consistent as N-*» .  If 0=1, these estimates 

are least squares. 

When 3-1» • • • $ 3  and art, a.. , ... , a  are unknown, the esti— 
1       r      0  1'      m ' 

mates obtained from (2.21) can be inserted into (1.5) to obtain an 

^- 
estimate of y an(i this estimate in turn can be used to define G . 

Then 0rt, ait   ... . o      can be estimated and E ; this estimate of 
0.     1      m ~ 

E can replace E in (1.4) to obtain improved estimates of 3 , ... , 3 

This procedure yields consistent and asymptotically efficient estimates 

of 3 , ... , 3 , On,  0       ... , a  as if*» . ye shall study later their 1     •  r  0  1       m ~     ' 

asymptotic properties as p-*°° . 
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3.  Computation for the Moving Average Process 

3.1. Case of First-Order Moving Average Process. The special 

form of E as given in (1.26) makes the computation easier in the 

case of estimating the nonzero covariances of a finite moving average 

process. This is of particular interest in the case of one observa- 

tion x when ]i is assumed 0 . To illustrate the procedure we 

consider the case of order m = 1 

matrix    (1/O.JE    be 

Let    p = tf-j/tfß  »  and let the    p:.x p 

(3.1) 

1 

P 

0 

P 

1 

P 

0 

p 

\ 
0 

0  \ 

0 

0 

All of the elements of this matrix are 0's except on the main diagonal 

and one above and below the main diagonal. The method of pivotal con- 

densation or successive elimination starts with leaving the first row 

unchanged and subtracting p times the first row from the second row; 

this operation changes the second row to a row having nonzero elements 

only on the diagonal and one entry to the right of the diagonal. Each 

successive step consists of subtracting a suitable multiple of one row 

from the next. This "forward solution" can be represented as FA, 

where 

(3.2) 

(3.3) 

F - F F   ... F.F, F. . ~p ~p-l    ~3 ~2  ~1 

F = I 
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(3.4) !2
S 

-p 

0 

0 

1 

0 

0 

0 

o\ 
0 

0 

(3,5) F = 
~3 

1 

0 

0 
1-p' 

\ ° 

0 

0 

0 

0 

The matrix F  is the identity except that the element in the j-th 

row and (j-l)-st column is -p times the reciprocal of the element 

in the (j-l)-st row and (j-l)-st column of F. 1 F. „ ... F,A . 
~j-l ~J-2    ~1 ~ 

Thus F. has the form 
~J 

(3.6) 

ll 0 0 ° *"* ~ "* 

0 1 0 0 
F.  » ~ 
~J 0 f. . , i 0 

~ a.j-i ~ 

0 0 0 I 

where the orders of the I's are j-2 and p-j » respectively.  (In 

the product F = F F , ... F_ F,  the element f. . .  appears in 
~P ~p-l    -2 ~1 j»j-l 

the j-th row and (j-l)-st column.) The calculation of Hx involves 



(3.7) .Ex' - F F . ... F„ J.F.i-w, N  ' ~p ~p-l    ~3 ~2 ~1 ~  ~ 

say. The computation of w proceeds as follows: w. = x.. , 

(3.8) w. = x + . f  .^ w   s j=2, ... , p . 

Thus the elements of w can be calculated in sequence. 

(i) We can write an equation for f. . , . Let a..  be the j,j-th 
3 s 3 ""•*- 3 3 

term of F. F. - ... F, A . The method of successive elmination 
-j ~J-1    ~1 ~ 

shows that 

(3.9) f 
3+1,j    A3)   ' 

<* • • 
33 

f3 in) a(j+1)  = 1 - -2— = -U — U,1°; j+l,j+l     „(3)     a(j)  * 
33       33 

(i+1) 
The elements a^i-i «+1  

an<3 ^-+1 • » J=l» 2» ••• » P~l » can ke computed 

in sequence. Next let 

-2 
(3.11) D  w = u , 

where D is defined in (2.15); in components this is 

2 (i) 
(3.12) u = w./d.. = w./t. . = w. /a;v »        j-l9 ... » p . 

j   3     33 3     33 3       33 

Finally, let 

(3.13) v = F' u= F' F'  .. F'  F' w ; ~   ~     ~1 ~2     ~p—1 ~p ~ 

thus v = u 
PP. 

(3.14) Vj - Uj + fJ+1j vJ+1 , j = p-1, p-2, ... , 2, 1 
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Then 

(3.15) x' E"1 G, S"1 x - -kr x' A-1 G, A-1 x 
CT0 

-~ v' G, v h=0, 1 . 

For G. = I , v Gn v = v'v = )""" .P. v. 9 and for G,  given by (1.27) 
~U  ~   ~ ~U ~   ~ ~ . ~~" J==-'- j ~J- - 

rv=2 £ vj vj+1. 
3-1 

(3,16) v' 6. 
J 

The number of arithmetic operations in the calculation of these quad- 

ratic forms is approximately proportional to p .  • • 

To calculate the coefficients of the unknowns in the iterative 

procedure we need 

(3.17) tr A-1 G A-1 G, = tr H'H G H'H G, ~  ~g ~  ~h      g h 

- tr F' D~2 F G F1 D~2 F G, ~ ~  ~ ~g ^ ~  -, ~n 

= tr^"1 F G F' D~1)(D~1 IG, !' D"1) 

The forward procedure F can be applied to each G  on the left and 
~ * ~g 

F1 on the right followed by D   on the right and left to obtain the 

-1      ,  -1 symmetric matrix D  F G F' D  . However, in this case of m = 1 , 
~ ~g ~ 

—1        —1 
the form of E  = (l/art)A   is known and ~       u ~ 

(3.18) tr E_1 G E"1 G, = -\ tr A-1 G A"1 GU ~g -  ~h   2      ~g ~  ~h 
°0 

can be computed directly.  See Shaman (1969). 

The matrix G-  can be written 

(3.19) G = P A. P1 , 
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where the orthogonal matrix P is 

(3.20) ? = /FT (Siniä)> 

and the diagonal matrix A has 2 cos irj/(p+l) as its j-th diagonal 

element» [See Section 6.5.4 of T. W. Anderson (1971).] Then the quan- 

tities (3.18) can also be written 

(3.21) -% tr A"1 Go  A"1 G, = -\ tr[I + p Gj"1 G [I + p G ]~1 G 

- -\ tr[PP' + p P A P'J  PAP' [PP1 + p P A1 P'J  P A P1 

0 . 

= -4 tr[P(I + p AJP«]"1 P A P* [P(I + p A^P'j""1 P A P' 
ao 

= -4 tr P(I + p A.)"1 P'P A P'P(I + p A,)"1 P'P A, P 
ao 

= ~ tr(I + p A^-1 A„. (I + p A- )_1 A, ,     g, h-0, 1, 
ä      -v      «vX     «w2  ~      -^X     «wll 

where AQ = I . Then 

-1 „ .-1 (3.22)        tr A~X  Gn A""
x Gn « 7 0 ~  ~0   ~r /, . „     Tri  s2 s 

j=l (l+2p cos -£j- ) 

i     i       p     2 cos —-j- 
(3.23) tr A"1 G A-1 G = J__    E±± =• , 

-  ~° -  -1   J-l (l+2p cos JL )2 

/   2 ILL i     i       P     4 cos —7T 
(3.24) tr A_i G A_1 G - £_  ^T2 ' 

j-l (l+2p cos ^j- ) 

These sums can be approximated by integrals. The sum (3.22) is approxi- 

mated by 
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TT - 
IT 

(3.25) 
p+1 
TT 

2(p+1) 

TT 

dX 

(l+2p cos X)' 

2(p+1) 

which in turn is approximated by 

0.26) *£   [f dX ][    r i_ 
+1> L ri+2f (l+2p cos X)2  2(p+1)  L(i+2p)2  (l-2p)2- 

= £±1  f dX l+4p 

0  (l+2p cos X)2  (l-4p2)2 

2 3/2 
The first term on the right-hand side of (3.26) is  (p+l)/(l-4p ) ' 

[See Pierce (1929), Formulas 300 and 305, for example.] Then tr E 

is approximated by 

-2 

(3.27) 
a 

(P+lHl+oT) 

(1-a2)3 

2   4 
l+6a + a 

2 4 
(1-aV 

1  p - 6a 
4 

(p+2)a 

a (l-a2)4 

In a similar way (3.23) and (3.24) are approximated by 

(3.28) 4(p+l)p 

(l-4p2)3/2 
8p_ 

2 2 ' U-4pV 

(3.29) 4 (p+1) 
2 

P 
1 - 

l-8p 

(1-4P2)3'2 
l+4p 

2 2  ' U-4pV 
P +  0 , 

4P , p = 0 . 
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The 2x2 matrix of coefficients tr E~ G S~ G. (g, b=0s 1) is 
~g ~  ~h ° 

approximated by 

(3.30) _£±L 
l+a 

4    2 3 
cT (1-a )  \ -4a 

-4a 

2+8a2 - 2a4 

l+6a2 + a4   -8a(l4a2) 

4    2 4  1       2 2 
a    (1-a )   -8a(l+a )   4(l+a ) 

An alternative approach, which may be generalized to cases of m > 1  , 

is to approximate the moving average covariance matrix by the inverse of 

an autoregressive covariance matrix. The covariance matrix of the moving 

average process of order 1 may be written 

(3.31)  ^-0* 

l+a 

a 

0 

0 

l+a 

a 

0 

0 

0 

a 

l+a' 

0 

0 

0 0 

0 0 

0 0 

l+a 

a 

a 

l+a 
2I 

The matrix in the exponent of the first-order autoregressive Gaussian 

process satisfying the stochastic difference equation 

(3.32) yt + ayt_1 = ut , t = ... -1, 0, 1, 
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xs 

(3.33) 

1 a 0 

" 

14ct2 a 

0 a l+< 

ZAR 
1 

0 u 
* • 

• 
• • 

• 
• • 

1° 0 0 

0 0 0 

0 

0 

1+a 

a 

0 

0 

a 

1 

2 2 
This differs from E„. by a a E , where ~MA •       ~ 

(3.34). E = 

1 0 0 •  •  r 0 0 

0 0 0 • •  • 0 0 

0 0 0 • • • 0 0 

0 

0 

0 

0 

0 

0 

0 

0 1 / 

if o    = I/o 
u 

This fact suggests approximating 2MA by 

<3-35) £AR-!S 
a u 

l-a 

-a 

2 
a 

(-a) 
p-2 

-a 

1 

-a 

(-a) 
P-3 

a 

-a 

1 

(-a) 
p-4 

(-a)p_1 (-a)p-2 (-a)P-3 

\P~2 (-a) 

(-a) 
p-3 

a 

(-a) 

(-a) 

p-1 

p-2 

/ \P~4  / \p•3 (-ar    {-ay 

-a 

1 

2 2 
with a = 1/0 i Then 

u 
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(3-36) ~AR S> *AR " a4 ^2,3 

l+a2-a2-a2p -a[2-a2-a2p~2]   a2[3-2a2-a2p""4] 

-a[2-a2-a2p~2]   I4a2-a4-a2p 2   -a[2-a4-a2p""4] 

a2[3-2a2-a2p~4]  -a[2-a4-a2p-4]   I4a2-a6-a2p"4 

(-a)P~1[p-(p-l)a2-a2] 
•,_, 2 2 2p| 
14a -a -a Vl 

and' 

(3.37)  tr EAÜ Gn ZAD Gn = AR ~0 ~AR ~0  a4 (1_a2)4 
{p(l-a4)-2a2+2a2p+2} 

The other quantities needed E  G- £.„ , tr £._. Gn E._, G_ , and 
^ ~AR ~1 ~AR     ~AR ~1 ~AR ~0 

tr E._ G- £._, Gn  can also be computed. ~AR ~1 ~AR ~1 r 

^-1 
In the iterative procedure E. ,  is replaced by £.„ where 

a  (1+a ) is 0fi     and a a    is &.    .In situations where p 

is large and we consider limits as p-x» , we can use 

1 
(3.38) lim 

p-x» 

tr $AR ~0 ?AR 5O 

a4 (1-a2)3 * 

(3.39) lim 
p-»oo 

tr 5M Si 5M 2l  2+8a2-2a4 

~4 /-.  2N3 ' a (1-a ) 

(3.40) lim 
pr*» 

tr ^.~ G_ 2AT, G_ 
~AR ~0 ~AR ~1 -4a 

a4 (1-a2)3 ' 
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If the matrix A given by (3.1) is used in place of I = £ AR then a 

can be replaced by 1 and a/(l4ct ) by p in (3.38), (3.39), and (3.40) 

to give l/(l-4p2)3//2 and the coefficients of p+1 in (3.28) and (3.29), 

respectively. These values agree with the limit of 1/p times (3.30). 

(3.41) 
ri = C0 ' 

wnere^ 

(3.42) 
x  T-h 

Ch = T=h 2Z Xj xj+h 

x' G, x 
~h ~ 
2 

tr G* 
~n. 

This is a consistent estimate of p as p-*00 . The estimates C_ 

and C. are the unbiased estimates of an and 01  obtained from 

(2.6) with 0=1. 

3.2. Case of Higher-Order Moving Average Process. Let p, 

and let the p x p matrix  (l/afi)E be 

ah/a0 

(3.43) A = 

1 

m m-1 

m 

Jm-2 

m-1 

m 

Jm-1 

Jm-2 

1 

Pi 

m 

Jm-1 
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which has 0's m+1 and more positions above and below the main diagonal 

(m < p) . Consider again the forward solution of a method of pivotal 

condensation or successive elimination. We represent this as the multi- 

plication of A on the left by F = F F - ... F_ F1 , where F- = I . 

In one procedure F„ represents subtracting p..  times the first row 

of F A = A from the second, p„ times the first row from the third, 

... , and p  times the first row from the (m+l)st. Then F„ F, A 
m ~Z  ~1 ~ 

has all O's in the first column below the first entry. Before the 

j-th step F. n ...FA has all O's in the first j-1 columns 

below the main diagonal. F. represents subtracting multiples of the 

(j-l)st row of F. .. ... F. A from the i-th , (j+l)st, ... , (i-hn-l)st 

rows in order that the j-th column have only O's below the main 

(i-1) (i-1) diagonal. Let a.,    be the i, k-th element of A J   = F„ n ... Fn A 
iK ~       ~3~~ J-    ~1 ~ 

Then 

(3.44) F. = 

I 0 0 2 
0 1 0 0 

0 f. I 0 ^ ~3 ~* — 
0 0 0 I 

where the I's are of order j-2, m, and p+l-j-m , respectively, and 

(3.45) f. = - 

a(J-D 
aj-l,j-l 

m 
,(j-D 
lj-l,j-l 

j=2, ... , p-m+1 ; 
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for j - p-m+2, ... , p , f. consists of the first p-j+1 components 
~j 

of (3.45). Thus F. consists of the identity with (at most) m non- 

zero elements below the main diagonal in the (j-l)st column. 

The operations can be done in another order. Then F„ represents 

subtracting p.,  times the first row of F. A = A from the second; F„ 

represents subtracting appropriate multiples of the first two rows of 

F. F1 A from the third row to obtain O's to the left of the diagonal 

elements in the third row of F F0 F, A . Before the j-th step 
-••... ~j  ~<s ~JL ~ 

F. .. ... F- A has O's in the first j-1 rows to the left of the main 

diagonal and the remaining p-j+1 rows of F , ... F.. A are the same 

as those of A . F. represents subtracting appropriate multiples of 

the (j-m)th, (j-m+l)st, ... , (j-l)st rows of F ..... F- A in turn 
~j—1    ~1 ~ 

to make the (j-m)th, (j-m+l)st, ... , (j-l)st elements of the j-th 

row of F. ... F- A zero. Thus F. consists of the identity with (at 
~J    -1 - ~J 

most) m nonzero elements to the left of the main diagonal in the j—th 

row. 

The calculation of Hx is done by 

(3.46) w = Fx = F F , ... F, F. x . ~   ~~   ~p ~p-l     ~L   ~± ~ 

Let 

(3.47) w(j) = F. w(j~1) . 

Then w = w p  .  In the first sequence of operations in (3.47) wV3 

w.J    for i=l,. ... , j-1 , 
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(3.48) wfj) - wfJ"*15  - f9]  .  wP'T1)   , i=j,   ...   , j+m-1  , v                             i            i        •     • i,j-l   -j-1 

w(j)  = wp"1^ .= x.   ,   i = j4m,   ...   ,  p  ;     if    j  = p-m+2,   ...   ,  p     (3,4P) 

(i) holds for    i~j,   ...., p  .    Thus    w imputed successively. 

Next let 

_2 
(3.49) u = D      w 

and 

(3.50) v = F1  u = F'  F'   ...  FT   ,  F1  u  . ^ ~1  ~2 ~p-l  ~p  ~ 

The operation  (3.50) can be done sequentially 

(3.51) y(j) = Fj v(j+1)   , j=p,   ...   ,  1  , 

. (p+1) ,       (1) where    vXK        = u    and    v        = v  „ Then 

(3.52) x«   S•1 6.   T'1 x = -~x<  A"1 G^ A•1 x ~    ~       ~n -       ~ 2 ~    ~      ~n ~       ~ 
0 

— v' 

°0 
2 ~     ~h ~   ' ^~®9   "*" >   * * *   ' m 

For    So = J ' y'  9o V = 5H -j=i Yj     and for    Gfe   given by  (1.27),   (1.28), 

3-h 

i=l      J 
(3s53) .!'  ?hI

=2    >__   vj  vj+h  , h=l,   ...   , m 

The number of arithmetic operations is approximately proportional to 

mp . 
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As indicated for the case m=l the coefficients of 8nl 8.  8 0  1       m 

can be calculated from the forward solution according to (3.17) and (3.18). 

The approximations to tr A  G A  G,  presented for the case m=l 
• ~g ~  ~h 

can be extended. The matrix G,  is approximately 2 A,  treated in 

Section 6.5.4 of T. W. Anderson (1971). Then G,  is approximately 

Pip , where A,  is a diagonal matrix with 2 cos hjTr/(p+i)  as its 

j-th diagonal elements.  (P1 GQ  P1 = P'P = I , P1 GL P1 = A  diagonal 

and P' G, P is A,  diagonal plus a matrix relatively small, j=2, ... , m .) 

Then we have the approximations 

(3.54)  tr A"1 G. A""1 6n 

(3.55)  tr A•1 GQ A"
1 G ~ 2 )_ 

^JL— 1 
/___    " 
j-l (i + 2 n: ph. cos sgL >2 

h=i h   p+i 

TT 

P+1 r    2 (p+i)                 dX 

IT 1                           m                 ? 
/           y„ ...              /'It,'?      \"              n       r-i-io    ll-.'S ~* '       2(p+1)    • Cl   1   2    ,  ^    ph cos Ah) 

gjIT 
„P_ 

2    > 
j-1 

cos t+I 

(1 + 2    *T"    cos ^~ )2 

h=i        p+1 

IT 

2  P+1 

TT 

r      2<P+1>                          i     -.1 C                                  cos Ag dA 
1                                              m 
/         ,., .".,,.,            l-\     |,   o      \              J1.1D    Tili^ 

•J      2 (p+1)       (1   '   2    /—-    C0S Ah) 

h=l 

g=l, ... , m 
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flTT gjTT 
^ ti o   ... -ft   i.   r» n> Q   AiSad—• 

(3.56)       tr A-1 Gf A*"1 G    - 4    £Z 
_-, _-, J_ cos T+T cos T+l 

~ I ~       ~g ^—— m 
j=1     (1 + 2    YZ   cos^)2 

h=l P+1 

TT 
7]-   _ 

> 

2(p+1) 
A P+l       I cos Xf cos Xg dX 

J     2lk> (1 + 2    ri    cos Xh)2 

r,  g—x s   «»•   j m • 

In the integrals cos k can be written as a polynomial in cos X of 

degree k . 

As in the case of m=l , the covariance matrix 2M& of the moving 

average process of order m can be approximated by ¥._ , the matrix 

in the exponent of the normal distribution of the Gaussian autoregressive 

process of order m . Then S   is approximated by ¥.  = E._ 9 whose 

elements are the covariances of the autoregressive process.  If the 

roots of (1.32) are different^ says z.„ ... . z      then the i,i-th 
1       m 

element of E •  can be written 
~AR 

m      i . . I 

(3.57) 0AR(i-^-^ \Zh  ' • 
h=l 

for suitable constants k.., ... , k, .  [See T. W. Anderson (1971), 

2 
Section 5.2.2..J Then the i, i-th element of S.  can be written 

i-1   m 

j=l j=l g,h=l  e 

J2_   m +iz n k-^yrsr1 
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gjh=i   8 *\ i - Yh 

and 

(3.59)  tr f^ , t:     a^Ci-J) 

m        p(l + zgzh) - 2 zgzh (1 - zgzh)/[l - (ZgZh)
P] 

g,h=l  6 1 - zgzh 

Then 

- tr E?_ = y_7"  k k.  T S-^- _ p   ~AR   '——i  g n 1 - z z p-x» F        g»h=l  &       g h 
(3.60)        llm^trEM= ^  k^ 3-^ 

This gives a method for approximating tr E  G E  G, .  If the integrals 
~   ~g ~   ~n 

in (3.54), (3.55) and (3.56) are over the interval -Tr, TT 9 they are 

identical to the evaulation of tr S._ G E._. G,  for the integrand in ~AR ~g ~AR ~h 

(3.54) is proportional to the square of the spectral density of the 

autoregressive process.  (See Theorem 8.3.3 of T. W. Anderson (1971) <,] 

We primarily want to use this approximation to obtain the coeffi- 
(j\       (J\ /4% (i—1^ 

cients of 8,:  . 8,  ..... 8    in (2.1) on the basis of cL  ' 0    1 m 0 
(i—1)        (i—1) 8-   ..... 8     . That matrix of coefficients is a consistent 
1 m 

estimate of 2 times the inverse of the covariance matrix of the 

asymptotic normal distribution of the asymptotically efficient estimates. 

[See (1.10).] 

Theorem 3.1.  If f(X)    given by (1.31) is positive, then 

(3.58)  • lim - tr Z~2 - —^~j    f  -~- dX , 
jrHo P   -    (2TT)

Z
 J-K    fZ(X) 
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m m 
(3.66) Y~~      tr A G A G, z z, <    T~       tr L G L G, z z, 

g,h=0      e     °     g,h=0      ö     ö 

for any symmetric matrices G~, &,,..., G 

Proof. Let F be a nonsingular matrix such that 

(3.67) L = FF' , 

(3.68) A - FAF' , 

where A is diagonal with diagonal elements <$,,, ... , 6  .  I See 
~ ±l       pp 

Problem 30, Chapter 6, T. W. Anderson (1971) or Theorem 3, page 341, 

T. W. Anderson (1958).J Then 

(3.69) 0 < 6 <  1 , i=l, ... , p . 

Let H = Y~~   mA z  G .  Then ~ L  g=0  g~g 

m 
(3.70) Y~  tr L G L G, z z.      = tr FF* H FF8 H 

g^O   " ~8 ~ ~h 8 h      

= tr F! H FF' H F 

= tr K2 

= f~      k2 
i,j=l   J 

where K = F' H F .  Similarly 

. m 

(3.71) y~  tr A G A G, z z^     = tr F A F' H F A F! H 
;th^0    ~ ~8 ~ ~h 8 h.      ~ ~ ~ ~ ~ 

= tr A F' H F A F' H F 

= tr A K A K 

±TI=i    lx  i;l   J3 
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(3.59)      lim-tr Z"1 G    Z-1 = —^~      f       c°s Xg dX  , g=l,   ...   ,m 
B-*«, P       ~     ~8 ~ <2ir>4     J-ir    fz(X) 

7T 
/o   tr>\        i •  '  1  ^     v~l ^     V-1 o 1 f      cos  Xg  cos  Ah   ,, (3.60) lxm — tr E  G Z  G, =  r     50  dX , 

p^»P  .-•  ~S ~  ~h  (27T)2 • J_T .  f2(X) 

g, h=l, ... , m . 

Proof. The proof is along the lines of the proof of Theorem 10.2.7 

of T. W. Anderson (1971). The spectral density f(X) is continuous. 

Therefore, for arbitrary e > 0 there exist autoregressive processes 

with covariance matrices E_  and Z_  and (positive) spectral densities 

f (X) and fTT(X) , respectively, such that 
Li U 

(3.61) fL(X) < f(X) < fD(X) , -TT<X<TT, 

(3-62)      f7(xT " Oxy - e »IT < x < IT . 

Then, by Lemma 10.2.6 of T. W. Anderson (1971), 

(3.63) x' EL x £x
! £ x <  xf ly x , 

(3.64) x' E"1 x < x' E"1 x < x' Er1 x , 

for all x ; • here Et  and ETT are the p x p covariance matrices 

corresponding to fT(X) and f„(X) , respectively. 
Jj u 

Lemma 3.1.  If for A positive semidefinite and L positive 

definite 

(3.65) x' A x < x' L x 

for all x , then 
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Since S   .  <_ 1 , (3.71) is less than or equal to (3.70). This proves 

the lemma. 

It follows from the lemma that 

m       ,     , m       -    _- 
(3.72) y~~  tr 2T~ G S„ y y, < XL  tr E  G 2  GL T ^ •*-£->    ~U ~g ~U  g h— £-r—n ~  ~g ~  ~h Jg yh 

—     -1    -1 < >   tr L G E_ G y y, 
-gfh^O ~L    ~g~L    ~hygyh 

for every (yn? y«> ••• s y ) • Then for B defined by (87) of 

Section 10.2 of T. W. Anderson (1971) with T replaced by p , 

m - - m 

(3.73) XZ      tr g1 C    E"1 G    y    y    -    £Z     tr 5'5 9g »'? Sh yg yh 
g,h=0 u      8    u      n   8    n     g,h=0 g g 

(8) u     K     Jh) =  XZ    EZ     bi± 
b,k 

gk£  bfl£ 
bnn gn4  y^ yh 

m,n=l 

- fz (fz fz *ik4
s)\ y

g)
2 

j,q=l    V   g=0    k,  =1       Jfc    k£       q£    g/ 

>   £   (£: f: vgk8)\ y
gf j9q=K+l    \g=0    k,£=l      JK    K        q      8/ 

5_      (H     TZ     V b    sS'a-r y ')   , 
a=K+l     \ e=0    k'  £'=0      K      Ä      3  & q x,      g/ j»q=K+l     \ g=0    k',£'=0 

where K is the order of the approximating autoregressive process. 

We have 

(3.74) g<°>'- 1 , a = b , 

= 0 , a^b, 
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(3.75) ,00 
5ab 1 , 

0 , 

"a = b + h, h > 0 , 

a f  b + h, h > 0 , 

where, a, b, and h. are integers. Then 

»TT 

'-7T 
(3 76)    Sab S 2? J„ S      dX ' 

*»> ';tf-fe •./>** 

a-b+h) . iX(a-b-h) + e JdX , h > 0 . 

If 6h = j for h=0 and 6*^ = 1 for h > 0 , then 

,, 7jn '.(h) _   h     f*  riX(a-b+h) •      iX(a-b-h),,, 
(3.78) gab    =• -jjjr    J      [e +e .        jdA.   , h=0,  1,   ...   , m 

Then l/(p-K) times the right-hand side of (3.73) is 

,     p    / m     K 
(3.79) ^    t       n    E 

P-K J,q-K+1 \ g=0 k',£«=0 V br y
g 

2TT 

5   r  ]elX[0-k')-(q-Ä')+g] +eiX[(j-k')-(q-£')-gJy dX 
-TT 

2TT 
-q) 

K 

k's£
f=0  k' 

-iXk' 

,   iA& o. 
V e    6g 

<eiAg + e-iXgidX) 

=  I    y2-   (o    V^   v 6   C  e
iX(j"q) cosA8 dX^ 

because 

(3.80) fy(X) - 
2*l EZk=0

b' 
K ,  iXki2 

k=0 k 
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Then the limit of (3.79) is 

-— i '       *— i MA+VKj-q) (3.81)     —^    ZZ     7   yhö\lta    /       f      L     2^(^10 e±< 

C2TT)       g,h=0       &    n    8    n p-x»    J^    -'-ü j,q-l    Z7Up K; 

gg£-Af c°s vN
h dX dv 

fB(X) f^v) 

-~•r T~  y y, 6 5. lim  f      k _ (A+v) 

cos Ag cos Vh „ 
f^A) .fD(v) 

dA dV • 

where 

sin2 j  (A+V)(p-K) 
(3.82) k _ (A+V) =     l 

P~K       27T(p-K) sin2 | (A+V) 

Then (3.81) is 

(3.83) _J„     Y~     yyiiita     f      J     k        (A-y)  C°S(A? f°S(uf ^ d^ 
(2ir)z    g,h=0      s    n    8    n p-*»   J-TT   J-y    pK tytA; ±uOi) 

- ~4   H   y. yh * V f   — o8 cos Xh dA (2TT)
2

    gT^O      8    h    g    h    J^ f2   (x) 

by substitution V = -y and the argument leading to Theorem 8.3.3 of 

T. W. Anderson (1971). Then 

i •  i   m - 
(3.84) i^i TZ     y y. tr E"1 G Z_1 6. 

is greater than or equal to (3.83).  Similarly 
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(3.85)     lim i JZ     yg yh 
tr f1  G f1 % 

4         1U                                 /» II i 

NT  jf jf     I COS A 

2?   z_ ye yh 
6
e 

6h   J —2 /7T  g,h=0 8  n  8  "  J-TT .f,. 

cos Xg cos Xh ,, 

f£ (X) 

Since e is arbitrary 

m 
(3.86)     lim i y~     yo  y. tr Z"1 Go l  1 G, 

m fr 
cos Xg cos Ah 4    y—        (SÄ   f        cos A 

(27T)2  gth^O '*  Yh  8  h J-7T  "' f2 (X) 
dX 

Since (3.86) holds for every set of y~, y-, ... , y , the theorem 

follows. 

It is of interest to compare this result with Theorem 8.3.3 of 

T. W. Anderson (1971) which gives the asymptotic covariances of the 

sample covariances of a stationary process with a continuous spectral 

density. The spectral density of an autoregressive process with co- 

efficients a., ... 9 a  is proportional to the reciprocal of f(X) 

for the moving average process; hence the Gaussian part of (37) of 

Section 8.3 of T. W. Anderson (1971) is proportional to the coefficient 

°f y y^ in (3.86). 
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4.  Asymptotic Theory as the Sample Size Increases 

When x,, ... , x.T are observed with  £x = U satisfying (1.2) 

and E is known, the Markov estimates of 3, > ... > 3  are the 
'.  ~ J-  ••    r 

solutions to 

(4.1)        X_I ZI •s"1 z4 $•*  - ZJ Z"1 ^ » 3=1, ... , r XT zJ £    z, 3- = z: z"-1- x.. 

In matrix notation the solution is 

(4.2) 3N = (Z« Z-1 Z)"1 Z' Z_1.xN , 

where 3W = (3,, .. • , 3 )' and 

(4.3) Z = (z , ... , z ) . 
~   ~JL      ~r 

(We use the subscript N on x„ and 3„ to emphasize the dependence 

on N .) Then the covariance of i^N (3M-3) =N ~ is 

—1  —l 
(4.4)     £[^N (3„-3)J - N £(3w-3)(3w-3)' = (Z' s"A Z)~x . 

A* 

Regardless of the distribution of X , ZN (3N~3) has a limiting normal 

distribution with mean vector 0 and covariance matrix (4.4)9 because 

/N (x^-y) has a limiting normal distribution. 

If Z is unknown, let us suppose that we have a consistent esti- 

mate Z„ of Z . Consider the estimate ~N 

Then 
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(4.6) /S (3J-3) - v¥ I3J-3 - (ßN-ß)l 

= t(z! E:.
1
 Z)"1 Z' fc1 - (Z5 E"

1
 Z)"1 Z' E"

1
] /N (x.rZ$) 

converges stochastically to    0    because 

(4.7) plim (Z' E"1 Z)-1 Z' E"1 = (Z' E"1 Z)"1 Z' S"1 

If*»   ~  ~ 

and /N CJL-Z3) = >^N (x_T-u) has a limiting distribution. Thus /Ä (3?T-3) 

has a limiting normal distribution with mean 0 and covariance matrix 

(Z' E  Z)  , which is the same as the limiting normal distribution of 

3W .  If 3„ is asymptotically efficient,then 3A is (in the same sense). 

In particular, when 3N is maximum likelihood, as when X has a normal 

distribution, it is asymptotically efficient in the sense of attaining 

the Cramer-Rao lower bound for the covariance matrix of unbiased estimates. 

We summarize the result. 

Theorem 4.1. Let xn , ... , x  be identically distributed with mean 

t„ X - Zß and covariance matrix E and let E„ be a consistent estimate 
i° ~      ~~     •  ~   ~N —•  

°t    2 •  Then, if 3* is given by (4.5),  /ij (3*-3) has a limiting 

-1-1 " normal distribution with covariance matrix (Z E  Z)  .If 3• given 
— . _  ^ _  ^      — ^j^j ii  

by (4.2) is asymptotically efficient, so is 3$, . 

We now apply the result to the estimation of 0«, 0.., ... , a 

Theorem 4.2. Let x., .... , x.. be N observations from N(u, E) , 

where u is known and E is given by (1.3). Let C be defined by 

(1.7). Let 60 , ft.     , ... , ö    be a consistent set of estimates 

of <7n, <?-, ... , a . Let dji    , 8; , ... , cT1** be the solutii •—  0  1       m      0    1'      m     :ion 
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to (2.1) for i=L . Then *fi" (ö^-ff ), Jx  (Ö*1*-^), ... ,VN '(6^-a ) 

have a limiting normal distribution with means 0 and coväriance matrix 

(1.10), and $2.     ,  $.  , ... ,0    are asymptotically efficient. 

—               i. >   m     (h) 
Proof.  In Theorem 1 replace x^ by C , Z3 by 2 •U_Q 

au  S   » 

E by $ , and L by #„ inserting Ö<0), a.(0), ... , ö(0) in $ . 
~     ~       ~JN     ~JN u    x m       ~ 

Then <i>  is a consistent estimate of $ and the limiting normal 

distribution follows.  Since the solutions to (1.22) are asymptotically 

efficient, the theorem follows. 

If y is unknown, it can be estimated by x , and C in Theorem 2 

can be replaced by (1/N) £  _. (x -x )(x -x^)' . .If y has the form 

(1.2), it can be estimated by )    , $. z. , where 3,» ...» 3  is a 
j-J-    j ~j i r 

solution to   (2.21).     For the asymptotic theory uses the fact that 

/E  (C-E)    has a limiting normal distribution, 

,       N _ 
(4.8) Js [C - ~   YZ    (xa-x) (xa-x)0 = ^ (x^yM^-y)', 

a=l     ~~~~ 

(4.9) VI [C-C] = SÜ (xM-y)(xw-y)' - v¥ (x.rjj) (x^)' 

and the facts that    plirn^^ x^ = y  , plim^^ ft = y  ,  and    /N (^-y) 

and    /N  (x -ft)    have limiting   (normal)  distributions. 
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5,  Estimation of the Coefficients of a Moving Average Process 

We now treat the problem of estimating the coefficients o., a., .. 

2 
a  of the moving average process (1.25) with the restriction 0=1 

replacing the restriction aQ = 1. Then 

(5.1) 

Let 

(5.2) 

Then 

m-h 

L 
g= 

a. = )  a a ., , 
h  g=o  § S4"11 

m 
M(z) = )   a z 

j-0  J 

m-j 

h—0,19 ... , m . 

(5.3) 

by (5.1). 

m 

h=-m 
ah z

h - M(z) M(z"'1) 

Let the roots of M(z) = 0, which is (1.32), be z. , ..   ,  z   .     Then '    m 

(5.4) 

and 

m 
M(z) = a     T7    (z-z.) 

j-1 J 

m 
(5.5) YZ   .c  zm+h = a? zm 

h=-m h 
m 

TT (z-zj 
j-i 

= a. 
m 

TT  <«-«,) 
j-i       3 

1 r m 
TT  (i-z z ) 

L j-i 3 

Thus, if a(m),^ 0, the 2m roots of 

(5.6) 
m 

h=-m 

_,  m+h  A ah -.  =0 

are z., ... , z , 1/z., ... , 1/z m m 
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,   ...   , a   ^ 0 are given, the set of 2m Conversely, if 0Q, cf. s 

roots of (5.6) can be partitioned into two sets of m roots each, such 

that the roots in one set are less than or equal to 1 in absolute value 

and are the roots of an equation (1.32) with real coefficients, that is, 

M(z) = 0, defined by (5.2) with real coefficients, and the roots in the 

other set are reciprocals of the respective roots in the first set. The 

roots define the coefficients in M(z) except for normalization, which 

is determined by (5.1) for k -  0.  [See Section 5.7 of T. W. Anderson 

(1971).] 

The equation (5.6) can be written 

(5.7) 
m 

A      „      m -L   X—    ~     / m+h   .     m-hN 0 " a
0 

z    +   2__   %• («        + z       ) 
h=l 

m = z 
m 

0    fcr   h 
2h  .  . z      +1 

Let 

(5.8) J. 
l      z    + 1 w =  z + — =  
z z 

that is, 

(5.9) zw =  z    + 1   . 

Then 

(5.10)      z2rw2r =  (zw)2r =  (z2+l)2r 

(z2)2r+l ,       '    2   f, 2.2r-2 _,   . •+. 2r   z       (z  ) + 1 i] + (r) i*v ; 2.2r-4 , : (z   ) +1 

+ ... + *) <*v- [uv+] + f J) 2r 

43 



'     „»   2r+l 2r+l  , ^2r+l  .  2,lN2r+l (5,11)  z    w    = (zw)    = (z +1) 

\ 
<s2)2r+l + l|  • (2r+l) ,2 [(»V1-2 + 1 

+ (
2f1) U2)2 [U2)21-*• + l]  + ••• + (2r+1) t-V P+1] 

2 s [The coefficients of  (z ) +1 in (5.10) and (5.11) are the same as 

the coefficients of A  in (16) and (17) of Section 6.5 of T. W. Anderson s 
2 s (1971).] When we solve (5.10) and (5.11) successively for  (z ) + 1, s=l, 

2S ... , m, we obtain 

(5.12)  (z2)2r+l = z2r " 2r .      2r-2 . 
W  +C2r,2W    +"-+C2r,2r 

,c ...   , 2N2r+l , ,   2r+l (5.13)  (z )    + 1 = z 2r+l .        2r-l . 
+C2r+l,2w    + •'• +c2r+ls2r^ 

where c 2r,2 c2r92r' 
C2r+1,2' •'•'•• c2r+l,2r are appropriate 

constants. Then (5.7) can be written 

(5.14)  0 = z2n {aQ + a-jW + a2 [w
2-2] 

+ ... + a2n [w
2n + c2nj2 w

2n~2 + ... + c2n>2n]} 

2n r„        2n , n 2n-l 
= Z  {a2n W  + G2n~l W + ... +aQ - 2a2+ ... +a2n c,,^} , 

m=2n 

(5.15)  0 = z2n+1 {aQ + olW + a2 [w2-2] 

+ ' • •• + °2n+l [w2n+1 + C2n+1,2 ^^ + ''• + c2n+l,2n w]} 

2n+l t„ 2n+l . „   2n L    , „   . , 
{a2n+1w   +a2nw  + ••• +^0-2a2 + ... +a2nc2n>2n} , 

m = 2n+l . 
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Solving (5.14) or (5.15) as an equation in w, we obtain m roots, 

w., , ... , w . Then solve I'm 

(5.16) z2 - w± z + 1 = 0 

for z, to obtain the roots 

(5.17) V+- /(^-i 

) , J 

' to (5.7); the pair of roots to (5.17) are reciprocals. The m roots 

I with absolute value less than or equal to 1 are the desired roots of 
I 

M(z) = 0 and the coefficients of the polynomial M(z) are the desired 

j a0> ai» ••• > a  except for a constant of proportionality. 

, We want to modify the numerical procedures discussed in Section 2. 

If 8_   , Ö-   , ... , 6 are the estimates at the i-th stage, 

let a^1-1), af1"1^ ... , S^1"1^ be the desired solution of (5.1) with 
0      1   '       m 

(i-1) the CL 's replaced by the cv    s. We want to determine the next 

[ iteration; let 

! (5.18) a£° = a^i"1) + dh, h=0, 1, ... , m . 

Then if we substitute into (2.1) with C = xx' we obtain 

i (5.19)      XZ   tr 2"1!  G    ST1.  G,   TZ    (a1f
i_1) + d )   $£Z1'> + dUj_J tjr^r ~i-l ~g -vi-1 ~f   *r-Q        h n        h+f h+f 

A-l "-l 
= x'   E    -   G    Z    -  x  , g=0,  1,   ...   , m . ~     ~x  x  ~*g  ~x—x  ~ 

) The left-hand side of (5.19) can be written 
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m Ci-1)  A    £±    ^(i-D (5.20)   -T'tr ST1.  G    E"1    G.   l®^* +   Y~    @ 
f=0 ~        ~g •"        ~ h=0 ^^"^t^V1 

= tr. :-i J5_ rJ 

3=0 

-1 ,-1. (i-D 2T , G   +   Y~      T"   tr ST , G   sT . G,  ar." 
~i-l ~g       V-TT     f—?: ~i-l ~g ~i-l ~k    i-k L. k=0 

m- 

k=0 

m 

tr ET1,   G    ST1    6.   6L(1 1}) 
~i-l ~g ~i-l ~k    j+k 

m-f 
+   y~7    tr E"1. G    ST1 • G.    >_    d,   d       '. lr—r ~i-l ~g ~i-l ~f    f—n      h    h+f 

f=0 h=0 

Using the linear terms only,, we can obtain from (5.19) the equations 

m 
(5.21)      y 

j=0 Lk=0 

~~i (1-1) y~7 tr ET , G ST , G. a. , £—-    „x-l ~g ~x-l ~k j-k 

m-J ;-i + > ~ tr ET , G ST , G. i—T: ~i-l ~e ~i-l ~k 
a 

k=0 
d. 
j 

= x1 E. , G E. , x - tr E.  'G , 
- ~x-l ~g ~i-l ~     ~i-l ~g g=0, 1, m . 

If 0n ,6..  , ... , Ö    are consistent estimates of On,  0~ ,   .... 0  , 0    1 m 0  1     ' m 
„(0)  ^(0) 

then a^ , a.  , -(0) 
, a    are consistent estimates of aft, a m 0' ~1! 

, a . 
m 

(0) If the solution to (5.21) for 1 = 0 is dn, d. , ... , d , then a„  + d», 0      1 '    m 0 0 
6L       + dn,-..., S        + d      are consistent estimates of    a„, a, . 11mm 01 » a m 

It may be expected that these estimates are asymptotically efficient as 

•p -> CO  # 

A method suggested by Durbin (1959) for estimating a,, ... , a 
1        m 

when aQ = 1 is to solve 

n-1 
(5.22) XT  c . ? • - 1-1, n 

for some n > m, , where 
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(5.23)        c4 - c  =- 2_Z 
xi x.-^ '       J=0' 1> ••• ' n ' 

and let ^ = 1. Then solve 

m 

(5.24) YZ   hf_e 
a« = ~hf > f=1* ••• ' m > 

g-1    8      f 

where 

(5.25) hg = h_g = X~ ?f ?f+g ,        g-1, ... , m . 

See T. ff. Anderson (1971), Section 5.7.2, for more explanation and dis- 

cussion. Raul Mentz has shown that the resulting estimates are approximately 

consistent and asymptotically normally distributed as p **• °°. These esti- 

mates (suitably normalized) could be used as starting values in the above 

iteration procedure. 

Since 

(5.26) plim c. = ^. , • j=0, 1, ... , m , 
p-rOO    J      J 

(5.27) plim c. = 0 , j=m+l n , 
p-x»  J 

the equations (5.22) can be replaced by 

(5.28) C* ? = c , 

where C* has the form of (1.29) with cr replaced by c , g=0, 1, ... 

m, f = (t,, ... , ? )', and c = (c,, ... , c )'. The forward solution ~    x       n       ^,1 n 

can be applied to (5.28) and the forms h«, ... , h  can be formed as 

indicated in Section 2 with p replaced by n. 

47 



REFERENCES 

Anderson, T. W. (1958), An Introduction to Multivariate Statistical 

Analysis, John Wiley & Sons, Inc., New York. 

Anderson, T. W. (1969), "Statistical inference for covariance matrices 

with linear structure", Proceedings of the Second International 

Symposium on Multivariate Analysis (P. R. Krishnaiah, ed.), Academic 

Press, Inc., New York, 1969, pp. 55-66. 

Anderson, T. W. (1970), "Estimation of covariance matrices which are 

linear combinations or whose inverses are linear combinations of 

given matrices", Essays in Probability and Statistics, University 

of North Carolina Press, Chapel Hill, 1970, pp. 1-24. Also Technical 

Report No. 3, 1966, Contract AF 41(609)-2653, Teacher's College, 

Columbia University. 

Anderson, T. W. (1971), The Statistical Analysis of Time Series, John 

Wiley & Sons, Inc., New York. 

Durbin, J. (1959), "Efficient estimation of parameters in moving-average 

models", J. Roy. Statist. Soc. Ser. B, 22, pp. 139-153. 

Hartley, H. 0. and J. N. K. Rao, "Maximum likelihood estimator for the 

mixed analysis of variance model", Biometrika, 54, pp. 93-108. 

Shaman, P. (1969), "On the inverse of the covariance matrix of a first 

order moving average", Biometrika, 56, pp. 595-608. 

48 



^CLASSIFIED 
Secutity Ciassificstlesi 

DOCUMENT CONTROL Ö&TA - R&D 
eh» oraira/f raport I® tgfoeisllteig) 

DEPARTMENT;OF STATISTICS 
STANFORD UNIVERSITY    CALIFORNIA 

2 a. RSPORT SKfJJMITV   C LASSIFICATIOM 

til. ©ROUE» 

S. REPORT TITLS     ' .     ' ••.•••-• 

ESTIMATION OF COVARIANCE MATRICES WITH LINEAR STRUCTURE AND MOVING AVERAGE 
PROCESSES OF FINITE ORDER 

irDiKHif?iwHmSW^^f^^Xr^'^^^^^^ 

J^fflJXlALJBMBi. 
5. AUTHORf« (t&at none, limits 

ANDERSON,   T:.W. 

, Initial) 

6. REPORT DATS 

OCTOBER 29,. 1971 
7S. TOTAb H@. OP PASES 

48       . 
7b. NO. Of SM 

7 
6*.   CONTRACT OR SHANT NO. 

N00014-67-A-0112-0030 
b.   PROJECT NO. 

.NR-042-034 

Be. ©TO®IMÄT©P8»8 REPORT NUMSKRfS.) 

#6 

9 b. OTHER HSä»SKf NO^J fAssjf oOtottumhatm that may be aatl&iatl &H» 

tB. AyAILABILlTV/UMITATJON NOTICES 

Reproduction in whole or in part is permitted for any purpose of 
the United States Government 

U.SUPPLEMENTARY NOTES 13. SPOMSORINO MIUTARY ACTIVITY 

OFFICE OF NAVAL RESEARCH 
ARLINGTON, VIRGINIA 

13. ABSTRACT, 

One or more observations are made on a random vector, whose co- 

variance matrix may be a linear combination of known symmetric matrices 

and whose mean vector may be a linear combination of known vectors; the 

coefficients of the linear combinations are unknown parameters to be 

estimated. Under the assumption of normality equations are developed 

for the maximum likelihood estimates» The solution of these equations 

by iterative methods is indicated. A sequence of observations on a 

moving-average process of finite order may be considered as an observa- 

; tion ona"random vector whose covariance matrix has the linear structure. 

The general method of estimation applied to this problem is particularly 

easy to compute» 

DO /Ä 1473 J 
UNCLASSIFIED 

Seetsdfy Classification 



UNCLASSIFIED 

maximum likelihood estimates 

covariarice matrices 

multivariate normal distribution 

moving average process 

asymptotically efficient estimates 

iterative computations 

i-IMK A 
RÖI.B 

-UUK C 

INSTRUCTIONS 

1.  ORIGINATING ACTIVITY:   Esisw the name and address 
•3? the csiBSTBOtor, Bisfocoairacior, grantee1, Department of De- 
fense asüvlty or other organisation (cefpofsfo suitor) issuing 
the rs;>art. 
2<a.  REPORT SECUHTY CLASSIFICATION:   Enter the over- 
ell security classification of the report.   Indicate whether 
"Restricted Dßts" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 
2b.  GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual«  Enter 
the group number.   Also, when applicable, show that optional 
markings have been u3ed for Group 3 and Group 4 as author- 
ised.' 

3. REPORT TITLE:   Enter the complete report title in all 
capital Setters.   Titles in all cases should be unclassified, 
If s meaningful title cannot be selected without classifica- 
tion, show title'Classification in all capitals in parenthesis 
immediately following the title. 
4. DESCRIPTIVE NOTES:   If appropriate, enter the type of • 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 
5. AUTHOR(S):   Enter the name(u) of authors) as shown on 
or In the report.   Enter last name, first name, middle initial. 
If military, show rank end branch of service.   The name of 
the principal author is on absolute minimum requirement 
6. REPORT DATE:   Enter tine date of the report as day, 
month, year, or month, year.   If more than one date appears 
on the report, use date of publication. 
7B.   TOTAL NUMBER OF PAGES:   The total page count 
should follow tiormal pagination procedures, i.e., enter the 
number of pages containing information. 
'lb.   NUMBER OF REFERENCES   Enter the total number of 
references cited in the report. 
Sa.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written,      . ,     • 
86, Be, äs Bet. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc 
5a.  ORIGINATOR'S REPORT NUMBER(S):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.   This number must 
be unique to this report. 
92>. OTHER. REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using otsndssd statements' 
each as: *       ' 

(1) "Qualified requesters may obtain copies of this 
report from DDC." 

(2) -"Foreign announcement and dissemination o? this i 
report by BBC is not authorized." 

(3) "II S. Government agencies may obtain copies of 
this report dkectly from ÖDC   Other qualified DDC 
users shall request through 

it 

(4) "U. S. military agencies may obtain copies of this 
report directly from DDC   Othe? qualified users 
shall request through 

(5) "All distribution of this report is controlled 
ified DDC users shall request through 

QuaX- 

II the report has been furnished to the Office cf Technical 
Services, Department of Commerce, for sals to the public, indi- 
cate this fact and enter the price, if known. 
1L SUPPLEMENTARY KOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing lor) the research and development.   Include addreaa. 
13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.   Each paragraph of the abstract shall end '«riö» 
an indication of the military security classification of the in- 
formation in the paragraph* represented as (TS), (S), (C), or (V). 

There is no limitation on the length of the abstract.   How- 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:   Key words are technically meaningful terms 
or short phrases that characterize a report and may be used aa 
index entries for cataloging the report.   Key words must be 
selected so that no security classification is required.   Identi-    i 
flers, such as equipment model designation, trade name, military | 
project code name, geographic location, may be used as key ! 

words but will be followed by an indication of technical con- 
test.   The assignment of links, roles, and weights is optional. 

t JAN 34 

nsmi&xQjtrmeB&i&i&xwBsitmatsxzmssi 

Unclassified 

Security Clßsslßcatioa 


