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_i.- Introduction and Review of Earlier Work.

This paper'deaIS-with estimation problems in which one or more
:observatipns are made on .a p-component vector - X with mean vector

¢ X =y and covariance matrix

@y P& = EEWEW =L,

where U and I may have linear structure. The mean U may be a

linear combination

S . By 24

.
]
=

of known p-component vectors, Zys eee s zr , which are assumed (for

~

convenience) to be linearly independent. The covariance matrix

may be a linear combination

o G
g ~8

Me

L.3). L =

62
il
(=]

df known symmetric p x p matrices 90’ gl’ = iolehs gm » which are
assumed to be linearly independent; it is also assumed that there is
at least one set Ogs 015 ¢ s cm such that (1.3) is positive
definite. The coefficients Bl’ 3 55y up Br and Oys Ops *=+ 5 O are
parameters.

If § is known or known to within a constaﬁt of proportionality
and one observation X is méde on § s the model is the familiar one

of regression analysis. The best linear unbiased estimates or Markov

estimates of ° Bl, aSelal s Br are the solutions to the normal equations



& 0y 2 itz B o=zix, J=1, een s T

~

If X "has a normal distribution, (1.4) are the likelihood equations,
§btained by setting equal £6 0 the derivatives of the likelihood
”function with respect to Bl’_"' ,'Br , and the solution constitutes
‘the maximum likelihood estimates. in any case the estimates are
unbiased, é,gi = Bi , i=l, ... , r , and the covariance matrix of

the estimates is

-1 -1
) z, .

[z!

|
~1

(1.5) (%G, 6]

If there are N observations on X , say X

IR the best

linear unbiased estimates and maximum likelihood estimates under nor-

mality are the solution to (1l.4) with x replaced by the sample mean

(1.6)

|
il

2=

M=

xa,
=1

and the covariance matrix of the éStimates is 1/N times (1.5).
Estimation of Gn, O, ++. 5 O_ was considered by T. W. Anderson*
0 1 m

(1969),<(1970)'When.several observations were made on X and u was

~

completely'unspecified; In this present review we shall assume initially that

1 1is known and suitably modify the statements of the earlier papers.
We assume that X has a normal distribution and that there are N

observations 'xl, ees » Xg OD X. (N is not necessarily as large

as p ; in fact, N may be 1 in some cases.) Let

* The 1970 paper was written first, but there was a delay of four years
- 'betweén its receipt by the editors and its publication.

R
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(l,?) : C= %N g;; tfa_g)(§a_g)' .

Then maximum likelihood estimates of 00, Gl, oo s Gm are a solution

of the likelihood equationé

m -1 ' m =1 Tm_ -1
(1.8) tr(% % 911) G ™ tr(-: % gh) .Sg(é—— % gh) '

these equations result from setting equal to 0 the derivatives of the

likelihood function with respect to 0., O., cee s 0O . There is at
0 1 m

least one solution 8., 8., ... , 8 to (1.8) such that
: 0 m

1’

. A m
(1.9) I=yY 8 6
~ g=0 g ~8

is positive definite. (The argument given by T. W. Anderson in (1970)
was stated for ¢ positive definite, but that assumption is not needed

in general. If there is more than one solution to the

. likelihood equations, the absolute maximum to the likelihood function

. N
is attained by the solution minimizing l§l . The estimates
60, 61,:.a. s Gm are consistent and asymptotically efficient as Noo ;
YN (Gomco), VN (61-01), cee s Zﬁ (6m—6m) have a limiting normal distri-

bution with means 0 and covariance matrix
-1 =
(1.10) D5 tr I gh§ gg] .

These results follow from the usual asymptotic theory of maximum like-

lihood estimates.
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Now let us consider the estimation problem when both U given
by (1.2) and I given by (1.3) are unknown; We are to estimate
By ...-,.Br' and 0y, gy cee s Op e When X. is normally distri- |

buted and xl,'...., Xy ave observed, the likelihood equations are 2

(1.11) E S:'] §-1 Si §1 = E:'j E—l g ’ J"—'l’ cee 3 T 1

e m . -1 L -1 L -1 A :
(1.12) tr( 8, h) G = tr(: 8, gh) gg(g 8, ~h) ¢ ]

where .
- A, N o w
(1.13) c=% 2 G MHEM,
o=1 |
. Y A .
(1.14) | fl = o Bz

and I is given by (1.9). Then the estimates are consistent and
’ . o »H ~
asymptotically efficient as MN>® . Moreover, ¥N (81-31), Shoe ,‘/ﬁ_(Br—Br)
and Jﬁ 6y-0) » N (6,0, , ... , /N (8 -0 ) have a limiting
normal distribution in which the two sets are independent and each set
has the covariance matrix given previously, (1.5) and (1.10). (We ]

: . A ~ N
note in passing that asymptotically as N> , C, C, and (1/N) z =1
(XQQE)C%xég)v are equivalent; replacement of C in (1.12) by the
last matrix above represents a simplification of the equations.)

The relation between the estimation of B,, ... , B_ and

1 T

Ogs Ops +ee 5 O separately was indicated by T. W. Anderson (1969).
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Consider (1.'4) for 2 known and comsider (1.8) for U known. In the

case of normality the covariance between the i,j-th and k,%-th elements

of C is' .
(1.15) Co?(c - ) = l-(o c., +0,, 0..)
. i3° ke TN Vik T30 if "k
Let
. (h)
€11 %11 811
, (h)
€22 922 Y
. 0
1.16 c = c g = o = (
SRR PP >~ PP > En ®pp ’
(h)
12 %12 812
(h)
C g
p-1, p p-1, p -1, p

whgre gh = (gﬁ;)) . Then ;f;g =0 and (1.3) can be written as'

e

@.17) | g =

O, 8 >
ho P "B
which is of the form (1.2) with U replaced by O, 61, 500 ¢ Br
replaced by UO’ 01, 500§ Gm s El’ 500 5 Er replaced by §0, gl, 9GO & gn R
and %X =U by ‘¢c=0. Then (1.15) can be written as
(1.18) | %(c) = E(c=0)(c-0) = ¢,
whgre ®.= (¢ij,k£) for i<3j, k<4 and

~
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15,00 T F O %gp F %49 i) 18, k28

_(1.19)

) ﬁ replaced by

O

(1.18) is of the form (1.1) with X replaced by
G, and I replaced by o .

It was shown by T. W. Anderson (1969) that-

(1.20) . g

©o
tn
il
e
t
H
[ ne ]
[
[ne]
e}
“we

that_is;.Ehe bilinéar‘form on the left-hand side of (1.20) ies algebrai-
call&nidentical tb the ?ight—hand'si&e, which is a form appearing in
the likelihood equafions for 60, 61, e Gm . Substitution of _§g
for . c in (1.20) yields

# I 1 _1 =1 _1 i "‘1 .
(1.21) - &h ? gg s tE § gh § gg *
Thus the "normal equations"
= -1 -1
(1.22) ) ._gé o g¢ 6f = gﬁ Dote , h=0,1, ... , m,
' £f=0 g - .
are identical to the equations
’ = -1 -1
(1.23) ) B tr TG 5 G
: £=0
= tr Z_l Gg Z‘l C 5 g=0, 1, ... , m,

If the equations (1.23) were available, they would give "estimates"
which were linear in C' and unbiased, and among such "estimates" they
" would have minimum variance. (Since C 1is sufficient for X , these

would be minimum variance unbiased "estimates" of O., O,y eee 5 O o)
) : 0 1 m

L —
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The covariance matrix of the "estimates" would be 1/N times (1.10);

However, these "estimates' are unavailable since I is unknown; in

fact, ‘the probleﬁ is to estimate I .

The likelihood equations (1.8) for 60, 61, RN 6m can be

written

m A~ ~ ~ :
1.24) 3 tr-g“lggglgf6f=tr§ G IhC, g0, 1, ... ,m,

- by multiplying the left-hand side of (1.8) by I f-z' % 6.6 Z—l .

£=0 °f ~f <
These .equations are similar to (1.23), but I in (1.23) has been

- replaced by L . As will be shown later, the form (1.23) suggests

computational procedures and asymptotic properties.
One of the probability models in which the covariance matrix has
the form (1.3) is a moving average statidnary stochastic process of

finite order. Let

. m '
(1025) Xt = E— Otg Vt_g 'Y t = cee _l, 0’ 1, -.’9 'y
. g=0.
wher tv. =0 v2 = 02 d ¢ =0, t# Th % =0
e - s & - . an vt vS = ~ s . en x =
and
g, =0
(1.26) n T %n T exX Xy

1
Q
[V
Q
e

g Ygt+h ° h=0, 1, ... , m ,

It
o
A J

h=m+'l’ cee o

The vector X = (x;, «.. xp)' has the covariance matrix (1.3) with

=1,



0 . I 0 0 =1 0
1 0 1 0 o 0
. 0 1 0 1 aite 0
(1.27) 91 L 0 0 1 o LI B 0 F]
0 0 0 0 oo 0
0 0 1 0 o5 0
0 0 0 1 b 0
‘ [.1- 0, %0 Q" =.,..~"0
(1,28) -92 = 0 '1n1 0 0 a0 0 s
\ 0 0 0 0 e 0
etc. Then
co cl G ”qm 0 VoL 0
cl co oo cm_l cm o oo 0
(1'29) E = . . a 0
. G Um-l * o O G:O 0-1 o e 0
0 Gm i cl co o oa 0
0 o LN . 0 0 o s 0 G

When 00’ Gl, PER Gm are defined by (1,26) for real Ogs Ogs eee s O s

02 > 0, % given by (1.19) is positive definite (of any order).



——

e

=5

—

S

N

If x= (xl, N0 £ kp)' is observed, the maximum likelihood estimates

of Ogs Oys +oe » O are defined by (1.8) or (1.24) where C = xx'

-~

(for $ =0 and N = 1), . Then the right-hand side of (1.8) and (1.24)

~ .~

is
(1.30)' | tr Z_l Gg Z—l {X’ = 5‘ Z—l G Zfl X .

Iﬁ thg case of the moving ;verage model one may be interested in
the parémeters al, ey qm s 02 , with ao =1 ., If the estimates
60, 61, ,ﬂ; ) le are such that the estimated c¢ovariance matrix obtained
12 vee Qm is

positive definite for (1.29) of every order, then the estimate of the

by~rep1acing Ogs Oy see s O in (1.29) by 80, 8

spectral density

m

(1.31) £QA) = Gg cos Ag

Sl

g=-m

is positive and the equations (1.26) with 00, 01, 500 0 qm replaced
by 60, 61, oo b Gm and .al, ses , 0 and 02 replaced by ﬁi, cee s
62 qan'be solved for .&1, LTl s Qm 5 62 > 0 . The polynomial equation

associated with the moving average (1.25) is
(1.32) Y e B-0.
. g=0 8

If the roots are required to be not greater than one in absolute wvalue,

g .

dl,,... > O and 02 are uniquely determined by Ogs Oy eer s O

[See Section 5.7 of T. W. Anderson (1971).]



In this.case of fhe time séries problem where N =1, we.aré
interested in the asymptotic theory when. o> , These properties will
be studiéd later.

It was poiﬁted out by T. W. Anderson (1969); (1970) that the model
described above.is appropriate for many probleﬁs of the analysis of

variance. For example, let

(1.33) Xid. = U +. (lli-li) + uOt + vid. s :.t=l’ eee 3 P »
' o=1l, ... , N,
. et ) _ : - ' - 2 _ 2 w2 _ L2
whére U E i=1 }.li/p.. 5 éua_ o, ‘ﬁvia 200, ‘g,ua =0, &V, =0, 0

1 ]

'-. &
and all u,'s and Vig S independent. Then, E.x,ia ny and the

covariancg matrix of Eygs o s xpa is given by (1.3) with 90 =1
and G, = €' , where €= (1, ..., 1)' . This is a mixed model in
the analysis of variance. The overall mean is U , the (ui-ﬂ)'s -are
the fixed factor effects andlthe ua'é are the random factor effécts.
The factor analysis model when the factor loadings are knowp was
-gtudied by T. W. Ahderson (1970). This model is particularly appro-
priate for one form of Guttman's quasi-simplex.
Hartley and Rao (1967) have given the derivafiva equations (1.4)
and (1.85 for N =1 when 90’ gl’ S, gm are generated by models
of the analysis of variance. Their proposals for solution are different

from the one presented by T. W. Anderson (1970) and the one presented in

Section 2 of this. paper. Other references were given by T. W. Anderson -

(1969), (1970).

10
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2., Computation of Estimates for Covariance Matrices

The set of equétions (1.24)'suggests an iterative method of solving

o ~ ' 0 0 0
the likelihood equations, for 80, 8 8ﬁ . Let 85 ), 8{ ), L 8; )

l, s 00 9

be an initial set of values; these may be values given a priori or they

'may be estimates obtained in another way. Let 8(1) 6{12 S Gél) be

the solutions to

m ~ A
- -1 -1
(2.1) .E - tr Zi 1 g El*l Ce ﬁf = tr §i-l gg §1—1 C, g0,1, ... ,m,
. rom

' ' i=1, 2 .

where
~ m .

(2.2) - ’ : Do = > 8(1 1 G, , i=1l, 2, ... .

_ i-1 E;E h ~h

The equations (2.1) can also be written

m N ~ .
-1 -1
] o % i ==
(2.3 —-—f5=0 8 24-1 &f O s %51 ¢ > g=0, 1, ..., m,
where @iwl is formed from 21-1 as & is formed from T .

Lemma 2.1. If § 'hzo oy Gh ig nonsingular

(2.4)- » [tr (ht:): o, G ) (721__ %, ‘3) - ‘Ef]

=0

is positive definite.

’

Proof. For (yo, Yys eoe ym) ¢ (0, 0, ... , 0)

m - m
@.5) Y tr (Z ohc)‘l (3—— 5 ch) oy v,
- g, =0 h=0 A ~

i
rt
s
1
—
[
Q

v I ] [ e e’

11



because 90’ 91’ eee 5 G are linearly inde_pendent° Q.E.D.

~T
If Zi—l is positive definite, the matrix of the éoefficients of
60, 81, cos ,'3m on the left-hand side of (2.1) is positive definite,

and hence there is a unique solution. (The iterafive procedure suggesﬁéd
here can be considered as an approximation to fhe procedure proposed by
T.lw. Anderson (1970) on page 6; the present propo;al is computationally
simpler,an iﬁé properties can be studied more easily.) The iteration
may be stOpﬁed at the i-th stage if 851), Gfi), cee 3;1) does not

(1-1) gU-1) (D)
0 ? 8l ? k 8m '

differ by much from &
Since | ‘5;9 = § , given by (1.3), unbiased estimates of 60, Gl, o siolits
cm can be obtained as the solutions to
m o

(2.6) 2_6.tr06 06 =tr06 0C, g0, 1, ... , m,

for an arbitrary positive definite matrix . These estimates (under

@

normality) have covariances

: ' m : .
@.7)  B@,8) =% 3 P u8d o o trec 0c
g h,i,k,%=0 ~

' ®

A
L@
o

where (mfh) = (mfh).—l and

(2.8) . Mgy = tr 0 gf ngh 5 £, h=0, 1, ... , m .

As N>, these estimates are consistent and VN (80—00), YN (81—01),

.
-

VN (6mfcm) have a limiting normal distribution. [If W is unknown, C

in_(2.6) could be replaced by [N/(N—l)]C.j

12
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A

The equations (2.6) can be obtained fr&ﬁ (1.23) by réplacing~ §_l
by 0. A particular choice of 9 is I ; this substitution corres-
ponds fo the Markov estima;es when the varianées of VN c;; are
pr0portioha1 to 2., the variances of v/ﬁ'cij, i # j , are proportional
to 1 and every covariance isI 0.

To obtain asymptotically efficient estimates of Og» Oqs =ev 5 O

only one step in the iteration is needed if the initial estimates are

consisten%.f See Section 4. If N >1 and u is unknown, C may be

replaced by (1/N) E uzl (§a-§3(xu-§)' in the computation; one may
wish to multiply the solution by the factor N/(N-1) .

- The solution of (2.1) requires evaluation of quantities such as

(2.9) er Al B AL,

. where A, B, and L are symmetric and A is positive definite. Finding

A 1 corresponds to solving

-~

(2.10) ' AX =1.

The "forward solution" of a method of pivotal condensation or successive

elimination corresponds to multiplying (2.10) on the left by a triangular

matrix F to obtain

(2.11) =F

where

13



| f21 1 0 o o 0
(2.12) _ E = f31 : f32 1 ees 0 R
fpl fp2 'fp3 eo s 1
|
0 t22 t23 o t2p
(2..13) T= FA = 0 0 t32 t3p .
0 0 0 ces t
PP
Then
tll 0 0 e 0
‘ 0 t22 0 s o0 0 |
' | B | . .
(2.14) Eéﬁ. = EE 0 0 t33 P 0 H
0 0 0 PPN t /
PP

that TF' has O's below the main diagonal follows from the facts that
T and F' have O0's below the main diagonals, and that TF' has O0's

above the main diagonal follows from the fact that TF' = FAF' is

~~ s

symmetric. Since FAF' 1is positive definite, tisg >0, i=1l, ... , P .

PP

Let’

14
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’/tll 0 0 ces 0
0 “%22 ) . 0
(2.15) D = 0 0 /E53 ces ) ,
0 0 0 ces vt
PP

and let H = D_lF . Then

(2.16) HAR'

~aras

(2.17) - a7t e w

]
3]
-

{3 =2]

(This developmént is given in more detail by T. W. Anderson (1971) in

Section 2.3.) ©Note that only the forward solution is needed to obtain

H.

~

Then

P . "I VIR VI )

(2.18) tr Al s A L - er B'EBH'EL

tr H B H'HL H' .

P .V VIR VI )

]

Thus the symmetric matrices HBH' and HLH' are computed. When N =1

~nsa, ~nsns

and =0, C=3xx'" and (2.18) with L replaced by C = xx' becomes

(2.19) tr H'H B H'H xx' = x' H'H B H'H x
= (Bx)' HB H' (Hx)
) =2
= (Fx)'D “FBF' D~ (Fx)
2 -2

A

Given A = Zi—l , the data enter the equations (2.2) through HCH' .

~ sy

In the case of C = xx' , this involves only

s

15



2.20) mertrs,

which"is-the.forward solution applied to x, followed by the division
of'each element of the resulting vector by the'square root of the
diagonal element of FA = T.

If (1.2) holds and Bl, Toes Br are unknown, initial unbiased

estimates of :Bl, ey Br can be obtained from the equations

>,

: ; r. ~
(2.21) Yzl 0z By =2} ©

zkl.

’ . i=l, ... , ¥,

=
b=t
4
[
4
4
e
[,

where © is any positive definite matrix. The solution has a multi-

variate normal distribution with covariance matrix

-1

L
1 A ]
(2.22) (fj © z,) (Ej ©ZLo fi)(fj 9 z) .

2}

These estimates are consistent as N> , If 0O = I , these estimates
are least squares.

When Bl’ S e Br and co, cl’ ses 5 O are gnknown, the esti-
mates obtained from (2.21) can be inserted into (1.5) to obtain an
estimate of U and this estimate in turn can Be used to define § &
Then GQ’ 01, SR qm can be estimated and g s this estimate of -
L can replace L in (1.4) to obtain improved estimates of Bl’ SNeis Br .
This procedure yields.consistent and asymptotically efficient estimates
of 31, BOC ’;Br’ 00’ Ul,'... , Um as N , We shall study later their

asymptotic properties as p = .

16
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e

N—

:

consider the case of order m

3. Computéfion for the Moving Average Process

. 3.1. Case of First-Order Moﬁing Average Process. The special

form of I as given in (1.26) makes the computation easier in the
case of estimating the nonzero covariances of a finite moving average
process. ‘This is of particular interest in the case of one observa-

tion x when U is assumed O . To illustrate the procedure we

L~

1. Let p= 01/00 » and let the p.x p

matrix (1/60)§ be

1 p 0 0
P 1 P . 0
(3.'1)- _ A s 0 p 1 ot 20 .

All of the elements of this matrix are O0's except on the main diagonal
and one above and below the main diagonal. The method of pivotal con-
densation.or'successive elimination starts with leaving the firsf row
unchénged and subtracting p times the first row from the second row;
this operation changes the second row to a row haVing nonzero elemepts
only on the diagonal and one entry to the right of the diagonal. Each
successive step consists of subtracting a suitable multiple of one row

from the next. This "forward solution" can be represented as FA,

where
3.2) R AP S S
(3.3) El = 5 .



"'p 1 0 .ooo

0
3 ; ce e 0
(3.4) . 52 - '0' 0 1 | :
0 0 0 800 1
1 0 0 500 0
0 1 0 oo 0
0 - ——9_3- l s e 0
(315) EB - -L_p .

LK ]
LRI
s e
se e

The matrix Fj is the identity except that the element in the j-th

row and (j-1l)-st column is =-p times the reciprocal of the element
in the (j-1)-st row and (j-1)-st columm of F, , F. oo Fo AL
» ~j=1 ~j-2 b2l

~

Thus F, has the form

r 0 0
0 1 1] 0
(3.6) Fj = - - - ,
- - 0 £, 1 0
= j,i-1 =
0 9 o 1

vhere the orders of the I's are j-2 and p-j , respectively. (In

the product F=F F

A PN S RRY F, F. the element £ appears in

~2 =1 3s3-1

the j-fh row and (j-1)—-st column.) The calculation of Hx dinvolves

18



(3.7) Ex= T Tty ey By 2
say. The computation of w proceeds as follows: W) =X,
(3.8) . w, =x, +f, w i=2, ... , P .

Thus the elements of w can be calculated in sequence.

We can write an equation for fj g~L ° Let a§;) be the j,j-th
k .

term of"Fj Fj—l 00 Fl A . The method of successive elmination

shows that.
} o,
- f41,3 T 7 @)
i : j
i j 2
- G#)  _ o, _p” _ %3P
(3.10) aj+l,j+1 1 ) a(j) .
ii i3
(+1)

The elements aj+1,j+1 and fj+1,j » j=1, 2, ... , p~1 , can be computed

in sequence, Next let

: -2
(3.11) E D w=nu,

where D is defined in (2.15); in components this is

- 2 - ) o
(3.12) u Wj/djj wj/tjj v, /a . j=1l, <. 5 P .

3 i3

Finally, let

= ! = ' ' 1 '
(33058 Al SR [ CREROR SIET A

thus vl = u
" P P

(3.14) Vj =u, + f, .V,



Then

LI
(RTRR
1
=

' ' 1
! = =
(3.15) X I G L Ux=x AT G AT X
G ..
0
Soadig =
= v G v h=0, 1 .
0_2~ ~h'~
0
| _ N p 2
For EO =1 .,°¥ 90 v=yv'y IZ j=1 Vj , ané for 91 given by (1.27)}
' -1
" =)
.(3.16) ) v 91 v. 2 L vj Vj+l .

The numﬁé% of arithmetic operations in the calculation of these quad-
ratic forms is approximately proportional to p .
To calculaﬁe the coefficients of the unknowns in the iterative

procedure we need

(3.17) tr A" G A G =tr H'HCG H'H

|
ot
2]
L
|}
L]
[}
L
[}

1

tr(® ~ F Gg F' D"l)(n'1 F G F' o1y .

The forward procedure F can be applied to each Gg on the left and

1

F' on the right followed by D -~ on the right and left to obtain the

~

symmetric matrix Q—l FG F' p~t . However, in this case of m =1,

the form of E-l = (I/OO)A.'l is known and

(3.18) trzle zle =

1 -1
= trA G ATG
~ ~g ~ ~h O_g ~

~g ~ ~h

can be computed directly. See Shaman (1969).

Thg matrix Gl can be written

(3,1?) - G, =P A P'



———

where the orthogonal matrix P 1is

(3.20) - pev/ (Sin%l}i_,)’

ptl

and the diagonal matrix A has 2 cos mj/(p+l) as its j-th diagonal
- element. [See.Section 6.5.4 of T. W. Anderson (1971).] Then the quan-

“tities (3.18) can also be written

: 1. -1 -1, _ 1 ' -1 -1
(3.21) Zer ATG AT G =GerlI+o Gl G [T+pG] 6
o . o
>0 -0
" —]5- er[PP' + p B A g']'l P Ag B' PR £ P &) P17l e B
O'O ‘ : .
=Lirp@+poA)p I e BRI+ A )1:"]'1 P AP
2~ ~17% =B A el L2 ~ ~h ~
=Lirpa+or) e PRT+pa) TR A P
I R A TR ~ I
0
=1 -1 -1 -
0

where A, = I . Then

~ 8 ~

(3.22) tr At g At gy = ) e
j=1 (14+2p cos E%I )
2 cos Ei—
(3.23) trAte a”le = 5
S j=1 (1+2p cos Il—-)z ’
J P p+l
: -1 4 cos2 i

(3.24)  tr AT G AT G = J:r“,‘l =,
gy j=1 (1+2p cos ;%I )

These sums can be approximated by integrals. The sum (3.22) is approxi-

mated by



-
. 2(p+l)
+1 d\
(3.25) s S 5
(1+2p cos A)

™

—_—T
2(p+l)

which in turn is approximated by

o . :
[EEONE - — - 3G [ — 2]
- ‘0 (1+2p cos A) P (142p) (1-2p)
T 2
- ptl -f dA _ _144p
T J

(1+2p cos >\)2 (1—402)2

2.3/2

The first term on the‘r.ight-hand side of (3.26) is (p+l)/(1-4p
- [See Pierce. (1929), Formulas 300 and 305, for example.] Then tr §—2

is approximated by

: 1) (D) (1w22 14602 + o
(3.21) i 2,30 T o
g (1-a) ' (1-a")

1 p-6a - (pr2)a®

o ey’

In a similar way (3.23) and (3.24) are approximated by

' 4(ptl)p 8p
(3.28) - + ,
a-402)3% T -apty?
| | 2 2
(3.29) 5—(%]:)—[1-_]:—8_2_37—2_] _4_1_“’.9_2_.7, 0#0,
N (1-4p (1-4p07)
dp , . K o] =. 0.

22



) o

.

The 2 x 2 matriz of coefficients tr §-1 ¢ r 1

gh (89 h=0, 1) is

approximated by

_ + ' 1-I<x2 -4o
e R N 2, 4
"o (1-a7)T =40 2+80” - 20
1 1+60e2 + oc4 -80e(1-}oc2)
o 1-02)% | -sa(wd)  4(1+ad)

"An alternative approach, which may be generalized to cases of m > 1 ,
is to approximate the moving average covariance matrix by the inverse of

an autoregressive covariance matrix. The covariance matrix of the moving

‘average process of order 1 may be written

l«uz a 0 N 0 0
o 1+oc2 o 0 0
0 o 1+oc2 el 0 e
(3.31) L, = | . . : : 5 S
0 0 0 1+0L2 o}
0 0 0 S5 o 1+0L2

The matrix in the exponent of the first-order autoregressive Gaussian

process satisfying the stochastic difference equation

(3.32) Y FOy._g = U t=...-1,0,1, ...

23



is

1
o
0
(3.33) ¥, = if :
u | .
0
\0
Thig differs from EMA
(3.34) | ' g‘==

2

it o = 1/Ui . This fact suggests approximating X

o 0

1+0L2 o

o 14&2

0 0

0 0
by czaz E , where
1 O 0 LN B
0 0 0 006
0 O O o0 @
0 0 0 ojere
0 o o0 000

-1 Gi
(3.35) Zp=%p-= 2
—a

with Oi . 1/02 .  Then

-1

(o

(-o)

24

s

p-2

* & 1“2
LN ] dl
fo 0
0 0
0 o0
T ’
0 0
0 1
-1
Ma DY
2.
a LN BN )
-q * &0
1 LI N )
(-a)p—l} -o.o
('@)p—:; LU

(—a)p—l

(-a)P2

('a)p—3




e

(3.36) I._ G. 5 L

~AR ~0 ~AB - 4 5 42y3
o2 R S S S S
—a[2 g2 2P2 1 1402-a_o2P2 —05[2—ocl“-oc2p"[“] .
o?[3-202-aP74]  _o20f-a®PTh) 14a®0la®PTh e

()P p- (p-1)0%-a”]

and’

(3.-37). tr ZAR Go ZAR GO = T——}-—Z—E l {p (1—0(-l4)—2062+2062p+2} .
i ¢ (1-07)
The other quantities needed EAR 91 EAR > t; EAR 91 §AR 90 , and
tr EAR <N EAR 91 can also be computed.
In the iterative procedure Z;EI is replaced by I where

62(1+a2) is 6é1~1) and Gza is 6{1-1) . In situations where p
is large and we consider limits as p>® , we can use

tr X G, Z G

(3.38) lip AR 0 ARD 1o
pr P o' (1-a“)
B D I $ I S 2480%-20"
. - ’
pe = o (-0?)3
tr X G. & G
(3.40) T4n =ARESOR-BRE-INE - ”4“2 5
pro 4 o' (1-a)

25
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If the matrix A given by (3.1) is used in place of § = gAR , then 02
can be replaced by 1. and u/(1+d2) by p din (3.38), (3.39), and (3.40)

3/2

to give 1/(1—4p2) and the coefficients of p+l din (3.28) and (3.29),

respectively. These values agree with the limit of 1/p times (3.30).

(3.41) - r o=
0
where
’ 1 T-~h '

(3.42) Ch = T-n Z xj Xj+h

: j=1

1
N G, %
t G

This is a consistent estimate of p as p*® ., The estimates C0

‘and Cl are the unbiased estimates of 00 and Ol obtained from

(2.6) with 6 = 1 .

3.2. Case of Highér—Order Moving Average Process. Let oy = Oh/oo

and let the p x p matrix (1/00)2 be

Fl

1 pl pz . . 5 pm 0 .ol 0
0, 1 0y HOC Pp-1 P q05 Q
Py 1 Oc Pp-2 -1 0aC 0] \
(3.43) A= . . . . . ,
pm_l pm_2 800 .1 pl 800 0
P pm_l Lot pl 1 S50 0
0 v OGic 0 0 300 i




e

which has 0's mt+l and more positions above and below the main diagonal
(m < p) . Consider again the forward solution of a method of pivotal
condensation or successive elimination. We represent this as the multi-

plicatioﬁ of A on the left by F=F F eee F F1 s where

~p ~p~1 "7 <2 ~ RE

i

- In one procedure F, represents subtracting pl- times the first row

-of Fl A=A from the second,. pz times the first row from the third,

~

» and pﬁ ‘times the first row from the (m+l)st. Then EZ El é
has all 0's in the first column below the first entry. Before the
j—th étepA §j_l Sie o El A has all .0's in the'first j=1 columns
below the main diagonal: Ej represents subtracting mﬁltiples of the

(j—l)st row of ‘Ej—l ... F A from the j—tﬁ , (GH)st, ... , (G¥m-1l)st

rows in order that the j-th column have only O0's below the main’

diagonal. Let aiﬂ“l) be the i, k-th element of é(j"l) o FRERTE Y O
" Then
0 0 o0
Y BN
(3.44) E, = 0 £, i § 5
9 =0 0~ I

where the I's are of order j-2, m, and p+l-j-m , respectively, and

s
G-1)
#3-1,3-1

(3.45) f..'-'" . 5 s j=2: soe 3 P—m+l H

27



for j2 p_m+2’ ase 9 P ) fj

of (3.45). Thus Fj consists of the identity with (at most) m non-

consists of the first p-j+l1 components

zero elements'below the main diagonal in the (j-1)st column.

The operations can be done in another order. Then F2 represents
" subtracting pl times the first row of Fl A=A from the second; F3

represents subtracting appropriate multiples of the first two rows of

Fi Fl A from the third row to obtain O's to the left of the diagonal

elements in the third row of F3 F2 Fl A ., Before the j—-th step

Fj-l . F A has O's in the first j-1 rows to the left of the main

..« F. A are the same

diagonal and the remaining p-j+l rows of Fj-l 1

as those of A . F, represents subtracting appropriate multiples of

~

the (j?m)th, (j=m+l)st, ... , (j-1)st rows of Fj— .o Fl_A in turn

to make the (j-m)th, (j-m+l)st, ... , (j-l)st elements of the j-th
" row of Ej oo By A zero. Thus Fj consists of the identity with (at
most) m nonzero elements to the left of the main diagomal in the j~th

row.

The calculation of Hx 1is done by

3.46) LA R P P AL PR

Let

(3.47) w3 - T, w1

Then w = y(p) . In the first sequence of operations in (3.47) Wgé) = .
Wij_l) for i=1, ... , j-1,

28



) ) n“ 3 t”l . . .
(3.48) wf) = wij D -,,fifz_l Wj(il )| =j, eee s Jhml,

Wij) = Wijyl).= X s i =.j+m, vee s Py 1f j=pmk2, ... , p (3.48)

holds .for 'i=j, vee.s p » Thus y(J) " ..mputed successively.
Next let

(3.49) u = 9—2 v

and
o ' JERRTY BN IRy R 1 -

(3.50). v g e g]_ EZ ce Ep-l gp U

The operation (3.50) can be done sequentially

@sny o W 5 A | i=ps .er 5 1,
where Y(p+l) =u and ~(l) =V . Then
(3.52) x'rte rlx-txale aly
~ o~ ~n o~ o~ 02 ~ ~ ~h ~ ~
0
_1 | '
"_2-:{ ~hY’ h=0, 1, LR ,me
(¢}
0
" 2
Por Gy =1,v'Gyv=Y 7 v andfor G given by (1.27), (1.28),
etc,,
~h
(3.53) .Y! G, v = 2 § Vj Vj+h , =1, 400 , m .

The number of arithmetic operations is approximately proportional to

mp . .
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 As indicated for the case mw=l the coefficients of 60, 61, e s 6m
can be calculated from the forward solution according to (3.17) and (3.18).

The approximations to ' tr é_l gg é_l Gh presented for the case m=1

can be extended. The matrix Gh is approximately 2 Ah treated in

Section 6.5.4 of T. W. Anderson (1971). Then G, 1is approximately

h

P éh P ,_wheré A, is a diagonal matrix with 2 cos him/(p+l) as its

j~th diagonal elements. (P"G0 P' = P'P =1, P! G1 P! =.A1 diagonal

and Ef Gy P is Ah diagonal plus a matrix relatively small, j=2, ... , m .)

Then we have the approximations

(3.54) tr AT g, AT g - 7 1
e j=1 "m 9
1+ 2 .%=1 ph_cos oL )
SO
+1 2(p+L) dx
Toow e m 2 2
m 1+ 2 ; ph cog;_ Ah)
h=1
, : gim
- - P cos .
(3.55) trA1G0A1G~22 mT+1
=1 r+2 5 cos By )2
=1 ptl
.
2 +1 2(p+l) cos Ag d\
) T T L 2 ’
7 1+ 2 E cos Ah)
2 (p+l) =T

30



e e

: f3 |
cos =in cos HiT

(3.56) trA TG ATG ~4 Lhl . Ljl
~ vEe B =1 = him 2
{1+ 2 E cos - )
h=1 ptl
T o
2(p+l) -
4 ptl cos Af cos Ag d)
L AT T = 2 ¥
3?5133_ .(1 + 2 %:1 cos Ah)

f, g=1, ... , m .

In the integrals .cos k can be written as a polynmomial in cos A of
degree. k.

As in the case of 'm=1 » the covariance matrix I, of the moving
averége process of order m can be approximaﬁed by %AR , the matrix
in the eiponentuof the normal distribution of the Gaussian autoregressive
process of order m . Then E&i is approximated by W_l

AR T

elements are the covariances of the autoregressive process. If the

ZAR , Whose

roots of (1.32) are different, say, Zys vee s 2o then the 1,j~th

element of ZAR can be written

e

|i-3]
P ’

(3.57) . UAR(i—j)=

o
I

1

for suitable constants kl, G kh . [See T. W. Andersqn (1971),

Section 5.2.2,] Then the i, i-th element of £2 can be yritten

~AR

9 i-1 m PR

(3.58) 0y (1-3) = Y 5 k k, ztd z; J
i= ' =1 g,h=1 & % B

m . ° »
" S R

y
=1 g,b=1 n

31



m [1—(z z )i l] z, + 1-(z z )Pfi+l
g,h=1 &7 1 - 2.2y
and
(3.59) tr Il = Y ohp (i)
| ~ i,3=1
.. i} P +zz) - 22,7 (-2, z.)/I1 - (= zh)P]
-'— g,h=1 gkh l 1-2zz

-3 , gh

Then
142z 2

: i 2 _ ___gh
(3.60) lin = er Iyp y kT o

pr® g,h=1
This gives a method for approximating tr I

in (3.54), (3.55) and (3.56) are over the interval

identical to the evaulation of tr gAR g EAR gh

-1 c Z—
~g ~

~

Gh L

If the integrals
-, T , they are

for the integrand in

(3.54) is proportional to the square of the spectral density of the

autoregressive process.

(See Theorem 8.3.3 of T. W. Anderson (1971).]

We primarily want to use this approximation to obtain the coeffi-

93 e e

1) @)
60 i 61
6(1—1)

¢ ee 9 3

cienté qf
i-1
),

R Géi) in (2.1) on the basis of Géi-l),

That matrix of coefficients is a consistent

estimate of 2 times the inverse of the covariance matrix of the

" asymptotic normal distribution of the asymptotically efficient estimates.

[See (1.10).]

Theorem 3.1. If £(A) given by (1.31) is positive, then
: 1 -2 1 " 1 |
(3.58) “lim=tr & = —= f 5= dA ,
3 @m” J-m £ )

pre
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 (3.67)

(3.66) E' tr AG

| for any symmetric matrices 90"91’ e 5 G o

~m

Proof. Let F- be a nomsingular matrix such that

14 i
]

FE'

(3.68) T A = FAF' ,

~ e

where A.;is,diagdnal with diagonal elements § , O

T. W. Anderson (1958).]_jThen
(3.69) 0<§,, <1, i=1,

Let H = é gmb ng .  Then

; = t t
(3.70) L trLC LGz, -trIEHIFE
g,h__o . .
=tr FP HFF' HF
= tr K2
: 2
f,5=1 4
where K=F'HF Similarly
' m
(3.71) E tr AG AG gz 2z =tr FAF'HF AT
e ~ ~g ~ ~h "g"h . S SN e
gyh"o
=tr AF"HFAF' H
=trA KAK
- K2,

33
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Probiém'BO,'Chapter 6, T. W. Anderson (1971) or Theorem 3, page 341,
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E—O—S—-—g—d}\,g=l, cee s M 4

(3.59) limierrle zt

pro P~ "B (21r) 200
. S 1. S T A N
(3.60) lim=¢rZ ¢ X G = f cos zg cos A 4
e T BT om0

| | , g, h=1, ... , m .
'gggégf Thé'préoflié along the lines of ihe proof of Theorem 10.2.7
of T; W..Anderéon (1971). :Thelspectral density £(\) is continuous.
Therefqre, for.arbitrafy € > 0 -there existvautoregressive prbcesses
with cévarignce matrices ELl and .§U and (positive) spectral denéitieg
| fL(A? andl fU(K) ,.reséégtively, such that

Ged M EMLHM, miasw,
| o1 1
(.62) o T BRm s AT,

Then, by Lemma 10.2.6 of T. W. Anderson (1971),

(3.63) xhxsx Exix Lyx,
(3.64) x! 271 x < x' Z-l x < x' Z;llx .

for all X ; here ZL._and ZU are the p x p covariance matrices
corresponding to fL(A) and fU(A) , respectively.
_Lemma 3.1. If for A positive semidefinite and L positive

definite

E
2
1N
A
ERY
2
XY

@.65) PRy

for all x , then

- 34



( Since 6ii <1, (3.71) is less than or equal to (3.70). This proves

the lemma.

R

It fqlloﬁs from Ehe lemma that

m

m
-1 -1 -1 -1
(3.72) E, tr LG LTy y < E trX "6 LG y_ ¥y
I _ g,h=0 ~U ~g <0 “g°h .g,h=0 ~ ~g ~ ~h “g “h
* o EIRE
< ) tr L.7 G_ X
» ~ g,h=0 "ot h Vg n

- for every .(yo, Ypr cee s ym) . Then for B defined by (87) of

Section 10.2 of T. W. Anderson (1971) with T replaced by p ,

i ' L -1 -1 - m . ' 1
; (3.73) }_ tr Iy C LGy oy = ) trB'BG B'BG y oy
g,h=0 -
m .
-3 @ b by 8

0 Pii Pik B’ Pop Pgn 8ay Vg Yh
3

]
—~
o

()
ped
0Q
=~
0Q
S
]
S
n

]

mn K
AR O NN S RN

jsq=K+1

where K is the order of the approximating autoregressive process.

We have

]

(3.74) gég)' 1, A=t
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(3.75) g b+h h>0,

"
o
o}

i

=0, a#b+th, h>0,

‘where. a, b, and h are integers. Then

i T }
G.76) gD -2 f @) o

-Z—TF =T
- .

1f sh'=-§-'f'or h=0 and 8, =1 for h>0 ,'thgn

T

[eil(a-b+h) + eih(afb—h)]dx

- )
. , h=0, 1, ... , m .

(3.78) . 8ab 5

=T

.Then 1/ (p-K)_ times the right-hand side of (3.73) is

1 ) m K
@9 Ly () T b b

= y
PR j,qKel \ g=0 k',27=0 ¥ s
S (T [ LG4l , LEK-(a-2)-g] i
T
. ™ K C
i ([F 200 5= oy o
e e b (=1
_ 2m (p*I\) i ,’q=K+1 - k! "Q‘l =0 k!
I - " 2
bgv enz 8 eﬂg + e e d?\)
. 8- '
_ 2
, F. T irx(j-q) _cosAg
bt i Yoy 6 [T Y
@M @K 4 Fa ( g0 & & ‘g 2 )
becguse
(3.80) £,00 = :

K 2"
| Y X b PP
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(NS

)

K

Then the limit of (3.79) is

- 5
(3.81) * > : y 6 6 lim j j
T (@mT g,h=0 s -T =T j,q=1

cos Ag cos vh
£,0 ;07

dr dv

A m .
Sy L v 08 “*nff

(2m)" g,h=0

cos Ag cos Vh
th ) £y )

dA dv ,

where-

.sin2 -;— ()\+\)) (p-K)

1 ei_ (A+v) (3

2w (p-K)

k

(3.82) kp_K (Atv) =

Then (3.81) is

2m(p-K) sin® T (V)

( A+V)

4 z .y ¢os Ag cos. ]Jh
(3.83) S v, vy 8, S 152 j f )
’ om? gnmo &8 K £,00 £,0)
m
_ __ 4 : ;—-—— y yh f cos’ )\g ¢o0s ‘Ah a
(2m)~ g,h=0 f 68

by substitution V = -) and the argument leading to Theorem 8.3.3 of

T. W. Anderson (1971). Then

[

. m
(3.84) —1—15% )

is greater than or equal to (3.83). Similarly

37.

-q)

d\ du



4 o T cos Ag cos Ah
_i—[:yyaaf a .
: 27 =0 & h h & f o)

Since ¢ d1s arbitrary

: 1. = ' -1 =7
(3.86) lim = ) v Yy tr TG X Gh
- 4 4 - cos kg cos ‘Ah a
; j :
(2m)° g,h=0 8 n’ o)

Since (3.86) holds for évery set of Y5, Yi» eee s y@ ; the theorem
follows. |

It is of interest to compare this result wifh Theorenm 8.3.3 of
T. W. Anderson (1971) which gives the asymptotic covariaﬁces of the
sample covariances of a stationary process with a continuous spectral
density. The spectral density of an autoregressive process with co-
efficientsl ai, s+ 5 @& 1is proportiomal to $he reciprocal of £(A)
for thelmoving average process; hence the Gaussian part of (37) of

Section 8.3 of T. W. Anderson (1971) is proportional to the coefficient

of yg yh in (3.86).
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4, Asymptotic Theory as the Sample Size Increases
When X1s ee+ 5 Xy ave observed withﬁ '§§.= U satisfying (1.2)
and I is known, the Markov estimates of 61"t" X Br are the

" solutions to

r

- T, -1 2 '= R e T SRR _
(4'1) : i=1 Ejg Ei Bi Ej E ~ b o ; . J 1’ .l'o' bl r .
In matrix’ notation the .sc;lution is
(4.2)". ' gN = (E' §-1 E)-l %l §‘1 jN ,

: ~ PN A
- 1
where éN _.(Bl’ rev s Br) and
6.3) 5y CZ=(zg, e 2)

(We use the subscript N on gﬁ and QN to emphasize the dependence

‘on N .) Then the covariance of /N (@N-ﬁ) is

4.4) EIT B8] = N E (BB ByB)' = @' T h )t .

~ ~ ~

Regardless:of the distribution of X, /ﬁ.(éN.é) has a limiting normal
) distribﬁtion with mean vector 9 and covariance matrix (4.4), because
/ﬁr(gﬁ—g) has a limiting normal distribution.

If § is unknown, let us suppose that we have a consistent esti-

)

mate I of I . Consider the estimate

~N =
‘ ~ s R | Ay [
* = (Z! '
(4.'.5) | - By = @ EN ;7:) Z' Ly oy -

Then
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.6) /K B = /N BB - (BB

= [(2' 2;1 )"t 2 2;11 -@ it g"l] /N (x,~ZB)
convérges stochastically to 9 because
(4.7) plim (z' T 2) Tzt It = (' It 2y Ttz xt

oo ~N -~ = ~N

and ¥N (Eﬁ-ZB) = /ﬁ-(gﬁ—u) ‘has a limiting distribution. Thus VN (Bﬁ—B)
‘has a limiting normal distribution with mean O and covariance matrix
A Z)-l , which is the same as the limiting normal distribution of

A ~

BN . If BN_ is asymptotically efficient, then B§ is (in the same sense).

N

In ﬁafticular, when B, is maximum likelihoo&, as when X has a normal
distribution, it is asymptotically efficient in the sense of attaining

the Cramér-Rao lower bound for the covariance matrix of unbiased estimates.

" We summarize the result.

Theorem 4.1. Let Ky eee s Xy be identically distributed with mean

N R ~
'&,X = ZB and covariance matrix X and let ZN be a consistent estimate

~ns

of X . Then, if g* is given by (4.3), YN (Bﬁeﬁ) has a limiting
-1

normal distribution with covariance matrix ( Z-l Z)

Z . If §N ‘given
by (4.2) is asymptotically efficient, so is Bﬁ 5

We now apply the result to the estimation of GO’ 01, cee 5 O .

Theorem 4.2. Let Xy eee s XN be Nl-observations from N(u, I) ,

where P is known and I is given by (1.3). Let C be defined by

~

(1.7). Let 6é0>, 6{0), .o ; 6;0) be a consistent set of estimates

of G , eee » 0 . Let 6(1), 8(1), B 6(1) be the solution
-0 m — 70 1 m

l’
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X "

to (2.15 for i=1 . Then /ﬁ'@gl)-_%), /N (6§1)-cl), eets VN (aél)-om)

_have a limiting normal distribution with means O and covariance matrix

(1.10), and 361), 8£1), S 5 6;1) are aéymptoticaliy'efficient.

Prqof. In Theofem_l replace %ﬁ by 9 5 EB by z h:d ch g(h) ,'
A(0) A(0) (0)
80 ’ 61 2 6m :

in & .

~

L by &, and I_ by @N inserting

Then @N is a ‘consistent estimate of ¢ and the limiting normal

distribution follows. Since the solutions to (1.22) are asymptotically

efficient, the theorem follows.

- If W is unknown, ‘it can be estimated by Eﬁ', and C in Theorem 2

~

N =
B

can be.replaced by (1/N) § (x.-x )(x -x.)' . If U has the form
. a=1l ‘~0 X Xy

-1 By gj , Where Bl, S Br is a

solution to (2.21). For the asymptotic theory uses the fact that

(1.2), it can be estimated by ) jf

/N (C-Z) has a limiting normal distribution,
N

A 2o R
(4.8) ANic-5% Z‘,__E (x,7%) (e, =20 = VN Gegri) G

.9 A6l = A GEw) Gy - A G Gy

and the facts that plimg X =1 , plim @ =y, and /F Gea)

and /ﬁ‘(%ﬁ-g) have iimiting (normal) distributions.
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5. - Estimation of the Coefficients of a Moving Average Process

We' now treat the problem of estimating the coefficients Ogs Gps «ov s

o, of the moving average process (1.25) with the restriction 02 =1

'.replacing the restriction d.o = 1, Then

m-h ;
(5.1) oy = §=0I o Oy, > h=0, 1, ... , m .
Let
- : m ’ S .
(5.2) M(z) = E a,z0 3
=0 h|
J
Then
' 2 h -1
(5.3) Z—_— 0,z = M(z) M(z 7)
h=-m
by (5.1).
. Let the roots of M(2) = 0, which is (1.32), be Zys eee s 2. Then
(5.4) | M(z) =ay T [ (z-2,)
j=1
and

m . m '
(5.5) T o Ath o:.g zm[-l—l- (z-zj) TFL[' (-]-'-- zj)]

]
Q

Thus, if o(m) # 0, the 2m roots of .

m

(5.6) | S o ZRog
. . h

: ] h=-—m

alr'e Zys see s 20, llzl, heeis 3 1!gm. _

42



P

,Converseiy, diE Tgs Ops oov 5 Op # 0 are given, the set of 2m
roots of (5.6) can be p;;tiﬁioﬁed into two sets of m roots éach, such
thgt the rdpts'in one set are less than or equal to 1 in absolute value
and are the roots of an equation (1.32) with real coefficients, that is,
M(é)'= 0, defined by (5.2) with-real.coefficienté,_a#d the roots in the
othér,set are reciprocals of the respective roots iﬂ the first set. The
roots define thé coefficients iﬁ M(z) except for normalization, which
is dngrminéd‘by (5.1) for k = 0. [See Section 5.7 of T. W. Anderson
(1971).1 |

The equatidn (5.6) cén be written

. B 0
2 m m+h m-h
5.7 0=ogyz + ) o ( )
. h=1 ,
B m 2h
m 2 + 1
=z o, + E g
l 0 h=1 h zh ]
Let
' 2
; _ l_= z_ +1
(5.?) ) | w=1z+ = - .
that is,
: 2
(5.9) zw =2z + 1 .
Then
(5.10)  2252T = (zn)2f = (2241)%F

+...+<2r) 2r1[( ) +1] +(2:)z2r,
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= (z +1)?.r+1

' [(2)2r+1 ] + (20H1) zz [( 2)2r -2 +1]

+ (2r+1) z 2 [( 2 y2L- 4 o ] e ey (2;+1) (zz)r [z2+1] .

' [The coefficients of (22)§ + 1 din (5.10) and (5.11) are the same as

(5.11) 22T 2L a2rt

the coefficients of AS in (16) and (17) of Section 6.5 of T. W. Anderson
(1971).] When we solve (5.10) and (5.11) successively for (zz)S + 1,:s=1,
45 000 ,'m, we obtain

2.2r.. _ 2r [ 2r 2r-2 :
(5.12? (z7) 741l = =z Ew - c2r,2 w + .i' + c2r,2r] .

(5.13) (zz)2r+1 + 1= z2r+1 [%2r+1 + ¢ Wzr-; + ... +

2r+1,2 Cor4l,2r “ﬂ ’

Where c2r,2’ 300 ¢ c2r,2r’ c2r+1’2, e s c2r+1,2r are appropriate

constants. Then (5.7) can be written

(5;14) 0= zzp'{oo + oW + o, [w2-2]
+ .+ 0, [w2n + 0,2 w2y s c2n,2n]}
= 22 g a w2 4 Oy Vs Og = 20y + «o0 + 0y, Cp 50}
m=2n
(5.15) 0 = 22n+1'- {oo + 0w + 0, [wz-?.]

S2ntl + c W2n—1 + ... + ¢

Pt Opny ¥ 20+, 2

2n4+1,2n ¥ }

20+l 2n+1 2n - '
z {02n+1w + 0, W+ ...+ 0y =20, + ...+ 0, c2n,2n} ,

= 2n+l .
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Solving-(5.14) or (5.15) as an equation in w, we obtain m roots,

Wis cees Woo Then solve
(5.16) = - 2w z+1=0

for 2z, to obtain the roots

S | Vi [(Yi\e
Gan Ti/(‘z‘) sy

98

to (5.7); the pair.of roots to (5.17) are reciprocals. The m roots
with ;bsdlﬁte value less than or equal to 1 are the desired rooté of
M(z).= 0 and the coefficients of the polynomial M(z) -are the desired:
%q s ai,'..; » O except for a constant of proportioﬁality.

We want to modify the numerical procedures discussed in Section 2.

if Géifl), 8{1—1), cee 8&1_1) are the estimates at the i-th stage,
let &él—l), &{1-1), cee s &;1—1) be the desired solution of (5.1) with
the Gh's replaced by the Gél_l)'so We want to determine the next
iteration; let

(5.18) &él) = &I(ll"l) +d,, ' h=0, 1, ... , m .

Then if we substitute into (2.1) with C = xx' we obtain

~

519 T eril e il e Em'f @D 4 gy @D Ly
| e Vi-l Zg M-l Yf L5 Th n’ Chte htE
A_l A"'l
o §i—l§g I g=0, 1, ... , m.

The left-hand side of (5.19) can be written .
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n—f

m A A
1 -1 (1 -1) A(l 1) A(l -1)
(5.20) - %;0 er I,7) G, L, 6 (8¢ + S @ det h+f d, + g
-1 El_- 2 A(i—l)
Z —l E =y [- tr Z i-1 Gg El—l & m
L—J_-' o1 o ~(1-1)
B 1 % T G e )'] 4
k=0 )
A l A_l .o nm—- f
o+ tr X G I > d, d .
e 2i-1 g Li-1 o &5 b htf

Using the linear.terms only, we can obtain from (5.19) the equations

(5.21) ?m"‘ er 37t g o7t g gD
: L5 t ~i—l Co 21-1 G Ok

+ ?r' tr Z e ot “(1 -1 4
—l ~g ~i-1 ~k j+k | 7]

k=0
= T - =
X El—l g Ei—l X 13 E —l ~g ? =0, 1, ... , m.

8@ H@ (0
. 0 *» "1 2 *** s %p
then .&(0) &(0) &(0)
; g 207 s eee s O
If the solution to (5.21) for i1 =0 is d

(0) . ~(0)
&l + dl’ e a "~ + d

are consistent estimates of 00, Gl, o ous g Gm’

are consistent estimates of O,y O,y eee 5 O &
. 0 1 - m

50 + d

d , dm, then uo 0’

0, 1, LRI

are consistent estimates of ao, o .

l, ¢ o0 ’ m

It may be expected that these estimates are asymptotically efficient as

p—)oo.

A method suggested by Durhin (1959) for estimating Ops eeo 5 O

when uo =1 d1s to solve
(5.22) c. . Y. =-c. , i=1, ... , n.

for some n > m., where
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: ' 1
5.2 ., B C L, = X, X,,.
3.23) S TS T oy Tt

and let ?6 = 1. Then solve

(5.26) i he 8 - th , Fel uf e,
_ g=1 _
where‘
” : P A= :
(5.25) : by = h_, = ; ?: ?f+g > ' g=l, ... , m.

See T. W. Anderson.(1971), Section 5.7;2, for more explanation and dis-

cussion. Raul Mentz has shown that the resulting estimates are approximately
_consistent and asymptotically normally distributed as p * ©, These esti-
,‘mates (suitably normalized) could be used as.étarting values in the above

iteration procedure.

Since
. (5.26) _ plim ¢y = ?j y 5 - j=0, 1, ... , m ,
pre -
(5.27) ' plim cj =0, j=m+l, ... , n ,
P-)OO

the equations (5.22) can be replaced by

(5.28) c*q9 =c,

]

where C®* has the form of (1.29) with Gg replaced by cg, g=0, 1, ...
m, Y = (?1, 2000 ?n)', and c = (eys v s cn)'. The forward solution
can be applied to (5.28) and the forms hy, «.. , b~ can be formed as

indicated in Section 2 with p replaced by n.
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