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ABSTRACT

A mathematical expression for combining the entire
failure rate curve is derived based on the assumption that
the failure population is composed of three subpopulaticas,
early, chance, and wearout., A graphical method is provided
for separating the subpopulations end determining the para-
meters of the model. The expression is then applied to
observed failure data in three detailed examples and in
each case the model is shown to represent the observed data
at the .05 significance level using the Kolmogorov-Smirnov
Test. Two BASIC language computer programs are provided to
simplify the use of the proposed model.  The proposed ex-
pression is compared with techniques presently used to model

failure data and is shown to be superior in three ways:

1. It is more accurate than methods presently in use,

Z, It's greater flexibility permits the modeling of
data which is beyond the capabilities of present failure
modeling techniques,

3. The proposed model yields essential information
for managers as well as theoreticians concerning failure
periods and underlying failure causes, information which

is obscured by present medeling methods.
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CHAPTER |

INTRODUCTION

This study has two purposes. The primary purpose
is to propose a general mathematical model, derived from
reliability thecry, which will predict military electronic
equipment component failure rates more precisely than cur-
rent models., A subsidiary purpose is to test the hypothesis
that the proposed model will, as a result of the nature of
its derivation, provide a mathematical means of isolating
the underlving causes of component failure as a possible
alternative to the costly and time consuming technique of
physicalliy examining each failed item.

Reliability may be defined as, "The probability of a
device performing its mission adequately for the period of
time intended under the operating conditions expected to be
encountered”" (1). Equipment reliability is one of the bases
for procurement of military hardware and is a central con-
sideration for the allocation of maintenance resources. The
reliability of a new item of military electronic equipment
is a function of the individual failure rates of its compon-

ent parts, Hence, a more precise component faillure rate

-~




mcdel would produce a resultant increase in the accuracy of
end itcem reliability predictions,

The theoretical basis for current failure rate
models must be considered before fuily understanding why
there is still room for improving model accuracy. Funda-
mental reliability theory indicates that three distinct
failure phenomena occur during the operational life of
components of military electronic equipment. These phenco-
mena are infantile, deterioration, and chance failures. In-
fantile failures occur early in component life and normally

components failing in this mode are considered to have been

substandard prior to operation. Deterioration failures
occur late in component life, during the wearout period,
and are the result of physical or chemical uging. Chance
failures are caused oy randomly occurring stresses that ex-
ceed component strength. These failures are not a function
of component age, but are as likely to occur in early life
as in the wearout period. Chance failures are the only
failure phenomena to cccur during the period of component
age between the end of early life and the beginning of
wearout, It is during this period that it is most economical
to operate components and therefore the period has been
named component useful life. Figure 1.1 is a graphical

representation of failure rate versus component age. It is
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noteworthy that each of the three failure periods exhibits
an individual fallure rate characteristic which Ls decreas-
ing during early life, constant during useful life, and in-
creasing during wearout. The result of the combination of
these three feilure rate periods is the nonmonotonic failure
rate curve or more commonly, the bathtub curve shown in
Figure 1.1,

Although the failure behavior described above is
widely accepted in Reliability Engineering literature and
provides the basis for much of classic Reliability Theory,
very little has been done to combine the entire failure rate
curve mathematically by the use of a unified expression.,
Instead the failure population is usually assumed to exhibit
only one or possibly two of the three failure rate periods.
There are three methods by which this assumption is applied:

1. The early failure period may be neglected by
assuming that the population is fully burned-in or debugged
prior to the analysis of failure data. The failure data may
then be modeled by & statistical distribution which exhibits
a monotonically increasing failure rate.

2. The wearout failure period may be neglected by
truncating the analysis of failure data prior to the onset of
wearout. The failure data may then be modeled by a statist-

ical distribution which exhibits a monotonically decreasing

i tomcs




failure rate.

3. Both early and wearout periods may be neglectoed
by combining procedures 1 and 2 above. In this case the
failure rate is assumed to he constant and may be associated
with either increasing or decreasing monctonic failure rate
distributions.

This method of replacing a complex nonmono‘onic
problem with a simpler monotonic sub-problem is the present
basis for the analysis of military electronic equipment com-
ponent failures., The obvious difficulty with this approach
is that it does not address the reality that many compcnent
populations do, in fact, demonstrate all three failure
periods just as depicted in Figure 1.1. Consequently, by
making a simplifying assumption, part of the problem itself
has been assumed away. Data, so analyzed are not fully
productive and potentially useful information concerning
failure cause is unnecessarily lost.

It is proposed that & unified expression capable of
combining the entire failure rate curve would overcome the
difficulties of present failure rate models., It is further
hypothesized that such a model would provide more accursate
predictions and that additional information gleaned from
present raw failure data by the proposed model would be
useful in isolating the underlying causes of component

failure., The proposed model will, in all likelihood, be




6
more complex than are current models, but with the present
availability of high speed digital computers this is no
longer an important disadvantage.

The thesis is organized such that the early chapters
review fundamental reliability theory and provide a basis
for the latter applicatory chapters. Chapters 2 through 6
and parts of Chapters 7 and 8 have been extracted from a
previous report by the author (2). Portions of Chapters 4,
6 and 8 also'appear in a paper, co-authored by Kececioglu,
published in the 1971 Tranmsactions of the American Society

for Quality Control (3).
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CHAPTER 2
FUNCTIONS USED IN LIFE TESTING

2.1 Introduction

Tf, during a nonreplacement life test of N like
items, after a time t, Ns(t) items have survived, we esti-
mate the reliability of any one item at time t to be the
ratio of surviving items at time t to the total number of

items in test.

N
R(t) = —S{E)L (2.1)

N

Similariy, the unreliability is estimated as the ratio of
the cumulative number of items failing by time t to the
total number of items in test.

Ne(t)
Q(t) = N (2.2)

Since

N = Nf(t) + Ns(t) (2.3)

We may write




R(t) + Q(t) =1 (2.4)

These expressions are the fundamental definiticns of reli-

ability theory. Next we shall examine some basic functionms.

2.2 Probability Density Function

In life testing, fallure records are maintained on
the items in test. The fraction of the total items in test
which fail during timeAt, between t and ¢ +At, may be
plotted against time, to obtain a failure histograem. If
the time increment, At, is allowed to approach zero #s a
limit as N becomes very iarge, the histogram approaches a
smooth curve, called the probability density function, f(t).
Probability density functions for three specific distribu-
tions are plotted versus time in Figs. 3.1lc, 3.2c, and 3.3c.
Mathematically, £(t) is written

d N _(t)
1 ¢ Vg
£(t) =% — 3¢ (2.5)

The area under f{t) represents the cumulative failures per
component in test, which has previously been defined as the
probability of failure or unreliability, Q{t). If f(t) is
integrated over the limits - e to +ee , the cumulative

number of items failing will become equal to the total num-

ber of items in test and, therefore,

bl
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Lz 4
Sf(t) d(t) =1 (2.6)

~00
By the definition of f(t),

£(t) 20 (2.7)

for ~e0 £ t o0,

Equations (2.6) and (2.7) are the necessary and sufficient
conditions for a function to be considered a probability
density function (4, p. 10).

The area under the f(t) curve to the left of time t
represents the cumulative failures per component which have

occurred prior to t; therefore,

t
Q(t) = S £(6)d§ (2.8)

where § is a dummy variable of integration. Since

R(t) = 1-Q(t), equation (2.8) may be written
t
R(t) = 1 - S £(Da¥ (2.9)
-»

From equations (2.6) and (2.9) it follows that
R(t) = Sf(i)d! - ) £(5)d§ (2.10)
- @p - @

whiich reduces to
o

R(t) = if(!)d! (2.11)
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Since, by definition f(e) = O, we find by differentiation

that

£(t) = - SRCE

dt (2.12)

2.3 Instantaneous Failure Rate Function

It is useful in life testing to construct a failure
rate histogram similar to the failure histogram constructed
in Section 2.2, but with an all important difference. In
this case we plot the fraction of the number of items sur-
viving at t which fail duringdt. If the incremental time,
Ot, approaches zero as a limit as N becomes very large,
the histogram approaches a smootr curve called the instan-
taneous failure rate function, A(t). Other names in common
usage for this function are hazard rate, force of mortality,
and failure rate. The failure rate versus time is plotted
for three specific distributions in Figs. 3.la, 3.Za, and

2.3a. Mathematically, the failure rate is written

d N_(t)
1 £
Ae) - Vo) O (2.13)

Multiplying aud dividing equation (2.13) by N gives

d[N (t)/N]
N f N  diQ(t
AM) = F o & TR e SR

G

‘, ——




or
oy = - L dLRCE
A R(ty dt
From equation (2.12)
- d[R(L)) .
it - £t

therefore,

At) = %{%

2.4 Reliability Function

11

(2.1%)

(2.16)

Equation (2.15) is an ordinary differential equa-

tion which can be solved for R(t).

ﬂ%; dfr(t)]) = - Adt) dt

Integrating
t t
d
f oo - {awee
° °
which yields
t t
A1) l - -Sm)dg
)
°

Rearranging (2.15)

If it is assumed that at t = 0 no items have failed, the

{nitial condition R(0) = 1 is obtained.

Therefore,
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t
R(t) = e” gj*<§’d§ (2.17)

2.5 Mission Reliagbility Function

Mission reliability is defined as the probability
of survival of an item during a mission of duration T,
given that the item or component has not failed prior to
the start of the missicn at time t.

Bazovsky (5, p. 44) defines the a posteriori prob-

ability of failure as

oe, T) = A2 2 Q8) (2.18)

Mission reliability is the complement of Q(t, 1),

R(t, T) = 1 - At ;(g = Q(t) (2.19)

which may be written

R{t) -[1 -R(t + 'r)]+ |1 - R(t)]
or after simplifying

R(t, T) = R*t ’ (2.20)

2.6 Summary
It {s evident that the furctions derived ir this

section are related to each other in such a way that if an

RO D A e e
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expression is known for one function, the oxpression for the
other functions can be found directly.

Thus far, the discussion has not been based on any
particular distribution., The equations derived in this
section are always true regardless of the failure mechanism
or type of failure distribution involved., Chapter 3 will be
concerned with some of the more common distributions which

have been used to represent specific types of failure.,




2.7 Symbols

¥

ety

14

Introduced in Chapter 2
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CHAPTER 3

DISTRIBUTIONS USED IN LIFE TESTING

3.1 The Exponential Distribution

The exponential distribution has precven to be a
representative model for the failure behavior of many
electrical components and also for electrical and non-
electrical complex systems (6, pp. L13-150). In re-
liability analysis the exponential distribution is commonly
used to evaluate life test data in which failures occur
randomly., The distribution is characterized by a constant

instantancous failure rate (Fig. 3.la).
A(t) = A= CONSTANT (3.1)

For the exponential distribution, the mean time between
failures is simply
T = M (3.2)

The reliability function (Fig. 3.1b) is found from equation

(2.17),

t

R GE
R(t) = e o
15

3 0£¢t § +00




16

o

1

]

)

i

I A(L) -:/\‘ = COaS it
, /

e
@
L

e Y

R(t_) =

AN

~

T~

~

f ; ~— '
'

0 = L

aclicoliisiy Versus Qine
Hoa, N
{9)

wi{%v) = aton Irom zcoro to time t

\ .S

N () = Arca frowm tize t to iafinity

Yl\\

1 =\

- -
-
e

——

o =< N

=
i -
Frocaollity Lo Loy Vercous Llle
Ll
Jizure 3.0 sallarc Aove, DLniiLllovry. and Zfrobusility Deaslyy
Versaus fime {0l ragencatially ~i3uriduasted fopulavions




17
For constant A

-At (3.3)
R(t) = e 0 €t +p0

Th

(2]

probability density function (Fig. 3.7¢) is found by the
use of equations (2.16) and (3.3) to be
-At
£(t) =Ae t 20 (3.4)

A preliminary method of determining if failure data
follow the exponential distribution is to plot the median
rank, which is similar in concept to the cumulative percent
failing, versus time on logarithnic paper (Ref. 7, p. 2).
The median rank, M.R., in percent is defined as

Nf(t)-O.B

i

(100) (3.5)

If the plotted points closely approximate a straight
line the date are assumed to be exponentially distributed.
However, since there is no measure of the accuracy of this
graphical method, a goodness-of-fit test such as the Chi-
S5quare or the Kolmogorov-Smirnmov test should be used as veri-
fication. 1If the data do not fall on a straight line a ¥
correction can be applied as described in Sec. 3.3 to
straighten the curve. If the ¥ correction does not produce

the desired resuit, other probability napers should bte tried.

3.2 The Normal Distribution
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Historically, much of the carly work with the normal
distribution concerned heights and weights of humans and ani-
mals, crop yields for different scils and Jocalities, and

student examination scores (8, p. 8). Unlike an exponent-

Sl AT s A e T B E e AL s e e

ially distributed population which suffers its greatest /
losses prior to the mean time T, the normally distributed
population suffers its greatest loss around the mean time T,
In life testing it has been observed that failures of the

wearout type are often normally distributed about a mean

wearout age.

The normal probability density function (Fig. 3.2c)

is 2

- .%.(E%T.) -t oo (3.6)
f(t) = - e g

1
o Jaw

where T is the mean time to failure,

T = é (e /N) (3.7) 1

and @ is the standard deviation

1/2
mn2] V2 g £, % - NT2
i:l (t,-T) ] BEE '] 5.8
7= N-1

N-1

The reliability function (Fig. 3.2b) is




R(L) = — e 207 ¥ (3.9)

& J2fr t
and the failure rate function (Fig. 3.2a) is
- l(E:i)z
AN -4

A(t) =&
) = LET
!j o 2 0O dif

A preliminary method of determining if failure data

(3.10)

are normally distributed is to plot the Median Ranks (equa-
tion (3.5)) versus time on normal or arithmetic probability
paper. If the plotted points closely approximate a straight
line the data are assumed to be normally distributed. As in
the exponential case a goodness-of-fit test should be used
for verification. 1If the data do not fall on a straight
line other probability paper should be tried. King (8, p.9)
suggests that a concave downward plot on normal probability
paper usually suggests a left-skewed distribution and the
next step after such & result would be to use extreme value
probability paper. He further proposes that a concave up-
ward plot indicates a right skewed distribution and such a
result would indicate the use of log-normal probability
paper, although extreme value, chi-square, reciprocal, Wei-
bull and log-extreme value probability papers are also

possibilities,
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3.3 The Weibull Distribution

In 1951 Waloddi Weibull published a paper concerri-
ing the breaking strength of materials and the size distri-
bution of fly ash (9). Because of the great flexibility of
the statistical distribution introduced in this paper the
Weibull distribution has been found to be quite useful in
other fields including reliability testing. The Weibull

probability density function (Fig. 3.3c) is

X (3.11a)

£(t) = O ,t< ¥ (3.11b)
where,
B = shape parameter ﬂ >0
N= scale parameter 7’[ >0
¥ = Location parameter ~00 < BL ©°

The effect of varying the shape parameter is shown in Fig,
3.3 for ¥= 0 and B=1/2, P=1, and = 3. For P less
than 1, the failure rate decreases with time and for ﬁ
greater than 1, the failure rate increases with time. For
ﬂ = 1, the density function becomes that of the exponential
case with constant failure rate @& =7712. Forﬁ = 3, the func~
tion approximates the shape of the normal distribution.

The Weibull reliability function (Fig. 3.3b) is
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- (5-.;-‘3‘)@ (3.12)
R(t) = e

The fai'ure rate function (Fig. 3.3a) is

y o 8 =¥\ (-1 (3.13)
Act) n“ﬁ‘)’

Other properties of the Weibull Distribution which
are ugseful in life testing are:

The mean time to failure,

T-¥+ra+p) (3.14)
wherer is the Gamma function.

The standard deviation,

o =nITa +92-) -I‘2<1 T é)]l/2 (3.15)

The modal value of t, that is, the time at which the great-

est number of failures occur,

~ 1/
T=¥+NA - }) g (3.16)

The median value of t, that is, the time at which half the

units in test will have failed,

¥ ¥+ 2)'8 (3.17)
Determining if failure data follow the Weibull
distribution is more complicated than the procedure for the
normal or eaponential distributions. The first step is to

find the median rank (equation (3.5)).




Ty
)

Lochner provides a convenient table for median

PPN o

ranks which is good fer fifty or fewer items in test (10).

Note that if N and NF(t) are very large,

M.R, %100 Q(t) (3.18)

gy

Once the median ranks are determined they are plotted ver-

sus the times to failure on Weibull Probabil'ty Paper. Iif

the plotted points approximate a straight line it is con-
cluded that the distribution is Weibull and the location
parameter ¥ is equal to zero (Fig. 3.4a). It is far more

likely, however, that the plotted points will approximate a
curved rather than a straight line on the first trial. If

this is the case, ¥ is not equal to zero and it is necessary

tc plot the median ranks again; but this time versus t - s

where t1 is the time tnat the first failure was recorded.

Three possible cases may arise:

Case 1. Both sets of data curve up (Fig. 3.4b). This

indicates that - < ¥ € C. Continue plotting the

median ranks against t - .‘i’ until a value of 11

is found which gives M.R. versus t - ]’i as a

straight line.

' "~se 2. The first set of datsa curves down and the second
set (t - tl) curves up (Fig. 3.4c). This indicates
that 0 € ¥ < L. Continue plotting the median

ranks against t - xl for positive values of ’{i




between 0 and tys until a value of'fi is found

which gives M,R, versus t -‘Ui as a straight line.

Cas2 3. Both sets of data curve down (Fig. 3.4d). The
failure data being analysed do not follow the
Weibull distribution and other probability dis-

tributions should be consideread.

If Case 1 or Case 2 prevails, the data fit the Weibull dis-
tribution and ¥ is equal to the trial !i which produces the
best straight line approximation.

The shape parameter, B , is actually a measure of
the slopz of the M.R. versus t - ¥ line. Most Weibull
papers have an origin through which a line may be drawn
parallel to the M,R, versus t - ¥ line. This parallel line
will intersect the ﬂ scale on the paper and the value of 8
can be read directly. To find the value of the scale para-
meter, N , first find the intersection of the M.R. versus
t - ¥ line with the horizontal line at M.R. = 63.2%. From
this point of intersection drop a vertical ’ine. Read the
value of t - ¥ where the vertical line crosses the abcissa.
This value of t - & is .

Since the graphical method gives no measure of
the accuracy of the fit of the distribution to the data,
it is prudent to verify the grapnical procedure by the use

of 2 goodness-of-£fit test,
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3.4 Test for Goodness-of-fit

Although there are several valid goodness-of-fit
tests available, only the Kolmogorov-Smirnov methed will
be discussed here since it provides a valid measure of the
goodness-of-fit for any distribution and is simple to apply
( 11, p. 68).

The procedure is to compare che observed unreli-

ability,

Nf(ti)

Qbs(ti) = —F

with the expected unreliability, Qexp(ti)’ as computed by
the distribution of interest. The absolute difference, D,
between these two cumulative values is noted for each

failure time ti'

D = |Qps(ts) = Qexn(ts) | (3.19)

exp

where i = 1 for the first failure, 2 for the second failure
and finally, i = N for the Nth failure.
The maximum value of Di is compared with values

from the Kolmogorov-Smirnov Table of significance levels
Table 3.1). If the value of the maximum D, is less than
the value given by the Kolmogorov-SmirnoQ Table for the
sample size N and et a specified significance ievel, we can
accept the distribution in question at the specified level

of significance. If, -in the other hand, the maximum Di is




greater than the value in the table, the distribution is
rejected at the specified significance level.

For example, it is deosiced Lo know if Lhe exponen-
Lial distribution may be used at the .05 level of signi-
ficance to represent the failure data of 10 items in life
test. The Di's are calculated at the 10 times to failure,
The maximum absolute difference is found to be D3 = ,45732,
Entering Table 3.1 with N of 10 and a significance level
of .05, the maximum allowable value of D at the .05 level
of significance is read as .410. Since D3 is higher than
the allowable value the exponential distribution is rejected
with a level of significance of .05, Had D3 been less than
.410 the exponential distribution would have been accepted
with a significance level of .05. Note that the values of
maximum allowable D become mcare stringent with increasing
values of the level of significance. For most purposes and

for this paper a level of significance of .05 is considered

sufficient to accept a trial distribution.

P
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Table 3.1 D values for the Kolmogorov-Smirnov Goodness-of -
fit Test at Various Significance Levels and
Sample Sizes (11)

Level of Significance

Sample
Size
(N) 0.20 0.15 0.10 0.05 0.01
1 0.900 0.925 0.650 0.975 7.995
2 0.684 0.725 0.776 0.842 0.929
3 0.565 0.597 0.647 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
s 0.446 0.474 ¢.510 0.565 0.665
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.4l 0.457 0.543
9 0.339 0.360 iJ,388 C.432 0.514
16 0.322 J.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.46%
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.2:28 0,274 0.295 0.32¢8 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259. 0.278 0.309 0.371
19 0.237 0.252 C.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0,35¢
25 0.21 0.2 0.24 0.27 0.32
30 0.19 0.20 0.22 0.24 0.29
35 0.18 0.19 0.21 0.23 0.27
Over 1.07 1,14 1.22 1,36 1.63
» & F &
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3.5 Symbols Introduced in Chapter 3

M.R.

Qexp(ts)

Qobs(ti)

o S

30

Qa ¥ ¢ » -—j

Absolute difference between expected and
observed unreliabilities

Base of natural logarithms, e = 2,71828....
Subscript indicates 1,2,3,... in turn
Subscript indicates 1,2,3,... in turn
Median Rank

Expected unreligbility at time t, based on
a known distribution

Observed value of unreliability at time t,
Median time (half of units in test have
failed)

Modal time (greatest number of failures occur)
Mean time (arithmetic average of failure
times)

Gamma function

Weibull shape parameter

Weibull location parameter

Weibull scale parameter

Standard deviation

[P .

PRNEERE o R SCLREILE P WL AP C P VAR S

0 v S e T Wt




CHAPTER 4

THE FAILURE RATE CURVE

4,1 Introduction

In the early 1950's, after plotting failure rate
data over a period of years for various electrical and
complex mechanical devices, it became evident to researchers
that the failure rate curves of many of these unrelated
items had certain characteristics in common. It was ob-
served, for example, that in the early portion of component
life there was an initially high failure rate which de-
creased with increasing component age. During the long
middle portion of component life the failure rates were ob-
served to level off and become relatively constant. Fail-
ures during this period occurred at random intervals not
related to component age. Finally, an increasing failure
rate was noted as the components became worn. An idealized
failure rate curve of the type described zbove is shown in
Fig. 4.1la. The shape of the curve has carned it the name,

"bathtub curve." The failure rate curve is of particular

31
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interest in this study because the three failnre regions,
early, chance, and wearout are more distinct on this curve
than on either the R(t) or £(t) curves (Fig. &4.lb,c).

The necessity for separating the failure regions isc
apparent when it is considered that each failure mode fol-
lows a distinct statistical distribution, and, therefore,
requires individual mathematical treatment. A second reason
for separating the failure regions is that each failure
mode requires a different physical technique to improve re-
liability.

In the next three sections the principle mechanisms

accounting for early, chance, and wearout failures will be

considered,

4,2 Farly Failures

A high incidence of early failures in a component
population is an iudication of poor quality control and
improper debugging and burn-in procedures. Substandard com-
ponents are initially weaker than the good components in a
mixed population and therefore they fail at mrich lower
levels of stress (Fig. 4.2a). As the higher failure rate,
substandard items fail and are removed from the population,
the population failure rate decreases (12, p. 4).

The Weibull distribution with @ ¢ 1 has been usec

to represent the early failurec period. Mendenhall and
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Hader have alsoc shown that a combination of two exponential
distributions with different values of A for the early and
chance failure periods will give the characteristic de-

creasing failure rate of the early period (13).

4.3 Chance Failures

Chance failures occur randomly and are independent
of component age; that is, they occur during the entire
period that a component is in service and not just during
the chance period. In the early period, chance failures
occur together with early or substandard failures, and in
the wearout phase, chance failures occur with the wearout
failures. During the chance failure period it is assumed
that only chance failures occur. All the substandard items
have already failed and wearout has not yet begun. Chance
failures are caused by sudden, unpredictable stress accumu-
lations (Fig. 4.2b).

The exponentigl distribution is most frequently
used to model the theoretically constant failure rate which
characterizes the chance period of component life. A more
flexible model is the Weibull distribution with B approxi-
mately equai to 1. This distribution does not require an
atsolutely constant failure rate in order to have a good

fit to observed failure data.

STy < - )
_ -

e




. 25
STREXGT \
GO0 oo P AN ST RGTH

-» - ..~\ 4D Em e TR A e P mM e @ e S Gu Y Sm gy GW WY W v e e
AND ’
O ...‘a...-uu._m.&...., ooshoddn L0l s BAN SPRENGTY
STRESS

.o f
- fl\‘/wl /v'\/wfu

e == il i.oN STRESS DISTRIBUTION

Early Failure .jechainism

(a)

\ -

1 e e gn e - "D - SO T S - P o --Ud

STRENGTH k
AXD { i
"\ /
- ,. {;-..,‘ (s i ¢
STRESS M/L \ S /f/‘f 4 o \j

uAA.I-.u.. STRESS /uISTR.LBhllON

Ad.STREIGTE e e

/
t”o t‘v:
Caance Failure :ccharisa
(b)
! \ DETERIORATION
STRENGTH
ARD M

i
P4

STRESS WM . \’U\ i

‘...Uquu ‘DLI uss Dls-»:“,.udi-to;\

>
v, .
w

weceroud .al‘u‘g Ldchanica
\-)

Figure 4.2 Berly, Chance, and Uioarout Jallure Hechanlszs




o P

36

4.4 Wearout Failures

After the chance period of life, component deteri-
oration begins and failures become a function of age. As
the surviving components become older they also grow weaker
and more subject to failure at lower levels of stress,
Thus, deterioration produces the characteristic increasing

failure rate of the wearout period (Fig. 4.2c).

Both the normal distribution and the Weibull -
tribution with F greater than 1 have been successfully

to model the increasing failure rate of the wearout pe#od.

4.5 Summary

In this chapter it has been shown that the indivi-
dual failure events cua be modeled by known statistical
distributions. It remains to be shown, however, that the
entire bathtub curve inc'uding early, chance, and wearout
failures can be modeled by a unified mathematical expression
derived from accepted reliability theory. The remaining

chapters are oted *o finding such an expression.




CHAPTER 5

THE BASIS FOR A UNIFIED EXPRESSION

5.1 Criteria for a Good Model

Curve fitting techniques. could be used to fit a
‘*hhematical expression to observed failure data, but
tﬁﬁs would provide very little insight into the mechanics
6f failure and would not be of great use in reliability im-
provement. A mathematical model based on the theory of
failure would, on the other hand, provide relevant informa-
tion about failure modes which would be quite useful in
analysing failure data and for improving product reliability.,
For the purpose of this study a good model of the combined
failure rate curve is defined as one which meets the follcw-
ing criteria:
a, The unified model must combine the phenomena
of earily, chance, and wearout failures.
b. The number ~f restrictive assumptions nece-sary
to derive the model chould be minimal.,
c. The model should be mathematically simple if at

all possible,
37
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d. The model should correspond to observed failure
data at the .05 significance level for the

Kolmogorov~-Smirnov Goodness-of-fit Test.

R ki s B ATACBANT e s alC BIY

€., The model should be useful for prediction and

o R

for theoretical speculation,
f. The theoretical basis for the model must be
consistent with the mamner in which the data

are generated,

5.2 The Product Rule ;
If it is assumed that there is a single population ?

of identical components and that the events of early failure,

chance failure, and wearout failure are independent, that

is to say, thst the occurrence of one type of failure in

no way alters the probability of occurrence of the other

types of failure, then the unified unreliability would be

as shown in the Venn diagram (Fig. 5.1). For independent
events the joint probability of several events occurring
is simplv the product of the individual probabilities. The

enclosed area of the Venn diagram is

Quew(t) = Q. (t) +Q (t) + ¢ (t) - Q(t) q(t)
= Q () q(t) - q_(t) Q. (t) (5.1)

+ Q. (%) q (t) q[(t)
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where

(t)
Q (t) = —eg,—:——

o £(B)

Q(t)-—-*———

C

(t)
Q (t) - _.‘.'.I{I.f___.
w

If each Q term is replaced by its complement, 1 -~ R, the

reliability product rule is obtained.

R cw(t) = Re(t) Rc(t) Rw(t) (5.2)

where

(t)

R&)*—‘-’-ﬁ-——-
e

(t)

R(t)=—°§-—
c

$(t)

R(t)=—N_
W
Equation (5.2) is a potential model of the combined relia-
bility curve and it does meet certain of the specified
criteria set forth in Section 5.1. For example, the product
rule does combine the effects of the three failure phenom-
erna. There is only one limiting assumption: independent

failure events, And the product rule is & very simple

expression. The crucial question is whether or nct the
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product rule corresponds to the observed failure data. To
answer this question, consider equation (5.2) with the ln-
dividual reliabilities replaced by their respective defini-
tions

N (t) N _(t) N (t)

. I -PY c,S X W,S
Recw\t) * x % (5.3)
e C w

At the end of the early period it is assumed that all early
failures have occurred, consequently, Ne,s(tb) = 0. The
result of this is that for all t greater than oo the cou-
bined reliability given by equations (5.2) and (5.3) is
zero, This result is in direct conflict with physical
observations of mixed samples which indicate that the
reliability at t = ty is normally quite high. For this
reason the product rule which includes early failures as
independent failure events in a single population is reject-
ed as a possible model of the combined failure rate curve,.
The possibility of using the product of reliabilities for
chance end wearout failures alone will be considered in
Gection 5.4.

An interesting sidelight to the product rule is the

convenient but incorrect expression

SRR
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which has been used, on occasion, by reliabilicy engineers
to represent the combined early and chance failure rate dur-
ing early life., This simple expression might eppear valid
after a casual inspection of the failure rate curve (Fig.
4.la). However, it is derived by the combination of the
reasonable assumption that both early and chance fallures
are of the exponential type with the incorrect assumption
that reliability in early life is represented by the pro-

duct of early and chance reliabilities. Mathematically,

Rec(t) - Re(c) Rc(t)

oT
t At
eAt . ¢ * e ﬂt
Taking the natural log
A=A A
which 1& incorrect since it was shown previously that

Rec(E) # R (E) R (£)

and therefore,

APA A

SRS ST N
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5.3 The Summation Rule

Consider a hypothetical non-replacement, life test
of N components. The components are placed in test a:
time t « 0 without prior burn-in or debugging. As each
component fails, the time to failure is recorded and the
test is terminated when the last component in test fails.
To assist in visualizing the problem, assume that the com-
ponents are of a type that can be examined after failure
and the mode of failure determined, be it early, chance,
or wearout, As items fail during the test they are removed
from the test population, inspected, and segregated into
three lots according to failure type. At the conclusion
of the test there will be three subpopulations of Ne, Nc’
and Nw failed items, respectively where Ne + Nc + Nw = N,
If the events of the tests are now reconstructed, it may be
thaorized that at time t = 0 there were actually three
separate subpopulations in test each with an individual
failure density distribution, even though at time t = 0
no feilures had yet occurred and therefure the subpopula-
tions were not physically distinguishable. It is not perti-
nent in making this assumption that the items actually be
inspected to determine Ne’ Nc’ and Nw' as the subpopulations
would exist ever if these values were unknown or were

physically indeterminable. A graphical method for finding
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Ne’ Nc’ and Nw from observed failure data is suggested in

Chapter 6.

If the prcposition that there are three failure sub-
populations is accepted, a mathematical expression combining
the etfects of the subpopulations may be found directly.

The cumulative number of items failing in the mixed popula-

tion is found frcm the definition of unreliability

Necw,f(t) =N Qecw(t) (5.4)

Similarly, the number failing from each of the subpopula-

tions is

Ne, g(t) = Ny Qg (t)
No, g(t) = N Q () (5.5)
N, (8 = N, Q(6)

The total number of failures by time t in the mixed popu-

lation is simply the sum of the failures in the three sub-

populations.

Necw,f(t) = Ne,f(t) + Nc’f(t) + Nw’f(t) (5.6)

Substituting equations (5.4) and (5.5) into equation (5.6)

viclds

N Q.y(t) = N Q (t) + N Q (t) +Nq(t) (5.7)
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or

N N
Q(t) + 5= Q(t) + g= Q. (t) (5.8)

d'mz

ecw' ™/ T}

Q

This expression could also have been derived directly from
Baves' Theorem (14, p. 57), which, for this example, says
that the unreliability of a component drawn at random from
a mixed population composed of three failure subpopulations
is the summation of three terms: the probability that the
component is from the early subpopulation times its unre-
liability if it is from the early subpopulation, plus the
probability that the component is from the chance subpopu-
lation, times its unreliasbility if it is from the chance
subpopulatisn, plus the probability that the component is
from the wearout subpopulation times its unreliability if
it is frem the wearout subpopulation. This may be written
mathematically as

Q () = t€ Q_(6) + € q(6) + ¥ Q ()
which is ;dentical to equation (5.8).

If in equation (5.8) each of the unreliability terms
is replaced by its ccmplement, Q = 1 - R, a unified relia-

bility expression is obtained as follows:

1 Recw(t) ﬁg [1 R (t)] + 3 [} R (t,] + 5 ll'nw(t)l
Ne Ne N Nc Nw N
- EX oumme - —— -& - we— ———— W J
1 Recw(t) % N R (t) + 5 g R (t) + R R Rw(t)
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since
M + N + N =N
e d w
or
Ne Nc Nw
N—.+ﬁ-+§_-1
it follows that
N N N

e w
1-R, () =1-=R(t)- EE R (t) - 5= R_(¢)

This reduces to the unified reliability function

N N
e N w
Recw(t) -3 Re(t) + _ﬁg_ Rc(t) +5 Rw(t) (5.9)

which is also called the reliability summation rule.
The other functions of interest are found by ap-
plying the equations of Chapter 2 to equation (5.9).

From equation (2.12) it is known that

£, (0 = = 5 [R (] (5.10)

For the summation model this becomes
N N
.2 [.d \] < -._ ]
£ cw(t) N [ 'EERe‘L’ + N dt c(t)] + dt w(t)

which reduces to

N

N
fec\l(t) = :Q‘e-fe(t) + N_(‘,_ fc(t) + ;! fw(t) (5.11)

This equation is elsc g’ven by K. L. Weng (4, p.19) as
representing the combined probebility density function when

eary, chance, and wearout failures are present. Applying

bk M s R St B A e su P T e e
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equation (2.11) to equation (5.9) it is shown that

£ (v)
;\ecw(t) - R:::th- (5.12)
or, N, N N,
A () - T £.(8) + ﬁ-c- £.(t) + 5~ £ (t)
N N N
=< ﬁﬁ R (t) + E‘i Rc(t) + N_w R (t) (5.13)

The mission reliability for a mission of duration T start-
ing at time t with a surviving component is found by use of

equation (2.20)

R _(t+171) (5.14)

R (t,T) - _ECW

ecw R th
ecw
which expands to
Ne N, Nw
R (o) - -ﬁ-Re(t-i-T)+E—Rg(t+T)+-&—Rw(t+T)
ecw' ! Ne Nc Nw
’ N Re(t) + T Rc(t) + N Rw(t)

(5.15)

A cursory check of the criteria for a good model given in
Section 5.1 shows that the summation rule does meet certain
of the specified criteria. Th: Phenomena of early, chance,
and wearout failures are combined., The single assumption
required for this model is that the mixed population be
composed of three individual failure subpopulations. The
model is mathematically simple and if the above assump-

tion is corrnact, this model would be useful for prediction




and theoretical speculation, The correspondence cf the
model to observed failure data cannot be shown as simply
as the other criteria considered here and, therefore,

this will be considered in detail as a separate subject

in Chapters 7, 8, and 9. Conclusions concerning the
validity of the summation rule as a model for romponent
reliahility are hel< in abeyence until further examination

is provided.

5.4 Combined Product and Summation Rules

It was shown in Secti.n 5.2 that early failures
could not be combined with chance or wearout failures by
use of the produrt rule because the unified reliability
would go to zero at the end of the early life period., 1Im
Section 5.3 it was shown that this problem did not occur
when the summation rule was used as the unified reliabilit
model, A third possible combination of reliabilities
exists and there is ample theoretical basis for its con-
sideration as will be shown,

In Section 5.3 it was theorized that wearout fail-
ures and chance failures could be considered as separate
failure subpopulations. A re-examination of Fig. 4.2
would cast some doubt on this, Figure 4,2a clearly shows
two subpopulations, the substandard and the good. The

substandard subpcpulation c...cributes the early failures,
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whereas, the good subpopulation contributes both the chance

and the wearout failures (Fig. 4.2b,c). It was noted in

Szction 4.3 that in the early pericd both early (substandard)

and chance failures occur. This means that in thz early
period two subpopulations are in test and the summation
rule may be applied. In the chance and wearout periods,
however, only t> good subpopulation is in test, the sub=-
standard items having already failed. Tie good subpopula-
tion provides both the chance and wearout failures, For a
good component to survive during the chance and wearout
periods it must survive both types of hazard, chance fail-
ure and wearout {(deterioration) failures. ™his is a serial
arrangement of reliabilities to which the product rule must
be applied.

The unified reliability of a component drawn at
random from a population containing good and substandard
components is found directly from Bayes' Theorem to be the
sum of two terms: the probability that the component is
substandard times its reliability if it is substandard,
plus the probability that the component is good times its

reliability if it is good (14, p. 57).

Mathematically,

=2

e NC + Nw
Recw(t) il Re(t) + - Re(t) Rw(t) (5.16)
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5G
where Nc + NW is equal to the number of gcod components in ~
test, NG. The other functicns of interest are found by
applying the general rquations developed in Chapter 2 and
in Section 5.3 of this chapter to ~quation (5.16). From

equation (5.10)

£ CW(t) = %E [Recw(t).]

For the combined model this is

e N+Ne g
fecw(t) = dt e<t?} - E[Rc(t) Rw(t)]
which may be written
N + N ]
foow(t) = = T R (ti} {R (t) (- ag R (t)
+ R (t) [- d_ R (*)] '
\ dt ¢'" i
Therefore, the combined probability density function is i
N, N+ N, B
foe(®) = 72 £,(0) + = [R(DE (1) + R (W (V]
(5.17)
From equation (5.12) j
£ 4
o (E) g
(t) = ecw ]
. Aecw Recw(t)
which gives the combined failure rate
N N + N "'_
N— £ (t) + —TJLi(t)f (t) + R (t)f (t)] .
Aecw TN N+ N B

ﬁ' Re(t) + -—-ﬁ—-‘i Rc(t) Rw(t)

(5.18)
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The mission reliabiiity for a mission of duration T start-

Ing et time t is found from equation (5.14) to be

Ne N + Nw
=— R (t + T)+—f——R (t + T)R (t + T)
R (t T) - N [ N C \J
ecw' ' Ne Nc + Vw
N Re(t) + R Rc(t) Rw(u)

(5.19)
A check of the criteria for a gocd model given in Section
5.1 shows that the combined product and summation rule does
meet certain of the specified criteria. The phernomena of
early, chance, and weaiout failures are combined. The sin-
gle restricting assumpticn is that there are two failure
subpopulations, one exhibiting only early failures and the
other exhibiting both chance snd wearout failures, The
model is mathematically simple and if the assumption above
is correct the model would be useful for prediction and
theoretical speculation. Of the three potential models
considered in this section, two still remain and require

further analysis.

5.5 Comparison of Different Models

Thus far in this chapter three potential unified
reliability models have been considered: the reliability
product model, the reliability summation model, and a
combined product and summation model. The product model

was eliminated because it went to zero at the end of the

]




earlv period. Therefore it is prudent, before going to
Chapter 6, to compare the two remaining models at several
critical time periods during component life to insure
that the models are valid during the entire lifetime and
te provile a comparison of the two equations during the
different periods., The equations which will be compared
are equation (5.9), the reliability summation rule, ard
ecuation (5.16), the combined product and summation rule.
At time t = 0 no components have failed, and,

therefore, R, = R =R =1,
e c W

SUMMATION RULE (t = 0)

(0) =§£(1\+i‘i(1)+§ﬂ(1)
ecw N ‘ N N
or
©) = Ne + Nc + Nw
ecw N

Since N + N + N =N,
e c

w
- .l\l = i
COMBINED RULE (t = 0)
Ne NC + NW
Ry (0) = =2 (1) + =¥ (1)
or,
N + N 4+N '
ecwt?) = & S Y g-'- 1 (5.21)

Hence, both rules give the desired result for t = 0.

Next consider the period 0§ t & t . The individual
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reiiatilities are Re - Re(t), Rc = Rc(t), and R = 1 since

wearout does not begin prior to t,e

SUMMATION RULE (0§ t § t )
N

N N
B (t) = =2 R (t) + ¢ W
ecw N e T Rc(t) + T (5.22)
COMRINED RJULE (O ,tg tw)
Ne NC. + Nw
Recw(‘,) = T Re(t) + —IT— Rc(t) (5.23)

Equations (5.22) and (5.23) vary by the amount,

N
-ﬁﬂ [1 - Rc(t)] . In tests in which wearout is not con-
sidered, NW = 0 and both equations (5.22) and (5.23)

reduce to

=z

N
= =L <
Rt = 7 R (8) + 3 Rc(t) (5.24)
Equation (5.24) is gliven by Dietrich (15, p. 15), Wong
(4, p. 19), Polovko (1A, p. 94), and Mendenhall and Hader
(13, p. 505).
In the time period ty 4 t{ ® the individual reli-

abilities are Re =0, Rc = Rc(t), and Rw = RW (t).

SUMMATION RULE (t, & t<e9)

N N
Recw(t) = -ﬁﬁ Rc(t) + ﬁ-“-’ Rw(t) (5.25)
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COMDINED RULE (Lb $ LCe)

Nc + Nw i
Recw(;) = N Rc(t) Rw(t) (5.26)

Although equations (5.25) and (5.26) are dissimilar, forms

of both have been referenced in the literature for the time
period after burn-in, Equation (5.25) is given by Polovko

(16, p» 95) and by Wong {4, p. 19). Equatlon (5.26) is

given when Ne = 0 and therefore Nc + Nw = ] by Bazovsky

(5, p. 52) and by Pieruschka (17, p.N73)~

The two wmodels have now been considered and com-
pared for three critical periods of time during component
life and neither has heen eliminated. To be of use, how-~
ever, the parameters of the models must be obtaineble, In
Chapter 6 a method will be given for obtaining the para-
meters of the summation rule, The combined model offers
a different problem in parameter determination and although
considerable effort was expended to find an analytical
method for the determination of Rc(t) and Rw(t), no satis=
factory wiethod was developed. The only practical technique
found for applying equati a (5.16) wichout prior knowledge
of Rc(t) and Rw(t) * to eliminate one of the parameters

by combining tt quantity Rc(t) * Rw(t) into a single temm

RG(t). Th cesult of this combination is to reduce the
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combined summatiou-product model to an ordinary summiation

model wi:h two subpopulations

Ne NG
Recw(t) = Re: t) + T RG(t) (5.27)

where Ne + NG = N, An expressiorn. of this form is used

by Kao (18, p. 397) to describe electron tube failures,

If the 1ife test is truncated before wearout. equation
(5.27) is equivalent to equation (5.24). One method of
parameter determination for equation (5.27) is given by
Kao (18) and another is given in Chapter 6 of this report,
The final choice as to which model to use, equation (5.9)
or equation (5.27), must be based on the data itself. A
graphical aid to assist in determining the number of under-
lying subpopulations is suggested in Chapter 6, In cases
in which both equation (5.9) and equation (5.27) appear to
apply, equaticn (5.9) is preferred hecause with its addi-

tional parametars it 13 the more powerful expression.
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5.6 Symbcls Introduced in Chapter 5

fe(t) Early probability density functiorn ;
fc(t\ Chance probability density function

fw(t) Wearout probability density function

fecw(t} Unified probability density function

N Total items in test, N = Ne + Nc + Nw

Ne Total items failing in early mode (substandard)

NC Total items failing in chance mode

Nw Total items failing in wearout mode é
NG Total good items in test, NG =] - Ne - NS + Nw é;
Ng,f(t) Items failing in early mode by time t i
Nc,f(t) Items failing in chance mode by time t

Nw,f(t) Items failing in wearout mode by time t

N f(t) Items failing in all modes combined by time t

Ne,s(t) Items in early subpopulation surviving by
time t

Nc,s(t) Items in chance subpopulation surviving by
time t

Nw,s(t) Items in wearout subpopulation surviving by
time t

Qe(t) Early unreliability Ne’f(t)/Ne

Qc(t) Chance unreliability Nc,f(t)!Nc

Qw(t) Wearout unreliability Nw f(t)/Nw

Qecw(t) Unified unreliability furction




Re(t)
Rc(t)
R (t)

R (t)

(v)

R
ecw

A, (E)

3

Early (substandard) reliability N_ q(t)/Ne
b’U
S(B)/N,

Wearout reliability Nw,s(t)/Nw

Chance reliability Nc’
Reliability of all good components rega.d-
less of failure mechanism

Unified reliability functior

Time at end of the early period

Time at beginning of wearocut period

Unified failure rate function
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CHAPTER 6

TECHNIQUE FOR APPLYING THE RELIABILITY SUMMATION MODEL

6.1 Introduction

If the early, chance, and wearout failure periods
are each modeled by an individual Weibull Distribution,

equation (5.9) may be written as

(t-l‘e)ae (t-xc Rc (t-twﬂw

N -y N ~(— N - (et

Recw(t) = N_e e e + ﬁ_g e N + &-‘— e Nw
(6.1)

vhere the subscripts e;c, and w indicate individual Weibuil
parameters for the eerly, chance, and wearcut subpopula-
tions, respectively. In corder to use equation (6.1) to
compute compcnent reliability it is necessary to find the
three subpopulation sizes Ne’ Nc’ and Nw and the nine
Weibull parameters, ‘e’ ﬁe, ?]e, ‘c’ .36, %A, 1w’ pw’ and"(w.
The subpopulation sizes may be determined by
anaiyticul means or by physical failure analysis, but the
analytical method is preferred for several reasons:

1. Analytical methods are usually less expensive
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and are less time counsuming than physical 1
inspection.

2, The components may not lenu themselves to i
physicai inspection without sophisticated and
expensive test a2quipment, and the expeaditure
of much time,

3. The failure data may be cld ard the ccmponents
no longer available for inspection.

4, The components may be destroyed upon failure,
thus making it impossible to conduct a failure
analysis.

5. The compcnents may be in remote or otherwise

inacc¢s.. le equipment.

Kao (18) suggests a graphical method for separating
the subpopulations and fiuding five Weibull parameters for
2 mixel population consisting of two subpopulations. For
the purpose of this report an attempt was made to extend
Kao's original method so that it would apply to the case of
three subpopulations, but the effort was abandcned for
reasons which are fully discussed in Appendix A,

A graphical method for subpopulation separation is
recomnended in Section 6.2 and illustrative examples are

given in Chapters 7, 8, and 9.
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6.2 Perameter Determination

The following steps provide a method for separa-
ting a mixed Weibull population into its constituent sub-
populations and then of finding the parameters 1,", and p
for each of the subpopulations, The steps are:

i, Compute median ranks for the mixea failure
data and plot median ranks versus time on Weibull proba=-
bility paper.

2, By visual inspection fit straight lines to the
plotted data points. For the case of early, chance, and
wearout subpopulations there will be three relatively
straight line segments on the Weibull plot of the mixed
failure data. Points falling closest to tha lower line
are in the early subpopulation, points falling closest to
the middle line are in the chance subpopu’ation, and
points falling closest to the upper line are in the wear-
out subpopulation.

3. Ne is calculatad as the cumulative number of
failures represented by the points along the early (lower)
line, Nc is calcuiated as the cumulative number of fail-
ureslrepresented by the points along the chance (middle)
line, Nw is calculated as the cumulative number of fail-
ures represented by the points along the wearout (upper)

line.
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based on sample sizes Ne’ Nc and Nw’ respectively,

61

4, Compute new median ranks for each subpopulation

S. Replot each subpopulation on individual Weibull
peper and determine ’6,71, and ﬁ for each subpopulation by
the method described in Section 3.3.

Using the above graptical procedures, all of the
unknown quantities in equation (6.1) may be estimated. The
method described in this chapter will be applied to raw
data in the next thvee chapters, Human mortelity is con~
sidered for illustrative purposes in Chapter 7 while
Chapters 8 and 9 deal with Klystron nnd Magnetron failures

respectively.




CHAPTER 7

APPLICATION OF THE RELIABILITY SUMMATION MODEL

TO HUMAN MORTALITY

7.1 The Data to be Analysed

If mortality is plotted versus time for a large
sample of humans, the resulting curve provides a classic
example of a mixed population exhibiting infantile, chance,
and deterioration failures or, in this case, deaths,
Experience has shown that the observed failure data of some
electrical and complex mechanical systems is similar to that
of human mortality. For this reason and because the data
are familiar, human mortality has been selected as the sub-
ject for this first application of the reliability summatiom
medel. A sample population of 1000 Americans has been as-
sumed and the mortality data for this population are given
in Table 7.1. The sample data are based upon survival
probabilities given by Reference 19. The data of Table 7.1
are grouped into twenty, 5-year class intervals and the
mortality and force of mortality histograms are plcited in

Figs. 7.1 and 7.2
83
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Table 7.1 Mortality TabLle for 1000 Americans
Age Probability Number Proba- Proba- Force
At Class of Survival Dying bility bility of
Interval at Beginning During Density of Death Mortal-
End of 5-Year 5-Year Function at End ity
Point Period Period ‘ gf i-gear fecw(t)
erio ﬁ;:;?ET
t Recw( t) Deaths fecw( t) Qecw( t) Aecw( t)
5 1.000 13 .013 .013 .013
10 .987 6 .006 .019 .006
15 .981 6 .006 .025 .006
20 <975 8 .008 .033 .008
25 .967 9 .009 042 .009
30 .958 10 .010 .052 .012
35 .948 11 .011 .063 .012
40 .937 13 .013 .076 014
45 .924 19 .019 .095 .021
50 .905 29 .029 124 .032
55 .876 43 .043 .167 .049
60 .833 63 .063 .230 .076
65 .770 90 .090 .320 .117
70 .680 121 .121 441 .178
75 .559 146 .146 .587 .261
80 413 150 .150 . 737 .363
85 .283 132 .132 .869 466
920 .131 84 .084 .953 .640
95 .047 37 .037 .990 .789

100 .010 10 .010 1.000 1,000
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7.2 Parameter Deterwination

The example data are prepared for pletting by com~
puting the median rank for each class interval, In Lhis
case the sample was so large that the median ranks were
considered equal to the cumulative percent failing. The
median ranks and class interval end points are tabulated in
Table 7.2 and the data are plotted on Weibull probability
paper in Fig, 7.3. The median ranks bhave been plotted at
the class interval end points rather than at the mid-points
as suggested by some authors, because the failure data are
actually accumulated up to the class interval end point and
therefore this would seem to be the more logical location
for the median ranks. Three straight lines are fitted
amongst the points plotted in Fig., 7.3, and it is determined
by visual inspection that points 1 and 2 fall along the
line representing the early subpopulation, Peoints 4 through
9 are identified with the chance subpopulation and points 11
through 20 are placed in the wearout subpopulation. Points
3 and 10 each fall close to two iines and the final deter-
mination as to which subpopulation the questionable points
should be identified with is not made until after the points
have been included in both possible suupcpulations and the
subpopulations replotted on Weibull paper. This was done

and the best straight line approximation occurred when

e




Table 7.2 Mortality Data Preparad for Plotting

Point Number Age Median Rank
1 5 1.3
2 10 1.9
3 15 2.5
4 20 3.3
S 25 4,2
6 30 5.2
7 35 6.3
8 40 7.6
Q 45 9.5

10 50 12,4
11 55 16,7
12 60 23.0
13 65 32,0
14 70 44,1
15 75 58.7
16 80 73.7
17 85 86.9
18 90 95.3
19 95 99.0
20 100 100.0
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point 3 was included in the chance subpopulation and when
point 10 was placed in the wearout subpopulation. All of
tte pcints have now been identified with a particular sub-
population. The subpopulation sizes are determined by the
total failures represented by the points hich fall in the
particular subpopulation. Thus

N =19

e

N =76

c

N = 905

w
New median ranks are calculated for subpopulation replot-
ting by considering each of the subpopulations as an indi-
vidual population. The new median ranks are tabulated in
Table 7.3 and the subpopulations are replotted individually
in Figs., 7.4, 7.5, and 7.6. From these replots, the follow-

ing Weibull parameters are determined:

Figure 7.4 Ve = 0
B, = 1.60
‘ne = 4,85

Figure 7.5 f;’= 0
ec = 2.81

N, = 35.9

MWL L.

L
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Table 7.3 'ortality Data Prepared for Subpopulation Replot

P S AL RN W 2

goint Subpopu- Median
Numbar Age lation Rank
Nf(t)
Early
Subpopulation 1 5 13 65.5
(N, = 19) 2 10 19 96.4
Chance 3 15 6 7.46
%’;E@%é?tim 4 20 14 17.95
~ 5 25 23 29,7
3 30 33 42,7
7 35 44 57.3
8 40 57 74.2
9 45 76 99.2
Wearout 10 50 25 3.17
e Sy 11 55 72 7.92
12 60 135 14,89
13 65 225 24.8
14 70 346 38,2
15 75 492 54,3
16 80 642 71.0
17 85 774 85.5
18 90 858 94,7
19 95 895 98.7
20 100 905 99.9

e N

i

b v A A OPER SN IR L 5 19

T A P L




B e

!

4 S 678

3

WEMLL PROLABIITY FAFDR

2
“ods

guz

1.0

(=]
n T

L1N3ION3d

.30

J{a_) san

J0




B PR e

73

il

2

é 7{9100
Replot

4
ion

- — !v
- _— - — e T d i
; 1 : i *
H PR - - - - — e ey mmeeee - P v - e -«
[ e v ; R : ;
A - - - SR - . —— L feea e . " . . m PPN I
m’ . - wys . - "wa e - fl ' _{ N . — P - . e e g .ll!a,. 9@
. . 1 . N . - b [
¢ ! 8 N ; ; ) -
e e e . —— - ! g 1
. ) '
urf ——— - — e L e - - - S et . .w - L e— e - et S e 1 L 4
) . : . . . R .
T : 1 . . - : '
- I o —xr I . .wi. - T e IM e e e -
. . } . . I i - A
< . . ' . e +
. . . JU S BN . I
R, : e« ; [P S SO IH. PP I, % . . -
; i X ! DU N S oL M : .
oo d L S T Co St H
T!. —_— i el D S S L SR S oo Dt
. N . I ‘ . ] - '
H - 3 i . NP “ b, H . .
! - + : ¢ s i 1" ' ¢ '
‘ 1 . i . .. .
{ ; | N
: ; R ISR SR -
L e N e
- s e . g
. - . .
+- . . - - - e s
[PV S NP -
: ,

e

e peifib e

==

P ¥ I:‘MIS

fat

0
0
60.
O
as)
30.
20.
10.
5.0
4.0
3.0
2.0

!
L |
Q0 o [ - v)
a¥ 8 & = 383
IN3D¥3d -

678910
Y Ohance Subpopu

o
.
- _ ! . i
R S SR S U e
3 A R
. : . . w . .
) _ ) T
1] . 0 . 4
M - (] .
- Y
4 s ! + "
T . S S — 4
R T LT
S ‘;;;; S i o
iR - e
M ]

:

:

i

1}

e

af
t

133 Mgrtnl

1

!

_ _?15-_\3;‘;

03 L
At




74

.I.ll.l-ll ~ Y iot...-
o} ) . G ,
' : : !
e . —. - .
- - . H e v e
—_ - = ' ; - -
. i e . —
_ * S e
. b x < e e m -
. o : oo I .
: . ) :
. | S
. . . JEPSE U SRS SRS S .
: A m , Lo RE
! oot -
N + ge —— -
v ’ * !
} 1 ' ¢
' ,. T
' i [

. [N AP S S N .
QS S U U TSRS V0 SV WD VN

5.0
4.0
3.0

20

1.0

S C
o

IN3T 3¢

“
(3]

i

da-d

7.5 vons

§ v imga s n

3

R R RSP S

!
|
| |

S DRI

| ]
o

N «

1 n

N

'
!
i
e e —

=
™

o
-

1
| - lekz

S
04
.03

4 S 6789

3
WAL

2

67489100

2

4

2

$ 678910
74’0 Mortality Wearout Subdpopulation Heplot

4

3

2

1
I




75

rigure 7.6 ‘w =0
8“,= 7.20
n.=77.5
All parameters necessary to use equation (6.1) have been
determined and the equation may now be used to find reli-
ability, or in this case the probability of living, for
all positive values of t. For example, consider t = 30

years, Equation (6.1) is

t_ve@e t-¥ B¢ t-¥ By
N, (ﬁ ) N (‘rh= I
R (t) ===e € +=Z e + =X e
ecw N N N

Substituting numerical values for each of the parameters

gives

_20-0) _(30-0,7+% .30:0)7.2
%85 35.9 775
R () = 2 e F Lo o - S B
ecw 1500 7000 T000

.019(,962 10-8) + .076(.547) + .905(.%99)

!

= ,946
1f this sample of 1000 is representative and if
cquation (6.1) is valid, & humnan, randomly selected at
birth, can be expected to have a 94.6% chance of surviving
to age 30. Conversely, the expected probability of dying

betore age 3C would be
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Que,,(30) = 1 - R, (30) = 1 - .94b
Qg (30) = .054

7.3 Goodness-of=Fit

For the purpose of comparison the observed value of Q;CW(BO)
from the sample of 1000 is found to be .052. The value of
the absolute difference between the expected Qecw(30) and
the observed Qecw(BO) is

D3O = ,054 - .052 = ,002
From the Kolmogerov-Smirnov Table (Table 3.1) for N greater
than 35, the asymptotic equations are used to find the max-
imum allowable value of D at the .05 significance level

_1.36 _ ___1.36
N 1000

D

=.043

To fully test the proposed model for goodness-of-fit, it is
necessary to find Di at each class interval to insure that
no value of Di is greater than .043, This has been done and
the values of Qecw Expected, Qecw observed, and Di are tabu-
lated for each class interval in Tavle 7.4, The maximum Di
is found to be .007. Since .007 is less than the allowable
maximum difference of .043 it is concluded that the summa-
tion model for three subpopulations does meet the criteria
established in Section 5.1 for a good model. The expected

and the observed cumulative failure distributions are
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Table 7.4 Absolute Difference Between Expected aad :
Observed Cumulative Mortality Data (Summatlon 3
Model) i
]
Age Observed Expected Absolute ]
. Difference 1
. t Qecw(t) Qecw(t) Di %
5 .013 .013 .000

10 .019 .020 .001

15 025 .025 .000

20 .033 .032 .001

25 .042 .042 .000

30 .052 .054 .002

35 .063 .068 .005

40 .076 .083 007%

45 .095 .010 .005

50 ,124 .127 .003

55 167 .166 .001

60 .230 .226 004

65 .320 .317 .003

70 441 440 .001

75 . 587 »589 .002

80 737 o742 .005

85 .869 .871 .002

90 .953 .952 .001

95 .990 .988 .002

. 100 1,000 .998 .002

% Maximum absolute difference

Allowable absolute difference at the ,05 significance
level is found from Table 3.1 to be

1.36 = 1,36 = ,043

™ oo
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plotted for visual comparison in Fig, 7.7. The excellent
correlation between the observed and the expected date

clearly indicates that the reliability summation model is

capable of accurately representing the reliability of mixed

populations.

7.4 Analysis of Underlying Failure Causes<Early Failures

In Chapter 4 it was shown that the characteristic
decreasing failure rate of the early failure period may be
produced by a combination of subpopulations, none of which
individually exhibits a decreasing failure rate. An inter-
estilng example of the phenomenon is provided by the 1958
Commissioner's Standard Ordinary Mortality Table (19). In
this case each of the three subpopulations to be combined
exhibits a monotonic increasing failure rate (force of
mortality) as indicated by the subpopulation shape para-
meters each being greater than unity. Yet, when tnese sub-
populations are combined into a hetercgeneous population
the combined failure rate is initially decreasing. This
phenomenon may be explained by considering the interaction
of the three subpopulations. Table 7.3 indicates that the
early subpopulation is composed of only 19 of the 1000
individuals being considered. Because the early subpop-
ulation exhibits a very high failure rate in contrast to
the useful and wearout subpopulations it causes an initi-

ally high overail failure rate for the heterogeneous
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population, During the first 5 years after birth 13 of the

19 members of the early subpopulation die and, therefore,
the future impact of this subpopulation on the overall fail-
ure rate is diminished. After ten years all 19 members of
the early subpopulation have died and the failure rate of
the heterogeneous population has decreased to its lowest
point, thus ending the early failure period.

A mathematical explanation of the decreasing failure
rate phenomenon during the early portior of human life is
provided by the failure rate mocdel, equation (5.13). The
subpopulation values for probubility density function and
reliability have been determined from individual Weibull
models for each subpopulation.

gg';(t)+ g‘f}xt) + g";&:)

Aecw(®) = e (67, Nep TV, Mg TE)

{5.13)

At t = 5 years the fuilure rate equation after multiplying
and dividing %,y 1000 yields

19 (,650) + 76 (.004) + 905(0)
19 (.350) + 76 (.996) + 905(1)

Aecy(3) =

The first term in the numerator and denominator represents
that portion of the heterogeneous feilure rate caused by
the early subpopulation. The arithmetic is done in detail

below to demonstrate this effect at age five.




12.3 + .3 + 0 )
Aecwd) = FF T 905 ~ 013

Note that 97 per cent of the contsibution to failure rate

is produced by the early subpopulation at age 5 years,

At age 10

A (10) = 19(.309) + 76(.023) + 905(0)
= 19(.041) + 76(.973) + 905(1)

This reduces to

Aocy(10) = 5,86 + 1,75 +0 .008

75 +
.8 + 74 +905

The contribution to failure rate by the early subpopulation
is now only 77 per cent and _he failure rate has decreased
from its previous value. Consider age t = 15,

A (15) = 19(.039) + 76(.056) + 905 (0)
ecw 19(.002) + 76(.917) + 905 (1)

This reduces to

ecw . :
.038 + 69.7 +905

The contribution of the early subpopulation is now only 15
per cent and the trend in failure rate is no longer decreas-

ing thus indicating that the early failure period has ended.

Useful Life Faillures

-

Examination of Figure 7.2 reveals that the chance
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or useful life failure period starts at 10 years of age and
extends to approximately 50 years et which time wearout
becomes the dominant mode of failure. The slizht increase
in failure rate prior to 50 years is attributed to the
interaction between wearout and chance failure mechanisms,
An accident which causes the death of en older person might
only cause injury to a younger individual. Thus, even
though the mechanism of failure or death is essentially of
the chance variety the force of mortality is not strictly

independent of age as it is in the ideal case.

dearout

The delineetion between the ~hance and wearout
periods i. not as distinct in Figure 7.2 as it is in the
theoretical curve cf Figurc 1.1, because in the present
illustration both periods exhibit an incressing failur-e
rate., However when the cumulati-ve feilures are plotted
on Weibull probability paper, as in Figure 7.3, the delinea-
tion between the chance and wearout periods is clearly
shown to occur at 50 years of age. kLuman mortality, of
course, is quite dissimilar from the failure of mechanical o
or electrical components. This example has served the pur-
pose of placing failure phenomena and the reliability
swwmation model on a more familiar plane. It is time ncw
te apply the model to actual ailitary equipment component

failure data.
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CHAPTER 8

APPLICATION OF THE RELIABILITY SUMMATION MODEL

TO KLYSTRON FAILURES

8.1 The Data to be Analysed

In a paper titled, "High~Power High-Frequency
Reliability Techniques," Doyon and Siegman (20) have pre=-
sented some klystron failure data exhibiting early, chance,
and wearout failures. Their data for 92 klystirons tested
to failure are the basis for this second example. Table
8.1 is a tabulation of pertinent failure data for the 92
klystrons in test, The data huve been grouped into twenty-

seven 600 hour class intervals.,

8.2 Parameter Determination

The class interval end points together with their
respective median ranks are tabulated in Table 8,2 and
plotted on Weibull probability paper in Fig. 8.1. Three
straight lines are drawn amongst the points and by in-
spection it is determined that points 1 through 4 are in

the early subpopulation, points 5 through 11 are in the

83
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Table 8.1 Raw Failure Data for 92 Klystrons
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Time Relia- Falilures Proba- Unre- Fallure
at Class bility at During biiity 1liabil- Rate
Interval Beginning Class Density ity at
End of Class Interval Function End of
Point Interval Class
Interval
t Recw(t) Failures fecw(tyi Qecw(t) Recw(t)
600 1.000 23 . 2500 «250 . 2500
1200 .750 9 .0980 348 .1305
1800 652 2 .0218 370 ,0334
2400 .630 3 .0326 <402 .0517
3000 .598 i1 +1200 521 .2010
3600 .479 6 .0650 .587 .1360
4200 413 3 .0326 .619 ,0790
48G0 .381 € .0650 .684 .1705
5400 .316 4 .0453 .728 1375
6000 .272 3 .0326 .761 .1200
6600 . 236 4 0435 .804 .1820
7200 . 196 8 .0870 .891 L4440
7800 .109 3 .0326 .9245 .2990
800 .076 0 .0000 924 .00C0
9000 076 1 .0109 .935 . 1436
9600 .065 2 ,0218 .956 .3359
10200 044 2 .0218 .580 4960
10800 020 0 .0000 .280 0000
11400 .020 0 .0000 .980 .00Cs
12000 .020 0 .0000 .980 .0000
12600 .020 0 .0000 ,980 .0000
13200 .020 0 .0000 J98C 0000
13800 .020 G .0000 .980 0000
14400 ,020 1 0106 - 990 . 53450
15000 010 0 0000 .990 .0000
15600 .010 0 .0000 <9390 .0000
16200 010 1 0109 1.000 1.0900
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Table 8,2 Klystron Failure Data Prepared for Plotting

Point Mediun

Number Age Rank
1 600 24.6
2 1200 34.4
3 1800 36.5
4 2400 39,7
5 2000 51.7
6 3600 58.2
7 4200 61.4
8 4800 68.0
9 5400 72.3
10 6000 75.5
11 6600 79.8
12 7200 88.5
13 7800 91.7

8400
14 9000 92.9
15 9600 95.0
16 10200 97.2

10800

11400

12000

12600

13200

13800
17 14400 98.4

15000

15600

18 16200 99.4
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chance subpopulation, and points 12 through 18 are In the
wearout subpopulation. No importance is attached to the
fact that the three lines in this case intersect at & com-
mon point, as the only purpose of the mixed population
plot is to identify and separate the three subpopulations.
By totaling the failures represented by each of the points
falling in a particular subpopulation, the subpopulatiocn

sizes are found to be

Ne = 37

N = 37
c

Nw = 18

New median ranks are calculated based on these subpopulation
sizes and these data are tabulated in Table 8.3, The sub-
populations are individually replotted in Figs. 8.2, 8.3,

and 8,4 and the following Weibull parameters are determined:

Figure 8.2 te =0
8, = .92
7’e = €50

Figure 8.3 !c =0
oc - 2,65

4350

N,

et L iR b, o
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-0
w

ﬁw = 3,0G

7N, = 89

Figure 8.4 |

All parameters necessary to use equaticn (€.1) have been
found. The equation can now be used to determine the ex-
pected reliability, at a given time, of a klystron randomly
drawn from a mixed population which is represented by the
tested sample. For example, consider t = 4800 hours.

Equation (6.1} is

t-l'e e t-fc pc t-l’w ﬁw
N, - () N_ -( - ) N, -(7’;')
Recw(t) =Te + e +o-e

Substituting numerical values for all parameters

(4800-0,° .92 37 -(4800-0y 2.65
/(4800 = - e~ (&E50 + 3 e ~Z3%
L8, "Teo00
)

.402(.00185) + ,402(.282) + .196(.855) = ,.282
If the sample of 92 is representative and if equation (6.1)
is valid, a klystron randomly drawn at time t = O can be
expected to have a 28,2% chance of surviving 4800 hours of
operation., Conversely, the expected probability of failing

before 4800 hours of operation is

Q,.,,(4800) = 1 - R (4800) = 1 - .282 =,718




T IR T P TR TR TR e TN T,

39

Table 8.3 XKlystron Failure Data Prepared for Subpopula-
tion Replot

Point Subpopu- Median
Number Age lation Rank
Ng(t)

Early 1 6G0 23 €0.7
Subpopulation

(5, = 27) 2 1200 32 84,7

3 1800 34 ~90.1

4 2400 37 98.1

Chance 5 3000 11 28.6

?ng°P§§§ti°“ 6 3600 17 4.6

¢ 7 4200 20 52.6

§ 4800 26 68.8

9 5400 30 79.4

1) 6000 33 87.5

11 6600 37 98.1

Wearcut 12 7200 8 41,8

(y PP eien 13 7800 11 58.1

w 14 9009 12 63.6

15 9690 14 74,5

16 10200 16 85.4

17 14400 17 90.9

18 16200 18 96.3
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.1 GCoodness=of =it

or Lhe purpose of comparison, the observed value
of Qecw(ABOO) from the tested sample of 92 klystrons is
.684 (Table 8,1). The absolute difference between the ob-

served and the expected values is

D4800 = ,718 - .684 = ,034

From the Kolmogorov-Smirnov Table (Table 3.1) for N greater
than 35, the asymptotic equations are used to find the max-

imum allowable value of D at the .05 significance level.

D = = = ,1415

To fully test the proposed model for goodness-of-fit, it

is necessary to find Di at each class interval to insure
that no value of Di is greater than .1415. This has been
done and the values of Qecw expected, Qecw observed, and

Di are tabulated for each class interval in Table 8.4. The
maximum Di is found to be .063, Since ,063 is less than the
allowable maximum difference of ,1415 it is concluded that
the summation model for three failure subpopulations

does meet the criteria established in Section 5.1 for a good
model. The expected and the observed cumulative fail-

ure distributions are plotted for visual comparison

-

B s - N W R s

:




Table 8,4 Absolute Difference Between Expected and

Observed Cimulative Klystron Failures
(Summation Model)

9%

Tiue Observed " Expected Absolute
Difference
t Qecw(i) Qecw(l) Di
600 «250 . 245 .005
1200 .348 . 346 .002
1800 .370 408 .038
2400 402 465 .063%
3000 .521 «525 .004
3600 .587 591 .004
4200 .619 657 .038
4800 .684 .718 D34
5400 . 728 772 044
76000 .761 .815 .054
6600 .804 .848 044
7200 .891 .875 016
7800 .924 .896 .028
8400 .924 914 .C10
9000 .935 .930 .005
9600 .956 944 .012
10200 .980 .956 02
10800 .980 .967 .013
11400 .980 .976 .004
12000 .980 .983 .003
12600 .980 .989 .009
153200 .980 .992 012
13800 .980 .995 .015
14400 .990 .997 .007
15000 .990 .998 .008
15600 .990 .999 .009
16200 1.000 1,000 0.000

*Maximum absolute difference

Allowable absolute difference at the ,05 significance level
is found from Table 3.1 to be

1.36 _ 1.36

R E

= 1415
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in Fig, 8.5, 1In this example there is a good correlation
between the observed anc the expected data and it may be
concluded, as it was in Cnapter 7, that the reliability
summation model with parameters determined by the graphical
metnod given in Chapter 6, accurately models the reliability

of mixeu failure mode populations.

8.4 Analysis of Underlying Failure Causes<Esrly Failures

In Fig. 8.1 the four points which fall in the early
subpopulation cepresent 37 klystron failures or 40 per cent
of the hetewogeneous klystron population. This large early
subpopulation indicates that there are a large number of
substandard items in the mixed population., Unfortunately
the exact number or substandard klystrons cannot be deter-
mined mathematically because the early subpopulation is
composed of chance as well as substandard failures. The
effect of this combination is to produce a decreasing
fajilure rate until 2400 hours of operation. See Fig. 8.6,
After 2400 hours the klystron population is completely

burned in.

Useful Life Failures

In Fig, 8.6 the useful life period which extends
from 2400 hours to 7200 hours is seen to be nonmono=

tonic as a result of the interactiun of the three sub-

T
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populations which each have an impact on failure rate
during the period, An additional 49% of the klystron
population fails during the useful 1ife period leaving

only 18 klystrons to fail in wearout.

Wearout Failures

Although wearout begins after 7200 hours of opera-
tion, the wearout failure rate does not exceed the maximum
useful life failure rate until after 9000 hcurs of opera-
tion, From Fig. 8.6 it is seen that 20 per cent of klys-
trons with greater than 9£20 hours may be expected to fail
within the next 600 hours,

Conclugion of Analysis

l. The large size of the early subpopulation sug-
gests that improved quality control measures are in order
for future klystron production of the type analysed.

2. Because of the high failure rate exhibited
during useful life, a burn-in period of only 600 hours
during early life would be sufficient to reduce population
failure rate to that of the useful life period. During
the 600 hour burn-in approximately 20% of the klystrons
may be expected to fail as compared to 40% failures if the
burn-i~ test is run for the 2400 hour duration of early
life,

3. Operationel reliability of klystrons could be
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maintained at specified levels by controlling the rumber of
hours the klystrons are permitted to operate, For example,
it might be specified that all klystrons in opération must
have an 80 per cent chance of survival during any 600 hour
interval., In this case a 600 hour bura-in prior to oper-
ational employment of the klystrons should reduce the
population failure rate below 20 per cent at an estimated
cost of 20 per cent vf the total klystron pcpulation,

Next, klystrons surviving 8400 hours of use could be removed
from operation prior to failure at a cost of an additional
8 per cent of the klystrons., The result is that by selec-
tively discarding 28 per cent of the klystron population
the remaining klystrons would have an 80 per cent chance

of surviving during any 600 hour mission,




CHAPTER 9

APPLICATION OF THE RELIABILITY SUMMATION MODEL

TO MAGNETRON FAILURES

9,1 The Data to be Analysed

Teble 9.1 contains failure information for a pop-
ulation of 38 magnetrons during operational use. The in-
formation was provided by the U.S, Army Missile Command
located at Redstone Arsenal, Alabama., The accuracy and
the analytical power of the proposed model will be exam-
ined in this chapter. In Chapter 10 the results obtained
in this chapter will be compared with those obtained using

present reliability modeling techniques,

9.2 Parameter Determination

The median rank and age at failure for each failed
magnetron is tabulated in Table 9.2 and plotted on Weibull
probability paper in Figure 9.1, Three straight lines are
drawn amongst the pcints and by inspection it is determined
that points 1 through 10 are in the early subpopulation,
points 11 through 35 are in the chance or useful life

100
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Table 9.1 Raw Failure Data (38 Magnetrons)

Time at Cumulative Cumulative %
failure Failing at Failing at
Time = t Time = t
t Failures Qecw(t)
0.0 1 026
1.0 2 .053
1.5 3 .079
1.7 4 .105
8.3 5 .132
10.0 6 .158
15.0 7 .184
15.5 8 .210
28.0 9 .237
36.7 10 .263
73.6 11 . 290
95.0 12 .316
116.0 13 .342
120.0 14 .368
130.0 15 .395
153.5 16 421
165.0 17 447
226.4 18 474
332.3 19 .500
363.0 20 «526
405.4 21 .551
409.0 22 .579
431.0 23 .605
439.0 24 .631
525.0 25 .658
541.7 26 .684
577.9 27 .710
677.0 28 .736
739.0 29 .763
873.0 30 . 790
937.0 31 .798
1144.0 32 .844
1169.0 33 .849
1297.0 34 .868
1630.0 35 .898
2088.9 36 924
2340.9 37 .975

2343.0 38 .976




Table 9,2 Magnetron Failure Data Prepared for Plotting

Point Age Median
Number Rank
1 0.0 1.82
2 1.0 4,42
3 1.5 7.04
4 1.7 9.64
5 8.3 12.20
6 10.0 14,85
7 15.0 17.45
8 15.5 20.3
9 28.0 22.6
10 36.7 25.3
11 73.6 27.9
12 95.0 30.4
13 116.0 33.1
14 120.0 35.6
15 130.0 38.3
16 153.5 40.9
17 165.0 43.5
18 226.4 46.1
19 332.3 48.6
20 363.0 51.4
21 405.4 53.9
22 409.0 56,5
23 431.0 59.0
24 439.0 61.6
25 525.0 64.4
26 541.7 7.0
27 577.9 69.5
28 €77.0 72.0
29 739.0 74.6
30 873.0 77.4
31 937.0 80.0
32 1144.0 82.5
33 1169.0 85.2
34 1297.0 87.7
35 1630.0 90.4
36 2088.9 93.0
37 2340,9 95.6
38 2343.0 98.2
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subpopulation, and points 36, 37, and 38 are in the wear-
out subpopulation. Since the data are not grouped each
point represents a single fatlure and the subpopulatlon
sizes are found to be

N =10

N =25

N =3
New median ranks are calculated based on these subpopula-
tion sizes and the median ranks are tabulated in Table 9.3.
The subpopulations are individually replotted in Figures
9.2, 9.3, and 9.4 and the following Weibull parameters are
determined:

Figure 9.2 .‘e =0

Be

N = 12,1

0.69

Figure 9.3 *‘c =0

pc'= 1,25
N =620

Figure 9.4 ¥, =0

}gw = 20

nw = 2310

All parameters necessary to use equation (6.1) have been

found. The equation can now be used to determine the ex-




Table 9,3 Magnetron Failure Data Prepared for Sub-

population Replot
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Failure Age Median
Nuirber Rank
1 0.0 6.7
2 1.0 16.3
3 1.5 26,0
4 1.7 35.6
Early 5 8.3 45.1
Subpopulation 6 10.0 54.8
(Ne = 10) 7 15.0 64.4
8 15.5 74,0
9 28.0 83.6
10 36.7 93.4
11 73.¢€ 2.8
12 95.0 6.7
13 116.0 10.6
14 120.0 14.5
15 130.0 18.5
16 153.5 22,4
17 165.C 26.4
18 226.4 30.3
19 332.3 24,2
20 363.0 38.2
Useful lLife 21 405.4 42.1
Subpopulation 22 £09.0 46.C
(Nc = 25) 23 431.0 50.0
24 439.0 £4.0
25 525.0 58.C
26 541.7 61.9
27 577.9 65.7
28 677.0 69.6
29 739.0 73.6
30 873.0 77.5
31 2937.0 81.5
32 1144.0 85.5
33 1169.0 89.5
34 1297.0 93.4
35 1630.0 $7.3
Weerout 36 2088.9 20.6
Subpopulation 37 2340.9 50.0
(N" =- 3) 38 2343.0 719.4

ot B i it
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pected reliability, at a given time, of a magnetron random-

iy drawn from a mixed population which is represented by

the observed sample. For example, consider t = 28 hours,

T e A 5. of o

Substituting numerical values for all parameters into

RN, ¥ S

equation (6.1) yields:

L(28:0 .69 (280 c;)1 +25 (280 20
7.1 620 7310
1 L 25, N
Recw(t) =35 © t3g e t3ge

.263(.168) + .658(.979) + .079(1.000) = .767
If the sample of 38 magnetrons is representative and if
equation (6.1) is valid, a magnetron randomly drawn at
time t =0 can be expected to have a 76.7 per cent chance
of surviving 28 hours of radiate time. Conversely, the

expected probability of failing before 28 hours of oper-

ation is
Q cw(28) = (28) 1-.767 = ,233

9,3 Goodness-of-Fit

At time t = 28 hours the observed value of unre-

. liability, Qecw(ZS), from the tested sample of 38 magne-

trons is ,237 (Table 9.1). The absolute difference be-
tween the observed and the expected values of unreliability

is

D28 = 0237 - .233 = 0004
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From the Kolmogorov-Smirnov Table (Table 3.1) for N greatcer
than 35, the asymptotic equations are used to find the max-
imum allowable value of D at the .05 significance level.

D= Le36 _ 1.36 _ o0

" J=

To fully test the proposed model for goodness-of-fit, it is

necessary to find Di at each class interval to imsure that no
value of Di is greater than .220, This has been done and the
values of Qecw expected, Qecw observed, and Di are tabulated
for each failure time in Table 9.4, The maximum Di is found
to be .070. Since .070 is less than the allowatle maximum
difference of ,220 it is concluded that the summation model
for three failure subpopulations does meet the criteria es-
tablished in Section 5.1 for a good model. The expected and
observed cumulative failure distributions are plotted for
visual comparison in Fig. 9.5. The excellent correlation be-
tween the observed and the expected data clearly indicates
that the reliability summation model is capable of accurate-

ly representing the reliability of mixed populations.

9.4 Analysis of Underlying Failure Ceuses~Early Failures

Fig. 9.6 is a superposition of the subpopuia-
tion failure rates based on the expected failures

from the reliability summation model. The early
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Table 9.4 Absolute Difference Between Expected and 4
Observed Cumulative Magnetron Failures ?
(Summation Model) ]
j
j
Time Observed Expected Absolute !
. Difference 3
1
t Qecw(t) Qecw(t) Dy
) 0.0 -026 -000 .026 ‘,
1.0 .053 .043 .010
1.5 .079 .056 .023
1.7 .105 .060 .045
8.3 .132 144 012
10.0 .158 .157 .001
15.0 .184 .187 .003
15.5 .210 .189 .021
28.0 .237 .233 .004
30.7 .263 .251 .012
73.6 .290 .299 .009
95.0 .316 .319 .003 i
116.0 342 «337 .005 '
120.0 .368 .340 .028
130.0 .395 «349 .046
153.5 421 .368 .053
165.0 447 377 .070%
226.4 474 426 .048
332.3 500 +505 .005
363.0 526 577 .001
405.4 .551 «556 .005
409.0 .579 .558 .021
431.0 .605 572 .033
439.0 .631 577 .054
25.0 .658 .629 .029
541.7 .684 .638 .046
577.9 .710 .658 .052
677.0 .736 .706 .C30
739.0 .763 .732 031
873.0 .790 .779 011
. 973.0 .815 .798 .017
1144,0 .841 .844 .003
1169.0 .869 .849 .020
1297.0 .895 .868 .027
1630.0 921 .898 .023
2088.9 <947 924 .023

(continued)
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Table 9.4 Continued
Time Observed Expected Absclute
Difference
t Qecw(t) Qecw(t) Di
2340.9 .975 975 .000
2343,9 1.000 .976 024

*Maximm absolute difference

Allowable absolute difference at the .05 significance level
is found from Table 3.1 to be

1,36 _ 1.36 _

Iv {3

.220
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subpopulation exhibits a monotonic decreasing failure rate,
This is reflected in the heterogeneous population a3 a
decreasing failure rate during the first 100 hours of
operation, See Fig, 9.7. The non-grouped data of Fig.

9.1 more accurately pinpoints the end nf the early failure
period at 36.7 hours. Therefore, a required burn-in period
of approximately 40 hours as part of the manufacturer's
quality control program would eliminate the early failure
period prior to placing the magnetrons into the Army s:imnly
system, T[he advantages to the Army of such an arrangement
are three fold:

1. Radar down time due to faulty magnetrons woi'.d
be greatly reduced with a subsequent increase in operational
readiness.

2, Fewer magnetrons would be handled ia the supply
and maintenance systems,

3. The number of magnetrons of this type required
by the Army would be reduced by approximately one fourth, a

significant savings.

Useful Life Failures

The useful life failure period extends from 40 hours
to 2000 hours and unlike the theoratical, chance failure

period it 1s wnut a purely constant failure rate period.

o i

i W D9~ n, o B

it a3
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Figure 9.7 shows the failure rate during useful life to
vary from a high of .14 to a low of .048 fallur s per 100
hours, This indicates that the useful life faiiure mechan-
ism is not strictly random but is a combination of two or
more failure mechanisms. A simple explanation of this
dependance is provided by a hypothetical and highly simpii-
fied iliustrative life test of sutomobile tires., During
the life test those tires which thrcw their tread ave con-
sidered substendard; those whick fall as a result of punc-
tures are considered chance failures; and those which fail
as a result of tread wear are considered wearout faiiures.
Theoretically, the failure rate of the tires undergoing

the life test is initially expected ts decrease as the high
failure rate substandard tires fail and are removed from
test. The population is then expected to exhibit a con-
stant failure rate during useful life as the sole failure
mechaiism during this period ies vrandowm punctures; finally,
as the tires become bald the failure rate increases until
all the remaining tirss have failed. An actual test would
vary from the theoretical example above during usefvl life
because the puncture failure mechanism is not, in reality,
independent of tire wear. As the tread becomes worn,

it loses thickness and incressingly smaller objects will be

able to penetrate and cecuse punctures; therefore, the
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puncture failure mechanism is not strictly random but is
also dependent upon tire wear.

It may be speculated that a similar type of de-
pendence causes the useful 1ife of the magnetrons to exhibit
a nonmonotonic failure rate, The magnetron case is even
nore complex than the tire exampie because both early und

wearout mechanisms have an impact during useful life,

Wearout Failures

Wearout begins at approximately 2000 hours. The
wearcut subpopulation is extremely small and only 3 magne-

trons of 38 failed during the wearout period.

Conclusion of Analysis

Apprcximately one fourth of the magnetrons will
fail prior to forty hours of operation. An obvious savings
would accruve to the Army in time, money, material, and
manpowe: if these early fallures could be isolated prior to
being placed in supply and maintenance channels or ia%to
radars. This could be accomplished by recuiring the manu-
facturer to proviie a forty hour burn-in period before

releasing magnetrons “or operautional use,




CHAPTER 10

COMPARISON OF PRESENT AND PROPOSED MODELS

10.1 Weibull Model of Magnetxon Failures

In the past it has been expedient to model observed
failure rate data with simple expressions capable of por-
traying only monotonic failure rates, Inherent in this
measure is the assumption that a component population will
not exhibit both decreasing and increasing failure rates
during the span of population life. In the case of the
magnetron data presented in Chapter 9 both government arid
industry have accepted the Weibull distribucion with
€= .65 W=2520, and ¥= 0 as an appropriate mcdel (Fig-
ure i0.1). Since e,is less than unity, a monotonic de-
creasing failure rate is indicated during the entire
magnetron life. This state of affairs is contradictory tc
classic reliability theory and defies either practical or
theoretical explanation. Nevertheless, the Weibull model

with the indicated parameters can be shown to fit the ob-

served fallure data at the .05 significance level using

the Kolmogorov-Smirnov Test for goodness-of-fit (Table 10.1).

119
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Table 10.1 Absolute Difference Between Expected and
Observed Cumulative Magnetron Faiiures
(Weibull Distribution)

Time Obscrved Fxpectoed Absolute
Ditlforence
t Q (L) QL) b,
0.0 .026 .000 .026
1.0 .053 .019 .034
1.5 .079 .025 .054
1.7 .105 .027 .078
8.3 .132 071 .061
10.0 .158 .080 .078
15.0 .184 .102 .082
15.5 .210 .104 . 106%
28.0 .237 . 147 .090
36.7 .263 $172 .091
73.6 .290 .253 .037
95.0 .316 .290 .026
116.0 .342 .322 .020
120.0 .368 .328 .040
130.0 .395 .341 .054
153.5 421 .371 .050
165.0 447 .384 .063
226.4 474 NN .027
332.3 500 530 .030
363.0 .526 . 549 .023
405.4 .551 .575 .024
409.0 <379 .377 .002
431.0 .605 .589 016
439.C .631 .593 .038
525.0 .658 .634 024
541.7 .684 .642 042
577.9 710 .657 .053
677.0 . 736 .693 .043
739.0 .763 .713 .050
¥73.0 «790 «750 .040
037.0 .815 «765 050
1144.0 .84l .807 034
1169.0 .869 .811 .058
1297.0 .895 .831 064
1630.0 .G21 .871 .050
2088.9 .947 .909 .038
2240.9 .975 <924 .051

23413,0 1.000 924 .076
“Maximum absolute difference .106

Allowable absolute difference at the .05 significance level
is found from Table 3.1 to be

1,36  1.36 = ,220

& &

Pveton v
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Thee, the Weilball disteibuation is demonstrated Lo be o
satisfaclory expression for fitting & curve to the obscrved
magnetron failure datz. However, the model provides little
insight into the mechanics of failure and .ould not be of
great use in either reliability improvement or theoretical
speculation because of its inexplicab.le monotonic decreas-

ing failure rate.

10.2 Comparison of Goodness-of-Fit

Figure 10.2 provides a comparison of the expected
cumulative failures as determined by both the proposed
and the standard Weibull models, As might be expected,
because of the larger number cf pzrameters the proposec
mode! fits the observed data more closely than does the
standard Weibull distribution., While the Weibull data is
scen to tfall below the observed cumulative data after 500
hours of radiate time the summation model closely ap-
proximates the observed data throughout the entire span of
component life. The maximum absolute difference between
expected and observed cumulative failures is .070 (Table
9.4) for the propnsed summation mode! and .106 (Table 10.1)
for the Weibull distribution. The allowable maxiram
difference at the .05 significance level for the Kolmo-
porov-Smirnov goodness-of-fit test is .,220, This indicates

that both models arec adequate at the .03 significance ievel
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for curve ficting purposes, although the proposed model is

the more accurale of Lhe two.

1C.3 Comparison of Failure Rate

At this point one might question the use of a com-
plex model to gain unrequired uzzuracy when the more siiple
Weibull distribution has been shown to be sufficient. The
answer 1.2s in the analysis of th: failure rate curves of
the two expressions. The Weibull failure rate is monotonic
decreasing (Figure 10.3) which is inconsistent with relia-
bility theory. The proposed model failure rate is, on the
other hand, nonmonotonic: first decreasing, then showing a
slight increase and decrease, followed by a dramatic in=-
crease which continues to the end of component life (Figure
10.3). Since the proposed model has been shown to be a
more accurate model of observed data it is logical to as-
sume that the failure rate behavior described by the sum-
mation model is alsc more accurace. Since the failure rate
of the summation model relates fairly well to reliability
theory, the model becomes useful for theoretical specula-

tion concerning failure cause.

10.4 Comparison of Analytical Power

Figure 10.1 is the standard method of plotting fail-

ure data and obtainirg a strai, nt line fit. The fact *hat
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the straight line does not f.t well &t the tails of the data
is usuelly ignored or considered inconsequential as ft was
in this case. Figure 9.1 is the same failure data, but this
time with three straight lines fil to it., The theoretice!
basis for the three lines was e-tablished in Section 5.3,
The adventages of using the reliubility summation rule rech-
er than the ccemmonly used monotonic failure rate distri u-
tions are:

1. The proposed expression models failure data
more accurately than expressic.s currently being used for
this purpose.

2. The proposed technique is sufficiently flexible
to model data that cannot be modeled by the usual statistical
methods.  Human mortality is an example of this,

3. The proposed model yields information about
failure cause which is obscured by present metheds. For
example, no wearout was evident ian the Weibull piot of
magnetron fajlures; whereas, the summation model :ndicates
a vearout period extending from 2000 to 2500 hours. Further-
more the Weibull plot gives no indication of when the buru-
in or early period ends since the entire Weibull failure
rate curve is monotonic decreasing. The summatior model,
on the other hand, definitely indicates that burn-in is

terminated after 179 hours of uperatica. This is important
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information for mansgers as well as theoreticians and it

is totally obscured by present modeling techniques.




CHAPTER 11

SUMMARY AND RECOMMENDATIONS

11.1 Summary

In this report three unified expressions have been
considered to see which best descr:bes the reliability of
components drawn randomly from a population of components
exhiliting failures of the early, chance, and wearout type.
The pr.duct mocel,

Recw(t) Re(t) Rc(t) Z{w(t) (5.2)
was eliminated because it indicates incorrectly that the
unified reliability is zero after the population is burned
in.

The cembined swmmation and product model

N N
e C ; -
| w—— \ A~ L s )
R (8 = 5 R () + ¢ R _(t) R (L) (5.16)

apprars to b2 theoretically sourd but no analyticsl reiss
cf determining the individual reliabilities Rc(t) and Rw(t)

from observed failure data was found withcut combining the=

128
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Into the single reliability RG(t) = Rc(t) Rw(t). Unfor-
tunately, this combination destroys the usefulness of the
expression as a tool for analysing the individual chance
and wearout failure modes,

lLesc sound theoretically but perhaps more useful
than the combined model is the summation model,

N N N
e C w
Recw(t) -5 Re(t) + N Rc(t) + N Rw(c) (5.9)

It is less sound because its basis is that theve are three
individual failure subpopulations, which is not quite true,
Theoretically, there are only two failurs subpopulations,

the substandard and the good. The substandard population
providing carly failures and the good subpopulation provid-

ing both chance and wearout failures, This means that wearout
is not a separate subpopulaticn and components must survive

the chance period in order to deteriorate and eventually be-
cnre a wearcut failure. If wearout was in fact a separate
subpopulation, components belcnging to this subpopulation would
not be subjected to the chance failure wechauism. However, even
witn this tkeoretical limitation, the summation model does
correlate wel! with observed data and it is the only model

of the three considered which precvides specific infonnation

PR w——




concerning all three failure modes.

In comparison with present modeling techniques the
summation model was shown to be superior in three ways:

1. It is more accurate than methods presently in
use.

2, It's greater flexibility permits the modeling
of data which is beyond the cepabilities of present statis-
tical methods.

3. It yields important information for use by
managers as well as theoreticians concerning failure periods
and underlying failure causes information which is ob-

scured by present medeling methor's,

11.2 Recommeudations

It nas been shown i this thesis that the propesed
summation model, with graphically determined subpcpulation
sizes and L;eibull parsmeters, may be used very satistac-
torily to represent observed failure data at the .05 sig-
nificance level using the Kolmogovov-Smirnov Test. Further,
it has been demonstrated that the proposed model offers
significant advantages over present wmodeling techniques.
Therefore, it is recommended that the reiiability summation
model be adopted for use in those cases in which failure
data euoup3ss the three failure periods: early, chance,

and wearout. This might include complex systems such as
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tanks and mechanical components such as fuel pumps in
addition to electronic components.

The adoption of the proposed modeling technique
should result in & better analysis of the manufacturer's
quality control; it would pinpoint the required burn-in
period and the time at which wearout begins; and this know-
ledge, effectively appiied, would reduce the number of sub-
standard components accepted by the military services and
subsequently placed into the respective supply systems.

With fewer unreliablie repalr parts or components available

in supply channels, maintenance required on end items would

g¢ down while operational readiness would increase. In
the examjle of magnetrons used by the Army it was shown
that approximately one quarter of the type magnetron: con-
sidered were unreliable and failed shortly after installa-
tion into operational radars. Had the wethods propesed in
this thesis been employed, au additicnal burn-in period
would have been required of the manufacturer and the un-
reliable magnetrons woula have railed prior to eantry into
the Army supply system with a resultant savings in money,
manpower, storage and transportation requirements, and an

increase in end item operational readiness.
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APPEND1X A

ATTEMPTED EXTENSION OF KAO'S METHOD FOR
GRAPHICAL ESTIMATION OF MIXED WEIBUIL

PAKAMETERS (18)

In order to use equation (6,1) to compute component
reliability, it is first necessary to find the three sub-
population sizes Ne’ Nc’ and Nw and the respective Weibull
parameters ’de, &, ﬂe’ 3’0., Bc, ‘][c, "w’ ﬁw’ and?(w. Kao
(18) suggests a method for finding certain of these para-
meters for the case of two subpopulations. An unsuccessful ’3
attempt was made to extend Kao's graphical procedure to the
case of three subpopulations, The steps of the attempted
extended procedure are given, followed by & discussion of
the preblems which arise in their use. The human mortality
data of Chapter 7 are used to illustrate the procedure., The
steps are:

1. Tabulate the median ranks of the mixed popuia-
tion for each class interval (Table 7.2) and plot the data
on Weibull probability paper (Fig. A.1l).

2, Fit three straight lines to the plotted data by

132
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by visual inspection and designate the lines
Ne Nc Nw

N
3. Extend the NE Q! line until it intersects the

t
e’

upper border line (99.°% line). From this intersection
drop a vertical iire, designated 100’ representing the
estimated time at which 100 percent of the components will
have failed (Fig. A.1l).

4, Extend the ;3 Qé line upward until it inter-

sects the t line. The height of this intersection read

100 N
on the percent failure scale gives the estimate of ﬁs in

percent (Fig. A.1).
N
5. Extend the EE Qé line upward until it inter-

sects the t line, The height of this intersection read
100 N +N
on the percent failure scale gives the estimate of N =
in percent (Fig. A.1l).
N, NC Nw
6. Since R T 1 the three subpopulation

sizes Ne‘ Nc, and Nw are readily determined.

7. The location parameter for each subpopulation
N N
is determined by extending the lines EE Qé, ﬁg Q' and
N w

EE Q; downward until they intersect the time axis (abscissa).
The individual values are the times read at these inter-

N N
sections. Normally, the ﬁg Q) 1line and the ﬁﬁ Q. line will

not intersect the positive time axis and in this case

c
(e - ’lc - ° (Fig. A.1).

et it
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8, Categorize the failures by relating them to
the particular subpopulation line upon which they fall.

If a point falls on or near both lines it may be iaclu.led
in both subpopulations,

9. Sufficient informution has now been detcr-
mined from the observed failure data to separate the mixed
population into its three constituent subpopulations.
Calculate new median ranks by considering the subpopula-
tions individually (Teble A.1). Plot the median ranks
versus the individual t- ¥ values with 8 as determined in
Step 7 (Fig. A.2).

10. Fit three straightylines to the subpopulation
plots and designate the lines ;5 Qe’ gﬁ Qc’ and ;! Qw’
respectively (Fig. A.2).

11, Find the individual values ofn end ﬁ for each
subpopulation using the method described in Section 3.3
(Fig. A.2).

The following parameters are now aetermined:

z

Fo- 062, ¥, =0, B - .65 =49

-.188, § =0, B ~2.5 0 «5

Zisz Zioz

= .50, ¥, =20, B =59, = 5
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Table A.1 Mortality Data Prepared for Subpopulation .
Replot (Extended Method) :
. Point Age at  Subpop- Subpop- Subpop- ;

Number Class ulation ulation ulation
Inter- Values Cumula~ Median

val for tive Ranks
. End Failures
Point
Farly
Subpopulation 1 5 5 13 20.3
(‘.\le-62, ‘-0 2 10 10 19 30.0
Chance 3 15 15 6 3.0
Subpopulation 4 20 20 14 7.3
(N_~188,F =0} 5 25 25 23 12.0
6 30 30 33 17.4
7 35 35 44 23.2
8 40 40 57 30.1
9 45 45 76 40,1
Wearout 10 50 30 29 3.8
Subpopulation 11 55 35 72 9.6
(Nw-750, S;'ZO) 12 60 40 138 18.0
13 65 45 225 30.0
14 70 50 346 44,0
15 75 55 492 65.2
16 80 60 642 85.6
17 85 65 174
18 30 76 858
19 95 ) 895
0 100 80 405
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Table A.2 is a tabulation of the observed Qecw’
the expected Qecw’ and the absolute difference Di com-
puted at each class interval end point. The maximum value
of Dy is .124 which is greater than the maximum allowable
of .043 at the ,05 signifirance level. It can be concluded,
therefore, that the parameters found by the extended method
do not describe the chserved data at the .05 significan.e
level.,

Two probiems assocliated with the extended method
have been isolated:

1. There is no apparent justification f»r using
the Y pararveter as a delay factor rather than for curva-
ture correction as suggested by most writers in this area.
Furthermore, the determination of the ¥ parametar from the
mixed plot rather than from the subpopulation replots
unnecessarily !imits the flexibilitcy of the Weibull equa-
tions. This criticism pertaing to both the original and
the extended Kao procedures,

2. In thes extended procedure Lhe approximation
of the subpopulation sizes s quite inaccurata, This re-
suits in inaccurate calculeiion of subpopulation median
ranks which leucds directly to ineccurate scale and shape
paremeters. In addition, points which indicated median

ranks greater than 100 percent were lost for plotting
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Table A.2 Absolute Difference Between Expected and
Observed Cumulative Mortality Data (Expected
Data Uetermined by the Extended Methcd)

Age Observed Expected Absolute
Difference
t Qecw(t) Qecw(t) Di
5 013 .013 .000
10 .019 ,021 L0N2
15 025 .029 .004
20 .033 040 .007
25 N42 .052 .010
30 .052 .066 014
35 .063 .083 .020
40 .076 .102 .026
45 .095 .126 031
50 .124 .159 .035
55 167 .209 042
60 .230 . 287 057
65 .320 401 .081
70 b1 .90 .109
75 .587 411 J124%
80 . 737 . 849 112
85 .869 .935 - .066
90 .953 .970 017
35 .990 .981 009
100 1.00C 984 016

Maximum absolute difference

Allowable absolute difierence at the .35 sigrif cance
level is found from Table 3.1 to be:

k]
...:-“..é = 043

W~

Pt




TP T ey
T, T

140
Table A.3 Comparison of Weibull Parameters Detexrmined
By Two Different Methods
Extended Method Method of Chapter 7

NG‘
NC
NW
U
UC
¥y
”&
”C

L

o®

£

= 54
= ,65
= 2,5
= 5.9

= 19
= 76
= 905

A A BN i o R o,

L .
© W s




S

141
purposes. Table A.3 provides a compa~ison of the para-
meters as determined by the extended method and the method

suggested in Chapter 6.




APPENDIX B
BASIC LANGUAGE COMPUTER PROGRAMS FOR APPLYING THE PROPOSED
RELIABILITY SUMMATION MODEL WITH KNOWN THEORIZED, OR GRAPH=-

ICALLY ESTIMATED PARAMETERS.
(The programs inciuded in this Appendix are samples of the

programs used to analyze magnetron failures in Chapter 9

and would require modification to be of more general use.)

142
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10 READ N,E,B1,N1,C,B2,G2,N2,W,B3,G3,N3

11 LET T=100

15 PRINT N

16 PRINT E,B1,G1,N1

17 PRINT C,B2,G2,N2

18 PRINT W,B3,G3,N3

19 PRINT "38 MAGNETRON FAILURES GROUPED DATA 100 HR CLASS
INTERVAL"

20 PRINT

22 LET Ql=0

30 LET Al={T-G1)/N1

35 IF A1>0 THEN 40

36 LET Al=0

40 LET A2=(T-G2)/N2

45 IF A2>0 THEN 50

46 LET A2=0 .

50 LET A3=(T-G3)/N3

55 IF A3»0 THEN 60

56 LET A3=0

60 LET A4=Al?B1

70 LET A5-A21B2

80 LET A6=A3%B3

82 LET R8=1-Q1

90 LET R1=EXP(-A4)

100 LET R2=EXP(-AS)

110 LET R3=EXP(-A6)

120 LET Ré4=(E/N)*Rl

130 LET RS=(C/N)*R2

140 LET R6=(W/N)*R3

150 LET R7=R4+R5+R6

160 LET Ql=1-R?

162 LET F1=R8-R7

164 LET L1=F1/R8

169 PRINT

170 PRINT "AGE="T

180 PRINT "R="R8,"PDF="F],"Q="Ql

181 PRINT "FRe="Ll

183 PRINT "RE="R1,"RC="R2,"RW="R3

190 LET T=T+100

200 IF T»2500 THEN 900

210 €0 TO 30

220 DATA 38,10,.69,0,12.1,25,1.25,0,620, 3, 20,0, 2310

300 END |
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10
15
16
17
18
19
20
21
22
23
30
35
36
40
45
46
50
35
56
60

READ N,E,Bl,Gl,Nl,C,B2,G2,N2,W,BS,G3,N3
PRINT N

PRINT E,B1,G1,N1

PRINT C,B2,G2,NZ

PRINT W,B3,G3,N3

PRINT "38 MAGNETRON FAILURES UNGROUPED DATA"
PRINT

DIM T(40)

FOR 1I=1 TO 38

READ T(1)

LET Al=(T(I)-Gl)/N1

IF A1>0 THEN 40

LET Al=0

LET A2=(T(I1)=-62)/N2

IF A2»0 THEN 50

LET A2=0

LET A3=(T(1)-G3)/N3

IF A3»0 THEN 60

LET A3=0

LET A4=Al?Bl

70 LET AS5=A2%B2
80 LET A6=A3%B3
82 LET R8=1-Ql

90 LET R1=EXP(-A4)

100 LET R2=EXP(-A5)

110 LET R3=EXP(-A6)

120 LET Ré4=(E/N)*R1

130 LET R5=(C/N)*R2

140 LET R6=(W/N)*R3

150 LET R7=R4+R5+R6

160 LET Ql=1-R7

162 LET F1=R8-R7

164 LET L1=F1/R8

169 PRINT

170 PRINT "AGE="T(I)

180 PRINT "R="R8,"PDF="F1,"Q="Ql

181 PRINT "FR="Ll

185 PRINT "RE="R1,"RC="RZ,"RW="R3

190 NEXT I

191 GC TO 23

220 DATA 38,10..69,0,12.1,25,1.25,0,620,3,20,0,2310
300 DATA 0,1.1.5,1.7,3.3.10,15,15.5.23.36.7,73.6,95
31C DATA 116,120.130,133.5.165.226.&,332.3,363,&05.&.409,631
320 DATA a39,525,561.7,577.9.677,739,873,937,11aa,1169,1297
330 DATA 1630,2088.9,2340.9,2343

900 END

s Dt 53
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