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ABSTRACT

The radar problem is generalized to wideband signals and receivers.
This gencralization necessitates consideration of a wideband ambiguity
function and of distributed targets. System design methods, using newly-
discovered properties of the wideband ambiguity function, the trajectory
diagram, and computerized clutter suppression techniques, are established.
The application of these methods, combined with distributed target and accel-
erating target considerations, reveals signals that are optimally tolerant to
doppler, acceleration, and distributed target effects., These signals are

compared with those used by several species of bats.
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"One walks step by step into the darkness. The motion itself is the only

truth, "

Ingmar Bergman, The Magician

"We set out from a dark point, we proceed toward another dark point--
honest, clean, good--and are consoled, "

Nikos Kazantzakis, in a letter to his first wife

""He can see in the dark--no small power this, in a world which is one-half
shut from the light. "

Bram Stoker, Dracula



CHAPTER 1

INTRODUCTION

1.1 General Statement of the Problem.

This dissertation considers a fundamental question of radar or active

sonar system design:

For a given environment and system constraints, what is the best
signal-filter pair to use in order to gain information about an objeci via its

echo?

It will be worthwhile to examine the meaning of this question in
some detail.

The "environment" refers to the channel through which the signal
must propagate and to all possible spurious echoes that can occur when the
target is surrounded by wave-reflecting ""clutter" or is located in a
reverberation-prone setting.

""System constraints" are the limitations inherent in any physical

system. An example is found in bats; by virtue of finite lung capacity, bat

waveforms are subject to a constraint on signal energy. Other examples might

be maximum power, mean square bandwidth, and system noise level.

The word "best' can be translated into many mathematical measures

of "'goodness' such as minimum mean square error, maximum signal to inter-

ference ratio, or maximum probability of detection for a given false alarm

probability.
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The signal is a transmission used to induce echoes. The filter is a
system designed to receive these echoes and to process them in such a way
as to extract information descriptive of a target (including its presence or
absence). A 'signal-filter pair'" (as opposed to a signal or filter taken alone)
is considered because of the inherent dependence of the receiver upon the
signal which it is designed to process. This is why the discipline of radar
signal design might justly be called ""radar system design'.

"Information" not only includes the inevitable question about the
presence or absence of the target (detection), but may also include acquisi-
tion of knowledge about the shape or number of targets present (range reso-
lution), their speeds (velocity resolution) and even higher time derivatives of
range (acceleration, etc.).

Finally the "object" or target is an important part of any problem
specification, The cross-sectional area of an object determines what frequen-
cies are needed in order to receive a strong return (above the Rayleigh scatter-
ing region). The depth or range-extent of an object determines whether it can
be treated as a point target (negligible thickness in range) or whether it must
be treated as a distributed target. Finally, if the target is indeed distributed
in range, one must consider the dependence of reflected energy and power
upon the transmitted waveform.

The fundamental question, although simply phrased, is thus seen to
contain many nuances and complications. The various complications and their

effects on the problem will be the major topics of discussion.



1.2 The Correlation Process.

It has been demonstrated [1 , 2 ] that a correlation process is a sufficient
statistic for the detection of a signal in additive white Gaussian noise. Thus,
if a detector correlates all received signals with the waveform that was trans-
mitted (or a hypothetical version of the echo), the result of .this correlation can
be used as the basis for a decision concerning the presence or absence of the
target (likelihood ratio test).

If the transmitted waveform is u(t) and the received waveform is r(t),

then the correlation between the two signals is

fmu(t) r* (t) dt 1.1

- 0

where the asterisk indicates complex conjugation. It is assumed throughout
this dissertation that the filter used to receive radar-sonar echoes performs a

correlation operation.

1.3 The Wideband Assumption and the Waveform Design Problem.

In contrast to much past radar research, the signals used in this thesis
are not necessarily confined to a small band of frequencies around a large car-
rier frequency. That is, signals are not narrowbanded per se. This depar-
ture from previous work is motivated by the recent development of wideband
radar and sonar systems,

An immediate consequence of the wideband assumption is that the
effect of target velocity can no longer be approximated by a simple transla-

tion or "shift" in frequency. The doppler effect is, in reality, a compression



(or stretching) of the signal, mathematically described by a scale factor in
time or frequency. This more general model of the received signal r(t)
results in a version of Equation (1.1) that is different from the correlation
of narrowband waveforms using a ' doppler shift" assumption.

The new version of Equation (1.1) for constant velocity point targets
is known as the wideband ambiguity function. It is a function of two variables,
range and velocity, and is a mathematical description of the behavior of a
radar -sonar system for a particular signal-filter pair. Specifically, the
ambiguity function describes the reaction of a correlation processor to all
possible delayed and doppler compressed versions of the transmitted signal.
It therefore determines the ability of a radar system to unambiguously mea-
sure range and velocity of a given target, to recognize a time-scaled version
of the transmitted signal, to resolve targets on the basis of their differing
ranges and/or velocities, and to distinguish a target within a cluttered
environment.

If the ambiguity function ie indeed descriptive of the above system
capabilities, its characteristics should be studied. The relations between
these characteristics and signal pariineters (such as various time-spectral
moments) are particularly importas{. Properties of the wideband ambiguity
function are therefore investigated in Chapter III.

The analysis in Chapter III is first concerned with a Taylor series
expansion of the wideband function about the origin of the range-velocity

plane. This expansion reveals origin properties that are particularly relevant
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to discussions of signal resolving capability. A comparison of wideband origin
properties with their narrowband counterparts helps to illustrate the nature of
the narrowband assumption. The relation between wideband and narrowband
ambiguity functions is then made even more explicit by the derivation of an
integral transformation between them. Volume properties are studied. The
effect upon the wideband function of certain fundamental operations on the
signal (e. g., time scaling, differentiation) are investigated. The behavior of
the function along certain curves on the range-velocity plane is written in
terms of autocorrelation functions. Symmetry and separability properties

are discussed. Finally, the consequences of narrowbandedness (i.e., ambig-
uity function dependence upon the ratio of signal bandwidth to carrier frequeacy)
are examined from a wideband viewpoint.

All of the above properties are investigated in Chapter II; not all of
them are used in the sequel, but they are included for completeness. The
reader may therefore wish to skip Chapter III on first perusal, since subse-
quent chapters refer back to previous results as they are utilized.

Ii is easy to casually observe that radar system capabilities depend
upon the ambiguity function; it is more difficult to mathematically define the
desired capabilities in such a way as to derive an optimal signal-filter pair.

It is therefore important to demonstrate how ambiguity function character-
ization can be used to derive signal-filter functions that satiefy a particular
need. Such a demonstration is given in Chapter IV, where the desired pro-

perty is designated to be doppler tolerance. A doppler tolerant signal is
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defined as one which, when correlated with a time-scaled (energy normalized)
version of itself, produces a maximum correlator response which is nearly
as large as that obtained by autocorrelation.

As already indicated in Section 1,1, constant velocity point targets
alone in space do not exemplify most practical radar-sonar problems. The
interaction of a signal with accelerating targets, distributed targets, and
reverberatory (or cluttered) environments must be considered. These prob-
lems are investigated in Chapters V and VI. In Chapter VI, optimal signal-
filter pairs are again derived, this time using a computer algorithm for
clutter suppression (with wideband waveforms).

A useful description of signal-target interaction is found in Altar's
trajectory diagram. These diagrams are applicable not only to modelling
echoes from point targets with nonlinear trajectories; they are also descrip-
tive of general time-varying-delay effects, and can be used to depict the
echoes of certain distributed targets (viz., those that can be represented as
arrays of point targets). Each of these applications is investigated in its

appropriate context.



CHAPTER II

CONSTANT VELOCITY POINT TARGET:
MODEILS OF THE RETURNED SIGNA L AND CORRESPONDING
VERSIONS OF THE AMBIGUITY FUNCTION

In order to utilize the sufficient statistic (1. 1) one must have an
expression for r(t), the received signal, in terms of the transmitted wave-
form u(t). In general, r(t) will depend not only upon u(t) but also upon the
environment, the shape of the target, and how the target is moving. In this
chapter exceedingly simple assumptions are made concerning these echo-
determining factors.

Assume first that the environment is free of clutter (spurious reflec-
tions) and that the channel contributes no signal distortions other than addi-
tive white Gaussian noise. Secondly, assume that the object is a point target.
The point target assumption insures that a perfect replica of the transmitted
signal would be reflected from the object if it were held motionless. This
implies not only negligible thickness in range but also a large reflecting area
(relative to maximum signal wavelength) so that reflectivity is not frequency
dependent. Finally, the point target is assumed to be moving at a constant
velocity (or not moving at all).

The situation described by the above assumptions is admitiedly over-
simplified, but it provides a basis for the consideration of more complicated

problems that will be discussed later.



2.1 The Narrowband (Woodward) Model.

In addition to the assumptions already set forth, P. M. Woodward [1 ]

also assumed that the transmitted signal was narrowbanded. That is, prac-
tically all of the signal energy is assumed to be contained in a narrow range
of frequencies distributed around the carrier frequency. The carrier fre-
quency (defined here as the centroid of the analytic signal's power spectral
density function) is many times greater than the width of the frequency band
within which almost all the signal's energy is to be found.

Under these conditions, the echo has the form:

r¢) =ut +T)exp (-j ¢ t) (2.1)

where T = negative of time delay
and o=-( wov)/ Vv = frequency "shift" caused by the doppler effect.
The narrowband idea is so prevalent in introductory physics that one usually
hears the effect of target velocity described as a ' doppler shift".

In the foregoing definitions, W is carrier frequency in radians, Vis
speed of signal propagation and v is radial component of target velocity
(v= -R), taken to be positive for motion toward the receiver and negative
away from it.

Almost all radar signal design has been concerned with the narrowband
model until quite recently. As a result, a great many properties are known for

the corresponding correlation response (or ambiguity function):

x(l) r,¢) = j u(t) u* (t +7) e P, (2.2)

uu
- ®



Many of these properties have been summarized in a recent book by C. E. Cook
and M. Bernfeld [4 ] Although a discussion of ambiguity function properties
should be relegated to the next chapter, one rather important characteristic
will be mentioned here for motivation purposes: The ability of a signal to re-
solve between two point targets with slightly different ranges and/or velocities
is dependent upon the signal's time-bandwidth product. In particular, accu-
rate range resolution is associated with large bandwidth. One therefore
expects the designer of sophisticated high-resolution radar signals to become
dissatisfied with the narrowband assumption as available system bandwidth
increases. At the same time, sonar signals must violate the narrowband
assumption quite often, since the carrier frequencies involved are on the
order of 10+4 to 10+8 lower than those used for radar. More will be said

about this in Chapter III.

2.2 The Wideband (Kelly-Wishner) Model.

A 1965 paper by E. J. Kelly and R. P, Wishner [5] has led to a
generally accepted version of the ambiguity function for wideband signals.
For uniform-velocity point targets the Kelly-Wishner argument may be

phrased as follows:

The returned signal is v(t) = u(t - 7(t)) before energy normalization.

Consider the differential part of signal (or the ""photon") that returns at



time t - T(t); this bit of signal must have been reflected from the target at
time t - T(t)/2. But the range of the target at the time of reflection is

VT(t)/2, by definition. That is,

Range of target at time of reflection

R(t - 7(t)/2)

vT(t)/2 @. 3)

Expanding T(t) in Taylor series about some reception time to and

expanding R(t) about the corresponding reflection time t,/2 gives

T(t) to + Q(t - to) (2. 4a)

R() = Rt /2) - v(t - t /2) @. 4b)

where the higher order terms in the expansion are zero by the assumption

of uniform target velocity. Notice that
Th) =t i Tt)=1T; R(to/2) = -v. 2. 5)
Substituting (2. 5) into (2. 3) yields Vto/z = R(t_/2).

Differentiating (2. 3) with respect to t:

VT@)/2 = (1- T®)/2)R(t - T(t)/2) . 2. 6)
Evaluating (2.6) at t = to by using (2. 5):

€/2)V-v)=-v; C=(2v)/(V-V). @.7)

10
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Notice that

t-‘T(t)=t-to-C(t-to)=(1-C)(t-to), 2.8)
so that

rit) = u(t -T7(t))

=uf@-g¢-t)l

~y

= u[~=Y | ¢ -t )]

= ufs(t -to)] . (2.9)
Here s, which will be called the ""doppler stretch (or compression) factor, "
equals (1 +3)/(1 - 3), wherep = v/v.
Since the derivation of the correlation process is based upon the
assumption that all signals are normalized to some energy, one must multiply

u(st) by the factor 81/2:

@

E=/ lut) |2dt= /lsl/zu(st) |2dt. (2.10)

- 00

The resulting ambiguity function is then:

=]

x(zu) (T, 8)= 51/2 / u(t) u* [s(t + 7) ] dt. (2.11)

u

2.3 Description of the Returned Signal Obtained from Altar's
Trajectory Diagrams.

In Chapter 11 of his book, Rihaczek [6 ] introduces the Altar trajec-
tory diagram* as a useful concept for qualitative visualization of the interaction

between signal and point target. It will be shown, however, that the trajectory
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diagram can be used to obtain quantitative results as well. This idea will be
further discussed in Chapter IV. For now, the trajectory diagram is intro-
duced as a graphical method to derive the doppler stretch factor, s.

The trajectory diagram of a point target is a plot of target range
(in seconds) versus measured time lapse between transmitted and received
signals. If range as a functionof time is written R(t), then the trajectory of
the target is traced out on the graph of R(t)/:versus t, as shown in Figure 2.1

for a constant velocity target.

TARGET TRAJECTORY

i mln!u" v 2R(to)/\~r

Figure 2.1, Trajectory Diagram for a Single ""Photon",

* The author has tried to obtain Altar 's original paper, but at the time of
his inquiry it was still classified ""Confidential. "'
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With reference to Figure 2.1, consider a "photon' of energy
radiated toward the target at t=0., The time taken for this photon to reach
the target is R(to)/\7 , 80 that the reflected photon is received after a time
2R(to)/‘7' Here, to is the instant at which the photon is reflected. Thus
to = R(to)/vv . The '"path" of the photon on the trajectory plot may therefore be
represented as the legs of a 45° right triangle with apex at the trajectory, as
shown by the construction lines in Figure 2,1,

The trajectory diagram of Figure 2.1 can be used to show that the
doppler stretch factor is (1 + 3)/(1 - 8), where g = v/;; . The argument is as
follows.

Consider two photons transmitted at t= 0 and t = t_, respectively.

1!

The construction lines associated with these two photons are shown on the

trajectory diagram of Figure 2.2,

Figure 2.2. Trajectory Diagram for Two '"Photons".
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If t1 = st_, then what is s ? To answer this question, draw a more

2 9
detailed picture of the trajectory (Figure 2.3) with a horizontal line through

the point A on Figure 2.2,

Figure 2,3. Trajectory Diagram Determination of the Doppler Factor, s.

From the trajectory diagram and the 45° construction lines, it is
evident that 6= 450 and €= 900, where § and € are angles as shown in Figure
2.3. Furthermore, the slope of the trajectory = -il/7= v/iv= g = tan ¢ .

Since the sum of the interior angles of a triangle must be 1800, it follows
that 6= 90° - o . But p+0= 1800, 80 ¢ = 90° + o . From thi‘s it follows
that y = 180° - 6-0¢= 45° - a. Since x is one leg of a 45° right triangle with

/2 1/2

hypotenuse t_, it must be that x = t2/21 Similarly, y = t1/2 . But x/y

2’
o] -1
=tanvy ;tan(45 -tan B)=x/y= t2/t1 . Now
tan(A+B) = (tan A + tan B)/(1 - tan A . tan B)
so that

s = 1/tan(45° - tan " B)= (1+B)/(1 -3) .
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Trajectory diagrams yield a description of the reflected waveform
in terms of easily recognized attributes of the signal. Examples of easily recog-
nized attributes are the signal 's zero crossings (real zeros), its maxima and
minima (zero crossings of its first derivative), etc. Figure 2.4 illustrates a
trajectory diagram derivation of reflected real zero locations, given the trans-

mitted signal and the target trajectory.

- |

——

I W—— ZERO LOCATIONS OF
TRANSMITTED SIGNAL REFLECTED WAVEFORM

Figure 2.4, Trajectory Diagram for an Arbitrary Signal,

2.4 Another Version of the Ambiguity Function,

There is one model of the received signal that has not yet been
mentioned. This model leads to a wideband ambiguity function that has often
appeared in the literature [7,8,9]. It conceives of the energy-normalized

echo as
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r(t) = sl/ 2u(st -t) (2.12)

where to corresponds to the delay of the first transmitted photon., Then

©

@)

xuu

(T,8)= 51/2 f u(t) u* (st + 7)dt . (2.13)

The three versions of the ambiguity function will be compared and
discussed in future chapters. A table summarizing the above definitions is to

be found in Section 3.1.



II1. Properties and Interrelationships of the Various

Versions of the Ambiguity Function

The constant velocity point target ambiguity function is in
fact a correlation of hypothetical and actual target returns. The
hypotheses are in this case limited to range and target velocity.

If a given mismatch between guessed and actual parameters results in
a small correlator response (compared with the response to a correct
guess), then the system will be sensitive to such an error and will
be capable of resolving between point targets whose ranges and
velocities differ by the given amount. On the other hand, if the
mismateh results in a correlator response that is nearly as large

as that obtained for a correct guess, the system will be incapable
of determining whether the parameter hypotheses were indeed correct.
Even so, a large correlator response to a poor guess will at least
inform the radar of a target's presence.

To always detect a target (regardless of its range and velocity)
one must use a whole set of correlators such that at least one
correlator has a large response (exceeding a threshold that is set
in accordance with a given false alarm probability) for each point

on the range-velocity plane.¥

¥ If the correlators are realized as matched filters, then a con-
continuous or running hypothesis on time delay is automatically
implemented. For this case, at least one matched filter should
have a large response (exceeding threshold) for every possible
target velocity.

17
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An excellent resolving signal (with what is visualized as a "thumb-
tack" ambiguity function, i.e., with a small correlator response

to all bad guesses) will therefore require many correlators for
foolproof target detection. The price of resolution capability is
thus paid in system complexity.

The above considerations are introduced in order to illustrate
the dependence of radar-sonar system capability upon ambiguity
function characteristics. In order to intelligently design a& radar
system that uses correlation processing, it is necessary to deter-
mine the behavior of the ambiguity function in terms of hypothetical
and actual target parameters. This behavior, in turn, is generally
dependent upon the signal waveform.

The purpose of this chapter i; to amass knowledge about the
ambiguity function and about any signal characteristics that can
alter the behavior of this function in some straightforward fashion.
The chapter is organized as follows:

After finding expressions for (t, s) in terms of hypothetical
and actual target parameters, the behavior of the ambiguity function,
in the neighborhood of an accurate hypothesis, is examined via a
two dimensional Taylor series. This examination reveals the depen-
dence of resolution capatility upon certain time-spectral moments of
the signal. Important similarities between the wideband and narrow-
band functions are then demonstrated, and an integral transformation
between the two functions is derived. Ambiguity volume is also
found to depend upon the signal's time-spectral moments, particularly

mean-square time duration and carrier frequency. Some signal
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transformations are then investigated to reveal their effects upon
the ambiguity function. It is demonstrated that, when the ambiguity
function is evaluated along certain curves in the (t,s) plane, it
can be written as an autocorrelation function. Separability tests
are then discussed; such tests are important to determine whether

a given function (perhaps suggested as an ideal ambiguity function
for a given situation) is indeed an ambiguity function. Finally, the
dependence of wideband ambiguity function behavior upon the ratio of
bandwidth to carrier frequency (and the ratio of timewidth to mean

time) is investigated.

5.1 Hypothesis Testing

The argument leading to the correlation process (1.l) is
generally applicable to the detection of a known signal u(t) immersed
in additive white noise: r(t) = u(t)+n(t). In many radar/sonar
problems, however, certain parameters of the received signal are
unknown a priori. For the simple case of a constant velocity point
target, the range parameter 1 and the Doppler factor s are, in
general, unknown. The known signal u(t) then actually becomes a
guessed or hypothesized signal to be correlated with received data
r(t), and the magnitude of correlator response is indicative of the
goodness, in the sense of maximum a posteriori estimation, of the
guess. If the signal is such that the ambiguity function is negligible
for a bad guess, then correlation of received data with a bad guess

will not even indicate the presence of the target.



As a result of this uncertainty concerning the echo, it
behooves the radar system to make many simultaneous guesses about
target parameters. The signal corresponding to each guess would
then be correlated with received data. The largest magnitude of
correlator response would indicate the best guess (assuming that
there is actually a target present). Such a system not only detects
the target but also makes maximum a posteriori (MAP) estimates of
the parameters associated with its trajectory. The system is usually
implemented as a bank of matched filters in parallel (Figure 3.7 in
Rihaczek [6]).

It is possible to have a large-negative correlator output
if, for example, T is guessed with just a small error and the signal
is nearly monochromatic. But it is mathematically convenient to
have & measure which is a positive function of the accuracy of
parameter estimation. Most of this dissertation will therefore con-
cern itself with the quantities |X&£3)|2, i=1,2,5, the magnitude-
squared correlator responses.

It is easily demonstrated that the correlation of received
data with a hypothetical version of the echo does not affect the
general forms of the magnitude-squared ambiguity functions.

Let s, (or ¢,) and 7, be the hypothesized Doppler and time
delay parameters, respectively. Let S (or ¢T) and T, be the actual
parameters of a constant velocity point target. Then

-3t Igt
|Xu(1})(Th’TT:¢h:¢T) |2 = | f R, 1'h)e "u (t+ TT)e ! dt|2



my B W -

where unlabelled limits of integration are hercafter Laken to be

(-% ~). Changing variables,

x g2 - | fued” e+ eI atf?
vwhere

# < dp - fps R T (5-1)
In the narrowband case, then,t and ¢ are simply the differences

between hypothetical and actual parameters.

Similarly,
(2) 2 1/2 1/2 « 2
Xqu (1h,TT,sh,sT)| = | s u[sh(t-+Th)]sT u [sT(ti-tT)]dtl .

Changing variables:

e, 2 < 1M [ stes a2

where
s = sT/sh; T = sh('rT - ) (3.2)
For the third version of the ambiguity function:
(3) 2 _ Do /
Iqu (1,8)] has s = sT/sh, T= T, -\sT/sh)Th . (3.3)

The above results are summarized in Table 3.1.

21
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5e2 Origin Properties

3.2.1 Taylor Series Expansion

As a consequence of equations (5.1 - 3.4), one sees that
a good guess about target parameters would make s, =~ s (¢h ~ ¢T)
and T = O. It is thus desirable to know the properties of the magni-
tude-squared ambiguity function near the origin (s = 1 or ¢ = 0,
T =0). Also, the shape of the constant amplitude contours near the
origin is somewhat indicative of the volume distribution of the central
lobe of |X|2. The shape of these contours is dependent upon certain
moments of the signal. The radar engineer can thus approximately
estimate the effect upon the ambiguity functior of a particular
change in his signal if he knows the behavior of !X!z near the origin.
Consider, then, a two-dimensional Taylor series expansion

of IXuée)(r,s)|2 around the point (t,s) = (0,1):

31x, {2 (,0) 12

|Xm(12)(r,S) 2 - IXm(f)(o,l)!2+ T

ot
(0,1)
+ -1\5|Xu1(12)(1,s)l2 +12- aelxm(f)(_r,s)!?
s=b s 2 N
(0,1) ! (0,1)

Flr @0 F )2 Fix e B

2 2
aT as (0 ’l) as

+ 1(s -1)

(0,1)

+ higher order terms. (3.5)



(8] PI
with [ u(t)u¥(t)dt =1 and Xuial(r,s) defined as in (2.8),
=00
the derivatives on the right side of (3.5) are calculated in
Aprendix A. It is assumed here that u(t) = a(t)exp(jo(t)) is complex

and analytic [10,11], i.e., that a(t) and 6(t) satisfy the relation
a(t)cos 6(t) = H{a(t)sina(t) ] (3.6)

where H{°‘] denotes Hilbert transformation. See the discussion
preceding equation A.6 in Appendix A.

¥
Application of the Schwarz inequality to ‘Xu£2)|2 gives

iXu(f)(“r,s) i25 ﬁu(t) |2dt-sf|u[s(t+ 1)11%t = |xu(ue)(o,1)|2=1 (5.7)
with equality if and only if
u(t) = kgiu[s(ti-r)]; (t,8) = (0,1). (3.8)

Therefore , |xu(ug) (t,s) 1% <1, with maximum value at the
origin (0,1). In the immediate neighborhood of the origin a con-
stant amplitude contour of |X|2 can then be written in temms of a

constant 62:

?xu(uE) (1,8)]° =1 - &° where 5° << 1. (3.9)

* Some of the following discussion is modelled after a similar
analysis of the narrowband ambiguity function by C. H. Wilcox [12].



The fact that

‘I ficiently small.

Hel242 Contour Shape

Within a very
] order terms of eguation

(3.9) become identical.

derivatives at (0,l) are

3% (2 (1,5) 2

le2 has & maximum at the origin would secm

to imply that the contour (3.9) is usually an ellipse for 62 suf-

Proof of this conjecture follows.

Near (t,s) = (0,1)

small neighborhood of the origin, the higher
(3.5) may be neglected, so that (3.5) and
Using the fact that the first partial

zero (Appendix A):

82 |xu(u2)(1';5) |2

1l 2
1+ =it +21(s-1)
2 2
| o (0,1) %o (0,1)
32x (@) (7 oy |
+(sm1)° — W - 1-6°. (5.10)
EE (0,1)
If
82|X (2)(1 s)|2
¥ e -% s . (3.11a)
o (0,1)
82|X (2)(1 s)i2
RN - (5.11b)
ds (n,1)
L P B a0
7 R T v (51te)
(0,1)
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then the constart amplitude contour is described by the equation

2 2
}\Tl

2

+ 297y (48) )4 ng(csl)g - 8 (5.12)

where Asl =8 -1. If this is truly the equation of an ellipse,

then there should exist a rotation of axes:

T cos A sino 1'1
= (3.13)
0 -sineg cos 0 A'sl
such that
2 2
I+ (Aig - (5.14)
a b

& more familiar form of the equation for an ellipse.
Writing (1, As) in terms of (Tl, 28y 6) in (3.14) and

comparing the resulting equation with (3.12), it 's found that

2 - (cos®e/a%) + (sin%0/b%) (5.158)
y = sinécoso [(1/a°) - (l/bz)] (5.15b)
712 = (singe/aQ) + (coseo/be) . (3.15¢)

An illustration of the relation between the quantities in

equations (3.15) is shown in Figure 3.1.



Figure 3.1. Right-Triangle Relationship of Origin Derivatives
and Tilt of Wideband Uncertainty Ellipse

The triangle of Figure 3.1 is of immediate importance to the radar
signal designer, as it illustrates the ways in which the angle of
tilt (with respect to the t-axis) of the wideband ambiguity ellipse
depends upon the signal.

2

Equations (3.15) can be solved for a“ and b° (with the help

of Figure 3.1):

& = 2 (3.16a)
2402+ /02 -1P)2 + 1P
2
By (3.16b)

2
A 402 - J02 D)2 4 1yf
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g

Area = rab =
/ )\2']2 _ 72

(3.16¢)

For all the quantities in (3.16) to be positive, real, and

finite, the following inequalities must be true:

2 >0 (3.17a)

2

" >0 (3.17b)
A2 > 42 (3.17¢)

If these inequalities hold true, then the transformation
(3.13) will give an equation of the form (3.14) and the contour
|xu(u?) |°- 1 - 52 will indeed be elliptical. In fact, the inequalities
(3.17) can all be verified by the Schwarz inequality, although the
proof of (3.17c) requires a special version of it.

From. Appendix A and equations (3.11):

2z =Jr|u’(t)|2dt - |ﬁl(t)uﬂ"(t)dtl2 (3.18a)
n2 =ft2|u'(t)|2dt - Iftu(t)u*'(t)dt|2 : (3.18b)
y =fclu'(t)|2dt - Re{fu'(t)u*(t)dtftu(t)u*'(t)dt} (3.18¢)

As remarked in Appendix A, these quantitles are the same for both

(22 ana 1 (D)2
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Proof of (5.l17a):

For unit energy signals,

.Iu’(t)ledt = /A|u"(t)|2dt ﬂu(t)|2dt > | fa(t)u* (t)atl?

i,

with equality if and only if

u(t) = ku'(t) . (3.19)

It would appear that an exponential is a counter-example
to the inequality, since a solution to (3.19) is u(t) = klexp(ket)

where k, and k, can be complex, e.g., u(t) = klexp[(b+:jwo)t].

2
But in order for the exponential to be of finite energy, it must

have one of the forms:

(
kle(b+Jab)t , t>0
uit) = < (3.20a)
0 , t <0
\
or
(b+ Jo ) |t
u(t) = ke . (3.20b)

’

The first form (3.20a) results in an undefined (delta function)
derivative at t = 0, so that )\2 will also be undefined. Such a signal

is inadmissible per se. For the second form (3.20b),
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u’(t) = kl(b+,jmo)exp[’\b+;]mo)|t|]-[sgnt] , vhere
+1, t >0
sgn t= 0, t=0
-1, t<0.

But then u(t) # ku’(t) for a consistent value of k, so that (3.19)

is no longer satisfied.

Proof of (3.17b):

\/;2|u'(t)|2dt\/]u(t)|2dt > |ftu(t)u*'(t)dt|2 ,
with equality if and only if
ks
u(t) = ktu'(t) or u(t) = Kkt <. (3.21)

Once again, sudden truncation results in undefined moments, so that
(3.21) must be satisfied for all t. Since there exists no value

k
of k, such that & t 2 nas finite energy, (3.21) defines a set of

inadmissible functions. Thus (3.17b) is verified.

Proof of (3.17c):

Given the standard form of the Schwarz inequality:

flu(t)lzdtf v(e) Pat - | [ uew*®)atl? >0,  (3.22)



R)|

one can derive a special version involving more functions by letting
u(t) = rf(t) + cg(t), where r and ¢ are real scalars. This procedure
has been suggested by E. F. Beckenbach and R. Bellman in their book,

Inequalities [13]. Then (3.22) becomes

Qe [ - [fvnas [ e

+ re f W*dt[ f fg*dt + [ gf*dtjl - f fv“df:[ vg*dt
A\
- f gv*dt f vi*dti+ c2 I: f gg*dt f vv¥dt - f gv¥dt f vg“dtl

> 0 (3.23)

for all r,c.

Equation (3.23) may be written xr° + 2yrc + 202 > 0, where x >0
and z > O by the usual Schwarz inequality. But (3.23) is then a
special case of Hermitian form (14]. Accordingly, the inequality

always holds provided xz - y2 >0, or

[J’|f|2dtf lv|%at - |f fv“dtler |g|2dtf lv|at - lfgv*dtle}

> [J |v|2dt-Re%j}g*dt} - Re%ff‘v“dtfvg*dt} ]2 (3.24)

Letting v(t) = u(t), g(t) = tu'(t), £(t) = u'(t) {(5.25)
in (3.24) gives A°n- > -2, with equality if and only if rf+cg=kv,

or
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K
ru' + ctu' = ku; u =k (r+ct) &, (3.26)

But (5.26) is inadmissible for the same reason that (3.21) was,
so that the validity of (3.17c) has been demonstrated.

It has been shown that the constant-amplitude contours

of |X (2) 2

- near (0,1) are indeed elliptical in shape, with axes

determined by equations (3.16) and tilt-of-ellipse determined by

Figure 3.1, in conjunction with equations (3.18).
(2) 2
3.243 Average Curvature of |qu (1,8)|° at the Origin

If the ambiguity function were expressed in terms of
polar coordinates (p,0) with p=0 at (1,s)=(0,1), then a measure
of sharpness of the peak at the origin would be the quantity

82|x (2)I 2
uu

2
dp =0

averaged over all 0¢(0,2n):

2
2
c E'el—n f 3—2 |X (2) (p,9) | do . (3.27)
op
0 p=0
(2) 2
C is then the average curvature of |qu (t,8)|° at (0,1). For
good target resolution in both range and radial velocity, |C|
should be as large as possible. C may be found from earlier results

by use of the chain rule:
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0 1X(p,0) 1% _ 8 Ix(x,s)[? (%%)2 R a2|x<12,s)|2 (as)2

3p2 2° Os S

62|X(Tzs2 12 3¢ 3s
+ 2 T 353-5

LX) 1B 2P, dlx(r,e) 12 s

(3.28)
o1 sz as 602

where

T=pcos6 and s -1 = psing . (*.29)

Using equations (3.11) in conjunction with the results of Apperdix

A and (3.15):

32X (p,n) |2 2 2 2 . 2
——54.—| = -2\"cos“6 -2 sin"0 -27Ycos O sing (3.30)
do
p=0
and
lcl = (3% + 42) (3.31a)

d/;2|u'(t)|2dt - | [tu(t)ur (t)at|®

i)

¢ [l @faed fa@er @ 5w)

1/r2 4+ 1/°. (3.31c)



3.2.4 Comparison of the Origin Properties of Narrowband and

Wideband Ambiguity Functions on the (t1,#) Plane
In a small neighbochood about s=1,
s = (L+v/V)/(L-v/¥) = 14+2v/v = 1 -2R/¥V = 1 -g/a .
It follows that

ERPrenlt| e P

(0,1) “

(0,0)

- - o, %lxuﬁf%,ys)lgl

|(0,0)
32 x @z )12 aelxu(f)(T"“)le
© (1,8 =
51X (0,1)  3(ghy)? (0,0)
2
- o gl Ko
(0,0)

(3.32)

(3.33)

(3.34)

The behavior of the wideband and narrowband functions

near the origin of the t -95 plane may now be compared. The com-

parisons are made in Table 3.2 (next page), where the derivatives

are written in terms of U(w), the Fourier transform of u(t).
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Table 3.2 helps to illustrate the nature of the narrow-
band assumption. The |xu(f)'2 expressions become nearly equal to
their |Xu(ul) |2 counterparts only when the signal energy is concen-

trated within a small band of frequencies around a large carrier

DeD An Integral Transformation Between Wideband and Narrow-
band Ambiguity Functions

From the comparison (Table 3.1) of narrowband and wide-
band ambiguity functions at the origin of the (7,#) plane, one
sees that an easy transformation exists between corresponding
derivatives. One may then wonder about the existence of a global

operation that maps Xu(ul)

into X (2) and vice versa.
uu
5.3.1 Symmetrical Forms

Application of Parseval's theorem to the narrowband

function (3.2) yields

36

x Lk g) - 2_];t-jl}(w)0*(w+¢)e-jm1dw : (3.35)

Letting o= w'-g/2:

igt/2 '
Xu(til)('r”‘) i e—g,:_'fu(‘”"¢/2)U“‘(w'+¢/2)e-'jw Tdw'.

(3.36)

It was pointed out in section 3.1 that the magnitude-

squared ambigulity function will be used as & measure of correlation.
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This means that the phase factor exp(j@t/2) in equation (3.36) may

be neglected, so that an equivalent version of Xu(liL) is:

x Mgy = 2 futw-groumtet /2)e ™ ao . (5:37)

(3.37) is then a symmetrical form of the narrowband ambiguity
function [4]. Once again, ¢ =- 20p and B = v/V, where v is positive
toward the receiver.

The Kelly-Wishner function also has a symmetrical form

on the (1,B) plane: Let )'Elff)(r,ﬁ) = Xu(uz)(r,s)s_y-_ﬁ
“1-B
Then,
A(e) 1+B 148 o
(+,8) - f (t)os (B erm) . (5.38)
Let t=t'/(148):
~ 1 ' '
Wiee) - — Jolss) vl
1+8) (1-B) ] /
+%i'_§ )dt' - (5.39)

Applying Parseval's theorem:

~ 2\1/2
X Phe gy - B f Ula(1 +8) Ju*lw( -B)] e 3WPIT 4 (5.00)
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Similarly, it can be shown that

~ 241/2 - -
Ko ke ,p) = LB) / f Ul + ) Lo d P, (5.1)

Equations (3.40 -41) are symmetrical forms of the wideband ambiguity

functions, analogous to equation (3.37) for the narrowband function.
3.3.2 Integral Transformations

Theorem?:

Integral transformations between wideband and narrowband

ambiguity functions are as follows:

A 1/2 \
1) (2) ep) - - (322 /2 [_[xu(ul)(f"'?&”) Jolt -(8)T]y

(3.43)

Proof:

Consider the t-integration of the Woodward function

x et 260) = x He )

(1,8)=(x",-260)

Using equation (3.37):

# Although this theorem is original with the author, the type of
transformation involved here was briefly mentioned in a paper by
E. L. Titlebaum and N. DeClaris [1L].



= —I/U(x+ )U(x-em)e-jxr'ejw'dxdr'.

The r-integration results in the function 2nH(x - w), so that

xu(ul)(r',-zaw)ej“"'df' = fU(x+ Bo)U¥(x - fw) B(x - w)dx

= Ulo(l+8)JU*[w(l -B)] . (3.45)
By equation (3.L0),
2y1/

(1 -p3)Y/
on

2)

,8) = f Ulw(1 +B)] U*[o(1 -e)]e'jw(l'l'B)r .

so that

241/2 1
< (2)(1,5) e ) / f[f\( (1)(1';-2f3w)ejwr dr' e-'jw(lJrB)Td(D

uu

This is the first transformation (3.43).

Similarly, by (3.L40),

g @)y _z! B

75 * 3 '
Tu TP7E 15‘; - = ﬁfxu-s/em)] Us bx (148/20)] e X7 ax
[ - (5/2(»)2]

so that




1V

, Au(?)(r'/(l - Bf2w) ,-8/20)
J - (Bf2w)?1M/2

R AP U(w-B/2)u*(wtB/2). (3.46)

-2:—"{ fU((D- B/?)U*(a)«{- B/e)e-Jde = \(u(:.)(T)B)

Therefore,

\ ) .
1) X t'/(1 - B/2w) ,-B/2w) jw(T -t)._,
(1,B) ﬂ ol - (/22 B 5

which is the second transformation (3.L44).
These transforms are similar in form to Fourier's integral
formula [15] for the regeneration of a function by means of a

double integration (repeated Fourier transform):

£(t) - & ff £(1)e I gz g . (3.47)

The difference is that the above Theorem involves kernels that
are dependent upon w as well as t. The only exception to this

difference occurs when B & O:
300 = x Mes0) (3.18)

an obvious result .
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5ok Volume Properties

Skl Woodward's Result for the Narrowband Case.

Woodward [1] has pointed out that the volume under the
narrowband function IXu(\iL)(T,;é) |2 is constant. This is easily

shown by writing

|

v Bk [ xSy Pasog

T,8

%JI/:/:*(*)U*(X’f eI Ran(y)u(y + e W ax dy dd dt .

(5.49)
Since
%fe"j vyxMag _ yly-x), (3.50)
VTE;) = [[lu(x) |2|u(x+ ) |2dx at
= 1, for unit-energy signels. (3.51)

5.4.2 The Kelly-Wishner Volume Calculation [5].

The volume under |Xu(u‘?)('r,s) |2 on the 1,s plane may be
written:

(2 (2 2
V'r,os) - fﬁxuu )(T:SH dr ds (3.52)

~o O

”©
g—ln'uc/) [[7 u(t)“"(S(t*T)]U*(w)U(w/s)erﬁmdtd-rds,



vhere use has been made of the identity (using Parseval's theorem):

(2) 1 ' -J s
qu (T,S) = m /U((D)U* ((n/s)e wr dw . (3'53)
fu“‘[s(t+1’)]e'jmd1’ = %U‘(m/s)e-‘jwt (3.54)
and
fu(t)e-'jwtdt = U(w) (3.55)
so that

@1 LU_@_»Ls)l_ |u(e) |Pawds (3.56)

‘I.’

We can now make one of two reasonable assumptions:

(1) u(t) is real, which implies that |U(a>)|2 = lU(-w)|2, or

(2) wu(t) is complex with real and imaginary parts a Hilbert pair
(analytic), which implies that |U(w)|® = 0, w < O.

For assumption (2) with w = w's:

T,s

\ (@) %ff |U(w')|2|U(sw')|2ds dw'
00

8

o"\ o'\

w

"2 ~
_'_L(a) l [Q—J;Y-fw'lu(w's)leds]dw
2
M dw . (3.57)

Assumption (1) would, of course, give a similar answer.
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Kelly and Wishner did not energy normalize the returned
waveform, so the original Kelly-Wishner ambiguity function lacks

the factor of s/2 in front of the expression for X (2.

v For this

reason their volume result is somewhat different from the one
obtained above.
Tf the signal were narrowband, one could evaluate (3.57)

in the manner indicated by Table 5.1, yielding

(2) on
VT,S -] Eo' . (3058)

Even though the volume of the Woodward function is appar-
ently constant, the volume °f'|xu$?%2 decreases with larger carrier
frequency. This apparent contradiction will be resolved in the

next section.

5.4.3 A More Realistic Approach to Narrowband Volume.

Cursory observation of Woodward's volume theorem indicates
that the g-integration is, per se, unrealistic. In Chapter II,
¢ was defined as

2w v
O

. (3.59)

<?

To integrate ¢ form - w to + » would violate the theory of rela-
tivity for a radar signal, and would violate the implicit assumption
that |v| < |v| for sonar. But this objection is eclipsed by further
problems when one considers the validity of Woodward's model of

the returned signal.



Let us, for the cake of argument, assume a transmitted

signal with linear phase:
u(t) = a(t)exp(Jat) - (3.60)

This signal may be wideband or narrowband, depending uron a(t)

and w . Using the model of returned signal leading to (2.11):
r(t) = s/2u(s(t+7)] = sl/za[s(tﬂ)]-exp[jwo[s(t+r)]] . (3.61)

In the narrowband argument, this retuned signal is assumed to have

the form:

r(t) = u(t+r)exp(-3gt) = a(ttr)exp(ju, (t+7))exp(-jgt). (3.62)

Let us investigate the conditions under which (3.61) and (3.62) are
equal.

It was shown in Chapter II that
s = (1 +B)/(1 -B) (5.63)

where B = v/v, a relative velocity factor.
Since B <1,

1/(1-B) = L+B+8+p 7+ ... (3.65)

so that
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s = (L+B+B2+E24...) + (B+82+p 48 4...) . (3.65)

Therefore (3.61) becomes

r(t) = (1+2B+2t32+ ...)1/2 a[(1+2B+252+ cee)(t47))

exp[,ja)o(1+ 2B+ 262+ cea)(t4T)] (3.66)

If B << 1 and w062 <1, (woﬁ need not be so small), then
r(t) = a(ttr)exp(ju (t+7) ] expli2n B(t+7)]. (3.67)
By substituting (3.59) into (3.62), the narrowband model becomes

r(t) = a(t+T)exp(jwo(t+‘r))exp(jeu)oﬁt) . (5.68)

Since the quantity |Xx|° is of ultimate importance, phase
factors that are not time dependent may be neglected. Thus the
narrowband model (3.68) is nearly identical to the Kelly-Wishner

echo provided that:

(1) |B] <<1
(3.69)
(2) 0 f° <1 .

Observe that neither of the above conditions requires that wOB <1.
In the calculation of narrowband ambiguity volume, even

those limits commensurate with relativity theory are therefore
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generally unacceptable (or, at least, unrealistic). Limits that

take conditions (3.69) into account would be

s < <-3L o where w_>> 1.
Wy W, 0

A volume calculated with such limits would generally vary as 1/05’

as in equation (3.58) for v (2)

5.h4.4 Upper Bounds to Wideband Ambiguity Volume

Theorem: The volume of the wideband ambiguity function |xu2%
on the r, P plane is less than or equal to 2”2(Dt2/5)1/2’ where

Dtg = j¥2|u(t)!2dt, the mean-squared time duration.

Proof: Let V (2)

.6 ambiguity volume on the 7,f plane
J

{

where iﬁi?)(r;ﬂ) is given by (3.40), so that

|X (2)(r,a)| ar ap (3.70)

h‘——aa

v (3) . ('—‘31 f f ff ULx(1+8) U x(1-8) JUX(y (148) JULy (1-B) ]

T’B (277)
(3.71)
Performing the 7-integration and making use of the relation:
[e 3 @) (xn)ry, - o5 5 -¥) (3.72)

and then performing the y-integration, one is left with

~



,B = f %‘Elz(s)dﬁ (3.75)
where
z2(8) - _[lu[x(1+6)]|2|U[x(1-6)|2dx- (3.74)

Since z(B) = Z(-B), it follows that,

1

[ 28308 = 0. (3.75)
=1

Applying the Schwarz inequality:

1/2

(1-6%)1%2(8) < 1(148) [ |ulx(249)1] Yax. -(1-8) [ |ulx(1-8)1] Hax /2

- fiv@) e - (3.76)

Combining (3.73), (3.75), and (3.76):

1l
ng) 2 2)1 5 f () Ho (3.77)

Letting B = sin 6, dB = cos 9d9:

1 n/2
£ e B ) -ﬂfe de = n . (3.78)

Therefore,

47
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Vrfg) < -é— j‘IU(w)!hdw . (3.79)

We now utilize an inequality of B. v. Sz.Nagy [16, 17]
as given in Appendix B. Invoking the second part of Nagy's in-

equality with a=2, b=2, p=2, r=2, gives, for a unit energy

signal:
-3/2
p) 5 (2
f,w Y2 1218 v e | M2
VR @@ &
- (%,1),(,2)1/2 : (3.80)

Therefore, V 2) < 21(2(D 2/5)1/2 QED

T, = t )

It is therefore evident that a signal with small mean

square time duration will have comparatively small ambiguity volume

on the 7, B plane.

By the RMS uricertainty relation (Appendix C):
2 2
D~ >1/4D ° .

If it is desired to make the volume small, one method would be to

make Dt2 small. But in order that th be small,

0.2 = () [F|u(w)|%a0

must be made large. This is conveniently done by shifting U(w)
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away from w = 0, i.e., by adding a large carrier frequency. In

fact, for the special case wherein u(t) is Gaussian and narrowbanded,

2 2 (2)
D~ * 1/ba " and V_ ‘2’ <

This is in excellent agreement with (3.58).

Theorem: If a signal is strictly time limited with duration T

T(g) < [T o max |u(t)(12.
5 -T/2<t<T/2
That is, the volume upper bound varies as T times the maximum

(u(t) = O for t outside (-T/2,T/2]) then V

instantaneous signal power.

Proof : From (3.79), VTEE) < %.[|U(w)|udw .

For the strictly time limited signal,

T/2 T/2
U@ = [ u®e¥at < [ lu®)at < mac lu(®)l 1. (5.81)
-7/2 /2 -T/2<t<T/2
2 [1u6 "o < mexfa(8) |71 - 2 fluGe) e (3-82)

so that, for a unit energy signal,

y (@) < r(rmaxfut)|1® . @Ep .
T,B t

To minimize max|u(t)| for a given duration T and constant
t
energy, it is evident that the best signal will have constant amplitude.



D g ews —J

Corollary: The amplitude of the time limited signal (with given
duration) that minimizes the upper bound (3.81) is a rectangular

pulse.

Although volume on the (T,B) plane is more meaningful
than (T,s) plane results in terms of comparisons with narrowband
properties, the following result for the (T,s) plane will prove

useful.

Theorem: The volume under the lxu(ue)( T5S) |2 function in the strip

(sy >s >s,.) of the T,s plane is less than or equal to
1-"="2

un(0, /312 (s, 22 - 5 M2,

Proof : Using the expression (3.53):

|xu(112)( 758) |2 = "(?])'T_/:/'U(x)U':"(x/s)U*(y)t:(y/s)e-'j (x-y)7 4 dy . (3.83)
1)<s

Integrating with respect to T and then with respect to y:

oo

flxﬁﬁ)u,sn%r - 7 flu(x)I2|U(x/S)|2dx : (5.84)

Applying the Schwarz inequality:

- 1/2
1 2 2 1 L b
=% le(xH |U(x/s) |“dx 5_—7_2ns1 5 Jlu(x)l dx/|u(x/s)| a(x/s)

1 4
=m§/|U(X)|dx .



Using Nagy's inequality as in (3.80):

S

1
(2) flx Xr,s)|Paras < (21()(-]5'-Dt2)l/2 f SR

S

Couo(li23l/2, 1/2  1/2
3.4.5 Distribution of Volume of the Unsquared Function Above

and Below the Plane )&12)( T,8) = 0.

Theorem: If u(t) has no d.c. component, then / [ ,(ue)( 7,8)d7dP = 0.
That is, the volume of X g (2 )(‘r B) is equally dlstributed above and

(2)

below the plane xuu = 0.

Proof': From (5.40) and (3.72),

1/2
f (2) 1.0)ar - i (i—+§> lu(0) |2 (5.86)

.o f _dx7_
- 2,\1/2
0 (l-x )
by changing variables as in (3.78). Therefore,

0

1
f fx (2)(T,B)deB - %|U(o)|2 = 0 . QED. (3.87)
-1

uu
-0
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A similar argument shows that narrowband volume is also equally distributed

above and below the plane x(l)

- 0, provided that U(o) = 0 or u(o) = 0,

5.5 Bounds on Ambiguity Function Amplitude

The first part of Sz.-Nagy's inequality can be used to
find an upper bound on the wideband ambiguity function along a

constant s profile.

Theorem: max  |X (2)(1-,5) |2
-0 T7< © uu
(A a0
i Dt2 1/241/2 3 2) o 11/2
< leriss 57 Xaqu (T28)] AT (5.88)
e @00
Proof : For a=2, p=2, r=2, and s fixed, the first part of

Sz.-Nagy's inequality (Appendix B) gives®
1/4 1/4
mex X (7,0 | < [ f % (2r,e) |2d'r] f 12x (2Xr,e) l%rJ (5.89)

In the proof of Theorem 5 it was shown that
f 1 (2Xr,5) [Par < 21(p,2/58) /2 (3.90)

and this proves the theorem. QED.

* where max = max
T —o T<®
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Theorem: maxlXu(uQ)('r,s) |2 >

Corcllary: /
5/4

1/4
max |X (2)('r,s)|2 < s-l/e[-l- IU(w)lhda) L wh|U(w)|hdw
- uu - L-2'rr n

| 1/k
< 8-1/2(2ﬂ)9/1+(%pt2)>/%[%fw“wﬁdw] (3.91)

Proof: [|Xu(f)('r,s) Iedr < iﬂ-e— IIU(w) |hdw, from (5.85).

f 12 (B)x ) [2ar - 2L f‘”elww) 2 lu(a/s) 2ac

«1/2
. (3.92)

s

< 2—17-2-[].(1)%0(&) |hdu.)f!U(u)/s) |hd(a)/s)

Substituting (3.92) and (3.85) into (3.89) gives the first in-
equality of the corollary. Substituting (3.80) into the first
inequality gives the second. QED.

Finally, one can find a lower bound on ma.x|Xu(ue)('r,s) |2

T
for strictly time limited signals.

sngu('r)R:(st)d'r
T(s+l)

T
where u(t) = 0 for |t| > T/2

and R (7) = x )71y,

g
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Proof : The theorem is a consequence of the inequality
2
(2) 2 2) 2 = Az
[ |qu (1,s)|7dt < m:x‘)éuu('r,s)l (1'2- Tllna.x (5.93)
1

where (12- T )ma.x

function. For a strictly time limited signal with duration T,

is the maximum support in 1 of the ambiguity

Xu(f)(*.,s) = sl/efu(t)u*‘f_s(t+ ) ]at

is the correlation of a signal with duration T and a signal with
duration T/s. The quantity st can therefore have a maximum range
of T+T/s over which xu(112) is not identically zero. Then the maxi-

mum support in T is (1/s)(T+T/s) = T(s+l)/52.

Since |U(w) [P (1) (3.9%)

U@ 2
and -

~—=R (s7) (3.95)

where Ru('r) = Xusf)("r,l) = the autocorrelation function of u(t) and
"w—e'"" denotes a Fourier transform pair, Parseval's theorem applied

to (3.84) yields:

[ enfer - [r@myanar (3.96)

- 00
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Substituting (3.96) into (5.93) and utilizing the fact that

(1, = ) = T(s+1)/s° (3.97)

gives the required inequality. QED.

3.6 Some Transformations of the Signal and Their Effects on
the Ambiguity Function

Theorem: If u(t) = )Zu(f)('r,ﬁ)

then u(t+d) =» iu(f)(T-i—ig s B) . (3.98)
Proof: u(t+d) e— U(w)exp(jdw). (3.99)

Substituting (3.99) into (3.L40) yields the desired result.

QED.
A comparable property for Xu(:')(r ,¢) was derived by Siebert
(18]:

Ir o) —» X r,4)
uu
then U(a))exp(:]dme) —p xu(:')(-c -2d4¢,4) . (3.100)
Similar effects are achieved by a linear phase shift of U(w), i.e.,

a time delay in u(t), for the wideband function and a quadratic

phase shift of U(w) for the narrowband function.



% (2)
Theorem: If u(t) =» X (1,8

then al/2u(at) == ;(u(f)(ar,a), a >0. (3.101)

Proof:

172 172

Qe L1-58)
a/2u(at) —» (1_;;:)1/2 [Ulﬁ(l o) 2&e B)Jf'jw(lm)’rdw
. (3.102)
Changing variables gives the result. QED.

Siebert's property for the narrowba:d function [18] is:

r ut) —s xMrh)

then al/eu(at) =t Xu(lil')(a'r,¢/a). (3.103)
When u(t) is compressed, the Xu(:')-function compensates

for compresslion along the t-axis by expansion along the ¢-a.xis.
The wideband function does not have this compensation feature. This
helps to explain the volume result (3.80), i.e., the wideband

function loses volume as the signal is compressed in time.

Corollary: If u(t) =» f(u(f)(r,p)
then a/2u(attd) —» iu(u‘?)(ar -%g-g , B) (3.104)

The comparable result for narrowband:
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If U(w) = Xu(ul)(r,ﬁ)

- 2
then a-l/‘U(w/a)eJd(w/a) -— Xu(:)(ar-a‘d,‘/a,gfa). (3.105)
Theorem: If u(t) =» )‘zu(ue)('r,ﬁ)
1-3.% " [ (2
then u(n)(t) — (-l)n(1_+'§') ar2n[xuu )(T’B)]’
(3.106)
where u(n)(t) = da%/at"[u(t)] .
Proof: u™(t) e (J0)™(w) - (3.107)

Therefore,

- (2)
(T:ﬁ)
X (@), (n)

(3.108)
#)L/2 .
- (1'”) f[ja)(?.+ B) 17U [eo(1+ )| [~ (1-5) ]P0 * n(1- 5) Je JOLHA)T

But [jotd) |} [-se-p | = FHa-F)"

Therefore,

. (2

(T)B)
X (n) ()

(1-72)/2

- o= (1-32)n Uiw(1+8) ]U*[w(l-ﬁ)]wzne-‘jw(l+ﬂ)1 do . (3.109)

& je@ip)T _ [gw(1ig) |20 oLt B)T

d'ren

n 2n en_=jw(1+p)T
€ ’

= (1)« (1) (3.110)

dw .
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so that,

N (2)
xu(n)u(n)(T’ﬁ)

1l/2 2
n 1_1.3[)3231 l-g.’?r) / a() 21![][w(l-l-B)]]J*[w(l_ﬁ)]e-[jw(l'fﬁ)wa

n \2n
A R A G IR

The time differentiation property is similar to the cor-

responding property of the ordinary autocorrelation function,
2 jor
Ru('r) = (1/27) [ ju(w)]|% dw . (3.111)

However, there seems to be no such simple result for “he narrow-

band ambiguity function with ¢ £ O.

Theorem: If u(t) = im(lz)(’f,ﬂ)

then ﬂ/ u(t)at =» (-1) (1“3) X (2)1 ,B)dt

(3.112)
Proof:  The proof follows directly from the proof of (3.106)
by substituting -n for n throughout. QED.
Again, the Xu(:) function exhibits no such simple behavior

for integrated u(t).



Theorem: If u(t) =» X( ) (7,8)
1‘*(3 ,\ 2) T a (2)
then W ox U, :W ulul 2B) * Xu2u2 (1,B)
(3.113)
where w, % u, = /ul(x)uz*(t-x)dx , (3.114)
so that

(2)
(1
ul*uz,ultu TP _“L‘E%?g'f W (X:ﬁ) uu, (t-x,p)dx.

(3.115)
Proof: ul(t) * uz(t)o-» Ul(w)Ue(w) (3.116)
so that
A (2) _@\1/2 ,
S o 108 = =) / U, [o(1+4)]U, [w(1+p)]
U * [w(1-8) Ju ¥ [w(l-ﬁ)]e-jw(l+B)T dw (3.117)
&ull(’i (x, p)X (2 )('r-x p)dx
(1+P)x
o )efffv [y (148 Jug* [y (1-P)]e B
. A o =da, (1+p) (T-x)
-Uélpb(l+ﬁ)]Ué*[qb(l-B)Je 2 i doy dw,dx.  (3.118)

Using (3.72) and integrating with respect to x and @,

59
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. (@) . (2
X (x,g,))(uu (t-x,p8)dx

bote! 2!

- 5%{%} Uy Loy (14 8)JUy [y (145) Juy* ey (1-8)JU," [y (1-)]

~jay (148)7
‘e dwl
- TIF Xul,a‘ue,u._‘:«u2 (7,8) - QED.

The narrowband version of the above theorem was derived
by Siebert, and can be found in the doctoral dissertation of

E. L. Titlebaum [19]:

(1)

X
WAV UKV

(+,8) - x M,y x Pia gy (3.119)

The following two theorems use the type of transformation
suggested by J. Speiser [20]. Speiser's theory is summarized in

section 5.7.

Theorem: If U(w) === )’Eusf)(O,B)

(1)

then for B<<1, U(logw) /u)l/2 == X (0,-28). (3.120a)

provided u(t) is Analytic. In other words, if U(w) = O for w < 0

and g<K1,
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A (2) (1) _
xU(lOg(D)/(Dl/z (OJB) e XU((D) (0:'2‘3)) (j-lQOb)
Proof':
1/2 -~
U(log w) — (1-52) /U[log w+ log(l + ) JU*[log w+ log(1l -B) ]dw
1/2 em 2\1/2
W 5 (1 -6°)
for 7= 0. Letting o' = log w:
U—(l%%zﬂ) = 51; Ulw' +1og(l +B)IU*Tw'+ log(l - B) ldw'.
w (3.122)
For B<<1, log(l+p) *p and log(l-p) =~ - B, so that
%‘éﬁ = % U(w+%E)U*(w-%9)dw = Xu(ul)(O,-E‘B) QED.
w
Theorem: If u(t) =p il(li)(o,ﬁ), then for << 1 and u(t) causal,
u(log t)/t1/2=>xu(ul)(2g,o), (3.123)

_ . (@) 1)
i.e., xu(log t)(o,p) x xuu (2p8,0).

Ve

Proof : Using equation (3.39),

&0

~ (2)
Xu(los tz(o,ﬁ) ~ _/u[los t -log(l +p)Ju*[log t -log(l - (5)]-‘1—'C
JE 0]

00 60

/u(t - Bu¥(t + p)at = /u(t)u (t +2p)at

- 00 - 00

P 4

xMh2p,0).  qmp.
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Theorem: If U{w) = IXu(ue)(T,s)["

then U(w)exp(jk log w) —p |Xu(\12)( 7,8) {2. (3.124)

That is, the added phase factor exp(jk logw) has no effect at all

on the magnitude-squared wideband ambiguity function.

Proof': If U(w) —» U(w)exp(jk logw), then

Xu(u?)(T,s) — é!.FfU(w) u*(a/s) e 0T, ejk[logw-log(a\/s))dw
Vs

(3.125)
But log w-log(w/s) = log s. Therefore,
(2) jklogs  (2), _
qu (1,s) —» e qu (7,s) (3.126)
9 2 2 2 2
so +nat |x (B7,5)12 x Bhre)2 L .

As one would suspect from (3.120), the narrowband equivalent is:

If Ulw) —p |xu(ul)(1,s) |2

then U(w)exp(jkw) = |xu(ul)(7,s)!2 . (3.127)

Unfortunately, the time version is a bit more restrictive for the

wideband case:
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Theorem: If u(t) -=» x b )(\»S)l.?

Ul

then u(t)exp(jklogt) —p IX (2 12 =
' uu )(O,S). (3.128)
The proof is basically the same 85 Tor (3.124) 7rhe function
log t - logls(t+7)) is not a function of t oy if 7= 05 this .
1is
the source of the restriction to the s-axis.
The narrowband case is 8S general gy pefOre, since th
e
(1) ‘
form of qu is symmetrical in time apg frequency (compere 2,5 ang

5.55):
If u(t) =» '_leul)(ns)\z

then u(t)exp(jkt) = \xu(&)(T N

(3 -129)

J. Speiser's Properties

i
3

The following properti€s were origs nally derived by
J. Speiser [20) for the Xu(f)('f.-s) function. They appear here
adapted to the Xu(f)(‘r,s) function for the 8pecist case that u(t)
is causal (u(t) = 0, t < 0).

The results derived below will Shoy, £nats along eel‘tain
curves in the (7,s) plane, the Wideband aamby g3 £ function My be
written as an autocorrelation function. The najor implicatiOn ot
Speiser's work is that, since much ig knowy about autocorrelation

functions, this knowledge can NOW be applieq o the Synthesis
of



ambiguity functions. For example, certain Pulse train modulations
(such as Huffman codes or Barker codes f4]) have been devised
to give a large autocorrelation peak with minimal sidelobe levels.
These waveforms can now be applied to the wideband function in

order to achieve good doppler resolution properties.
4
If S =e ’ (3'130)

then for causal signals

[ ]

xusf)(o,z) = e2/2 fu(t) us(e%t)at . (3.131)
0

tl
Letting t = e~ ,

o0

Xu(ue)(o,z) = ez/2 fu(et')u*(et'+z)et'dt'

i} /[et'/e u(et')][e(t'+z)/2 u*(et'+z) Jas!

= /h(t ")h*(t'+z)at’ (3.132)
where h(t) = et/eu(et) (3.133)
or u(t) = (l/tl/e)h(log t). (3.134)

Hence, the 7 = O profile of the wideband ambiguity

function may be written as the autocorrelation function of h(t).
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The transformations (3.133-4) are energy-preserving (unitary)
since
[o¢] [29) o0
/|h(t)|2dt=/et!u(et)|2dt = /|u(t')|2dt'.
0 6] -®
(3.135)
A similar transformation turns xu(112) evaluated along
other curves on the 7,s plane into autocorrelation functions. 1In
particular, consider those curves through the point 7= 0,5 = 1,
having the equation:
7(s) = c(l -1/s). (3.136)
Then Xu(u2)(c,z) = ez/2/u(t)u*[ez(t+c)- cldt. (3.137)
0
t'
Letting t + ¢ = e :
1 1 1
xu(ue)(c,z) = ez/2 u(et - c)u“(ez+t - c)et dt'
log c
1 ] | D 1
= ! ['E!t /2 u(et - c)][e(z+t )/2 u*(ez+t -]t
15g ¢ (3.138)
- h (t')b,(t'+z)at’, - (3.139)
log c

where hc(t) = et/2u(et- c) (3.140)
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or u(t) = hc[log(t +¢)l/(t + c)]'/2 . (3.141)

Since u(t) = 0 for t < 0O, hc(t) = 0 for t <log c. Thus (3.13G)

can be written as a true autocorrelation function:

[+2]

xu(ue)(c,s) = fhc(t)hg(t+ z)dt . (3.1k2)

As before,
/ |n_(t)]%at =/|u(t)|2dt : (3.143)
log ¢ 0 )

It should be mentioned that the xug?)(w,s) function, with
which Speiser originally worked, has (3.139) true for 7(s) = c(s -1),
i.e., straight lines through the origin (7 = 0, s = 1). On the
7,B plane, however, c(s -1) = c[2p/(1 - B)], while c(1 -1/s) =
c(2B/(1+B)], indicating the basic similarity of the curves so far
as velocity 1s concerned.

It is interesting to note that, if h(t) in (3.133) is
equal to the ncm-L2 function cos(kt), then u(t) in (3.)l34) equals

(1/t)l/2cos (klogt), a waveform which will reappear in chapter IV.

3.8 D. Hageman's Counter-example

As the reader has undoubtedly noticed, the major emphasis

in this chapter has been on the x(112u) (Kelly-Wishner) version of the
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wideband ambiguity function. 1In addition to the argument in section
2.2, the following example should demonstrate the advantage of
\‘ﬁ?)over &i?) . The example was devised by D. Hageman of the Naval
Undersea Research and Development Center.

Suppose the signal is sufficiently narrow in time to be
represented as a delta function, 4(t). For a target with doppler
factor s and delay parameter 7= 2R/¥, where R is the radial dis-

tance to the target at the instant of reflection, the various

echos are:
For x 8 s 2(t) < sls(t -] = (1/s)s(t - 7) (3.1bba)
For xu(u5) :r(t) = o(st-7) = (1/s)é(t -7/s) . (3.14kp)

It clearly makes sense to write the time of arrival of the echo
as t = 7. The Kelly-Wishner return is the only model for which

this result holds if s # 1.

3.9 Skew Symmetry Relations

It follows from (3.40) and (3.41) that

28, = 2OV, -p) . (5.145)

u uu

Equation (3.145) explains the similarity of the curves along which

the xd(ug) and xu(u5) functions may be written as autocorrelations
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(Section 3.7); it also explains the identical first order origin

(2)2 (5)2 <
properties of [x  *‘|” and |xuu |“ (section 3.2.2).

It also follows from (%.40) that

uu -g

2(2)(- =L 7, -ﬁ) - 5020 (7,p)
so that
xX-sr, 1/s) - x2%rs) (3.146a)

The well-kilown narrowband version of (3.l46a) is skew symmetry in

range and velocity, and follows directly from (3.37):

x k-7 = x ) (5-1460)

.10 Separation Promerties

Theorem (J. Speiser [211]):
If F, (7,8) = x (3)(1,s), that is, if F is a wideband
b R 4%

cross-ambiguity function, then

B
/;3 TFuluQ('r,A/B)dT =\E H) (A)H3(B) (3.1L7)

for B£ 0

and
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/Fulug(T,S)d'r =J§ Ul(O)U;(O) (for all s), (5.148)

where

Uk(w) -— uk(t) .

Proof: The equivalent of (5.148) has already been proven in
connection with (3.87) (distribution of volume). By substituting

Xuiié(T,s) into (3.147):

f eIBT 27—273—/ 0y (U3 (ER)e I (B/ANT g far

- Eg?ful(w)ug(—‘?) ﬁ'Jm[(w/A*%, dw

= v oA | grgsle-a)Uy (@)U (P)aw

- (/B2 u e aEp (3.149)

Corollary 1: Equation (3.87) holds for cross-ambiguity functions
as well as auto-ambiguity functions, provided one of the signals has
zero d.c. component.
(3) (3)

X (7,8), then

fX (7,8) =
1 Y'Y usty
ul(t) = e u2(t), where k is an arbitrary constant.

Corollary 2: (Speiser): I
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Corollary 3 (Speiser): If (3.147) holds for some function Fulul,
then Fulul is a &ﬁfltype ambiguity function. That is, condition
(3.147) is both a necessary and sufficient requirement for some

function of two variables to be an ambiguity function of type

x (3)
uu
Corollary L: eIATE  (1,a/B)dr = (B/A)l/ U, (A)U%(B)  (3.150)
ulu2 1 2
if and only if F_ (1,8) = x (ﬁ)(r,s).
b Y%
3.11 Narrowbandedness and Narrowtimeness

The discussion leading to equation (3.69) was concerned
with conditions under which the true echo approximates the Woodward
echo model. It is also relevant to consider band limited signals
for which the conditions (3.69) do not necessarily hold true.

One does not expect such cases to be amenable to the Woodward
approximation, but some simplified results may still be possible,
along with added insight concerning wideband analysis.

Consider first a strictly band limited signal,

|U(w)|] £ O if and only if W SO (3.151)

where ©in > 0. See Figure 3.2.
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| U w/s) |
Vs s<1
777N
: : @b yws)|
' | ——
: : [— v S>1
] ] —_——e ———— -
: l ; I’ AV > W
Su 1 wMu% Wo ? “Max ?
Min Sw,, .
Min
S"“I\/[ax Max
Figure 3.2, Doppler Scale Factors Applied to a Bandlimited Signal.
There will be no overlap between the band limited signal
(5.151) and its scaled self if either
sWw < w A < min (3-152)
max min’
max
or
max
S%nin > Cnax? > ® (3.153)
min
It follows from (3.152) and (3.153) that
w + W2
s > ﬁ—°
X r,5) = 01if (3.15%)
w - W2
s < =2
@ + W72
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where
Do = @ = W
Qo = Ot w/2 (3.155)
o<w/2<<no.

The greatest possible support for the ambiguity function in the

s-direction is then the interval

w +W2 o -We? oW/ w
wo-w 'a)°+w2' °2z2l (3-156)
o " Wa O T W 1 - (W/20,) Yol >>u/2

Equation (3.156) suggests that one way (but not necessarily the
only way) to achieve high resolution in velocity is to make the
signal comparatively narrowbanded. If, on the other hand, an in-
sensitivity to velocity is desired (i.e., good doppler tolerance),
it is necessary that the signal be made comparatively widebanded.

Now consider a time function u(t) such that

u(t) =0 °f and only if t -T/2<t <t +T/2.
(3.157)

By an argument similar to that given above, one sees immediately
that the greatest possible support for the Y&é?)«),s) function is
confined to the interval

2'1‘/1;o

5 ® etl (3.158)
1 - (T/2to) o't >>T/2

where 0 <T/2 <t .
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Equation (3.158) is a rather strange result. It implies
that xu(112)(o’s) is dependent upon the time origin of a time limited
signal. Mathematically, it is a result analogous to the narrow-
band solution (3.156) arising from the identical operations in
time and frequency of stretching-followed-by-correlation. Physically,
it would seem to indicate a trade-off between duration of observa-
tion time and accuracy of velocity measure, somewhat similar to

the time-energy uncertainty principle of quantum mechanics.

3.12 Utilization of Ambiguity Function Properties Derived

in this Chapter.

The foregoing results are so varied that comparatively
few will be utilized in the remainder of this dissertation. Those

properties that will be used or referenced in the sequel are as

follows:
(2) 2
1. The second derivatives of |qu (1,8)]|° at (1,s)=(0,1)
(equations 3.18) and the average curvature concept (3.31).
2. The upper bound for ambiguity volume over any strip
drawn parallel to the t-axis (3.83-3.85), and its depen-
dence upon Dte.
3. The fact that the time scaling al/eu(at) results in a

T-scaled wideband ambiguity function with no change of

scale along the velocity axis (3.101).



L. The ambiguity function of two convolved signals is a

T-convolution of two auto-ambiguity functions (3.113).

D X&ﬁ?%r,s) is the only ambiguity function whose echo model
has a straightforward physical interpretation for

6. The more narrowbanded a function becomes, the smaller is

its support along the s-axis (3.156).

Although meny of the ambiguity properties of this chapter
are not necessarily germane to the remainder of the dissertation,
they have nevertheless been catalogued as possible aids to future

analysis.
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CHAPTER IV

DOPPLER TOLERANCE

The following discussion is still concerned with the specia! case of
constant velocity point targets. The basic task of this chapter is to illustrate
the ways in which some of the ideas developed in Chapters II and III can be
used to derive a wideband signal possessing a specific desired property. The
particular property which will be required of the signal is chosen to be doppler
tolerance [6].

Doppler tolerance can be defined in several equivalent ways. Basic-
ally, the property implies that a doppler compressed (or stretched) signal will
still be recognized (by a single correlation process) as a reflected version of
the transmitted waveform, regardless of the reflector's velocity. If one makes
hypotheses about target velocity as discussed in Section 3.1, the maximum

correlator output will be relatively insensitive to the velocity hypothesis if the

max 2)

|x®r, 5 7
~ogT<® xuu 4

signal is doppler tolerant. Such a waveform will make
relatively insensitive to changes in s.

If one envisions a target whose parts move relative to one another,
the doppler tolerant waveform can be a means of obtaining maximum correlator
response if the signal is reflected from such a target. This sort of advantage

tends to be obscured by an energy normalization, but it is obviously of prac-

tical importance if such targets exist. Two examples:
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1. A missile or meteor whose ionized ''chaff" or tail is
constantly created and left behind, resulting in a composite
target with a wide range of velocities.

2, An insect (e.g., a moth) whose wings add greatly to its
acoustic cross section, provided their reflections add to
correlator output in spite of the wings' velocities relative
to the thorax.

The above comments concerning targets whose parts move relative

to each other are subject to some qualification. It is true in both narrowband
(4] and wideband [22] analysis that the ambiguity function can have a long,

narrow constant amplitude ellipse near the origin, like that shown in Figure 4.1.

Figure 4.1, [Illustration of Point Target Resolution Capability.
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If the target is characterized by points T1 and T2 in Figure 4.1 (two points at
exactly the same range but with differing velocities), the correlator will mt
react strongly to the response from both targe's. If, however, the target
consists of T1 and T3, then a greater correlator response will occur.

Both the meteor and the insect will probably have some target points
outside the ellipse and others within it. To the extent that echo points lie within
the ellipse, one canthink of correlator output power as being embellished,
enhancing initial detectability. In this sense, doppler tolerance may be con-
ceived as antithetical to unambiguous target resolution . If one seeks to
separate a missile from its chaff (perhaps with the intent of distinguishing it
from a meteor), a 'thumbtack' ambiguity function is desirable. Such a resolv-
ing waveform separates the target into its component parts; the tolerant wave-

form seeks to lump the parts (or, at least, some of the parts) together.

4,1 Trajectory Diagram Approach.

4,1.1 Trajectories to Reduplicate a Given Signal.

If the correlation between two signals (or the inner product of two
signal vectors in the space of square-integrable functions) is really a measure
of their similarity, then a doppler tolerant signal is one which reduplicates
itself under a whole group of possible energy invariant time scalings. Consider,
then, an arbitrary waveform that is reduplicated by reflection from a moving

target (Figure 4.2},
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Figure 4.2 indicates a group of possible trajectories that result in
reduplication (more or less) of the arbitrary waveform. These trajectories
are constructed by connecting the intersections (or reflection points) of the
45° construction lines [6]). The trajectories with more reflection points
will yield better reduplications. The best such trajectory s seen to be the
horizontal one, i.e., a motionless point target. This corresponds well with
the definition of a point target as one which, when held motionless, returns
an undistorted version of the transmitted signal.

As demonstrated by the above argument (paraphrased from
Rihaczek [6)) it is a straightforward process to obtain acceptance trajectories
(i.e., trajectories which result in a reduplicated waveform and therefore
"acceptance" of the returned echo as a reflected version of the signal) if the
signal is given. But the reverse process, i.e., finding the signal-matched
filter pair when the target trajectory is given, is not explicitly discussed by
Rihaczek. It is simple to find an urmatched filter to accept a given trajectory

for a given signal; an important example is the compressed version of the

R()
2

Figure 4.2, Trajectories Which Result in Approximate
Reduplication of a Given Waveform,
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signal used for velocity hypothesis testing and illustrated in Figure 2.4. In

fact, it is also possible to rind a matched signal-filter pair when an arbitrary

trajectory is given. A giaphical method for doing this will now be introduced.

4.1.2 A Method of Deriving Signals That Reduplicate Themselves When

Reflected From a Point Target With Given Trajectory.

Careful study of Figure 4.2 reveals the following properties of

trajectory diagrams.

1, The horizontal line always produces a reflection that
duplicates the incident signal (a property that has already
been discussed).

2, The other trajectories which (more or less) reduplicate
the incident waveform must pass through the intersections
of the 450 construction lines., Certain points on the trajectory
are thus apexes of 45° right triangles with Lases on a hori-
zontal line (a fact that was used in Chapter II).

3. Because of the geometry of the diagram, if a trajectory re-
duplicates a given signal, then its reflection about the hori-
zontal trajectory also reduplicates the signal. For constant-
velocity (linear) trajectories, this means that a signal-matched
filter pair accepting a trajectory with slope 3 will also accept

the one with slope 3.



The above three properties suggest a straightforward graphical
method to find the signal that reduplicates itself when reflected from a point
target with a particular trajectory (linear or nonlinear).

1. Given the trajectory, construct its mirror image about a

horizontal line,
2, Inscribe diamond-shaped figures with 450 sides between
the two curves (trajectory and image) as shown in Figure
4.3.

3. The matched signal 's zero crossings, maxima and minima,
etc., are found from the abscissa intercepts of the lines
delineating the inscribed diamonds,

This method will be called "the inscribed diamond construction technique. "

Rit) \ ' INSCRIBED DIAMOND

L

GIVEN TRAJECTORY

N Lk _ & _J R R L

- MIRROR
IMAGE

L™ F |

ZERO (ETC.) CONFIGURATION

Figure 4. 3, The Inscribed Diamond Construction Techniqe,



———

81

4.1.3 Application of the Inscribed Diamond Method to Linear Trajectories.

Given a linear trajectory with slope 3 , one wishes to design a signal-
matched filter pair that will accept this trajectory. In other words, one wishes
to find a signal which will very nearly reduplicate itself upon reflection from

a point target with given constant velocity.

The inscribed diamond technique, when applied to a linear trajectory
such as that shown in Figure 2.2, results in a diagram like the one shown in
Figure 2,3, The only difference is that now there are many (instead ¢ " only
two) triangles inscribed side-by-side within the two rays. Just as the ratio
of t1 to t2 (Figure 2,3) was shown to be s, this is the ratio of t2 to t3 (t3 being
the base of the next triangle, corresponding to the diagonal of the next inscribed
diamond).

- If the construction lines are taken to symbolize real zero locations,

and if one is working with an analytic signal:

ut) = up(t)+ jﬁR(t)= a(t) ejem 4.1)

up(t) = a(t) cos O(t) (4.2)
where

i(t) = the Hilbert transform of u(t),

then if (t) is slow-varying or non-oscillatory, uR(t) will have zeros at times
z_ such that
n

6z ) = @n+l)7/2 . (4.3)



If the first zero occurs at t = 0, then it is evident from the inscribed diamond

technique that

2 n-1
t, = tl/s, ty = t2/s = tl/s b= tl/s . (4.4)

If zo occurs att= 0, then z_ occursatt=1t , z_occursatt=t +1

z attimet=t +t_+ ...+t . Thatis, ift = 1:
n n 1

1 72

Z, = t1 =1 (4.5a)
2=t it = (14 1/s) t, =@+ 1/s) (4.5b)
z =t, =t + ...+t =(1+1/s+...+1/s"'1). (4.5¢c)
n 1 2 n

It is clear from (4-4) and Figure 2.3 that 1/s < 1. Therefore (4.5c) may be

written in closed form as

_1- (l/szn
“n =1 -(1/s) (4.6)

Thus the desired phase function 6(t) is such that

6 {[1 -@/s)* 1/ 01 - /s ]}= 2nn/2+ /2. (4.7)
6(t) must be capable of converting n as exponent to n as multiplier. This
immediately suggests a logarithmic variation with n, One can therefore

attempt to write 0(t) in a general form such as:

0(t) = f(s) log (h(s) + g(s) t ] (4.8)
and determine whether there exist three functions (or constants) f, h, and g

such that (4, 7) holds true:

1 1" 2 1 2



n
£(T) log [h({) + g(C) (ll-%;c—)] = (2n+ 1) 1/2

where
C = 1/s.

Letting
B0 = (-0, ()0
h©) = () e”2HE)

(4.9) gives

h @)+ (1 - g @)= ™ HE)

Letting h1 = 1 and g1 = -1 gives
¢ = oM/ HE)

so that

f(g) = n/log g.

(4.8) thus becomes

[el/Z log £ _

6(t) = (r/log L) log tl-Q)e

=n/2 + (1/log(1/s)) log [1 -t(1 -1/s) ] .

1/2 log ¢ ]

(4.9)
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(4.10)

The reader can verify that (4.10) satisfies (4.7). For a given value of s, one

can rewrite (4.10) as:

o)y =n/2+ k1 log (1 - kzt) .

(4.11)
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Then
Cos 6(zn)= - Sin [kllog(l - kzt) ]
= -Sin(n7) = 0. (4.12)
Using a more heuristic approach, Rihaczek (6 ] derived a phase
function:

GR(t) =k,log(1 - k,t) . (4.13)

Ik, = k1/2, then Cos OR(zn) = Cos(nn/2) = 0 for odd values of n. The Rihaczek
phase function is seen to match a slightly different linear trajectory than that
of (4.10-11); aside from this, the two solutions are equivalent.

The horizontal construction line in Figure 4.3 could just as easily
have been drawn above the given trajectory as below it. As shown in Figure
4.4, this is equivalent to reflecting all the inscribed diamonds about a vertical
line passing through the intersection of trajectory and horizontal construction

line (point A).

\ HORIZ. LINE

ABOVE TRAJ.
HORIZ, LINE BELOW TRAJ.

Figure 4.4, Two Possible Inscribed Diamond Solutir: -
for a Given Trajectory.
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In terms of the solution 0(t)= k3 log(1l - kzt), the construction shows that an
equally valid solution is obtained by letting t' = -t + l/k2 :
= - = R .1
ot k3 log(1 + kzt 1) k3 log(kzt) (4.14)

It has thus been demonstrated via trajectory diagrams that a doppler
accepting phase has the form (4.11), (4.13), or (4.14). In the process of the
demonstration, a new construction technique has been derived. This technique

should prove especially useful for cases involving non-linear trajectories,

4,1,4 Doppler Tolerant Pulse Trains.

Suppose that each of the 45° lines in Figure 2,2 represents the posi-
tion of a pulse within a signal composed of a sequence of pulses, A doppler
tolerant pulse train would then have interpulse spacings as described by

Equation (4.4):

2 k
t = (l/s)tn_l— (1/s) t o= (1/s) btk
or
1-8 = k
t, = <1+B) t~A-28t . (4.15)

Rihaczek has derived a similar expression without reference to trajectory

diagrams ( [6], Equation (12.30)) .

4,2 Compression Diagram Interpretation.

For the special case of constant velocity point targets, there is
another diagrammatic way to view the doppler time-scaling effect. One can

draw the signal as if it were projected onto a movie screen. Compressed or
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stretched images are then obtained by moving the screen closer to or further
from the projector. The pictorial representation of this process will be called

a "compression diagram." See Figure 4.5.

£ :

UNCOMPRESSED
IMAGE OF TIME-
LIMITED SIGNAL

l\
o COMPRESSED VERSION

OF THE ABOVE SIGNAL

| B | PROJECTOR

Figure 4,5, Compression Diagram.

The problem is to determine the zero distribution (and/or distri-
bution of maxima and minima, etc.) that will give risé to a compressed wave-
form which correlates closely with the original waveform. If the compression
factor is so(>1), then the new movie screen would be inserted as shown in
Figure 4.5.

In order to have a large correlation between signals when they are
phased as in Figure 4.5 (i.e., when their starting times are identical), the
zero at T/ s0 should correspond to a zero of the original signal. Line A-A"'

(Figure 4,6) is therefore constructed; the original signal should have a zero
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at point A' . But the new zero at A' causes a zero at point B in the compressed
signal, where B is on the line A' - P, For a large correlation, B should have
its counterpart B' in the original signal. B' , in turn, causes a zero in the

compressed waveform. Continuation of this process leads to the diagram in
Figure 4,6,

Pl b =y =

0
B A T

e

Figure 4.6. Compression Diagram Derivation of a
Doppler-Tolerant Signal.

It is clear from the construction process that
t, =t /st =t/s =t/s2---. (4.16)
2 1" 70" '3 2o 1" 70’ '

Since (4. 16) is identical to (4.4), the same method as before will yield the
phase expression (4. 14). If the compression triangle POT were flipped over

about its vertical side PO, the resulting phase would be that of Equation (4.13).
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4.3 Global Optimization Approach.

Doppler tolerant phase functions can, in fact, be derived by more
conventional methods, i.e., by using the ambiguity function,
Definition: Given an acceptance threshold n and a specific value of

s=s_,a real unit energy signal u(t) is doppler accepting for So if

2

(8, T) =M, - (4.17)
—o < T @

Furthermore, the signal uo(t) is defined to be maximally doppler accepting

if

2 2
max xé l)l (so, T) 2 max )du) (so, T) , (4.18)

o < T<® (o 3o -t < T <™

where u(t) is any other admissible signal.
(2)

Defining the point in 7 at which Xuu

(T so) is largest by the ex-

pression -rm(so), the definition says that one should maximize the functional

o w

1/2 2
s f uo(t) u [so(t + 'rm(so)) ]dt - AE f u (t) dt (4.19)

-o ~

where uo(t) is assumed to be real and A is Lagrange multiplier for an energy
constraint.

Letting uo(t)—-uo(t) + € 1 (t), differentiating the functional with
respect to € and setting the result equal to zero for €= 0 (first variation

= 0):

1/2 1/2
s, _/ e u [so(t +7_(5) ]dt +s f n [so(t + rm(so))] u_(t)dt

-2 /n(t) u_(Hdt = 0 (4.20)
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Changing variables in the first and third integrals, let
= 1 st = - -
t=s (t'+T (8)) ;1 t/ 85~ Tm(8o) - “4.21)
Then
3
2 ’ 2, . 2 \
l 8, fn [so(t + rm(so))] u [sot +8, 'rm(so) + sorm(so)]dt
[ 1
2
+ 8 f n[so(t + Tm(so))] uo(t)dt
. - 1 ' '
2A_8_ f n[so(t + -rm(so))] uo[so(t + rm(so))] dt
=0 . (4.22)
This equation is satisfied for all n(t) if
su[52t+2 + 87T (8 +u (t
ool%" % Tm(so) %o m( o)] o()
1
2
- 2A_s] uo[so(t + -rm(so))] =0. 4.23)
By the Schwarz inequality,
T, (1) =0. (4.24)
Applying condition (4.24) to (4.23):
uo(t) + uo(t) - 2AEuo(t) =0, or AE =1. (4.25)
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Therefore, (4.23) becomes, for the special case Tm(so) =0:

1
s u 82t+ t—2szust (4.26
LB +u (1) = 28] u(s b) - -26)
Now suppose that
Y
ut) =t 2 cos [(21!/ log s ) log t] . (4.27)
Then
1
szu st-suszt—ut (4.28
o YolBot) = 8,5, = u ) » +28)

and (4.26) becomes an identity. Notice that uo(t) is not really square-integrable,
so that other constraints should (and will) be applied to the problem. The phase

function, however, is a perfect match with (4. 14).

Having derived phase function (4.14) by ambiguity function analysis,
one may again ask whether the Rihaczek function (4.13) is an equivalent
solution for maximal doppler acceptance. As far as the ambiguity function
is concerned, the initial definition (4.17-18) shows that two different signals

uo(t) and u 1(t) will have the same doppler acceptance property at s = so if

2 2
max X u( )('r.so) = max Xy u( )(-r. so) . (4.29)
- r<® oo - T<® 11
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If appropriate amplitudes are u.nd, the signal u, with phase
function (4. 14) can be related to the signal u 1 with phase function (4.13)

by the transformation that has already been discussed, viz:

u ) = uo(l/kz -t) . (4. 30)

The complex wideband ambiguity function corresponding to uo(t) is
1

X, u(z)(f, g) = 82 f uo(t)u; [s(t + T)]dt (4.31)

00 o

where it has been assumed that u(t) is causal.

Letting t = l/k2 -t

1 l/k2
(2) = z f -tha* - L. 1"_8 '
Xy y =8 u0(1/k2 thu 1/k2 s(t' - T+ 5)dt
oo - 2
(4.32)
The causality of uo(t) means that
uo(t) =0 fort<0, or
u ) =0 for t>1/k2 . 4.33)

Then by (4. 33), (4.32), and (4. 30),



u(z)(‘r' s) = xu u(2) (‘T#';;_: 0 s) R (4-34)

X
Yoo 11

It follows that for any given value 8, of s:

1-8

() @) 0
max X (1.8 )= max ¥ (-7 + y 8)
- T<™ ouo ° ~o<{T<®™ “lul 50k2 °
2
= max Xy u( )(T, so) (4.35)

~-olr<® 11

so that the property (4.29) holds true; the phase functions (4. 14) and (4.13)

correspond to signals that are equally doppler accepting.

The two log phase functions have thus been derived by a method
that is independent of trajectory diagram ideas, by éonaidering the ambiguity
function from a global viewpoint. In the next section a slightly different
approach will be used. The properties of the ambiguity function near the
origin (= 0, 8 = 1) will be utilized to attack the problem of doppler tolerance.
Consideration of global properties will then appear as a constraint to keep
ambiguity volume large. The advantage of such an approach lies in the emer-
gence of certain moments of the waveform as important parameters for

wideband signal design.
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4.4 An Application of Ambiguity Function Properties.

The doppler tolerance problem provides an opportunity to apply
some of the wideband ambiguity properties derived in Chapter III. Properties

near the origin and a volume upper bound will be particularly helpful.

Section 3.2 investigated ambiguity function properties in the neigh-
borhood of a correct hypothesis about the target parameters 7 and s. For
doppler tolerance purposes, the primary concern is with the behavior along
the line 'rm(s) discussed in Section 4.3. Recall that Tm(so) was defined
as the point at which xu(uz) (T, so) is largest, so that ‘rm(s) must define the
locus of such maxima and must pass through the origin, as expressed by

equation (4.24).

E. L. Titlebaum (the author's thesis advisor) has derived an
explicit expression for the behavior of 'xu(uZ) |2 along 7_(s) in the neigh-

borhood of the origin. His argument is as follows.
By definition,

= Ix Ere)? -0. (4.36)
7=t @)

In the neighborhood of (r,8) = (0,1), the ambiguity function is approximately

given by (3.9) and (3.12), i.e.,




S . e —

"‘u(uZ)(T'“)|2 ~1- 0% 4 2y1e-1) 4 noe-1)"0 @4.37)

where Az. 112. and vy are given in (3.18).
Applying (4.36) to (4. 37) gives
2
T, = ~y(s-1)/\" . (4.38)

Substituting (4.38) back into (4.37) then gives an approximate expression
for the behavior of the ambiguity function along the ridge line (near the

origin):

X B o1 =1- 10 -1 1e0)" 4-39)

A doppler tolerant signal will give a large correlator output

regardless of target velocity. That is,

@)

max |x Pney|® = x Ber_o1

-ogT<®

should be as large as possible for any s if the signal is to be doppler

tolerant. By (4. 39), this implies that the expression
2 2,2
n -y /X

should be minimized.
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It was shown in Section 3.2.2 that

2.2

na ayz so that n2 = (4.40)

e [P0

Thus if n2 is made small, it follows from (4.40) that the whole quantity

nz = 72/ Az will be made small. A simplified problem is then to minimize

2
n .

Since, by (3.18) and (3. 19)
i = [ oPa - | fuentoal® =0,

the problem could be simplified further by seeking to minimize the moment

ftzlu'(t)|2dt = o) _ (4.41)

N
The problem solved here, however, will involve nz as a whole rather than the

a‘fl) - moment. A generalized @ - moment is discussed in Appendix C.

One therefore seeks to minimize nz » which can be written as

the sum of two functionals:

n2 = Jl(a) + J2(a.9) (4.42a)
where
_f,2.2, 1
Jl(a) -ft adt- 4 (4.42b)

3,(a.6) = /tzaze'zdt-( ta2@dt)’ (4. 42c)
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and u(t) = a(t) exp jB(t) , as before.

Both Jl(a) and J 2(a. @) are positive or zero. This may be

demonstrated by using the Schwarz inequality as shown:

f a2(t)dt ﬁzéz(t)dt z | taﬁdt'z

where
f az(t)dt = 1 for unit energy.
-0
[ 2 @™ ©
f taadt = ta” | - f a[ta+aldt
@ -0 -0
2 w0 -]
= ta | -ftahdt-l
-0 (-]
or

f taidt = 30a® | - 1],
(-]

4 - 0

Assuming that ta2 l

-

n
e

f t2a%t = i— ;3@ =0 (4.43)
Yo

with equality only if ta = kla or a(t) = kztkl,~ where k1 and k2 are constants.

Also,
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P 2.2 F 22.2 ;o2
|ftaédt|sftaedt- a dt
-® -0 -0
or
J,(2,8) = 0 (4.44)

: T
with equality only if ta@ = k3a Trab el or

B(t) = k3 logt + k (4.45)

4

where k3 and k 4 are constants.

n?' is therefore minimized with respect to all admissible phase
functions if 8(t) = k3 logt +k 4 regardless of what amplitude a(t) is used

(Jz(a. A) = 0 for all a(t)). It will henceforth be assumed that 6(t) = k3 logt + k 4

for an optimally doppler tolerant waveform. Then

n? = J,(a) = f t2a’dt - %. (4.46)

Given the optimal phase 8(t) = k3 logt+k 4 one seeks the optimal

amplitude to minimize (4.46).

For a physical radar system, the energy E and absolute signal time
duration T should be constrained. One should also inciude a constraint to
ensure that |xu(uz)(rm,s)|2 is large away from the origin. Both (3. 85 and

2
(3. 88) imply that if th is allowed to become small, the height of 'xu(uz) |
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away from the origin will decrease rapidly. The mean square time duration
is thus constrained to be large, helping to produce the desired global properties

of the ambiguity function.

The problem is now to find the a(t) that minimizes the functional
T T
f F(t,a,a)dt =/ [tziaL2 + (A - l)al2 +A t2a2]dt . (4.47)
E 4 t
0 0
The Euler-Lagrange equation (23,24 ] provides a necessary con-

dition for the function a(t) to be an extremaloid of the functional (4.47):

JF d [3F
da  dt [aa] A0 (4.48)

The Legendre necessary condition requires that
a2
—_— =9 (4.49)
. 2
oa

in order that the extremaloid be such that the functional is minimized.

by

In the case (4.47):

oF 2.

i 2t a (4.50)
2

S _au? =0 (4.51)
.2

oa

d (oF . 2..

at (aé) = 4ta + 2t a (4.52)
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3F 1

3a - Z(AE 4)a+27\t a. (4.53)

t

The Legendre condition is satisfied by (4.51). The Euler-Lagrange equation

is
1 2 . 2
(AE—4)a+7\tta—2ta-ta—0, or
.. 2. 1/4')\13
a+-a+|——-AJa=20. (4.54)
t t2 t

This is a form of Bessel's differential equation [25]:

2 2
‘é+1'tzaé+(“—;1’—+5"’>a=o. (4. 55)
t

Equations (4.54) and (4.55) are identical if

A = -g° (4.56a)
1

a=-3 (4. 56b)

Ag= p? @.56c)

A solution to (4.55) is
a
ait) =t Jp(ﬁt) (4.57)

so that a solution to (4.54) is

-1/2
a(t) = k5t Jp(Bt) (4.58)
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where p and B8 are related to the Lagrange multipliers A_, and At by (4. 56).

E
The constant k5 is chosen to yield the correct energy.

In order that a(t) be finite at t - 0, one must have p =1/2, since
(25]

p-1/2
im V%5 gy = B~ . 59)

In order that a(t) be finite at t = T, it is necessary that
Jp(BT) =0. (4.60)

That is, for a given value of p, B should be such that 8T corresponds to one

of the zeros of the function Jp(ﬁT).
T

In order to minimize the mcment J' t2'azdt, one can choose
0
among the available functions (4. 58) on the basis of which one(s) yields the
lowest value(s) of this moment. Using various identities [25]) and integral

properties [26] of Bessel functions, it can be shown that for a(t) as given

in (4.58) and (4. 60):

T 2
2.2, 2 . (BT)” .2
'4 t'a"dt = k. {(p - 1/2)°E + 5 Jpﬂ(ﬁT)
-2 (p-1/2) f: [J i (m)]z (4.61)
n=0 p+tn
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where

2

T J_(BT)

= i
E—'O/- — at

Investigation of Bessel function zero properties [25] shows that there exist

no Bessel functions such that Jp(ﬂT) =0 and Jp+1(BT) = 0 also. Given that
condition (4.60) must be satisfied, it follows that the term [(BT)2/2]JP*12(BT)
will always be greater than zero. So to minimize (4.61) for a given value of

p, it follows that 8T should be as small as possible. This means that 8T

should correspond to the first zero of Jp(t) for t > 0.

The waveform described by equations (4.45) and (4. 58) bears a
striking resemblance to the cruising pulse used by the little brown bat, Myotis
lucifugus , for the initial detection of prey [27]). D. A. Cahlander's experi-
mental picture of the Myotis cruising pulse is shown in Figure 4.7. (The
bat's exact amplitude function a(t) may not be precisely as shown [54].) If
a(t) is sufficiently non-oscillatory, the instantaneous frequency can be defined

as the time derivative of the phase:

fit) = 1/T(t) = O¢t) - (4.62)

If O(t) = k3 logt + k4 , then é(t) = k3/ t, and the instantaneous period T(t) is

T(t) = (1/ ks)t (4.63)
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The expression (4. 63) agrees with Cahlander's experimental

measurement of instantaneous period versus time.

Figure 4.8 shows a sample function of the form (4.58) withp =17
and B = 2581. This function is seen to correspond in its general shape to the

amplitude of the cruising pulse shown in Figure 4.7.

Another bat signal is closely approximated by the solution to the

above problem with one more constraint. Rewriting n2 for convenience:
T T | 2
n2 =/ t2|u'|2dt - f teaZdt| - L . (4.64)
0 0 4

The first term (alfl) - moment) on the right side of (4.64) has a lower bound

derivable from the Schwarz inequality:

ft2|u'|2dtft2|u|2dt = tzuu""dt|2 : (4.65a).
o | tzuu""dt|2
_/t fut|“dt = (4. 65b)
H 2 .
Dy

th has already been constrained to be large, so if the left side of (4.65b) is to

be small, a further necessary constraint would require that

2 : 2
| t2uu'*dt|2 =[ f tazdt] +[ / tzeazdt] (4.66)
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be kept small.* One can thus define a new functional

_ _ T , ]2 T 5., ]2
K(a,8,t) = J(a,6,t) + A [f ta dt] +A [/ t 6adt] .
m|q m

0
(4.67)
Define

i 2
_/ ta'dt = M_ (4. 68a)

T | 2
f téa'dt = M (4.68b)

1

0

T
[ t29a%at = M, (4. 68¢c)

Replacing 9 by [é + en(t)] where 7 is an arbitrary piecewise smooth**

function such that
n) =n(T) =0 - (4.69)

and letting

*The moment (4.66) is also a measure of acceleration sensitivity. It will

be demonstrated in Chapicr V that constraining (4.66) amounts to an

acceleration tolerance requirement.

**p (t) must have a continuous first derivative except at a finite number of

points.
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3K

Y =0 (first variat‘on = 0) , (4.70)
€=0
one finds that
T 2 .
f 2tna"[tA-M_+A M tldt = 0. 4.171)
A 1 m 2

(4-71) holds true for all n(t) if

to - M1 + AmMzt =0
or

6= Ml/t -AM, - (4.72)

Replacing a(t) by [a + en], repeating the above procedure, and
using the fact that
T o T .2
f tandt = -f n.t a + 2taldt, (4.73)
0 0
gives
2

2.- . 2’2 2 1
-ta -2ta+t 6 a-2M1th+(AE-4)a+Att a

+ 20 M t26a+2) Mta=0. (4.74)
m 2 m o
Substituting (4.72) into (4.74) and dividing through by -tzz

v . 2
a+2a/t+ [(AmM

2
5 = At) = ka(Mle + Mo)/ t
1

2 1 2. _
+ (M1 A\ -AE)/t Ja=0. (4.75)
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Am and )‘t may be chosen such that

A -A =0. (4.76)

2_.2
m 2 t

The remaining part of (4.75) can be put into the form

v 1-2a . v-1.2 az - 2212 _

a+ : a+ [(Byt ) + tz ] a =0 (4.77)
by letting

a = -% J 4.78)

Yy = % , (4.79)

.32 =-8, (MM, +M) , (4.80)

p% = 400y - M) . (4.81)

The solution to (4.77) is [25]:
1 1

2Jp(pt2‘) : (4.82)

a(t) = ktaJp(ﬂtV) = kt
It is evident that superfluous oscillations of a(t) will unnecessarily increase
the moment I thézdt. Therefore one requires that the first zero of (4. 82)
0
for t >0 occur at t = T. Inorder that a(t) be bounded at t = 0, a further

requiremert is that p = 1.
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Notice that (4.80) will be consistent with (4. 68) and (4.72) if
Am < 0. One can then write
a(t) = kl/ t+k, (4.83)

where k 1 and k2 are both positive constants. The instantaneous period associ-

ated with (4.82) is then
T(t) = 1/6¢t) = t/ (ky + kyt) - (4.84)

The amplitude function (4. 82) is drawn in Figure 4.9 forp=17, 8= 105.7.

Also shown is the thecretical instantaneous period (4. 84) with k1 =26.7,

k2 = 33.3 x 103. Figure 4.9 compares favorably with Figure 4.10, which shows
the experimentally observed cruising pulse of Lasiurus borealis, the red bat

(27]. The time origin for the observed pulse should be made about 1 msec
earlier for easy comparison with theory. (Again, the actual a(t) used by the

bat may not be precisely as shcwn in Figure 4.10 [54].)

The reader may find it disturbing that the functional K(t, a, 6, a)
was minimized first with a(t) given (by setting the first variation of 8 equal to
zero) and then with é(t) given (by taking the variation of a). Following the

discussion of G. A. Bliss [55], p.11, the procedure is justified by defining

I(e) = K(t,a_+em, éo+€t. a_+en) (4.85)
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where ao(t). Go(t) are functions which minimize the functional K and where
C(t), like n(t), is an arbitrary piecewise smooth function such that £(0) = §(T)
=0. If ao(t) and éo(t) are indeed functions which minimize the functional

K(t,a, é. a), then the function I(€) must have a minimum at € = 0, that is,

r'o) =1md=0. (4.86)
For the particular case [(t) = 0, it must still be true that

I l(n, 0) = 0 for all admissible n(t). (4.87)
Similarly, if n(t) = 0,

11(0, {) = 0 for all admissible {(t). (4.88)

It is assumed, of course, that for [(t) = 0, é(t) is not only held fixed; it is
equal to its optimum function éo(t). For this reason, one must verify that any
proposed solutions do not produce inconsistencies when they are substituted into

the equations Il(n, 0) = 11(0, HD=0.

In Chapter VI, the same method will lead to a pair of nonlinear
simultaneous integral equations. Whereas the above solutions for ao(t) and
éo(t) can be made consistent with each other by simple manipulation of some
constants and Lagrange multipliers, a consistent solution in Chapter VI will

usually be obtainable only with an iteration technique.
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The many approaches to the doppler tolerance problem have
undoubtedly been tiresome for the reader seeking only answers. The main
purpose of this chapter, however, has been not so much to obtain results
but rather to demonstrate the usefulness of the various analytical methods

and properties of Chapters II and Il.



-

CHAPTER V

IMPORTANT GENERALIZATIONS: ACCELERATING POINT
TARGETS AND DISTRIBUTED TARGETS

Two generalized models for target echoes will be introduced in this
chapter. The first model takes account of acceleration, so that the point
target response is characterized by three parameters instead of two, 1t is
pointed out that a system which is implemented with constant velocity targets
in mind may well fail to detect a rapidly accelerating (or declerating) target.

The consideration of acceleration is thus more than just pedantic hairsplitting,

The second echo model assumes that the target is no longer a flat,
perfect reflector of undistorted waveforms, It will be shown that the more
widebanded a signal becomes, the less likely that the echo is an exact
(doppler compressed) replica of the incident waveform, It is postulated that
an object's echo can be derived from a convolution of signal and impulse
response, just as in linear system theory. A distributed target would then
be characterized by its impulse response or by its reflectivity as a function
of frequency (i.e., its transfer function, the Fourier transform of the im-

pulse response),

Assuming that echoes can indeed be written as convolutions of sig-

nals with target impulse response, one can find signal functions which give

113
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maximum power in the reflected waveform or maximum energy return, pro-
vided the target impulse response is known, It is pointed out that some
practical situations exist for which the impulse response would be known

a priori. It is also possible to estimate the target's impulse response by

a sequence of hypotheses.

A class of distribution tolerant signals is then discussed. By analogy
with doppler tolerance, a distribution tolerant signal is defined as one which
nearly reduplicates itself upon reflection from any target, regardless of the

target's shape,

By regarding the signal as a channel through which information about
the target is conveyed, it is possible to define the target description capa-

bility of a signal in terms of channel capacity (information carrying ability),

Finally, two groups of associated waveform characteristics are
described. In one group are very narrowband, doppler resolvent, distribu-
tion tolerant signals; in the other are wideband, doppler tolerant, high-
capacity, range resolvent signals, It is postulated that bats use waveforms
from both groups, depending upon what information they wish to extract from

their environment.
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5.1 Accelerating Point Targets,

5.1.1 An Anibiguity Function for Accelerating Targets,

Consider once more the argument in Section 2,2, As target motion
is no longer restricted to constant velocities, acceleration is included in the

expansions (2.4):

T =t o+ Lot +oatt) v 6. 1a)

R®) = R(t/2) - vit-t /2) - (a/2) (t-to/2)2 - (5. 1b)
As before,

VT(t/2 = RE-T(t)/2) . (5.2)

Differentiating (5.2) twice:

VT@E)/2 = (1-T(t)/2) R(t-T(t)/2) (5.3)

v T(t)/2

(1-7t)/2) RE-T())/2) - (F8)/2) RE-T®)/2) .  (5.4)
At t = to , expressions (5,1) through (5. 4) yield:

T(to) = to; T(to) = L T(to) = 2a (5.5)
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R(to/2) = -v; R(tO/Z) = -a (5.6)

vt /2 = Rt /25 V2 = 1-0/2) (V50 v = --g/2)’a + av

5.7)
Solving (5.7) for { and a:
{ = -2v/('\7-v); a = ';2 a/(';;—v)3 . (5.8)

t t
Here it is understood that v = v 20] , a = a[z—o]; one is concerned

with velocity and acceleration at the time of reflection,
From (5.1),

2
t- T) = t-t -T-t)-altt) -...

2
= (-0 -t ) -alt-t) -... (5.9)
so that

2
r) = uft-Tt)) = u[(1-§) (t-t)) - at-t ) -...]

~

v-v (v-v)

- ;”t-t - v'a t-t )2 5.10
= u (tt) - —g -t) -... (5.10)



117

This is the generalized result originally derived by E. J. Kelly and

R. P. Wishner [5].

If 8= v(to/ 2)/V and €= a(to/ 2)/V , then the ambiguity function

corresponding to r(t) is approximated by

1/2
x&r. 8.0 ~ / [(1“;) 2““131] u(t)u*[i—‘}g(tn)
(1-8)

- —< - (t+T)2]dt (5.11)
(1-8)
where the approximation is caused by truncation of the time series. The first

term after the integral sign normalizes the echo energy.

By Taylor's theorem [28], it is always possible to pick a time t1 in

the interval [to/ 2,t] such that
R(t) = R(to/ 2) - v(t 1)(t-to/ 2) . (5. 12)

Therefore, for a time limited signal it is still possible to write the ambiguity
function in the form )’}‘fﬁ)[‘r(to/ 2), Bt 1):| , but it must be understood that the
velocity which maximizes this function is not necessarily that at the reference
time to/ 2; B can be the target velocity at any time during reflection. Also,

if there is indeed acceleration, the maximum value of the ambiguity function
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xuu(z) [T(to/z), B(t 1)] will always be less than one when u(t) and r(t) have

unit energy.

If maximum signal power is restricted in a high attenuation, high noise
level environment, one must use long-time-duration signals in order to make
signal-to-noise ratio at the correlator output (2E/No) greater than one,

Such lengthy transmissions are particularly vulnerable to acceleration dis-
tortion from targets with highly nonlinear trajectories. Thus, even if T and
B are zero (corresponding to perfect velocity and time hypotheses) in (5. 11),

5)

the €-term may be large enough to make xuu( (0,0,€) << qu(s) (0, 0,0).

If a system is designed expressly for the detection of constant velocity
targets, then it is explicitly assumed that € = 0 and implicitly assumed that,
®) ~, )
should accelerating targets actually be encountered, xuu 0,0,¢€) = xuu
0,0,0) = xuu(Z) (0, 1) for all possible €. But if the implicit assumption

proves untrue, then an accelerating target may not be detected at all, even

at close range!

5.1.2 Acceleration Tolerance.

For receivers of limited complexity, the mismatch caused by ac-
celeration should be minimized in order to insure the applicability of a linear
trajectory assumption. That is, a class of acceleration tolerant waveforms

should be found. A successful approach to such a problem has been to use
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the origin properties of the ambiguity function. The same method will now

be used to simultaneously optimize doppler and acceleration tolerance,
’

For combined doppler and acceleration tolerance, one seeks a signal

such that acceleration sensitivity, as indicated by the quantity

=-[t|u(t)|2dt-[tzu(t)u*'(t)dt
e¢=0

is minimized., Constraints include n2 (3. 18b), D2 , and energy, where the

2 2
n anth

2 )
= Xy (040, €)

constroints insure doppler tolerance.

If

2
|a_a€ XSB(O.O,E)I |2=[ft|u|2dt + |‘[t2uu""dt|2
=0
+2 ﬁ|u|2dt Re ftzuu*'dt
2 2
=4 ‘/:azdt + [ t29' aldt

is used as a measure of acceleration sensitivity, then the following functional

must be minimized:
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2

—

L r
. . 2 2 2.2
J(t,a,0,a)=4 ta” dt +[ t” 08a° dt
(0] (o)
T T T
+ A ftzézdti/tzézazdt-[/-tazédt 2
(o] (o] (o]

T T

2 2 2
+[AE-A"/4]/3 dt+ktft a dt
o o

The above functional is essentially the same as the functional (4.67),
except that Lagrange multipliens are used for different quantities, The answer

is thus the same as that obtained in (4, 82) and (4.83), i.e.,

-1/2

a(t) = kt

1

1/2
Jp(ﬁt )

8t)

k,/t) +k,

This development shows that the extra constraint (4,66) used to derive

the cruising pulse of Lasiurus borealis is, in effect, a co.\dition for accelera-

tion tolerance, It is apparent that Lasiurus must be careful about accelera-
tion effects; Figures 4,10 and 4.7 show the Lasiurus signal to be more than
twice as long as the corresponding Myotis pulse. As already mentioned,

long-time-duration signals are vulnerable to acceleration distortion.
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The discussions associated with Figure 4.4 and Equations (4, 29-
4, 35) demonstrate that two phase functions with equivalent doppler tolerance

properties are

Ol(t) = kl log (k2t) or 92(t) = k1 log (1-k2t)

with associated instantaneous frequencies

el(t) = kl/t or ez(t) = (-klkz)/(l-kzt) 5

By Equation (4. 66), it is evident that for a given amplitude the first
solution (61) is more acceleration tolerant than the second (because of the
t.2 weighting factor of éaz over the interval [0, T]). Although the derivation
of the Myotis signal did not constrain acceleration tolerance per se, the sig-

nal chosen by the bat is thus the more acceleration tolerant of two equally

doppler tolerant waveforms,

5,2 Distributed Targets.

5.2,1 Narrowbandedness and the Point Target Assumption.

Distributed targets are objects which cannot be treated as planar

reflectors of undistorted waveforms. Before considering these generalized
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targets, however, it is important to illustrate the need for such a considera-
tion, After all, many workable narrowband radar systems, all based on a

point target assumption, have been successfully implemented.

It would seem that the assumptions of narrowband signals and point
targets are actually complementary ideas, In other words, the narrowband
assumption itself assures that most objects will behave as planar reflectors.
The connection between the two suppositions can be understood by consider-
ing the frequency dependence of target cross section for distributed targets.
The basic frequency response behavior can be inferred from the frecuency
dependence of backscatter from a sphere. The cross section is determined
by Rayleigh's law at low frequencies and by specular reflection at high fre-
quencies, where the radar cross section approaches the geometrical cross
section (n rz) of the object [37). A rough approximation to the frequency de-
pendence of radar cross section for a sphere (based on Figure 3.1, p. 65,

[37] ) is shown in Figure 5.1,

Figure 5.1. Approximate Frequency Dependence of Backscatter from a Sphere,
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It is reasonable to assume that most other shapes have the property
of asymptotically constant cross sections for large frequencies (0 =~ geometrical
cross section). Consider, then, a narrowband signal (with high carrier fre-

quency) superposed on such a curve, as shown in Figure 5.2:

Figure 5.2, A Narrowband Signal Superimposed on the Backscatter
Graph of Figure 5.1.

From Figure 5.2 it is evident that the target response is nearly flat over the
frequency range of the narrowband signal. Over the frequency interval of
interest, a delta-function impulse response (frequency response = constant)
approximates the true target response. In the limit as bandwidth approaches
zero, the distributed target behaves exactly as a point target, as will be shown
in Section 5.5. But as the signal becomes more widebanded and/or the carrier
frequency decreases, the applicability of the point target assumption becomes

progressively more questionable.
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5.2.2 Echo Model for Distributed Targets,

Consider now those targets whose cross sections vary with range in
such a way that the targets no longer act as perfect mirrors. As in linear
system theory, one can begin by considering the impulse response of such an
object. That is, the signal is visualized as a very thin pulse that impinges
upon the target and gives rise to a characteristic response, This response
must be described in terms of some reference time tr = Ro/; . Ro is taken
to be the range of the point of first reflection, i.e., the part of the stationary
distributed target closest to the transmitter. The situation described above

is illustrated in Figure 5. 3.

! s
ott) IMPULSE-LIKE
PLANE WAVE
oo f—

R, t «t
t =—=<" r
r v

Figure 5.3. Reflectivity vs, Time,
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The impulse-like signal is illustrated in Figure 5.3 as a vertical line
which sweeps across the target from left to right, generating reflections as
it goes. The impulse's reflection from the object at some time tr +t' will
take t' seconds to reach the reference plane tr. This reflection is there-
fore delayed, relative to the reflection at tr , by 2t' seconds. This delay,
which occurs for all t' , will make the time duration of the impulse response
twice as long as (length of target)/? . Thus if the target's impulse reflectivity

as a function of distance is ¢(R) , then the impulse response c(t) may be

written:
ct) = OR/2V) . (5.13)

To reiterate, the impulse response c(t) may be viewed as target reflectivity
stretched (time-3caled) by a factor of two, the stretching caused by the round

trip to each reflection point and back to the reference plane,

Assuming that the responses of a sequence of weighted pulses can be

superposed, the resulting echo has the form:

utt) = zai 8(t-T,) =rg) = z a c(t-T,) 5.14)

i i
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The continuous version of this relation is the well-known convolution equa-

tion of linear system theory:

r(t) = fu(‘r) c(t-7)dr . (5.15)

Since a point target is assumed to reduplicate the incident signal, its

impulse response would be
c(t) = O(t); r(t) = u(t) . (5. 16)

A constant velocity point target would then be characterized by the kernel

s 1/2 O(st-7):

r(t) = fu(‘r) [81/2 0 (st-7)] dT = sl/zu (st) . (5.17)

The analogous return from a moving distributed target would then be

r¢) = /u(‘r) [81/2 c(st-T)] dT

= j[sl/zu (st-T)] c(T) dT . (5.18)

All the echoes described above are referenced to time tr (Figure 5. 3).
The function r(t-2tr) describes the echo as seen by the receiver (assuming

that the signal was transmitted at time t = 0),
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5.2.3 Target Impulse Response,

5.2.3.1 A Priori Knowledge of Impulse Response,

There are some detection problems for which one knows (with a high
degree of certainty) the shape of the distributed target as seen by the radar/
sonar. For incoming torpedoes, missiles, or mortar shells the shapes are
all basically "conical sections nvse-on'' [34]. Sometimes the general shape
of an oil-bearing geological formation is known. If one were designing a
passive sonar navigation buoy, cylindrical or spherical symmetry would

assure an aspect-invariant, known impulse response.

The advantage of a priori knowledge about a target's impulse response
will becoine evident in Sections 5.3 and 5. 4: the design of optimal signals for

maximum reflected power and energy depends upon knowledge of the target.

5.2, 3.2 Estimation of an Unknown Impulse Response,

In order to estimate a target's impulse response, one can visualize
a processor that correlates the echo with synthesized echoes from hypothetical

targets, The output of such a correlator would have the form:
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(6) . .
xuu (T, Th' 8, Sh' c, ch)
*

(ssh)l/zj{fu(x) cy [sh(t-‘rh)-x] dx {fu(y) c[s(t-7)-y} dy dt

[(ssh)'l/ 2/2"] f | U(w) I2 ch(w/sh) C*(w/s) eI 4

(5.19)

where ch’ sh, and Th are hypothetical quantities and C(w) is the Fourier

transform of c(t).

If one were using a conventional processor (point target model) to

detect the return from a distributed target, c, would be an impulse and the

h

correlator output would be

-1/2
h)
2

(ss

®) c, bt)) =

X (T, 7,: 8,8

. “jw(T, -T)
uu h h’ h dw.

| Uw) |2 C*(w/s) e

(5. 20)

As in the case of accelerating point targets, a processor designed to receive
only time compressed versions of the transmitted signal may not delect a
target whose transfer function C(w) deviates significantly from a constant
over the signal's passband (even though Th =T, By = 8). Equation (5. 20)

thus provides a mathematical basis for the discussion in Section 5.2.1 (con-

necting narrowbandedness with the point target assumption),

™ ]
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If one insists upon using a conventional receiver (i.e., a bank of
filters matched to doppler compressed versions of the transmitted waveform)
with a distributed target, then it will be of interest to find a signal which

maximizes the function

|xuu(6) (T, 7. 8, 8; ¢, O(t) |2 = | fu®) [ fu) c(t-x) dx]* dt |2

(5.21)

Expression (5.21) is the magnitude-squared output of a correlator that has
correctly hypothesized range and velocity, but which hypothesizes a point
target when in fact the target is distributed. By the Schwarz inequality,

(5.21) is maximized (for unit energy signal and echo) if

@®

Au(t) = fu(x) c{t-x) dx . (5.22)

For time limited signals, (5.22) is a homogeneous Fredholm equation. The

equation will be further investigated in Section 5.5,

5.3  Signals for Maximum Echo Power,

In order to receive a waveform r(t) with maximum instantaneous

power Pr , the quantity
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max Pr = max |r(t) |2 = max | u(T) c(t-1) dr |2 (5.23)
t t t

should be maximized. But

Ifu(r) c(t-T) dT |2 Sjlu(T) |2 dr fl c(t-T) 12 ar (5.24)
by the Schwarz inequality, with equality only if

u(t) = ke(T-t); u(t+7) = ke(-t) . (5.25)

Assuming unit energy normalizations for both u(t) and c(t) , the left
side of (5.24) attains its maximum value of unity when (5.25) is satisfied,
The translation 7 in (5.25) has no effect upon the shape of the waveform,
so that, without loss of generality, the condition (5.25) for maximum in-

stantaneous echo power becomes:
ut) = ke(-t) . (5. 26)

As an example, consider the phenomenon of constructive interference
between two pulses. The target of Figure 5.3 is in this case taken to he two

planar discontinuities, each with the same reflectivity (Figure 5. 4),

If the signal is matched to the target in the sense that
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a(t)

- 4E

SIGNAL TARGET

=

Figure 5.4, Maximization of Reflected Power from a Target
with Two Planar Discontinuities,

u(t) = ke(-t) = ko (-R/2V) 5.27)

then it is evident that the signal will be as shown in Figure 5.4. The reflec-
tion (disregarding multiple echoes caused by reverberation between the two
discontinuities) will consist of three pulses, with the second being twice as
large as the other two because of constructive interference. Such a response
clearly has the maximum possible power relative to any two-pulse signal that

impinges upon the target of Figure 5.4.

It is also possible to illustrate constructive interference by means of
Altar's trajectory diagram. A motionless target consisting of two discontinuities
would appear on the trajectory diagram as two parallel horizontal lines (Fig-

ure 5.5).
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-—E:I——-| 1 - 1

Figure 5.5, Trajectory Diagram Interpretation of Figure 5.4

If the time between trajectories is again d , then the signal pulses are again
separated by 2d , so that the second received pulse (#2 in Figure 5.5) is the

superposition of two reflections,

To achieve maximum instantaneous reflected power, one sees that
the signal must be matched to the target, This matching requires a priori
knowledge of target impulse response, and suggests the need for an adaptive
system that changes its transmitted signal as better estimates of target re-

sponse are obtained.
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5.4 Signals for Maximum Echo Energy.

For a point target, the expected maximum signal power to noise power ratio
at the output of a matched filter is 2E /No’ where E is signal energy and No
is average noise energy. It is therefore important to receive a high energy

echo from the target for conventional matched filter processing.

2
For maximum returned energy [29, 30] one must maximize j | r(t) | dt.

But since convolution in the time domain is the same as multiplication in the

frequency domain, (5. 15) gives
rit) — U(x) C(w) (5. 28)

where " *— " denotes a Fourier transform pair, so that, by Parseval's

theorem,

jl r(t) |2 dt

]

(1/2m) f |U) Cw) |? do

(1/2m) f [ fum e axy [ [ur) & “Vay) | cwr |? do
- j f u(x) u*@y) [(1/2m) f | cw) |2 &Y ®dc dx dy
=ff u(x) u*(y) Rc(v-x)dxdy . (5.29)

where Rc(‘r) is the autocorrelation function of the target impulse response.
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Letting

f(y) =ju(x) Rc(y—x)dx (5. 30)
one has

f |y |° e - f ut(y) £ty dy 5. 31)

which {8 maximized (by the Schwarz inequality) if
fy) = kug) (5. 32)

or

@

k ufy) = fu(x) Rc(y-x)dx o (5.33)

-0

If u(t) is assumed to be time limited to [0, T] , then Equation (5. 33)
becomes a homogeneous Fredholm integral equation whose solutions are the

eigenfunctions of Rc. For a point target,
R 0-x) = O(y-x) (5. 34)

and (5. 24) is identically satisfied for all admissible signals. Thus a point
target does not favor one signal over another as far as returned energy is

concerned (as one would intuitively expect). A distributed target's shape,
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however, determines both energy and maximum power of the echo for a given

transmitted waveform,

Theorem: The signal that maximizes the energy of a given target's echo is

6) (T, 8, c), the

wlso the signal that results in an absolute maximum ot qu(
distributed target ambiguity function (5.19). This signal satisfies the integral

Equation (5,33).

Proof: By the Schwarz inequality, xuu(G) as given by (5.19) will be maximized

if s =8p, T=‘rh. Then

xuu‘s) ©, 1, ¢) = (1/2ﬂ)f|U(w) cw) |2 dw (5. 35)

But (5. 35) is identical to the right hand side of (5.29), so that the signal which
maximizes the maximum value of the distributed target ambiguity function
qu(e) (T, 8, c) is (not surprisingly) the same signal that maximizes the

energy of the echo. QED.

There exists a special case for which (5, 33) and (5. 22) are satisfied

by the same (non-causal) function:
Theorem: If there exists a function u(t) such that:

(1)  u¢t) = u(-t) and
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(2)  Au(t) =fu(x) c(t-x) dx ,

then this function also satisfies the relation

r

)\2 u(t) =J u(x) Rc(t-x) dx

Proof: ju(x) Rc(t—x) d&x = Jux) [fc(y) c(y+#-x)dy ] dx

fc(v) [ju(x) c(y+t-x) dx ] dy

A fc(V) u@+#)dy by (2)

Xfcm u(-y-t)dy by (1)

Az u(-t) by (2)

)«.2 u(t) by (1). QED

The above theorem is in fact a special case of a general result for
iterated kernels, provided that c(t-x) = c(x-t), i.e., c is a real, Hermitian

kernel. * The iterate of such a kernel is

*The condition u(t) = u(-t) implies that [u(x) c(t-x) dx = | u(x) c(x-t) dx.
From this it follows that c(t-x) = c(x-t) + f(x,t) where J u(x) f(x,t) dx = 0,
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cz(t-x) fc(t-y) cly-x)dy = fc(v-t) c(y-x) dy

= jc(y) ciy+t-x)dy = Rc(t-x)

It is a well known result [32] that if X is an eigenfunction of K with
eigenvalue )Ln , then X is also an eigenfunction of K2 with eigenvalue

)\nz , provided K is a Hermitian kernel.

It may be possible, then, to find a single waveform which maximizes
correlator output when either distributed targets or point targets are hypothesized.
It would appear from (5.22), however, that this signal is dependent upon c(t),
so that one must hypothesize c(t) in any case, in order to generate the wave-
form. Only if a (distribution tolerant) signal exists such that (5.22) holds for

any c(t) will no distribution hypothesis be necessary.

5.5 Distribution Tolerant Signals.

The eigenvalue equation (5.22):

(]

Au(t) = f u(x) c(t-x) dx (5.22)
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is in fact a partial definition of distribution tolerance, since it defines a
waveform that reproduces itself upon reflection from the target c(t). If

(5. 22) were true for any c(t) , then u(t) would indeed be distribution tolerant,.

Van Trees [2] has demonstrated that any complex exponential function

exp (jwit) will satisfy (5.22). That is,

)\ejwit = / ejwix c(t-x) dx ,

-

or

-]

A= f e-jwi(t-x)c(t-x)dx = Clw) . (5.36)

The value of A corresponding to the solution with frequency W, is the

Fourier transform C(w) evaluated at « = wye

Equation (5.22) does not take account of the fact that both c(t) and
u(t) are generally time limited functions, Accordingly, the limits on the
integral in (5. 22) are not really infinite, so that the change of variables in
(5.36) no lunger produces a constant on the right hand side when time limited

functions are used,

There are several ways [2, 23, 31} to solve the equation
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T
0
A u(t) =f u(x) c(t-x) dx , (5.37)

o
the simplest (given access to a computer) probably being the method that wi!l

be used in Chapter VI of this dissertation, i.e., the utilization of a set of
orthonormal con.ponents whose coefficients must satisfy a matrix characteristic

equation,

An eigenfunction for a specific value of c(t) , however, is not what is
needed for distribution tolerance. What is really required is a solution which
at least approximately satisfies (5.37) for all c(t) , just as exp Gwit) satisfies

(5.22) for all c(t).

Many distributed targets can be described as arrays of point targets.

The impulse response of such objects may then be written as

N
c(t) = 2 c 6(t—tn) . (5.38)

n-=

Perhaps an approximate solution to (5.37) can be found for the important

special case (5. 38).
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The trajectory diagram and inscribed diamond construction technique
were helpful aids to the derivation of doppler tolerant waveforms. The same
methods will also prove helpful for the distribution tolerance problem. In-
deed, the relevance of these diagrams to distributed targets has already been

demonstrated in connection with constructive interference (Figure 5,5).

For diagrammatic simplicity, let N = 3 in Equation (5.38). The
trajectory diagram representation of the target (5.38) is shown in Figure 5. 6.
The inscribed diamond construction technique then leads to a network of con-

struction lines as illustrated.

Rq(t)
\%

> ¢ O

> t

- T

Figure 5.6, Approximate Waveform Reduplication for an Array
of Stationary Point Targets.
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The distribution accepting signal is in this case a periodic signal with T = 2d2.

The target in Figure 5, 6 is obviously contrived; d1 = 2d2. But for an ar-

bitrary number of reflectors at various distances d 1’ dz, d3, . e ey dn
from each other, one would simply have T = 2do’ where do is a number

such that each of the {dl’ gy « v vy d } is an integer multiple of 2 d. A

2!
signal whose basic form is unaltered by the distributed target (5. 38) has thus

been graphically derived,

If the signal must be time-limited to [0, To] then the derivation sug-
gests that the simplest signal to use would be a sinusoid with zeroes at t =0

and t = To' Furthermore, if the spacings dl’ d dn are unknown

PURITIE
a priori, then the number do should be made as small as possible to increase
the likelihood that each of the dl’ dz, . . ey dn is an integer multiple of 2 do’
That is, the period T = 2do should be made as small as possible; the signal
should be a time-limited sinusoid with as high a frequency as is practicable.

In other words, the distribution tolerant signal is a quasi-monochromatic

sinusoid with period T much less than time duration ’I‘o. As To is allowed

to become large and/or T is made very small, the signal spectrum becomes
increasingly narrowbanded, approaching the solution exp (jwit) as a limiting

case,



In terms of the convolution Equation (5.15), one sees that if a peri-
odic function u(t) is convolved with a "comb' of impulse functions, u(t) will
indeed retain its basic shape provided each tooth of the comb is separated by
an integral number of periods, If u(t) is time limited, distortion will occur
near the endpoints of the reflected waveform; this distortion will appear as
discontinuous changes in amplitude. These sudden amplitude changes will
take place at the zeroes of the waveform, so that the reflected signal will

still be a continuous function of time,

If the limits in Equation (5. 37) were written as [- To/2, TO/Z], then
a reasonable solution to the above problem would be a time-limited cosine, so
that u(t) = u(-t). This waveform would then (approximately) satisfy the two
conditions of the iterated kernel theorem in Section 5.4, implying that the
waveform is not only distribution tolerant, but also that it provides for maxi-

mum energy return,

5.6 Target Description Capability.

Equation (5. 15) can be written in terms of Fourier transforms as in

(5. 28):

rit) — C(w) U(w) (5.39)
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where C(w) ~— c(t) and U(w) < u(t), the " — ' denoting a Fourier trans-

form pair.

It is immediately obvious from (5. 39) that if the signal transform
U(w) is zero (or indetectably small) over some frequency interval, then the
echo C(w) U(w) will provide no infcemation about C(w) over that interval.
This observation is related to the concept of a signal's information-carrying
capacity. The relation is easily recognized when one interprets the function

U(w) as a channel through which the function C(w) is being transmitted, For

a given time duration, the capacity of this channel varies directly as its
bandwidth [49]. If the signal-channel U(w) is to have large capacity to carry

information about the target function C(w), then U(w) must be widebanded.

The power spectrum | U(w) |2 is the transform of the signal's auto-
correlation function xuu(Z) (T, 1). This again implies that widebanded signals

are suitable for target characterization.

It was shown in Chapter III that signal bandwidth is indicative of range
resolving ability. Range resolution, in turn, is intimately related to the
problem of distributed target characterization. Range resolution describes
the ahility of a signal to distinguish between two point targets at the same

velocity but with slightly different ranges. It follows that range resolving
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capability would also be useful to describe a target that is distributed in
range, especially if such an object were represented as an array of point
targets, By the origin properties in Chapter III and the uncertainty relation

(Appendix C) one sees that range resolvent signals are necessarily widebanded.

The above arguments demonstrate the need for wideband signals if
one seeks an accurate description of target impulse response. An ideal sig-
nal for this purpose is, of course, the impulse itself (U(w) = 1). Unfortunately,
peak power limitations often forbid the transmission of any actual signal that
approximates a unit-energy impulse. The alternative is to achieve wide-
bandedness by drastic, sudden changes in the amplitude and/or instantaneous

frequency of u(t).

5,7 Relations Between Doppler and Distribution Tolerance, Resolution,

and Target Description Capability.

In Section 5. 6 it was shown that range resolution and target descrip-
tion capability are related concepts which exact similar requirements of the
radar-sonar signal. Similar relations exist between these and other wave-
form design concepts. In fact, it would seem that many radar system require-
ments (and their associated demands upon waveform characteristics) can be

categorized under one of two signal types: very narrowband or very wideband.
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The very narrowband (quasi~monochromatic) signal has appeared in
several contexts. In Section 3. 11 it was shown that such a waveform is
sufficient (but perhaps not necessary) for good velocity resolution. (The
same result will reappear in the next chapter as an idealized solution of a
system optimization algorithm.) It was demonstrated in Section 5.5 that a
quasi-monochromatic signal is also distribution tolerant. On the other hand,
the target description capability (a concept antithetical to distribution

tolerance) is very poor, as is range resolving capability and doppler tolerance.

The very wideband signal, on the other hand, has been found to possess
good range resolving ability and target description capability. Furthermore,

those wideband signals that are doppler tolerant should also be useful for tar-

get characterization when correlation processing is used., The connection be-

tween doppler tolerance and target description capability is clarified by the

@)

identity (3.113), which may be rewritten in terms of xuu (T, 8):

2 1/2 2 2
@0 = x P ot @
h

xu*c u*e (T, 8) . (5.40)
h’

By Equation (5.19),

2) (6)

Xu*ch’u*c( (T7 S) (To Sr c, C

n (5.41)

g

so that
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1/2 2 2
xuu(e) (7T, 8, c, ch) =8 / fxuu( )(x, s)xc c( ) (T-x, 8) dx (5.42)
h

If the radar-sonar system forms the function |xuu(6) |2, then it will gain

@) 2)

little information about xc c (T, s) over an interval of s where Ixuu(

h
(T, 8) |2 is small, That is, if Ixuu(z) (t, 8) |2 is indetectably small (beiow
noise level) over a given s-interval, then T-convolution of xuu(Z) with an

@)

arbitrary function xc o (T, 8) will generally result in another function that
h

is small over the same s-interval* (assuming that max {xc c(2) }=1).
h
Since doppler tolerant signals maintain a large amplitude of |xuu(2) (T, 8) |2

over an extended domain in s, one expects such signals to be comparatively

effective in conveying target descriptions to the receiver.

For comparison, consider again the quasi-monochromatic, distribu-
tion tolerant, doppler resolvent waveform. Distribution tolerance implies
that the signal reproduces itself no matter what the target from which it is
reflected, Such a signal does not gain any information about target distribu-

tion; it merely tells the radar that a target is present and presents some

*The problem is, in a sense, the converse of the usual SIR clutter rejection
problem to be defined in Chapter VI. For a distributed target, important
information may be contained in the '"clutter'; this information should not be
destroyed by the correlation process.
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indication of target range and velocity. Such behavior (i.e., good doppler
resolution associated with poor ability to describe the target's impulse

response) can be interpreted as a simple manifestation of Equation (5.,42).
(6)
u

That is, if x‘ﬁ)(‘r ,so) ~ 0 for 8, # 1, then Xy

(T, 8,,C, €)™ oforso;é 1,

and little information can be gained about the behavior of xchéz) (r,8) for 8 £ 1.

It has already been established that range resolution is another helpful

property for the description of distributed targets. In terms of Equation (5. 42),

(2)

the r-integration will destroy the fine-structure of xchc (1,8) unless

(2)

uu (T,8) is very narrow in range at each value of s, That is, a razor-blade-

X
shaped sigral ambiguity function should result in an accurate target description,
Such a razor-blade function is associated with large bandwidth, good doppler

tolerance, and good range resolution, *

*An extreme (and impossible) example of a razor-blade function would be
2 -1/2 (6
xéu)(‘r,s) = §(7. Then by (5.42), 8 / xéu)('r, S,C,Cp) = XChc@)('r,s),
the original target auto-~ambiguity function. A signal whose ambiguity function
approaches the razor blade is u(t) = 'l;mo K sin(t /T)/Ant/T) = 'I;To K(1rl:/T)'1/2

J1 /z(nt/T). This is one of the doppler tolerant waveforms derived in Chapter
IV. (If C(w) is band limited, it is unnecessary to take the limit of T-0, )
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Although a range resolvent, doppler tolerant (razor blade) signal
ambiguity function gives more information about xchc (T, 8) than a range
and doppler resolvent (''thumbtack') ambiguity function, the relevance of
this information i8 not immediately obvious. A thumbtack signal function

(6)

will make xuu equal to the cross correlation function xc 0(2) (T, 1).

h

For c, (t) = 6(t), X, c(z) (T, 1) equals c* (T), the conjugate of target impulse
h

response,

For a distributed target whose parts all move at the same radial ve-
locity, c(T) is indeed all the information one needs, But because of radar-
sonar beam spreading, almost any moving rigid target with large range-
extent will possess parts with differing radial velocities. * This fact is used
to enhance the resolution of side-looking radars [56]. In addition, targets
with moving parts (discussed in the introduction to Chapter IV) will often
have a characteristic '"signature'' when viewed as functions of both range
and velocity, For many practical situations, then, a two dimensional re-
presentation of the target ambiguity function is a helpful description of the

object,

*This phenomenon occurs for translational motion with a non-radial component,
A rotating rigid target would, of course, also give rise to velocity differences.
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It seems evident that the extent to which a signal can become simul-
taneously range resolving and deppier tolerant determines the accuracy with
which the correlation processor can describe a target. By Equation (3.101),

Section 3.6, a given doppler tolerant signal can b’ _made more range resolvent

(without sacrificing doppler tolerance) by simply compressing the waveform

in time,

For a given peak power, noise level, and target cross section, the
extent to which the doppler tolerant signal can be compessed depends upon
how much the signal energy can be reduced. This, in turn, depends upon

target range. For 2 peak power constraint, the extent to which the doppler

tolerant waveform can be compressed depends upon the range of a specific

object; the closer the target, the more compression is allowed (at a sacrifice

of signal energy).

The associations established in this section are exhibited in

Table 5.1.

The Horseshoe bats (e.g., Rhinolophus ferrum-equinum and Rhinolophus

euryale) provide an interesting commentary on the above arguments. The

pulses of Rhinolophus, as measured by H. U. Schuitzler [50], consist of &
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Table 5.1. Two Types of Signals with their Associated Properties

Signal: Quasi-Monochromatic Time-Compressed
Doppler Tolerant

{Centralized BW)

(Carrier Freq.) small (narrowband) large (wideband)
Range Resolution: poor good
Velocity Resolution: good range dependent*
Doppler Tolerance: poor good
Distribution Tolerance: good poor
Target Description

Capability: poor good

*See the discussion associated with Figure 4.1,



long, constant frequency (CW) signal followed by a rapid decrease of fre-
quency (FM) at the very end of the pulse. When the bats are at rest or
cruising (free flight), the FM part of the pulse has low intensity compared
with the CW part, But when the bats are landing or flying through an ob-

stacle course, the intensity of the FM part is increased. *

The interpretation of this behavior in terms of target characterization
is straightforward. For resting and cruising situations, one is interested in
initial detection of a target, regardless of its distribution. Hence, a distribu-
tion tolerant signal is permissible. But when landing, avoiding obstacles, or
closing in on prey, target shape should be investigated in some detail. For
these cases, a signal with large information-carrying capacity should be

accentuated,

*The use of FM versus CW as described here seems to be typical of all
species: ""As with all other bats yet studied, difficult maneuvers and demand-
ing situations elicit shortened pulses of the "chirp' or frequency modulated
pattern. But when flying at moderate altitudes in relatively straight lines,
longer pulses often show considerable periods with a nearly constant, or
slowly changing frequency. Is different information being extracted from the
environment by these different types of orientation sounds ?' - from D. R,
Griffin [33] (underlining added).
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For correlation processing, the target-describing signal should be a
time-compressed, doppler tolerant waveform. Such waveforms are indeed

observed for bats of another species, Myotis lucifugus, which seem to trans-

mit time-compressed versions of Figure 4.7 as they pursue their prey [27].
These waveforms become progressively more compressed as the bat nears
his target, a phenomenon that has been justified by assuming a peak power

constraint,
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CHAPTER VI

OPTIMUM SYSTEMS FOR A CLUTTERED ENVIRONMENT

This chapter considers wideband radar-sonar operation in a cluttered
or reverberation-prone environment. Such a consideration leads naturally to
the concept of discrimination against spurious returns (as well as uncorre-
lated noise) while seeking to detect a target. This concept is expressed
quantitatively in two ways: First, in terms of a constrained Schwarz inequality
which seeks a signal whose target echo is easily distinguished from spurious
echoes; second, in terms of a signal-filter pair to maximize signal-to-
interference ratio (SIR). For point targets, these two concepts are equiva-
lent. This will become apparent when *’ie constrained Schwarz inequality is
used as an alternate means of deriving the optimal signal-filter pair for

maximum SIR.

The SIR problem has recently been considered in detail by three
groups of authors: (1) L. J. Spafford and C. A. Stutt [38], [39], [40];
(2) W. D. Rummler [41]; and (3) D. F. Delong, Jr. and E. M. Hofstetter
(42], [43]). All three groups have been concerned with narrowband signals.
The major contribution of this chapter will therefore lie in the generalization

of S(R optimization ideas to wideband aralysis.
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6.1 Applicability of Existing Methods.

6.1.1 Representation of Noise.

Both the Spafford-Stutt and Delong-Hofstetter approaches use a narrow-
band complex envelope representation of white Gaussian noise. This repre-
sentation has been discussed by C. W. Helstrom [44]. The conceptual basis
of the argument is that, for a narrowband signal, one ca': envision passing
the signal through an ideal band pass filter without significantly affecting
the waveform, provided the passband of the filter is wider than the signal's
bandwidth. When this operation is performed on signal plus noise, the
resulting noise power spectrum is made narrowbanded, i.e., it has support
only in a relatively small band of frequencies surrounding a large carrier

frequency.

For a wideband approach, the above reasoning is usually inapplicable.
We shall therefore conceive of white noise in a more general sense. If it should
become necessary to use energy-limited noise in wideband theory, the 1deal
noise-shaping filter would be low pass with cutoff above the highest significant

signal frequency.

For real Gaussian noise n(t) with a constant power density spectrum
height of No/ 2, the expected noise response power of a filter with unit energy

impulse response v(-t) is:
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E { | fv(-T)n(t- 7)dT |2} = ffv(x)E {n(t+ x)n*(t+y) } v *(y) dxdy
- [[vooren /2 6x-9)1vry axey

= No/2 [|v(x) |2dx = N0/2 . (6.1)

6.1.2 An Invariance Property of the Ambiguity Function,

Both the Rummler and Delong-Hofstetter approaches use an invariance
property of |x‘$)(r,¢)ﬁ . The algorithms of these two groups depend upon

the assertion that

(1)

1 2 2
|X‘£v)(""¢)| = |X;g(1’o¢)| (6.2)

where u(t) = u(-t) and V(t) = v(~t).
Relation (6. 2) implies that the signal and filter may be interchanged

without changing the SIR, For the wideband function,

2 1
xéaz(‘r,s) =8 /2 [v(-t)u*[s(-t- T)]dt

= 5-1/2]' u(t)v(t’/s+ ) dt’

= xl(“?;)*(sr, 1/8) . (6. 3)
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Although the right-hand side of (6. 3) resembles the left-hand side of
(3.146A), the latter equation was formulated for auto-ambiguity functions, For

cross-ambiguity functions:

(2)*

(2)
Xuv

*
vu(-T v8).

(sT, 1/8) =¥

Thus (6. 3) is not equivalent to (6. 2).
The wideband equivalent of (6. 2) is based on more subtle transformations

1/2 12

than simple time reversal, If V(t) = s*/“v(-st) and U(t) = 8 u(-t/s), then*

2) 4 2 2 2
|Xi‘,{,‘)(1'3)| =|lev)(1’,8)| . (6.4)

The optimization algorithms of Rummler and Delong-Hofstetter can be
applied to wideband systems by using the above transformations, The Spafford-
Stutt algorithm is immediately made applicable to wideband problems by simply
replacing xtitlx) by x (2). The Stutt-Spafford approach will be used in this

uu

dissertation,

* This transformation was pointed out by an anonymous IEEE reviewer as
criticism of a paper submitted to the Information Theory Transactions,
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6.2 Detailed Expression for the SIR.

If the energy of the signal u(t) is unity, then the energy EB of the
signal Au(t) will be A2. The power of the maximum filter response to such

a signal is then

(2)

2
m(o,1)| . (6.5)

|fAu(t)v*(t)dt |2 =A% |x£)(o,1) |2 =E_|x

Having derived the signal and noise responses, it remains to find an
expression for clutter response. There is some evidence [45,35] that in
many situations the clutter can be treated as a distribution of point targets
whose positions and velocities are uncorrelated. (One should note that such
a model may be more attuned to mathematical convenience than reality. In
order not to overly complicate the initial development, this reservation will
be saved for future discussion. The present concern is with the conventional
representation of clutter as developed by Delong and Hofstetter [427.)

The clutter return rc(t) is the superposition of returns from an array

of point targets with various velocities and ranges:

r (t) = ) aiksl](/zu[sk(t- ri)] . (6. 6)
ik
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Here the delays T and stretch factors sk are measured relative to the

point target. The a, are statistically independent complex random

k
variables with uniformly distributed phases, so that [42]

E{aik} =0 (6. 7a)
*
E [aik amn} = Py 61m 6kn . (6. 7b)

Here P may be thought of as a quantity proportional to the radar cross
section of the (i,k)th scatterer., The number of scatterers is assumed large
enough so that the Central Limit Theorem may be invoked, thus making rc(t)
a sample function of a Gaussian process., The expected value of rc(t) is zero

by (6.7a). By (6. 7b) and (6. 6):

R (t,t')
C

LY
E{r (§r}(t))

= X P s ulst-T)]u* (s '~ 1. (6. 8)

The development may be generalized to a continuum of scatterers by replac-

ing izi by integrals over T and s:
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@™ -]
R_(t,t) = j fp(r,s) su[s(t- T)Ju*[s(t' - 7 ]dsdT (6.9)
¢ 20
where p(7,8) is the clutter probability density function,

The expected clutter response may now be calculated in the same

manner as the noise response in Equation (6. 1):

[ B e e aieey) vy dxdy

E {|fv(-1) r (t-T)dT |2 }

n

J[ voor, . xve) axdy
C

] oo [ fomstas- 3

0

[ 1/2 v*(y)u B(y-T7))] dy]d'rds

f[p(-r s)|x (1' s)| dTds . (6.10)

Combining (6.1), (6.5) and (6.10):

2 2
E Ix( ho,1)|
SIR = (6.11)

2 2 2
(No/z)f|v(t)| dt + E, [[p(‘r,s)|xéu)(-r,s)| drds
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where Es is signal energy, N°/2 the amplitude of the noise power density
spectrum, Ec is clutter energy, u(t) is the signal, v(-t)the filter impulse
response, and p(T,8) the clutter pdf.

When Ec =0 and v(t) = u(t),
SIR =SNR = 2ES/N0 (6.12)
the well-known signal-to-noise ratio of matched filter theory.

6.3 Maximization of the SIR.

6.3.1 Time Domain Optimization.

Using a variational approach, one fivst seeks the optimum filter
assuming that the signal is given. Letting v(t)- v(t) + ¢n(t), where 7(t) has

piecewise continuous derivative, the signal-to-interference ratio becomes

f
SIR(¢) =m&+}m7 (6.13)
where
,, 2
f(€) =Es|fu(t)[v*(t) +en*t)]at|”, (6.14)
2
g =(N/2) [ [viy+enty|*at, (6.15)

h(¢) =E sp(T,8)uls(y + T)Ju* [s(x+ 7)) [v(x)+en(x)]
[

[v*(y) + €n*(y)] dxdydrds . (6.16)



Setting the first variation equal to zero, i.e,,

3/3 €¢[SIR(¢)] =0
€=0

gives
{[g(€) + h(e) 11’ (©) - f(€)[g'(€) + h’(€)]} | =0
e=0
or
£ (€) L = (SIR)- [g'(€) + h'm]|
=0 €=0
where

f'(¢) | = 2E_Re ; f u(t)[ f u*(x)v(x) dx ] n*(t) dt%,
€=0

s’(c)l =N_Re U[v(t)]n*(t)dtz,
€=0

hie) L= . = ZEc Re;f[ff]sm'r,s)u[s(u T)Ju* [8(x+T)]

v(x)dx ds dr] n*(t)dt
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(6.17)

(6.18)

(6.19)

(6. 20)

(6.21)



Substituting (6.19, (6. 20), and (6. 21) into (6. 18):
Esu(t) [ u*(x) v(x)dx = [(No/ 2)v(t) + Ec f Hu(t,x) v(x)dx]SIR

where

Hu(t,x)s [([sp(‘r,s)u[s(u'r)]u* [s(x+ T)]dsdT .

Defining

f u*(t) v(t) dt
SIR [!:s/}"c:l ’

R
(1]

A= No/ 2Ec = [2Ec/ No] 1 inverse clutter-to-noise ratio

one has

pu(t) =av(t) + [Hu(t,x) v(x)dx .
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(6. 22)

(6. 23)

(6. 242a)

(6. 24b)

(6.25)

)

The solution of (6. 25) for a given signal u(t) is a filter function v(t) which

provides a local extremum of the SIR,
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Having derived the best filter for a given signal, it is clear that one

can also find the best signal when the filter is given. In order to do this
(2)

easily, change variables in the expression for xvu

(1,8):

x 2 (r,8) = sl/2 f v(tyu* [s(t+7)]dt = o2 vfit' /s) - TJuxt’) at’,

vu

(6. 26)

Since f [v(t) |2 dt = f Ju(t) |2dt =1, SIR(¢) in (6.13) may be rewritten with
fie) =E |]v(t) fuxt) + (n*(t)]dt|2 , (6.27)
8
2
g(e) = (No/2) f Juct) + en(ty|” dt, (6.28)
he) =E, [[[fa/emir epli/e - rlvelixse) -]
[ux) + en(x)) [uxy) + en*(y)] dxdydrds. (6. 29)
it follows that
uv(t) =au(t) + f Gv(t.x)u(x)dx (6. 30)

‘vhere

G (8,%) = jf (1/8)p(T ,8)v [(t/8) - T] v* [(x/s) - 7] dsdT. (6.31)
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Equations (6. 25) and (6. 30) are two simultaneous integral equations for the
unknown optimal signal-filter pair. Unfortunately, it is extremely difficult
to combine the two equations and thus obtain a straightforward solution for
u(t) and v(t). But, if the equations are kept separate, it is possible to
recursively solve for a locally optimum signal-filter pair given a particular

starting signal (or filter).

6.3.2 Frequency :dcmain Optimization.

It will be of interest to obtain the frequency domain version of the
above derivations, The procedure is the same as above, except that, by

Parseval's theciem,

(2)

xV\l

(7,8) =(8-1/2/21r) f V(w) U*(w/8) e 1974y (6. 32)

and

[lv(t)izdt =(1/21r)f|V(w)|2 dw . (6.33)
Equations (6. 14 through 6.16) are then:
* * 2
f(e) = Es|(1/21r) fU(w) [Vi(w) 4 en (w)]dw]|, (6. 34)

ge) = N /201/20 [ Vi) + en() | dw (6. )
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h(e) = Ec(l/Zn)szff (1/8)p(T ,8) Uly/s) U*(x/s) e IX =97

[V(x) + en(x) 1 [V¥(y) + en*(y)Jdxdydrds (6. 36)

so that
HU(w) = 2mV(w) + fHU(w,x)V(x)dx (6. 37)
where
Hyj(w,%) = I f(l/s)p(r,s)U(w/s)U“(x/s)e'j(x'“’)Tdsd-r. (6. 38)
gl

Finally, one solves for U(w) given V(w) by writing

(2)*(1’ 8) -(51/2/210 fU(w)V (8w) ej “Tq (6. 39)
so that
x 2
fle) =E, k1/2m) fv (w) [U(w) + en(w)]dw|”, (6. 40)
2
ge) =(N/2(1/20) [|ucw) + en(@| do (6.41)

2 =
hie) =E /28" [ [ [ [ sntr ) viey) v* (o) 59T

- [U(X) + en(x)] [U*(y) + en*(y)dxdydrds (6.42)



166

and
UV (w) =2mU(w) + fcv(w.x) U(x) dx (6.43)
where

Js(x-w)

Gv(w,x)= f fsp(‘r,s)V(sw)V*(sx)es Tasdr. (6.44)
-a 3

Equations (6. 37) and (6.43} provide a means of recursively solving

for the frequency domain versions of the optimal signal-filter pair,

6.3.3 Alternate Approach,

It has already been mentioned that, for point targets, a constrained
Schwarz inequality yields a solution that maximizes the SIR. It is important
that such an alternate derivation exists, as it is very difficult to ascertain
the sign of the second variation of the SIR. Thus, without the alternate
approach given below, one could never be certain whether the extrema found
by the variational method were local maxima (rather than local minima),

By obtaining the results with a Schwarz inequality, however, one is assured
that he has indeed found necessary conditions for a local maximum,

Given the class of signals such that f | v(t) |2dt =1 and the clutter
response [p('r,s) | x‘f:)('r ,8) |2d‘r ds, which is constrained to equal a small

number (preferably zero), one seeks a function vo(t) in this class such that
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the target response | f v(tyu*(t) dt |2 is a maximum, Writing the clutter

response as an inner product:
[p(‘r,s) | x‘fl)('r,s) |2d1' ds =[v(t)f*(t) dt
where f*(t) = fffsp('r,s)u[s(y+ T)Ju*[s(t+71)] v¥y)dsdrdy . (6. 45)
According to Papoulis [36], the solution is
v(t) =k [u(t) + fo[SP(T,S)“[S(H 7 Ju*s(y + D Iv(y) deTdY]
= k[u(t) + ([Hu(t,y) v(y)dy]. (6. 46)

~.

By proper choice of k and €, (6.46) can be made identical to (6.25). The

other solutions can be obtained in the same manner.

6.4 A General Method of Solution,

Again following Stutt [ 397 and Spafford [ - |, the signal and filter
functions are decomposed into a finite set of orthonormal basis functions:

N
ut) = ) a_ o ()
m=1
(6.47)

N
vi)= b oo (B
m=]1
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It is important to realize that (6.47) is written not as an approximation but as
an equality. In other words, the solution is restricted to only those functions
which can be expressed as a linear combination of the N chosen basis func-
tions. The larger and more complete the basis, the bigger the class of
functions that can qualify as solutions.

The two-dimensional function Hu(t,x) in (6. 23) can be written®

N
H (t,x) ¥ ) € on®m® (p;(x) . (6.48)

m,n

Then (6. 25) becomes

U Z am(pm(t) =)\2 bmq)m(t) + Z cmnbk(pm(t)[q’:(x) ‘ﬁ((x)dx
m m

m,n,k

En:l a ot = %[hbm + {: € anPn 1@m(®

ua =7\bm + Z cmnb . (6.49)

(6. 49) describes each element of the column matrix A in terms of the
elements of the column matrix b and a square matrix C. That is, (6.49) is

equivalent to the mat1ix equation.

pA =AB + CB =[C +AI]B
or

B =u[C+AIT CA. (6.50)

*For a given basis set, the accuracy of this approximation depends upon the
clutter distribution.
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Similarly, if (6. 31) is written
*
Gtx)= 3 d o e (X, (6.51)
m,n
then (6. 30) becomes:

A=uD+AIT B, (6.52)

The elements of C and D are obtained from (6. 48), (6. 23), (6. 51)

and (6. 31):
- *
ck!,- ﬁHu(t,x) (pk(t)w z(x) dtdx

= 3 a a* sp(1,8)Y_ (7,8) Y {7,8)dsdT . (6.53)
o mn mk n
%9

*
d,= [f6,txr0 0 0 dtax

= 2 bmb; /0/(l/s)p(r.s)ka(‘r,s)xl:‘z('r,s)dsdr (6.54)
m,n -
where
Y (T,8) Ef(pm[S(IH- ™) Jop(t)dt (6. 55)

X8 = [0 [t/s)-Tlpk bt . (6.56)
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A general method of solving for an optimum signal-filter pair would
then be to start with some arbitrary unit energy signal vector and to solve
for the C matrix elements using (6.53). Having found the components of an
optimum filter via (6. 50), the energy of this filter would be normalized to
unity and the components used in (6. 54) to find the D matrix. Using (6. 52),
another A vector would be determined. The process would be repeated
until the improvement in the signal-to-interference ratio became negligible, *

The SIR may be written** [38]:

SIR = A*[C + 1]} A(EL/E ). (6.57)

Equation (6.57) provides a convenient way to calculate the value of SIR at
each stage of the iteration process.

The signal-to-interference ratio is guaranteed to he larger or
unchanged after each stage of the iteration. This is because each stage

finds a locally optimum filter (signal) vector given a particular signal (filter)

*  The resulting signal and filter vectors would then be consistent with
. each other in terms of Equations (4. 85 through 4. 88),

** An asterisk, when applied to a matrix quantity, indicates the conjugate
transpose of the matrix. Equation (6.57) can be derived hy solving
(6.244a) for SIR and applying the condition (6. 12).
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vector. Since the SIR is nondecreasing for every iteration, and since it is
bounded above by the signal-to-noise ratio, the iterations must converge to a

local maximum,

6.5 Some Special Cases,

Most solutions to the pair of integral equations (6. 25) and (6. 30) are
best obtained by the iterative method implemented with a computer, However,
it is possible to solve a few special cases without resort to extensive compu-
tations, Since these solutions provide some insight into the workings and

results of the general method, they will now be discussed.

6.5.1 Clutter Uniform in Range.

Suppose first that the clutter's probability density function is uniform

in range: p(T,s) =lim p(s)(1/2T)rect(7/T), where
T-=

1, |x|<1

rect(x) ={ c
0, [x|>1

Such a situation could occur when a whole region (encompassing the maximum
range of the radar) is enveloped in a dense fog; Spafford has labelled this
"weather clutter'. For this particular case, one can use the frequency
domain equations developed in Section 6. 3.2. Specifically, Equation (6. 38)

becomes:
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To o

- T
H (w,X) = f (1/8)p(s) U(w/s) U*(x/8) [lim (1/2T) f e'j(x"")%r]ds
0 T

= 21 [ (1/8)p(8)U(w/8) U*(x/8) ds 6 (x- w) (6. 58)
0
and Equation (6. 44) becomes
Gyy(w,%) =21r[ p(8) V(8w) V*(8x) 6(x - w)ds. (6. 59)
0
From (6. 37) and (6. 43):

V(w) = (u/2m) U(w) (6. 60)

r+ [ /s u(w/s)|“ ds
0

U(w) (u/27) V(w)

+ (6. 61)
A+ fp(s) |V(sw) |2ds
0

Given U(w) and p(8) it is a simple matter to solve (6. 60) for V(w). Using
this V(w), a new and better U(w) can be found from (6. 61).

As a specific example, consider the case of a motionless target (in

motionless fog):

g S == —
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p(s) = 6(s-1) . (6.62)

Then

V(w) = M‘M (6.63)

A+ |U(w)|2

U(w) = ggz21r) V(w)

g (6.64
A+ |V(o.))|2 )

Substituting (6.63) into (6. 64) gives the relation

2
o+ (U |21% = w2n?

or | U(w) |2 = (u/2m) - A = constant

so that, by (6.63),

_ (p/27) U(w) _
VO =X Twzm =27~
or
2 2
|[V(w)|™ = |U(w) |~ = (w/27) = A = constant. (6.65)

This says that the best signal for detecting motionless point targets in
weather clutter has a uniform power spectral density (corresponding to an

impulse-like autocorrelation function for large system bandwidth),
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6.5.2 Clutter Near the Target (Resolution Problem),

The following example illustrates the matrix computation and
manipulation involved in the actual computer algorithm, The waveforms
are constrained only in energy, with the result that extremely high frequencies
are called for in the solution. The answer, in fact, is analogous to that found
in singular detection problems [2], wherein an obvious (and generally
unusable) solution is obtained for a problem that is unrealistically formulated.

Here one assumes that the time duration of the signal is much larger
than the delay between target and clutter; it is also assumed that clutter
velocity is very near the target velocity. If the clutter is concentrated at
a single point on the (T,8) plane, this becomes a classical radar resolution
problem.

The upshot of the clutter-near-target assumption is that an approxima-
tion may be made concerning the limits of the integrals Ykm(f ,8) and ka(-r,s)
defined in Equations (6.55) and (6.56). Assume that the signal and filter

functions are time limited to [-T,T]. Then

¢pm[s(t+ 7] # Oonlyif -T < 8(t+7T) < T

or (-T/8)-T st<(T/8)-T, (6.662)



o [(t/8)- 7] s 0for -7 ¢ [t/s)y-1) <7

ors(-T+7T)<st < 8(T+ 7).

Equations (6, 55) and (6. 56) thus become

b

y
Y, (T.8) = af Ao [+ rior
y

where ay =max {-T,(-T/s) - T} and by =min {T,(T/s) - 7}

and

b

X
KT8 = [ et o [t's) - 7] at
X

where a_=max {-T,8(-T + T)} and bx =min {T,8(T+7T)},
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(6. 66b)

(6.67)

(6. 68)

By Equations (6, 53) and (6. 54) it is apparent that, if p(T,s) is significantly

different from zero only for T << T,s n 1 » then little error will resuit by

making the limits ax,bx and ay,by equal to ~T,T. This is especially true

if the wm(t) are relatively smooth functions that go to zero at the endpoints

of the time interval,
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Letting

1/2 27 mt/T

ot = (1/2T) , te[-T,T) (6. 69)

the clutter-near-target assumption allows an easy caiculation of the C and D

matrices when clutter is from a limited number of separated point targets:

P(7,8) =iz,:j Pijﬁ(‘f— Ti) G(S-Sj) c (6.70)

Using the limits [-T,T ] along with the basis functions (6. 69) in the integrals

(6. 67) and (6. 68):

-J2r mT/T Sin2r (m/s - k)

X (T:8) =e 2nm/8 - 1) (6.71)
__j2rms7/T 8in [27(ms - k)]
Y [(T.8)=e = Pl (6.72)
Using (6.70-72) and (6. 53-54), the elements of C and D are:
2 . =
%=X Py% T %m o278y Tyfm = /T
i,} m,n
Sin(27(ms, - k)] Sin2n(ns, - ¢)
] . 1 (6.73)
21r(msj - k) 21r(nsj - 1) |
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_ * =j2n 1 (m-n)/T
dkl, = Zj (pij/sj) mzn bmbn e i

]

Sin [21r(m/sj-k)] Sin21r(n/s‘,i -2)

21r(m/sj - k) ) 21r(n/8j - 1) (€.74)
Now suppose that
A*=[0,0,"',0,1,0,"°,0] (6. 75)

where the nonzero element is the Mth element, The integer M is chosen
as follows:

Write the s j as rational numbers, (This may be done with arbitra-
rily small error because '"between any two distinct real numbers there is a
rational and an irrational' [46]. Thus in a finite interval, no matter how
small, around the true value of s, there is at least one rational number,)

)|
Then

81 =71 /¥y 8y =¥V "y 8y = Von /TN B

where vy UL are integers. Let M be defined as the product:

* 072N

M= YYoY3 *YoN ° (6.77)
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With M so chosen, Ms, is an :(nteger (p,) for all s

J j )
i From this observation, with the vector A as

, j=1,..+ N, Also, M/sj
is an integer (pj) for all s

defined in (6. 75):

ckz = 12 pijsjéukbv P (6.78)
) IR |

where the §'s are Kronecker delta functions. It is obviously impossible

that ck:, # 0 unless k=4 (or, more precisely, k=¢= uj). The C matrix has

therefore been diagonalized. As a result, [C +M]-1 is also diagonalized, and

the filter vector B, obtained from Equation (6.50) and normalized to unit

energy, will have exactly the same form as A (matched filter case), i.e.,
B* = [0,0,-..,0,1,0,-+-,0] (6.79)
where the nonzero element is again the Mt'h element. But with B so defined,

)
dk‘ & (pij/sj) 60,"69;‘ (6.80)

so that D and [D + M]n1 are also diagonalized, The result, using (6. 52)

and normalizing to unit energy, is just the original signal vector described
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by (6.75). This is then an optimal signal for doppler resolution. In fact, if
none of the sj's are equal to one, then none of the Vj's or pj's are equal to

M. It then follows that MM = dMM =0, so that

SIR = A* [C + A1)~} A(E_/E ) = 2E /N _, (6.81)

which is the maximum possible SIR (i.e., the signal-to-noise ratio for a
matched signal-filter pair whose ambiguity function is orthogonal to clutter),
Assuming Es = Ec =1, the maximum SIR is 1/A, In other words, the signal-
filter pair described by (6.75), (6.77), and (6. 79) is a global optimum to the
SIR maximization problem,

Although the above solution is the best possible one, it will now be
shown that the scolution is not unique. Consider the d.c. component of
{(pm(t)} in Equation (6.69), i.e., the m = 0 component. If this component
is included in the set of basis functions, then one can choose an initial signal

vector:
A*=[1,0,0,---,0,0] (6.82)

where the first component corresponds to m = 0, Such a choice makes
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Zpl” k09,0 (6.83)

Once again, [C + )\I]-l is a diagonal matrix, so that B = A. Then

dk 2 (p j ko 2.0 (6.84)

so that [D + )\I]-1 is diagonalized and A is regenerated. For this case
(WithE =E =1):
8 c

SIR =A*[c+a) A =v/Q + ) < 1A, (6. 85)

izj %1y
Thus a second solution to the problem exists, namely a rectangular pulse,
This solution gives a local maximum of the SIR but not a global one. *
Because the first answer results in an absolute maximum of the SIR,
it is evident that the signal-filter arabiguity function is orthogonal to the
clutter pdf (and that the signal and filter functions are identical). That is,
the algorithm demonstrates the way in which the zeroes of the signal auto-

ambiguity function can be made coincident with clutter points. It would seem

* The two special results derived here, i.e., a narrowband signal and a
rectangular pulse, should be compared with equation (3. 166) and the
corollary to (3. 81), respectively.
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that the frequency f . = M/T must be accurately implemented in order that

M
the SIR actually assume its th-sretical optimum, Notice also that for a
given value of M, the frequency may be made smaller by using a larger
time duration. Unfortunately, time duration is generally limited by the
supposition that the echo not overlap the transmission. (The system
should avoid simultaneous transmission and reception so that the strong
outgoing signal does not ""swamp out" the comparatively weak echo.) By
the argument associated with (3, 166), one sees that as fM becomes
arbitrarily large, the resulting quasi-monochromatic signal can attain any
prespecified doppler resolution capability, This limiting solution is then
less sensitive to an accurate frequency implementation, provided the
frequency is so large that the ambiguity function has no support in s beyond
a prespecified interval around s = 1. In this sense, the solution is analo-
gous to the perfect performance attained for the singular detection problem,
wherein the problem formulation is not sufficiently realistic. (Realism in
this case would dictate a constraint on maximum signal frequency.)

The above example accentuates certain characteristics of the
iteration process for SIR maximization:

1. The solution is dependent upon the basis functions from which

it is constructed. For clutter points very near the target in velocity,

the value of M could be exceedingly large. The Mth component might
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then be omitted for practical reasons, thus forcing the procedure to
find a less impressive but more tenable optimum signal-filter pair.
Although M can be a large frequency, the frequencics required to
realize the abrupt endpoint jumps for m=0 are even larger. 71'o
avoid such discontinuities (as well as a d.c. component) the d.c.
term might also be left out of the basis, again forcing the procedure
to a different result. From these remarks one sees that many
physical system constraints can be included in the optimization

procedure by restricting the available choice of basis components.
2. Solutions are not necessarily unique.
3. The procedure is not only prejudiced by the choice of basis,

but also by the initial (starting) vector.

6,6 Computer Algorithm for General Solutions.

To formulate the problem for computer solutions, the first step is
to superpose a grid onto the (T,8) plane., Samples of the clutter probability
density function will be taken at each intersection of grid lines (hereafter
called grid points). The grid lines should be spaced at small enough intervals
to allow a reasonably accurate reconstruction of both the clutter pdf and the

ambiguity function from their sampled values at the grid points.
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At each grid point (‘ri,sj), the values of ka(‘ri,sj) and Ymk(-ri,sj)

are determined. In reality only one of these quantities need be calculated,

since by a change of variables

b, by
X (T:8)= - f q;l:(t) o, (t/8-T)dt = } f o B+ 1] o (¢ at’
x y
= sYk:n(‘r,s) . (6. 86)

(The limits ax,bx,ay,by are given in conjunction with Equations 6. 67 and
6.68.)

Notice that X ,S

mk(‘!’i ) and Ymk('r i ,sj) are not functions of the

)
clutter pdf but depend only upon the basis functions and grid that are used

for the problem. The ka's or Yk

since they can be used with a wide variety of specific clutter distributions

m's should then be computed and stored,

to find optimal signal-filter pairs.
For a particular clutter pdf evaluated at the grid points as p(t {8 j) .
and a given starting vector A, one can now form the elements of the C

matrix from (6.53):

C

*
_jof sjp(-ri,sj)Ymk(-ri,sj)YM('z-i,sj)d-ridsj

(6.87)

_ *
ke Z am?n
m,n

where the integrations are performed as summations over the grid points

‘ri and s, (e.g. , by using Simpson's rule).

}
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Notice that the integral in brackets in (6. 87) is independent of A.

This means that it need only be calculated once and stored:
= *
szmn_ -jl[sjp(‘ri,sj) Ymk('ri,sj)YM('ri,sj)d'ridsj
*x
= -I [(l/sj)p(ri,sj)ka(Ti,sj)xm(‘ri,sj)d‘ridsj . (6.88)
Then
. * p
ckz = mz aman k gmn * (6. 89)

Similarly, by (6. 86):

j[(l/sj)p(r 8K (T,18) X7, 8,) d s,

!Jsjp(-r B Vi (1,8 Y (.8 pdrds,

_
ank:,

= an‘k (6.90)
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so that

dkz: Z bmbr"l anzk . (6.91)
m,nh

Having found C, one can use standard computer subroutines to form
the inverse of C+AI. Then the filter vector B is found from (6.50). After
B is normalized to unit energy, D is calculated by using (6.91). Again,
[D+M]-1 is found and a new energy-normalized vector A is determined
from (6.52), At this point one computes the SIR by using (6.57). The
procedure is then repeated.

Succeeding values of the SIR are compared, and when the difference
between them is less than a certain small number, then it is concluded
that future iterations will result in very little further improvement; a
locally optimum signal-filter pair has been found.

Finally, it is desirable to have a measure, other than the SIR itself,
as to how well the cross-ambiguity function of the best signal-filter pair
is avoiding high-clutter regions on the 7,s plane. To this end, one can
easily generate and print out samples of the ambiguity function taken at the

grid points:
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(2)

Xvu

RV "
(1.8 =8, [v(t)u [5,t+ 7)ot

_ 1/2 * *
_n:['n sj bman ‘om(t)"’n[sj(“ -,-i)]dt

=Y b_at s'l/zx (T.,8.). (6.92)
mn j mn i j
m,n
The flow charts corresponding to the above procedure are given ip
Appendix D. Some specific results are given below.

Note that all examples use the orthonormal components:

2

@ () =(2/T)1 Sin(nrt/T), te[0,T] . (6.93)

Real functions were chosen because complex basis functions will
generally yield complex waveforms, If these waveforms were modulating
a high carrier frequency, one could justify an argument that the real parts
of the waveforms are approximately the Hilbert transforms of the imaginary
parts, and the real parts of the results would thus have meaning in terms of
the Gabor complex representation, But for truly wide-band signals there is
no guarantee that the optimal waveforms will be Analytic. There is then
no justification for taking the real parts of the results and calling them the

"answers", This pitfall is easily avoided by using real basis functions,
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Sines (instead of cosines) were chosen so that there would ke no
discontinuities at the endpoints of the interval [O,T]. These components
are also optimally smooth in the sense that they minimize mean square

bandwidth under an energy constraint [25,56].

6.7 Significance of the SIR Algorithm,

The SIR algorithm may be considered an alternate approach to a
classical problem of radar signal design. Once one Lecomes convinced
that the ambiguity function describes the capabilities of a radar/sonar
system, it is natural to simply specify the ambiguity function that best
suits one's needs. But the designer is then faced with the questions:

(1) Is this idealized function that he has specified really an ambiguity
function, and if so, (2) To what signal-filter pair does it correspond?
Much recent research effort has been directed towardsﬁfinding an answer
to these questions for the narrow~band case [46,47 ,48]. The first question
has also been answered for the wide-band case (3.150).

The SIR optimization procedure attempts to solve the same problem
without the necessity of answering t}lxe above questions. When the designer
decides upon the ambiguity function he wants, he need only put a high

clutter probability in those parts of the ambiguity plane where his ideal
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function should be small, * As already pointed out, system constraints are
conveniently included by a realistic choice of basis functions. Given the
basis and the clutter, the algorithm systematically determines a locally
optimum signal-filter pair. If the corresponding ambiguity function is still
far different from the one he needs, the designer may consider a different
set of basis functions and a different time (or frequency) duration. The
properties of Chapter III should be of some help in making these choices,
The SIR optimization solution has implications for two-way
communication links as well as for radar. Consider, for example, binary
radio communication through (or reflected from) the ionosphere, If two
sets of basis functions are established such that one set is orthogonal to
the other, then two orthogonal signal-filter pairs can be found such that
each is optimally designed for transmission through a given channel. The
channel would be characterized by a certain probability density function of
point reflectors in time and velocity; delays and velocity distortions would
be measured relative to a predetermined transmission path, If it is decided
that transmission should occur along a specific ray traced from transmitter
to receiver, then all other possible rays connecting the terminals are to be

considered as sources of unwanted information; their associated delays and

* Some examples of this procedure will be presented in Section 6. 8,
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doppler factors (relative to the desired transmission) would define the clutter

distribution for the SIR algorithm,

6.8 Specific Results,

For a signal time limited to T = 0.1 second, five components of

the form (6.93) were used. The 10 x 10 grid sampled the ambiguity function

at equal intervals between -0,025 < T < +0,025 and 0,90 < s < 1,10, The

clutter distributions were as follows:

I.

II.

III.

Iv.

Uniform clutter on the tau axis to encourage range
resolution,

Uniform clutter on the s axis to encourage velocity
resolution,

Two~-dimensional Gaussian clutter distribution with mean
at the origin (0,1) to encourage volume clearance
(ambiguity volume small near the origin).

Uniform clutter on tau and s axes to encourage combined
range-velocity resolution,

Uniform clutter in first and third quadrants to encourage
a sharp ridge-shaped (razor blade) function near the

origin,
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The clutter distributions were designed to have almost all their
volume within the grid area. Since the grid area was only a small part of the

ambiguity plane, this led to very large clutter amplitudes and generally un-

impressive values of SIR (on the order of 1 for a maximum possible value

of 10). A notable exception occurred for clutter distribution V,

Three sets of comnponents were tried for each of the five clutter
distributions given above. In order to have reasonably small interpolation
errors, the maximum value of n in Equation (6. 93) was always less than
20:

a, n=1,5,9,13,17

b. n=3,11,15,17,18

c. n=13,14,15,16,17

For T =0.1 second, the corresponding frequencies from 6,93) are
f(n) = 5n; £(1) =5 Hz, £(18)=90 Hz. It should be remarked that the problem

is invariant to a consistent time scaling. The same results would apply

for T =1 msec, f(1) = 0.5 kHz, f(18) =9 kHz, and the 10 x 10 grid sampling
over the area -2.5 x 10 T < T < +2.5 x 10-4, 0.90 < 8 < 1,10, (The grid
width in the s-direction is unchanged by virtue of Equation 3,101.) The grid

still covers a range parameter interval equal to half the signal duration.
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The component sets a and ¢ bkoth consist of uniformly spaced
frequencies with the same maximum frequency. They were picked in order
to test the effect of different bandwidths., The component set b has a loga-
rithmic spacing (23,22,21 ,20) between succeeding values of n.

Results were found to be highly dependent upon the starting vector,
as one would expect from the example in Section 6.5.2. Therefore at least
two different starting vectors were tried for each combination of component
set (a,b,c) and clutter distribution (I-V),

Table 6.1 shows the best three SIR's obtained for a given clutter
distribution. As already remarked, these results were obtained by trying
at least two different starting vectors for each orthonormal basis and
clutter pdf. The results in the table then represent the three largest SIR's
out of at least six local maxima, Also shown are some computed moments*

of the Analytic signal associated with each optimum signal-filter pair. The

* All the quantities shown in Table 6.1 are defined in Chapter III or Appendix
A except for Woodward's T function, T, [1,p.127]:

4 2
Ty 5(1/21r)f|U(w)| dw =f |Ru(‘r)| dr.

The importance of this function is demonstrated by the proofs of the
volume theorems in Chapter III.
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figures referenced in the table depict the best signal and filter found for a
given clutter distribution, as well as the associated cross-ambiguity
function magnitude, |xl§‘2,)('r,s)| , sampled at the grid points,

From Table 6.1 and Figures 6.3, 6.9, 6.13 (and 6.15) it is noted
that some of the locally optimum waveforms for situations Ia, Illa, IVa
(and to an extent, Va) are nearly identical. The resulting waveforms
resemble three pulses, one pulse at the center of the time interval and the
other two at the ends. Since the grid only covers a quarter of the possible
tau-duration of the autocorrelation function, it is apparent that the end-
pulses, which will produce large sidelobes on a more complete map of the
ambiguity function, have no effect on the grid region. So for range
resolution, volume clearance, and combined range-velocity resolution, it
is reasonable to concentrate signal energy near the endpoints of the interval
(for the grid as defined above). This effect is also seen (to a less extreme
degree) in Figures 6.7 and 6.11,

The comparatively large values of a(l) and n2 associated with

u

clutter distribution II (velocity resolution) are in accord with the origin

(1)

o imply a sharp peak

properties of Chapter III. Large values of n2 and «o
of the ambiguity function at 8 = 1 on the 7 = 0 axis,
Relatively large values of 12 associated with clutter distribution I

(tau resolution) are also to be expected from second derivative properties

at the origin,
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The choice of basis components was somewhat unfortunate in that,
for all situations, 7\2 >> n2. Therefore the Az -term swamps out nz
considerations in the determination of average curvature at the origin.

It was hoped that average curvature would be accentuated as an important
parameter in both volume clearance (III) and combined range-velocity
resolution (IV). But because Az >> nz, the results are generally incon-
clusive so far as curvature is concerned,

Lincoln remarked that "this is a world of compensation'. If the
component choice makes 7\2 >> n2’ then perhaps there are situations for
which such a choice is advantageous, Clutter distribution V would appeax
to be just such a case. The two excellent SIR's obtained for V are both
characterized by comparatively small values of nz, 0‘1(11)’ and aflz).
Indeed, the type of ambiguity function encouraged by distribution V would

have the ridge or razor blade shape associated with the doppler tolerant

bat-like signals derived in Chapter IV. The waveforms of Chapter IV were

derived by minimizing 172. It is to be expected, then, that basis components

which make n2 comparatively small apriori will foster the sort of waveform

that gives large SIR's for clutter of type V.

Another strong basis dependence is observed for the tilt parameter,

213

v. In the only two situations for which component set c gives a comparatively

large SIR (clutter pdf II), the associated values of y are on the order of
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half the values that appear in the rest of Table 6.1. That the small value of
v is associated with component set rather than clutter density becomes
apparent when one considers the first case for clutter pdf II, where basis

b is used and y is large.

It would seem that SIR maximization with clutter distribution I
(velocity resolution) leads to unusually large carrier frequencies. This
correspondence may be explained in terms of the narrowband theory of
Section 3.11; such an explanation would require that the centralized band-
width }‘2 be comparatively small (as well as W, large). This requirement
is indeed satisfied, as shown in Table 6.1,

Also associated with distribution II are exceptionally large values
of TW and th. It is possible that these parameters are large by virtue of
the standard uncertainty relation (Appendix C). On the other hand, the signals

are so non-Gaussian in character that there is probably considerable

difference beiween the product D2

¢ Di and its lower bound, For the wave-

forms under consideration, then, it does not necessarily follow that smaller

bandwidth implies larger timewidth. The large values of Tw and D:'

associated with wideband velocity resolution therefore may imply a property

of |x$)| that has yet to be derived. A large required value of Tw is

especially interesting, since T, has been associated with range resolution

w
and volume reduction, for which it should generally be made small.



6.9 Clutter Suppression for Distributed Targets.

If a distributed target's impulse response c(t) has been estimated

(or is known apriori), it is possible to design a signal which provides 4

(6)

maximum response (of Xuu

) to the target echo while minimizing response
to spurious point reflectors. If r(t) is the received waveform, then it is

here assumed that the processor forms the function

2
|x(6)(0,1,ch,c)|2 - |f{fu(x)ch(t-x)dx} rXtdt|”. (6.94)

uu

If r(t) = j u(y)ch(t-y) dy, then the correlator response should be
large. But if r(t) = u(t), the echo from a spurious point target, then
correlator output should be kept small, Notice that the clutter is here
considered to be coincident with the target in both range and velocity - an

impossible problem for the point target SIR technique,

If r(t) = fu(y)ch(t-y) dy, then

6 2
|"fm)<°’1’°h'°>l = | [ [ j ux)e, (t-x)dx] [ ]u(y)ch(t-ymy]*dtf

* 2
= |fu(x) [fu(y)Rch(x-y) dy] dx|“. (6. 95)



If r(t) =u(t), then

(6) 2 S
X @ Lego0 " = | fueo [f e e-yray) ax|”. (6.96)
The unit energy signal that makes (6.95) large while constraining (6. 96) to

be zero can be found by using the constrained Schwarz inequality discussed

in Section 6. 3. 3. The solution is:
u(t) =k [fu(x)Rch(t-x) dx-A fu(x)ch(t- x) dx]
=k Uu(x) [Rch(t- x)-Ach(t-x)']dxi (6.97)

where the multiplier A is found by substitution of (6.97) into (6.96) when

(6.96) equals zero.
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CHAPTER VII.

CONCLUSIONS AND SUGGESTICNS FOR FURTHER STUDY

7.1 Summary of Results.

The foregoing chapters have attempted to extend and generalize radar/
sonar signal design to the point where meaningful theoretical solutions can be
obtained for many nonideal, but realistic, situations,

The signal: Using a simple constant velocity point target model, previous
restrictions upon signal bandwidth and carrier frequency were removed by con-
sidering the wideband ambiguity function, If the signal has very short time
duration, target trajectory during reflection can be approximated by a straight
line. But, by using trajectory diagrams and taking account of acceleration, it
became possible to consider signals of comparatively long duration without the
necessity of assuming constant velccities, The set of admissible signals for
accurate radar-sonar analysis was thus increased considerably, in both per-
missible bandwidth and time duration,

The target: Target motion was generalized to nonlinear trajectories.
This was done by trajectory diagram construction techniques and by Kelly-
Wishner theory. Very high velocities can also be dealt with. Finally, the
point taryet idealization was generalized to distributed targets, This was done
partly out of necessity, for it would appear that manv wideband signals are
more sensitive to target configuration than their narrowband counterparts,

It was found that, unlike point turget reflections, the power and energy
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of distributed target eck:,cs are dependent upon the transmitted signal. Impli-
cations of this finding for clutter discrimination were examined., It was shown
that a priori knowledge of general target shape, when available, can be very
useful in the design of efficient radar-sonar systems.

The environment: For narrowband signals and point targets, waveform
design for optimal signal to interference ratio in a cluttered environment has
already become well established. Here the procedure was generalized to
include wideband signals and distributed targets. Implications of the SIR
algorithm for two-way wideband communication systems were briefly discussed.

Results of special interest are the properties of the wideband point target
ambiguity function (Chapter III), the inscribed diamond construction cechnique
for finding doppler tolerant (and, occasionally, distributioun tolerant) waveforms
(Chapters IV and V), the derivation of signals very similar to bat cruising pulses
as optimally doppler (and acceleration) tolerant waveforms (Chapter IV and V),
the distributed target ambiguity function and its maximization by signals that
provide maximum returned energy (Chapter V), the derivation of waveforms
for distribution tolerancc and target description ability (Chapter V), and the
SIR method of wideband waveform design for optimal resoluticn properties

(Chapter VY1),

7.2 General Conclusions.

When the narrowband assumption is discarded in favor of a more

general approach to radar-sonar signal design, the existing theory is affected



in the following ways:

1. A generalized point target ambiguity function must be
defined.
2. Targets which once could be represented as point reflectors

must now be considered to be distributed 1n range and velocity.
A corresponding ambiguity function must be defined.

3. Narrowband algorithms for clutter suppression must be

revamped for wideband analysis.

4, Trajectory diagrams, which do not depend upon bandwidth

assumptions, remain applicable,

In this dissertation, contributions have been made to each of the four
basic ideas given above. Undoubtedly, further analytical refinements await
discovery, making the ideas (and their associated methods) even more potent,
The advances that have been made, however, render the four approaches
(point target wideband ambiguity function, distributed target ambiguity function,
clutter suppression algorithm, and trajectory diagram) appiicable to many
practical probleme, ’

Whenever the methods overlap, i.e., whenever more than one approach
can be applied to the same problem, significant insight has been acquired.

The doppler tolerance problem, for example, allowed straightforward appli-
cation of the point target wideband ambiguity function, the trajectory diagram,

and, to a lesser exten!, the clutter suppression algorithm. Each of the metliods

provided insight into the others; the result of each method was consistent with
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that of the others. Finally, the less obvious (but important) relevance of the
doppler tolerance property to the distributed target ambiguity function was
revealed.

A similar overlapping of methods with consequent gain in understanding
occurred for the distribution tolerance problem,

The generalized signal design methods were found to reinforce and
interpret each other 's conclusions, but the final evidence for the utility of a
given result often came from nature, in the form of bat signals., Waveform
synthesis techniques may thus be used to enhance man's understanding of animal
echolocation, Conversely, a knowledge of animal sonar transmissions (and the
conditions under which they are used) can shed new light on theoretical methods
and results. A fifth approach (of some historical interest [ 57 ] ) to wideband

signal design is thus the study and interpretation of animal sonar signals. *

7.3 Suggestions for Further Study.

There are many opportunities for further study implicit in this disser-
taticn, Among them:
1. Application of the integral transformation between wideband
and narrowband ambiguity functions. A great deal is already

known about the narrowband ambiguity function. All this

* v _..in problems of analysis the best method is that which sets out from the
results and arrives at the premises.' - Bertrand Russell [60] .
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information should now (theoretically) be available to wideband
designers by virtue of the integral transformation in Chapter
III. A good start would be a cheap computer algorithm to
realize the transformation.

The theoretical derivation of more animal echolocation signals.
Porpoises, seals, and penguins are possibilities. More experi-
mental data should be converted into the type of pictures taken
by J. J. G. McCue and D. A, Cahlander [22 ] ; such beautifully
encapsulated representations of animal signals are quite rare,
as far as the author can tell. The widespread practice of
representing animal sounds via sonagrams may be useful for
some applications, but without the more exact plots of period
and amplitude versus time, the author might not have realized
that some bats use doppler tolerant waveforms.

Extension of the SIR algorithm to many grid points and many
orthonormal components via the fast Fourier transform.

Also needed is a procedure for picking an optimal starting
vector to avoid unnecessary iterations and to arrive at a
globally maximum SIR. At the very least, one should have

a measure of distance between starting vectors from the view-
point of the algorithm, so that significantly different starting
ve ctors can be tried in attempts to find the best signal -filter

pair. Alsc needed is a measure of the sensitivity of the SIR
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to the slight imperfections that will result when a system is
actually built.

Application of wideband radar theory to two-way communication
links. The SIR algorithm, particularly, seems to be a viable
method of signal-filter design for two-way multipath channels.

An interesting representation of a multipath channel would consist
of a stochastically time varying distributed target whose changing
interference patterns result in the well-known fading phenomenon.
There is a whole class of optimization problems to be solved in
connection with high resolution. One should maximize average
curvature at the origin or n2 )\2 product of the wideband ambi-
guity function. It is important to find meaningful constraints

for this problem, such as the Df constraint in the doppler
tolerance discussion. The SIR results suggest that Tw is an
important parameter for both range and velocity resolution.
Pulse-train results would be highly relevant.

The implications of the narrowtime signal property discussed

in Chapter TI should be further investigated. Mathematically,
the property suggests a dependence upon time origin, a suspicious
implication from a physical standpoint. (As evidenced by
Equation (3.127), the narrowband ambiguity function is unaffected

by a shift of time origin.)
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The significance of unmatched signal -filter pairs.
Let v(t) = u(t) - n (t), where u(t) is the optimal signal and v(t)
the optimal filter of an SIR maximization procedure. Correlating

both sides with sl/z us(t+ 7)] gives

@) @)

2
xO e, 0=xB .0 -xB 79 . (7.1)

uu nu

(2

{2
Conjecture: 7 (t) 1s such that xn;)l (7,8 ) makes xw’('r , 8)

(2)

(T, 8) | cannot be small,
uu

@)

nu

small over those regions where | x

For a specific set of basis vectors, a study of x' ' (7, s) for

various 7 (t)'s and clutter distributions may therefore reveal

(2)
pairs of points (Tl' sl), ('r2 , s2) such that Xyu

@),

uu 2

(T s])and

1’
X , 82) cannot simultaneously be made small. This con-
cept, if sufficiently generalized, could lead to a wideband version
of Woodward 's narrowband ;/olume invariance. That is, one
could have reciprocal areas on the ambiguity plane such that,

if the ambiguity height over one given area is small, then the
height over another area must be large; ""pushing down' the
ambiguity function in one particular place may result in its
"popping up'' somewhere else. From the SIR results (especially
for clutter distribution V, Section 6.8) one may conject that

such reciprocal areas (if they exist) are frequently to be found

in adjacent quadrants of the (7, s) plane,



. % -

224

New correlator implementations.

a. The Oppenheim filter

For s =1, equation (5.40) may be written:
= * o .2
(T) =R (D*R_(T) (7.2)

R
u*v, u*v

Another property of the autocorrelation function Ruu('r) is that

if ¢ is a scalar constant, then
cu(ct) = ¢ Ruu(c T) (7.3)

since

f cu(ct)cu*[c(t+7)ldt=c Ruu(cv') .

Equation (7.2 may be written in the more general forn:

¢ Llutyovity] = ¢ [u)yd o¢ [vity ? (7.4)

where the transformation ¢ corresponds to autocorrelation and

the operation o' is convolution,

If the transformation ¢ u(ct) is described by the symbol ':",
i.e.,

c:u(t) = cu(ct) (7.5)
then by (7.3),

¢ [caut)) =c:o [ut)d . (7.6)
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A. V. Oppenheim has pointed out that if the general equations
(7.4) and (7.6) hold true, then the operation ¢ may be inter-
preted as an algebraically linear transformation betwecn vector
spaces (58] . The autocorrelation transformation is then a

form of generalized linear filtering (as one would suspect from
its matched-filter implementation). But according to Oppenheim,
a transformation ¢ that satisfies (7.4) and (7.6) can be imple-
mented as a cascade of three systems (see [58] for details).
This idea suggests the possibility that a new type of correlation
receiver can be built, The implementation should be studied

in detail.

b, Phase-locked oscillator for simulation of the doppler effect.
If a matched filter receiver is not used, one must simulate

hypothetical (time-scaled) versions of the received signal for
correlation processing. There are two well known methods for
time scaling a waveform: (1) A time delay that varies linearly
with time (as suggested by the trajectory diagram, which is a
representation of the effects of a time variable delay) and (2)
optical systems which translate time to spatial coordinates (as
conceived in Section 4.2 of this dissertation or by Papoulis [36],

p. 203 et seq).



A third process for synthesizing doppler compressed
versions of a transmitted waveform is particularly applicable
to the two signal types discussed in Chapter V (Table 5.1). This
method multiplies or divides instantaneous frequency by using a

phase-locked loop (Figure 7.1).

PHASE — | ouTPUT
ERROR
SENCOR VOLTAGE
INPUT (¢) CONTROLLED -
OSCILLATOR

Figure 7.1. Phase-Locked Loop.

For an instantaneous period that vax"ies in any of the ways
shown in Figure 7, 2, frequency multiplication (or division) using
the phase-locked oscillator (or just a frequency divider) will
produce an output signal that correlates strongly with a doppler

scaled version of the original (constant amplitude) waveform,

T (t)
@) «n\/ N\ e
®) / (e)/\ __\
()
) \ /—
0 /0
-t

Figure 7,2, Instantaneous Period Modulations for
Detection with Phase-Locked Loop.



227

It remains to be seen whether the phase-locked loop process can

be applied to the time scaling of a more general class of signals,

Clutter as distributed target:

It was remarked in Chapter VI that the uncorrelated-point-
target model of clutter may be somewhat unrealistic. It would
seem to this author that for some situations one mighi. do well
to model clutter as a distributed target with some_stochastic
parameters. The surface of the sea on a windy day, for example,
may be regarded as a random distribution of moving uncorrelated
point scatterers., But the eye is quick to pick out a pattern of
waves and troughs moving in a comparatively non-random fashion,
Hence the ocean surface may sometimes be viewed as a moving
distributed target (or, rather, clutter). Such a thought should
no longer seem analytically intractable in view of the ideas of
Chapter V.

A given environment might then consist of some determin-
istic distributed clutter configurations, combined with a group
of uncorrelated point targets. The problem 1s still the same:
Maximize the response of the receiver to the target echo while

keeping the response to clutter and noise as small as possible,



In this situation it is possible to eliminate some of the
clutter response before it ever reaches the correlator. This
is because the clutter-as-distributed-target gives rise to an
echo whose possible components are known a priori.

If qi(t) are the impulse responses of the various possible
deterministic distributed clutter arrays present in an environ-
ment, then the echo from the target's surroundings is partially

given as
rq(t) = ? P, O, fu(x) qi(t-x)dx (6.94)

where oi is a function of the relative strength or cross-section
of each environmenta! component. pi is a likelihood factor

('i/J pi = 1) indicaling the existence of a priori knowledge concern-
ing the probability that a given q, is really present. (In sonar,
for example, a strong, constant wind at k knots might over-
whelmingly favor the clutter configuration with impulse response
qk(t)). For radar, the time of day correlates with some iono-
spheric effects in a known fashion. Such factors would then bhe
used to determine the a priori probabilities of the different

possible deterministic components of clutter response.)

The basic idea is to set up a predetector which is much

the same as a standard M-ary detection scheme [2]. This
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predetector would test for the presence and strength of various
possible clutter distributions. Having detected the presence
and estimated the strength of the clutter distributions, tnc
detector would then generate a signal composed of these same
distribution responses, weighted according to their strengths.
This signal would be subtracted from the (delaved) incoming
signal. The result snould approximate wbe varget respouse (it
present) added to white noise and the response irom uncorrelated
point targets. The SIR algorithm would then be used to design
an appropriate correlating filter. A diagram of this scheme
is shown in Figure 7, 3.

In Figure 7. 3, the input is correlated with pussila.
clutter returns via matched filtering through systems w.th
impulse responses ri(-t). After squaring, threshold detectors
indicate whether a particular ri(t) is indeed present. (As in
ordinary M-ary detection, the ith threshold is a function of pi,
the a priori probability of receiving ri(t).) Once it is decided
that a clutter return is present, its strength is indic.,ted by how
much it exceeds the threshold. A pulse of the proper strength is
then generated, and this pulse causes an output ri(t) from another
linear filter. The sum of the clutter returns ? ri(t) is then
subtracted from the delayed input. The resulting signal is,

ideally, free of all Interference save that of uncorrclated noise
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and uncorrelated point target clutter. The final matched filter
v(t) is designed to maximize the conventionally defined SIR.

It is interesting to compare Figure 7.3 with a detector
that discriminates against colored noise, illustrated in Figure

4.39 of Van Trees ' book [2] .

Optimal contirol formujation.

The Rhinolophus signals discussed in Scctien 5.7 have
some interesting implications for radar-sonar system design.,
Suppose that two or more different signals are transmitted in
tandem, one immediately following the other, and that the pro-
cessor consists of matched filters for each of the transmitted
signals. For a given total energy (and time duration) ti:c ¢nergy
weighting (or time sharing) of each signal will be diciated by a
cost function which seeks to optimize the acquisition of cortain
information. The problem can thus be formulated in t+ e 3 of
optimal control theory. Indeed, a frequent result of optimal
control theory is the ""bang-bang" solution, which in this case
would cause all the energy (or transmission time) to be given
to one waveform, In other words, the bang-bang sclution is the
usual transmission of a single waveform. However, other more
uniform energy (or time) weightings may be optimal under certain

conditions.
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An immediate application of distribution describing signals.

The theory of Chapter V would seem to be of some usze for
the ultrasonic identification of objects by blind people. A device
that uses ultrasonic sonar transmissions to aid the blind is
already in existence [ 61) . L. Kay, inventor of the device
(which he calls "ultrasonic spectacles''), made the following
statement in 1966:

"The step which has yet to be taken to produce the true
ultrasonic localization may be technically difficult, hui the result
is not so difficult to visualize. .,Each object should appear to
make characteristic sounds which can be recognized. Since it
will be unlikely for two objects to produce exactly the same
sound at any one time, the observer should then be able to dis-
tinguish one from the other and therefore appreciate their r:lative
positions. In a cluttered environment it is still difficult to accept
the possibility of being able to appreciate sufficient detail from
which to reconstruct the spatial pattern. The behavior of the bat
suggests that it can do this using a similar sensing process. It
must, for example, require more than simple object detection

when catching insects among foliage. ' [62"
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APPENDIX A.

ORIGIN PROPERTIES

2 2
Consider a two-dimensional Taylor serics expansion of | X fxu) (T,8) |
around the point s=1, 7= 0:
2 2
2 2 2 2 d | X ] d | X |
IxD w12 1xB o) 4 | - +(em1)
uu uu dT o s
0,1 0,1
2 3 2| I 2 > 2 I ] 2
+1/2 | 7 +27(s-1)
> 72 dTds
0,1 0.1
9 °2| I2
+ (s-1) 5
bs 0.1
+ higher order terms. (A-1)
> 2
With ] u(tyu*(t)dt = 1 and x fm) defined as in (2.8), one has
2) 2_
| X o 0,1)| =1 and
2
g-l-};l— = f ugtyu* *(tydt + f wHturtdt . (A-2)

0,1
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In this and subsequent equations, unspecified limits of integration are taken

as (-»,o), Primes denote differentiation of a function with respect to its
- -]

2
argument, Assuming |u(t)| L = 0 and integrating by parts:

2),2 |
3%
s =0
dT )
0,1
(A-3)
alxl®
= */
38 1+ 2Re z[tu(t)u (t)dt%.
0,1
2 (- -]
Assuming t |u(t)| l =0 and integrating by parts:
-
alxt®
=0,
3s
0,1
(A-4)
2 2
x| 4 reer a2
- =2 Re { Jutyu*“(tydt } + 2| ju(t)u* (tydt|
dT™
0,1
@
Assuming that u* ‘u = 0 and integrating the first term by parts:
-®
2 2
37 Ix | > 5
———— ==2 U|u'(t)| dt - |fu(t)u*’(t)dt| ‘ (A=5a)
3T

0,1
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By invoking Parseval's theorem, this equation may be rewritten in terms of

U(w), the Fourier transform of u(t):

0 2
.Ll!%l_ ==2 ?(1/%) fw2|U(w)|2dw— [(1/27r)fw|U(w)|2dw] ;
0,1

(A-5b)

Making the definitions:
2 2 2 . =
(1/21r)f W |U(w) | dw = D = mean square bandwidth [19]
(1/2#)[ w |U(w) |2dw =00 & carrier frequency [11,12)

{A~3b) becomes

2 2
' 2 2
a)_.hul_2 - 3;, _wOi | (A-5¢)

0,1

Notice that the definition of carrier frequency only makes sense for
analytic signals, If u(t) were considered to be strictly real, it would follow
that U(w) = U*(-w), and W, would be zero by definition, On the othex hand,
if u(t) is complex and if the real and imaginary parts of u(t) are Hilbert trans-
forms of each other, then U(w) =0 for w < 6 [10,11) and w is the centroid
of the resulting one-sided spectrum. It is therefore assumed that

u(t) - a(t)exp(j@(t) ], where



a(t)cos §(t) = H [a(t)sin@(t) ] , (A-6)

the H denoting Hilbert transformation.

Returning to the evaluation of derivatives,

2 x| =4 Re ;[tu(t)u* '(t)dt% +2 Re“ t2u(t)u* "(t)dti

0,1

N 2|ftu(t)u*'(t)dt|2 .

It has already been established (in connection with equation 3. 8) that
-}

Re 3 f tu(tyu* ’ (t)dt ‘ =-1/2. Assuming that t2u(t)u* “(t)[ =0 and integrat-

ing by parts gives

fr.2 7 0 2, 2
Re lftu(t)u* (thdt} =1 ft ju’ty|"at .

Therefore

2, .2

i-%l— =—2;ft2|u'(t)|2dt- |ftu(t)u*'(t)dt|2 . (A-Ta)
Js

0,1
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Again using Parseval's theorem:

2, 2
-a--b-,f,-l— - -2 3(1/2n)jw2|U'(w)|2dw- |(1/2n)wa(w)U*'(w)dw|2 .
38
0,1
(A-Th)
Finally,
Zlx | ’
3837 =2 Re 3ftu(t)u*' /(t)dt E +2 Re;fu*(t)u'(t)dt- ftu(t)u* (t)dt i
0,1

Integrating the first term by parts gives:

2 xl” ==2 [ft fu’ (t) |2dt- Re gfu'(t)u*(t) dtftu(t)u*'(t)dt” .

38 3T
0,1
{A-Ba)
Using Parseval's theorem:
lex |2 =2 [Im 1/2 jsz(w)U*fw)dwi-(l/Zfr)f ju 2d ;
prye =- (1/2m) w|U(w) | dw
0,1
« Im 3(1/2n)fwu’(w)u*(w)dw§]. (A-8b)

(3)

it can be shown that exactly the same derivatives are obtained for Xy (T25)-



APPENDIX B,

AN INEQUALITY OF B.v.SZ.-NAGY (16,17]

Let y(t) be a function defined over (-=,«), for which the integrals

- a - K I
o= f|y| dt, K, = f|dty(t)| dt

exist for some a >0 and some p = 1. Then

max |y |

1/r _ (p-1)/pr _ 1/pr
_w<t<ms(r/2) Ja K

P

where r = 1 + a(p-1)/p; further, forb > 0,

b
o [35(E.2 ] /% 14b(e-1)/pr  b/pr
ﬂ*b 2 a p

where
(u+v)

(u+v)~
u ) v DY)

T (1+u+v)

H(u,v) = » H(u,0) = H(0,v) =1.

The inequalities are proven by using Holder's inequality.

(B-1)

(B-2)

(i - 3)

(B-4)

The relation (B~2) becomes an equality when y(t) = cypa( |dt+e |) .

where ¢ d, e are arbitrary constants (d + 0) and
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(l_t)p/(p-a) foro<sts<1
fora<p: y ()= {
pa 0 fort>1
-t
= P: = -5
fora=p ypa(t) e fortz=0 (B-5)

fora>p: y ()= (l-t)p/ (P~3) gort = 0.

The relation (B-3) is an equality when p > 1 and y(t) = cypab( |dt+e |y where
ypab(t) =u is defined by the equation (for t = 0):

1

5 ds Osusl. (B-6)

u [sa(l-sb)] Ve

ypab is monotone decreasing with time, For a > p it is always positive;
for a < p, ypab(t) =0 fort > to’ where

1
ds

t =
(o)
0 [sa(l-s )

]l/P (B~7)

Sz.-Nagy has given an example: a =b =1, p=2, In this case he claims that

cosz(t/z) foro<st<n

Yo, ,.(t) = { . (B-8)
211 0 fort>n
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The values of t are seen to satisfy (B-7). To satisfy (B-6), the function must

be the solution of the differential equation:

1/p
du b ] . (B-9)

= [ua(l-u )

tora =b=1, p=2, one sees that cosz(t/2) is indeed a solution of (B-9)
A case of interest to this dissertationis a =b =p ~ 2. For this
case (B-9) becomes:
) 2 1/2
u’ =-u(l-u") (B-10)

A solution of (B~10) is:

u(t) =Sech t . (B-11)

Since a =p, this function yields equality in (B-3) for all t > 0. Also, since p

is an even number and Secht is evenint, J Ja’ and Kp are all even in t,

a+b’
50 if equality in (B~3) holds for 0 < t < =, it must hold for -« <t < 0, i.e,,
for all t. Hence, the hyperbolic secant function for -« <t « @ ort = 0 (and
any scaled or translated version therecf) makes (B-3) an equality if a =b = p = 2,

The Sech function, incidentally, has anotlier interesting property. Like the

Graussian, it is an eigenfunction of the Fourier transform.



APPENDIX C,

THE ALPHA MOMENT

It would appear that the moment
a‘(ll) = ftz [u’ (t) |2 dt = (1/2n) [ w2 U’ (w) |2dw (C-1)

1> of some importance as a signal parameter in the design of widepand wave-
forms for radar and sonar (Chapter III). E. L. Titlebaum has thus investi-
gated some of this moment's properties, Having found these properties,
Titlebaum realized that they were the same as those of time-bandwidth
product, That is, the alpha moment has the same characteristics as the

D j th product used to express the standard uncertainty principle for a func-

tion and its Fourier transform, One might have cxpected such a result because

of the two different ways of writing the Schwarz inequality for the moment:
ftu(t)u*’(t)dt =(1/27) wa’(w)U*(w)dw . (C-2)

That 15,

(l/21x)fw2|U' [zdw~(1/2n)f iU|2dw
l(l/zn)[wU*(w\U'(w)dwlz <
(1/21r)f w2|U|2dw-(1/27r)f |U'|2dw
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or, for unit energy signals,

sau)
u

D

kl/21r)j wU*(w)U'(w)dw|2 <
D

2_ 2
w t

Tty = at) eic(t)

, then
f tn(bur’(t)dt = f ta(t)a’(t)dt - j f te '(t)az(t) dt
where [taa'dt == ftaa’dt -1, or [taa'dt =-1/2,
-« ‘hat the left side of (C-3) becomes
52

i(l,’2w)fwu*(w)u’(w)dw|2 =1/1 + [fte’(t)azm dt |

£, 0. luttevavm's results are as follows:

If u(t) has unit energy, and afln) = f t211 |u(n)(t)| 2 dt, ihen

1. U(n) z2(n- 1/2)2(1(“-1) > 1/4,
u u
. (n)
2. vy has time-frequen~v symmetry:

f ¢ ™ eyl %t = (1/2n) f WP )l Pde

(C-3)
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3. afln) is invariant under the transformation u(t) - sl

250

u(st).

The properties for a:ll) follow trivially from (C-1) to (C-4). But the generalized

properties for afln) are more difficult to derive, As already mentioned, thesc

properties also apply to the time-bandwidth product Dw

The a:ll) moment is also indicative of narrowtir.ennss ud « 31 vovi=

handedness {the implications of which are discusscd in Chapler ITI). Defining

y(t) =tu(t) ,
one finds that
2 2
3, = fblm:m

anvi

A
i

2 1
2 f"q“=ﬁ)

s that Sz. -Nagy's inequality gives:

(1) En:.x ltu(t)|]4

u 2 ‘
Dt

o

similarly, if y(w) = wU(w)/(zir)l/2

then J, =02
2 w
. (1
hz-au

(C-9)

(C-6)

(C-7)

(C-85)

(C-9)

(C-11)
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and Sz.-Nagy's inequality gives:

[max louw?*
) W J
Ou 2 o

> (C~12)

2n’ D

The quuntities on the right-hand sides of (C-8) and (C-12) are indicative of
narrowtimeness and narrowbandedness, respectively. To demonstrate this,
one can assume a band limited signail with support only on the interval

[wo- w/2, wo+W/2] , for which

2
D:') = (1/27) f w? Ju(w) 2dw < (1/2m) [m:," |wU(w)|] w

[max ImU(m)|]2
or = . > 2r/W. (C-13)
D
w
50 [max IwU(w)l]z
. w
Thus @ 2 27 W ' . (C-14)

But by the Schwarz inequality,

o [(1/21r) f w [U(w)| 2dw]2

"

A

(1/2m) f w? 'U(w)lzdw-(l/zn) f IU(w)Izdw

max 2
< (1/2r) [ " |wU(w)|] w (C-15)
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or

Imax lc..:U(m)lI2 w0 12
D, L > [——°] . (C-16)

u 2rW w

For a time-limited signal with support only on the interval [to-'r/z, to+T/ 2],

the same sort of argument shows that
2

t
a(l) 2 [-%] . (C-17)

u

If a signal has large carrier-to-bandwidth ratio (narrcwband) or large mean-
(1)

time-to-time-duration ratio (narrowtime), then @,

L
u

must be large. A large
is thus a necessary condition for a signal to be narrowbanded or narrow

in time,



APPENDIX D.

FLOW CHARTS FOR THE SIR MAXIMIZATION ALGORITHM

1, Generation and Storage of X mk( T,8).

Having defined the grid points 1-1,5j and the orthonormal components

(pn(t) , one wishes to generate and store all possible inner products at each

grid point:
min{T,s(T + 7)}
Xakl 08 = | ep® o [¢/sp- 7 ]dt
max {0,8r }
= XX(1,J,M,K) . (D-1)

In all cases considered here,

/2

o, (t) = (2/'1‘)1 sin(nwt/T) . (D-2)

For a large number of grid points and/or components, the XX(I,J,M,K) are
best generated via the fast Fourier transform. But since the examples here
are meant merely as simple prototypes, the problem was restricted to only
five basis components and a hundred grid points. The routine consists of
2500 ategrations (25 possible inner products between the five components at
each of 100 grid points)., The results were stored on 250 cards, to be used in
the main SIR optimization program with different clutter distributions. The

approximate cost of this part of the routine was $9. 00.
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2.

Main SIR Routine,

Flow Chart:

Initial SIR = 0.0, Lambda = 0,1

]

Generate initial signal vector A

1

Define the grid points tau(I) and s(J)

1

Define the clutter distribution

|

Read and store ka('rl,sj) = XX(I,

J,M,K)

&

Calculate Fll = NK,L,M,N)

1
Construct the C-matrix = C(K, L)

1
Find [C +A1] "} and B(D)

L

Normalize B(I) to unit energj

Find SIR and compare with previous SIR

]

Is new SIR = old SIR? [—NO——>

Y}S

5

l Construct D-matrm

Find [D +A1]"! and A(D)

Normalize A(I) to unit energl]

 Terminate program
(safety valve)

|1s (new SIR - old SIR) < . 005 ?}——————YES
.

Print out A,B,SIR, time

signals, ambiguity
function
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In order to graphically display the time signals, the program used
line printer routine TWOPL, written by Dr. H, Voelcker, Electrical
Engineering Department, University of Rochester, Other borrowed sub-
routines were MATEQ and SIMP, University of Rochester library programs
adapted from IBM subroutines for matrix inversion and integration,

Approximate cost for each clutter distribution: $2.00.

3. Generation of the Analytic Signal's Moments,

Flow Chart:

Read the five optimal component coefficients, A(I)

3

Generate the corresponding time function over a one-
second interval (time function = 0 for t > 0.1 sec)

1

Use a fast Fourier transform to find the Fourier
series coefficients of the repeated one-second signal

)

Double all positive frequency components and assume
that the negative frequency components do not exist

i)

Normalize energy

X

T +ke moments as required by Table 6.1

The FFT routine was written by A. Requicha, a graduate student in the
Electrical Engineering Department, University of Rochester, It is based on
an algorithm by Cooley, et al [59]. Advice on the fine points of the FFT was

obtained from L. R. Morris, Approximate cost: $0.65,
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