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ABSTRACT 

A general and convenient framework for Investigating the 
combinatorial structure of simple polytopes is given by 
a set of three axioms (proposed by G. B. Dunczlg) which 
define abstract poly topee.    These axioms are introduced 
in Section 1, and it is shown there that, combine tor ially, 
simple polytopes constitute a proper subclass of abstract 
polytopes. 

The purpose of this paper is to study the graphs and dual 
graphs of abstract polytopes (Sections 4 and 5, respectively) 
and in particular, to show that some well-known properties 
of graphs of polytopes (given in Section 3) are satisfied 
also by the graphs and dual graphs of abstract polytopes. 

Since simple polytopes constitute (combinatorially) a 
subclass of abstract polytopes, the results of Section 4 
show that some well-known properties of abstract polytopes, 
which had been previously proved using geometrical' reasoning, 
can be proved (for simple polytopes) by applying simple 
combinatoric arguments. 

/ 

/ 
/ 
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GRAPHS AND DUAL GkAPHS OF ABSTRACT POLYTOPES 

by 

IIan Adler 

INTRODUCTION 

A general and convenient framework for Investigating the combinatorial 

structure of simple polytopes is given by a set of three axioms (proposed by 

G. B. Dantzig) which define abetraot polytopes.    These axioms are introduced in 

Section 1, and it is shown there that, combinatorially, simple polytopes constitute 

a proper subclass of abstract polytopes. 

The purpose of this paper is to study the graphs and dual graphs of abstract 

polytopes (Sections 4 and 5, respectively) and in particular, to show that some 

well-known properties of graphs of polytopes (given in Section 3) are satisfied 

also by the graphs and dual graphs of abstract polytopes. 

It should be noted that since simple polytopes constitute (combinatorially) 

a subclass of abstract polytopes, the results of Section 4 show that some well- 

known properties of abstract polytopes, which had been previously proved using 

geometrical reasoning, can be proved (for simple polytopes) by applying simple 

combinetoric arguments. 

■  ■■•■ :■■■.■. .. 



1.  POLYTOPES AND ABSTRACT POLYTOPES 

Given a finite set T of symbols, a family P of subsets of T (called 

vertices) forms a d-dimensional abstraat polytope  if the following three axioms 

are satisfied: 

(i)   Every vertex of P has cardinality d . 

(11)  Any subset of d - 1 symbols of T Is either contained in no vertices 

of P or in exactly two (called neighbore  or adjacent). 

(ili) Given any pair of vertices v,v e P , there exists a sequence of vertices 

v ■ v-, ..., v "v such that 

(a) v^tV^j.!    are neighbors    (1 ■ 0,  ..., k-1) 

(b) {v 0 v) C Vj  (1-0 k)  . 

Note that If we augment    P   by including all subsets of the vertices of    P , 

then axioms (1),  (11) and (ili) (a) define a (d - 1)-dimensional pseudo-manifold 

(with no boundries). 

Let us denote   UP - {Uv  | v e P} .    Let   U    be a subset of   UP    such that 

lUJ-k.O^k^d    (|u|    denotes the cardinality of   U).    If 

P'  »{vePlucv}    is nonempty we say that    ?'    is the faoe of   P   which is 

generated by   U   and denote It by   F(P  | U)  . 

It is not difficult to verify that the family    {v - U | v c F(P  | U)}    of 

subsets obtained from    F(P  |  U)    by deleting    U    from each vertex of    F(P  | U)    is 

a (d - k)-dimensional abstract polytope.    Thus, we say that   F(P  | U)    is a (d - k)- 

dimensional face of    P .    Zero, one and  (d - 1)-dimensional faces are called, 

respectively, vertices , edges and faoeta.    Of course, the d-dlmenslonal face of    P 

is    P    itself. 

Abstract polytopes are  (combinatorially) closely related to simple polytopes. 

A polytope is a bounded nonempty intersection of a finite number of closed half 



spaces In a finite-dimensional real vector space. The faaea  of a polytope R are 

the Intersections of R with its various supporting hyperplanes. Zero, one and 

(d - l)-dimensional faces of a d-dimensional polytope R are called, respectively, 

the vertices, edges  and facets  of R . Two faces are said to be incident  if one 

contains the other. A d-dimensional polytope is simple if  each of its vertices 

is incident to exactly d edges. 

Given a d-dimensional simple polytope R with n facets, assign the symbols 

A., ..., A  to the facets of R and define P as the family of subsets of 

{A., ..., A } which satisfy: In 

(A.   , ..., A. ) e P if, and only if the facets which correspond 
I 1      d( 

to A. , ..., A   have a nonempty intersection. 
11      <! 

It can be shown (see Grilnbaum [5]) that P forms a d-dimensional abstract polytope 

which has the same face structure as R /i.e., tk.  , ..., A. \    generates a face 

of P if, and only if, the facets which correspond to A. , ..., A.  have nonempty 
11      Tt 

intersection^. Thus, to any d-dimensional simple polytope corresponds a d-dimensional 

abstract polytope with the same face structure. The converse, however, as will be 

shown in Section 4 by a counterexample (Figure 1) is not true. 



2. NOTATION AND DEFINITIONS OF GRAPHS 

A graph    G is a pair {V,E} where V Is a (finite) set of vertioea  (or 

nodes)  of G and E is a subset of the set {{v-.v»} j v. e V,i « l^jv. + v»} 

of pairs of members of V . The elements of E are called edges, 

A pair of vertices are adjaoent  or neighbors  in G if both vertices are 

contained in some edge- of E . An edge in E is adjacent  to a vertex v in V 

if It contains v . 

A graph G is j-valcnt if every vertex of G is adjacent to exactely J 

edges. 

If V' is a subset of vertices of G , Chen G - V denotes the subgraph 

of G obtained by omitting from G the vertices of V' and all the edges 

adjacent to them. 

We denote by NQCV') the set of all Vertices In G which are not in V* but 

are adjacent to at least one vertex of V* . 

A path in   G with endpointo   v,v is a sequence of vertices v • v0 v.-v 

such that v.,v.+. (i • 0, ..., k-1) are neighbors. If v ■> v and all other 

vertices are distinct, then the path is called a simple oyole.    Two paths in G 

are disjoint If no vertex (except possibly the endpolnts) Is contained in both 

paths. 

A graph G is oomeoted provided chat for every pair of vertices of G there 

exists a path In G having these vertices as endpolnts. A graph G Is k-oormeoted 

provided that for every pair of vertices of G there exists k pairwise disjoint 

paths in G having these vertices as endpolnts (obviously G Is connected If, 

and only if, G Is  1-connected). 

In the next sections we shall use the following theorem which gives necessary 

and sufficient conditions for a d-connectedness of a graph. 



Theorem 2.1; (Whitney [7]) 

A graph G with at least k + 1 vertices is k-connected if, and only If, 

every disconnecting set W of vertices of G has cardinality of at least k 

(W is a diBoomeoting set  of G if G - W is not donnected). 



3. GRAPHS OF POLYTOPE8 

Th« graph   G(R) of a potytcp»   R is defined «• eh« graph vhotc vartic«« 

and adgaa correspond 1-1 to tha vartieaa and edgaa of R . To alaplify 

notation «a ahall idantify tha vartieaa and edgaa of R with the verticea and 

edgaa of C(R) . 

In thif aaction we preaant four «ell-known propertiea of grapha of polytopaa. 

Thaore» 3«1; (Stainlts, aee Crunbadn (5)) 

A graph G ia a graph of aoae thrae-dlnenaional poly tope if, and only if, 

6 ia planar and three-connected. 

Theorem 3.2: 

Let R be a polytope, R* be a face of R and v , v be verticea in 

R - R* . There exiata a path joining v and v in C(R) auch that no vertex 

of thia path ia contained in 1' . 

Theorem 3.2 alnply atatae that the graph, forned by removing all the verticea 

of aone face from the graph of a poly tope, ie connected. The proof is e aimpla 

exerciae and la left to the reader. 

Theorem 3.3; (Balinaki [3]) 

The graph of every d-dimantlonal polytope ia d-connected. 

Theorem 3.A; (Bernett [4]) 

Let R be a d-dimenaional polytope and let v0 be an arbitrary vertex of 

R . There exiata d verticea v., ..., v. in N
G/a\(

v(J •nd dlajolnt patha 

p^. in G(R) - v-d "1, ..., d - 1,J -14 1, ..., d) auch that p.. haa 

v. , v. a« Ita endpolnta. 

s. 



A. GRAPHS OP ABSTRACT POLYTOPES 

The graph   C(P) of an abetraot polytope   P is defined as the graph whose 

vsrticss and edges correspond 1-1 to the vertices and edges of P . To 

sinpllfy notation vs shall identify the vertices and edges of P with the vertices 

and edges of G(P) . 

We can now restate the third axiom of abstract polytopes using the notion of 

graphs. This alternative axiom will bo very useful In the sequel. 

Lemma 4.1;  (Adler [1]) 

The third axiom of abstract polytope is satisfied if, and only if, the graph 

of every face of P is connected. 

We shall show now that the Stelnitz conditions (Theorem 3.1) are not 

necessarily satisfied by three-dimensional abstract polytopes (and hence, not 

to every abstract polytope corresponds a simple polytope with the same face 

structure). 

Consider the three-dimensional abstract polytope P  whose graph is given 

in Figure 1. 

i"2* 2    6 {A3,AA,A6} 

2*^5*^6      tA«,A, tA-} 

IA« »AjjA«) — (A. (A.,A|.} 15 6 "  ' ^I»^A»^*' 

iAnlAj ,A,} 

{A^,A2,A^} 

FIGURE 1 



Obnerve that 6(P ) 1« the trail-known Peterson graph which is nonplener. 

However, there exists « sst of necessary and sufficient conditions for a graph 

to be a graph of some three-dimensional abstract polytope. Obviously, these 

conditions (which sre given in Theorem 4.1) are weaker than those of Steinits. 

Theorem 4.1; (Murty I6J) 

A graph G is a graph of some three-dimensional abstract polytope with n 

facets if, and only if: 

1) G is a three-valent graph. 

2) G is a union of n simple cycles c., ..., c  where: 
x      n 

(2a) c. , c (i t J,i*J ■ 1, ..., n) have at most one common edge. 

(2b) Every edge of G belongs to exactly two cycles. 

Proof; 

(i)  Let P be a three-dimensional abstract polytope with n facets. It Is 

easy to verify that the graphs of the facets of P are simple cycles 

which satisfy (2a) and (2b) and that G(P) is three-valent. 

(li) Let G be a three-valent greph which is a union of n simple cycles 

c., ..., c  satisfying (2a) and (2b) . Assign the symbol A. to 

every vertex of c.(l ■ 1, ..., n) . Thus, to every vertex of G we 

essign a subset of three symbols out of {A., ..., A } . It is easy 

to verify that the family of all those subsets constitutes a three- 

dimensional abstract polytope with n fecets. || 

The last theorem gives rise to the interesting problem of facets ambiguity; 

namely, can a graph G be the graph of two combinatorially different three-dimensional 

abstract polytope? (Or even stringer, can a graph G be the greph of two 

three-dimensional abstract polytopes with different number of facets?) These 

questions are still unanswered. 

. 



So far we concentrated on tha dlfferancaa between alnple and abatract 

polytopes. In tha rest of the paper we »hall discuss tha alallarltlea of the 

two, that Is we shall present some properties which are satisfied by both simple 

and abatract polytopes. The next three theorems are the equivalent of Theoreme 

3.2 - 3.4 for Abstract polytopes. 

Theorem 4.2; (Adler, Dantsig and Murty (2]) 

Let P be an abstract polytope and let A c UP . If v,vcP~ P(P | A) 

(i.e., if both v and v do not contain A) then there exiats a path (called 

an K-avoiding path)  Joining v and v in G(P) such that no vertex of that 

path belongs to F(P | A) . 

The proof of the equivalence of Theorem 3.2 for abstract polytopea «as firat 

presented by Adler, Dantzig and Murty [2]. Here we give a somewhat simpler proof. 

Proof; 

Let P be a d-dimensional abstract polytope. 

(a) d <, 1 : the proof is trivial. 

(b) d ■ 2 ; by axiom (ii), G(P) forms a simple cycle «hose edges 

correspond to the facets of P . Obviously, removing an edge from G(P) 

cannot disconnect G(P) . 

(c) d > 3 : let P* - P(P | A) and let v , v e P - P* . By axiom (iii) 

there exists a sequence of adjacent vertices v ■ v0, ..., v. ■ v . 

By axiom (11) if v.e P' then there exists a unique vertex v. such 

that v. is a neighbor of v. and v. ^ P1 . Let 

'v1    v1 i  P» 

"i -J .      (1-1 k) . 

vi    vi c ^ 

■ 
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(Note that the   u.    need not be distinct.)    Since    ju. (1 u
i+il ^d - 2 

(1 ■ 1,  ...» k)  t {u. 0 u.  .}    generates an   m   dimensional face of   P   with 

m < 2  ,  thus there exists, by (a) - (b), an A-avoiding path   p.    on 
1 k 

P(P  |   [u. 11 u.  .})    Joining   u.    and   ui+1(i "1»  •••» k)  .    Hence   p ■   U   p. 

is an A-avoidlng path In   P   Joining   v    to   v .   11 

Corollary; 

l^Jt    P   be an abstract polytope and    P*    be a face of   P    then   G(P) - P* 

is connected. 

Theorem A.3; 

Let   P   be a d-dimcnsional abstract polytope.    The graph   G(P)   of   P    is 

d-connected. 

Proof; 

For d <, 2 the proof is trivial. Let d >, 3 and assume the theorem is true 

for d - 1 . Let V* be a minimal disconnecting set of vertices of G(P) and 

let v0 e V* . Since V is minimal there exists at least two vertices 

v. , v. in N
G/p\(

vo) which are disconnected in G(P) - V . Moreover, since 

d >. 3 , v. , v. are contained in some facet P* of P . But P* is a 

(d-l)-dlmenslonal abstract polytope, hence by the induction assumption and 
* 

Theorem 2.1 

IV fl P'| >, d - 1 . 

By axiom (ii), every vertex of P* has an adjacent vertex in P - P* and 

by the corollary to Theorem 4.2 the graph of P - P* is connected. Thus, since 

V* is a disconnecting set of G(P) , 

V n {P. - P') M . 
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From the last two expressions we obtain that 

|V'| >d 

which, by Theorem 2.1, completes the proof. || 

Theorem A.4; 

Let F be a d-dimenslonal abstract polytope and let v0 be an arbitrary 

vertex of P and v., ...» v. its adjacent vertices. There exist disjoint 

paths p . in CO') "  v0(i ■ 1, ..., d-l;J e i + 1, ..., d) such that p.. has 

v. , v. UH ltd cndpoliits. 

Proof; 

The proof is trivial for    d ^ 2 .    Let   d >, 3   and assume the theorem   holds 

for   d - 1 .   Let   v.   be an arbitrary vertex of   P   with neighbor«   v, v. . 

Since   v., .«., v.    are contained in some facet   P*    of   P , there exist (by 

the induction assumption) disjoint paths   p.. (2<>l<>d-l,i + l<>j<>d)    in 

Gi?%)    such that   p..    has   v.   , v.   as its endpoints.    Since   v,   , v.(j ■ 2 d) 

are adjacent to   vo » Q< " F(p  MVQU v. (I v.})    is a two-dimensional face of   P . 

Let   p.. (j - 2,  ...» d)    be a path from   v.    to   v.    in   6(Q.)   which does not 

contain   v0 .   Then,   p..    (except the endpoint   v.) is contained in   P - P'    and 

the only vertex which is contained in both   p..    and   PikÜtk " 2,  ...» d;j f k) 

is   v,  .    Hence   PIJ(1 a 1» •••• d-l;i ^ 1 <. j <. d)    are the required paths.  || 
• 

An attempt was made to generalise Theorem 4.1 to higher dimensions. The 

following conjecture was stated (and erroneously proved) by Nurty [6]. 

Conjecture; 

A graph 6 is a graph of some d-dlmensional abstract polytope if, and 

only if: 



12 

1) G is a d-valent graph. 

2} G Is a union of n simple cycles c., •••» e  where: 

(2a) c. , c (1 ^ J,t|j "1, ..., n) have at most one common edge. 

(2b) Every edge of G belongs to exactly d-1 cycles. 

It is rather easy to show the necessity of those conditions, by considering 

the graphs of all the two-dimensional faces of a given d-dimensional polytopes. 

However, these conditions are not sufficient. The graph displayed in Figure 2 

satisfied the conditions for d ■ 4 , but it is not a four-connected graph; hence 

by Theorem 4.3 it cannot be the graph of any four-dimensional abstract polytope. 

FIGURE 2 



13 

The graph In Figure 2 is the union of the following 24 cycles. 

c1  - {4,10,13,18,12,9,4} c2 - {6,11,16,18,12,8,6} c3 - {7.11,16,17,12,9,7} 

c4 - {5,10,14,17,12,8,5} c5 - {5,10,13,15,11,7,5} c6 - {4,10,14,15,11,6,4} 

c7 - {4,6,2,3,9,4} c8 - {4,1,2,7,9,4} c9 - {1,4,6,8,3,1} c10 - {1,5,7,9,3,1} 

c11 - {5,7,2,3,8,5} c12 - {1,2,6,8,5,1} c13 » {3,8,12,9,3} 

c1A «■ {2,6,11,7,2} c15 - {1,4,10,5,1} c16 - {13,15,16,18,13} 

c17 - {13,14,17,18,13} cl8 - {15,16,17,14,15} c19 - {1,2,3,1} 

c20 - {13,14,15,13} c21 - {16,17,18,16} c22 - {12,17,18,12} 

c23 - {11,15,16,11} c24 - {10,13,14,10} . 

This graph is not four-connected because the removal of vertices 10, 11 and 12 

disconnects the graph. 



14 

j 

5. DUAL GRAPHS OF ABSTRACT POLYTOPES 

Let P be an abstract polytope. The dual graph   D(P) of P la a graph 

whose set of nodes has a one to one correspondence to the set (of symbols) UP ; 

and an edge connects two nodes of D(P) If, and only If, the pair of symbols 

corresponding to these nodes are contained in some vertex of P . If v c P , we 

say that the set of nodes which corresponds to v is a faoet of D(P) . 

A similar definition applies to ordinary polytopes (and in particular to 

simple polytopes). The dual graph   D(R) of a simple polytope R is a graph whose 

set of nodes has a one to one correspondence to the facets of R , where an edge 

connects two nodes of D(R) if, and only if, the two facets corresponding to these 

nodes have nonempty intersection. 

Given any polytope R , there exists a polytope with the same dimension 

(called a dual polytope)    whose graph is isomorphic to D(R) (see GrUnbaum [5]). 

Hence, all properties which are satisfied by graphs of polytopes are also satisfied 

by dual graphs of polytopes. In this section, we show that the same holds for 

abstract polytopes, i.e., that the three properties which are shown to be satisfied 

by graphs of abstract polytopes (Theorems 4.2-4.4) arc also satisfied by dual 

graphs of abstract polytopes. 

Theorem 5.1; 

Let P be a d-dimensional abstract polytope and let v be an arbitrary 

vertex of P . If k,k e UP - v then there exists a path from A to Ä in 

D(P) - v . 

Proof; 

For d ^ 2 the proof is trivial. Let d >, 3 , by Theorem 4.3 G(P) is 

d-connected and hence there exists a path v., .... v_ in G(P) such that 
u      m 
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(a) A C v0 . A C vB . 

(b) vi ^ V (I - 0 ■) . 

(e) At mout one of the vertices of that path is a neighbor of v . 

He shall now find a path from A to Ä In D(P) - v by applying the 

following procedure. 

Step 1» 

1: - k: ■ 0 ; AQ! ■ A (x: ■ y means : let x be equal to y) . 

Step 2; 

If A. £ v. go to Step 5. 

Step 3; 

If A c v. then A. ..: - Ä ; terminate. 

Step 4: 

1: ■ 1 + 1 ; go to Step 2. 

Step 5; 

Find a symbol in v., which is different from A. end which is not 

contained in, v and denote it by A... ; k: ■ k + 1 ; go to Step 2. 

By axiom (11) and the choice of vn, ..., v  this procedure can be executed um 

and it terminates after a finite number of iterations, say   t .    Moreover, the 

procedure produces a sequence   A ■ A.,   ..., A   ■ A   of nodes In   D(P)    such that 

A-.A.  .    are adjacent in   D(P)    and   A. fl v - 0 (1 ■ 0 l-l)  . || 

Theorem 5.2; 

The dual graph of every d-dimensional abstract polytope   P    is d-connected. 

■ 
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Proofs 

The proof is similar to Chat of Theorem 5.1. Let v be a subset of any 

d - 1 symbols of UP (assume d >. 3, since for d <, 2 the proof is trivial). 

Given A,A c UP - v , apply the same procedure as in the proof of Theorem 5.1. 

The only difference is the choice of the path vn, ..., v  in G(P) — replace 
u     m 

(b) and (c) by: 

(b') v  does not contain v(l ■ 0 m) . 

Since by axiom (11) at most two vertices of P contains v , and since, by 

Theorem 4.3 G(P) is d-connected, tl ore exists a path vn, ..., v  in G(P) 
u     m 

which satisfies (a) and (b*). Similarly to the proof of Theorem 5.1 the procedure 

produces a sequence A ■ AQt  ..., A - A of nodes of D(P) such that A.^A. . 

are adjacent in D(P) and A. 0 v - 0 (1 - 0, ...» A-l) .|J 

Theorem 5.3; 

Let P be a d-dlmenslonal abstract polytope and let A0 be an arbitrary 

symbol of UP . There exists d nodes A^, ...( A. in N
D/p\(A0) and disjoint 

paths pi. in D(P) - A0 (1 - 1 d-1 ; J - 1+1, ..., d) such that p.. has 

A. , A  as its endpolnts. 

Proof: 

For d < 2 the proof is trivial. Suppose d > 3 , let v - {A., ..., A. .} 

be a vertex of P which contains A« . By the definition of 0(P) , A. ,A.  shares 

a common edge in D(P) (J j* k;J,k - 1, ...f d-1) . 

Let v be a vertex of P adjacent to v such that A. C v .  (By axiom (11) 

such vertex exists.) Without loss of generality we can assume that 

v - {A0, ..., Ad_2,Ad} . Thus Ad Is adjacent to A1 (1 - 1, ..., d-2) in D(P) . 
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To complete the proof we have to show the existence of s path Joining A. . 

and A. in D(P) which does not contain any node of {A0 
Ad_2^ * Theorems 

5.2 and 2.1 assure the existence of such a path.|| 
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