ORC 71-26
SEPTEMBER 1971

GRAPHS AND DUAL GRAPHS OF
ABSTRACT POLYTOPES

by
ILAN ADLER

AD732435

OPERATIONS
- RESEARCH

CENTER 5?%??]
COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA - BERKELEY

| 22
Y \




GRAPIIS AND DUAL GRAPHS OF ABSTRACT POLYTOPES

by

1lan Adler
Department of Industrial Engineering
and Operations Research
University of California, Berkeley

SEPTEMBER 1971 ORC 71-26

This rescarch has been supported by the Office of Naval Research under
Contract N00014-69-A-0200-1010 with the University of California.
Reproduction in whole or in part is permitted for any purpose of the
United States Govermment.,



Unclassified

Secunty Classification

DOCUMENT CONTROL DATA.R&D

Scearity clasxitication of title, body of whntract and sndexing annotation aust be entered when the uverall report s clusnified)

1 OKIGINANING ACTIVLITY (Courparate authur) 28, HKEFORYT SECUKITY CLASSIFICATION

Unclassified
University of California, Berkeley

2b. GROUP

4 HEPORY TITLE

GRAPHS AND DUAL GRAPHS OF ABSTRACT POLYTOPES

4 OFSCRIPTIVE NOTES (Type of repert and, inclusive dates)
Research Report

. AU THOAIS) (Firsl name, Mmi

1lan Adler

Jo REOGOKT UaTE 78, YOTAL 0. OF PAGES ?h. ¥O. OF HEFS

September 1971 18 7
S0, CONTRACY OR GNAN . 98, ORIGINATON'S HEPORT NUMBE RIS

N00014-69-A-0200-1010
5. #RO,ZC 1 NO. ORC 71-26

NR 047 033

& OTHER REFPORT NOIS) (, [ may be sosigned
Research Proj. No.: RR 003 07 01 16 Sopecty

[

This document has been approved for public release and sale; its distribution is
unlimited.

" W [T 1] ] v

MLITARY ACTIVITY

None Mathematical Sciences Division
Chief of Naval Research

Department of the N
~Arlington, mm’ﬁur

SEE ABSTRACT.
DD /%1473 t(race 1) Unclassified
S/N 0101-807-6811 e ] ansification




Unclassified

Secutity Classification

td

KEY WORDS

“*—_1\
LiNK A LiNk B LiINK ¢
ROLE wY ROLE wY HOLE wT

D

Graphs
Dual Graphs
Polytopes

Abstract Polytopes

iwovss 1473 (BACK)

SN C101.807.6821

T W S——

Unclassified

Security Classification Ae31409

|
I
i
i
|



ABSTRACT

A general and conveaient framework for investigating the
combinatorial structure of simple polytopes is given by
a set of three axioms (proposed by G. B, Duntzig) which
define abstract polytopes. These axioms are introduced
in _Section 1, and it is shown there that, combinatorially,
simple polytopes constitute a proper subclass of abstract

polytopes.

The purpose of this paper is to study the graphs and dual
graphs of abstract polytopes (Sections 4 and 5, respectively)
and in particular, to show that some well-known properties
of graphs of polytopes (given in Section 3) are satisficd
also by the graphs and dual graphs of abstract polytopes.

Since simple polytopes constitute (combinatorially) a
subclass of abstract polytopes, the results of Section 4
shov that some well-known properties of abstract polytopes,
vhich had been previously proved using geometrical reasoning,
can be proved (for simple polytopes) by applying simple
combinatoric arguments.



GRAPHS AND DUAL GRAPHS OF ABSTRACT POLYTOPES
by

Ilan Adler

INTRODUCTION

A general and convenient framework for investigating the combinatorial
structure of simple polytopes is gi§en by a set of three axioms (proposed by
G. B. Dantzig) which define abstract polytopes. Thesc axioms are introduced in
Section 1, and it is shown there that, combinatorially, simple polytopes constitute
a proper subclass of abstract polytopes.

The purpose of this paper is to study the graphs and dual graphs of abstract
polytopes (Sections 4 and 5, respectively) and in particular, to show that some
well-known properties of graphs of polytopes (given in Section 3) are satisfied
also by the graphs and dual graphs of abstract polytopes.

It should be noted that since simple polytopes constitute (combinatorially)
a subclass of abstract polytopes, the results of Section 4 show that some well-
known properties of abstract polytopes, which had been previously proved using
geometrical reasoning, can be proved (for simple polytopes) by applying simple

combinatoric arguments.



1. POLYTOPES AND ABSTRACT POLYTOPES

Given a finite set T of symbols, a family P of subsets of T (called
vertices) forms a d-dimensional abstract polytope 1if the following three axioms

are satisfied:

(i) Every vertex of P has cardinality d .

(11) Any subset of d - 1 symbols of T is either contained in no vertices
of P or in exactly two (called neighbore or adjacent).

(1i1) Given any pair of vertices v,veP , there exists a sequence of vertices

VE Ve ooy vk-; such that

(a) ViVie are neighbors (i = 0, ..., k=1)

®) {vn Q}Cvi (1 =0, ..., k) .

Note that if we augment P by including all subsets of the vertices of P ,
then axioms (i), (ii) and (1ii)(a) define a (d - l)-~dimensional pseudo-manifold
(with no boundries).

Let us denote UP = {Uv | v ¢ P} . Let U be a subset of UP such that
Ul =k , 0 <k <d (U] denotes the cardinality of U). If
P' = {veP | UcCv]} 4is nonempty we say that P' dis the face of P which is
generated by U and denote it by F(P | U) .

It is not difficult to verify that the family {v-U|v c F(P | U)} of
subsets obtained from F(P | U) by deleting U from each vertex of F(P | U) 1is
a (d - k)-dimensional abstract polytope. Thus, we say that F(P | U) is a (d ~ k)-
dimensional face of P . Zero, one and (d - 1)-dimensional faces are called,
respectively, vertices, edges and facets., Of courue; the d-dimensional face of P
is P itself.

Abstract polytopes are (combinatorially) closely related to simple polytopes.

A polytope is a bounded nonempty intersection of a finite number of closed half



spaces in a finite-dimensional real vector space. The faces of a polytope R are
the intersections of R with its various supporting hyperplanes. Zero, one and
(d - 1)-dimensional faces of a d-dimensional polytope R are called, respectively,
the vertices, edges and facets of R . Two faces are said to be incident if one
contains the other. A d-dimensional polytope is simple 1if each of its vertices
is incident to exactly d edges.

Given a d-dimensional simple polytope R with n facets, assign the symbols
Al, eeTeTs An to the facets of R and define P as the family of subsets of

{A,, «.., A_} which satisfy:
l n

A, oeey A
{11 14

to A ] ICO’A
11 id

} ¢ P 1if, and only if the facets which correspond

have a nonempty intersection.

It can be shown (see Griinbaum [5)) that P forms a d-dimensional abstract polytope

which has the same face structure as R (i.e., {Ai N oHSh Ai } generates a face
1 k

of P i1if, and only if, the facets which correspond to A1 » sesy Ai have nonempty
1 k

intersectiou). Thus, to any d-dimensional simple polytope corresponds a d-dimensional
abstract polytope with the same face structure. The converse, however, as will be

shown in Section 4 by a counterexample (Figure 1) is not true.



2. NOTATION AND DEFINITIONS OF GRAPHS

A graph G 1is a pair {V,E} where V 1is a (finite) set of vertices (or
nodes) of G and E 1is a subset of the set {{vl,vz} ] vy € Vol = 1,25v) ' vz)
of pairs of members of V . The elements of E are called edges.

A pair of vertices are adjacent or neighbors in G 1if both vertices are
contained in some edge ' of E . An edge in E 1s adjacent to a vertex v in V
if it contains v .

A graph G is j-valent if every vertex of G 1is adjacent to exactely }
edges.,

If V' 1is a subset of vertices of G , then G - V' denotes the subgraph
of G obtained by omitting from G the vertices of V' and all the edges
adjacent to them.

We denote by NG(V') the set of all vertices in G which are not in V' but
are adjacent to at least one vertex of V' ,

A path in G with endpoints v,v 1is a sequence of vertices v = Vgr oo vk-G
such that VerVis (1 =0, ...y k~1) are neighbors., If v = v and all other
vertices are distinct, then the path is called a simple cycle. Two paths in G
are disjoint if no vertex (except possibly the endpoints) is contained in both
paths.

A graph G is connected provided that for every pair of vertices of G there
exists a path in G having these vertices as endpoints. A graph G is k-conmected
provided that for every pair of vertices of G there exists k pairwise disjoint
paths in G having these vertices as endpoints (obviously G 1is connected if,
and only i1f, G is l-connected).

In the next sections we shall usc the following theorem which gives necessary

and sufficient conditions for a d-connectedness of a graph.



Theorem 2.1: (Whitney [7])

A graph G with at least k + 1 vertices is k-conmected if, and only if,
every disconnecting set W of vertices of G has cardinality of at least k

(W 1is a discomnecting set of G i1if G - W 418 not donnected).



3. GRAPHS OF POLYTOPES

The graph G(R) of a polytope R is defined as the graph whose vertices
and edges correspond 1 - 1 to the vertices and edges of R . To simplify
notation we shall identify the vertices and edges of R with the vertices and
edges of G(R) .

In thie section we present four well-known properties of graphs of polytopes.

Theorem 3.1: (Steinitz, see Crunbalam [S5])

A graph G 41s a graph of some three-dimensional polytope if, and ouly if,

G 1is planar and three-connected.

Theorea 3.2:

Let R be a polytops, R' be s face of R and v , v be vertices in
R=-R'. There exists a path joining v and v in G(R) such that no vertex
of this path is contained in R' .

Theorem 3.2 simply states that the graph, formed by removing all the vertices
of some face from the graph of a polytope, is connected. The proof is a simple

exercise and is left to the reader.

Theorem 3.3: (Balinski [3])

The graph of every d-dimensional polytope is d-connected.

Theorem 3.4: (Barnett [4))

Let R be a d-dimensional polytope and let Yo be an arbitrary vertex of

R « There exists d vertices Vio cees \r“l in "G(R

in G(R) - vo(i =1, ceepd=1,J=4+1, ..., d) such that Pi.‘l has

)(vo) and disjoint paths

Ve VJ as its endpoints.

e P - Sl e



4. GRAPIIS OF ABSTRACT POLYTOPES

The graph G(P) of an abstract polytope P 4s defined as thc graph whose
vertices and edges corrcspond 1 - 1 to the vertices and edges of P', To
simplify notation we shall identify the vertices and edges of P with the vertices
and edges of C(P) .

We can now restate the third axiom of abstract polytopes using the notion of

graphs., This alternative axiom will be very useful in the sequel.

Lemma 4.1: (Adler (1))

The third axiom of abstract polytope is satisfied if, and only if, the graph

of every face of P is connected.

We shall show now that the Steinitz conditions (Theorem 3.1) are not
necessarily satisfied by three-dimensional abstract polytopes (and hence, not
to every abstract polytope corresponds a simple polytope with the same face
structure).

Consider the three-dimensional abstract polytope P* whose graph is given

in Figure 1.

{Ay,44,A {A30A,,A)
N /
(Ayshs,Ac) (A3.A4.As}
{A)1A50A5) — {A),A4,A, } {A)AguAgl — {A},A,,A.)
{Az. Ag)
{Al.Az,A )

FIGURE 1



®
Observe that G(P ) 4is the well-known Peterson graph which is nonplanar.
However, there exists a set of necessary and sufficient conditions for a graph
to be a graph of some three-dimensional abltrpct polytope. Obviously, these

conditions (which are given in Theorem 4.1) are weaker than those of Steinitz.
Theorem 4.1: (Murty [6]))
A graph G 1is a graph of some three-dimensional abstract polytope with n
facets if, and only if:
1) G 4is a three-valent graph.
2) G 1is a union of n simple cycles Cys ooy where:
(2a) Cy s cj(i $ 3,4, =1, ..., n) have at most one common edge.

(2b) Every edge of G belongs to exactly two cycles.

Proof :

(1) Let P be a three-dimensional abstract polytope with n facets. It is
eagsy to verify that the graphs of the facets of P are simple cycles !
which satisfy (2a) and (2b) and that G(P) is three-valent.

(11) Let G be a three-valent graph which is a union of n simple cycles

Cys sees € satisfying (2a) and (2b) . Assign the symbol Ai to

every vertex of ci(i =1, ..., n) . Thus, to every vertex of G we
assign a subset of three symbols out of {Al. 6do 0 An} . It is easy
to verify that the family of all those subsets constitutes a three-

dimensionel abstract polytope with n facets. ||

The last theorem gives rise to the interesting problem of facets ambiguity;
namely, can a graph G be the graph of two combinatorially different three-dimensional
abstract polytope? (Or even str.nger, can a graph G be the g;aph of two
three-dimensional abstract polytopes with different number of facets?) These

questions are still unanswered.




So far we concentrated on the differences between simple and abstract
polytopes. In the rest of the paper we shall discuss the similarities of the
two, that is we shall present some properties which are satisfied by both simple
and abstract polytopes. The next three theorems are the equivalent of Theorems

3.2 = 3,4 for abstract polytopes.

Theorem 4.2: (Adler, Dantzig and Murty [2])

Let P be an abstract polytope and le¢ Ac¢UP ., If v,veP ~ P(g | A)
(i.e., 1f both v and v do not contain A) then there exists a path (called
an A-avoiding path) joining v and v in G(P) such that no vertex of that
path belongs to F(P | A) .

The proof of the equivalence of Theorem 3.2 for abstract polytopes was first

presented by Adler, Dantzig and Murty [2). Here we give a somewhat simpler proof.

Proof:

‘Let P be a d~dimensional abstract polytope.

the proof is trivial.

(a) d<1

(b) d=2 by axiom (ii), G(P) forms a simple cycle whose edges

correspond to the facets of P . Obviously, removing an edge from G(P)
cannot disconnect G(P) .

() d>3:let P=F(P|A) andlet v,VeP =P, Byaxiom (iid)
there exists a sequence of adjacent vertices v = Vo vesy Vp = v.
By axiom (ii) if v, € P' then there exists a unique vertex .;1 such

that ;1 1s & naighbor of v, and ;1 £P' . Let

L
v, v, £ P
ui- . (1-1. seey k) (]

]
1 vi e P

<)
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(Note that the u, need not be distinct.) Since |u, Nw, .| 2d =2

(L=1, ..., k), {u1 n u1+1} generates an m dimensional face of P with

m < 2, thus there exists, by (a) - (b), an A-avoiding path p; on
k

1+1}) joining u, and ui+1(1 =1, .evy k) . Hence p = ;:1 Py

is an A-avoiding path in P Jjoining v to v. ||

F(P | {u, N u

Corollary:
let P be an abstract polytope and P' be a face of P then G(P) - P'

is counccted,

Theorem 4.3:

Let P be a d-dimensional abstract polytope. The graph G(P) of P {is

d=-connected,

Proof:

For d < 2 the proof is trivial. Let d > 3 and assume the theorem is true
for d - 1. Let V' be a minimal disconnecting set of vertices of G(P) and
let Vo € V! . Since V' is minimal there exists at least two vertices
v, in NG(P)(VO) which are disconnected in G(P) - V' . .H;rcover. since
d>3,v,, v, arecontained in some facet P' of P . But P' isa
(d-l)-dimens?onal abstract polytope, hence by the induction assuwption and

Theorem 2.1
viap|>d-1.,

By axiom (ii), every vertex of P' has an adjacent vertex in P - P' and
by the corollary to Theorem 4.2 the graph of P - P' 1s connected. Thus, since

V' 1is a disconnecting set of G(P) ,

vin{p-Plée.
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From the last two expressions we obtain that
v'] 2 q
which, by Theorem 2.1, completes the proof. ||

Theorem 4.4

Let P be a d-dimensional abstract polytope and let Yo be an arbitrary
vertex of P and Vis sees Vg its adjacent vertices. There exist disjoint
paths Pij in G(pP) - vo(i =1, cesyd=33 =1 +1, ..., d) such that pij has

Vi vJ us Lts endpoiuts.

Proof:

The proof is trivial for d <2, Let d >3 and assume the theorem holds
for d - 1. Let Yo be an arbitrary vertex of P with neighbors Vi sees Vg o
Since Vas seey Vy are contained in somc facet P' of P , there exist (by
the induction assumption) disjoint paths Pyy (2<i<d-1,1+1¢< .<_.d) in
G(P') such that Py has v, , vj as its endpoints. Since v o vj(j = 2...... d)
are adjacent to Vo » Qj = F(P | {voll vlll vj}) is a two-dimensional face of P .
Let plj(j =2, ceepy d) be a path from vy to v

J
contain v, . Then, plj (except the endpoint vj) is contained in P - P' and

in G(Qj) vhich does not

the only vertex which is contained in both Py and Plk(j’k ® 2, ceep d3J ¥ k)

is vy . Hence pij(i =1, ooy d-l3i+1 < § <d) are the required paths. ||

An attempt was made to generalize Theorem 4.1 to higher dimensions. The

following conjecture was stated (and erroneously proved) by Murty [6].

Conjecture:

A graph G 4is a graph of some d-dimensional abstract polytope if, and

only if:
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1) G 418 a d-valent graph.

2) G is a union of n simple cycles Cys seen C where:

(2a) €y s cj(i ¥ J,4,J =1, ..., n) have at most one common edge.

(2b) Every edge of G belongs to exactly d-1 cycles.

It is rather easy to show the necessity of those conditions, by considering
the graphs of all the two-dimensional faces of a given d-dimensional polytopes.
However, these conditions are not sufficient. The graph displayed in Figure 2
satisfied the conditione for d = 4 , but it is not a four-connected graph; hence

by Theorem 4.3 it cannot be the graph of any four-dimensional abstract polytope.

FIGURE 2
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The graph in Figure 2 is the union of the following 24 cycles.

= {4,10,13,18,12,9,4} ¢, = {6,11,16,18,12,8,6} Cy ™ {7,11,16,17,12,9,7}

€1 2

= {5,10,13,15,11,7,5} ¢, = {4,10,14,15,11,6,4}

6

¢, = {5,10,14,17,12,8,5} cg

c, = {4,6,2,3,9,4} =« {4,1,2,7,9,4} c, = {1,4,6,8,3,1} ¢ 0" (1,5,7,9,3,1}

g 9 1

c,, = {5,7,2,3,8,5} ¢ 2 = {1,2,6,8,5,1} ¢ 3" {3,8,12,9,3}

11 1 i

L {2’6’11’7’2} [ 5 ., {1’4.10,5’1} c 6 - {13’15’16|18’13}

1 1

= {13,14,17,18,13} c g " {15,16,17,14,15} ¢ 9 " {1,2,3,1}

1 1

= {13,14,15,13} Cop ™ {16,17,18,16} Chp ™ (12,17,18,12}

= {11,15,16,11} ¢ 4 " {10,13,14,10} .

€23 2

This graph is not four-connected because the removal of vertices 10, 11 and 12

disconnects the graph.
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5. DUAL GRAPHS OF ABSTRACT POLYTOPES

Let P be an abstract polytope. The dual graph D(P) of P is a graph
whose set of nodes has a one to one correspondence to the set (of symbols) UP ;
and an edge connects two nodes of D(P) 1if, and only if, the pair of symbols
corresponding to these nodes are contained in some vertex of P . If veP , we
say that the set of nodes which corresponds to v 1is a facet of D(P) .

A similar definition applies to ordinary polytopes (and in particular to
simple polytopes). The dual graph D(R) of a simple polytope R is a graph whose
set of nodes has a one to one correspondence to the facets of R , where an edge
connects two nodes of D(R) 1if, and only if, the two facets corresponding to these
nodes have nonempty intersection.

Given any polytope R , there exists a polytope with the same dimension
(called a dual polytope) whose graph is isomorphic to D(R) (see Grinbaum [5]).
Hence, all properties which are satisfied by graphs of polytopes are also satisfied
by dual graphs of polytopes. In this section, we show that the same holds for
abstract polytopes, i.e., that ﬁhe three properties which are shown to be satisfied
by graphs of abstract polytopes (Theorems 4.2-4.4) are also satisfied by dual

graphs of abstract polytopes.

Theorem 5.1:

Let P be a d-dimensional abstract polytope and let v be an arbitrary
vertex of P, If A,A e UP -v then there exists a path from A to A in

D(P) - v .

Proof:

For d <2 the proof is trivial. Let d > 3 , by Theorem 4.3 G(P) is

d-connected and hence therc exists a path Vor ceer Vg in G(P) such that



(a) ACvo .ACV. .
(b) vifv 120, cccp m)

(c) At most one of the vertices of that path is a neighbor of v .

We shall now find a path from A ¢to A in D(P) - v by applying the

following procedure.

Step 1:

iz-k:-O;Aoz-A(x:-y means : let x be equal to y) .

1f Ak¢ v, 8o to Step S.

Step 3:

1f AC v, then A : = A ; terminate.
Step 4:

i: = { + 1 ; go to Step 2.
Step 5:

-1 which is different from Ak and which is not

contained in v and denote it by Ak+1 s kimk+ 1 ; go to Step 2.

Find a symbol in v

By axiom (i1) and the choice of Vor tt0s Vg this procedure can be executed
and 1t terminates after a finite number of iterations, say £ . Moreover, the

procedure produces a scquence A = AO’ veey Ay = A of nodes in D(P) such that

L

AjWA,, are adjacent in D(P) and A, Nv =9 (1 =0, ..., £-1) Al

Theorem 5.2:

The dual graph of every d-dimensional abstract polytope P 1is d-connected.

15
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Proof:

The proof is similar to that of Theorem 5.1. Let v be a subset of any
d -1 symbols of UP (assume d > 3, since for d < 2 the proof is trivial).
Given A,A ¢ UP - v , apply the same procedure as in the proof of Theorem 5.1,
The only difference is the choice of the path vo. veey Vo in G(P) -- replace

(b) and (c) by:

(b') v, does not contain v(i = 0, ..., m) .

i

Since by axiom (ii) at most two vertices of P contains v , and since, by
Theorem 4,3 G(P) 4s d-connected, t! °re exists a path Vor teer Vo in G(P)
which satisfies (a) and (b'). Similarly to the proof of Theorem 5.1 the procedure
produces a sequence A = AO’ I Az = A of nodes of D(P) such qhat Ai’Ai+l

are adjacent in D(P) and Aill ve @ (1 =0, .o., 2-1) .ll

Theorem 5.3:

Let P be a d-dimensional abstract polytope and let AO be an arbitrary
symbol of UP . There exists d nodes Al. esey Ad in ND(P)(AO) and disjoint
paths pi.1 in D(P) - Ao (1=1, ..., d=1 ; j = 141, ..., d) such that pij has

A A, as its endpoints.

1'%

Proof:

For d <2 the proof is trivial. Suppose d > 3 , let v-“W'”’%d}
be a vertex of P which contains Ao . By the definition of D(P) , Aj’Ak shares
a common edge in D(P) (J ¥ kij,k =1, ..., d=1) .

Let v be a vertex of P adjacent to v such that AO‘; v . (By axiom (i1)
such vertex exists.) Without loss of generality we can assume that

v = {Agr ovvy Ad-Z’Ad}-' Thus A, 1is adjacent to A, (L =1, ..., d=2) in D(P) .

N

e B

o
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To complete the proof we have to show the existence of a path joining Aa-l

and Aa

5.2 and 2.1 assure the existence of such a path.]]

in D(P) which does not contain any node of (Ao, e o) Aa_z} + Theorems

S
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