PREPARATION OF ANALYTICALLY PURE MONOBASIC COPPER SALICYLATE

BY

DANIEL R. SATRIANA

OCTOBER 1971

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

Distribution Statement A:
Approved for public release;
distribution is unlimited.
The findings in this report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.
Technical Memorandum 2023

PREPARATION OF ANALYTICALLY PURE MONOBASIC COPPER SALICYLATE

By

Daniel R. Satriana

October 1971

Approved for public release: distribution unlimited.

DA Project: 1M262302A211
AMCMS Code: 5222.11.58500

Propellants Division
Feltman Research Laboratories
Picatinny Arsenal
Dover, New Jersey
The citation in this report of the trade names of commercially available products does not constitute official indorsement or approval of the use of such products.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions</td>
<td>1</td>
</tr>
<tr>
<td>Recommendations</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>2</td>
</tr>
<tr>
<td>Experimental Procedures</td>
<td>4</td>
</tr>
<tr>
<td>Table 1</td>
<td>6</td>
</tr>
<tr>
<td>Figures 1 - 27</td>
<td>8-22</td>
</tr>
<tr>
<td>Distribution List</td>
<td>23</td>
</tr>
</tbody>
</table>
ABSTRACT

Preparation of analytically pure monobasic copper salicylate by two distinct synthetic routes and characterization of the products by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis is described.

CONCLUSIONS

Analytically pure monobasic copper salicylate can be synthesized in excellent yield by reacting basic copper carbonate and salicylic acid in a 1 to 2.2 molar ratio. The pure monobasic salt can also be prepared by reacting copper hydroxide and salicylic acid in a 1 to 1 molar ratio. However, the yield, in this case, is comparatively low. Characterization of the product can be accomplished by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and elemental analysis for copper, carbon and hydrogen.

RECOMMENDATIONS

1. The following three structural formulas are possible forms of the monobasic copper salt:

 I
 II
 III

Since the exact configuration of the salt has never been determined, it is recommended that further thermal and X-ray spectroscopic studies be conducted to resolve the presence of the hydrate form shown in formula II.

2. Evaluation of these salts in propellant formulations is also recommended.

3. Further investigation of the reaction of copper hydroxide and salicylic acid should be undertaken to improve the yield.
INTRODUCTION

A propellant composition containing a ballistic modifier composed of a mixture of dibasic lead beta resorcylate and monobasic copper salicylate exuded beta resorcylic acid when stored for extended periods of time. In addition to this exudation problem, inconsistent ballistics were encountered. Consequently, it was requested that methods be developed for preparing reproducibly pure salts of lead beta resorcylate and copper salicylate. As a result of this investigation, optimum conditions for synthesizing pure monobasic and dibasic lead beta resorcylate salts were developed. In an effort to complete the objective, this report relates only to the synthesis and characterization of monobasic copper salicylate.

RESULTS AND DISCUSSION

Two types of copper salicylates have been reported in the literature; the monobasic and dibasic salts. Only two direct methods of preparation of the monobasic salt have been reported; the treatment of hot solutions of salicylic acid with equimolar quantities of copper carbonate and the fusion of copper oxide with salicylic acid. The commercial method of manufacture, however, has not been reported in the literature.

The British Explosive Research and Development Establishment has recently investigated the synthesis of monobasic copper salicylate. The route to the basic salt explored was the reaction between copper sulfate, made basic by the addition of alkali, and a molar equivalent of sodium salicylate. Very careful control is required to give reproducible material, and the particular phase obtained depends not only on the temperature at which the reaction is carried out but also on the relative ratios of the reactants and their mixing.

In the initial stages of our investigation, only one approach was

1. Picatinny Arsenal Technical Memorandum 2021, dated October 1971
3. Italian Patent 611,678 (1960)
considered; the reaction of basic copper carbonate and salicylic acid. Several experiments were conducted in an effort to determine optimum conditions. The various procedures tried and their products are compared in Table 1. This table also contrasts the commercial products of National Lead Company and Shepherd Product with the salts prepared in the laboratory at Picatinny. Excellent yield and purity can be obtained by reacting basic copper salicylate and salicylic acid in a 1 to 2.2 molar ratio. The reaction can be conducted in either water or ethyl alcohol, at room temperature or 50° to 60°C. Less foaming, however, occurs when aqueous ethanol is used in the reaction. This could be important in large scale preparation since processing operations may be hampered by excessive foaming.

Purity of the products was determined by analyzing the mixture for copper, carbon and hydrogen. These results indicate that analytically pure monobasic salicylate can be prepared by the method described.

The monobasic salt was also synthesized, from a completely different approach, by reacting copper hydroxide and salicylic acid in a 1 to 1 molar ratio. Although the yield was low (37.5%), purity based on the elemental analysis corresponded to the calculated values. Reaction conditions and experimental results are shown in Table 1 (Sample 71-1).

The various salts prepared in the laboratory were also characterized by X-ray diffraction and infrared spectroscopy. The spectra are shown in Figures 1-24.

Examination of the National Lead Company product shows that the major intensity peaks occur at the following 2θ angles; 9.2, 17.9, 22.4, and 29.4. In contrast, the major peaks for the Shepherd product occur at 5.9, 17.0, 17.9, 24.8 and 25.8. Comparison of the several spectra showed that most of the salts are similar to the National Lead Company product. Only Samples 75-1 and 76-1 resemble the Shepherd product.

Differences in the infrared spectra of the various salts are less evident. There is, however, in the region of characteristic OH group frequency (3600-3500 cm⁻¹), a broadening of the band toward the lower frequency in the samples resembling the National Lead Company product. This may be attributed to the phenomenon of hydrogen bonding.

The thermal behavior of the various basic copper salicylate salts that had been prepared in the laboratory were also studied. The samples were initially dried to constant weight at 50°-60°C. In general, there was an additional loss in weight of 0.1% to 0.3% upon further drying at 100°C. However, Samples 75-1 and 76-1 lost 3.8% and
5.5%, respectively; the Shepherd Product sample lost 5.1%. Also, a
color change (green to brown) was observed in the three samples. Color
reversion, however, accompanied a gain in weight after exposure to the
atmosphere. It can probably be assumed that water is responsible for
these color changes.

Thermogravimetric analysis of the various salts actually shows
three regions in which loss in weight occurs. At first, as the
temperature is raised at a rate of 20°C. per minute to 145°C, there is
a gradual loss in weight of about 2%. This is followed by a further
loss of 5-6% until 175°C. is reached. Exothermic decomposition finally
takes place near 275°C. and is completed at 450°C. Total weight loss
is 56%. Sample 79-1, representing a typical thermogravimetric profile
of the samples resembling the National Lead Company product, is shown
in Figure 25. Thermal decomposition curves for the commercial products
are shown in Figures 26 and 27.

EXPERIMENTAL PROCEDURES

Preparation of Basic Copper Salicylate from Basic Copper Carbonate

The following procedures may be conducted in water or in mixed
solvent.

Elevated Temperature (50-60°C.)

30.4g (0.22 mole) of salicylic acid is dissolved in
450 ml of 33% ethyl alcohol. The solution is heated to 50-60°C. and
23.9g (0.1 mole) of basic copper carbonate is added. The slurry is
stirred for 5 hours while the temperature is maintained at 50-60°C.
The solid is separated by filtration, washed several times with cold
33% ethyl alcohol solution, and finally dried in the oven at 50°C.
The weight of the product is 41.0g. The elemental analysis values
are shown in Table 1 (Sample 75-1).

At Room Temperature

A slurry of 23.9g (0.1 mole) of basic copper carbonate,
30.4g (0.22 mole) of salicylic acid, and 800 ml water is stirred for
approximately 18 hours at room temperature. The solid is filtered;
washed with water, alcohol, and acetone; then dried in the oven at
50°C. The weight of the product is 39.4g or 90.5% yield based on the
amount of basic copper carbonate used in the reaction. The elemental
analysis values are shown in Table 1 (Sample 79-1).
Preparation of Basic Copper Salicylate from Copper Hydroxide

A slurry of 9.75g (0.1 mole) of copper hydroxide, 13.8g (0.1 mole) of salicylic acid, and 400 ml of water was stirred at 60-65°C. for five hours. The solid was filtered, washed several times with water, then washed several times with acetone, and finally dried in the oven at 50°C. The product weight was 8.2g or 37.5% yield, based on the amount of copper hydroxide used in the reaction. The elemental analysis was: Found - Cu-28.65%, C-38.71%, H-2.75%; Calculated - Cu-29.19%, C-38.63%, H-2.78%.

Infrared Analysis

Infrared spectra were obtained by means of the KBr pellet technique with a Perkin-Elmer, Model 621, Grating Infrared Spectrophotometer. The pellets, containing approximately 0.5% sample, were pressed to 0.7 mm thickness.

X-Ray Analysis

The diffractograms were taken with a Norelco X-Ray Diffractometer, using copper radiation and a nickel filter. The samples were mounted in an aluminum holder and scanned at 0.5° per minute.

Thermogravimetric Analysis

Loss in weight was determined with a 950 DuPont Gravimetric Analyzer under the following conditions:

Sample Size: 7-8 mg
Heating Rate: 20°C/min.
Atmosphere: Air
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Metal Component</th>
<th>Mole Ratio (MC/SAL)</th>
<th>Solvent Medium</th>
<th>Temp. (°C)</th>
<th>Time (Hrs)</th>
<th>Yield (%)</th>
<th>Cu (%)</th>
<th>C (%)</th>
<th>H (%)</th>
<th>Analysis Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>69-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>Water</td>
<td>50-60</td>
<td>2</td>
<td>89.0</td>
<td>31.15</td>
<td>35.85</td>
<td>2.66</td>
<td>I.R. and X-ray resembles Nat'l Lead Product Impure Monobasic Salt</td>
</tr>
<tr>
<td>70-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>50% Ethanol</td>
<td>50-60</td>
<td>4</td>
<td>82.3</td>
<td>33.55</td>
<td>32.75</td>
<td>2.62</td>
<td>I.R. and X-ray resembles Nat'l Lead Product Impure Monobasic Salt</td>
</tr>
<tr>
<td>71-1</td>
<td>Cu(OH)₂</td>
<td>1/1</td>
<td>Water</td>
<td>60-65</td>
<td>5</td>
<td>37.5</td>
<td>28.65</td>
<td>38.71</td>
<td>2.75</td>
<td>I.R. and X-ray resembles Nat'l Lead Product</td>
</tr>
<tr>
<td>72-1</td>
<td>Cu(OH)₂</td>
<td>1/2</td>
<td>Water</td>
<td>60-65</td>
<td>5</td>
<td>----</td>
<td>11.10</td>
<td>51.95</td>
<td>3.66</td>
<td>Impure Normal Copper Salicylate</td>
</tr>
<tr>
<td>74-1</td>
<td>Basic CuCO₃</td>
<td>1/3</td>
<td>33% Ethanol</td>
<td>50-60</td>
<td>5</td>
<td>86.3</td>
<td>28.94</td>
<td>38.08</td>
<td>2.67</td>
<td>I.R. and X-ray resembles Nat'l Lead Product</td>
</tr>
<tr>
<td>75-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>33% Ethanol</td>
<td>50-60</td>
<td>5</td>
<td>94.3</td>
<td>31.13</td>
<td>37.52</td>
<td>2.88</td>
<td>I.R. and X-ray resembles Shepherd Product</td>
</tr>
<tr>
<td>76-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>Water</td>
<td>Room</td>
<td>18</td>
<td>95.5</td>
<td>31.16</td>
<td>38.04</td>
<td>2.80</td>
<td>I.R. and X-ray resembles Shepherd Product</td>
</tr>
<tr>
<td>77-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>16.5% Ethanol</td>
<td>Room</td>
<td>18</td>
<td>95.4</td>
<td>29.66</td>
<td>37.27</td>
<td>2.77</td>
<td>I.R. and X-ray resembles Nat'l Lead Product</td>
</tr>
</tbody>
</table>
Table 1 (Cont'd)

Effects of Reaction Conditions on the Synthesis of Basic Copper Salicylate

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Metal Component</th>
<th>Mole Ratio (MC/SAL)</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (Hrs)</th>
<th>Yield (%)</th>
<th>Analysis</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-1</td>
<td>Basic CuCO₃</td>
<td>1/2.8</td>
<td>Water</td>
<td>Room</td>
<td>18</td>
<td>77.5</td>
<td>Cu 28.90</td>
<td>C 38.56</td>
</tr>
<tr>
<td>79-1</td>
<td>Basic CuCO₃</td>
<td>1/2.2</td>
<td>Water</td>
<td>Room</td>
<td>18</td>
<td>90.5</td>
<td>Cu 29.66</td>
<td>C 38.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 X-ray Diffraction Pattern of Sample 69-1

Figure 2 X-ray Diffraction Pattern of Sample 70-1
Figure 3 X-ray Diffraction Pattern of Sample 71-1

Figure 4 X-ray Diffraction Pattern of Sample 72-1
Figure 5 X-ray Diffraction Pattern of Sample 75-1

Figure 6 X-ray Diffraction Pattern of Sample 76-1
Figure 7 X-ray Diffraction Pattern of Sample 71-1

Figure 8 X-ray Diffraction Pattern of Sample 77-1
Figure 9 X-ray Diffraction Pattern of Sample 78-1

Figure 10 X-ray Diffraction Pattern of Sample 79-1
Figure 11 X-ray Diffraction Pattern of National Lead Co. Product

Figure 12 X-ray Diffraction Pattern of Shepherd Product
Figure 13 Infrared Spectrum of Sample 69-1

Figure 14 Infrared Spectrum of Sample 70-1
Figure 15 Infrared Spectrum of Sample 71-1

Figure 16 Infrared Spectrum of Sample 74-1
Figure 17 Infrared Spectrum of Sample 72-1

Figure 18 Infrared Spectrum of Sample 77-1
Figure 19 Infrared Spectrum of Sample 75-1

Figure 20 Infrared Spectrum of Sample 76-1
Figure 21 Infrared Spectrum of Sample 78-1

Figure 22 Infrared Spectrum of Sample 79-1
Figure 23 Infrared Spectrum of National Lead Co. Product

Figure 24 Infrared Spectrum of Shepherd Product
Figure 25 Thermogravimetric Decomposition Curve of Sample 79-1
Figure 26 Thermogravimetric Decomposition Curve of National Lead Product
Figure 27 Thermogravimetric Decomposition Curve of the Shepherd Product
DISTRIBUTION LIST

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD-MT
AMCDL
Washington, D. C. 20315

Director
Army Ballistic Research Laboratories
ATTN: AMXBR-1
Aberdeen Proving Ground, Maryland 21005

Commanding General
U. S. Army Missile Command
ATTN: AMSMI-R
-RF
-RK
-RB
Redstone Arsenal, Alabama 35809

Commanding General
U. S. Army Munitions Command
ATTN: AMSMU-MC-R
Dover, New Jersey 07801

Commanding General
U. S. Army Weapons Command
ATTN: Librarian
Rock Island, Illinois 61202

Commanding Officer
Frankford Arsenal
ATTN: Librarian
Philadelphia, Pennsylvania 19137

U.S. Army Research Office (Durham)
ATTN: Librarian
Box CM, Duke Station
Durham, North Carolina 27706

Commanding General
White Sands Missile Range
ATTN: STEWS-TE-E
New Mexico 88002
DISTRIBUTION LIST (Cont'd)

Commanding Officer
Watervliet Arsenal
ATTN: Librarian
Watervliet, New York 12189

Commanding Officer
U. S. Army Engineering Research and Development Laboratory
Fort Belvoir, Virginia 22060

Office, Chief Research & Development
ATTN: Missiles and Space Division
Washington, D. C. 20310

Office, Chief Research & Development
Director of Development
Washington, D. C. 20310

Office, Chief Research & Development
Department of the Army
ATTN: CRDFES
Washington, D. C. 20310

U. S. Army Foreign Science & Technology Center
Munitions Building
Washington, D. C. 20310

Office, Director Defense Research & Engineering
Weapons Systems Evaluation Group
The Pentagon
Washington, D. C. 20310

Office Director Defense Research & Engineering
ATTN: Director, Chemical Technology
The Pentagon
Washington, D. C. 20310

Air Force Office of Scientific Research
ATTN: SREP
1400 Wilson Boulevard
Arlington, Virginia 22209
DISTRIBUTION LIST

Air Force Rocket Propulsions Laboratory (RPC)
ATTN: RPRPT
 RPRE
 RPCCR
Edwards, California 93523

Air Force Systems Command
Andrews Air Force Base
ATTN: SCTR
Washington, D. C. 20331

Naval Weapons Center
ATTN: 4522
 4505
China Lake, California 93555

Naval Air Systems Command
ATTN: AIR-330
 -5367
 -604
Washington, D. C. 20360

National Aeronautics & Space Administration
Lewis Research Center
ATTN: Ch, Lig Rkt Tech Branch
 Technical Library
 2100 Brookpark Road
 Cleveland, Ohio 44135

National Aeronautics & Space Administration
Marshall Space Flight Center
ATTN: R-R&VE-P
 I-E-MGR
Huntsville, Alabama 35812

National Aeronautics & Space Administration
ATTN: Code RPS
Washington, D. C. 20546

Copy No.
DISTRIBUTION LIST

National Aeronautics & Space Administration
Scientific & Technical Information Facility
ATTN: SAF/DL ACQ Div
P. O. Box 33
College Park, Maryland 20740

Central Intelligence Agency
ATTN: OCRDD-Standard Distribution
2430 E. Street, N. W.
Washington, D. C. 20505

Chemical Propulsion Information Agency
The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910

Defense Documentation Center
Cameron Station Bldg. 5
ATTN: TSR
Alexandria, Virginia 22314

Jet Propulsion Laboratory
California Institute of Technology
ATTN: TDS, Library
4800 Oak Grove Drive
Pasadena, California 91103

Purdue University
School of Mechanical Engineering
Lafayette, Indiana 47907

Headquarters U. S. Air Force
(AFRDDA)
Washington, D. C. 20330

Headquarters Air Force Armament
Laboratory (ATX)
Eglin Air Force Base, Florida 32542

Headquarters Air Force Systems Command
(SCTS)
Andrews Air Force Base, Maryland 20331
DISTRIBUTION LIST

Headquarters Air Force Weapons Laboratory (WLX)
Kirtland Air Force Base, New Mexico 87117

Commanding Officer
Picatinny Arsenal
ATTN: SMUPA-V
- VG
- D
- DD
- DL
- RT-S

Dover, New Jersey 07801

Copy No.
58
59
60-64
65
66
67
68-72
Preparation of analytically pure monobasic copper salicylate by two distinct synthetic routes and characterization of the products by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis is described.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monobasic Copper Salicylate</td>
</tr>
<tr>
<td>Salicylic Acid</td>
</tr>
<tr>
<td>Basic Copper Carbonate</td>
</tr>
<tr>
<td>Copper Hydroxide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

Security Classification