
Final Technical Report

(CQ INFORMATION SYSTEMS DESIGN

SJanuary 1971

Under Contract F44620-70-C-0014

between

Air Force Systems Command
United States Air Force

Directorate of Information Sciences
1400 Wilson Boulevard

Arlington, VirgirJia 22209

and

University of Pannsylvania
The Moore School of Electrical Engineering

Philadelphia, Pennsylvania 19104

gepmduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springild, Va. 22151

l r" , i.. ,' n jUb tc release,

Dis t-

Seczrity Classification

'DM~UMEIT QN, L DATA -'R & D
, s$cutilty elozsifir',ficn of 11110, bod•. of hsfrnct and itne.e!±nt4,,vornrnI mser b erit, dwhen he oeral

*° ORIGINATING ACTIVITY (Corporate aulhoutj 2&d REPRT bE CUR IT C LAS sified)S e c ~ r l C t z e t i r . t i ~ n f l t l . h d * o f a h s ~ n e 2.] 2 . NH jP O N T Sr C U R I T Y C L A S SI F ' I C A T I O N '
University of Pennsylvania UNCLASSIFIEDThe Moore School of Elictrical Engineering 2. GIoOUF

Philadelphia, Pennsylvania 19104

3. REPORT TITLE

INFORMATION SYSTEMS DESIGN

4. DESCRIPTIVE NOTES (Type of report and inclusive dares)
Scientific Final

5. AUTHOR(S) (First name. miidlo initial, last name)

M.;Rubinoff
"__

6. HEPO,.T DATE
70. TOTAL NO. OF PAGES jhNO. REFS

January 1971
?O 14

So. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMDER(SI
F44620-70-C-0014 .1

b. PROJECT No. JT-. -

97691102F 96. OTHER REPORT NOIS) (Any othe, numb.,, It,,hat may he *&signed"61102F repo)681304 AFOS,.TR7o,d. AFOSR- R 7 1-2,7 3_q
10. DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

1I. SUPPLEMENTARY NOTES 112. SPONSORING MILITARY ACTIVITY
Air Force Office of Scientific Research(:•lTECH, OTHER " 1400 Wilson Boulevard
Arlington, Virginia 22209

I3. ABSTRACT

-- This report describes the results of a study conducted underContract F44620-70-C-0014 to develop principles and implement tech-niques for computerized information handling. Conce-pts associatedwith the design of a physical property information system are des-cribed. Methods for cathode ray tube man-machine interaction indesign are discussed, with emphasis upon chemical process and
electrical network flow sheets and structural design.

S DD IO4 73
` 7-

TABLE OF CONTENTS

Page
Summary iji

Introduction 1

Numerical Data Base 2

Network Computer Graphics 5

Computer Graphics for Structural Design and

Transportation Network Design 7

In Conclusion
9

References
10

-ii-

SUMMARY

This report discribes the resulte of a study conducted under
Contract F44620-70-C-0014 to develop principles and implement tech-
niques for computirized information handliLng. Concepts associated
with the design of a physical property information system are des-
cribed. Methods for cathode ray tube nan-machine interaction in
design are discussed, with emphasis'upon chemical process and
electrical network flow sheets and structural design.

- iii -

INFORMATION SYSTEM DESIGN

I. INTFIDUCTION

This report describes the research completed in a Moore School
Information Systems Laboratory study conducted under Contract
F44620-70-C-0014. The L.., > l.3s been concerned with developing
principles and implementing techniques for computerized information
handling, with special emphasis on mechanized information storage
and retrieval. These tectniques are important to systems for
computer-aided design because they automatically provide conventional
analysis, simulation and design programs with the information ser-
vices required. As we developed new information handling techniques,
we interfaced them to several previously existing analysis, simulation
Eid design programs at the University of Pennsylvania. These include
U.P.PACER and REMUS for steady-state and transient chemical process
computations, ECAP for electrical network simulation, and a nonlinear
structural analysis program.

Three new information handling techniques were studied in this
work:

1. Development of an interactive numerical data base. A
prototype physical property information system was
implemented to store and retrieve property information
for use in chemical process calculations.

2. Development of graphics tools for interactive communication
with network analysis programs. Methods for interfacing
these tools to the U.P.PACER, REMUS and ECAP programs
have been evolving over the past four years. This project
enabled us to develop the network graphics tools and make
substantial progress toward developing generalized inter-
facing methods.

3. Development of graphics tools for communication with
structural design programs. These tools were applied
to the design of civil engineering structures. Similarly,
this project enabled us to develop 3-D graphics tools and
make substant{l progress toward developing generalized
interfacing met.•=ds.

The following sections summarize the results of each study. A list
of publications is provided and copies of the most recent papers are
presented in the Appendix. Other papers have previously been trans-
mitted to the AFOSR office.

- 1- 2.

-2-

II. NUMERICAL DATA BASE

Information systems that handle textural data have been developed
by the Moore School Information Systems Laboratory over the past
seven years. The need to carry out computer-aided design calculations
provided sufficient incentive to extend these methods for numerical
data. This project enabled us to design and implement a prototype
numerical information system. Rather than attempt to handle general-
ized numerical information initially, it was decided to concentrate
on physical property information for chemical process calculations.
In retrospect, this was an excellent cecision and it has now led
to a strong basis from which to consider the more general problem;
namely, to store and retrieve numerical information in a data base
custom-built by the computer for each design application. In the
following paragraphs, some of the history in the development of our
prototype physical property information system is presented. Related
information has been presented in References 4 and 7.

The first objective of our physical property information system
was to allow the engineer to prepare application programs that require
no modifications when the chemical components 'n a mixture are altered
and when new and different property estimation techniques are required.

This was accomplished by separating the "variant" and "invariant"
information required to request a property value. Only invariant
information such as the identity of the physical property (for example,
heat capacity), the names of program variables that contain stored
values for the independent variables (for example, T and P repre-
senting temperature and pressure), and the name of the program variable
that contains mole fraction values for each mixture component (for
example, X), are incorporated into the application program's request
for property values. Variant information such as the identity of
components in the mixture, and the identity of property estimation
methods are specified separately from the application program.
Invariant information is supplied during program preparation, while
variant information is supplied just prior to each execution of the
application program.

Another objective of our physical property information system
has been to allow easy storage and retrieval of physical property
data. As compared with other information systems, data retrieval
is complicated by the need to also retrieve and apply estimation
procedures for estimating the requested property values. Our
numerical data base is designed to store three basic prerequisite
types of data: constants, correlation coefficients, and tables.
The estimation program library contain& programs that combine
correlation coefficient or tabular data with independent variable
and mole fraction specifications to compute "property values".
The former programs allow for estimation by correlation, the latter
by interpolation. Other estimation programs combine a sequence of
estimated property values to produce a single value. For example,

2

-3-

when estimating a mixture enthalpy, one procedure would combine zero
pressure enthalpy a:d enthalpy pressure-correction estimates.

In order to achieve this objective, property data was stored in
fixed format data records which contained several key words and the
essential data:

1) Property code,
2) Contributor code,
3) Validity ranges of two independent variables,
4) Maximum expected error,
5) Estimation routine number,
6) Data type,
7) Component code(s), and
8) Property data.

Four illustrative data records are illustrated in Figure 1. The

first three data records contain heat capacity data for H 0 over
different temperature ranges and 0.5 - P < 2.0. The fourih data
record contains liquid density data for the mixture, methane, ethane,
propane, n-butane, and n-pentane, for 400 - T c 490oR and 0.5 < P <
2.0 atm.

Keys Data Data Data Data
Record 1 Re.7ord 2 Record 3 Record 4

Property liq. heat vap. heat vap. heat liquid

capacity capacity capacity density

Contributor 142 142 153 178

Validity range (1) 492-6/2°R 672-3240°R 3240-6840°R 400-490°R

(2) 0.5-2.Oatm 0.5-2.Oatm 0.5-2.Oatm 15-25atm

Maximum error 0.5% 10% 2.0% 2.02

Estimation routine - 15 14 14

Data type constant coefficient tabular tabular

Component(s) water water water 2,3,4,6,8

Data 1.0 T C T p

0.428 3240 0.656 400 0.1778

1.42x10-5 4000 0.701 420 0.2060

3.8810-8 5000 0.743 440 0.2355

-7.35x1012 6000 0.771 460 0.2660

1 684010.782 490 0.3136

S a n --' - D .-t a R e c o r d s

;re 1

-4-

A master data base containing property data is maintained by the
property systepa librarian, and provides a common information pool
available to all users. A private data base is provided for engineers
who obtain property data from the literature or by experiment. The
engineer enters this data iLto his private data base. Only the system
librarian has authority to enter new data into the master data base,
whereas the engineer is free to add new data, update existing data,
or delete data only as regards his private data base using the PPIS
storage routine.

The PPIS prototype achieved our first two objectives, to provide
for mixture independent application programs and to allow storage and
retrieval of property data. 1.4ny general purpose programs have been
prepared for use with systems such as U.P.PACER for total process
material and energy balancing. General purpose absorber, stripper,
and flash programs have been run as U.P.PACER subroutines when
material and energy balancing a natural gas process.

However, an important shortcoming of the PPIS prototype was its
inaccessibility to the engineer who wishes preliminary estimates of
property values; the system compelled him to write a FORTRAN program
for the purpose. This placed an excessive burden upon engineers
interested in obtaining first estimates of property values to be
used in specific application programs.

This shortcoming, coupled with trends in information system
design toward interactive inquiry-response systems, led us to add
capability for comunication between PPIS and a typewriter terminal.
The PPIS prototype proved its utility especially after conversion to
an interactive system. Soon afterward PPIS assumed a new role as a
sophisticated handbook. Students began to use the inquiry-response
features to examine property values conveniently, often in prepara-
tion for use of PPIS in application programs.

The PPIS prototype is comprised of FORTRAN IV programs that run

on an IBM 360/75. It was converted to an interactive program for the
RCA Spectra 70/46 in one man-month. The interactive PPIS is executed
within the RCA Time-Sharing Operating System (TSOS). This operating
system provides for telecommunication with teletypewriter terminals,
IBM selectric typewriter terminals, and the RCA video data termaiwc
(alphanumeric cathode ray tube). Examples of its usage are presented
in Reference 7.

The inquiry-response feature markedly increased the engineer's
accessibility to PPIS and thereby demonstrated the utility of computer-
based information systems for 6ngineering purposes. The most obvious
benefits follow. The inquiry-response PPIS provided a tool for
estimation of mixture property values when handtook values do not
exist or are not easily accessible. It provided a vehicle for
property est iotion using iterative algorithms that are difficul.
to Implament manually. And, in so doing, it often provided more

LI

-5-

accurate property values in shorter time. The inquiry-response PPIS
enabled the engineer to scan graphs and tables of property values
over independent variable ranges u nder study in application programi.
This is proving to be a powerful tool whereby engineers may confirm
the accuracy of bench-marP' values and gain confidence in an estimation
procedure's ability to reproduce physically known variations with the
independent variable values.

The interactive property information system has been modified to
enable the user to communicate with the computer via a RCA video
display terminal. This terminal enabies rapid display of physical
property information in the form of tables and graphs. For example,
an engineer commonly wishes to know the density of a liquid mixture
at various temperatures and pressures. Heretofore, the teletype-
writer terminal presented tabular and graphic information slowly at
10-15 characters per second. The video display terminal allovs a
graph to be displayed in 2-3 seconds, an approximately ten-fold
improvement in the speed of preparation.

The property information system has been reprogrammed to enable
random access of property information from disk. Previously all
property information was transferred from disk into the main memory
of the computer prior to execution of a program that required physical
property infcrmation. The new version of the property information
system retrieves property data from disk only when it has not pre-
viously been transferred to main memory. Transfer of data occurs
only when needed and only $ien the data is not already present in
main memory.

III. NETWORK COMPUTER GRAPHICS

In the mid-1960's several probleat-oriented irogrnsw were developed
for the analysis of networks comprised of interconnected modules; for
example, U.P.PACER and REVUS for analysis of chemical plants and ECAP
for analysis of electrical circuits. Because these program often
carry out expensive iterative computations, there his been great
incentive to minimize costs by allowing the engineer to monitor the
calculations very closely. We decided to explo.e the feasibility of
using an interactive cathode ray tube display (DEC-338) to improve
sman-machine interaction in network aralysis. Initially we constructed
a prototype that enabled a process designer to "draw" a process flow
sheet using the light pen. Next, we built an interface between the
DEC-338 and the RCA Spectra 70/46 to allow for direct come•nication
with the U.P.PACER and REHUS programs. A progress report summarizing
the capability was prepared by W. D. Seider, J. ball, and M. Zaborowski
(see Reference 2).

Concurrently, P. Delaney developed a more advanced softva-:e
package for preparation of electrical networks. The principal

5

I

"6-

Improvement was in the 4aLa structure whizh allows for very efficient
storage of network information and easy modification of the same.
Sowm of the featurds of this graphics system are descrtbed below, with
emphasis upon the data structure. Further information is provided in
Reference 8.

A key aeture is the display file monitor which handles all
display file modifications. To do this effectively, a display file
structure has been designed that res$ bles A tree structure. Yn this
grV•cs system. the instructions to position the beam are organized
in a tree structure that contains the topology of the netwo:k. When
an tlectrical device, or a wire connectiug -wo devices, is added or
deleted, the display file is mudified by the display file monitor.
Uficlency is achieved In that changes in topology cause the display

instructions and connectivity information to be modified simultaneously,
Cousequertly9 the DEC-338 responds very rapidly to the designer's

__`Nm s wbn drawing an electrical circuit diagram using the light
pea and push buttons.

Still, the electrical network package was specific to electrical

uetworeus. It was prepared using DEC-338 assembly instructions and
required extensive modifications to handle chemical process ,etworks,
for example. 'This was particularly discouraging in that most of the
features of chemical and electrical network packages are similar, and
some are identical.

Consequently, we began work to define a general purpose graphics
system. Virst, Dr. C. West and Mr. J. Kulick identified threoe types
of graphics users:

1. The "pictorial" user. This type of user is distinguished
by the need to work with pictures. For example, the user
of an architectural design system. This user requires
facilities for picture generation and picture storage and
retrieval. These facilities must be controlled both by the
user at the graphics terminal, and by computer progrdms
operating on the data.

2. The "non-pictorial" user that uses the graphics system
as - data display device. Typically, he requires facilities
for preparation of graphs that summarize data. He is not
interested in the display of abstract line drawings. This
type of user may be exemplified by the user of a simulation
system, where input is in the form of card images, and out-
put is in the for* of two-dimensional graphs. This user
needs simple picture definition facilities for ovtput, and
an alphanumeric keyboard facility for input. There 7ay
also be a need for the terminal user to select among a
list of options "sing light pen and function keys.

-7-

3. The "meta-pictorial" user. This type of user is concerned
with properties of the picture. Typically, these proper-
ties are not stored in the picture explicitly, but must
be computed from the picture. For example, topological
properties such aa connectivity of a graph. One possible
way to do this is to post-process the picture and assign
these features via pattern recognition techniques. Another
possibility is to monitor the actions of the user and his
programs at the terminal, and to immediately interpret
each action. As each action is interpreted, cues are
generated to aid in later interpretation of the picture.
This approach requires that the user programs be able to
sequence actions at the terminal, and generate appropriate
cues.

During this project, West and Kulick designed the languages for
a general purpose graphics system that would service all three types
of users. Their languages were designed to enable easy interfacing
of application programs to the graphics terminal. One language was
designed to schedule the DEC-338 terminal and the other to send and
receive messages between the terminal and an application program
operating in the RCA Spectra 70/46. The languages were designed to
study the feasibility of implementing and operating such a graphics
system using a small terminal connected to a large computer with a
low-speed telephone line.

During the past year, J. Kulick has been implementing the system
design and is preparing a complete description in his Ph.D. disserta-
tion. The graphics system when complete should enable rapid inter-
facing of the graphics terminal to application programs such as
U.P.PACER, REMUS and ECAP. We expect that the interfacing time will
be reduced by an order of magnitude (to approximately 50 hours)
because there will no longer be a requirement to program in assembly
language.

IV. COMPUTER GRAPHICS FOR STRUCTURAL DESIGN AND TRANSPORTATION
NETWORK DESIGN

During the past two years, we concentrated upon the development
of a unified computer graphics program for structural design and
transportaiion network design.

The following summarizes the results of the studies in inter-
active computer graphics in Structi'ral Design. Developments in
computing software and hardware make it possible to consign more
of the design labor to the computer than has been possible, and
permit the designer to exercise more fully his role as policy maker.
Formula manipulation computer languages which can be usad to produce
exact differentials of very large nonlinear expressions, and inter-
active graphic terminals which make it possible to modify on-line

.7

-8-

the nonlinear programming problem representing a design situation.
permit structural designs to be generaLed by the computer which are
complete in all respects, where all design parameters necessary to
define the configurations can be used, and where building code
provisions are used unchanged as the set of constraints. The
architecture of a man-machine interactive system has been studied
which allows the designer to effectively mold the design with a
light pen as it is being evolved by the computer with the nonlinear
programming algorithm and which appears in effect as an animation
on the scope.

A case study of an optimally proportioned beam is described in
Reference 5. A conventional nonlinear optimization program examined
various I-Beam dimensions in the course of solving a constrained
nonlinear optimization problem. These dimensions were saved at
frequent intervals throughout the optimization procedure and were
used to prepare an animated movie that demonstrates the variations
in design during the optimization procedure.

Ideally, the engineer could interactively monitor the optimiza-
tion process to accelerate the design process even further. A
significant advantage of being able o operate in this manner results
from the fact that execution time is unnecessarily inflated if a
large number vf constraints never become active in qny one of the
cycles. These constraints still have to be carried along ,.s compu-
tational overhead in the matrix operations that are involved in
solving the nonlinear programming problem if they are initially
a part of the problem. There might be considerable economic merit
in being able to operate within a bare framework of constraints
that are likely to be active in any given situation, and to be able
to insert dynamically any additional necessary constraints into the
structure of the problem because of violations that might be detected
in any of the iteration cy'es. For example, beams over certain
lengths are hardly ever governed by shear, and it would be a waste
of computational time to carry all possible code restrictions on
shear alone in the framework of the nonlinear programming problem
for a general beam design routine. If conditions become such that
shear does happen to govern for a certain situation, the violation
is easily detectable and the appropriate constraints can than be
inserted without otherwise interrupting the progress of the design.

Douty and Shore developed the principles and procedures in a
batch environment because there was no interactive facility yet
available. Their results were demonstrated with an animated movie,
proving that such a system is effective and should be designed and
implemented. J. Kulick's Ph.D. dissertation involves the design and
implementation of a general purpose graphics facility that would
indeed serve this role (see Section III of this report).

IB

V. IN CONCLUSION

AFOSR funds enabled us to develop several computeri•:ed information
handling tools. These tools have been and continue to be incorporated
in computer-aided design systems. Several such programs are currently
in use by students in the engineering schools for their design work.
Among other things, this research enabled us to launch a major effort
in the development of systems for teaching the fundamentals of process
design using the computer. Extensions to this work are currently being
funded by the Esso Education Foundation.

In addition, the work carried out on this project was a contribu-
ting factor to the election of Dr. Warren D. Seider as Chairman of the
National Academy of Engineering's CACHE (Computer Aids for Chemical
Engineering Education) Committee. The CACHE Committee is comprised
of 17 educators from 16 colleges and universities. Its goal is to
cooperatively further the development of computing systems for use
in chemical engineering education.

9

REFERENCES

1. Cautin, H.; "Real English: A Translator to Enable Natural
Language Man-Machine Conversation", Ph.D. dissertation presented
to the Moore School of Electrical Engineering, University of
Pennsylvania, May 1969.

2. Seider, W. D., Ball, J. and Zaborowski, M.; "Chemical Process
Flow Sheet Computer Graphic System", April 1970.

3. Rubinoff, M. and West, C. H.; "Report and Recommendations on
Computer Graphics Facilities in The Moore School", January 1970.

4. Poznanovic, D. S.; "Information Storage and Retrieval System
for Physical Properties of Chemicals", Master's Thesis presented
to the Moore School of Electrical Engineering, University of
Pennsylvania, December 1969.

5. Shore, S. and Douty, R.; "Technique for Interactive Computer
Graphics in Design", Journal of the Structural Division, ASCE,
Vol. 97, No. ST1, Proc. Paper 7837, January 1971, pp. 273-288.

*6. Niyogi, P.; "Application of Computer Graphic Techniques to

Civil Engineering Design Problems; Transportation Engineering",
September 1969.

7. Poznanovic, D. S. and Seider, W. D.; "A Physical Property
Information System for Undergraduate Education", presented at
Chicago meeting of AIChE, November 1970.

8. Del-ney, P.; "An Interactive Flow Chart Graphics System",
November 1970.

Report prepared for internal distribution.

- 10 -

i1

7837 January, 1971 ST 1

Journal of the

STRUCTURAL DIVISION

Proceedings of the American Society of Civil Engineers

TECHNIQUE FOR INTERACTIVE COMPUTER GRAPHICS IN DESIGNa

By Richard Douty,' M. ASCE and Sidney Shore,* F. ASCE

INTRODUCTION

Events of the past few years relating to the direct design of engineering
systems by appropriate mathematical optimization techniques indicate that
the role of the engineer designing in such an environment could conceivably
and eventually consist merely of having to construct an acceptable criterion
function, array the set of constraints that govern the design situation, and
supply the initial trial configuration that is necessary for setting mathemati-
cal optimization processes in motion, and it is beginning to appear that most
ofThese tasks can be automated as well.

This paper is an attempt to demonstrate that when the designer is relieved
thusly of having to expend energy, even in a computer-aided environment, in
order to obtain an economically sound coi.dgration, then an opportunity ex-
ists for him to interact dynamically with tlhe machine, permitting him to treat
the design on a system scale not previously possible. Further, the interaction
Is most effective if the designer's role is primarily that of the key decision
maker, able to observe the progress of the system as it is being mathemati-
cally generated, but retaining the option of being able to alter the direction of
the system's synthesis when unforeseen or undesirable trends are observed.

A nonpassive role such as this, of course, is only feasible it the evolution
of the system is presented pictorally in all its shades and-nuances, a capa-
bility which is possible 'with the availability of interactive graphic display

Note.-Discussion upen until June 1. 1971. Separatc discussions should be submitted
for the individual papers in this symposium. To extend the closing date one month, a
written request must be filed with the Executive Director, ASCE. This paper Is part of
the copyrighted Journal of the Structural Division, Proceedings of the American Society
of Civil l.IvginfLrs, Vol. 97, No. STI. January. 1971. Manuscript was submitted for re-
view for possible xiblick'Won on March 1. 1970.

A Pres.ented at the Aujust 31-Scptcenber 2, 1970, ASCE Fifth Conference on Elec-
Ironic Computation, held at Purdue 'niv., Lafayette, Ind.

'lProf. of Civ. -r.grg.. Univ. of Missouri-Coiuinbia, Columbia. Mo.; on leave 1969-
70 as Sr. Fcllow. Townc Sehool of Civ. and Mech. Engrg.. Univ. of Pelisylvaia, Phil-
adelphin, Ila.

'Prof. and Chrni., Crad.)iv. of Civ. Engrg.,Towno School of Clr. and Mech. Engrg.,
Univ. of Pennsylvania. Plilladelphia, Pa.

273

It

274 January, 1971 ST I

terminals having the vector capability for line drawing. A graphic display
augmented design system employing this concept is, in fact, significantly
different from many existing graphic design systems, both operational and
under development, where the designer still must piece by piece ascsmble
and modify the system as the prime mover in the procedure, attempting to
manually produce an opti~mal configuration while 'rying tokeep it from stray-
ing beyond the bounds of the design constraints, but inever really knowing how
efficiently the balance is maintained. The dissimilarity in the two approaches
is due to reliance in the former on mathematical optimization to carry the
greater share of the design task.

DESIGN BY OPTIMIZATION VERSUS TRADITIONAL PRACTICE

Mathematically generated design employlng optimization mne'hods might
well be viewed as an approach that is complementary to the design process
as it has been practiced traditionally. In the traditional sense, the respouse
(G1 a trial configuration is ci'itically examirnad (ie., analyzed) zr suitability of
behavior with respect to a given imposed loading. If the response is not suit-
able, the configuration is altered in an upward direction until suitability is
rerched. On the other hand, if the response is overly suitable, the configura-
tion may be altered downwardly in an attempt at economy, although in truth
nonsuitability is deemed -much more criticil than oversuitability;whereas the
former condition req~uires alteration, the latter does not. In fact, the cost of

the engineering labor that may be expended towards achieving economies
through shaving may easily obliterate any savings gined thereby.

The ability to move a design subjectively in an economic direction while

maintainit.g a preeise balance between all cot factors in the entire procedure
is not acquired easily, and the art of doing so has been endowed with certain
mystical traits largely attributed to conditioned intuition reinforced by years
of experience.

The traditional approach is marked by the characteristic that it is the
analysis of a completely specified systein that is the primary computational
component of ihe entire procedure. Unfortunately, analysis as an end product

* does not contain any rational clues as to which is the bcst direction in which
to proceed next. If design improvement is the object, and if a good design is
eventually to be achieved in this nianier, it must be accomplished heuristi-
cally. Computer-aided design techniques whiih are based completely on this
traditional approach are somewhat encumbered because no matter how so-
phisticated the equipment, the subjective nature -of the designer permeates
the process whether he has 'a accomplished the programming of member
selection routines or whether he merely ,itilizes standard analysis routines
(STRUDL, FRAN, etc.) as a basis for carrying out design improvement of
more involved systems. The overhanging toreat of computational expense
dampens the search for the most inmaginative and economical aventies of
development.

On the other hind, when optimization is employed as an approach to the
design situation from an entirely different direction, the boundary condition
for the problem, rather than bein! a trial cotfiguration, is imposed on the
response that the system is re.-jir.d to exhibit. Computational effort (the
burden of the machinc? then, is primarily expkended towards determining that

ST I COMPUTER GRAPHICS 275

best configuration that meets these constraints. As there are some interesting
developing computational techniques that can seek a good design which satis-
fies a 'given set of constraints, it appears that much of the mysticism that
has surrounded the craft of obtaining a good design is dissipating; in fact, the
lower level of design, such as proportioning of girders, etc., now appears to
be much more of :. rational process than once was thought. As a rational
process it is very likely to be consigned to the computer, as has almost all
of the processes of analysis. Just howfarti.e concept can be extended into the
aroader levels of the design process is at this time pi oblematical, but it may
well turn out to be further advanced than most of us now imagine.

The problem that is encountered in a design situation is to produce a sys-
tem configuration that gives a good value to some criterion, which, in the
case of structures, might be weight or cost, while at the same time staying
within the confines of a set of limitations, such as those imposed on stresses
or deflections. This, however, is the form of the so-called mathematical pro-
gramming problem, the solution of which Is obtainable by rational techniques,
although admittedly the facility of obtaining the solution depends greatly on
the form that the functions exhibit. If the criterion and all design constraints
are linear, then the problem is that subset of mathematical programming
called linear programming, the solution to which is easily obtained by any of
a variety of standard routines available on call on most computing equip-
ment. Thus, finding the solution to linear programming problems has actuaily
become a trivial matter. If any of the functions contain nonlinearities, then

finding a solution. is decidedly more difficult. Algorithms, however, are being

cortinually developed and improved and the situation is becoming more fav-
orable. Unfortunately, we exist in a nonlinear world, and design situations
that can be formulated as linear programming problems, or even simplified
to that happy state are excecdinily rare.

In any event, the end product in solving the mathematical programming
problem represcatin- a design situation is the design itself, rather than an
analysis of a trial design. Any computer-aided design system which is not
based on optimization methods will eventually be regarded as fairly sterile,
and no doubt will suffer when placed in .ompetitlon with systems that are.

There are several reasons, however, why mathematically-based design
systems have not gained ascendancy over design systems based on more
traditional methods. The difficulties can be traced to certain characteristics
associated with working engineering systems that have not been easy to over-
come by existing mnthematical techniques. For example, the yield stress of
the grades of steels that arecommercially available for the design of a struc.¢
ture are integer (36, 42. 46, etc.), but they belong to only a small set of inte-
gers having the regrettable property of being nonadjacent, so that if yield
stress happens to be a design variable in a given problem, integer program-
ming (another subset of mathematical programming where the solution is
normally selected from the set of all intcgers lying within the confines o! the
feasible design space) is not ea.&y to employ. A more difficult situation than
this is encountered in the section of plates used in weldments. In this case, the
siandard thicbtcsses that are commercially available are not even integers.
So-called diserete prc.ramniinm techniques devised to handle such situations,
while under active dcvelcpmcnt, still have a long way to go before they can be
applied to signifi.aut structures. Of course, the solution can always be
rounded off, as lon. as care is taken that this action does not cause constraint

131

I

276 January, 1971 ST I

violation. This Is probably the best expedient at this time even though the
more puristic approach would undoubtedly yield better optima.

A much more serious difficulty that is not so easily disposed of is shown
in the case of structural systems where the set of constraints that define a
structural design, being for the most part drawn directly from building codes,
contains varieties of cascading discontinuities. As one example, any of a va-
riety of buckling formulas may govern the compression stresses in a certain
structural component (14), depending on the most critical slenderness iatio
in that component that will prevail in the eventual design,. Even within these
several formulas, however, that slenderness ratio may take any of several
forms, depending on the placement of lateral bracing in the several direc-

* tions that buckling can occur.
Such characteristics, together with the extremely large and cumbersome

nonlinearities that must be dealt with and which produce a huge number of
local minima, give rise to iterative oscillations and other aberrational com-
putational behaviorisms that also are ,ot easy to handle. Progress is being
made towards developing fairly decent algorithms, however, and with this
expectation it is probably time to consider and prepare for the emerging role
of the engineer designing in an environment where mathematical program-
ming will accomplish automatically most of that which, at this time, is still
laboriously evolved by hand.

MAN-MACHInE DESIGN TEAM WITH DUAL
DECISION-MAKING LEVELS

Although at first there seems to be an ominous ring in this for the engi-
neer with respect to his acquired skills and intellectual capital, with further
thought it will be realized that there has been and probably always will be
two distinct levels of decision-making in the design process; a secondary
level that can be completely assiged to the computer, and a primary levelthat has fo be shouldered by the designer because perfection In thc state of

the art can never be achieved. At present, the secondary level for the most
part in existing systems involves the chore of grinding out analyses. There
may be a few legitimate optimization-based, programs devised for special
situations, but as yet there is no broadly based generalized scheme which
will admit the computer into the picture as a fully versatile design partner.Most design programs that are being used, in fact, employ an exhaustive

search among a predefined set of possibilities, but this is practical only for
problems of fairly limited scope.

As the use of mathematical programming improves in reliability and gen-
erality, the secondary level will begin to involve more and more the occupa-
tion of design in the general sense. Eventhough the rate of progress in this
direction is somewhat obscured by a lackof information of what is (echnical'y
possible in the way of computing hardware and software, the beginning of the
team effort can be seen with a bit more clarity. In the area of structures, for
example, the secondary level initially will uudoubtedly be charged with gen-
erating a meritorious configuration that dots not violate the confines of
building specifications. The primary lev*l will include such tasks as defining
range limits on dsisgn paranicter values, choosing the applicable building
specifications, deciding the form that the structure is to taie (frame, shell,
truss), and the materials that are to be used.

14

ST 1 COMPUTER GRAPHICS 277

As the state of the art inevitably advances, the demarcation zone between
the secondary and primary levels of design decision making will move in-
exorably upward, and it is fair to assume that as time passes the computer
will be able to take on more and more of the tasks that previously had been
the exclusive domain of the designer. For example, it is possible to store on
secondary storage the results of each design as it is accomplished and in
this way accumulate over a sufficient period of time a wealth of design ex-
perience. On the basis of the data stored, it might be possible, using statis-
tical regression techniques, to have reasonable range limits for a given typo
of structure of a certain type and loading generated by the computer, rather
than established by the designer.

New tools, both in computer software and hardware, have been or ase be-
coming operational which bWgins to indicate clearly the structure that an ia-
teractive design system which is based primarily on optimization techniques
may take, and the evolutionary development that will probably occur there-
after. Notable amont these tools on the hardware side are on-line graphic
display terminals with vector capability, and on the software side, powerful
procedure-oriented languages, such as PL/1 (6), which are not only efficient

J in carrying out numerical calcuL.,ions, but are also adept both at character-
string manipulation and the stora•, and retrieval of both kinds of data on
seco;ndary storage. Important also are ripecial purpose formula manipulation
languages (15) that can generate the exact differentialt of large nonlinear
expressions. And of course, an effective meshinZ of all these elements into
an interactive design system is possible only because oa the versatile and
efficient computer operating systems that are now available for controlling
and scheduling the events that have to take place in the machine.

A comprehensive man-machine interactive design system based ona dual-
mode assignment of the decision- making resronsibility might be viewed as
the following set of capabilit.cs: (1) Syntheocis of design constraints; (2) do-
sitn criteria; (3) optirnization; (4) analysi!; (5) on-line access; (6) data input;
and (7) data output. A large measure cf getaera&.'I- is iudicated as all of these
clements would be brought to bear on any design situation, whether in the
area of structures, transportatioit, or water resources, the three primary
system areas that make up the field of civil engineering (11). Some elements
in the list, in fact, would be identical for all three areas, such as the module
to assemble design constraints, the functionally distinctive data transfer ca-
pabilities of: (1) Ot-line access via graphic display; (2) systeul initializatlos
and modification by cards or tape to establish data bases and extend system
capabilities; and (3) proluction of hardcopy output for permanent records.

On the cther hand, the form of some of the elements are dependent on the
particular area to be serviced. For example, while matrix analysis routines
have been reasonably well standarized for articulated structures and networks
under steady state conditions (5,9). the same prco.rams would be inadequate
for the analysis of transportation and water resource systems if transient
loadit.rs and discrete behaviorisms are vital deviCn consiteraticcs. In fact.
it may be that simulation would have to servt most often as the analysis ele-
ment of the system for both of these latter two areas if they were to be ban-
died as nonlhtnr prc-,rainmii, prob!ems.

Similarly. the form of the opt nuizAtion technique whichahould be employed
depends an the nature of the system shich is to be optimizcd. In the complete
absence of constraints. any of a variety of simple functional hill climbing

15t

S278 January, 1971 8T I

methods ought to suffice. This situation is Quite rare, though, and the design
situation normally has to be formulated as a nonlinearly constrained prob-
lem, which means that a nonlinear programming problem hta to be con-
fronted. This appears to be the case witia structures.

Occasionally, if the system possesses certain desirable topological prop-
ertles that permit little or no feedback of loading itto the determination of
the design, the method of dynamic programming can be used profitably (8,13).
These characteristics are offta. found it& transportation and water resource
systems and the potential for its employmnvt is probably Itghest in these
areas. The most teilia; argument i6 that in dynamic programming a decom-
position of the system is effectcJ and suboptimization carried out indepen-
dently on each of the parts, leading, however, to the optimization of the total
system as a unit. Because any one part is likely to be easily analyzed by ex-
isting formulas, etc., an analysis of the total system as a unit is uAt required,
obviating the need for the relatively cumbersome necessity to simulate. One
has to be prepared, however, to sacrifice the signilicantly large amounts ot
e*qmpuling time and storage that dynamic programming requires. U there Is
considerable amour.' of fctback in the system, as is the case with indeter-
minate structures (the configuration that results from a set of internal forces
may produce a different set of forces, which in turn requires a configuration
change, etc.,), then dynamic prograiming tends to become too cumbersome

I to use.Eventhough the matter of design criteria has been fairly well established
for structures, it has not been for the other two areas. With structures,

weight or erected cost should serve adeqsately an the function to be mini-
miied; the former can be formulated quite precisely in terms of the desin
pmarmeters, bit the latter is not so clear cut. It may be that even primitive
formulations of cost functions might be adequate, because there appears to
be some evidence that the desig• af a structure is not as sensitive to the
specifics of a cost function as hail been thought. For example, flanges of WF
beams tend to be as far from the neutral axis of the beam as constraints per-
mit under almost any reasonable objective function.

Design criteria for transportation and water resource systems are not so
easily arrived at, or unilversally accepted, because of the complex interplay
at socio-politico-econonic factors that are involved in the design of such
"systems. Cost means little in the face of the social disruption that an unwise
urban highway system can cause; however, if the formulation of some sort of
happlss function is attempted as an alternative, it soon is realized that one
man's happiness is bound to be another man's despair.

Assuming however that, even in the face of these difficulties, the elements
previously noted are the primary modules that have to be considered in an
Interactive design system, a clear picture of the flow of data that would hawv
to occur emerges. Such a dual-mwde graphics-augmented design system Is
outlined in Fie. 1.

The cardinal feature of a dual-mode decision-making system is that there
be provision for instant communscation b0twoc the primary level (man) and
the s•ecodary level (niachine) as the latter is in the proces of going about
its aasts-rd task. The er -,icer &shuld net be limited to monito-ring deciions
ade 1:7 t11 machine only by inspectine wrhat is too rf'en literally reati: ut

met coJumns of numbers. By the time an undestrabW secondAry decisivm-
making temicy is percet-ed. it might well be too Late tW do anythwA about

ST 1 COMPUTER GRAPHICS 279

It. (in fact. in most operations such output is available only after the job has
terminated.) Hather, the monitoring should be visual, meaning that a display
device has to be employed that is able to keep the engineer informed instantly
as to what the machine is doing. Further. the display should not be that type
which disiplays only text, because of the saw* lag period that is experienced
with trying to interpret tables of numbers:Orly a relatively few lines of nmai-
bers can be displzyed on such devices anyway. The only device tha would
really provide adequate visual communication when engineering systems are
involved is a cathode ray scope with vector capability where a pictorial rep,-
resentation of the siystem can be displayed as it is evolving. Further, an in-
terrupt capability is necessary in order to be able to Inject into the process
modifications originating from the primary level. Thus, the scope should
have a light pen attachment and function keyboard as each device has its own
particular merits depending on the action that is desired.

I Td ~ Sm~lm-Ni. a Ct-opj Mr
4 ..

FIG. I.-DUAL -1iDE OPTIMAL DESIGN SYSTEM

It would be adequate as a beginring to have a set of preprogrammed dis-
plays Store4 and available on call with either the keyboard, or to be selected
with the light pen Irom a displayed menu of possibilities. In a structural de-
sign system the meitu would include a variety of trusses, frames, girders,
ele. (A). Similarly, the particular srecifitatlon or bukldlng code that is to
govern the design could te selectcd in either of the sam* three modes (D).
If particular structural modules have been preprogrammed into the system,
there is no difficulty in determining which provisions of the selected codes
govern at critical points in the structure. as this eould lust as well be in-
cluded in 14ie program. Eventually, however. as destiners becorne comfortable
wan fairly adept at usinc suc~h a systehi, there is certain to be sonw frustra-
tion and dissatisfaction experienced with being limited tocertain preprogram-
used niouults. Creativity. which is certain to blostiom as designers are re-
leased from the si*Ackles of having to itvolve themselves in the secondary

290 January, 19'71 81 I

decision making, will generate a demand for system generality vwhere any
system configuration can be sketched and manipulated. It is not difficult to
imagine bow the sketching might be accomplished =A topology determined;
this reduces to a matter of the manhours necessary to evolve the program.
In fact, scattered efforts in this direction have been underway' for some time.

Generality does cause some concern as to how thu constraints might be
selected during the sketching operation, though it might be as simple as
touching the light pen to critical parts of the system in order to cause the
appropriate constraints to be generated for that pr-nt. In this way, again in
the case of a structure, all building code provisionis for shear could be ar-
rayed in the constraint set where the shear force and desl..n parameters In
those provisions were those at the point where the light pen touched the
structure. The designer might do this by depressing a function key labeled
SHEAR and with the light pen touch as many point. on the structure as he
felt should be investigated for that condition. In a similar manner, he could
cause multiple constraints for MOMENT and DEFLECTION, etc. to join the
set of constraints.

Obviously, every tenth point of each component in the assemblage cannot
be investigated for all possible limitations; the result is likely to produce a
mathematical programming problem much too immense. The fact that the
designer would have to exercise his skill in applying selectivity is merely
another indication that designer and machine will be most productive when
interacting dynamically as a team.

Of course, the operation of manually indicating where criticAl points are
to be considered does not actually formulate the mathematical programming
problem which must Lie constructed to generate an optimal design. The sttu-
ation is much different than if preprogrammed modules are employed where
the constraints can be easliy arrayed as part of the program. If generality
Is to be permitted, an additional system capability would be needed which
would move from mass storage only those building code provisions which
would be indicated by the above light pen-function key operation, and then
proceed to formulate the mathematical programming problem neerd to gen-
*rate the design. This capability is shown in Fig. 1 as blocks C and D.

Fortunately, newly deeloped languages adept at character string manipu-
lation (eg., PL/l) make it possible to store in their natural alphabetic form
all provisions of as many building codes as desired or available on mass
secondary storage and to move into the central processing unit only those
that are applicable for a given situation. Further, there are editu._ capabili-
ties in these same languages that permit the parsitg of code formulas, ex-
tracting both the design parameters tat are an important element of the
mathematical programming problem, and the data elements that must be sup-
plied externally. Even more spectacular, in view of the requirement of most
nonlinear pror•ramming algorithms that differentials of all con.-traints be
taken with respect to each variable (?.!.09rj iti VIZ. 1), some of these same
languages (15) ean generate exact expressionr for thedifferentials of gigantic
expressions; the kind of c.qtrczsions that result, sty, if the AISC interaction
formula for a bedam-column in a frame Is expremsed In terms of the 10 deign
p~ramctcrs that are necessary to defise the four crosx-st-<tionail dimes•ions
(wide flange) and strenghs N both components (the stifinesses of the con-
metting mainters determine the effec:4ve Icith of a beam column).

Tbe mu4nitdte of thia task cnntot be overstated. As an example, if there

ST I COMPUTER GRAPHICS 281

are, say, 100 n'ostly nonlinear constraint! that define a system of, say, 40
variables, and if the novzero density of thedifferential matrix Dgji/x, is 0.1,
then 400 different-Ations would have to be carried out, any one of which is
likely to be a formidable task if done by hand. Further, the differentials have
to be exact in all respects if the nonlinear programming algorithm is to con-
verge to a solution. The alternativýe is to go about the lob with numerical dif-
ferentiation, but ther? may be serious questions as to the effectiveness of a
purely numerical approach for the ertremely large, nonlinear, and discon-
tinuous problems that are typical of practical systems. It is always more ef-
fective, of course, to employ exact differentials in a differential pro.ess
when they can be o"..,ined, and the new s, tware described makes! this pos-
sible. (It !s a f-ascinating turn of events that the computer, which is respected
for its number smashing capabilitiesa and which, because of this, has greatly
accelerated the science of numneical analysis, is acquiring equal respect
from the scientific community for its character-string manipulative abilities,
a carability previously thought to have applications almost exclusively in
commercial data processing, but which appears also to have great potential
in scientific processing.)

As the set of constraints on the design will contain internal forces result-
ing from the loading that is imposed on the systcm, an analysis is needed to
determine those forces before the math programming program is solved (El.
This might be accomplished by a genýialized matrix method in the case of
structures, or as pointed out, a simulation routine in the other areas, assum-
ing that the design parameters in a network of transportation or water re-
source componenits must be simultaneou3ly balanced as the only rational
approach to the design of these systems, and that because of transients and
discrzte behaviorisms (queueing situa~ions, traffic lights, etc.), such systems
virtuaily defy mathematical analysis. It might be speculated that some sort
of gradient coefficients might be obtainable with multiple simulations, how-
ever the process is likely to be much too time consuming. Functional rela-
tionships for such systems are probably the only practical approach if
automatic design is the object, but so much is still to be done in this area.
For this reason, it is probable that the first broad range of practical appli-
cations for the entire system as outlined in Fig. 1 will come in the area of
structures, where the matter of analysis is much more well defined and
m,-theinatically tidy.

In traditional methods of design there is a pause at this point in the pro-.
cess in order to afford the designer the opportunity of pouring over the re-
sults of the analysis to ascertain if, say, stress and stiffness requirements
are satisfied. If this is not the case, the system components are strengthened
and the analysis is perhaps reexecuted in order to check the effect of the
changes. It is worthy to note that if a computer analysis costs several thou-
sand dollars, serious thought would no doubt be given as to the necessity of
making such a check. This brings up a point relevant to direct design where
an analysis is required for each design improvement cycle that is conducted
by m•athematical programming. It is obvious that automatic optimization of,
say, a large roof constructed of a grid of trusses, which may require thou-
sands of dollars of computer time for each analysis, is not exactly around
the corner. Smaller systems thai that will have to be attacked first, where
analysis is not such a costly factor, such as is the case with continuous gir-
ders and gable frames.

* 1

282 January, 1971 ST I

,�*Ptrenthetically, note that i simply supported girder is a true structural
* system, as the term system has been used vis a vis optimization, because a

change in any of the design parameters, such as stiffener spacing. affects the
* choice of other parameters, such as web depth and thickness when a balance

must be sought to n..,ximize the merit of the entire assemblage. It is this
Interconnected behavior, or feedback, that makes it so difficult to achit-ve
such a balance by human endeavor. Bty this defir.ition a simply suppo'ted
rolled beam of 36-ksi Oteel is not a ti ue structural system because only one
parameter, *the section modulus, needs to be chosen i, order to obtain the
optimal design, and that can be achieved simply by a one dimensional search
through a table of available sha-es. If, howevr, a variety of steel stretn.gths
are available for selection as well as the section modulus, system behavior
is present because a balance between the two design variables must be
brought about for an optimal situatior. TTV.> effort may still be within the
feasibility of optimization by direrct search, similar to the section modulus
table r-carch, as there aren't f," overwhelming number of combinations to
choose from. However, as a further cxtension one might try to compute the
number of possible comnbinations of a simply supporte.d hybrid beam %vhere
the strengths of the flane and web can i.e different, whare the pl.te wid.hs
might be in increments of, sa, sixteenths of an inch, and where the thick-
nesses would be the set of standard thic:nesses.lt is at this point that mathe-
im.tical progranr-r.Ing begins to demonstrs.e its utility in bcin,- able io home
in directly on an .'pntimal combination ok parameters without the need for
carrying out an ey.haustive search amon.- all possibilities.

Structures, then, such as hybrid beams, hybrid girders, trusse. ajid
frames will be treated most effectively first by direct optimal system:iv, such
as that shown in Fig. 1, and larger systems such as roof truss grids, multi-
story buildings, etc. will no doubt have -o be deferred until major break-
throughs occur in reducing the times for analysis. This may come about with
significant increases in computP:g speed, new and novel techniques, .r per-

. haps simply because of studies that may show approximate techniques of
analysis are adequate for large systems until the last few cycles of the math
programming problem solution. This is not to b.ýay, however, that portions of
those large systems could not be treated as idependent asscmblagces for the
purposes of design, much as they have beer, in the past.

After an analysis is obtained, the math programming problem which has
* been formulated, either in prep.-ogra'mmed modules or by a geaeralized pro-

cessor, must be solved. And because of the mathenmatically inipure charac-
teristics (discontinuities, many los al optimal, etc.) exhibited by liractical
systems, the algorithm which accomplishes this task has to be a real work-
horse, able to demonstrate computational efficiency and reliability for almost
any situation that it is likely to be handed. Work is quite actively in progress
at a variety of research centers to produce such algorithms and the eventual
availability of a general processor should not be discounted.

In the particular system being described herein, the algorithm being used
is a modification (3) of the well-known cutting plane approach (2,7,10,12) to
the solution of nonlinear programming problems, a modification which has
been used quite successfully to design in detail several types of structural
systems, including gable frames, with built-up beam cor.lunts as members,
both prismatic and nonprismatic, and where either tapered or curvet haIunches
were employed, complete details of both also designted as part of tCe same

20

ST I COMPUTLR GRAPHICS 283

problem (1). Briefly, the modification (L) involves primarily a dynamic con-
striction of the feasible space at strategic intervals and a unique provision
for handling cyclic infeasibilities which may be caused thereby (4). It has
handled in an efficient computational fa.uhionnonlinearprograraming problems
having over 150 mostly nonlinear constraints and over 50 design variables,
and when utd to design structures invariably produces complete designs
which are quite competitive with designs evolved in the traditional manner.
Though it still has yet to stand the test of time, there seems to be some
promise of it being a candidlate for the workhorse algorithm which would be
required for a generalized system.

To review briefly the operation of the cutting plane algorithm, a Taylor
series expansion is employed to reduce the nonlinear functions in the objec-
tive and constraint set to a linear programming problem in which a trial de-
sign is used as the series expansion point for the first cycle, and the solution
to any given cycle is used as the expansion point for the subsequent cycle
(M). When this sequence of linear programming problems produces unchang-
ing solutions (II), convergence to the solution of the nonlinear programming
p-'obleia has been obtained.

If this is all there were to design, no participation of the designer subse-
quent to initiating the process wu~t d be necessary (block B in a generalized
system). However, the nature of the course of events that may follow produces
interesting opportunities for creative interaction by the designer if, as pre-
viously described: (1) lie is able to monitor the progress of the design as it
is being algorithmically generated (J); and (21 if he can, on the basis of what
has been perceived, modify the direction that the design seems to be taking,
and do so before a conclusion is reached (F).

Suppose, for exampi:, that the mathprogrammingproblem that was formu-
lated for a fairly substantial structure is in ýhe process of being solved, and
that, its evolution towards an optimal configuration is being observed (J), in
fact almost as an animation.. The designer might suddenly realize that the
web depths, in the mathematical struggle towards optinialty, are tending to
be rather deep and that an implicit desire for a certain amount of headroom,
w~icther from a practical standpoint or the view of esthetics, is in danger of
being violated because the web depth maxima were somehow omitted in the
formulation of the problem. (S ich would not be an unusual situation if a gen-
eralized system were being employed.) If, under the usual batch mode oper-
ating environment, a termination and restart were necessary in order to
correct the situation, not only time but a significant amount of computing
money would have been lost for this one small point that was overlooked. On

the other hand if the additional web depth constraint could suddenly be made
an active part of the constraint set by use of an interrupt capability such as
that afforded by a light pen or function key, then the situation would be in-
stantly corrected and an acce.;table design still would be obtained in the same
program execution. The capability for entering (or deleting) constraints on-
line as the computations arc in progress is a remarkable tool for enhancing
ihe creative instincts of thedesigner. In effect, he would be niold'ng the struc-
lure almost as a piece of sculpture, pulling here, pushing there, in order to
fit spatial requiremcnts and esthetic inclinatiou.si. This would be accomplished
with the freedom from worry that is nf"orded by knowing that when he is fin-
ishecd with the kneading and shaping and the designed has converged to a final
configuration, all the stress and deflection limitations will be satisfied. In

"21

I

284 January, 1971 ST I

* fact, the m~ost critical ones will be satisfied exactly, for this is the highly
desirable result that mathematical programming accomplish s.

Interaction need not only strengthen creativity, it can in nrove the effi-
ciency of the program execution as well. The rate of convergen- e of a mathe-
matical programming problem iai general varies inversely with some higher
order power of the number of variables involved, although the figures cannot
be determined because so much dcepends on the characteristics of the particu-
lar problem which is being solved. (Occasionally, even a large ,roblem can
snap into a final solution with amazing speed.) If, however, as is r.ossible
when MP solution progress is being visuafly monitored, the designer notices
that one or several of the parameters are not changing much from cyclC to
cycle, he easily could freeze the current value by using one of tie interrupt
devices, thus effectively switching the status of the parameter from that of a
problem variable to that of a constant. The mechanics of doing this mathe-
matically are actually quite simple, involving nothing more than setting the
elements in column j of the left-hand side coeflicient matrix of the asso-
ciated linear programming problem (K) equal to zer' for each variable j
which is to be so altered, as well as the coefficient of the same variable
which appears in the linearized objective function (14). Removing even just a
few variables from the math programming problem inthis maimer qaite often
has a dramatic effect on the rate of convergence.

Existing hardware and software, or at least aspects of these that are in
advanced states of development, hint at even some more alluring capabilities
which could be made a part of a generalizec system. For example, there are,
in almost every graphics systern being used, capabilities for rotating about
any axis the configuration which is being displayed, so that the designer could
visually inspect every portion of the generated system, and for magnifying
portions thereof in order to clarify details. ilardware is even now commer-
cially available which will respond vocally according topreramined instruc-
tions, so that communication between the secondary level decision maker

* (machine) and the primary decision mak~er (man) need not be entirely visual.
Although several, in fact the most critical, of the comlponents shown in

Fig. I are operating quite smoothly, the total system as df scribed is not yet
an operating reality; too many of the additional capabilities that would make
it so have just arrived on the scene. But sufficient progress is being experi-
enced with each of these so that a drawing together of all of them into the
mosaic necessary for total system capability appears to be merely a matter
of man hours.

ILLUSTRATIVE EXA161PLES

"Several working applications have been developed in order to aid in de-
veloping the system. Eventhough they were not made particularly sophisti-

* cated because of this role, they do serve to illustrate the nature of the design
system and the potential that it presents, thus meriting some discussion.

In a first example (1)7. 2), a minimum weight simple b.ani is designed
for a given shear and moenti, to be welded from plat's of 36-kas steel. The
system as presently constructed accepts range limits from the designer, or,
in the absence of these, defaults to the limits of commercially available values
if there exists such a set, such as for plate thicknesses. In the absence of a

I),')

ST 1 COMPUTER GRAPHICS 285

standard set, such as for plate widths, the designer must supply range limits
as problem data. The trial vector is either also given by the designer, or, as
in this case, defaulted to the lower range limits, an appr Dach which somehow
seems to work quite well for a large variety of systems and which will prob-
ably be retained as a permanent feature.

Several prominent events arc worthy of note in the ensuing iteration
which was carried out algorithmically. For 20 cycles a wild oscillation in
two of the parameters is observed, and is typical of the behavior that can be
expected in even the smallest of nonlinear systems, such as the beam of this
example. Two of the parameters remained tight against the lower range limit

b initial Conditions: Shear f 12 L, Moment * 72?t in-k
Trial Doesign Lower Range Upper Range

Limits Limits
b 2.0 2.0 *0.O

d l t .25 .2S 1.0
b.0 20.0

w ,S.25 1.0

Convergenre Behavior

Cycle b I d •w

I 2.0 .25 9.884 .25
2 2.0 .2S 14,830 .2S
3 2.0 1.00 7.125 .25
4 2.0 .2$ 14.775 .25
S 2.0 1.00 7.095 .21
6 2.0 .2S 14.736 .25
7 2.0 1.00 7.072 .25
8 2.0 .25 14.708 .25
5 2.0 1.00 7.0,8 .25
10 2.0 .25 14.688 .0 5
11 2.0 1.00 7.047 .25
12 2.0 .25 14.673 .25
13 2.0 1.00 7.039. .25
14 2.0 .as 14.662 .2S
IS 2.0 1.00 7.033 .25
16 2.0 .25 14.654 .25
17 2.0 1.00 7.028 .25

is 2.0 .2S 14.145 .1S
19 2.0 1.00 7.021 :25
0 20 .25 14.644 .25

2.0 .583 1.123 .2S
2 2 2.0 .933 11.347 .25
23 2.0 .$922 MISS .2S
3 4 1.0 .•9" 13.|S9 .2S
2S 2.O .S$92 13.236 .25
(• 2.0 .91?2 13.236 A2s

2.0 1.000 13.164 .25
1:8 L. .000 1,.1:14 o2

25 1. 0.O0 13.64 as5

FIG. 2.-GENERATION OF OPTIMAL BUILTUP BEAM

throughout the run. At the event marked A, the accelerator (4) mentioned
previously was employed as an impel!se to dampen the oscillation (Block L in
Fig. 1). and it can be seen that the operation w.as quite effective in that the
design then quickly converged to the solution shown in cycle 26. The flange
thickness, however, at convergence was not commercially admissable, so an
additional operation, denoted as event B, was invoked which rounded that
thickness to the nearest admissable value, and recycled the process to further
optimize on those parameters which were ,not so restricted. The final design

23

286 January, 1971 ST I

is admissable, the bending stress is almost exactly the specified limit of 22
ksi, and tile weight is about five %• less than that of the lightest rolled section

that would suffice, although caution should bI exercised in making such a
comparison because of the welding costs that would have been incurred in

building up a section. If tioe lower rage limit ore the web plate thiclaess
had been lower, a lower weight than indicated would undoubtedly have been
obtained.

This example was allowed to run to a conclusion without manual th.ferven-
tion. In a dual-mode decision-making environment, however, the designer
would have noticed earlier by inspectioro, at least b5y the fifth• or sixth cycle,
that the iteration had entered a pathologic oscillation, and could manually
have triggered the acceleration inlpul~se long before the twentieth• cycle, at
which time it is normally programmed to occur (every 10 cycles thereafter).

Or he might have roticed quite early in the iteration that the fCange width was
likely to be less than would be required for a certain attachment he had in
mind and which he had thought of after the iteration had begun. In this case
he could have raised that particular lower limit while the iteration was in
progress, perhaps by placing the light pen on the outer boundary of the flange
width and dragging it outward. Beingable tocarry out such measures as these
make a lot of sense when one is dealing with a much larger system where it
is difficult to anticipate undesirable practical or esthetic features that might
result because of the design that is finally generated and be able to build ap-
propriate constraints into the constraint set beforehand.

A significant advantage of being able to operate in this manner results
from the fact that execution time is unnecessarily inflated if a large rnuimber
cf constraints never become active in any one of the cycles. These constraints
still have to be carried along as comr'tational overhce:! in the matrix oper-
ations that are involvcd in solving the nonlinear programming problem if they
are initially a part of the problem. There might be considerable eccnomic
merit in being able to cperate within a bare framework of constraints that
are likely to be active in any given situation, and to be able to insert dynam-
ically any additional constraints that are necessary into the structure of the
problem because of violations that might be detected in any of the iteration
cycles. For example, beams over certain lengths are hardly ever governed
by shear, and it would be a waste of computational time to carry all possible

* code restrictions on shear alone in the framework of the nonlinear prcgrain-
ming problem for a general beam design routine. If conditions become such
that shear does happen to govern for a certain situation, the violdtion is
easily detectable and the appropriate constraints can then be inserted with-
out otherwise interrupting the progress of the design.

A second example which was formulated also to test the graphics moni-
toring capability (Block J in Fig. 1) demonstrates a simu!ator, albeit primi-
tive, for a 10-mile stretch of open highway containing both an intersecting
turnoff and a tunnel constriction. Vehicles are injected into the three end
points of the system at various rates, and are seen to move along the simu-
lated highway system as dots of light. In a practical situation the designer
might notice visually that queues are formiog at critical junctions in the sys-
temn and take immediate action, as tile simulation is proceeding, to change
one or more design parameters in an attempt to correct tile situation, permit-
ting the simulation to continue almost without interruption. While systems
using simulation in order to determine system response are not yet being

(A

ST ICOMPUTER GRAPHICS 287

Improved algorithically by mathematiceal programming, the broad framework
of thc system of Fig. 1 can still be employed, pirticularly the graphics and
data transfer capabilities.

CONCLUSIONS

As nonlinear programming algorithms Improve with respect to scope and
reliability, an increasing amount of the design task will be consigned to the
computer and the desig'ner can perform more strongly the role of m~licy
maker in the design process. Developments contributing to this chingeover
recently include developedt formula mantipulation langnages which can produce
exact differential expressions of large nonlinear functions and cathcde ray
tube termninals which permit on-line modification of the mathematical pro-
gramming problem as is going about the task of producing the design. The
computer is then seen to assunme a more active role as a partner in the man-
machine design team, frcei~ng the designer to exercise his creative inclina-
tions on a higher level as it, the computer rather than the designer, guides
the design in optimal directions that do not violate imposed constraints.

APPENDIX.-REFERENCES

I. Chai. J. W., "Detailed Detign of Strmu,.ural Framcs by Nonlinear Prouramming." h~o pre-
senmcd to the Univcrmii or 5,bS4Iuir4olunlbij. Coilqcr of Ungincerinp. ~at Columbhia %to..
June. 1970. in pianial fulfillincnt of tht rqtuirviownts fro the degree of iDoctor of Philus.nphy.

2. Dout). It. T.. -Orimi/isiaon of a Two-Spisn Cover.Platcd Steel Iteani.- Computer; in
iteringlA5j IkE, duca,,u-Caitd F neinerintC. Vol. III Univetstit) ofNMichigin Colq-c~ if Lnj~i-
necring. Ap'ril. tWA..

3. Douty. R. T. and Chji. J. W.. "A Di,6ciplinc for Generating PracoicaI Optimnal Situciwalu De-
si~nC* Pnrimreingi of.Ithe Sixth .-nniad Drt %afunp' tobag'onwored b% S14..R E.
Associatio~n fro Computing %ta,.hincr% In,,atutuk or Electrical and Llectronics Fnganccrs at

Iloel~rm~on.Miai l.'O lunell 1.1969.
4. Dout). k. T.. "An A_~.. o'r for Large. Noncujgwe%. Discontinuous Nonlinear Prueriamrinr

Probkrns labsiract). **Ircett Record '4 the f*9 Joirnt Godenw~~r o4.n sguu add
Conapurcr At#d to fla*.oeu. Srponiored by A~ociatiofl for Computing %.,chiner%. Sucicds foF
lndwutrial and Applied %Iledantcs. Im~iatuic of Electrical and Llcutraonic lingineeri at itrc
Anaheim. Calif. Conwion Ccnie. Ot~tob~r 1969.

5. ECAP13A1,4i.Htraw nC,,gwg.11al fix t~e~n3Ii..(LocallHNt Branch offic,3).

7.Kcllc. J. E.. -1 h,. Cutting la~rne Sicthod for Woling Conves Probkmsr ot. %x, 14srJu
lndsit-,nto and ..tprhei/t Wi, ktavt. Jaurneal. Itol. Ii. No. .3. December 1960.

1. Lvk A. D3. NI., "Optites.i Dvsegn of Seticitiral Steel I ramint for Tocr.T~pc Builtsnpt.-
Cofaesin I~neeierill. 1), -it:" E4u1watiien-C. to/ .uwCipterins. Vol. III Unmberiaet of NIldse.

ranl Coltrt. of I ne~-rtr PRAi1.
9. Itopkhet. R. D3.. it AeI. WIS Iw'01. I.-IFiceeoe-. At veC 3 11E51wd. Dept. of Civil rnfireer.

ing. MIT. Canibrtke". %la,% '.epCmhkf 1967.
t0 ~se.I.. -Opimnuni Stru~turiel tk~ern Vianee! linear Prorranimingp. JoisrW of the Stew-

Dwaulthisim,. AS(. 1~. %%I *. %o. s rt. Prot: Paiper 416) 1,04rns .IMpp. It 10.4
11. Naqoji. P.. Appleexee..n of C.ornipui.r (ifaphw% "Icihnuilues to Civil Lngneering tksitn Pvub-

2UJanuary, 1971 ST I

kmsn; Transportation Eatrinmeing,. The Towine School of Chiti atd Mlechanical Esiginerrnnt
Repwo. University of Penm~ylvania. Pbtladclr-hi. Pcnftylvania. Octithcr W96.

12.1kcinwismidt, K. R.. Cornell. C. A. and brotchic. J. F.. -Ier.,im'c Dnigin amnd Saruciiaral
Optismiflion." Jowualt th ie Stnwtvfal LDisiion. ASCL. Vol. 92. No. ST6. Proc. P~qiwr 5013
Dmembef 1966. pp. 231)IS.

U3. Schilling. C. IL. "Optimal Dcsign of a Timber Warchomse Floor.- Computen in Fncinrerixg
Vh-iign Us-tdawiu-osCtl lUngiot'-ng. %*ol. III tlnivnnity of M06hg~an Cotkgct of lEngirk-csing.
April. I9(4

W1w.pijkstioa Juw the lbnlgs. Fuhnrareron~ Anuw Eetit pStrouuraI Soed Jo hUAidwgs. Aen~r.
too lnsitutc (,' Fted Con-truction. New Vork. N.Y.. 196,9.

IS.Tobty. R. ct al.. PL1I-IHoMA.C lnteeptetei. MADOI)0. JAW1. Covlrabuiad Progpans Library.
IBM Proatrm Information IDcunnicat. I lawtilw ne. Nco Yv4~. Oitober, 1967.

7927 IWTEICACTE COMI)L-Ef GRAPPICS IN DEMN[j
KEY WORDS: automiIaloo computers; cb~fpi-: drswits;_sjp&5E methods:
aoolinafr porztlI:sre ~~ tr
ARWSRACT: Lonelopenms inzt compwting "'flu-art aod rhar~tare make It possible to
coegiga more of the dri-m aIub~or to the' ronputczr than In~s k~r" x'oWuir~. and pervait
the designer to exsert isr more fuilly his role as poliy maker. Formula msanit'snzutoa
coseptler taga:uras which can be uxt Iao product exact difterrrnials of very Lirr~c "It-Hoverr exp~ressions inIi intAcraeive gra:phic termimals wltiich make It possible to Woi~fY
ea-line the nonlioiar progammirt- prob1cm represcuet dsw u ftatm prm
utructural 4-si-tt to~ I.v -,%rited 6% 0 e k-atiater hi~rk 3 re complete in 311 .resp~cvts.
wbsere all c*ti~~ Vzranmtt-ra Lreresmtry to ektirf the rwlia'rmliatos can W. used. and
wherre b~WhAm araak j'rm iýaas irr uia-al u~rztog~cl 3s the set of remuratans. Thea
srehist'ertre of a rKsat.-atticham- rim~iar rt ialt Is pre. rduaiv th allowas Ike do-

w~oc to effet-tittei) trtattd the %.rs ith -k ls:%Id pen as Ith is tiat ev-olved b%- the 1
ratgti*e? with the NI.P atltaratk~a 3%d w~.rh apjiears in $t-ff-t 3% a, asimtation ea the
oropv. A case s.tudi of an aptse¶Ilyt garuortIkord bean s tigvin In tabuiar Form.
xRI:rIitrKcI: Irqalr. Ritiard. amt !Oiorr. !ahrr. 'Terhwiqtr, for lalerartlve Com-
poin Crapbin In M-jn.* Jetr- %1 *4 16, 'Qr%rt~r3I raasime AXtCI V49. . VO.sSf
r t vur. Paper ?"'..)3Aa.asry.- it;. I. .3 lip,

27

A

A PHISICAL PROPERTY INFOIMTION SYSTEM

FOR UNRDERPAITE EVXCA"ION

by

*
Daniel S. Pozanovic and Warren D. Seider

The School of Chemical Engineering

and

The Kjore School of Electrical Engineering

.University of Pennsylvania
Philadelphia, Pennsylvania 19104

November, 1970

A pysical property Inforration systam, including data base and
estimation routines for providing property values directly to a FOM!
program, has been ipleraented. The system allows for the development
of chemical engi:icering progerns that need not be altered with chemicaJ
mix and/or property estiution procedures. The system includes an
inquiry-response interface for co==nication from a typewriter terminal.
Property values can be graphed and tabuluted interactively at the
request of the engineer. In adeition, property data can be stored
"..teractively in correlation co•fficiert and ttbular form for subse-
quent eotirmtion of property vnlues usi~g correlation algorithms or
interpolation procedures.

The role of the physial pror-'Ay Information system in education
is discussed vith ee=Vasis on the mterial and energy balance course
and the rreparation of ore Gcneral process analysis, simulation, and
denzirn pwrosam on the seniior and grmduate levels.

Moore School of Ilectrical Gkineerin5 only.

23

INTRODUCTION

Physical property inforration systems are related to computer-

sided process design, as stoichiometry and thermodynamics are related

to chemical engineering education. Whereupon, it follows that as

corqpter-aided methods are adapted by chemical engineering educatori

for analysis and design purposes, physical property (among other)

information systems will play an increasingly significant role in

courses such as stoichionetry and thermodynamics.

First, however, it is for us to improve upon computer-aided

process analysis, simulation and design methods, ax' to discover courses

and problc types vherein these methods improve the quality of education.

Several apprceches including curve-fitting process data, steady-state

and dynar•ic process unit simulation, hlterial and energy balancing

chemical processes vith recycle, and optimization of process unit

designs have been examined.(1,2)3) And, to these ends, the role of

new ran-inchine interfaces, time-sharing and video display terminals,

and of inforntio~n systems- are being consider-ed.('6- - For to impxrove

computer-aided process design methods, interactive information system

are an important ingredient.

The parpose of this imper is to describe a physical property

inforration ryrtem (PPIS) for conputer-aided process design computations

in und-rcradu�te education.(7) The evolution of PPIS will be discussed

with cmphasi: placed upon the reactions of student users at various

str.ac.r of develop!-_ent. Inturally, only the saLli nt featurcs of FFIS

are de,.crlbtd; the PPIS User's thnusl should be consulted foz detalls.(8)

-2-

PHYSICAL PROPERTY VALUF FOR CMMUICAL V'(2IUERDING AMCATION PfOGPAS

Computer programs for chemical engineering applications often

require thermophysical property values for pure substances and chemical

mixtures. A couwn approach to supplying property values is to prepare

property data cards that are zead by the program. Often the property

values are assumed to be constant for the temperature and pressure

ranges under consideration. When this assumption cannot be made, that

is, vhen independent variable dependence is significant, property

estimation procedures are required. Often the estimation procedures

are coded into the application program vith correlation coefficients,

tables and constants being read from cards by the application program.

A more general approach for providing property values is to

separate estimation algorithms from the application program in the

form of subprograms that have access to* data necessary for property

value estimation. The application progrrm calls upon the property

estimation subprograms, rather than reading data from cards and esti-

mating property values. This approach is common today, especially

vhen property esti-ation is required for material and energy balance

and design computations. (2,9,1I0,1)

These approaches to supplying property values restrict the

applicability of the engineer's program. When a proeran requiring

property values Is prepared, call state.mcnts refcrencing estimtion

subprcramn by name are coded into the prorram, directly linking the

pro GTa vith a crecific set of estiration zubpro-roax.

L

"-3-

Of ten, changes in mixture components and/or temperature and

pressure ranges require different estimation routines. When applica-

tion programs must be modified frequently, general process material and

energy balvace, simulation and design program libraries are difficult

to establish and maintain. High operating and maintenance costs help

to explain why few truly gen.iA-Pcl purpose program libraries are widely

used today.

It has been our experience that general purpose programs for

material and energy balancing, simulation, and design of process units,

among other applications, are important to the chemical engineering

educator uhose time is not well spent writing and debugging or modifying

programs. Hence, an important design goal for our PPIS has been to

reduce rodifications, due to variations in physical property estimation

methodology, in an otheriise general purpose application program library.

For the sake of completeness, we note that no mention of APPES,

the AIChE Physical Property Estimation System, (12,13) and other such

physical property information systems hai been made because these

systems are not conveniently interfaced with application programs,

if at all. However, we have incorporated several APPES property

estim-.tion procedures in cur PP1S library.

PHYSICAL P"OPER-TY IINPOR'VATI0 SYSTEA PROTOTYPE

A principal objective of our physical property information

syst=m has been to allow the engineer to prepare application programs

?!*

-4-

requiring no modifications when the components in a mixture are altered

and when new and different property estimation techniq7,-s are required.

One method of eliminating program modification is to separate the

"variant" and "invariant" information required to request a property

value. PPIS separates variant and invariant information as follows.

Only invariant information such as the identity of the physical prop-

erty (for example, heat capacity), the names of program variables that

contain stored values for the independent variables (for example, T and

P representing temperature and pressure), and the name of the program

variable that contains mole fraction values for each mixture component

(for example, X), are incorporated into the application program's

request for property values. Variant information such as the identity

of components in the mixture, and the identity of property estimation

methods are specified separately from the application program.

Invariant information is supplied during program preparation, while

variant information is supplied just prior to each execution of the

application program.

Another objective of our physical property information system has

been to allow easy storage and retrieval of physical property data.

As compared with other information systems, data retrieval is compli-

cated by the need to also retrieve and apply estimation procedures for

estimating the requested property values. Our "data base" is designed

to store data in the form of constants, correlation coefficients, and

* tables. The estiimtion program library contains programs that combine

correlation coefficient or tabular data with independent variable and

'2'
IA

-5-

mole fraction specifications to compute "property values". The former

programs allow for estimation by correlation, the latter by inter-

polation. Other estimation progrars combine a sequence of estimated

property values to produce a single value. For example, when estimating

a mixture entha.lpy, one procedure would combine zero pressure enthalpy

and enthalpy pressure-correction estimates.

Retrieval of Property Values

PPIS has been designed to provide property values for pure

chemicals and mixtures hfnen requested during execution of FORTRAN

programs through calls upon retrieval routines. The retrieval rou-

tines are FORTRAN functions and subroutines that retrieve property

data from the data base, and call upon property estimation routines

to compute requested property values.

Three retrieval routines are available for use in an application

program. The function PPCP is used to request pure substance property

values. T.o retrieval routines are used to request mixture property

values. The routine PPCF is a function subprogram that is used to

request a single property value for a mixture (for example, molal

average heat capacity). The routine PPCS is a subroutine that is

used to request a property value for each component of a mixture

(for example, mixture equilibriun coefficients - K values).

The standard requests for property values using the PPCP, PPCF

and PPCS retrieval routines are:

PROP = PPCP(NP,VI,V2,INDEX, IC) - Pure substance
property values

PROP = PPOF(1.-2jVlV2,XIC) - "Average" mixture
property values

CALL PPCS(14P, VIV2,X,RES.,IC) - Mixture component

property values

The arguments are:

•1P - property code (for example, 401 = vapor enthalpy

given temperature, pressure, and composition, or 305 =

equilibrium coefficients, given temperature, pressure,

and composition)

VI - value of the first independent variable, a real number

or real variable (for example, temperature T)

V2 - value of the second independent variable, a real

number or real variable (for example, pressure P)

INDEX - chemical. index num.iber, an integer or integer variable

(see component identification table discussion below)

X - mole fraction values stored in a singly subscripted

variable for the chemicals indexed in the component

identification table

RES - estimated property values (results) stored in a singly

subscripted variable. Each member of the array contains

a property value for each component listed in the

component identification table.

IC - completion code variable, an integer variable. Retains

zero malue when unusual circtu-utances do not occur during

data retrieval and estimation; otherwise, is set unequal

to zero.

-7-

Figure 1 contains a list of physical property codes currently

available in PPIS. Associated with each property code are two

independent variables. For example, 401 is the code for super-heated

vapor enthalpy given temperature (the first independent variable) and

pressure (the second independent variable) as well as compositions.

Figure 2 contains a list of cher-lcals for which some property

data is currently stored in our PPIS. Note that a data base component

number has been assigned to each chemical. Just prior to executing

an application program, the engineer furnishes PPIS with a component

identification table (see Figure 3). This table containis variant

information that identifies for PPIS the chemicals in a mixture, or

in a list for' which pure chemical physical properties are needed.

Each chemical in the table is assigned an index number so as to order

the chemicals in the mixture or list of pure chemicals.

Figure 4 illustrates use of the PPCF retrieval routine in an

application program. The PPCF routine is used to obtain the enthalpy

of the five component mixture specified in the component identification

table. The property code is 400 for enthalpy given temperature, T,

and pressure, P. The mole fractions for the five component mixture

are stored in the array X.

Physical property data amd estination procedures often differ

with phase. For this reason, we have indexed the property codes such

that those endlrng with the digit 1, 2, or 3 refer to vapor, liquid,

or solid, respectively. In addition, property codes ending in 0 refer

7

to a phase unspecified propurty.

When the property code supplied to a retrieval routine is phase

unspecified, a phase determination is performed. Figure 5 sumrarizes

the phase determination capabilities of the retrieval routines. At

present, phase determination is carried out only for properties whose

independent variables are temperature and pressure. M.ixture liquid

and solid phases are not distinguished, and all liquids are assured

miscible. Further, it is the responsibility of the engineer to avoid

requesting single phase property values, such as density and compress-

ibility factor, for a two phase mixture.

Several property estimation procedures are currently available in

the PPIS library. These are sum. arized in Figure 6. New estimation

procedures are added to the library by the system librarian as required

in our course work. It should be recognized that the scope of a libi.ary

for educational purposes need not be as comprehensive as a library for

industrial design purposes.(9,10,11) In part, this is due to limited

university resources for prograrmlng and testing estination programs,

or converting estimation procedures prepare others into PPIS

terminologyj. Currently, it is not possible for the engineer to easily

enter his own estimation procedures without knowledge of PPIS internal

details (Chapter 6, User's M.nual(8)). Steps are being taken to

simplify the installation procedure for estimation programs.

The estiration procedures ccrmbine data in the data base to

estimate property values as illustrated in Figure 7. Co:.-raonY.,

-9-.

ectiLation procedures interpolate tables, or compute property values

using correlation formulae, or both. Some estimation procedures

combine other property values, as well; for example, an estimation

procedure for K-values combines a liqud fugacity value with vapor

fugacity and activity coefficient values, and so on.

Data Base and Data Storage

Having considered the retrieval routines for use in a FORTRAN

program, we turn next to storage of data in the data base. Property

data is stored in the form of data records. Data records contain

property data characterized by key words. A data record contains

seven key words and the data itself:

1) Property code,

2) Contributor code,

3) Validity ranges of two independent variables,

4) lmaximum expected error,

5) Estiration routine nmxiber,

6) Data type,

7) Component code(s), and

8) Property data.

Four sample data records are illustrated in Figure 8. The first

three data records contain heat capacity data for 1120 over different

temperature ranges and 0.5 ! P <- 2.0. The fourth data record contains

liquid density data for the mixture, methane, ethane, propane,

n-butane, and n-pcntane, for hO0 . T 49o0 nR and 0.5 S P £ 2.0 atm.

17

- 10 -

The data record key words deserve some explanation. The property

code identifies the physical property and Its associated independent

variables. The contributor code identifies the individual responsible

for stori*g the data record in the data base. The validity ranges

delimit the high and low limits for independent variable values within

vhich the data record applies. For example, the vapor heat capacity

data in the second data record (Figure 8) is used only when temperature

falls within 672-3240°R and the pressure within 0.5-2.0 atm; data in

the third data record is used when 3240 ! T C 68• °R and 0.5 ! P !

2.0 atm. The maximum error is the upper-bound estimate of the error

vhen using the data record (within the independent variable validity

ranges). The estimation routine nurber identifies the estimation

routine for computing a property value using the data contained in

the data record. For example, in the second data record (Figure 8)

routine num.ber 15, a third degree polynomial correlation program, is

specified to compute vapor heat capacities using the data stored in

the data record. In the third and fourth data records routine number

114, a linear interpolation program, is specified to interpolate the

tabular data stored in the data record. And, in the first data record

no estination program is specificd, since a single constant value for

liquid heat capacity holds over the ranSes, !:02 < T 672°R and 0.5 5

P < 2.0 atn. The data type identifies the nature of the data storcd

in a data record; either a single constant, several corrclation

coefficients, or tabular data. The co.mponent code(s) indicate the

component(s) for which the rroperty data is valid. Fi:ally, the data

Itself aprears.

i2 8

The application program furnishes the retrieval routines vith a

property code, two indcyrndent variable values, and mole fractions.

The component codes are supplied by the component identification

table. Mhen servicing a request for property values, the retrieval

routines search the data base for acceptable data records. An

acceptable data record:

1) Contains the specified property code,

2) Contains independent variable validity ranges that

surround the supplied independent variable values, and

3) Contains data base component codes specified in

the component identification table.

The retrieval routines select an acceptable data record and call

the cstimtion routine identified in the data record. The estiration

routine obtains property data from the data record and other property

values produced by parallel requests to the retrieval routines. The

retrieval routines return the requested property value(s) to the

application program.

tInta Retrieval Constraints

Often the retrieval routines can select from aong oeveral

acceptablc data records. These &d.ta records way differ in estimation

routine, raximum perccntaGe error, contributor code, and data. The

retrieval routines select the first acceptable data record located

In a search of the data base, unless directed othervise.

FPIS has been dcai~ned to allov the cnCineer to specify one of

several acceptable data records if be so desires. He records his

I

12-

preferences just prior to execution of the application program in a

"retrieval constraint table" (when there are preferences). The

retrieval constraint table is another form of variant informtion

that allows the engineer to specify, fcr any physical property, (1).

the cotiz-ation routine, (2) the maximum allovwble error, and (3) the

data contributor. Figure 9 illustrates a retrieval constraint table.

Observe that the table constrains PPIS to locate a vapor heat capacity

(431) data record with maxi•mm expected error less than 1.5p, using

estimtion routine 15, and contributor 1h2; when 672 ! T : 321.0 0R and

0.o5 cP r 2.0 atm, the second data record in Figure 8 is located from

among other possible alternatives. K-value and vapor density data

records are to be located with maxicn expected error less than 1%.

In addition, vapor density data records are to use cstimation routine

2. The data record for critical temperature is to have been furnished

by contributor 4. Finally, data records for all other properties are

to be located vith maximum expected error less than 2%. When the

constraint degree is not enteked, upon failing to locate a data record

that satisfies the constraints, PPIS will use any applicable data

record and print a .omment dercriuing the action taken. When the

costraint degree is absolute, *, PPIS prints a messngo describing

the unavailability of the conrtrained data record and aborts.

A -aster daL& base containing approved property data in raintained

by the property systen librarian, and is available to all users. A

private data base is provided for engineers that obtain property data

from the literature or by cxpecrirznt. The entirsecr entcrs thir. datu

140

.13-

into his private data hasc. Only the system librarian may enter new

data into the raster data base. Whereas the engineer is free to add

new data, update existing data, or delete data from his private data

base usint; the PPIS ctorage routine. For securit) purposes, each

user selects a password upon entering property data into his private

data baze far the first tine. The paessord mut be supplied to the

system whenever modifieation of the private data base is attempted.

Material and Fncrry Balance Problem

PPIS has been used to provide enthalpy and phase equilibrium

coefficient values, K-value3, in a program prepared for flash separa-

tion. The procram deternine* the flow rates, mole fractions, and

temperature of vapor and liAquid streams leavin3 a flash separator,

illustrated in Figure 10. Data to the program includes feed flow

rate, mole fractaons, temperature and pressure, product pressure,

and the rate of heat los,, Q.

The method of solution assxes that the liquid and vapor phases

are separated perfectly without entrainment. Material and energy

balance eqiations and phase equilibrium constraints are surnarized

below for an N co.mponent mx•ture:
C

Matcrial Falance Equations -

T• - ¥V + X L C ,,..N

"1.

14~

Mb10 Fraction Constraints-

Nc ~Nc

3=1 31 3=1

K-Value Constitutive Equations-

Kj - KjTV

Phase Equilibriuz3 Constraints-

Enthl~py Cons titutive Equat ions-

hi f h f T V Pf , Z.' Z2 ,

I1= h {TfO P1, Xl, X2, .. ,xxc

Energy hilance Equation-

h1.F w h V V+ hIL +

Equirmcnt Const-raint Equations

,p,*

- 15

There are 3Nc + 9 equations and 4Nc + 13 variables; hence, N. + 4

desien variable values may be specified. The set of design variables

selected is f F, T - The program
C

determines all other variable values. Figure U1 illustrates the

algorithm for solution of the equations. N. and design variable

values are reead from cards, T is estimated, and K-valies are computed.
V

Next, the ratericl balance equations are solved, stream enthalpies are

computc~d, and the energy balance equation is used to estimate a new

Tv. When the Tv convergence tolerance is satisfied, results are

prirted. Otherwise, a new guess value for T is prepared and the

material and energy balance computations repeated.

Observe that the PPIS requests for nixture K-vaILes (14P = 305)

and enthalpies (,2 = 401,1402) do not change with chemical mix or

estirmation 1.rocedxe. Hence, the progrwi is a general flash prograls:!

with respect to c Stimated physical property values.

Figure 12 illustrates a flash curve computed during execution of

the algorithm in Figure 11. PPIS was constrained to use data records

that provide for eathalpy estination wing routines MTH, ENSV, ENSL,

KIM.SHV, ,IS~I and >.- value estination using routine KTABLE.

EDneriences Using the PPIS Prototrpe

PPIS has been used to furnish property values in many process

unit •arterial and encrgy balancing programs, such as the flash unit

program. It does achieve the design objectives to provide for mixture

independent appl.ication prograr-s and to allow storage and retrieval

4 3

-16

of property dsta. Many general purpose programs have been prepared

for use with systems such as U.P.PACER (University of Pennsylvania

PACER) for total process material and energy balancing.(15) General

purpose absorber, stripper, and flash programs have been run as

U.P.PACER subroutines when material and energy balancing a natural

gas process, for example.

An important shortcoming of the PPIS prototype has been its

inaccessibility to the engineer who wishcs preliminary estimates of

-, property values. In order. to obtain property values, the engineer

is cor.pelled to write a FORTRANI program. This places an excessive

burden upon engineers interested in obtaining first estinates of

property values to be used in application programs, no matter how

compact the FORTRMAI program need be. In many cases, students prefer

to use handbook values or roughly estimated values rather than to

write and debug a "simple" FORTRAN program.

This shortcoming, coupled with trends in information system

vatsign toward interactive inquiry-response systems, led us to add

capability for cormunication between PPIS and a typeiriter terminal.

These developments are described in the next section.

Other problerms are encountered when PPIS uses long-executing

estimation procedures; for example, the Chao-Seader method for esti-

rmating K-values (routine KVAL) an'3 the Benedict-Wcbb--Mubin equation

to estivate densities (routines EBJRD and BVRVD). Recpated execution

of these estinrtion routines is expensive when short-cut rnethods are

____1

-17-

unavailable. As a result, we are currently developing methods for

curve-fitting data using spline polynomial methods. The spline

coefficients will be stored in a data record for rapid interpolation

during design calculations.

I3,QUIRY-RFlPu&2SE (InTERACTIVE) PROPERTY ITFORMATION SYSTEM

The PPIS prototype proved its utility especially after conversion

to an interactive system that communicates with the engineer through

a ty•ewriter terminal. Soon afterward PPIS asstmed the role of a

sophisticated handbook. Students now use the inquiry-response features

to examine property values conveniently, often in preparation for use

of PPIS in application programs.

The PPIS prototype is comprised of FORTRAN IV programs that run

on an IBM 360/75. It was converted to an interactive program for the

RCA Spectra 70/46 in one ran-month. The interactive PPIS is executed

within the RCA Time-Sharing Operating System (TSOS). This operating

system provides for telecommunication with teletypewriter terminals,

IBM selectric typewriter terminals, and the RCA video data terminal

(alphanumeric cathode ray tube).

Using the inquiry-Resronse PPIS

After a telephone call to the RCA Spectra 70/46 computer, the

engineer requests to use PPIS (during "log-on" sequence). PPKS

initiates the conversation with the engineer by prompt'ing the

latter for information. PPIS types a message (in capital letters

on IBM selectric typewriters), skips to the next line, types an

asterisk (*), and awaits the engineer's response (in lower case

letters on IBM selectric typewriters). The first few lines of

conversation are:

UNIVERSITY OF PENNSYLVANIA PHYSICAL PROPERTY IIFORMATION SYSTEM

PLEASE IDENTIFY YOURSELF.
*j.b. omega

DO YOU NEED HELP? (YES OR NO)
*no

THE AVAILA1ILEr COM1ANDS ARE:
STORE., DEFIlfE.. REVIEW.. .CONSTPRAI.. CIIAN(E.. RETRIEVE. *IHALT.

PLEASE TYPE A COIIMA1D.

PPIS requests that the engineer identify himself and questions whether

assistance is required to use the system. When help is requested,

PPIS types detailed instructions for using the system. Thereupon,

PPIS lists the seven commands available (each will be described below)

and requests the engineer to type a command.

The "define" command allows the engineer to defihe the components

and compositions of a mixture for which property values are subse-

quently to be retrieved. After the engineer types the define co.rmand,

the conversation proceeds as follows:

*define
HOW MANY COMPONENTS?

*5
INPUT THE COMPONENT IDS. (ONE PER LINE)

*methane
*ethane
*propane
*n-butane
*n-pentane

INPUT TIE &MOLE FRACTIONS.
* 0.10 0.17 0.25 0.38 0.10

PLEASE TYPE A COMMAND. L•

- 19 -

The components may be identified using either the component names or

the data base component nuabers listed in Figure 2. Mole fraction

valu(;s are sep rated by spaces.

After the mixture has been defined, the "retrieve" command may

be used to request property values. The four options available are

illustrated in the conversations below, beginning with• "siraple"

retrieval:

*retrieve

CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLEt GRAPH, NONE.
*simple

INPUT THE PROPERTY ID.
*enthalpy

INPUT TIIE TE4PEP•ATURE DEG R AND PRESSURE ATM
* 450.0 5.0

rPSUIT= -57523.50 BTU/LB.A-MOLE COMPLETION CODE= 0
CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLE, GRAPH, NONE.

"By simple retrieval is meant retrieving a property value (or values)

for a single pair of independent variable values. Note that a request

for an enthalpy value (the property code = 400 may also be specified)

requires that PPIS determine the phase (or phases) of the mixture at

the independent variable values.

The sirple retrieval option is used also to request a set of

K-values for a mixture. Such estir-ates are especially useful Vi :•n

preparing to use the generalized flash program describea earlier.

*retrieve

CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLE GRAPH, NONE.
*simple

INPUT TIlE PROPERTY ID.
*equilibriunm coefficients

INPUT TIHE TD:IIPEPXTuflE ILG r AND -PraSSURE: ATM
*450.0 5.0

RESULT= 10.710G3 2.237533 0.4604993 0.101692"
0. 2697054El-01

UNITS: NO U'NITS CO'lPLETION CODE= 0
CIIOOSE A RIUTI.IFVAL OPTION: SI:MPLE, TABILE, GRAPH , NONE.

- 20 -

The "table" retrieval option is used to request that a table of

property values be prepared at various independent variable values.

For example,

*retrieve
CHOOSE A RETRIEVAL. OPTION: SIMPLE. TABLE# GRAPH, NONE.

*table
INPUT TIHE PROPERTY ID.

*v.enthalpy
ENTER TEZIPEP.ATUEE DEG R RXIGE AND NO. OF INTERVALS.

* 470.0 520.0 5
ENTER PRESSURE ATM PWIGE AND NO. OF INTERVALS.

* 5.0 5.0 0
ANY OTHER PROPERTIES? (YES OR NO)

*no
THE TABLE IS READY. DO YOU WIANT IT PRINTED
AT TiE TErMIINAL? (YES OR NO)

*yes
PROPERTIES: 401
PRESSURE: 5.00 ATM.

TEMP. 401

470.00 -57336.813
480.00 -56949.844
490.00 -56572.797
500.00 -56203.918
510.00 -55841.609
520.00 -55484.414

UNITS: BTU/LB-MIOLE

DO YOU WANT A GRAPH ALSO? (YES OR 110)
*no

CHOOSE A •RETRIEVAL OPTION: SIMPLE, TABLE, GRAPH, NONE.

Values for as many as five property types can be tabulated simul-

taneously as they vary with one of the two independent variables.

Or, values for a sinGle property type can be tabulated as it varies

with its two independent variables (in a two-dimensional table). The

engineer is notified when the table is ready at which tire he decides

whether the table is to be printed at the terminal or on the line

printer at the compating center. Finally, he is offered the option

L8

-2.-

to have a graph prepared of the tabulated property values. Note that

no phase determination is performed by PPIS when the property type is

specified as v.enthalpy (=ho0).

The "graph" retrieval option is used to request that a graph of

property values be prepared at various independent variable values.

For example,

*retrieve

CHOOSE A RETRIEVAL OPTION: SIMPLE# TABLE, GRAPH, NONE.
*graph

INPUT THE PROPERTY ID.
*l.density
ENTER TrLAPERbrTUPJ DrG R RANGE AND NO. OF INTERVALS.

* 400.0 490.0 9
ENTER PRESSUE ATM.! RANGE AND NO. OF INTERVALS.

*.20.0 20.0 0
ANY OT.HER PROPERTIES? (YES OR NO)

*no
THE GRAPP! IS IWADY. WO YOU WANT IT PRINTED.
AT THE TlMIIIIJAL? (YES OR NO)

*yes
PRESSURE= 20.00 ATPI.
PROPERTIES: 202
SYMBOLS : *
UNITS : LB-MOLE/FT3

TEMP. DEG R *

* 400.00 0.1778
* 410.00 0.1917

420.00 0.2060
430.00 0.2206

* 440.00 0.2355
* 450.00 0.2506

* 460.00 0.2660
* 470.00 0.281*1

* 480.00 0.2976
* 490.00 0.3136

--------------------------------------- -- -

DO YOU 1;ANT A TABLE ALSO? (YES OR NO)
*no

CHOOSE A URETRIEVAL OPTION: SIMPLE, TABLE, GRAPH, NONE.

Valucs for as mariy as five property types can be plotted on a

single rraph as they vary with one of the two independent variables.

Lb9

-22

At this time, graphs as a function of.one independent variable ai

abscissa and the other independent variable as a parameter cannot be

plotted. The other options are slmilar to those for table retrieval.

The -'constrain" command allous the engineer to direct PPIS to

locate specific data records during subsequent retrieval requests.

The following conversation enables the engineer to supply retrieval

constraint table information interactively:
*constrain

PLEASE SUPPLY TIlE FOLLOWING:
PROPERTY ID.

"*401
CONTRIBUTOR:

,

ROUTINE 110.:

MAX. ALLOWED ERROR:
*5.0

ANY MORE CONSTRAINTS? (YES OR NO)
*no

PLEASE TYPE A CO'IMAND.

The above conversation instructs PPIS not to use data records for

vapor enthalpy in which the mximum expected error is greater than

The "store" cor=and allows the engineer to add a data record to

his private data base; he i.my also modify or delete a data record.

Using this co='and, the engineer can raintain a private data base

including constant, correlation coefficient, and tabular property data.

Upon receiving the store coru.and, PPIS first requests key word infor-

ration to identify a data record. PrIS searches the private data base

for such a data record. Ifnfen no such data record is located, Pr'IS

"-23-

requests that the engineer type data values, as illustrated below.

Upon locating such a data record, PPIS offers the engineer the option

of modifying or deleting any entry in the data record (not illustrated

below).

*store
PLEASE SUPPLY TIHE FOLLOWING:
PROPERTY ID.:

*1.0density
CONTRIBUTOR:

*omega,j.b.
ESTI:IATION ROUTINIE NO.

"*14
VALIDITY RAN•GE FOR TEIPEPATURE- DEG R

*400.0 490.0
VALIDITY MIRGE FOR PRESSURE ATM

"*15.0 25.0
I4AXIMU11 EXPECTED ERROR (%)*4.0
HOW WEI.Y CO:IPONEUTS?

*5
TYPE II' TIHE C01MPO1,E.1T IDS. (ONE PER LINE)

*mnethante
*ethane
*propane
*n-butane
*n-pentane

DATA TYPE: (CONSTAN/T, COEFFICIEiT, TABULAR)
*tabular
110W 1JANY VALUES OF TE:7TEPATURE DEG R?

*5
H1OW MANY VALUES OF PRESSURE ATM ?

*0
TYPE III TIHE CATA.

*400.0 0.1778
*420.0 0.2060
*440.0 0.2355
*460.0 0.2660
*490.0 0.3136

PLEASE TYPE A COML'MAN;D.

The store co..-nd fa-cilitatcs the storage of tabular values

generated by thc table or rraph retrieve .cozrrand for subsequent inter-

polation. In the illuntration above, liquid dennity vlucs estirAted

'- Ih

- 24-

using the Benedict-Webb-Rubin equation iteratively .(tee the graph

retrieve command illustration), are stored for subsequent linear

interpolation (estimation routine number 14). The speed of inter-

polation is especially important for iterative design computations

at varying temperature values.

The other interactive PPIS commands, "review", "change", and

"halt" are briefly described, but not illustrated. The review command

causes PPIS to print (1) cor.ponent narnes and mole fractions for the

most recently defined mixture, and (2) a summary of the current

retrieval constraints. The change comand is used to modify selec-

tively the components or role fractions in a previously d.-f'.ned mixture.

And, the halt co~mmand terminates an inquiry-response ression.

Evaltation of the Inquiry-Rcoponse PPIS

The inquiry-response feature nmrkedly increases the ezisinccr's

accessibility to PPIS and thereby demonstrates the utility of computer-

based information systems for engineering purposes. The most obvious

benefits follow. The inquiry-response PPIS provides students with a

tool for estiration of mixture property values when handbook values

do not exist or are not easily accessible. It provides a vehiclu for

property estiration using iterative algorith.ms that are difficult to

implcment manually. And, in so doing, it often pz ivides more accurate

property values in shorter ti:.-e. The inquiry-response PPIS enables

the engincer to scan graphs and tables of property values over inde-

pendent variable ranges under study in application prornirz. Tbereby,

-25-

the engineer may confirm the accuwacy of bench-mark values and gain

confidence in an ostimntion procedure's ability to reproduce physically

knoum variations vith the independent variable values.

Of course, the overhead cost associated with preparation of data

for rachine storage, day-to-day disk or tape rentals, and maintenance

and execution of an estimation program library is considerable. One

goal of our research, acco.a-q=inG the goal to improve the utility of

physical property infcrnation systems, is to reduce overhead costs.

Sozc ideas are included in the following taragraphs.

The estiration of property ,alues using iterative algorithm

sometimes r.qlircs 0.1 CPU seconds on the RCA Spectra 70/46 computer.

Tnis time is atzributed alrost entirely to the iterative nature of

the computations when compared with approximately 0.001 CPU seconds

for table interpolation computations. For the occasional interactive

query, the order of iragnitude difference in estimation times, is not

a critical factor. But for the designer, whose application progrr

require repeated estizatcs of property values, the CPU sec./estimate

is sirnificant, ezpe'Cally iuhcn the application program is a unit

operation rodule for ratcrial and encr- balancing using U.P.PACER.(l5)

Consequently, it is often desirable to store in tabular form

property values tccurately cstiratcd over a raCe of independent

vrinhle -aluce, for subsequent high-si-cd interpolation. As an

exn::.ple, the store corznnd Lns uwed earlier to store a table of liquid

dcnsity v-,lucs cý,;.putcd iteratively using the r.,nedict-Webb-Rubin

equation. To eliminate cone of the data preparation (typing) overhead

associated with the store command, work is in progress to autorate the

procedure for tabulating property values followed by direct storage in

a &dta record (at the engineer's request upon satisfaction with the

tabulated values). We are also installing spline polynordal curve-

fitting algorithr-s that coriute and store spline correlation coeffi-

cients for high-speed computation of property values.

A reliable and up-to-date public file of data records (=aster

dae base) and estination procedures is important to the succcssful

operation of PPIS. The PPIS programs must be raintained, new data

records stored, old data records purged, and new estimation procedures

installed and documented, arong other routine inforration handling

activities. For these purposes, a PPIS librarian is required; a

person well-versed in property estimation methods and digital compu-

tation. Since research-oriented faculty and students are not inclined

to asbume librarian duties, we expect that engineering schools will

soon turn to non-academic staff cembcrs to raintain the increasing

number of inforration systens (the co=-on practice in university

libraries).

A recurring problem .hen cstiratir property values using alter-

rate mcthods in overlapping independent variable ranges is "conizitency".

The consistency prob!en occurs vhen two estimtion methods pr-cdict the

same property value trends in an overlapping independent vaiable e

ran.g, but property valuer differ over t.. rargec due to nearly constant

errors in cne or both of the r-ethod5. Corsequr.tly, a step chan'e i,.

-27-

pruperty values occurs when switching between methods, with the possi-

bility of distortion tin the application program results, especially

when the application program model is based upon the rdte of change

of property values with independer variable values. The inquiry-

respon-e PPIS allows the engineer to scan graphs and tables of property

value estirates near those to be used during subsequent execution of the

application program. When inconsistency is observed, new data can be

obtained and other estimation procedures invoked.

i.e consistency problem demonstzr:tes tte desizability of a report

generation facility that lists 11l data records and estimation proce-

dures used during execution of an application program. Such a report

would su-=.arize the frequency of usage of data recordz and estimation

•procedlures, and their associated CPU time.:. It would identify unex-

pected use of data records or estimation programs due to unusual

excursions in independent variable values or improperly specified

constraints.

As mentioned previously, methods are provided for the engineer to

enter new estimation procedures (see Chapter 6, User's Msnual(8)).

Currently these methods require knowledge of PPIS details not known

to the average engineer. Hence, the engineer must use public library

programs or enlist a PPIS expert to install a new estirration procedure.

Methods for automatic translation of stand-alone property estimation

procedures into PPIS terminology are Lmder study. Taie approach used
for nutozratic translation of FORTRAN unit balance programs into

U.P.PACER programs is especially prormising. (1)

- 28 -

For most application programns, not all data records in the data

base and estimation procedures in the library are required; in fact,

typically only a few are used. Mien this is the case, it is h .iprac-

tical to search all data records for the few that apply. Hence, we

are implementirn an extension to PPIS that enables the engineer to

prepare a "customized" data base for each new application problem.

For example, a student engaged in the. design of an ammonia process

will prepare a customized data base that includes property data for

N2 , H2, NH3 , Ar, and CH4 only. The customized data base is essential

to the successful operation of PPIS on a small machine, where searching

a large data base ±s impractical.

The inquiry-response PPIS has been used by several undergraduate

students engaged in the preparation of general purpose material and

energy balancing algorithms for absorption. stripping, heat exchange

=nit operations, among others. We plan to introduce the system to

chemical engineering sophomores in thermodynamics and stoichiometry

courses during the Spring semester. At that time, we should be better

prepared to discuss the econoriics of using such an inforration system

in the classroom.

SUI.TIARY AMID COICLUSIOIS

The role of physical property information systems (PPIS) for use

in chemical engineering application programs is discussed, with

emphasis on the desi';n and implementation, of a PPIS for undergraduate

course work. TWo design objectives vere specified for a prototype PPIS:

" 29

1) To allow the engineer to prepare application programs

requiring no modifications when the components in a

mixture are altered and when new property estimation

techniques are required.

2) To allow the engineer to easily store physical property

data for subsequent retrieval and estimation of property

values using interpolation and correlation algorithms.

The paper discusses these objectives and presents the significant

features of the prototype PPIS. A typical material and energ:r bal-

ancing algorithm for a flash separator is presented, with emphasis on

the role of PPIS in providing for a more generalized unit operation

program to be used in the sophomore stoichiometry course. Several

shortcomrings of the prototype PPIS are discussed; the r. t important

being the requirement to write a FORTRAN program simply to obtain

property values.

The inquiry-response inttrface to P'PIS was designed and implemen-

ted to provide interactive cor.zunication through a typewriter terminal.

In this way, the engineer ray interactively study the performance of

estimation procedures for computing property values over a wide range

of independent variable ralues. And, the engineer may interactively

store property data for subsequent interpolation or use with correla-

tion programs. Tle paper discusses these objectives and presents the

significant features of the inquiry-response PPIS. The role of the

inquiry-response PPIS in the selection of property data and estimation

proccdures to be used with application programs is described. Finally,

5 7

30

the performance of the inquiry-response FPIS is revicwed, with emphasie

on plans for reducing the cost of data preparation end management and

for improving its utility in engineering computations.

We conclude that our physical property informration system is a

fore-runner of the numerous computer-bared information systems that

will play a significant role in computer-aided analysis and design

computations. Several examples and discussions serve to demonstrate

the role of PPIS in undergraduate education today and our expectations

for PPIS in the near future.

ACMIMMWEDGII~4~T

The assistance and services provided by the University of

Pennsylvania Computer Center (IPB.M 360/75) and the Moore School Computing

Center (RCA Spectra 70/16) are gratefully acknowledged. Partial finan-

cial support for Dan £oznanovic and many aspects of the work were

provided by the Esso Education Foundation and the Air Force Office

of Scientific Research, Arlington, Virginia. The authors appreciate

the opportunity to conduct this research within the conf-nes of the

Moore School Information System Laboratory, under the direction of

Professor Morris Rubir.off. The aavice of ISL members and Chemical

Engineering Calculation System Project members (too num~erous to list)

is greatly appreciated.

-31-

Pbysical
Property

Code Independent Variables

100 Density T P
101 - vapor T P
102 - liquid

200 Fugacity Coefficient T P
201 - vapor
202 - liquid
216 Vapor Pressure T -

300 Activity Coefficient T P
302 - liquid

305 Equilibrium Coefficients T P

400 Enthalpy T P
401 - vapor
102 - liquid
411 Enthalpy Pressure Correction - vapor T P
412 - liquid

425 Zero Pressure Enthalpy T P

430 Heat Capacity T P
431 - vapor
432 - liquid

515 Bubble Pt. Teupiperature P -

516 Dew Pt. Temperature P -
517 Temperature Enthalpy P
518 Vapor Fraction T P,

1031 Critical Tenperature - -

10O Critical Pressure - -
1003 Acentric Factor - -

.1004 Solubility Parae:eter - -
1005 Molar Vol wc - -
1006 Molecular Wt. - -

1007 Melting Pi. Teraperature - -

1008 Nor-•al Boiling Pt. Tenmerature - -

.1.1 Critical Co:.pressibility - -

Physical Propcrty Codes

Figure 1

32

Compound Data B~ase Compound Data Ease
,or Comiponent or Com~ponent

Element -Number Element Number

Hydrogen 1 I-Pentene 29
Kuthane 2 Cis-2-Pentene 30
Ethane 3 Trans-2-Pentene 31
Propane 4 2-Mo thyl-l-Butene 32
1-Butane 5 3-M.ethy1-l-Butcne 33
n-Butane 6 2-Me0thyl-2-Butene 34
i-Pen tane 7 1-11exene 35
n-Pentane 8 Cyclopentane 36
neo-Pentane 9 Methylcyclopentane 37
n-Hexane 10 Cyclohexane 38
n-IKepta~ne 11 Methylcycl~ohexane 39
n-Octane 12 Ben zene 40
n-Nonane 13 Toluene 41
n-Decane 14 0-kvlene 42
n-Undeccine 15 M-Xylcne 43
n-Podecane 16 P-Xylone 44
n-Tridecane 17 Ethylbenzene 45
n-Tetradecane 18 Armnonia 46
n-Pentadccane 19 1120 47
n-Ilexadec 'ane 20 Ethyl Alcohol 48
n-Heptadecane .21 Acetone 419
Etlkylene 22 Nitrogen' 50
Propylene 23 ODyGen 51
1-Butene 24 Carbon Monoxide 52
Cis-2-Butene 25 Carbon Dioxide 53
Trans-2-Butene 26 Air 54
i-]3utene 27' Argon 55
1,3-lButadiene 28

Data Base Component Numbers

Figure 2

- 33 -

Data Base

Chemical Component Component

Index Number Name

1 2 Methane

2 10 n-Hexane

3 5 i - Bulane

4 4 Propane

5 20 n-Hexadecane

Component Identification Table

Figure 3

DIMENSION X(10)
READ (5,10) NCOMP, T, -P
READ (5,10) (X(I), I = 1, NCOMP) Segment of

application
program.

H = PPCF (400, T, P, X, IC)

Si

Chemical Data Base Component

Index Component Name
Code

1 3 Ethane
2 4 Propane3 6 n-ButaneCopnt

Identification
4 8 n-Pentane Table.

NCOMP=5 2 Hethano

Sample Arplication rroGram retrieval. Request

Figure It

I

- 314-

RetrievalRoutine Phase Determination Capabilities

PPCP If temperature s melting point, retrieve solid

property value.

If pressure Z vapor pressure, retrieve vapor

property.

If pressure > vapor pressure, retrieve liquid

property.

PPCF PPCS If vapor fraction = 0.0, retrieve liquid property.

If vapor fraction = 1.0, retrieve varor property.

PPOF only If 0.0 < vapor fraction < 1.0, then two phases

exist. Vapor and liquid mole fractions are

coq'uted, and vapor and liquid properties retrieved.

Result = YF * vapor property + (1.0 - VF)* liquid property,

vhere YF - vapor fraction.

Phase Determination

igure 5

622

" 35 "

Routine Routine
Name • Number Purpose

Therzodynanic Propcrty Esti.ration

ZMI 3 Zero pressure enthalpy of a mixture

BMTP1 D Bubi'e point temperature of a vdxture
using Newton' s method

DLTP1 5 Dew point temperature of a mixture
uring Newton' s method

BWRMPC 6 Enthalpy deviation due to pressure using
Benedict-Webb-Rubin equation of state

EISV 16 Enthalpy departure of superheated vapor
mixture using a corresponding state
correlation based upon the table in
reference (14), p. 595

ENSL 17 Enthalpy departure of subcooled liquid
mixture using a corresponding state
correlation based upon the table in
reference (14), p. 595

ENSHV 18 Enthalpy departure of saturated vapor
mixture using a corresponding state
correlation based upon the table in
reference (14), p. 598

2SUIL 19 Enthalpy departure of saturated liquid
mixture using a corresponding state
correlation based on the table in
referen:e (14), p. 598

VFRAC 7 Vapor fraction of a mixture by Chao-
Seader method

VAPFRC 21 Vapor fraction of a mixture by material
balance using K-v•lues

FUGL 8 Liquid fu5acity coefficient for ead,
component of a mixture using Mao-Seader-
Grayson-Streed method

ACTiL 9 Liquid activity :oefficient for each
component of a mixture by Chao-Seador

Proj-,Nrty Ectw-atio'n k-oFure£3

Fit-ure 6

03

Routine Doutine

ThermodynwAic Property Fwtiration (Cont.)

PUG 10 Vapor fusacity coefficient for each
component of a mixture using Uenodict-
Webb-Rubin equation of state

KVAL 11 Vapc'-liquid equilibrium coefficient for
each coponent of a mixture by Chao-
Seader method

KTATLE 20 Vapor-liquid equilibrium coefficient for
each component of a mixture using a
corresponding state correlation based
on the table in reference (14), p. 441

S12 Enthalpy of a mixture by adding zero
pressure enthalpy and enthalpy deviation
due to pressure

MM 13 Temperature of a mixture given the enthalpy
by Nevton''s method

VPFMS 22 Vapor pressure of a component using the

Antoine correlation

fTysical Property Estiration

BOLD 1 Liquid density of a mixture u-ing the
Benedict-Webb-hubin equation of state

BEM 2 Vapor density of a mixture using the
Benedict-Webb-Rubin equation of state

Interp tion Procedures

X331T 14 Linear i:.terpolation of tabular data

General Correlation Procedures

POLY3D 15 Tird degree polynomial correlations

Property Eatimtior Proccd.Are.t

FPi-re 6 (cunt.)

" 37 -

Property Data
(Tables, correla-
tion coefficients

and constants)

PropertyProperty Estimation
Values

V sRoutine Property Value3s

(produced
by another

.. estimation

routine)

The Role of Estimation Procedures

Figure 7

65i

-38 -

Data Data Data Data
Record 1 Record 2 Rccord 3 Record 4

Property : liq. heat yap. heat yap. beat liquid
capacity capacity capacity e;!nsity

Contributor : 142 142 153 178

Validity range(l) : 492-672*R 672-3240OR 3240-6840OR 400-490OR

(2) : 0.5-2.Oatm 0.5-2.Oatm 0.5-2.Oatm 15-25atm

Max. error : 0.5% 1.0% 2.00% 2.0%

Estimation routine: 15 14 14

Data type : constant coefficient tabular tabular

Component(s) water water water 2,3,4,6,8

Data : 1.0. T T P
0.428 3240 0.656 400 0.1778

-51.42x10 4000 0.701 420 0.2060

3.88x10-8 5000 0.743 440 0.2355

-7.35x10-12 6000 0.771 460 0.2660

6840 0.782 49010.3136

Sample Data Records

Figure 8

Property Allowable Estimation Contributor Constraint
Code Error Routine No. Code Degree

Vap. heat cap. 1. 5% 15 142

K-values 1%

Vap. density 1% 2 - *

Crit. temp - - 4

2% -

Retrieval Constraint Table

Figure 9

39-

0*-0

CE)

Vj

oIn

cE)
I-n

0L)1

-40 -

NC, Design Variable
Values

E Guess T -=r,*

CALL PPCS (305, TVSTAR ,PVj Z, KVAL, IC)

Solve Material
Balance Equations

HF = PPCF (402, TF, PF, Z, IC)

HV = PPCF (401, TV, PV, Y, IC)

Compute Next HL = PPCF (402,TL, PL, X,IC)

Guess for
Tv TV* Estimate New

Tv Using Energy
Balance Equation

•No Convergence ? Y rn RslsSo

Flash Separator Algorithm

Figurme 11

'4
0

OD _j EE 0
t•oo "oa

:•'4.

a, i sI Ni N N 0.

0

to >

0i ca 0o

. o . to 0o .

1 0-o

I
III I I

'- U)

_OT X jq/n.L8o

*9

" 42 "

LITE•IITURE CITED

l. Crowe, C. M., et al., Chemical Plant Simulation, McMaster
University, Hamilton, Ontario, Canada (19,9.-

2." tbtard, R.'L., et al., .CHESS, Chemical Engineering Simulation
&aste. Tech. Publ. Co., Houston, Texas (1968).

3. Carnahan, B., W. D. Seider and D. L. Katz, Co__2uters in Engineering
Design Education - Chemical Engirecring, Vol. II, The University
of Michigan, Ann Arbor, Michigan (6)-.

4. Edwards, L. L., "Teaching Optimization: The Best of All Possible
Approaches", Chemical Engineering Education, _, No. 2 (1970).

5. Seider, W. D., "Time Sharing In Engineering Education", Engineering
Education. 59, 5 (1969).

6. Seider, W. D., "The Student and His Information Needs", Engineering
Education, 60, 5 (1970).

7. Poznanovic, D. S., An Inforr.ation Stoýage and Retrieva.l System
for Physical Properties of Chemicals, 14.ster's Thesis, The
University of Pennsylvania, Philadelphia, Pennsylvania (1969).

8. Poznanovic, D. S., User's Iq .nual -- FPh cal Property Data-Base,
Storage, Retrieval, and Estivation Systemh The University of
Pennsylvania, Philadelphia, Pennsylvania (1969).

9. An Introduction to rlr;tran - Flousheat Simulation, Monsanto
Company, St. Louis, M-Iissouri (1970).

10. Halcon Pnysical Properties System, Halcon International, Inc.,
New York, New York (1969).

11. User's Guide - Chemical E.gineering Calculation System -- GECEC,
Infornation Service Departm.ent, Ceneral Electric Co., Bethesda,
Maryland (1970).

12. AIChE ihysical Property Estimation System, Arthur D. Little, Inc.,
available from AIChE office, I7ew York, New York (1965).

13. Meadows, E. L., Jr., "Estirating Physical Properties: The AIChE
System," Chem. Engr. Progr., 61, No. 5 (1965).

14. Hougen, 0. A., K. M. Watson, and R. A. Ragatz, Chemical Process
Principles, Part Two: Therodkramics, Second Edition, J. Wiley,
New York (1959).

15. V•hittall, P. P. and W. D. Seider, User's IMhnual - University of
Pennsylvania PACJ9, University of Pcnnsylvania, Philadelphia,
Pennsylvania (1970")

16. Soylemcz, S. and W. D. Seider, "The Cheutical Eigincer - Process
Analysis and Design System Interface", presented at the Denver IT
meeting of the AIChE, Saptci:ier, 1970.

" 43

LIST OF FIGURE CAPTIONS

Figure No.

1 Physical Property Codes

2 Data Base Component Numbers

3 Component I.dentification Table

4 Sample Application Program Retrieval Request

5 Phase Determination

6 Property Estimation Procedures

7 The Role of Estimation Pro-cedures

8 Sample Data Records

9 Retrieval Constraint Table

10 Flash Separator Schematic

i1 Flash Selarator Algor-ithm

12 Flash Curve

71

AN INTERACTIVE FLOW CHART GRPHICS SYSTEM

by

Peter L. Delaney, Jr.

INTRODUCTION

The purpose of the graphics system is to allow a user to

draw a flow chart. The graphics-system is interactive; that is,

it communicates with the user while he is drawing, offering him

a choice of several actions that may be performed. The systera is

designed to be sufficiently fast to keep up with the user;

offering no noticeable delay between operations. In addition,

the system is modular to allow for easy programming. And finally,

the graphics'system is implemented on a small computer so as to be

inexpensive in operation.

The PDP-8 is the computer selected to house the graphics

system. It is a small computer that has 8K of 12-bit words,.a

32K disc, a small tape unit, and a 338 cathode ray tube (CRT)

display. The 338 is a special purpose computer, controlled by the

PDP-8, that executes a "display program" in the PDP-8's core memory.

The "display program" or "display file" resides in a part of

memory set aside by the PDP-8 to be executed by the display. The

display file is composed of a set of display instructions which tell

the 338 how to draw. There are two states of operation, "control

state" and "data state". In control state, the display program

controls program flow and sets up display registers that contain

drawing parameters (for example, beam intensity, drawing scale,

and drawing mode). In data state, the display program uses the

72

-2-

data in the display file to position the cathode ray tube display

beam. A few of the drawing modes are point, vector, and character.

When in point mode and data state, the display will draw points at

the coordinates specified in the display file. For example, a

display program to draw a line from the point P2:(10,10) to the

point P2:(100, 100) at scale one and intensity five would be:

Label Instruction Comment

PROGI, SC1 INT+5 /SET SCALE =1,INTENSITY=5/
EDS POINT /SET MODE="POINT",ENTER DATA STATE

10 /Y - COORD
10+4000 A - COORD, ESCAPE TO CONTROL STATE/
EDS VEC /ENTER DATA STATE,MODE="VECTOR"
100-10+4000 /AY=100-10=70 (OCTAL) ,INTENSIFY
100-10+4000 /&X=li00-10=70, ESCAPE/
STOP /STOP EXECUTION

*Note: All numbers refer to the octal number system.

For details, see the DEC-338 manual.

This display program, when executed, draws a vector from the

point pl: (10,10) with components (AY=70, 6-X=70) once! In order

to keep it on the screen for more than a fraction of a second

(since the CRT phosphors relax rapidly), a "JUMP" instruction is

used to transfer control to the beginning of the display file.

For example:

73

-3-

Label Instruction *Comment

PROGI, Scd INT+5 /SET SCALE AND INTENSITY/
LOOP, EDS POINT /ENTER DATA STATE "POINT"

10 1Y - COORD
4010 /X - COORD + ESCAPE/
EDS VEC /ENTER DATA STATE "VECTOR"'
70 /AY=70
4070 /LX=70,ESCAPE/
JUMP /TRANSFER CONTROL
LOOP /TO ADDRESS "LOOP"

*Note: The display file must be re-executed frequently
(about 30 cps) to avoid CRT flicker.

It should be noted that the "JUMP" instruction requires two

words of memory; the first denotes the "JUMP" instruction itself,

and the second indicates the address to which control is to be

transferred. See Figure 1 for an illustration of the picture

drawn by this program.

Another important feature of the 338 is its ability to

execute calls to display subroutines. A "PJMP", or push jump

instruction, is used to put the current display program addrcss

plus two onto a hardware push down stack and then transfer control

to the address contained in the word following the "PJMP". To

return from the display subroutine, a "POP" instruction is used

to pop the push down stack and transfer control to the address

retrieved from the top of the stack. F-'r example, a display

program to draw the three squares in Figure 2 would be:

74

-4-

(0,1777) (1717,1777)

Y

P2: (100, ioo)

S :0&Y=70

-X-----I
P1: (10, 10)

(0,0) X (1777,0)

Figure 1

Picture Drawn by "PROGI"

(0,1777) (1777, 1777)

P3: (1400,1400)

P2: (1000, 1000)

PI: (400,400)

%0,0) x (1777,0)

Figurc 2

Picture Drawn by *PROG2*

Label Instruction Comment

PROG2, SC2 INT+7 /SET SCALE=2, INTENSITY=7/
LOOP, EDS POINT /POSITION BOX NO.1.

400 /1 - COOERD
400+4000 /X - COORD,ESCAPE
PJMP;SQUARE /CALL DISPLAY SUBROUTINE TO DRAW

/A SQUARE./
EDS POINT /POSITION SQUARE NO.2
1000 1Y - COORD=1000
1000+4000 IX - COORD=100+ESCAPE
PJMP;SQUARE /DRAW A SQUARE/
EDS POINT /POSITION SQUARE NO.3
1400 /Y=1400
1400+4000 /X=1400,ESCAPE
PJMP;SQUARE /DRAW A SQUARE/
JUMP; LOOP /REDRAW PICTURE/

/
SQUARE, EDS VEC /DRAW 4 SIDES OF SQUARE

4100;0 /LEFT (AY=l00,1X=0)
4000;100 /TOP (Ay=0,&X=100)
6100;0 /RIGHT (AY-l00,&CX0)
4000;6100 /BOTTOM (Ay-0,&X=-100)
POP /RETURN

*Note: 1) A semi-colon (;) is used to concatenate two

display instructions on the same line.

2) Vector components with negative length are
formed by adding 2000 to the magnitude of
the component.

Clearly, the display file for a large flow chart is very

large and complex. For this reason, a graphics monitor has been

written to simplify display progriunui.ng.

. .. • m .N- ii,

. 6 _

Before describing the graphics monitor, it is advisable to

examine the graphics system as a whole and a few of its important

components. See Figure 3. The light pen, as shown in the upper

right hand corner of Figure 3, is an important input device 3n

the graphi.cs system. It is a finger operated shutter connected to

a fiber optics tube which, in turn, is connected to a photo-

multiplier tube housed in the 338. When the light pen is pointed

at a line being drawn on the screen, the 338 receives a signal

from the light pen. The 338 may then, if conditions perni.--., stop

the display and inform the interrupt handler of the "light pen

hit". The pushbuttons, also in the upper right hand corner of

Figure 3, are a set of 12 buttons with light indicators which may

be set on o• off by either the interrupt handler or the user. The

user program, shown on the far left of Figure 3, is one 6f a set

of program overlays that call on the graphics monitor to perform

functions requested by the user. For example, the user program,

after a light pen hit has been recorded (by the interrupt handler),

may call upon the graphics monitor to alter the display file. In

this way, picture modification can take place interactively.-

THE GRAPHICS MONITOR

The graphics monitor is the heart of the graphics system.

Its purpose is to simplify programming of the 338. It is composed

of two p-.its, the "interrupt handler" and the "display file

monitor" (see Figure 3). The interrupt handler takes care of all

I/O activity for the system; for example, loading program overlays,

servicing pushbutton and light pen hits, and data phone communica-

tions, and will be discussed later.

-7-

"0CRT USER

I/o Light Pen

Inter-rupt

Handler

'~ ~- ,----.,

User Graphics 338 Pushbuttons
Program Monitor Display

Display.. "- - ---

File

I 4ora tor

Display

File

Figure 3

Graphics System Structure

-8-

Display File Monitor

The display file monitor handles all display file modifica-

tions in the graphics system. To do this efficiently, a display

fil structure has been designed containing three basic entity

types:t

a) Nodes,
b) Branches, and
c) Devices.

A node is defined as a point on the screen with a shape (see

Figure 4.1). A branch is defined as a vector between two nodes

(see Figure 4.2). And a device is defined as a geometric shape

with a set of relative positions for "terminal nodes" (see Figure

4.3). The three entity types when assembled form a flow sheet

'see Figure 4.4). Any of these entities, node, branch, or device,

may also have a "text label" positioned relative to that entity.

Sfourth entity type called a "light button", or "button" for

short, also exists in the graphics system. A light button is a

temporary entity that is not a part of the flow chart. It

has a shape and a text label and is used to give instructions to

user.

The display file is composed of "primary" and "secondary"

blocks. Each primary block contains information pertaining to one

entity. The primary blocks are linked together using "JUMP"

instructions to enable entities to be added or removed from the

display file easily, as illustrated below in Figure 5.

79

-9-

Ni

4.1 Nodes 0 -* vShape 4 with Label "Ni"

Shape 2 Shape 3 Shape 5

2-

4.2 Branches

Branch . --. --- BI

N' from Ni Branch with Branch with
N1 to N2 Arrow Label "BI"

D1

4.3 Devices , - " 9 Labelled device

Device

20 MFD

4.4 Flow 5K
Chart 5 AMPS

B1

6 VOLT

Fi(gure 4 P0

Electrical Network Entities and Flow Chart

-10-

From Last Block

___JU___ " 1 Primary block• 1 Entity

JUMP

To Next
JUMP Block

Figure 5

Primary Block Linkage

For identification purposes, an "entity name" is assigned

to each block. The entity name is composed of two parts; the

entity type (node, branch,. device, or button) and an entity

number that ranges from 1 through 377, for example:

a) NODE 5
b) DEVICE 25
c) BRANCH 1
d) BUTON 10

The entity name is stored in the first word of an entity's

primary block. The entity type is stored with the entity number

in a 12-bit "full name". The "type" requires 2 binary bits

because thero are four entity types. The "number" requires eight

binary bits because there are 400 possible numbers, with zero

reserved for system use. For example:

F~1

- 11 -

0 1 2 3 4 5 6 L7.•8 T9 lo -TL0r

-
2 bit 8 bit entity number (1 377)
entity
type

Note: Bits 0 and 1 hold miscellaneous information
and will be described later.

The bit combinations used in bits 2 and 3 have been

selected as follows:

Entity Type Bits 2 and 3 Octal Equivalent

LIGHT BUTTON 00 0000

NODE 01 0400

BRANCH 10 1000

DEVICE 11 1400

The full name is computed by adding the value of the entity

to the entity number, for example:

Symbolic Name Octal Name Binary Number

NODE 5 0405 00 0 1 .00 000 101

DEVICE 25 1425 00' 1 1 b00 010 101

BRANCH 1 1001 00: 1 0 I00 000 001

BUTTON 10 0010 00, 0 .00 001 000
type' number

Words 2 and 3 contain topological information that describes

interconnections between entities; for example, the nodccs connectcd

to a branch. This will be described in more detail later.

-12 -

Each entity has a set of coordinates (X,Y) that positions

the entity on the screen. To position the beam at (X,Y), an

"EDS POINT" instruction is needed to enter the data state,

followed by two words containing the Y and X coordinates,

respectively. Words 4-6 of each primary block are reserveO for

this purpose.

Word Instruction Comment

4 EDS POINT /POSITION ENTITY
5 Y-COORD /Y - COORD
6 X-COORD+4000 IX - COORD,ESCAPE

In addition, each entity has associated with it two para-

meter words. The first parameter word, word 7, sets the blink

register to "blink on" or "blink off". When blink is on, the

entity will blink on and off about once a second. The second

parameter word, word 8, sets the scale, intensity, and light pen

status registers. The scale, 1,2,4, or 8, indicates the distance

between points in vector modes. The intensity is set from 0

through 7, to adjust the intensity of the beam when drawing. The

light pen status, on or off, indicates whether an entity may

receive a light pen hit should it be pointed to with the light pen.

This will be described in more detail in the section about the

interrupt monitor. The symbolic contents of words 7 and 8 are

illustrated below:

4

13

Word Instructions Comments

7 BKON /BKOF /BLINK (ON/OFF)
8 (SCI,SC2,SC4,SC8) /SCALE (1,,2,4,8)

+(INT + (0-7)) /INTENSITY (0.-7)
+(LPON,LPOF) /LIGHT PEN (ON/OFF)

Words 9 and 10 contain a push jump, PJMP, to the display

file of the entity. In the cases of branches and devices, the

PJMP transfers control to a secondary block containing the

appropriate display subroutines. For nodes and light buttons,

control is transferred to an appropriate "node" display subroutine

stored permanently in the graphics monitor; for example:

Word Instructions Comments

9 PJmP /CALL DISPLAY SUBROUTINE
10 "DISPLAY FILE" /TO DRAW THE ENTITY

Words 11 and 12 contain an optional "PJMP" to the display

file for a label stored in a secondary block. Finally, words

13 and 14 contain a "JUMP" to the next primary block entity

point; for example:

Word Instructions Comments

11 V. or Pimp NOP, or CALL DISPLAY
12 1 t "LABEL" /FILE WITH TEXT LABEL
13 JUMP /TRANSFER COMTROL
14 "NEXT BLOCK" + 3 /TO NEXT BLOCK ENTITY

(14

-14-

Thus we have a 14 word primary block. Figure 6 illustrates a

complete primary block.

1 NAME + TYPE

2 POINTER #1

Block Entry 3 POINTER #2
Point .. 4 EDS POINT

5 Y Coordinates

6 X+4000

7 BLINK Blink and Parameters.

8 PARAMETERS

9 PJMP Call Display Subroutine

10 "DISPLAY FILE"

11 0 o { PJP }OPtional Label
12 0 1or I"LABEL"S

13 JUMP Draw Next

14 NEXT BLOCK + 3 Entity

Figure 7

A Complete Primary Block

The display files transferred to the primary block differ

with entity type as described below.

85

wI

- 15-

Nodes and Light Buttons

Each node and light button has associated with it one of

the shapes illustrated below, numbered 0 through 7. The display

files for the eight node shapes are stored permanently in the

graphics bystem.

Shape < NULL > + & A 0 a 0

NO. 0 1 2 3 4 5 6 7

Tie transfer of control to the node display file from the primary'

block is diagramed as follows. Upon completion of the display

file, control is transferred back to the primary block.

Node
or N

ButtonF~~ciNode Shape 1

P2

EDS POINT jEDS VECj Node Shape 2

X+4000

BLINK EDS VEC Node Shape 3
PARAMS PO

PJPOP
NODE SWIPE (3) - -- EDS VEC1 NdShe4

0 l orI JMPO
0 LABEL

JUMP

NEXT BLOCK + 3

Primary Block Sytcrm Display Filet

-16-

Branches

Since each branch display file depends on the position of.

its nodes, a separate secondary block is created for each branch.

The branch components are computed (by the graphics monitor) as

the displacement between the "from node" and the "to node". The

beam begins painting the CRT screen at (X,Y) and finishes at

(X+AX,Y+oY). When an optional arrow is displaced at the midpoint

of the branch, a return vector half the length and in the opposite

direction of the branch vector is drawn invisibly. The branch

arrow direction is computed (by the graphics monitor) and the

result storad in word 7 of the secondary block. When an arrow is

desired, word 6 contains a JUMP instruction; hence, display control

is transferred to the appropriate arrow display subroutines.

Otherwise, display control returns directly to the primary block

(at word 11). For example:

Branch N

P 1 A

P2 POP
EDS POINT

Y EDS VECYl
X+4000 V

BLINK POP

PARAiSl' EDS VEC

PJMP 6Y+4000 EDS VEC

BRANCH (N) VECTOR

o PJMP - &- Y/2-. POP

or LADEL -AX/2+4000

JUMP pop orP - - EDS VEC

NEXT MLOCK + 3 ARROW (N) <
• •POP

Primary Block Secondary Block System

p7Dinplay File

-.17-

Devices

A device, display file (DDF) is of arbitrary size, depending

upon the number of vectors required to draw the device shape.

Thus the first word of the DDP contains the number of sequential

seven word blocks needed to house the DDF. e--ven word blocks

were chosen to provide efficient storage. Storage allocation

methods are discussed later in more detail.

Other words of information stcred in each device display

file aree:

a) Number of terminal nodes.
b) Relative positions of terminal nodes.
c) Name. of device display file shape.

For example, a capacitor display file has 2 terminal nodes

(see Figure 4.3), 2 sets of offset coordinates for terminal

nodes from device coordinates, and a name, of wCAPACITOR". The

second word in the DDF indicates the display file length, enabling

access to aforementioned information stored in the device display

file. For example:

-18-

Deice N • # ALLOC. BLOCKS

Pointer 1 DISPLAY FILE SIZE

Pointc~r 2 EDS VEC

EDS POINT

Y
Device DisplayX File

BLINK

PAWRMETERS

PJip r-*- POP
V

DEVICE(N) DDF IV # OF TERMINAL NODES

or 1ABEL Ai

01 6LBE
JULMP 2

NEXT BLOCK + 3 2

Primary Block AYN
•N

Note: 1) AY,&X are offsets
from device Ev SH A
coordinates forE EI
terminal nodes.

2) Device shape name -

is a trim ASCII text DDF
string terminated by Secondary Block
a 00 in a character
byte. For example,

N A

Pq

- 19 -

Since all information particular to eachq device is stored

in the primary blocks, all devices of the same shape share the

same DDF secondarV block.

Labels

Labels are optiona.l display files with text positioned

relative to the entity. The label block also contains blink

and parameters. The text block is of arbitrary length depending

en the length of the text string. For example:

Name Number # OF ALLOC. BLOCKS

Pointer #1 li- EDS VEC or POPI. . .

Pointer #2 Ay

EDS POINT AX+4OOO

Y I BLINK
X00 PARAMETERS

X+4000

BLINK STOP TEXT

PARAMETERS 44o L A

PJP B E

DISPLAY FILE 1' L T
Pimp E X

LABEL T 0
JUMP -POP
NEXT BLOCK

9 0

-20 -

It should be noted that word #2 of the text block is

either a "EDS'VEC" or a "POP". The purpose of this is to

allow the option to "hide" the entity's label, by enabling the

display to skip the text label when desired. The AY and LX

are vectoi components of an "offset vector" from the position left

by the display file of the entity. For example, the label for a

branch is positioned relative to the midpoint of the branch since

the beam is left there after the branch is drawn. The "stop

text" instruction is a call to a simulated character generator

which takes a six bit character and computes the address of the

appropriate display subroutine to draw the character. A null.

character, 00, terminates the text string and returns control

back to the display file.

We now examine the display file for a complete flow chart of

an electronic circuit with a capacitor and diode in parallel.

(See Figure 7.) The diode has a label of "Dl.". The devices are

connected by branches to terminal nodes on the devices. The

display file is called by a display program called "DISPLAY DRIVER"

which limits the display rate to 30 cycles per second. The last

entity points to the "link block" which contains a "POP" instruc-

tion to return control back to the display driver.

Ring Pointers

Words 2 and 3 of each-, primary block contain topological

information that describes connectivity in the flow chart. A

ring structure has been designed for efficient definition of the

flow sheet topology. The pointers, 1 and 2, have different

meanings for each entity, as follows:

91I

L Prmary Secondary Display 1*FBlocks Blocks File

CA
jj

4'e-.1f 4

_ _ _ D

VA*
.

Z)............A.

f po2

Fiqrc

5 Dis4 a FP Etrutu0

0,4

- 22 -

Buttons - Since light buttons are not part of the
flow chart, the pointers are not used.

Devices - Pointer #1 is used to point to a chain of
terminal, nodes. The chain terminates by
pointing back to the device; for example:

Terminal #1 Terminal #2

DEVICE 5 NODE 10 NODE 4

NOT USED

It should be noted that the order in which nodes
are placed in the list corresponds to the
terminal number. When node 10 is removed
from the display file, node 4 will become
terminal #1, and that node can be terminal
of only one device. Note that pointer #2 is
not used.

Nodes Pointer #1, as we have seen, may be part of the
device terminal node chain. Pointer #2 points
to a branch connected to the node, which in
turn points to another branch connected to the
node. The last branch terminates the ring by
pointing to the node. The entry of the pointer
in the branch block indicates whether the node
is the "from" or "to" rode. For example:

NODE 3 BRANCH 3 BRANCH 1 BRANCH 7

Emnpty Chain orEtCioFrom Node From Node From Node

Device Node Chi I___
N-- NOEBRAuNCHE:S To Node To Node To Node -

! '93

i

-. 23-

Branches Both pointers #1 and #2 must be non-empty
to completely define a branch. Pointer #1
is part of a node-branch chain that points
indirectly to the "from'nole. Likewise,
pointer #2 points to the "to" node. See
the figure on page 22 for example chain rin53.

Figure 8 illustrates the ring structure for a circuit

containing a device to be deleted. The graphics monitor

examines the rings to delete both the nodes and all branches

on those nodes. First, the chain from the device to the first

terminal node is examined4 Next, all branches connected to that

node are deleted, as well as the node itself. All other nodes

for the device are treated as above. Finally the device is deleted.

See Figure 9 for a more complex example illustrating the ring-chain

structure.

Storage Allocation

Because this is an interactive graphics system, the display

file monitor uses a dynamic storage allocator to allocate 7 word

blocks of memory set aside, for the display file. A 7 word block

was chosen for efficient storage of primary and branch blocks

which require 14 and 7 word blocks, respectively. These blocks are

linked together to form a list called the "free block list".

See Figure 10. This is a directed list in which the first word

of the allocation block contains a pointer to the next free block.

The list is terminated with the last block pointing to an "end

block" with a "0" as the next block address. When additional

storage is required, for example, to define new entities, the

allocator is called upon to fi,,d "N" consecutive free blocks,

remove them from the list, nnd return with the address of the

-'24 - '

DEVICE (N) NODE 1 (I) NODE 2 (J)

I.I

BBLRNCH_} ___ BRANCH (L)

From Node From Node

To Noe "•To Node

N2 N B

D ~ t BL
NL

Figure 8

Inter-Block File Structure

first block. When storage is no longer required, for example,

when deleting an entity from the flowchart, the blocks that are

released and made available for future use. Each block is inserted

into the list physically as close to other available blocks as

possible.

LA

-. 25-

-~ ~~~~ NoeCan •-

B ND 2

3 D

') _OD N 3 ODE 1)'
_ N o d e C h~ a in O D E, ; . . .

Branch Chain Branch --Chain -

Figure 9

Ndispea File Structure Ring Pointers

-26-

oc/~ /w 7L~c.s
S... ._ ._...____o__,_.._o____S

II

C.oEI V.o I

oll:'4 4t c- r"tt. ~

_ !1
I.-I

F'igure 10 -

Free Block List

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL V.1GIIXERING

Philadelphia, Pennsylvania

FU AND R0O*WATIO11S

ON COKUIM GRAPICS FACIL17Iv

INI TI MOORE SCHOOL

by

)brris Rubinoff

and

Colin West

The mbort sehool rnnrornatioa
ftste•-s Laboratory

Uewrsity of Pnnsylvania

TANX OF c0'8

Page

1. Introduction 1

2. Project CAID 3

3. Project CIDS 5

I. Animator Movie System 8

System 1 9

System 2 10

5. DALI 12

6. The Growing Machine Movie System 15

7. Interactive Design of Chemical Process Systems 18

Input System 18

Output System 20

8.)vIS 21

9. Naval Duel System 24

10. Assembly of Programs for the 338 25

11. Comammications between the Spectra 70 and the DE= 33 26

12. Ccnclusions 28

fkrdvare 28

SoftVare 30

A General Purpose System 31

'99

1. DrNTRODUCTION

This report was undertaken in order to examine the use being made

of computer graphics facilities ia the Moore School, in particular the

use of the DEC 338. The aim was to discover what aspects of the existing

facilities were likely to limit future research using graphics equipment.

The main body of the report consists of a series of shnrt sections on

various projects which are currently using the DEC 338. These sections are

included, to give a general picture of how the DEC 338 is being used. They,

therefore, concentrate on the computer graphics aspects of the projects.

.these are followed by short sections on communications and program assembly

which are of general importance to all users of the 338.

The concluding section contains a number of conclusions and suggestions

for improvement of the facilities available. These can be summarized Ps

follows:

1. Although many users are finding that the slow display speed

and small memory size of the 338 are disadvantages of the system,

these limitations are not severe eiough to justify the cost of

improving them.

2. The uncertain fNture of the 7040 coLiuter makes it necesnary to

produce as soon as possible an assembler for DEC 338 programs

that can rum on the Spectra 70.

3. The ise of the DEC 338 is severely restricted by the lack of a

general p•rpose operating system. Systems that have so far been

deeloped have 1een de,.ipned for particular applications and are

not generally useful to ntv users.

N

-2-

4. It is suggested that a general purpose system be developed

that could serve a large number of users and so reduce the

tire taken to develop new applications.

The concluding section contains an outline of one possible system

whose primary aim would be to provide a means of using the DEC 338 in

conjunction with FORTRAN programs run in the Spectra 70.

101

2. PROJECT CAID

The CAID project is one designed to investigate a number of problems

associated with the training of helicopter pilots. The project developed

around a simulator which was designed to investigate problems of formation

flying of helicopters. This simulator has been extensively modified.

Whereas the original simulator could simulate the flight of up to 25

helicopters, the one used by CAID can only simulate the flight of one. A

number of features have been added so that the simulator can a2cept control

inputs from a student pilot and provide him with resultant changes in

instrument readings in real time.

The simulator itself is a FORTRAN program that runs in the 7040. The

student pilot can operate a number of realistic helicopter controls. These

are monitored via an A/D multiplexer system linked to the 338 which can

interact with the 7040 via the dataphone PDP8-7040 data channel link.

The main functions of the 338 at present are:

1. To provide the student pilot with a visual monitor of the

helicopter performance by displaying a number of instruments

for him to read.

2. To allow the experimenter using the CAID system to instruct the

pilot to fly a course by displaying the control movements

neeessary to maintain the helicopter on the course.

3. To input to the simulator the movements of the controls made by

the pilot.

The display seen by the student. pilot consists of: a number of fixed

scales representing instruments together with movable pointers and symbols

which represent instrument readings and control positions. By operating

toggle switches the student pilot can, if he desires, suppress sections of

the display.

-3- 1.02

4-14

The program in the 338 is in principle quite simple. A display

file has been created that represents all of the elements of the display.

Changes of instrument readings received from the simulator of movements

of the controls initiate calls to subroutines which produce a rotation

or translation of the pointers or symbols by changing a few words in the

display file. These routines are the same as the ones used in the DRAW

demonstration program.

The most serious problems of the system is maintaining a high rate of

data transfer to and from the simulator and computing the airframe equations

fast enough so that the Eystem can operate in real time. The state of the

helicopter in the simulator is rep asented by some 300 parameters; real

time monitoring of any'significant fraction of these could easily swamp

the 2400 Baud dataphone link. In fact, information concerning only 20 of

the parameters is needed to update the display. The iniformation is trans-

mitted to the 338 in binary form and the amount transmitted is kept within

manageable limits by specifying for any particular experiment the relative

importance of the parameters. The rate at which each parameter is trans-

mitted can be specified in the range from 10 times a second to once every

10 seconds. The simulator is then made to transmit the data in a pre-

determined sequence to achieve the required rates. The 338 routine that

receives the data is written in a macro form so that it can be readily

changed to accept a different data sequence required for a new experiment.

L

3. PROJECT CIDS

The CIDS project is an information retrieval system used

exclusively for chemical compounds. The problem is, given the

structure of part of a chemical compound, to locate in a data bank

all compounds that contain the substructure. A number of well

defined methods of describing a chemical compound have been

developed. One of the most precise and the one that is used in the

CIDS project is that in which the structure is defined by giving the

nature of the individual atoms and the bonds that link them as a

two dimensional network.

Such a representation has obvious disadvantages for computer

processing unless a disp3ay device can be used for input and output.

The DEC 338 is therefore used for input and output in the CIDS

project. The lightpen can be used to draw a structure on the display;

suitably coded, the structure can then be included in an information

request.

If a request for information is not very specific, many

compounds may be located. In this case, the 338 can be used to

quickly examine the results of the request, allowing the operator

to)modify his request and so condense the response thus avoiding

excessive hard copy output.

The structure of a compound is input as follows. A menu

of the chemical symbols of the most common elements (extendable to

include all elements) is displayed on the screen. Pointing at an

element with the lightpen identifies it as the one to be added to

the structure. -The structure is actually drawn on a checkerboard

array of squares. Each square can contain one chemical symbol or

-6-

can be crossed by lines representing bonds. This method simplifies

the display generation, articularly, when it is necessary to define

closed rings.

The required chemical symbol is added to the structure by

pointing at a square with the lightpen and setting a pushbutton.

According to which pushbutton is used, lines representing bonds

can be produced, liking the symbol to the previous one added to the

display. Different types of bonds are represented by various

intensities and multiplicities of the lines.

The system includes provisions for modifying, erasing, magnifying

and storing on disc any structure drawn on the display. The operation

of the pushbuttons and lightpen create a display file and two tables

in the 338 which describe the structure. The first contains the x,y

display coordinates and element type of each atom in the structure.

The second contains the position and nature of each of the bonds.

The atom and bond table can be saved on disc. The display file

is not saved but can be regenerated from the atom and bond table

when needed.

After the structure has been completed, it can be referenced

in an information request input via the teletype. The request can

consist of several lines of text of a specific form. It can be

edited and also saved on disc.

In order to transmit the structure to the 7040, it is represented

as a linear string of characters which contains all the information

in the atom and bond tables except for the geometrical information

used to generate the display.

I (.;!

-7-

A response to an information request consists of a series of

chemical compounds, each of which is represented in a Dura Mach

code. This code is one which can be used to operate a special type-

writer which can type the two-dimensional representat: Dns of the

compounds. The 338 system is capable of producing a display file

from the Dura code so that the operator can quickly examine the

result of his request by displaying in sequence the compounds found.

He may then edit his initial request and resubmit it. He cannot,

however, use directly one of the compounds retrieved in a further

request as there is no provision for converting from the Dura code

to the atom and bond tables from whiuh the input string is generated.

Hard copy output can be produced by punching a paper tape in the

Dura code which will operate a chemical typewriter.

The 338 display system as it has been written by Andre Gagnoud

is complete but has a number of limitations and is being extensively

modified. The modifications will provide the user with greater facilities

for manipulating the displayed compounds and remove some existing bugs

of the system. The formats used to A.ra compound descriptions to and

from the 338 will be made the same.

"*1

SANI4ATOR MOVIE SYSTe24

Before describing this system, it is worthwhile tracing its

development. The system was developed as one which could be used to J
make movies using the SCORS package without the need to do a great

deal of laborious FORTRAN programming.

The nucleus of the system is a B.N.F. transmission language which

enables someone using the 338 to specify the complete parameters of a

movie sequence in a form that can be transmitted to an interpreter

program in the 360. The interpreter program produces a sequence of

instructions for the SCORS package.

The language permits the user to specify a movie sequence in

terms of pictures and motions and was defined in a thesis written

by Patti Talbot.

The realization of the system, namely a 338 program which trans-

lates a sequence of input operations into the transmission language has

been largely the responsibility of Dick Coulter. The program was

developed in two stages which we will refer to as systems 1 and 2.

System 1 was the first 338 program written by Patti Talbot and Dick Coulter

and was introduced as a test of the feasibility of the system. With the

experienced gained froau system 1, the second system, a more complete and

better designed program, was started but has yet to be finished.

The interpreter program which translates the transmitted string of

characters into inst-uctions for the SCORS package was written by

Rosa 1iwang for the 360/65. Modifications necessary to make this program

run on the Spectra 70 have been started but not as yet completei.

81- 8-

-9-

System 1

The first system was one that did not make use of the disc and

so was somewhat restricted in terms of what it could do. A movie

segment could ,e defined in terms of pictL'es nimA t.-jo types of motion,

hold and translate. A total cf 17 pictures or subpicturcs could be

defined, each one being described by drawing on the display using the

lightpen or by typing coordinate information on the teletype. Either

method of iuput generates a 338 display file and a string of characters

in the transmission language. Each picture or subpicture -.ould be

defined in terms of vectors or names of other subpictures which had been

previously defined. The limitation on the number of pictures that could

be defined was governed by the DECtape file structure adopted. The

complexity of any picture definition was limited by the core size of

the 338 to about 300 vectors. Available space in the 338 was rapidly

used up because of the need to have in core a working display file,

display files for each subpicture being referenced as well as the

file containing the transmission language string. Erasing of elements

of defined subpictures resulted in removal of intensify flags in the

display files and additions to the transmission strings thus consuming

more space rather than regaining it.

When definition of the movie sequence was complete, the DEC tape

was searched for all files containing the generated transmission code

for all picture and motion elements referenced. These were then

assembled into one file which was transmitted to the 360/65 in a 4 out

of 8 code, this method being used as the 338 had to simulate a 360/20

terminal. Any editing necessitated by erasing or codifying of any of

the subpictures vas performed in the 360/65.

I

-S. -10-

System 2

The specification of the second system differes from that of the

first in the following respects.

1. Up to 226 pictures and subpictures can be defined* the

increase being achieved by a change in the file structure.

2. More complex motions can be specified incluling rotations

and parallel and sequential motions.

3. The system is nov readily expandeble, modular and disc

oriented. The sections of the system, namely picture,

motion, scene, movie segment, production and transmission

programs, are normally resident on disc and are called into

core as needed.

Ii, There are provisions included in the system for late:

addition of a text facility and also for real tine

communication with the Spectra 70.

At the time of vriting, however, only the motion, scene and

production sections of the system are complete. Pictures and subpictures

can be defined via the old system in the following way. The old system, kept

on disc, is ca&Ued into core, wiping out the monitor of system 2. Picture

files can then be created, thk system 2 monitor restored and the created

files modified to correspond irt forxat to those created by the second

system.

When completed, the secoen system will be capable of transmitting more

complex movie sequences than the first tv either the 60/75 or Spectra .70.

There will, however, be no facility fOr generating the novie sequence

directly on the 338. This is because the system never actually generates

a ser•'z of display files that represent the individual frames of the movie,

-31-

Orly the disply files that represent pictureh or objects depicted in

the movie.

A third version of the system which vill permit playback of the

movie xeeuents on the 338 Is recently been started by Phil Rothenstein.

5. DAM

DAM is a graphics language being deve.Lped by Tom Johnson.

Althou& primarily intended for teaching graphics techniques,

it mea have other applications, for wxample in movie •aking as it is

easy to learn and wse and has powerful ine manipulation capabilities.

- The language consists of a number of statements which can be

processed by S)DDL to generate FORAN IV coding. Executable DAL

FOIRTAN's computational power extensive img. manipulation capmbilities.

The statements of the DALI language can be divided Into two

class::, e..claration and. executable statements. The fort.. are used

to define PRf4ITIVrM, OWECTS and TRANSF0X.1S. PRD(TIVES are

5-vectors consisting of 4 homogeneous coorlinates and a primitive

type, namely point, vector or invisible pWint. A OBJECT can be

dimensioned to have i. predetermined nmber of components, each of

which can be either a PRDIITIVE or another OBJET. A TRAXJSFO(is

a Is x matrix which can operate on PRDIITIS or OBJECTS.

The declaration statements separate a large block of ecoau

-store into 1 sections. The first is an area reserved for the

declared trfrnsforatlaona. This is followed by a list of addresses

specif*ying subelements of the declartd objects, pointers indicating

the start of each object in the above list, then the declared

primitives. The disadvmtage of this lUyvou. is that all objects and

transfor=•s ust be declared at the start of the program. Vowever,

It is sizp).er to use than a more tomplex geueral list struture.

12-

- 13-

The executable DALI statemm . are used to define and change

individual elements of.both objects and primitives. They can also

be used to define complex transformations in terms of the elmentary

translation, rotation and scaling tranc formations defined as part or

the system. The use throughout of homogeneous coordinates greatly

,implifies Lanipulation of the objects ar.4 primLaves using the

transformations developed.

The actual production of pictures is done in two stages.

Firstly statements USE transform 1, transform 2 ... Off object 1,

primitive 2 ... are used. These cause multiplication of the

referenced transforms to produce one that is stored on a pushdown,

also the objects and primitives are put on an associated pushdown

list. No modification of the referenced transforms, objects or

primitives takes place.

A statement DISPLAY object 1, object 2, ... etc. initiates a scan

of all referenced objects to determine the primitives use1; these

are then operated on by the transforms linked to them by the

pusbdovns set up in previous USE statements. The picture can then

be output on magnetic tape as a series of primitives. A perspective

transform is also defined as part of the DALI system. This is, hovever,

used later.

One overall transfornxtion be it a perspective or simple

projection is placed on the output tape with the primitives of the

assebly of objects that represent the final picture.

The actual picture is generated by reading in the file from

tare, executing the transform and producing the output. It is

planed to produce output on the line printfr, calcoup plotter or ia

the form of a display file that can be transmitted to the 338 and

written on DEC tape. Initially this will be done using the

Park - Coulter display file transmission system, changing back the

display files on ta,pe using the Growing Machine playback program.

Eventually, however, it is planned to assemble each picture in

stages for debugging purposes, also to give a user at the 338

console the ability to modifr tihe final transformation and retransmit

the picture so that the objects created can be viewed from any angle.

The present status of the systerm is that is is written but not

completely debugged.

.i13

6. THE GrOWING MACHINE MOVIE SYSTEM

A complete description of the Growing Machine as implemented in

the 338 by Noel Bernstein is out of place here. The basic 338 system

has been extended by Noel Bernstein and Alan Hayes to produce movies

and will be described as it is interesting to compare it with the

Animator movies system.

The Growing Machine Movie system has been produced by defining a

number of primitives within the framework of the Growing Machine.

These primitives can be used to define figures and specify a number of

transformations that can be applied to them. The transformation can be

translation, rotation or camera zoom. The figures are defined in terms

of vectors, either visible or invisible. Three methods of defining

figures can be distinguished. Firstly, a figure can be defined as a

string of vector primitives input via the teletype. Secondly, it can

be defined in terms of an algebraic expression expressed as a sequince

of the more general computational primitives available in the Growing

Machine. 7hridly, a figure can be drawnm directly on the 338 display

using the lightpen. For this, the DRAW subroutine is used. This was

developed by Jeff Ball for testing routines used by the CA!D display

program.

Execution of a string to produce a movie sequence creates a

series of display files which can be displayed during execution and

also saved on DECtape for later playback. The latter results in a

more acceptable movie sequmce because of the computation time taken

during execvtion.

15

-16-

The Growing Machine and Animator movie system can be compared. The

first has a number of advantages. Figures can be defined algebraically

where appropriate. Movies generated can be seen essentially when they

are produced. However, for someone not too familiar with the Growing

Machine, a movie would be relatively difficult to produce. It would

-.... also be restricted in complexity as a result of the small size of the

338 memory and be not of very high quality because of the limitations of

the 338 display resultin- from the digital rather than analog vector

generation.

The Animator system could be used to generate some complex movie

sequences, would be easier to use and the movies would be of higher

quality as a result of using the SC 4020. The absence of an immediate

playback facility would be a disadvantage during debugging.

The playback facility of the Growing Machine has proved to be a

useful facility. Combined with the program written by Bill Park and

Dick Coulter for transmitting 338 display files from the Spectra 70 to

the 338 DECtape, it is used by

1. The MOVIES project for playback of sequences generated on the

Spectra 70.

. 2. The Chemical Process Design project for graphical output of

simulator results.

3. Bill Park for output of the walking platform simulator.

4. For output of pictures generated by the DALI language.

The playback facility is just a program that will display a series

of display files which are written on DECtape. The rate at which the

display file sequence is shown dan be controlled using the pushbuttons.

A feature which has been included to increase the maximum playback speed

-17-

is that it is not necessary for a complete display file to be on the

input tape if it is partly identical to the previous file on the tape.

To be precise, if the second file can be produced from the first by

overwriting part of it, only the changed part need to be on the input

tape.

I

7. INTERACTIVE DESIGN OF CH14ICAL PROCESS SYSTEMS

This ;ystem is in the early stages of development and can at

present be described in two sections. The first is a system

intended to provide a graphic input to a chemical process simulator.

Most of the system has been written by Jeff Ball, an undergraduate

student who has recently left the project. Jeff Kulick has con-

tributed the disc monitor and a number of other I/0 facilities used

by the system.

The second part of the system, which is being developed by

Mike Zaborowski, consists of a means of displaying graphs on the 338

which represent the results of simulator runs. This is at a much

earlier stage of development.

Input System

The status of the first part of the system is that it exists

in stand alone form. That is to say, it can be uised to draw chemical

plants in diagratrmatic form on the 338 display and to input parameters

that define the properties of the plant's components. However, no

attempt has been made to interface it to a chemical process simulator

of necessity resident in a larger computer.

A chemical plant that can be defined by the system can consist

of up to 32 components or units. There are 8 possible unit types,

i.e., distillation column, condensor, heat exchanger, etc.

A chemical plant can be defined as follows. The lightpen and

pushbuttons are used to indicate the position on the screen where a

unit should be placed. The lightpen can then be used to select a unit

type from a menu displatyed. When the unit type has been established,

18!

-19-

it is displayed in position and a request for information defining

its parameters is also displayed. This information is typed on the

teletype. The units are interconnected by using the lightpen and

pushbuttons to define the input and output points on the units to be

connected and by drawing the path of the interconnection)r stream.

There are built in facilities for erasing and modifying any part of

the displayed plant and for displaying it at different magnifications.

It is difficult to understand the underlying structure of the

system due to the fact that Jeff Ball is no longer here and there is

essentially no documentation describing t1' system.

Briefly the structure is as follows. There is a basic monitor

program which is resident in core and other sections are kept on

disc and called in as desired according -o what the user is doing.

When a particular unit is established on the screen, an entry

is created in a unit storage map resident in the lower segment of the

core. This entry contains the name of the unit, the number of inputs

and outputs and a flag indicating whether or not the display file

for the particular unit type is in core or en disc. A 16 word entry

is also creati d in a large display storage map (DSM) which is maintained

in the upper segment of core. This contains a number of identification

parameters, x,y coordinates of the unit position on the screen and

a push-jump to the display routine that represents the unit type.

This display routine is normally kept on disc but is placed as 1 or

more 16 block entries in the DSM the first. time each unit type is

referenced. When information specifying the parameters of the unit

is typed in, it is stored on disc for later referenc(. When an

-20 j

interconnection or stream is defined, two entries are created in the

DSM. The first is the parameters that define the input and output

connections together with other identifiers. The second, entered

by a pushjump from the first, is the display file generated by drawing

the path of the interconnection. The actual display of the plant is

. generated, from this DSM by scanning through all the 16 word entries

ignoring the parametric information but executing all the display

routines for the units and streams in the order they were created.

In order to interface the system to a simulator, it would be

necessary to write a program which extracts the topology of the chemical

plant from the DSM and retrieves from disc the description of each

of the units.

Output System

As stated earlier, the output section of the chemical process

design project is at a much earlier stage of development. At

present, a dynamic simulator is being used to generate information

concerning the time dependence of certain pare-meters in a chemical

plant, for example, the variation of temperature in a specific unit.

Such information is generated in an array containing values of

temperature at constant time intervals. The temperature and time are

connected to a series of x and y coordinates of a graph, which,

appropriately scaled and labeled, can be used to generate a display

file. The display file representing the graph is generated in the

Spectra 70 and transmitted to the 338 using the programs written by

Bill Park and Dick Coulter. The graph Is at present saved on DEC

tape and played back for display using the Bernstein playback program.

8. MVIES

The 1OVIES system which was used to produce the first film in

the "Electromagnetic Fields and Waves" series was fully described

in a thesis written last year by Don Deily. The system has changed

little since thin so that it is probably not appropriate to discuss it

in great detail.

The system is based on the SCORS package, which is a series of

routines made avai.lable by the Stromberg Carlson Users Society.

These routines permit a FORTRAN programmer to produce images on film

using a SC 4020 computer recorder. The SC 4020 comprises a precision

cathode ray tube whose face can be photographed, an instruction

decoder and a 7 track tape transport system used to input instructions.

The cathode ray tube can be used to display printable characters

(not useful for MOVIES) and vectors. A single instruction can

generate a vwctor having components of up to 63 raster counts in the

x and y directions, there being 1024x 1024 addressable points on the

tube face.

The SCORS package is used to generate the input tape containing

4020 instructions from a sequence of subroutine calls specified by

the programmer. Its most useful functions, as fax as the MOVIES

project is concerned, are those that provide 4020 camera controls,

scaling of the output picture frames, and segmenting of long vectors

into sections having components of less than 64 counts that the 4020

hardware can plot.

The task of the programmer is to translate a movie sequence

defined in terms of objects and motions into a serics of veýctors and

film advance instructions. There are at present two ways of doing

21-
- 21 -

-22-

this. The first makes use of the Animator Movie system described

earlier to define a movie sequence in the transmission language which

can be interpreted to produce a sequence o~f calls to the SCORS routines.

The second method is to define the movie sequence in a FORTRAN program.

Using the latter, more elaborate things can be done; in fact, this is

the only way that movie sequences involving general motions of three

dimension can be produced, A series of routines exist which can be used

to depict the motion of up to 10 objects as seen by a virtual camera.

The motions of both o',jects ani camera can be completely general trans-

lations and rotations. Provisions have been made for adding fairings to

the motions vhich simulate the effects of inertia. Also hidden edges

of certain simple objects can be automatically erased. Perhaps the

major disadvantage of the movies system as it exists at present is the

lack of a language for defining three dimensional objects which therefore

have to be defined on a line-by-line basis.

The ac'tual production of a movie is a slow and costly process. It

is therefore essential to have efficient debugging facilities for checking

a movie sequence before film is exposed. This can be done for individual

-frames by providing alternative output on a Line printer or Calcomp

plotter. A more complete check can be made by producing a sequence of

338 display files that can be transmitted to the 338 and played back as

a movie sequence using the Bernstein playback system.

The first movie was produced using the 360/65. The system is not

yet completely functional on the Spectra 70. The program developed by

Rosa Hwar, that accepts output from the Animator system w&a written in

360 machine lan-u:ge and is n~t yet working on the 70. The Spectra 70

produces 9 track output tape, so that there are some tape conversion

121

- 23 -

problems. The tape problem would not exist if an SC 4060 were used to

produce the film as this accepts 9 track tape. It is also a more

sophisticated device, having greater resolution, full screen vector

generation and a programmable processor. In principle, at least,

many of the functions at present in the SCORS package might be per-

formed in the 4060. This could produce a significant saving in main

computer time but has not yet been fully investigated.

9. AVAL DUML SYSTEM

The object of the Naval Duel system is to produce a simulator

which can be used to ctudy the interaction of opposing forces at

sea. To take an example, the opposing forces might consist of a

destroyer and a submarine, the former being assigned the task of

destroying the submarine, the second being required to attack a

convoy the destroyer is r.-otecting. The simulator is an overall

model of the system which runs on the 7040 using the)(LTILIST

system. The system can be used by two people each representing the

commander of one of the vessels. They are able to interact with the

simulator by defining their own course of action, requesting sonar

readings of their opponent's position, and by launching weapons

(e.g., torpedoes) to destroy their opponent. The sonar readings, which

are made realistic by simulating occasional false readings, can be

used to predict the course of the opponent.

The 338 can be used as a terminal by one of the users of the

system. He can define his course by drawing it on the screen using

the lightpen and receive predictions of his opponent's course in

display form.

The display program has been written by Dave Kristol. The

interesting feature of the program is that a basic number of routines

have been developed -hich are in principle of use for a large number

of display applications. These consist of routines for creating and

deleting display files, transmitting to and from the 7010, lightpen,

puzh.utl.on and light button operations, disc I/O as well as many

others. These basic routines are alIys in core and can be called by

the more specific part of the program which is semena.ed and mainly on

disc.

-21.-

10. ASS124BLY OF PROGR.S FOR TOE 338

At present, essentially all programs developed for the 338 are

"asseaoleci using a PDPMP assembler written some time ago by Tom Johnson

and Mike Wolfberg. This assembler runs on the 7040 and vas written as

an extension of the MAP assembler used for that machine.

It includes a number of" features which are desirable as aids to

writing programs for the 338. For example, in a PDP-8 memory reference

instruction only 7 bits are available for generating a direct address so

that the memory has to be considered as divided into 2008 word pages.

Only locations on the same page as the instruction or on the first page

of a memory can be directly referenced. In general, a location not or,

the current page can only be referenced indirectly. The PDPH&P assembler

is able to generate automatically such an indirect address, thus con-

siderably simplifying the work of the programmer. It also has extensive

literal and macro facilities and generates cross reference listings and

diagnostics for debugging purposes.

Programs having been assembled are generally punched on the PDP-8

in D.R.L.; using the MKWTILIST system, it is possible to transmit them

to the 338 for punching there but this is not generally done. There is

ino simple direct way of assembling a program onto DECTAPE on the 338.

Some months ago, Dave Kristol started to write a similar assembler

to run on the Spectra 70 but did not cc'iplete it for technical reasons.

Recently Len Bosack obtained an assenbler that runs on a 360. This is

being converted for the Spectra 70 but is not as sophisticated as P•TWAP

and existing programs vuld need extensive modification before they could

be assembled using it. There does not appear to be ;ny rlan: to preducc an

assembler vhich could reproduce the PMi!AP facilities on the Spectra 70.

-25-)14

11. COMCUICATIONS BETWEEN THE SPECTRA 70 AND THE DEC 338

At prsent, it is only possible to use the dataphone link between

the two machires when the Spectra 70 is operating under the TDOS system.

The communications ,programs t1'at are in the Spectra 70 have been written

by Bill Park. The facilities that are most widely used are as follows.

A user who has, for example, a FOR""1 program running in the

Spectra 70 c'.n transmit a buffer to the 338 by executing a statement

CALL TELCOM (a,b)

where b is the name of an INTEGER*2 array and a is the number of words

to be transmitted. Each of the 16 bit words can contain 12 bits of

information Lo be transmitted (usually a 3--8 instructior. or data word),

right justified and filled out with zeros.

Each word is transmitted as follows. The 12 bits are split into

two 6 bit numbers between 0 and 63. These are used as addresses which

define printable characters in an EBCDIC trans'ation table. Each 6 bit

pattern is thus represented by an EBCDIC character.

The multichannel communications program takes the string of EBCDIC

characters generated, translates them into USASC:I characters and places

them in another buffer. From here they are transferred to a synchronous

-.... data buffer in the communications controller, transformed to ASCII with

odd parity anid transmitted over the dataphone preceded by a start of

text (STX) character and followed by an end of text (ETX) character.

The data is generally received in the 338 via the program interrupt.

By setting bit 0 of the eight bits to 1, each character can be converted

to an ASR-33 character compatible with that generated by the teletype.

Otherwise, an original 12 bit word can be produced by packing the least

-26 -

- 27 -

significant bits minus 408 of two successive characters.

.This system has evolved as being the simplest method of transmitting

338 display files to the 338, given the way the TDOS system is set up.

At present, only a single character message can be transmitted to the

Spectra 70 from the 338. This must be of the form STX b ETX where b can

be either A, B, C, or D. A signifies that the 338 is ready to receive

a message, B that a message has been received, C is A and B combined and

D is used to set a logical variable to TRUE in the user program. The

last~message essentially acts as a sense switch. A call to CRXIT in

the user program will set a logical variable to TRUE if the message has

been transmitted since the previous call.

The above summarizes the communications facilities that are in

general use between the Spectra 70 and the 338. Work is under way to

extend the facilities in two ways. Bill Park has been extending the

program used for communications under TDOS; Jeff Kulick is trjing to

develop communications under the TSOS operating system. Under TDOS, a

system for transmitting messages in both directions has been developed

using special characters after the STX to indicate whether or no-'. the

previous message has been successfully received and the type of information

contained in the current message. Provision has been made for transmitting

8 bit bytes, 12 bit 338 words and ASCII characters in suitably economical

formats. Work on the communications, encoding and decoding routines is

essentially complete and they will soon be available for all users.

As far as transmission under TSOS is concerned, an attempt is being

made to make the 338 simulate a Video Display terminal. This is still

in the very early stages of testing.

12. CONCLUSIONS

In the Introduction, it was stated that the aim of the report was

to find out the limitations of the graphics facilities that are available

to students and to make some suggestions as to what might be done to

improve them.

In the hope that the suggestions will be both practical and useful,

two assumptions will be made. The first is that should a need for

additional hardware be demonstrated then funds might be available to

purchase it. The amount of money that might be found is assumed to be

significantly less than the cost of replacing the DEC 338 to emphasize

the aim of making the best possible use of what equipment is available.

The second assumption is that the 7040 will not be available after

May of next year. The 7040 is currently scheduled to stay until then,

after which time its availability cannot be guaranteed. In this case,

the Spectra 70/1Z will have to provide essentially all central computing

facilities for graphics users.

With these assumptions in mind, hardware and software aspects of the

current facilities are now discussed.

Hardware

The first conclusion that has been made is that although the DEC 338

has a number of disadvantages, they are not serious enough to represent

major limitations to research in the immediate future.

The disadvantages most frequently mentioned by users were the slow

speed of the display and the limited core and disc memory of the PDP-8

The slow display speed limits the amount of information that can be

displayed before flicker is produced. Short of replacing the 338, the

- 28 - 12 r

-29 -

only improvement that could be made v.uld be to add a hardware character

generator that would reduce the time taken to display characters by a

factor of the order of 2 to 5 depending on circumstances. The overall

improvement in the display speed would only be fractional as the average

user is not limited solely by the amount of text he is displaying. It

does not therefore appear that the addition of a hardware character

generator would produce a significant enough improvement to justify its

cost,

Problems associated with the small memory size of the DEC 338 are

obviously very serious if it is used as a stand-alone machine. Although

users of the 338 have always in principle had access to the 7040 via a

dataphone link, its use as part of an interactive system has been limited

as it is not a time sharing machine. Anyone devising a system has there-

fore been faced with the problem that most of the time the 7040 is not

available for on-line use.

In this situation, more demands are made on the 338 as a processor

than if continuous access to a, time sharing computer were possible. It

may therefore be that future systems will make less stringent demands on

the 338 so that the need for extra memory will be reduced.

Other suggested improvements to the hardware which the users suggested

included a data tablet and a real time clock. The need for either of these

appears less universal than for memory or for a character generator.

However a clock would be useful for gen.rating regular interrupts and

costs much less than the other alternatives.

It is perhaps worth noting that all of the major irmprovements

suggested would cost of the order of $6,000-$8,000. In the event of the

7040 leaving, it might be more worthwhile to purchase a KV graphics

-30-

system for the PDP-8 in D.R.L. This would cost $8,000 and although its

use of a storage tube display makes it a less flexible system than the

338, its ability to display flicker free much more text and vectors as

well as circles might make it a useful addition to the graphics

facilities at a relatively .iodest cost.

Software

The most urgent software problem is the lack of a good assembler

for DEC 338 programs other than the PDPMA1 assembler on the 7040. The

continued availability of the 7040 cannot be guaranteed; alr,, it is

inconvenient to use because of the slow turnaround time and the need to

punch paper tape.

It therefore appears that the provision of a 338 assembler on the

Spectra 70 is an urgent necessity, particularly as it would be. some time

before it could be the sole means of assembling 338 programs. As PDP4AP

is an extension of the 7040 YAP aPsembler, it may not be possible to

duplicate all of its features on the Spectra 79. In this case, consider-

able time may be needed to convert existing 338 programs once the

assembler is available.

It would be useful if an assembler could be written to generate 338

programs it a page-to-page relocateable form. This would make individual

routines useful to more users and reduce the time used by the assembler

as it would be no longer necessary tj reassemble complete programs in

order to make changes.

Once an assembler is available on the Spectra 70, the preparation

of DEC 338 programs will be considerably easier. The Spectra 70 File

Editing system can be used for creating source programs and assembled

programs could be transmitted to the 338 over the dataphnnn^.

31 -

An efficient assembler and editing system on the Spectra 70 will

greatly speed up the development of new systems for the 338. A further

modest improvement might be made by ectablishing a program library con-

taining well documented programs and routines in source or assembled form.

The library might contain character generation, communications routines,

etc., anI would facilitate much of the interchange of programming tech-

niques between users that already exists.

The interchange of techniques between uiers and the ease with which

new users can adapt existing systems to their own needs are not limited

by the lack of a program library, rather by the lack of a common operating

system for the DEC 338. This will be discussed in the next section.

A General Purpdse System

Reasons for developing a general system

All graphics systems that have been so far developed in the

Moore School have been designed to serve particular applications. As

a result, they are not in general useful to new users of t.,i, graphics

facilities, whv therefore develop new special puxrpose systems.

Small parts of existing systems can be adapted for new applications

and the first part of this report has indicated a number of cases where

this has been done. Because the systems that have been developed are so

highly specialized, the interchange of routines between users, even those

working on clodely related problems, is not really as extensive as it

might be. For example, the system developed for chemical plant design

performs much the same functions as one that might be developed for

electrical circuit design. Its adaptation to do this would represent

so much effort that it might be quicher to develop another system.

-32-

A general purpose system would promote the interchange of techniques

between users and make it much easier to develop new applications of

graphics techniques.

Nature of the ;enera! _urpose system

It would be difficult to substantiate a statement that a single

system could be developed that everyone would find useful. The system

described here represents one that would serve a large but finite range

of applications which appear well suited to the available hardware.

"As the 338 is only a small computer, it is desirable thaý a general

purpose system should provide a link between the DEC 338 and a program

running in the Spectra 70. The nature of the interface between the two

machines would appear to be the most important factor to be taken into

account when deciding the type of application that a general purpose

system should serve.

It does not appear that applications that require a rapid interchange

of messages between the 338 and the Spectra 70 can be effectively

implemented. The reasons for this are th under TSOS several seconds

may elapse before the Spectra 70 can respond to a message from the 338,

and that the dataphone link is slow so that the maximum data trans.2er

rate is 2400 baud.

The ceneral purpose system described here is therefore intended to

give a user the facilities necessary for creation of a display, its

transmission to the Spectra 70 for processing, and for output of

results rather than facilities for implementing real-time applications.

In order to make the system available to as many users as possible,

that part of the system resident in thr 338 :3hould be such rhat a user

131

-33 -

should not have to do any 338 programming at all. Also the system

should provide an interface to FORTRAN programs as FORTRAN is the

most widely used language for engineering and scientific problem

solving.

Data Structures

In order to provide a well defined set of functions for creating

displays and for tbiir interpretation it is necessary to adopt specific

data structures for the system. The data structures should have a number

of proper+4 .s.

It should be possible to reference as a single unit the sequence of

vectors in a display that represent an object. The display should h&ve

a hierarchical btructure so that objects can be described in terms of

their components. It should be possible to associate with any object or

component a series of attributes that describe properties of the object

which we not directly associated with the display information. It is

also desirable that the data stricture should contain topological

information such as is needed to describe a network in terms of nodes and

arcs. This feature is less important than the others as, in principle,

topological information can be derived from the geometry of the display.

It is proposed that the general purpose system be designed to

operate on three related data structures, -ach of ftich has the first

three properties listed above. Two of the data structures would be in

the Spectra 70 and vild contain two and three dimensional data,

respectively. The data structures in the Spectra 7C would contain

display information in a form- suitable for interpretation by the user

program and would need to be flexible enough to be incorporated in a

larger data base associated with the use,- probl-m. The structure in the

- 34 -

338 would contain display information as actual display instrx-tions

that could be executed to produce the dispay.

In both cases, the data would be accessed viL control blocks or

groups. In order to illustrate how a data structure could be composed,

a possible implementation of the 338 data structure will be described

in more detail.

A display structure would be formed by litnkiv together a aeries of

control blocks or groups. Each group would have the following 16 word

± or~at.

1 ENWER DATA STATE

2 Y (NONINwEIST.F31D)

3, x (ESCAPE)

14 Pi1{Jlti'

5 ADDRESS OF DISPLAY DATA

6 SKIP r :! pUSHBU_.LON

7 PUSHJU4l

8 ADDRESS OF TEXT STRING

9 PIXHJUQ

10 ADDRESS OF COMPOM GROUP OR V•_'•RIP

11 JUM tS

12 AMDRESS OF NEXT GROUP y
or

13 SPARE X

14 SPARE POP

.5 J-,AGS

16 IDELrI Fn2t

-133

-3

Words 1-3 contain the parameters of an •m1MIns/fln uo• M

to move the 338 beam before starting to &isplq tM 1a*-ws

associated with this group.

Words 4 and 5 contain a pushjutp to a sequenc of 41*pW l

tions in vector or short vector format. These instrwtiw moesW d

object associated with this group and form a closed figwe so tat A

control is treturned to the group by a pop, the total beam dip1 cn

is zero. This form enables multiple urers of the same instructicis to

form respective displays and aids display editing.

Words 7 and 8 contain a pushjuzp to a sequence of display instruc-

tions needed to display a text sEring used to describe attributes

associated with the group. Again, control is returned via a pop.

Word 6 contains a skip option so that display of the text can be

suppressed.

Words 9 and 10 contain a pushjump to a group which is in a lower

level of the data str.acture such that if the rirst group represents an

object, the lower level group represents a component of the object.

Words 11 to 14 contain a jump to another group at the same level

or a vector used to close the sequence of display instructions .,t this

level before returning control to a higher leval group.

The last two words contain respectively flags indicating the

history of the group, i.e., whether it, originated ir the Spectra 70 or

the 338, whether or not it can be delet-d or modified, etc. ; and a

pointer to a table containing the name asociated with this •ioup.

The way in which groups are lYnked together to form a display

structure is best illustrated by the exanple show, in Figure 1.

- -36-

Groups 1, 2 and 3 would represent objects at the same level in the

structure. Groups 4 and 5 would be components of group 1 and 4 itself

has a component group 7. Group 6 would be a component of group 3.

Groups 3, 5, 6 and 7 would end in vectors so that the series of groups

(1,2,3), (4,5), (6), (7) would each be closed figures so that any object

and its components can be added or delted from the display without

disturbing the rest of the display.

This type of display structure has a number of useful features.

The actual display instructions are in closed form so that they can be

called by any number of groups. Groups can be easily added and removed

from the structure. An object can be moved around on the screen easily

(for example, group 1 can be moved by adding opposite sign increments

to the vectors in groups 1 and 2) while maintaining the same spatial

relationship between itself and its components.

A disadvantage of this particular way of implementing the structure

is that extensive use is made of the 338 subroutine instructions. A rush

and pop together take 3!.5psec to execute. This time would result in a

significant increase in the time taken to display a file containing a

great deal of structured information.

Tom Johnson has suggested that this disadvantage might be overcome

by extending a technique developed by Dave Kristol for rapid character

display. Each sequence of display instructions called by a group would

end in a STOP rather than a POP. While the sequence was being displayed,

the PDP-8 would execute a routine designed to interpret a group and

complete the address of the next sequence of display instructions to be

executed. When this computation was complete, the PDP-8 would wait for

the internal stop flag end reinitialize the display at the newly computed

-37 -

address. Stopping and restarting the display would take onl4 about

lajsec., so that significant time would be saved provdded the necessary

calculation could be performed during the display of the previous

sequence.

Interpretation rather than execution of the groups would enable

them to be much more compact, in fact the number of words in each group

could be reduced by a factor of two.

The data structures in the Spectra 70 would have the same

structural form as in the 338 in order to make the system simple to use.

The representation of control information and coordinate data would of

course be different. Coordinates would be in homogeneous form and

represented as floating point numbet •. The vector (really a linear

transformation) at the start of each group would be generalized to a

homogeneous transformation that would relate the coordinate system of

the data referenced by a group to that of a group higher in the structure

For example in Figure 1, the transformations of groups 4 and 5 would

relate their coordinate systems to that of group 1.

Facilities Available to the User

..The system would be organized so that that part in the 338 would

enable the user to create and view displays and also transmit them to

the Spectra 70. Only in the Spectra 70 would there be facilities for

interpreting and processing graphics information.

The system would be implemented in stages that would differ in the

range of facilities available to the user. An initial system might give

the user the following facilities.

- 38 -

In the 338 the user would be able to create, name, and link groups

to form a structured display. He would be able to draw, type in, or

copy display information and text associated with each group. Editing

facilities enabling the user to modify display information, text and

the structure itself wotId also be provided. Routines for rotating and

scaling displayed objects would be available; then use would be restric-

ted to avoid inadvertant transformation of instructions referenced by

several groups.

The user would be able to transmit a completed display to the

Spectra 70, possibly defining it to be an addition to a modification

of an existing display structure and also specifying a scaling factor

so that a display structure in the Spectra 70 could be built up in

stages to have a greater coordinate range than is possible in the 338.

In the Spectra 70 the same facilities for creating a display

would be available using subroutine calls for the application program.

In addition the user wculd be able to define the trarisformations asso-

ciated with each group and execute them to determine absolute vector

coordinates. In general, interpretation of the text s"Crings eonerated

in the 338 would be application dependent. A few interpreters could

be provlided, for example to enable a user to input floating point

numbers.

As far as output of displays from the Spectra 70 iD concerned,

all output would be from the two dimensional data structure. A user

would access data in the threa ainens.onal sbruc%.ure by specifying a

transformation to be used to project it into the two dimensional

structure. The projection would produce a. planar representatio- of

the data of the same structural form that it had in thu three dimensional

1 13T

39 -

structure. Output from the two dimensional structure to the 338 would

Involve windcwing and scaling the data. The display resulting from

output from the Spectra 70 would be structurally identical to an equi-

valent display composed at the 338 console so that a user could interact

with his applications program to compose a display.

Subsequent versions of the system would give the user facilities

for direct input of three dimensional data from the 338 console, permit

the applications program to direct the flow of the program in the 338

and provide for transmission of standard curves or objects between the

two machines in a compressed form.

The system would be designed to be sufficiently modular and well

documented so that a user might add additional features needed for his

specific application.

Mhe overall aim vould however be to produce a system that enabled

users to apply graphics techniques by writing applications programs in

FORTRAN rather than by programming the DRC-338.

To 14Fq4d t

4.4

too - -
~

- Tv m

to 0 PO p

University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

AN INFORMATION STORAGE AND RETRIEVAL

SYSTEM FOR PHYSICAL PROPERTIES OF

CHEMICALS

Daniel S. Poznanovic

A thesis submitted to the Faculty of The Moore

School of Electrical Engineering in partial

fulfillment of the requirements for the degree

of Master of Science in Engineering (for grad-

uate work in Computer and Information Sciences)

Philadelphia, Pennsylvania

December, 1969

1L. t4U

University of Pennsylvania

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Title of thesis: An 'Cnformation Storage and Retrieval

System for Physical Properties of

Chemicals

Abstract:

This paper describes a prototype information storage

and retrieval system for the physical properties of pure

chemicals and mixtures. The system is composed of a data

base, a library of property estimation routines and

generalized storage and retrieval routines. The data base

stores several forms of numeric property data. The retrieval

routines are called from within FORTRAN application

programs and are capable of retrieving both stored and

computed physical property values. Both the structure

and use of the system are discussed.

Degree and date of degree: Master of Science in

sngineering (CIS)

December 1969

AUTHOR FACULTY SUPERVISOR

141

ACKNOWLEDGEMENTS

I wish to thank my wife for her encouragement and

understanding throughout the wozk leading to this thesis.

I wish to express my graditude to Dr, Warren D. Seider,

my supervisor, for his guidance and encouragement.

I would like to thank the members of the Chemical

Engineering Calculation System Project, particularly Messrs.

Sezer Soylemez and Peter Ham, for their suggestions and

criticism.

I would also like to thank Mr. Hajime Komaki for testing

the property system through extensive use.

I would like to express my appreciation to Mrs. Sarah Amos

for the typing of this thesis.

Finally, my appreciation to the Office of Aerospace

Research of the United States Air Force and to the Esso

Education Foundation is acknowledged for their support of

this research.

142

TABLE OF CONTENTS

Page

LIST OF FIGURES v

CHAPTER I INTRODUCT ION I

1.1 Objective 1

1.2 Order of Presentation 3

CHAPTER II THE PROPERTY SYSTEM4 4

2.1 Design Considerations 4

2.2 Property System Structure 5

2.2.1 Storage Subsystem 5

2.2.2 Retrieval Subsystem 7

CHAPTER III THE DATA BASE 10

3.1 Data Records 10

3.2 Di.rectory 12

3.3 Data Pool 14

3.4 Justification of Directory Levels 16

CHAPTER IV RETRIEVAL 19

4.1 Definition 19

4.1.1 Accepting Retrieval Requests 20

4.1.2 Locating Data Records 20

4.1.3 Returnkng Property Data and Property

Values 24

4.2 Retrieval Routines 24

4.3 Justification of Retrieval Scheme 25

CHAPTER V THE APPLICATION PROGRAM 27

5.1 Definition 27

5.2 Requesting Property Values 27

5.2.1 Pure Substance Property Value Requests 28

5.2.2 Mixture Property Value Requests 33

5.3 Property System Activation 38

CHAPTER VI RUNNING AN APPLICATION PROGRAM 42

6.1 Component Identification Table 42

6.2 Retrieval Constraint Table 44

ill 143

TABLE OF CONTENTS (continued)

Page

CHAPTER VII DATA STORAGE 58

7.1 Adding New Personal Property Data 59

7.2 Updating Existing Data 67

7.3 Deleting Existing Data 67

7.4 Storage Control Deck 68

CHAPTER VIII PROPERTY ESTIMATION ROUTINES 71

8.1 Definition 71

8.2 Estimation Routine Types 72

8.3 Estimation Routinp :onventions 72

8.4 Reauesting Property Values and Data 75

8.4.1 Requesting Property Values 75

8.4.2 Requesting Property Data 76

8.5 Example Estimation Routine 82

8.6 Entering an Estimation Routine Into the

Library 85

CHAPTER iX CONCLUSION AND RECOMMENDATIONS 87

9.1 Conclusion 87

9.2 Recommendations 87

Appendix I 90

A Physical Property Codes 91

B Data Base Component Codes 92

C Data Type Codes 9&

D Estimation Routines 93

E Property System Messages 100

Appendix II Logic Diagrams 103

Appendix III U of P IBM 360/75 JCL 107

Appendix IV Input Language Specification 108

BIBLIOGRAPHY ill

iv t4

LIST OF FIGURES

Figure

II-I Storage Subsystem 6

11-2 Retrieval Subsystem 8

III-l Directory Structure 13

111-2 Directory Elements and Tracks 15

111-3 Data Element and Track Structure 17

IV-I Directory Search 22

V-I Component Identification Table 29

V-2 Example Use of the PPCP Routine 31

V-3 Example Use of the PPCF Routine 34

V-4 Example Use of the PPCS Routine 37

V-5 Example Application Program Flowchart 39

V-6 Example Application Program 40

VI-l Component Identification Table and Deck 43

VI-2 Property Data vs. Property Values 46

VI-3 Retrieval Constraint Table 49

VI-4 Example Retrieval, Constraiut Table 51

VI--5 Retrieval Constraint Deck 52

VI-6 Variant Information Deck 54

VI-7 Application Program Run Deck 55

VI-8 Example Application Prograin Results 57

VII-1 Data Record 61

VII-2 Punched Form of Data Records 61

VII-3 Example Data Records 65

VII-4 Storage Control Deck 69

VIII-l Example Use of the SET.l Routine 78

VIII-2 Example Use of the SER2 Routine 80

VIII-3 Example Use of the SER3 Routine 82

VIII-4 Estimation Routine Logic 83

VIII-5 Exaple Estimation Routine 84

v 145

CPAPTER I

INTRODUCT ION

1.1 Objective

Chemical physical property values are of importance in

chemical engineering process calculations. Since the mid - 1950's

computers have played an increasingly significant role in

chemical engineering process simulations. The need for develop-

ment of computer systems for supplying physical property values

has been expressed by Yen (1), Zseleczky (2), and Shannon (3).

A common approach to supplying physical property values to

chemical engineering application programs is by reading property

data from cards. The property data is often assumed to be con-

stant for the temperature and pressure ranges under consideration.

When this assumption cannot be made, that is when variable

dependence (for example, temperature and pressure) must be taken

into account, property estimation procedures are required. The

estimation procedures are often coded into the application pro-

gram with correlation coefficients, tables, and constants

being read from cards by the application program. A more

sophisticated approach to providing property estimation pro-

cedures is to separate estimation algorithms from application

program in the form of subprograms (functions or subroutines)

that contain il the information necessary for property

estimation (1,2). The application program calls on the pro-

perty estimation subprograms for property values instead of

reading data from cards.

The A.I.Ch.E. (8,9,10) has sponsored development of a

large computer system of subroutines for estimation of physical

properties. Systems for computer-aided design an simulation

(4,5,6,7,14) have been developed that include property estima-

tion subroutines. The system developed by Beirute (11) and that

of Johnson (14) are the most general systems of those associated

with design systems.

The above approaches to supplying property values are limited

in that the estimation procedures used by a given program are

fixed; that is, the estimation procedures are linked directly

to an application program by program coding. When changes in

mixture components and/or temperature and pressure range occur,

the property estimation procedures used by the application pro-

gram often must be changed. The approaches above require modi-

fication w4 thin the application'program especially when property

estimation procedures have been incorporated into the coding

of the application program. Such changes have practically

eliminated the possibility of establishing general chemical

process unit calculation material and energy balance, Cdesign,

and simulation li•baries. Maintenance of a general purpose

unit program library becomes expensive when general purpose

routines must be modified for each variation in chemical mix

and operating conditions. Hence, few general purpose unit

program libraries are widely used today.

The empha&.s in previous work has been in development of)

systems that generate physical property values and not in the

development of information storage and retrieval for physical

properties. Most of the systems previously developed lack

flexibility; they were designed specifically for uae by special

user programs. None of the systems cont&in a data base for

storage of physical property data.

-2-

The objective of this thesis is to present a prototype

information storage and retrieval system for chemical p1r.sical

properties that is unique:

1) in its ability to retrieve both stored and computed

physical property values

2) in its structure that allows any FORTRAN program tc

request property values during program executiona and

3) in its method for identifying and requesting physical

property values for pure chemicals and mixtures.

1.2 Order of Presentation

Chapter II presents an overview of the property system,

identifying the components making up the system, and discussing

briefly their function. Chapter III details the purpose and

structure of the physical prope-ty data base. The concept of
a generalized zetrieval routine is discussed in Chapter IV

together with the retrieval scheme used by the system.

Chapter V,VI,VII and VIII are directed to users of the

property system and present system conventions to be followed

by the user. Chapter V defines the application program and

presents the conventior• for using the generalized retrieval

routines. Chapter VI explains the procedures for running an

application program and discusses the conventions for con-

straining the estimation of property values to meet the stan-

dards set by each individual user. The conventions for entering

personal property data into the system's data base are dis-

cussed in Chapter VII. The preparation of property estimation

routines is discussed in Chapter VIII. The final chapter,

Chapter IX summarizes and contains suggestions for future work.

The Appendices contain lists and explanation of each code used

by the system together with messages generated by the property

system.

-3-

CHAPTER I1

THE PROPERTY SYSTEM

2.1 Design Considerations

Physical property values are required in chemical engineering

process calculations. The chemical engineer often performs

process calculation through the use of FORTRAN programs. Several

computer-aided design systems for chemical processes are written

in the FORTRAN language (12). Therefore, any system that is to

provide property values for pure chemicals and mixtures for pro-

cess calculations should be compatible with FORTRAN programs

if the system is to be useable. The property system is there-

fore written entirely in the FORTRAN programming language.

Physical property data can take the form of constants,

correlation coefficient, or tables, therefore, the property

system contains a data base that can store each of the data

types. When properties can be expressed as a functional

relationship of independent variables such as temperature

-and pressure, subprograms for estimation of property values

are prepared. The property system contains a library into

which estimation routines can be entered.

Within a FORTRAN application program requests for property

values must be simple. The request must specify the property

value to be obtained without indicating the method to be used

to retrieve the value from the data base or the method to be

used to estimate the value. Once a request for property

data has been encoded into an application program, changes

must not be required when mixture components and/or independent

-4-

variable ranges (such as temperature and pressure ranges) change.

Generalized retrieval routines with standardized arguments are

provided for use within an application program. The generalized

retrieval routines determine at the time of execution of an

application program the method for obtaining requested property

values.

The engineer must be able to constrain retrieval of property

values to meet his own standards. Variant information con-

straining retrieved property values can be specified by the user

externally to an application program.

The state of the property estimation field is dynamic (10),

obsolescence can be prevented only if the system is open ended.

The property system allows additions, updates, and deletions

to data stored in its data base and allows insertion of new

estimation subprograms into its estimation routine library.

2.2 Property System Structure

The discussion below outlines the structure of the property

system, and the information flow among the components of the

system. The property system is decomposed into two subsystems

(1) the storage subsystem and (2) the retrieval subsystem.

2.2.1 Storage Subsystem

The storage subsystem adds, updates, and deletes stored

property data and enters new estimation routines into the

system library. Figure II-1 illustrates the components and

lines of information flow of the storage subsystem.

1-5--

Data Base

/IStorage Data Base Directory
Control Storage
Deck Routine Data

Pool

Est imat ion
Library

DirectoryNew Library •
Estimation Storage
Routine Routine Estimation

Routines

Storage Subsystem

Figure II-i

The user modifies the contents of the data base by supplying

a storage control deck composed of data records containing

identifiers and property data, and commands to the data base

storage routine. (The command language specification is

presented in Chapter VII.) The data base storage routine reads

the storage control deck and performs the specified modifica-

tions to the system's data base. 151

-6-

New estimation routines are entered into the estimation

library through the use of library storaqe routines. The

library storage routines are dependent upon the particular

computer facility used in the implementation of the property

system, and are composed of a FORTRAN compiler and in the case

of the IBM 360 system the Linkage Editor. An estimation

routine preprocesser used to insure that new estimation routines

conform to system conventions will be discussed in Chapter VIII.

2.2.2 Retrieval Subsystem

The retrieval subsystem of the property system is composed

of routines that are used during the execution of an application

program to retrieve property values requested within an ap-

plication program. Figure 11-2 illustrates the components

of the tetrieval subsystem and the lines of information flow.

A FORTRAN application program containing requests for

property values is compiled and an executable module is

generated containing the application program, property system

routines, and required estimation routines. The executable

module is generated by a loader or linkage editor provided

within the computing system that supports the implementation

of the property system. The application: program calls the

activation routine to read the disk resident data base into

core storage, and to read the variant information deck. The

variant information deck contains execution time information

constraining property value retrieval to meet the user's

particular standards. (Chapter VI contains the command

language specification of the variant information deck).

Property values are requebsted during application program

execution through calls to the generalized retrieval routines.

-7-

4. 41 (a

to o

ai 41

w 0FO (
A 9 W 4.)

SM o o A

I

V 0-

.4 -,4 . 4.4 $

u C

r44 > 4

$4 41

0$4 . 0 9
V 04. .434

000 u 0

to 4) ri

.A4 04 1 4
"r4 Al 0. OX

04 $4

0-8

The generalized retrieval routines use the retrieval service

routines to interrogate the data base in order to locate pro-

perty data medting the request. The generalized retrieval

routines either return data stored in the data base or call one

of the communication routines that select an estimation routine

to compute the requested property value. The generalized

retrieval routines return to the application program either

stored or computed property values.

In subsequent chapters each component routine of the pro-

perty system is discussed in detail.

-9-

CHAPTER III

THE DATA BASE

The property system's data base contains physical property

data for pure chemicals and mixtures. Property data is logically

organized into data records. Physically the data base is com-

posed of a directory and a data pool. The data base normally

resides in disk storage, and is read into core storage by the

activation routine during the execution of an application pro-

gram. Loading a complete property system data base into core

storage in the case of this prototype system corresponds to

loading essential directories and a segment of the data pool

of a full scale implementation of the property system. In

Chapter IX recommendati.ons are made concerning the disk

resident data base and its purpose in a full scale implementation

of the property system.

3.1- Data Records

The data base is logically organized into data records.

Each data record is composed of seven attribute values together

with property data. The attribute values completely characterize

each data record. A data record contains:

1. a physical property code (for example 401 - vapor

enthalpy as a function of temperature and pressure).

-10-

2. the ranges of the independent variables associated

with the property for which the data is valid.

(for example, 2000K-4000K for temperature and I atm -

3 atm for pressure),

3. a code specifying the contributor who entered the

data record into the data base (for example 427 -

John Jones),

4. the data base component code(s) of the pure chemical

or mixture for which the data is applicable (for

example, 2 - methane),

5. the number of the estimation routine that produces

property values from the data contained in the data

record. (for example, 20 - third degree polynomial

routine),

6. the maximum percentacqe error expected in the property

value produced by the estimation routine (for example

3%),

7. the data I code that indicates the form of the

property data contained in the data record (for

example, 2 - correlation coefficient),

8. the property data itself (for example, the third

degree polynomial coefficients a,bc,d).

Appendix I contains the lists of established codes for each

attribute.

-11-

Conceptually data iecords can be thought of as the basic

unit of storage in the data base, but hctually the content of

a data record is divided into directory elements and data Pool

elements,

3,2 Directory

Directory elements form the nodes of an inverted tree

structure of lists called the directory. The directory pro-

vides a mapping from a set of property data attribute values

to an element of the data pool containing property data.

The directory is of depth three, that is, there are

four nodes including the root in every inverted tree. Each

node represents a list of directory elements. Each directoay

element within a nodal list has a unique content. The

branches of ea6h tree represents pointers from a diractory

element in a list at depth i to the head of a list at depth i+l,

with the root being a list at depth zero. The terminal points

of the branches of the directory (inverted tree) are data pool .

elements.

The single node at depth zero is a list of directory

elements eacrh containing a unique property code and a pointer

to a node at depth one. The nodes at depth one are each a

list of directory elements, each containing two indpndent

variable ranges and a pointer to a node .t depth two. be

nodes at depth two are each a list of directory el*ents, each

containing a data base component code and four pointers, 000

for each data type, to a node at depth three. The nodes at

depth three of the directory tree are each a list of directory

elements, each containing a contributor code, an estimation

routine number and a pointer to an element of the data pool.

Figure Ill-1 illustrates the inverted tree structure of the

-12-

cc c

00

'UN 4,)4

4a .0
Cf4 .,4

0.~~ *.44 9o J) 4,
14 mCC

A. e.H> 0

I II U
1~a

A. ~ ~ t .~ *0

- . 5 I

AI I 40
ICIX ; Ic

0ZI 0 4 0
lK paII

data base together with the list structure.

In the figure each box represents one directory element

and the set of contiguous directory elements between double

bars represents a list making up one node. From the figure,

one sees also that the directory is made up of four master

lists, the property list, the variable range list, the

€omponont-data-type list, and the contributor-routine-number

list. Each master list represents the union of all nodes at

the same depth in the directory tree.

The basic building unit of each master list is a track.

A track is a set of contiguous directory blocks. The size of

a track can be set to any value for each master list, but once

set, each track within a master list is fixed in size. Each

sublist making up a node consists of one or more tracks. The

tracks in a sublist need not be contiguous since the last

two directory elements in each track contains a forward link

to the next track in the sublist and a backward link to the

previous track in the sublist. Figure 111-2 illustrates the

layout of direcLory elements and tracks within each master

list.

3.3. Data Pool

The data pool is a master list of data elements. Each

data element is a terminal point at a branch from a directory

element at depth three. Each data element contains the

maximum expected error associated with the data together with

property data itself. Figure III-1 illustrates the data

pool.

The format of each data element depends upon the data

type of the data contained in the element. There are four

data types: constant data, (data type 1), correlation

-14-

N.., - erlRI -- IR --

0 0

P4 14 A4 444 $44

$4 4

I I4 I u- E--IEr

I4J . Ir-

"" I I

t N

a t 4J U*1

4 0I 1 I 4.
S4) U04 0 d 4

0 1-A• 0

0 J0II $404)0
• 4J •4J:1 . -i

o I 44' 1zi rJ

0U 0Ii-I 0$4'

w.) U

• 0- w

0 4 " ., •4 * 4 J 4) AJ4

$4 0 W U. P4 4J0$ 4 0W
4-0 .-I U 14 04 U

@2 $4
4-. 0

>14J V)
4J

04 a) t

$40 *r 4 r.

04 u rT4 C 0 0 0
Q uC

$4.
00

40)
V1 0
$4 4' 0E-4 C
0) U 0 $4 -4-
0 4 re4 .- A M4J 0E4 I - 4J 4J-P
0 4 .$4iU ~ 4J :
$4 >Uu-- 0E-4 1%

coefficients (data type 2), tabular data (data type 3) and null

data (data type 0).

The data pool, like the other master lists, is built of

tracks whose size is fixed but can be specified at the time

of implementation. Figure 1I1-3 illustrates the layout of

data elements and data pool tracks.

3.4 Justification of Directory Levels

The data base directory provides a mapping from a set of

attributes to a data element within the data pool. The

mapping is accomplished through traversing the directory tree

f..om the root through connected nodes to the data pool. It

will be seen in Chapter IV that the minimum set of attribute

that can be specified in a request for property values is a

property code, values of two independent variables, and a

component code (or codes in case of a mixture). The remaining

four attributes may be optionally specified. Therefore, the

manditory attributes were given the highest level nodes in the

tree structure to insure that the most "promising" braches of

the directory tree are traversed first. Once the directory

tree is traversed to a depth of two, any branch leading to the

data pool may be taken, when none of the optional attributes

are specified.

The combining of attributes at depth two and three saves

core storage, since the two additional master lists required

if combining had not been done, would be lists made up of

tracks of length one or two. Such tracks require more core

storage for forward and backwar" links than for productive

directory elements, a very inefficient use of core storage.

The maximum expected error is contained within each data

element since it can be expected that the values of maximum

-16-

$4l .,$Il .4 $ I .4
143

0 0 -

o4*4 04 *4 Aw 14

r. >

uu r

• ,-. i. I
m I4

> u

0 0 0

VE-4II H
440Q 04 $4

-141

rzt114-$4

$4 U)4

0 0i 0
$4 w

$4$4 $4

1-4 $4 j $4

21 4114

expected error for each data record will vary considerably. If

maximum expected error were given a directory level of its own,

the effect would be to construct a maximum expected error list

(node) for each data element; such a situation constitutes

inefficient use of storage.

-18-

a

CHAPTER IV

RETRIEVAL

4.1 Definition

Within the context of the property system,retrieval is

a multi-step task composed of:

(1) accepting a retrieval request that identifies

property data or values,

(2) locating data records within the data base

that meet the request,

(3) retrieving data contained in the data records

or values computed by an estimation routine

using data contained in the data records and

independent variable values.

Before continuing, some terminology must be defined.

In the property system a distinction is made between property

values and property data. Property values are determined

using a property estimation procedure. Property data is

raw data in the form of tables, correlation coefficients and

constants stored in the system's data base. A property

estimation routine uses property data stored in the data

base, and/or property values produced by other estimation

routines to produce property values. For example, a cor-

relation routine (property estimation routine) uses correlation

coefficients (property data) to determine estimated property

values.

-19-

Only in the case of "constant" data are property values

and property data equivalent. No estimation procedure is

required to transform a constant, for example, molecular

weight, to a property value.

4.1.1 Accepting Retrieval Requests

A request for property values or data is made within

a FORTRAN program or subprogram through a call statement to

one of the FORTRAN subprograms called the retrieval routines.

A request must identify the property data or values desired

within the calling program. Property values and data are

identified by a minimum of three attribute values; (1) pro-

perty code, (2) values of the two independent variables

associated with the property and (3) the data base component

code(s) of the pure chemical or mixture for which the informa-

tion is desired. The values of these three attributes make

up the minimum set of keys required to locate the requested

property data or values. Th,. minimum set of keys is called

the compact set of retrieval keys. The compact set of

retrieval keys are the arguments to the retrieval routines.

4.1.2 Locating Data Records

in order tc return requested property data a data record

containing the property data must be located in the data base.

In order to return requested property values a data record

containing required property data and the number of an

estimation routine to compute the value(s) using the data

must be located. The data base therefore serves the

important role of providing property data and information to

direct the retrieval routines to an estimation routine when

a property value must be computed using stored property data.

-20-

A data record is located when a retrieval routine

determines the address iL, the data pool of the data element

that contains the data record's data part. The data elements

are the terminal points of the inverted rooted tree of

attribute values called the directory. Therefore, to locate

a data record a retrieval routine must traverse the branches

of the tree (directory) uril a terminal point is reached.

Traversal of a branch of the directory between a node at

depth i and a node at depth i+l occurs when a pointer to the

head of a nodal list at depth i+l is found within a directory

element in a nodal list at depth i.

Traversal of the directory can be described in terms of

a directory search function F. The domain of F is the set

of seven-tuple attribute values, one attribute value for each

of the seven attributes that characterize a data record. The

range of F is the set of subse of the data elements within

the data pool together with zero, the trap address, indicating

non-existant data. Symbolically,

d - F (p,v,c,t,k,r,e)

where

d = set of data element addresses

p = property code

v = two independent variabl, values

c = data base component code(s)

t a data type code

k = co.tributor code

r = routine number

e - maximum allowed error

-21- "

If each of seven attributes is defined, d is the singleton

set containing one data element address. If any tk,r, or e

is undefined d is a set of addresses of data elements whose

data records contain the defined attribute values. Figure

IV-l illustrates the two cases.

/ •i

* .

d s not

d - singleton set

d - non-singleton set

Directory Search

Figure IV-l

The directory search function F is further broken down

into five nodal list search functions

f i (i-.1S).

Symbolically this can be written

-22-

a2 =f 1 (al .p)

a3 f f 2 (a 2,v)

a4 % f 3 (a 3 ,c,t)

a5 f f 4 (a4Vk,r)

d = f 5 (a 5 'e)

d - F(pv,c,t,k,r,e)

where a&,a 2 ,a 3 ,a 4 ,a 5 represent, respectively, addresses of

the headwords of nodal lists within the property master list,
variable range master list, component-data type master list,

contributer-routine number master list and data pool.

Section 4.1.1 explained that the compact set of retrieval

keys (p,v,t) was supplied to the retrieval routines to identify

requested property values or data. If the directory search

function F is applied to the compact set of retrieval keys

a set of data element address is obtained,

d - F (pv,tXXXXX)

where x indicates undefined attributes values. Since only

one data element address is required, one of the addresses

contained in d is picked arbitrarily. To insare that the

engineer has complete control of the data he wishes to

use, the additional four attributes can be specified

externally to his application program through the use of

the retrieval constraint table. By specifying important

attributes the set of data elements d is made 3mailer,

and the retrieval data meets the engineexs specification.

Chapter VI. "Running an Application Program'. discusbas the

preparation of the retrieval constraint table.

-23-

4.1.3 ReturninQ Property Data and Property Values

Once a data element has been located either the data

contained in the element must be returned to the calling

program or subprogram, or an estimation procedure must be

applied to the data to compute a property value. If the

retrieval routine called by the application program or estima-

tion routine is of the type that returns property data, the

contents of the located data element is returned to the

calling program or subprogram. If the retrieval routine

called returns property values, the retrieval routine calls

the estimation routine whose number is contained in the data

record containing the data within the located data element.

The property value(s) produced by the estimat.Ln routine are

then returned to the calling program or subprogram.

4.2- Retrieval Routines

There are three types of retrieval routines: (1)

retrieval service routines, (2) comaunication routines and

(3) generalized retrieval routines.

The retrieval service routines retrieve stored property

data. The routine named SERI retrieves constant data

(data type 1), the routine named SER2 retrieves correlation

coefficients (data type 2), the routine nam~ed SER3 retrieves

tabular data (data type 3) and the routine named SER4

retrieves the routine number stored within a data record.

The retrieval service routines are used primarily by

estimation routines to obtain property data used to compute

property values. Chapter VIll "Property Estimation Routine.

discusses the conventions for using the retrieval service

routines.

-24-

The communication routines sole purpose is to call pro-

perty estimation routines. Once the routine number of the

estimation routine to be used to determine property values has

been found a communications routine calls the estimation

routine to obtain property values. Communication routines

are called by the generalized retrieval routines, and by

property estimation routines. An application program never

has the need to call a communication routine.

The generalized retrieral routines are called by the

application program to request property value(s). There

are three generalized retrieval routines: (1) the routine

named PPCP for retrieval of a property value for a pure

chemical, (2) the routine named PPCF for retrieval of a

property value for a mixture, and (3) the routine named

PPCS for retrieval of a property value for each component

of a mixture. Chapter Vl, "The Application Program", dis-

cusses in detail conventions for using the generalized

retrieval routines.

4.3 Justification of Retrieval Scheme

The retrieval scheme developed for the property system

was designed with a primary concern for the user of the

system. Such a concern dictated that the system be easy

to use and yet completely controllable. The retrieval

scheme reflects this.

The retrieval routines fall into three categories

(1) routines for retrieving stored data (the retrieval

service routine). (2) routines used only by the system

itself (coin unication routines) and (3) routines allowing

retrieval of stored or computed property information

(generalized retrieval routines). The more sophisticated

-25-

user may choose to use the retrieval service routines, and

the less sophisticated user may use the generalized retrieval

routines; in either case the user has a tool that is easy to

use for obtaining property information.

The retrieval scheme allows the user to specify a minimum

amount of information in requesting property values, namely

a compact set of retrieval keys, and yet allows the user the

option of completely directing the retrieval activities of

the system by specifying retrieval constraints. The tree

structure directory used in the retrieval scheme is very well

suited to this mode of retrieval.

1,71

-26-

CHAPTER V

THE APPLICATION PROGRAM

5.1 Definition

within the context of the property system, an application

program is a computer program that is written in the FORTRAN

programming language and that requires property values for

pure chemicals and mixtures during its execution. An applica-

tion program is not restricted in its structure or use of

labelled or unlabelled COMMON, since the property system uses

no COMMON statements in system or estimation routines. The

only restriction placed upon an application program is that

requests for property values conform to the conventions

established for using the property system. This chapter

discusses the conventions for requesting property values and

explains the use of the property system from the point of view

of the engineer who writes application programs.

5.2 Requesting Property Values

Property values for pure chemicals and mixtures are

requested in an application program through FORTRAN function

and subroutine call statements that call the generalized

retrieval routines. Invariant information identifying the

requested property value is supplied to the property system

in the form of arguments to the subprogram calls of the

generalized retrieval routines. (Variant information

specification is discussed in Chapter VI on "Running An

-27-

Application Program"). The generalized retrieval routines call

upon property estimation routines that combine data (from the

data base) to compute property values or retrieve data directly

from the data base (when applicable).

There are three generalized retrieval routines that can

be called by an application program. The FORTRAN function

subprogram named PPCP retrieves pure substance property values

requested within an application program. There are two

generalized retrieval routines that retrieve mixture property

values. The routine named PPCF is a FORTRAN function.sub-

program that retrieves a single property value for a mixture

(e.g., heat capacity). The PPCS FORTRAN subroutine retrieves

a property value for each component of a mixture (e.g., equili-

brium coefficients).

The remaining sections of this chapter discuss conventions

for calling the generalized retrieval routines, giving examples

and explaining the semantics of each request for property

values. The reader is encouraged to read Chapter IV for a

discussion of the retrieval scheme used by the generalized

retrieval routines.

5.2.1 Pure Substance Property Value Requests

The standard request for a pure substance property value

such as density or critical pressure uses the PPCP retrieval

routine; for example,

PROP = PPCP (MP,Vl,V2,INDEX,IC)

The arguments of the PPCP routine are:

1.73
-28-

MP - physical property code (for example, 401 =

vapor enthalpy).

V1 - value of first independent variable, a real

number or a real variable.

V2 - value of second independent variable, a real

number or a real variable.

INDEX - pure substance index number an integer or

integer variable.

IC - completion code variable.

Appendix I of this thesis contains a list of the established

property codes. Associated with each property code are two

independent variables (for example 401 is the code for vapor

enthalpy with temperature the first Lndependent variable and

pressure the second). The pure substance index identifies

the chemical for which the property value is requested. The

pure substance index establishes that component in the

component identification table for which a property value is

requested. See Figure V-1 for illustration of a sample

component identification table.

Pure Data Base Component
Substance Component Name
Index Code

1 2 Methane
2 10 n-Hexane
3 5 i-Butane
4 4 Propane

NCOMP=5 20 n-Hexadecane

Component Identification Table

Figure V-1

74

-29-

The component identification table identifies to the property

system the components for which property values are required,

Appendix I contains the list of established data base component

codes. The completion code variable is used to inform the

application program whether all phases of property estimation

have succeeded. The integer variable IC is returned with a

zero value if retrieval has been successful. A non-zero

value indicates that the validity of the returned property

value is questionable. Figure V-2 illustrates a typical

call to the PPCP routine.

The program segment illustrates retrieval of the vapor

heat capacity for each of three chemicals. Notice that the

component identification table is provided as data and is

not a part of the application program. The identity of the

chemicals is classed as variant information and is supplied

to the property system outside of the application program

(method to be discussed in Chapter VI). Hence, when

changing the component mixture no alterations are required

in the application program; only the component identification

table requires change.

-30-

DO 10 K=-,NCOMP Segment of an

CP(K)=PPCP(431,T,P,K, IC) application
program

10 CONTINUE

Pure Data Component
Substance Component Name
Index Code Component

Identification140 Benzene
Tabl e.

2 42 o-Xylene
NCOMP=3 41 Toluene

Example Use of the PPCP Routine

Figure V-2

The information provided in the PPCP request is invariant.

The property code 431 specified vapor heat capacity as a

function of temperature, the first independent variable, and

pressure, the second. The program var" bles T and P provide

temperature and pressure values to t' PCP routine. The

integer variable K specified the pure substance index.

In the above example the property code indicates an

assumed phase, that is, the vapor phase. Property codes ending

with 1 (e.g., 431 = vapor heat capacity) specify vapor phase

properties while codes ending in 2 (e.g., 432 = liquid heat

capacity) specify liquid phase properties, and codes ending

in 3 (e.g., 433 = solid heat capacity) specify solid phase

properties. When a phase specified property code (that is,

-31- 1 7 k

a property code ending in 1,2, or 3) is bupplied to a generalized

retrieval routine, the phase of the substance for which the

property value is requested is taken as that specified in the

property code. The property value is obtained using estimation

programs and data for the specified phase even if under the

conditions indicated by the two independent variables a different

phase exists (assuming data is available in the independent

variable ranges specified - to be amplified in Chapter VIII).

For example, if the va.or he-'t capacity of water at 300OK and

1 atm. is requested in an application program, the generalized

retrieval routine uses vapor data and estimation programs to

obtain the pseudo - vapor heat capacity of water (even though

the vapor phase does not exist at this temperature and pressure).

The generalized retrieval routines perform no phase checking

when phase specified property codes are provided in a request

for a property value.

Phase unspecified property codes end in 0 (e.g., 430

heat capacity). If the phase is unspecified, the generalized

retrieval routines perform phase determination. (For the

present, phase determination takes place only for properties

using temperature and pressure as associated independent

variables). The pure substance property retrieval routine

PPCP requests the vapor pressure of the pure substance.

When the phase is determined not to be vapor, the PPCP

routine requests the melting point (property code 1007) to

determine whether liquid or solid exists. Once the phase

is determined, the PPCP routine prepares a property value

using the phase specified property code.

-

-32-

5.2.2 Mixture Property Value Requests

There are two routines for retrieving property values for

mixtures. The function named PPCF retrieves a single property

value for a mixture. The standard form of a request for

mixture property data using the PPCF routine is

PROP = PPCF(MP,V1,V2,X,IC)

The argments of the PPCF routine are:

MP - physical property code, an integer

VI - value of first independent variable associated

with the property. Vl is either a real number

or real variable.

V2 - value of second independent variable associated

with the property, V2 is either a real number

or real variable.

X -mole fraction array. X is a singly subscripted

variable containing the mole fractions of the

components listed in the component identification

table in the same order as the components appear.

in the table.

IC - completion code variable, an integer variable.

The PPCF routine retrieves the requested property value

for the mixture whose components are given in the component

identification table. Figure V-3 illustrates the use of the

PPCF generalized retrieval routine. Here the PPCF routine

is used to obtain the enthalpy of the five component mixture

specified in the component identification table. In the

example, the property code 400 of enthalpy as a function of

temperature and pressure is used. The associated independent

-33-

variables, temperature and pressure are represented by the

program variables T and P, and the mole fractions of the

five components are contained in the array X.

DIMENSION X(10)

READ (5,10) NCOMP, T, P Segment of
READ (5,10) (X(I), I - 1, NCOMP) application

* program.

C

H = PPCF (400, T, P, X, IC)

Pure Data Base Component
Substance Component Name
Index Code

1 3 Ethane
2 4 Propane
3 6 n-Butane Component
4 8 n-Pentane Identification

NCOMP=5 2 Methane Table.

Example Use of the PPCF Routine

Figure V-3

Property codes that are a multiple of ten (that is, end

in 0 as in the above example) do not specify the assumed phase

of a mixture. Property code 401 indicates vapor enthalpy.

and property code 402 indicates liquid enthalpy. If the pro-

perty code provided to a generalized retrieval routine is

phase unspecified, a phase determination is performed. The

PPCF and PPCS retrieval routines determine the phases of a

mixture hy requesting the vapor fraction of the mixture

(property code 518). (At present phase determination takes

place only for properties with temperature and pressure as

-34-

associate independent variables. Mixture liquid or solid

phases are rot distinguished. All mixtures that do not exist

in-the vapor-.phase are treated as liquids. All liquids are

assumed miscible). Once the vapor fraction is obtained, the

phase(s) of the mixture is identified as liquid and/or vapor.

When a ptase unspecified property value is requested the

value of the property returned is given by,

PROP - (VAPOR FRAC.)X VAPOR PROPERTY VALUE +

(1-VAPOR FRAC.)X LIQUID PROPERTY VALUE.

Care should be exercised to avoid requesting a property

value for a two-phase mixture when using phase unspecified

property codes for non-state properties (e.g., compressibility

or density of a mixture, either the vapor or liquid phase

may exist independently, but not together. When a two-phase

mixture is provided, the generalized retrieval routines print

a diagnostic and abort.

The third generalized retrieval routine is the PPCS

subruutine. The PPCS routine returns a property value for

each component of a mixture and is used to retrieve properties

such as vapor-liquid equilibrium coefficients.

The standard form of a request for property values using

PPCS is

CALL PPCS(MP,VIV2,XRES,IC)

-3'5-

-35-

The arguments of PPCS are:

MP - physical property ccde, an integer.

VI - value of the first independent variable associated

with the property. Vl is either a real number

or real variable.

V2 - value of second independent variable associated

with the property. V2 is either a real number

or real variable.

X - mole fraction array. X im a singly subscripted

variable containing the mole fraction of th.e

components specified in the component identifica-

tion table in the same order as the components

appear in the table.

RES - result array. RES is a singly subscripted variable

that is returned with a property value fo: each

component in the crder the com;cnentz dppear

in the component identification table.

IC - return code variable.

Figure V-4 illustrates the use of the PPCS routirn.

-36-

DIMENSION X (10)
REAL KVAL (10)
READ (5,10) T, P
READ (5,20) (Xi, -- ,NCOMP) Segment of

* application
* program

CALL PPCS (305,T,P,XKVAL,IC)
IF(IC.NE.O) GO TO 999

Pure Data Base Ccupone,-
Substance Component Name
Index Cod- aode , m

1 4 Propane
2 6 n-Butane
3 8 n-Pentane Component
4 57 i-Hexane Identif ication
5 12 n-Octane Table

NCOMP=-6 11 n-Heptane

Example Use of the PPCS Routine

Figure V-4

Temperature, the first independent variable, is supplied

by the program variable T, and pressure, the second indcpendent

variable, is supplied by the variable P. The component mole

fractions are contained in the array X, and equilibrium co-

efficients are returned in the array KVAL. Notice that the

value of the completion code variable IC is tested before

the equilibrium coefficients are used.

-37) -

-3"7-

5.3 Property Sy;stem Activation

Before requests for a property value(s) can be serviced

by any of the three generalized retrieval routines the pro-

perty system must be activated. During activation the pro-

perty system prepares itself for the first retrieval request.

The property system is activated by coding

CALL ACTIVE

as the first executable statement in the application program.

All the conventions necessary to prepara an application

program have becn discussed. To further illustrate the pre-

paration of an application program that uses the property

system an example program is prepared below.

5.4 Example Application Program

The examp-e application program determines the compc-ition

of vapor and/or liquid phases in a process stream. Schematically,

the process stream of unknown phase composition may be

visualized as entering into a process unit where vapor and/or

liquid streams exit in equilibriuni. The process unit main-

tains isothermal and isobaric conditions throughout. The

program accept "eed stream temperature, pressure, flow rate;

and mole fractions for each product stream. The physical

property system is used to calculate vapor fraction, equilibrium

constants (K-values) , and enthalJ-' (of the product stream)

Figure V-5 presents the application program flow chart.

Figure V-6 illustrates the FORTRAN application program

discussed above. The results of the example application pro-

gram are discussed in Chapter VI "Running an Application

Drogram".

-38-

Unit Schematic
T, P, Fv ,Vapor

Stream

Input T, P,F, Z

L Liquid

StreamT,P,Fz ,X

Application Prcgram Flow Chart

C Start

READ COMPUTE:
T,P,F,Z FvF.,,Y,X

Determine Determinevapormi output

fractionr stream
enthalpies

HyH

Determine Print
eauilibrium results:

coefficients T,P,FvF

Figure V-5

-39-

C
C-- EXAMPLE APPLICATION PROGRAM
C

DIMENSION X(10),Y(10),Z(10)
REAL KVAL(10)

C-- ACTIVATE THE PROPERTY SYSTEM
C

,ALL ACTIVE
C
C-- READ INPUT STREAM INFORMATION
C

READ(5, 10) T, PF. NCOMP
READ(5,10) I'.),Iu,I-NCOMP)

C
C-- DETERMINE VAPOR FRACTION (PROPERTY 518)
C

VFRACaPPCF(518, T,, P, Z, IC)
IF(IC .ME. 0) GO TO 99

.C

,C-- DETERMINE K-VALUES (PROPERTY 305)

"CALL PPCS(305, T, P, Z, KVAL, IC)
IF (IC .NE. 0) GO TO 99

C-- COMPUTE OUTPUT STREAM MOLE FRACTIONS
C

DO 20 K-1,NCOMP
Y(K) - Z(K)/(VFRAC+(1.0-VFRAC)/KVAL(K))

20 X(K) - Y(K)/KVAL(K)
C
C-- COMPUTE OUTPUT STREAM FLOW RATES
C

FV w VFRAC * F
FL*= F - FV

C
C-- DETERMINE ENTHALPIES OF OUTPUT STREAMS
C-- (PROPERTY 401 VAPOR ENTHALPY)
C-- (PROPERTY 1402 LIQUID ENTHALPY)
C

HV - PPCF (401, T, P, Y, IC)
HL - PPCF (402, T, P, X, IK)
IF (IC .NE. 0 .OR. IK .NE.O) GC TO 999

Example Application Program

Figure V-6

-40-

C
C-- PRINT CUTPUT
C
50 WRITE(6o21.)

WRITE(6,23) T, P, F, (Z(I)oIm1,NCOMP)
WRITE(6o21) To Po FV, HV,. (Y(I),Iu1,NCOMP)
WRITE(622) To P, FL, HL.. (X(I),Iu1,NCOMP)
STOP

C
C-- ERROR CONDITIONS
C
99 -WRITE(6,30) To Po F,. (Z(I)oI-l.,NCOMP)

STOP
999 WRITE(6t31)

HL - 0.0
HV - 0.0-
GO TO 50

C
C-- FORMATS
C
10 'FORMAT(.rGlS.7)
24& FORMAT(10X,' EXAMPLE PROGRAM RESULTS'/)
23 FORMAT(INPUT STREAM-:'//' T-',,GI5.701 P-',

$G15.7/1 Fu',G15.7/(' MOLE FRACTIONS * ',3G12.5))
21 FORMAT(/ OUTPUT VAPOR STREAM :'//' T-',Gl5.7

$,,1 P-',G15.7/1 Fu',.Gl5.7,.' H-',G15.7/
$0' MOLE FRACTIONS - 'o3G12.5))

22 FORMAT(/ OUTPU7 LIQUID STREAM :'//' Ta'
$G15.7,1 Pu',G15.7/' F-',G15.7,.' 1u',,G15.71
$V' MOLE FRACTIONS - ',3Gl2.5))

30 FORMAT(COMPLETION CODE PROBLEM-INPUT',$
$1 STREAM'/' Tu',Gl5.7,' P-',G15.7,' F-',
$G15.7/1 MOLE FRACTIONS a 1,4~G15.7)

31 FORMAT(COMPLETION CODE PROBLEM-OUTPUT',
$' STREAM'/' T-',G1S.7,' Pu',G15.7,' Fa',
$G15.7/1 MOLE FRACTInNS * ',I4G15.7)
END

Figure V-6 (continued)

-41-1

CHAPTER VI

RUNNING AN APPLICATION PROGRAM

Chapter V explained that invariant information identify-

ing requested property values is supplied to the property

system as arguments in subprogram calls to the generalized

retrieval routines from within an application program.

Variant information such as the mixture components' identities

and the identities of estimation techniques and/or data used

to obtain property values are supplied to the property system

outside of the application program. By separating the in-

variant and variant information, application programs can

be prepared that do not require modification when mixture

component changes are made and/or when property estimation

techniques must be changed. This section discusses the

procedure for specifying variant information to the property

system.

Variant information is supplied to the property system

in the form of a deck of cards that is read by the system

after it is activated and before the first request for

property values is serviced. Variant information is organized

into two tables: (1) the component identification table,

and (2) the retrieval constraint table.

6.1 Component Identification Table

The component identification table (i, -oduced in

Chapter V) identifies to the property system the components

for which property values are required. The comnonent

identification table is punched onto cards according to the

following rules:

A427
-42-

1. The first card of the component identification

deck must contain the words

COMPONENT ID TABLE

The first word may begin in any column of the

card.

2. The second card of the deck and as many additional

cards as are required must contain the data base

component codes of the components for which

property values are required. The data base

component codes must be separated by commas

or blanks and can be entered in any column of

the cards.

3. The last data base component code must be

followed by a semicolon.

Figure VI-l illustrates a component identification table

and the component identification deck corresponding to it.

Pure Data Base Component

Substance Compoinent Name
Index Code

1 2 Methane
2 10 n-Hexane Component

5 i-Butane Identification

4 4 Propane Table
NCOMP=5 20 n-Eexadecane

Component Identification Table

Figure VI-l

-43-

4, 20

S2, 1i0, 5

COMPONENT ID TABLE

Component Identification Deck

Figure VI-l (continued)

Notice that the component identification deck is punched

in free format and that the list of data base component codes

can be continued from one card to another. A component

identification table must be supplied to the property

system on cards each time an application program is run.

6.2 Retrieval Constraint Table

The retrieval constraint table contains variant informa-

tion used by the generalized retrieval routines to select

estimation procedures for requested property values. Before

discussing the preparation of a retrieval constraint table

some required background information is presented.

-44-

In the property system a distinction is made between

property values and property data. Property values are

determined bsing a property estimation procedure. Property

data is raw data in the form of tables, correlation co-

efficients and constants stored in the system's data base.

A propezty estimation routine uses property data stored in

the data base and/or property values produced by other

estimation routines to produce property values. For example,

a correlation routine (property estimation routine) uses

correlation coefficients (property data) to determine

estimated property values. Frequently, property estimation

routines use a combination of property values determined by

other estimation routines as well as property data. For

example, enthalpy is often determined by evaluating separately

zero-pressure enthalpy and a pressure-correction term. The

estimation procedure for enthalpy then requires use of two

property values determined by other estimation procedures.

Only in the case of "constant" data are property values

and property data equivalent. No estimation procedure is

required to tiansform a constant, for example, molecular

weight, to a property value.

Figure VI-2 depicts graphically the relation between

property data, property values, and property estimation

routines.

-45-

Property Data

(tables, correla-

tion coefficient
and constants)

Property Property J
EstimationValues ~Routine I. .

Property Values

(produced by

another
Property Data and estimation

PrLperty Values routine

Figure VI-2

The generalized retrieval routines accept a request for

a property value or values, search the data base for

property data required to produce the requested property values,.

select the proper estimation routine and call on the estima-

tion routine to produce the requested property values.

Property data is stored in the data base in the form

of data records. Data records contain property data

together with information specifying its characteristics.

A data record contains:

1. a physical property code (for example 401 =

vapor enthalpy as a function of temperature

and pressure),

2. the ranges of the independent variables

associated with the property for which the data

is valid (for example, 202 0 K - 4000K for

-46-

temperature and 1 atm - 3 atm for pressure),

3. a code specifying the contributer who entered

the data record into the data base (for example,

427 = John Jones),

4. the data base component code(s) of the pure

chemical or mixture for which the data is

applicable (for example 2 - Methane),

5. the estimation routine number that pr(luces

property values from thd data contained in the

data record (for example 20 - third degreee

polynomial routine)

6. the maximum percentage error expected in the

property value produced by the estimation

routine (for example, 3%),

7. the data type code that indicates the form of

the property data contained in the data record

(for example, 2 = correlation coefficient),

8. the property data itself (for example, the third

degree polynomial coefficients, a~b,c,d).

A data record is either a pure chemical data record or a

mixture data record. Pure chemical data records contain

one data base component code and property data applicable

to the chemical identified by that code. Mixture data

records contain soveral data base component codes and pro-

perty data applicable to the mixture whose components are

identified by the data base component codes.

Chapter V explained that the inva.liant information

supplied as arguments to the generalized retrieval routines

serves to request property values from withini an application

program. The generalized retrieval routines search the data

base for valid data records. A valid data record:

-47-

1. contains the property code specified as invariant

information.

2. contains independent variable ranges into which

the supplied independent variakle values fall.

3. contain data base component code(s) specified in

the component identification table.

The generalized retrieval routines select a valid data record,

and call the estimation -outine whose routine number is con-

tained in the selected data record. The estimation routine

obtains the necessary property data from the data base and/or

property values produced by other estimation routines and

produces the requested property value. The generalized

retrieval routines return the property value to the applica-

tion program.

Often the generalized retrieval routines locate several

valid data records. The valid data records may differ in the

estimation routine used to calculate a property value, the

maximum percentage error expected between the true value(s)

and the estimated property value(s), and/or the identity

(code) of the contributor who entered the data record into

the data base. The generalized retrieval routines select

one of the valid data records. The retrieval constraint

table provides variant information used to direct the

selection of a valid data record. If no retrieval constraint

is supplied, the first valid data record encountered in a

search of the data base is selected.

In the retrieval constraint table the user can specify

for any property:

1. the estimation procedure to be used (Appendix

I contains the current list of estimation

routines)., .

-48-

2. the percentage error within which the difference

between true and estimated physical property

values must fall,

3. the identity of the contributor of the property

data to be used, and

4, the degree of the constraint (to be defined

below).

The retrieval constraint table provides the basis for

selection of one valid data record from among several competing

records. If none of the valid data records meet the

specified constraints and the constraints are absolute,a

message is printed and the system abcuzs. In the specia2

case when the constraints are not absolute, a message is

printed and the first valid data record is selected (even

though the constraints are not satisfied). (Appendi. !I

contains the generalized retrieval routine logic diagrams that

illustrate the role of the component identification t'•l.e

and the retrieval constraint table.).

Figure VI-3 illustrates a retrieval constraint table.

Property Allowable Estimation Contributor Constraint
Code Error Routine Code Degree

Number

518 - 27 *

305 I% - -

401 - - 342
432 - C 343

2% -

Retrieval Constraint Table

Figure VI-3

-49- 4 '1 4

I
The exe'ple retrieval constraint table has the following

interpretation:

1. If vapor fraction (property code 518) is

requested, estimation routine number 27 is to

be uzed. The asterisk, *, in the constraint

degree column indicates that this is not an

absolute constraint; therefore, if routine

number 27 cannot be located in a valid data

record, a message will be printed and the search

will continue until a valid data record is

located.

2. Lf equilibrium coefficients (property code 305)

are requested, any means for obtaining the data

.is permitted, so long as the estimated values

differ from the true values by less than 1%.

The dash in the constraint de,.,ree column indicates

.hat this is an absolute constraint. If an

equilibrium coefficient data record with 1% or

less error cannot be located, a message is

printed and the system aborts.

3. If vapor enthalpy (property code 401) is requested,

data supplied by contributor 342 should be used

if available. This constraint is not absolute

(*), therefore, data supplied by other con-

tributors may be used if none is available from

contributor 342.

4. If liquid heat capacity (property code 432) is

requested, constant data stored by contributor

342 must be used. ("C" in the estimation routine

number column indicates that a stored constant

is required). This is an absolute constraint.

-50-

5. For all property values returned (other than

those mentioned in the retrieval constraint

table), true values must not differ from

estimated property values by more than 2%.

This is an absolute constraint; therefore, if

this constraint cannot be met, a message will

be printed and the system will abort).

In preparing a retrieval constraint table any combination

of the five entries (property code, allowable error, estimation

routine number, contributor code, and constraint degree) can

be used. A property code may appear more thqn once in the

retrieval constraint table. Consider the retrieval constraint

table illustrated in Figure VI-4

Property Allowable Estimation Contributor Constraint

Code Error Routine Code Degree
Number

305 26 343 *

305 29 344 *

Example Retrieval Constraint Table

Figure VI-4

The retrieval constraint table in Figure VI-4 is

interpretted as follows: if equilibrium coefficients

(property code 305) are requested, estimation routine number

26 or 29 is to be used together with data contributed by

contributors 343 or 344, respectively (assuming that valid

data records can be located). The constraints are not

absolute.

-51-

Retrieval Constraint Deck

The retrieval cotistraint table is punched onto cards

according to the following conventions:

1. The first ca;rd of the retrieval constraint

table must contain the words

RETRIEVAL CONSTRAINTS

anywhere on the card (free format).

2. Each row of the retrieval constraint table

is punched on a separate card.

3. Each of the five entries on a card (property

code, allowable error, estimation routine

number, contributor code and constraint degree),

is separated by a coruna or a blank. A mijsing

entry is replaced by a dash (minus sign).

4. The last entry on the last card is followed

by a semicolon (;).

Figure VI-5 illustrates the retrieval constraint deck fo.

the table of Figure VI-3

card column 1

card 1: RETRIEVAL CONSTRAINTS

card 2: 518, -, 27, -, *

card 3: 305, 1%, -, -I -

card 4: 401, - , - , 342, *

card 5: 432, - , C , 343, -

card 6: - 2%, -, -, -;

Retrieval Constraint Deck

Figure VI-5

-52-

The retrieval constraint table may or may not be used

by the engineer when using the property system. It is an

optional feature provided for convenience in specification

of constraints by the engineer.

The component identification deck and the retrieval

constraint table deck (when used) are combined into one

deck of cards, hereafter referred to as "the variant informa-

tion deck". The conventions for making up a variant informa-

tion deck are:

1. The first card of the deck contains the words

BEGIN VARIANT INFO

anywhere on the card (free format),

2. The component identification table deck follows

the first card,

3. The retrieval constraint deck (when used

follows the component identification table
deck,

4. The last card of the variant information deck

contains the word

ZND

anywhere on the card (free format).

Figure VI-6 illustrates a variant information deck.

-53-

card column 1

card. 1: BEGIN VARIANT INFO

card 2: COMPONENT ID TABLE

card 3: 2, 10, 5,

card 4: 4, 2');

card 5: RETRIEVAL CONSTRAINTS

card 6: 518, -, 27, -, *

card 7: 305, 1%, -

card 8: 401, - , - , 342, *

card 9: 432, - , C , 343, -

card 10: - , 2%, -1 , - , -

card 11: END

Variant Information Deck

Figure VI-6

6.3 Computer Operating System Control Specifications

The preparation of an application program and a variant

information deck is independent of the particular computing

system used to compile and execute the application program.

However, the procedure to be followed for submitting an

application program for execution differs with each computing

system. It is therefore not possible to specify in this

paper the exact procedure to be used to execute an

application program on all computers. Without regard for

the computing system used the following information must be

supplied (the format for IBM 360/75 at the University of

Pennsylvania follows in the next section):

-99-54-

1. Control cards specifying that the application

program is to be compiled and executed.

2. Control cards specifying the locationi (physical

storage location) of the library of storage,

retrievel and property estimation routines.

3. Control cards specifying the location of the

data base (stored on some external device) to

be read by the property system using FORTRAN

input/output unit number 3.

4. Control cards specifying that the variant

information deck is read by the property system

using FORTRAN input/output unit number 5.

5. Control cards specifying that the property

system writes diagnostic messages on FORTRAN

input/output units 6 and 11.

Figure VI-7 illustrates the structure of a typical

application program together with data and control cards.

Control cards specifying that

compilation and execution are

Lrequired

Application program

EControl cards specifying

library lccations

Application Program Run Deck

Figure VI-7

-55-2 L u

l|II

Control cards specifying 1
location of data base and

other FORTRAN input/output units

I. -

Variant informrtion deck

Application program data

Application Program Run Deck

Figure VI-7 (Continued)

64 University of Pennsylvania IBM 360/75 Control Cards
Appendix III contains a list of the control cards

required for running an application program on the IBM System

360/75 at the University of Pennsylvania Computing Center. 1

"I

-56-

6.5 Example Application Program Results

Figure VI-8 illustrates the printed output of the

exan~le application program discussed in Chapter V. A cnmponent

identification table containing the data base component codes

of propane, i-butane, i-pentane, n-pentane, n-butane, and

n-hexane was provided as variant information.

****,** N E W .*******
MIXTURE COMPONENT LIST

Mix COMP # DATA BASE #
1 I4
2 I5
3 I6

5 I 8
6 I 10

END 0

"DATA BASE SUCCESSFULLY INITIALIZED

EXAMPLE PROGRAM RESULTS

INPUT STREAM :

To 380.0000 Po 11.90000
F- 450.5999
MOLE FRACTIONS a 0.32000 0.15000 0.80000E-01
MOLE FRACTIONS a 0.50000E-01 0.10000E 00 0.30000

OUTPUT VAPOR STREAM :

T- 380.0000 Po 11.90000
F- 260.5024 HE 20946.00
MOLE FRACTIONS a 0.43937 0.1'904 0.90167E-01
MOLE FRACTIONS a 0.44350E-01 0.83229E-01 0.16369

OUTPUT LIQUID STREAM i

T- 380.0000 Po 11.90000
F- 190.0974 He 15847.09
MOLE FRACTIONS , 0.15642 0.11021 0.66067E-01
MOLE FRACTIONS , 0.57743E-01 0.12298 0.48679

Figure VI-6

-57- 2f. L

CHAPTER. VII

DATA STORI 4E

A data base containing physical property data records is

an integral part of the property system. A master data base

containing approved property data is maintained by the pro-

perty system librarian, and is available to all users.

Often a user wishes to add personal property data to the

data base to be used with one of the property estimation

routines. To insure the integrity of the master data base

only the system librarian may enter new data into it.

Personal property data is entered into a user's personal data

base using the property system's storage routine.

When an application program requests property values, the

generalized retrieval routines search the data base for a

valid data record. The user's personal property data is

searched first to locate a valid data recor,1. If none is

found, the data records contained in the muster data baie

are searched. In thir manner preference is given to the

user's personal property data.

Through the use of the property system's storage routine

the user can:

1. add new personal property data to t)e user's data

base,

2. update property data existing in the user's data

base, or

3. delete property data existing in t-.e user's data

base.

b Leauve Lat a "wes, pemmer b. Nam • eem ow
by MAX the user hlmslf. Vi sa w - 0AS a PWMW--- wpm

ehtering property data Late his pereai dt bhwe Saw

first time. Th2 selected password is stated by the so

and must be supplied each time data is addedo updtsi4 a

deleted from the user's personal data base.

The engineer generally will have need to add personal

property data when working with new chemicals or when obtaini"a

new data from the literature and/or by experiemt. The new

data can be added to the data base at any time. but cannot be

used unless the appropriate property estimation routine is

available. Appendix I contains a description of property

estimation routines currently stored in the property system

library. Often it is necessary to define new property

estimation routines. chapter ViII of this paper describes

the procedures for writing new estimation programs and storing

them in the property system library.

The procedures for using the property system's data

storage routine are discussed below.

7.1 Adding New Personal Property Data

The data storage routine is used ti add new data records

to a user's personal data base. The data records to be added

are punched onto cards to be read by the data storage

routine. The deck of data records in card form is hereafter

called the addition deck.

Adding new property data to the data base involves

entering new directory elements to the directory where

necessary together with adding a new data elewent to the

data pool. The storage routine first searchea the property

code nodal list to determine if the property

-59-

code of the new data record exists. If it does not, the new

directory element containing the property code is added to

the list and new lower level nodal lists are created. If

the code is found, the branch to the associated variable

range nodal list is followed. The storage routine searches

that list for the variable ranges of the new data record.

If a matching directory element is not found, one is created

together with new lower level nodal lists. If a match is

found, the branch to the associated component-data type list

is searched for a matching entry. If one is not found, a

new directory element containing the component code(s) and

data type is added to the list and new lower level nodal list

are created. If a matching directory element in the component-

data type nodal list is found, the branch to the associated

contributor-routine number nodal list is followed. If a

match is not found in this lowest level nodal list, a new

directory element is added to the list together with a

pointer to an empty data element of the data pool and the

data contained in the new data record is then added to

the empty data element. If a match is found in the lowest

level nodal list, an error condition exists. All of the

attribute values of the new data record have been found

in the directory, therefore, data already exists. In such

a case naw data cannot be added to the data base; the existing

data must instead be updated. The storage routine prints

a message and goes on to the next data record.

To simplify the preparation of an addition deck the data

records are punched in a special way. Each data record is

separated into two parts; (1) the characteristic part, and

(2) the data part. Figure VIII-1 illustrates the two parts

of a data record.

-60-

I u ,

- 1. Property code - 425
2. Contributor code - 317 Charac-

terist •c
3. Validity ranges - 200°K-400 0K

(no second range)

4. Max. expected % error - 2%

Data 5. Estimation routine no. - 24
Record 6. Data type code - 2

7. Data base component - 3 Data
code 1Pr

8. Data - 4.0,5.2x10-1 6.7x10-2 Part

Data Record

Fiqure VMýI-I

Data records to be added that have identical characteristic

parts are grouped together. For each such group it is necessary

to punch the common characteristic part of the data records

only once. Following the common characteristic part of the

data records are one or more data parts. Figure VII-2

illustrates the punched form of data records.

group 1 (Common Characteristic Part

'(Data part 1) (Data part 2) ... (Data part) '

group 2 (Common Characteristic Part)

'(Data partI (Data part 2) ... (Data part)'

Punched Form of Data Records 296
Figure VII-2

-61-

Notice that the common characteristic part of the data

records and each data part are preceded by a left parenthesis,

"(", and followed by a right parenthesis, ")" and that

each set of data parts is preceded and followed by an apostrophe.

Characteristic Part

The rules for punching the characteristic part of a data

record onto cards are:

1. The first character must be "(" and can begin in

any column of the card,

2. The entries in the characteristic part appear in

order:

a) property code,

b) contributor code,

c) 1st Ind. variable validity range,

d) 2nd Ind. variable, validity range,

e) maximum percentage error,

f) estimation routine number,
g) data type code,"

and are punched iki free format. Separated by commas,

3. Each validity range is punched as

lower value - upper value

4. Any missing entry is replaced by a dash (minus
sign) ,

5. The last character must be ")",

6. The characteristic part of a data record may be

continued from one card to another.

The characteristic part of the data record in Figure VII-l

would be punched as,

(425,317,200.-400.,-,2%,24,2) 20

-62-

The data part of a data record is punched in free format

in the form.

(component (s) : data)

In pure chemical data records only one data base component

code appears, but in mixture data records several data base

component codes appear, each separated front the others by a

comma. The component codes are followed by data entries

separated by a colon. Data may appear following the colon

in the following forms: (1) a constant data value, (2) a set

of correlation coefficients, (3) a table, or no data at all

when the estimation procedure does not require property data.

Data Part

The rules for punching the data part of a data record are:

1. The first character is a left parenthesis "(",

2. The data base component code(s) follow " (", each

separated by commas if more than one appears,

3. A colon (:) follows the data base component codes,

4. The data follows the colon.

a) If the data is a constant, the single value is
entered in "E" or "F" format. (For example 27.5
or 2,75E+l)

b) If the data is in the form of a set of
correlation coefficients, the coefficients are
entered, in "E" or "F" format separated by
commas. (For example, 5.10,6.1E2,7.5E-3)

c) If the data is in the form of a table, the values
of the first independent variable are entered
first, the values of the second independent
variable next, and then the body of the table
is entered row by row. (aach row corresponds
to a single value of the first independent
variable). For example the table,

-63-

xI X x3

Y1 a11 a 1 2 a 1 3

Y2 a 2 1 a 2 2 a 2 3

Y3 a31 a32 a33

(with Y1 ,Y2 ,Y 3 values of the first independent

variable, and xlx 2x 3 values of the second)

is entered as,

(Y1 ,Y2 ,Y3), (Xl,X 2 ,X3), (ailla 12 ,a 1 3), (a 2 1 ,a 2 2 , a2 3)

(a 3 1 Pa3 2 'a 3 3)

If the table has only one independent variable

the missing independent variable entries are

replaced by a dash (-). For example, the

table,

Y a1

Y2 a 2

Y3 a 3

(with YIY 2 , Y3 values of the first independent

variable) is entered,

(Y ,Y 2,Y3), (-), (a 1), (a 2), (a 3) 3

d) If no data appears, a dash (-) is entered.

The data part of the data record illustrated in Figure

Vii-I would be punched as,

209
-64-

(3 :4.0,5.2E-1, .067)

When punching numbers in the characteristic part or data

part of data records any FORTRAN number representation format

may be used (integers have no decimal point and real numbers

are represented in F or E format).

Figure VII-3 illustrates four data records and the

corresponding card images for addition of the data records

into a user's personal data base.

Data Data Data Data
Record 1 Record 2 Record 3 Record 4

Property : 425 424 425 431

Contributor: 153 153 153 153

Validity (1): 300-400 0 K 300-400 0 K 300-4000K 1800-3600 0 K
range

(2) : 0.5 -- 2.0 atm

Max. error : 2% 2% 2% 5%

Estimation : 10 10 10 21
Routine

Data Type : 2 2 2 3

Component : 2 3 6 47

Data : 4.75 5.99 5.76

1..2x102 3.0x102 3.5x102 1800. 0.656

5.0xl0 4.77xi0-1 3.5xi0- 2222. 0.701

2777. 0.743

3333. 0.771

3600. 0.782

Example Data Records

Figure VII-3

-65-
n 0

Punched data records:

card column 1

card 1 : (425,153,300-400,-,2%,10,2)

card 2 : '(2:4.75,1.2E2,0.5)(3:5.99,300.,0.477)

card 3 : (6:5.76,3.5E2,3..6-W)'

card 4 : (431,153,1800-3600.,0.5-2.0,5%,21,3)

card5 : '(47: (1800.,2222.,2777.,3333.,3600.),(-),

card 6 : (0.656),(0.701),(0.743),(0.771),(0.782))'

Figure VII-3 (Continued)

Notice that data records 1,2, and 3 have the characteristic

part in common; therefore the three data records are grouped

together. Card 1 contains the characteristic part, and card

2 and 3 contain the data parts. The fourth data record is

punched onto ca.'ds 5 and 6. Notice that the dash (-) indicates

that the table is represented only as a function of the

first independent variable (temperature). This data record
will be used only when the second independent variable

(pressure) falls within 0.5 and 2.0 atm. The table represents

data that is independent of pressure in the validity range

specified.

Additions Deck

An additions deck is made up of punched cards containing

data records to be added to a personal data base. The

control card containing the words,

ADDITION DECK

211

-66-

in free format is the first card of an additions deck. The

punched data records follow the control card.

7.2 UDdating Existing Data

Property data contained in data records stored in a

personal data base can be altered through the use of the

storage routine. Updating existing data is performed similarly

to adding new data. The updated version of a record is

punched onto cards as previously discussed. The storage
routine then locates an existing data record stored in the

personal data base that is identical to the data record

punched on cards except in the data itself. The storage

routine replaces the data in the existing data record with

the data in the new data record. The storage routine will

update only the data portion of a data re*ord; the other

items (property code, contributor code, etc.) cannot be

updated.

An update deck is made up of punched cards containing

the updated records. A control card containing the words,

UPDATE DECK

in free format is the first card of an update deck. The

punched data records follow the control card.

7,3 Deleting Existing Data

Data records that exist in a personal data base can be

deleted by using the property system's storage routine. To

delete an existing data record, the entire data record

excluding its data part is punched onto cards. The storage

routine searches the users personal data base for an exact

-67- 212

duplicate of the data record to be deleted. When the data

record is located in the users personal data base it is

deleted. The punched version of the data recoTds to be

deleted together with a control card make up a deletion deck.

If data record 1 from Figure VII-3 was to be deleted

from a personal data base, the punched version of the data

record (without its data) would take the form,

(425,153,300.-400.,-,2%,0,2, (2))

Notice that the above consists of the characteristic part of

the data record together with the data base component code(s).

The control card containing the words,

DELETION DECK ,

in free format is the first card of the deletion deck. The

punched data records (without their data) to be deleted follow

the control card.

7.4 Storage control Deck

The additii i deck, update deck, and deletion deck are

assembled into a single deck of cards that direct the data

storage routine to perform its function. Figure VII-4

illustrates the storage control deck.

213

password card

[addition deck 1
(when necessary)

update deck
(when necessary)

deletion deck

[(when necessary)]

end card

Storage Control Deck

Pigure VII-4

The first card of a storage control deck is the password

card. The password card has two forms. One form is used only

the first time personal property data is added to a personal

data base. The form of the card is,

NEW PASSWORD - user provided password

Any password may be chosen by the user. The password is

stored by the property system and must be supplied by the

user each subsequent time that modifications to the user's

personal data base are requested. The second form of the

password card is

OLD PASSWORD - user pzovided password

The last card of the storage control deck is the end

card. The end card contains the words,

END STORAGE DECK

2 4
in any column of the card (free format).

-69-

Appendix III -ontains the control cards required to

execute the property system's storage routine on the University

of Pennsylvania's IBM 360/75 computing system.

Appendix IV contains the Backus Naur Form specificaticn

of the storage control deck.

215
-70-

CHAPTER VIII

PROPERTY ESTIMATION ROUTINES

8.1 Definition

A property estimation routine is a FORTRAN function or

subroutine subprogram that computes a property value or

property values using property data stored in the data base

and/or property values generated by other estimation routines.

The advanced user frequently has recourse to add new property

estimation routines to be used with new property data in the

estimation of physical property values. New property estima-

tion routines are prepared in the form of FORTRAN subprograms

and entered into the estimation routine library. The new

property estimation subprogram is available for use with

new and/or updated data records that refer to its routine

number.

Property estimation subprograms becoe a part of the

property system when they are entered into the system's

library, therefore, their preparation is regulated by a met

of conventio. iauch more restricting than those governing

the preparation of an application program. The remainder

of this chapter discussss the conventions for preparing

estimation rcutines and for entering the routines into

the system's estimation routine library.

21--
-71-

8.2 Estimation Routine Types

There are three types of estimation routines: (1) pure

chemical property estimation routines that compute a single

property value for a pure chemical, (2) mixture property

estimation routines that compute a single property value for

a mixture, hereafter called single-valued mixture property

estimation routines, and (3) mixture property estimation

routines that estimate a single property value for each com-

ponent of a mixture, hereafter called multiple-valued mixture

property estimation routines. Notice that the three types of

estimation routines correspond to the three types of gener-

alized retrieval routines, PPCP, PPCF, and PPCS.

8.3 Estimation Routine Conventions

The estimation routines are an integral part of the

property system and must conform to conventions concerning

their structure. That is, each estimation routine must follow

the conventions outlined below:

1. An estimation routine is a FORTRAN subprogram. Each

type of estimation routine has a standard form for

its FUNCTION statement or SUBROUTINE statement.

Pure Chemical Property Estimation Routines are

FUNCTION subprograms having the following

standard FUNCTION statement,

RZ.L FUNCTION NAME (MP,Vl,V2,INDEX,IC)

where the arguments are:

NAME - the name of the estimation routine

MP - physical property code, an integer

variable

-72-

V1 - first independent variable, a real

variable

V2 - second independent variable, a real

variable

INDEX - pure substance index, an integer

variable

IC - completion code, integer variable

Single-Valued Mixture Property Estimation

Routines are FUNCTION subprograms having the

following standard FUNCTION statement,

REAL FUNCTION NAME (MP,VlV2,NCOMP,IC)

where the arguments are:

NAME - the name of the estimation routine

MP - physical property code, an integer

variable

Vi - first independent variable, a real

variable

V2 - second independent variable, a real

variable

X - m,1.e fraction array, a real singly

subscripted variable

NCOMP - number of mixture components, an

integer variable

IC - completion code, an integer variable

Multiple-Valued Mixture Property Estimation

Routines are SUBROUTINE subprograms having the

following standard SUBROUTINE statement,

SUBROUTINE NAME (MP,V1,V2,X,RES,NCOMP, IC)

where the arguments are:

-73-

NAME - the name of the estimation routine

MP - physical property code, an integer

variable

V1 - first independent variable, a real

variable

V2 - second independent variable, a real

variable

X - mole fraction array, a real singly

subscripted variable

RES - result array, a real singly sub-

scripted variable

NCOMP - number of mixture components, an

integer variable

IC - completion codc, an integer variable

Each argument of the FUNCTION and SUBROUTINE statements

has been previously discussed in Chapter V, with

the exception of the variable representing the number

of mixture components (NCOMP). The number of

mixture components is supplied to the estimation

routines by the generalized retrieval routines via

the variable NCOMP.

2. An estimation routine must not alter the value of

any of its arguments with the exception of the result

array (RES) auid the completion code variable (IC).

3. Each estimation routine must initialize the com-

pletion code variable to zero. If the estimation

routine performs check procedures during computation
and determines that an abnormal condition exists,

adversely affecting the property value estimated,

the completicn code variable is assigned a non-zero

219
-74-

value. Each abnormal condition that can arise in

an estimation routine is assigned a unique completion

code.

4. An estimation routine contains no WRITE, PRINT,

READ, or STOP statements.

5. An estimation routine may not use blank or labelled

COMMON.

8,4 Requesting Property Values and Data

An estimation routine may require property values pro-

duced by other estimation routines and property data in the

form of constants, correlation coefficients, or tables con-

tained in data records stored in the data base.

8.4.1 Reciuesting Property Values

In preparing property estimation routines, requests for

property values are coded as FORTRAN function and subroutine

call statements that call the generalized retrieval routines.

The PPCP generalized retrieval routine is used to request

pure chemical property values, the PPCF generalized retrieval

routine is used to request a single mixture property value,

and the PPCS generalized retrieval routine is used to

request property values for each component of a mixture.

Due to the lack of the recursive property in FORTRAN sub-

programs, (discussed in section 8.6) the calls to generalized

retrieval routines coded at the time of preparation of the

estimation routine are changed to calls to one of the

corresponding communication routines. The modification

of calls to the generalized retrieval routines takes place

prior to entering the estimation routine intc the estimation

routine library, and is discussed in the last section of

-75-

this chapter. For clarity in the discussion of the preparation

of estimation routines, requests for property values of pure

chemicals and mixtures are discussei as calls to the generalized

retrieval routines. The conventions for calling the generalized

retrieval routines are discussed in Chapter V, "The Application

Program".

8.4.2 Requesting Property Data

Estimation routines often require property data, in the

form of constants, correlation coefficients, and/or tables.

For example, an estimation routine that evaluates a third

degree polynomial requires data in the form of four correla-

tion coefficients associated with the polynomial. Property

data for chemicals are requested by and supplied to

estimation routines using the property system's retrieval

service routines. Within the estimation routines, invariant

information identifying the requested property data is supplied

to the retrieval service routines in the form of arguments

(similar to the generalized retrieval routine arguments).

There are three retrieval service routines that can be

called by an estimation routine. The FORTRAN function sub-

program SERl retrieves stored constants, the FORTRAN

function subprogram SER2 retrieves a stored correlation

coefficient, and the FORTRAN subroutine subprogram SER3

retrieves a stored table.

Retrieval Service Routine SERI

The retrieval service routine SERl retrieves constant

property inth data atype 1) contained in a data record that

is stored in the data base. The standard request for con-

stant property data such as critical temperature or acentric

-76- 221

factor using the SERI routine is,

CONST = SERI (MP,Vl,V2,INDEX).

The arguments of the SERI routine are:

MP - physical property code, an integer or

integer variable

Vi - value of first independent variable

associated with the property, a real

number or real variable

V2 - value of second independent var..able

associated with the property, a real

number or real variable

INDEX - pure substance index number, an integer

or integer variable

Appendix I of this thesis contains lists of the estab-

lished property codes. Associated with each property code

are as many as two independent variables. If the property

code does not have two independent variables associated with

it (for example 1006 = molecular weight has no associated

independent variables) a constant (preferably zero) must be

entered in place of each missing independent variable. The

pure substance index identifies the chemical for which the

property data is requested. The pure substance index is

given a value of zero, if the requested property data is for

a mixture rather than for a pure chemical. Figure VIII-1

illustrates the use of the SERI retrieval service routine.

In Figure VIII-I, the SERI rc-itine is used to obtain the

critical temperature and pressure for the components of a

mixture from within a multiple-valued mixture property

estimation routine. Since the SERI routine is a FORTRAN

-77- 22

function subprogram, a call to SER1 can be incorporated into

an arithmetic assignment statement as illustrated in the

example.

SUBROUTINE FUGL (MP,T,P,XRES,NCOMP,IC)
DIMENSION X(25) ,RES (25)
IC=0

DO 20 K-I,NCOMP
TR=T/SERI (1001,T,P,K)
PR-P/SERl (1002,T, P, K)

20 CONTINUE
RETURN
END

Example Use of the SERi Routine

Figure VIII-i

The retrieval service routines do not perform phase

checking, therefore, only phase specified physical property

codes are allowed as arguments to the retrieval service

routines.

Retrieval Service Routine SER2

The second retrieval service routine is SER2. The SER2

routine returns one of the coefficients in a set of correla-

tion coefficients contained in a data record. The standard

request for a correlation coefficient (data type 2) using

the SER2 routine is,

223
-78-

COEFF - SER2 (MP,Vl,V2,INDEX,ISUB).

The arguments of SER2 are:

MP - physical property code, an integer or

integer variable

Vi - value of first independent variable

associated with the property, a roal

number or real variable

V2 - value of second independent variable

associated with the rroperty, a real.

number or real variable

INDEX - pure substance index number, an integer

or integer variable

ISUB - subscript of the correlation coefficient,

an integer or integer variable

The arguments to SER2 are identical to those of SER1 with

the exception of an additional argument ISUB. The argument

ISUB indicates the particular correlation coefficient to be

retrieved from a data record by SER2. If there are N

correlation coefficients, then ISUB can take on the values

l,2,....,N. If the SER2 routine is called upon with a zero

value for ISUB, SER2 returns the value N, the number of

correlation coefficients in the set. Figure VIII-2 illustrates

the use of the SER2 routine in the estimation routine POLYD3

for evaluating a third degree polynomial using coefficients

stored in a data record.

224

-79-

REAL FUNCTION POLYD3 (MP,V1,V2,INDEX,IC)
IC=O
CO=SER2 (MP,Vl,V2, INDEX, 1)
Cl=SER2 (MP,Vl,V2, INDEX, 2)
C2=SER2 (MP,VI,V2, INDEX, 3)
C3=SER2 (MP,VI, V2,INDEX,4)
POLYD3= ((C3*Vl+C2) *Vl+cl) *Vl+CO
RETURN
END

Example Use of the SER2 Routine

Fiaure VIII-2

Retrieval Service Routine SER3

The third retrieval service routine is the FORTRAN sub-

routine SER3. The SER3 routine returns sets of values of

two independent variables together with the tabulated pro-

perty data. The standard request for tabular property data

(data type 3) using the SER3 routine is

CALL SER3 (MP,VlV2, INDEX,N1,VIND1,N2,VIND2,TABLE)

The arguments of SER3 are:

MP - physical property code, an integer or

integer variable
V1 -value of first independent variable, a

real number or real variable

V2 - value of second independent variable, a

real number or real variable

INDEX - pure substance index number, an integer

or integer variable

N1 - iiurnber of tabulated values for the first

independent variable, an integer variable

-80- 225

VINDI - first independent variable value vector,

a real singly subscripted variable

P.2 - number of tabulated values for the second

independent variable, an integer variable

VIND2 - second independent variable value vector,

a real singly subscripted variable

TABLE - tabulated property data array, a real

doubly subscripted variable

The arguments representing physical property code, independent

variable values, and pure substance index have been discussed

earlier in this section of the manual. The variables Nl and

N2 must contain the dimensions of the array TABLE as specified

in the DLWENSION statement of the estimation program when

the SER3 routine is called. The variable N1 contains the

number of rows and N2 contains the number of columns that

are specified in the estimation routine's DIMENSICN state-

ment for the array TABLE. The SER3 routine replaces

the value of Nl with the number of rows found in the array

retrieved from a valid data record (not always equal to the

specified value of Nl), and replaces the value of N2 with

the number of columns found in the retrieved array of

property data. Upon completion of SER3 retrieval of data

from a valid data record, the first indipendent variable

vector VINDl contains the tabulated values for the first

independent variable vector, VIND2 contains the tabulated

values for the second independent variable (one value for

each column of the retrieved property data array), and

array TABLE contains tabulated data, all for subsequent

use in the estimation routine. Each row of the array TABLE

contains the tabulated property data for a single value of

-8-22

the first independent variable contained in VINDI, and each

column contains the tabulated property data for a single

value of the pecond independent variable contained in VIND2.

If the property data .is tabulated as a function of only one

independent variable, the variable N2 will be returned to

the estimation routine with the value zero. Figure VIII-3

illustrates the use of the SER3 retrieval service routine.

REAL FUNCTION INTZRP (4PVlV2, INDEX, IC)
DIMENSION Y(20) ,X(20) ,T(20,20)
ic-o

NY=2O
NX-20
CALL SER3 (MP,Vl,V2, INDEX,NYY,NX,X,T)
DO 10 I-I,NY
DO 10 J-1,NY

Example Use of the SER3 Routine

Figure VIII-3

8,5 Example Estimation Routine

The example estimation routine is a single valued

mixture property estimation routine named HLI0. The routine

computes the liquid enthalpy of a mixture-using a correlation

to determine a zero pressure enthalpy and using the gener-

alized retrieval routine to obtain en enthalpy pressure

correction. Figure VIII-4 illustrates the logic flow

diagram of the cstimation routine and Figure VIII-5 illustrates

the program.

-82-

Initia ize
constants and
completion code.

Temperature * 0.01? es Set completion
code to 1.

'noIRequest molecular 1Compute zero-
weights using SERI. j pressure enthalpy.I I
Request coefficients Request pressurecorrection using

using SER2. PPCF.

Molar average corrected

the coefficients. enthalpy.

Estimation Routine Logic

Figure VIII-4

-83-

REAL FUNCTION HLIQ(MP, T,P,XNCOMP, IC)
C

C-- THIS. IS AN EXAMPLE SINGLE-VALUED MIXTURE
C PROPERTY ESTIMATION ROUTINE.
C

DIMENSiON X(20),C(20)
C
C-- INITIALIZE VARIABLES
C

I C"O

DO 10 K-1,5
10 C(K)-0.0

C

C-- CHECK TEMPERATURE
C

IF(T .LT. 0.01) GO TO 99
C
C-- REQUEST COEFFICIENTS AND MOLECULAR WT. FOR
C EACH COMPONENT, AND THEN AVERAGE THE
C COEFFICIENTS.
C DO 20 K1,NCOMP

IF(X(K).LT.0.001) GO TO 20
XMWT.SER1(1006,T, P, K)
DO 15 I-1,5

15 C(I) = C(I) + SER2(MP, T,P,K,I)*X(K)*XMWT
20 CCNTI NUE

C
C-- COMPUTE ZERO PRESSURE ENTHALPY
C

ZPH a T*(C(1)+T*(C(2)+T*C(3)))+C(4)/T+C(5)
C
C-- REQUEST PRESSURE CORRECTION (PROPERTY 412)
C

PCOR " PPCF(4120T,P,X, IK)
C
C-- COMPUTF ENTHALPY AND RETURN
C

HLIQ - ZPH - PCOR
RETURN

C
C-- SET COMPLETION CODE
C
99 IC - I

HLIQ - 0.0
RETURN
END

Example Estimation Routine

Figure VIII-5

-84-

8.6 Entering an Estimation Routine Into the Library

All property estimation routines rsside in the property

system's library. At present only the system librarian can

enter an estimation routine into the estimation routine

library. The librarian must alter the new estimation

routine to modify all calls to generalized retrieval routines.

Since estimation routines contain calls to the generalized

retrieval routines, the generalized retrieveal routines

must have recursive capabilities. FORTRAN subprograms

cannot directly or Indirectly be called recursively. There-

fore, modifications to the calls on generalized retrieval

routines are made prior to entering the routine into the

library.

The modification that is made is a subtitution of a

call to a communication routine for the call to a generalized

retrieval routine. There is a set of communication routines

corresponding to each type of generalized retrieval routine.

Each communication routine has the capability of calling a

set of estimation routines. In setting up the communication

routines care is taken to insure that no two estimation

routines that require property values computed by each other

is called by the same communication routine. By taking

such precautions the communication routines partition the

estimation routines into sets of unrelated routines. This

procedure insures that no estimation routine is called

recursively.

At present the responsibility for partitioning the

set of estimation routines falls upon the system librarian.

A processor system should be developed to partition the set

of estimation routines and to modify calls to the generalized

retrieval routines from within an estimation routine. If

such a system is developed the "recursion" problem will be

-85-

solved and the system librarian will be relieved of a tedious

task.

Appendix I contains the current list of property estima-

tion routines that are resident in the system's library. A

list of completion codes for each estimation routine may also

be found in Appendix I.

231
-86-

CHAPTER IX

CONCLUSION AND RECOMMENDATIONS

9.1 Conclusion

A prototype system for storage and retrieval of physical

properties of pure chemicals and mixtures has been described.

The system allows the engineer to prepare general purpose

application programas that do not require programming modifica-

tion when chemical mix and/or operating conditions change.

Variant and invariant information concerning the attributes

of requested physical properties are separated, allowing

general purpose application programs to be written and

allowing limited or complete control over property data and

value retrieval. The system has a data base and library thus

allowing storage of property data in several forms. Storage

routines allow the user to add, update or delete property

information.

The property system has been used to provide property

values to a large computer-aided design system created by

Mr. Hajime Komaki (13). The property system performed

successfully in providing property values for design and

simulation of a natural gasoline plant studied by Mr. Komaki.

9.2 Recommendations

In using the property system many features that would

enhance the system and would allow full scale implementation

have been recognized.

-87-23

1. Provision for allowing several different sets of

engineering units to be used should be implemented.

*(for example, temperature in °K,OR,OC,OF and

pressure in atm., psia, rmm/Hg)

2. A preprocessor should be developed that would

scan an application program before execution to

determine the required properties, and then generate

a personal property set containing only the

property data and estimation routines required.

3. The system should be expanded to allow retrieval

of property data from disk together with retrieval

from the core resident data base.

4. The application program should be given the

capability of altering the retrieval constraint

table during execution.

5. A new attribute for estimation routines should

be added to the seven existiiig. The attribute

should give indication of time requirements

for property estimation.

6. A trace feature should be incorporated into

the system in order to determine, after execution,

the estimation routine used, and the time required.

7. The system should have a mode of operation for

generating tables of estimated property values

and then generating a correlation for the

property. This would allow cons'derable savings

of time during application program execution.

-88-

8. Assembly language recursive generalized retrieval

routines should be written to eliminate the need

for the communication routines.

9. A system for interrogation of the property system's

data base is needed to simplify the task of

determining the available property data. The

system could be implemented in a time shared

environment to allow interaction.

10. The property system should be implemented in a

time shared environment to allow storage and

retrieval of property data and vilues interactively

at a terminal.

234

-89-

Appendix I

Appendix I contains the lists of property codes, data base

component codes, data type codes, and estimation routines. The

lists of codes used by the property system are the lists of

assigned codes. Physical property data does not exist in the

master data base for all property codes and for each data base

component code. At present the user must use the property

system to determine if property data is available. A system that

allows the user to inquire concerning availability of property

data is planned.

%

235

-90-

A. Physical Property Codes

Code independent Variables

100 Density T P
101 - vapor T P
102 - liquid

200 Fugacity Coefficient T P
201 - vapor
202 - liquid

300 Activity Coefficient T P
302 - liquid

305 Equilibrium Coefficients T P

400 Enthalpy T P
401 - vapor
402 - liquid
411 Enthalpy Pressure Correction - vapor T P
412 - liquid
425 Zero Pressure Enthalpy T P

430 Heat Capacity T P
431 - vapcr
432 - liquid

515 Bubble Pt. Temperature P -

516 Dew Pt. Temperature P -

517 Temperature Enthalpy P
518 Vapor Fraction T P

1001 Critical Temperature - -

1002 Critical Pressure - -

1003 Acentric Factor
1004 Solubility Parameter - -

1005 Molar volume - -

1006 Molecular Wt. - -

1007 Melting Pt. Terierature - -

-91-

B. Data Base Component Codes

Compound Data Base Compound Data Base
or Component or Component

Element Number Element Number

Hydrogen 1 1-Pentene 29
Methane 2 Cis-2-Pentene 30
Ethane 3 Trans-2-Pentene 31
Propane 4 2-Methyl-l-Butene 32
i-Butane 5 3-Methyl-l-Butene 33
n-Butane 6 2-Methyl-2-Butene 34
i-Pentane 7 1-Hexene 35
n-Pentane 8 Cyclopentane 36
neo-Pentane 9 Methylcyclopentane 37
n-Hexane 10 Cyclohexane 38
n-Heptane 11 Methylcyclohexane 39
n-Octane 12 Benzene 40
n-Nonane 13 Toluene 41
n-Decane 14 O-Xylene 42
n-Undecane 15 M-Xylene 43
n-Dodecane 16 P-Xylene 44
n-Tridecane 17 Ethylbenzene 45
n-Tetradecane 18 Ammonia 46
n-Pentadecane 19 H 0 47
n-Hexadecane 20 Ehyl Alcohol 48
n-Heptadecane 21 Acetone 49
Ethylene 22 Nitrogen 50
Propylene 23 Oxygen 51
1-Butene 24 Carbon Monoxide 52
Cis-2-Butene 25 Carbon Dioxide 53
Trans-2-Butene 26 Air 54
i-Butene 27 Argon 55
1.3-Butadiene 28

C- Data Type Codes

0 - Null data
I - Constant data
2 - Correlation coefficient data
3 - Tabular data

2.31

-92-

D. Estimation Routines:.

Routine number: I

Name • DWRLD

Type : FUNCTION, mixture routine

Purpose t BWRLD computes liquid density of a mixture

(property code 102) using the Benedict-

Webb-Ruben equation of state.

Requirements: BWRLD requires the eight BWR coefficients

A0 ,B 0 ,C 0 ,a,bc,a,7 (A0 the first, - the

eighth) for each component of the mixture

Completion : 0 - OK
Codes 1 - Non-existent

2 - All mole fractions 1 10-6 BWRLD = 0.0

Routine number: 2

Name : BWRVD

Type : FUNCTION, mixture routire

Purpose : BWRVD computes vapor density of a wixtur.:

(property code 101) usirg the Benedict-

webb-Ruben equation of state.

Requirements: BWRVD requires eight BWO coefficients

A0 ,B0rC 0 .0a,b,c, a,y (A0 the first, y,

the eighth) for each corpcnent of the

mixture.

Completion 0 - OK
Codes 1 - Non-existent

-6
2 - All mole fractions 1 10 . BWRVD - 0.0

-93-

Routine number: 3

Name ZPH

Type : FUNCTION, mixture routine

Purpose : ZPH compute zero pressure enthalpy

(property code 425) using the equation

H0 1c1T + c2T2 + C3T3 + c4/T3+ 5

Requirements: (1) ZPH requires the five coefficients

CIC2#C3,C4VC5' fo :each component of the
mixture. Reference: API Daap&

(2) molecular weight of each component

(property code 1006)

Completion : 0 - OK
codes 1 - Temperature s 0.0,

ZPH W 0.0

Routine number: 4

Name : BUBTPl

Type % FUNCTION, mixture routine

Purpose : BUBTP1 computes the bubble point temperature

of a mixture (property code 515).

Requirements: (1) liquid fugacity coefficient for each

component (property code 202)

(2) liquid activity coefficient for

each component (property code 302)

(3) vapor fugacity coefficient for each

com;ponent (property code 201)

Completion t 0 - OK
codes I - No mixture components. BUBTPI - 0.0

2 - Von-existent

3 - Temperature iter\,.ion failed. BUBTP1

- last iteration temperature

-- 3

4 - Equilibrium coefficient iteration

failed. BUBTP1 = last iteration

temperatur •.

Routine numbex. 5

Name : DSWTPl

Type : FUNCTION, mixture routine

Purpose : DEWTP.1 computes the dew point temperature

of a mixture (property code 516)

Requirements: (1) vapor fugacity coefficient for each

component (property code 201)

(2) liquid fugacity coefficient for each

component (property code 202).

(3) liquid activity coefficient for each

component (property code 302)

Completion s 0 - OK
codes .

1 - No mixture components. DEW'P1 - 0.0

2 - Non-existent

3 - Temperature iteration failure

DEWTP1 - current value

4 - Equilibrium coefficient iteration

failure. DEWTP1 - current value.

Routine number: 6

Name BWRLPC

Type : FUNCTION, mixture routine

Purpose 2 BWRLPC computes the liquid enthalpy

correction to zero pressure enthalpy

due to pressure (property code 412)

using the Benedict-Webb-Ruben equation

of state

-95- A- U

Requirements: (1) eight BWR coefficients A0 ,B0 1 Co0 a,b,

c,a, 7 for each component

(2) liquid density (property code 102).

Comple.tion : 0 - OK
codes 1 - Non-existent

2 - All mole fractions s 10- 6 . BWRLPC = 0.0

3 - Density r 10 , BWRLPC 0.0

Routine number: 7

Name : VFRAC

Type : FUNCTION, mixture routine

Purpose : VFRAC computes the vapor fraction of a

mixture (property code 516).

Requirements; (1) liquid fugacity coefficient for

each component (property code 202)

(2) vapor fugacity coefficient for

each component (property code 201)

(3) liquid activity coefficient for

each component (property code 302)

Completion : 0 - OK
codes 1 - Vapor fraction converged. VFRAC41.0

VFRAC = 1.0

2 - Vapor fraction iteration failed

VFRAC = 0.0

3 - Equilibrium coefficient iteration

failed. VFRAC = 0.0

4 Vapor fraction converged. VFRAC s 0.0.

VFRAC = 0.0

-96- 241

Routine number: 8

Name : FUGLI

Type : SUBROUTINE, mixture routine

Purpose : FUGLI computes the liquid fugacity

coefficient for each component

(property code 202). The method is

that discussed by Chao-Seader (AIChE

Journal, 7,598, 1961). Coefficient by

Grayson - Streed. (Sixth World Petroleum

Congress, Section VII, Paper 20 - PD7I,

June 1963).

Requirements: (1) coefficients C0 ,C 1 , C2 ,C 3 ,C4 ,C 5 ,C 6,

C7 ,C8 , C9 for each component.'

(2) critical temperature (property code

1001).

(3) critical pressure property code (1002)

(4) acentric factor (property code 1003)

Completion : 0 - OK
codes

Routine number: 9

Name : ACTL1

Type : SUBROUTINE, mixture routine

Purpose : ACTLI computes a liquid activity co-

efficient for each component (property

code 302). The method is that discussed

by Chao-Seader. (AIChE. Journal, 7,598,

1961)

Requirements: (1) molar volume @ 250 C (property code

1005)

(2) solubility parameter (property code

1004)

-97- 9 .

Completion : 0 - OK
codes

Routine number.: 10

Name : FUG

Type : SUBROUTINE, mixture routine

Purpose : FUG computes a vapor fugacity coefficient

for each component (property code 201

using the Benedict-Webb-Ruben equation

of state.

Requirements: (1) eight BWR coefficients A0 ,B0 ,C0 ,

a,b,c,a,7 for each component

(2) vapor density (property code 101).

Completion : 0 - OK
codes 1 - All mole fractions ! 10 , XFUG(I) = 1.0

-6
2 - Density : 10 , XFUG(K) = 1.0

Routine number: 11

Name : KVAL

Type : SUBROUTINE, mixture routine

Purposeq : KVAL computes a equilibrium coefficient

for each component (property code 305).

Requirements: (1) liquid fugacity coefficient for each

component (property code 202).

(2) vapor fugacity coefficient for each

component (property code 201)

(3) liquid activity coefficient for each

component (property code 302).

Completion : 0 - OK

codes 1 - vapor fraction converged > 1.0

2 - Vapor fraction failed to converge

XK(I) = latest iterated value.

-98- 243

3 - Equilibrium coefficient iteration

failed. XK(I) = latest iterated

value.

4 - Vapor fraction converged < 0.0

Routine number: 12

Name : ENTH

Type : FUNCTION, mixture routine

Purpose : ENTH computes the enthalpy of a vapor

or liquid mixture (property code 401 or

402).

Requirements: (1) zero-pressure enthalpy (property

code 425)

Completion : 0 - OK
codes

1 - property code does not end in "1"

or "2

Routine number: 13

Name : TSUBH

Type : FUNCTION, mixture routine

Purpose • TSUBH computes iteratively the temperature

given enthalpy of a mixture (property

code 517)

Requirements: (1) bubble point temperature (property

code (515)

(2) dew point temperature (property

code 516)

(3) vapor fraction (prcperty code 518)

(4) equilibrium coefficients (property

code 305)

-99-

(5) vapor enthalpy (property code 401)

(6) liquid enthalpy (property code 402)

Completion 0 - OK
codes 1 - Bubble point failed. TSUBU undefined.

2 - Dew point failed. TSUBH undefined

3 - Vapor fraction failed. TSUBH undefined.

4 - K-valued failed. TSUBH undefined.

5 - Temperature iteration failed. TSUBH =

last iteration value.

E.- Property System Messages

1. "DATA BASE SUCCESSFULLY INITIALIZED"

Generating Routine : COMP

Reason : All is well; initialization complete.

2. "BUBBLE PT. FAILURE"

Generating Routine : PPCF or PPCS

Reason : Phase determination was required and

bubble point determination failed.

3. "DEW PT. FAILURE!

Generating Routine : PPCF or PPCS

Reason : Phase determination was required

and dew point failed.

"4. "VAPOR FRACTION FAILED"

Generating Routine : PPCF or PPCS

Reason: Phase determination was required

and vapor fraction failed.

-100-

h. ____________________________________

5. "ERROR*ERROR*PPnP NOT AVAILABLE"

Generating Routine : PPCF

Reason : Communication routine PPnF (n an

integer) is required but has not been

entered into the libraty. Contact

system librarian.

6. "ERROR*ERROR*PPCF - COULD NOT DISTINGUISH ROUTINE TYPE"

Generating Routine : PPCF, PPCS or PPCP

Reason : The system library directory contains

an error. Each estimation routine

should have "S" or "F" associated

with it (SUBROUTINE or FUNCTION).

The routine in q-estion did not

7. "ERROR*ERROR*PPnS NOT AVAILABLE"

Generating Routine : PPCS

Reason : Same as 5.

8. "ERROR*ERROR*PPnP NOT AVAILABLE"

Generating Routine : PPCP

Reason : Same as 5.

9. "ERROR*ERROR*WRONG PPn{FJCALLED*A .o.n(F

Generating Routine : PPnF, PPnS, or PPnP (n an integer)

Reason : Catastrophic malfunction. Contact
K system librarian. Data base must be

rebuilt.

24b
-101-

10. "ERROR*ERROR*REQUESTED ESTIMATION ROUTINE NOT ENTERED***

PPn
F~

Generating Routine : PPnF,PPnS,PPnP (n an integer)

Reason : Calling statement for estimation

routine has not yet been entered.

Contact system librarian.

11I "**WARNING***COMPLETION CODE = n FOR ROUTINE NUMBER

n 2 o1

Generating Routine : PPnFPPnS, or PPnP (n an integer)

Reason : An estimation routine encountered computa-
tiun difficulties. See section in

Appendix I concerning estimation routines

for completion codes.

12. "ERR n ... < TEXT >"

Generating Routine : Data base storage and retrieval

routines

Reason : Each error message is numbered and
contains text explaining the error

that came up. Text is self explanatory.

A "POST MORTEM" dump of important variables

is made and the system aborts.

24027

-102-

Appendix II Logic Diagrams

A. Pure Chemical Property Value Retrieval. Using PPCP

Invariant information provided:

1. property code

2. pure substance index

3. independent variable values

Logic diagram:

Start

Perform phase

determination.

Consult Component
Identification

Table to get data
base component code.

(.Any valid datain. RR
records found in/_@

data base? A

('Has a retrieval Select first valid1
constraint been data record
specified? encountered.

246
-103-

L

Select first valid d Print message and
data record meeting select first valid

e constraint data record

encountered.

Is an estimation• Return stored data

routine required? as property value.

yes no

Call estimation
routine for
property value.

2

Return computed
property value to
application program.

-104-

B. Mixture Property Value Retrieval Usina PPCF or PPCS

Invariant information provided:

1. property code

.2. independent variable values

3. mole fractions

Logic diagram:

Start 1

Perform phase Call PPCP
determination, repeatedly, onc _

for each mixtu:e
component.

Consult Conpcnent PC rPC
identification Table PPF r PC
to get data base called?
component codes.

Any valid mixture Compute averacQ
data records found property value
in data base? using mole fractionj

Return average Return sct of

property value to property" v'lýcs to
application program. applic3tion prg;ram.

Return--\

-105- £'

fHas a retrieval

|constraint been _no

L specified?

yes

Sl anytvalid n Is the constraintvaimixture data r-CodSlcfi t validrecords meet the xabsolute? d
Sconstraint? •

Jyes no •

constraint. record encountered.

(Is an estimation noReturn stored data
I

routine reuired? n as property value.

yes

Call estimation
routine for
property value.

Return property
value(s) to the -o, Return

appl-ication
Sprogram.

-106- .,

Appendix III U of P IBM 360/75 JCL

A, Execution of an Application Proqram

//name JOB (nnnn,bbbb),'soc. sec. CIASS= H

//sTEPi EXEC FORTCLG%

//FORT.SYSIN DD *

[Application Program]

//LXED.SYSLIB DD DSN-SYS1.FORTLIB,L SP=SHR

// DD DSN-(name of property system library),DISP-SHR

//GO.FT03F00l DD DSN-(name of personal data base),DISP=SHR

//GO.FTLF'0l DD DUMMY

//Go.sYsIN DD *[Variant Information Deck 1
Application Program's Data

I*

B. Execution of Storage Routine

//name JOB (nnnn,bbbb),'soc. sec. no.',CIASS= Tj

//JOBLIB DD DSN=(name of property system library),DISP=3HR

//sTEP1 EXEC PGM.STORAGE

//FT03F001 DD DSN-(name of master data base),DISP=SHR

//FT04FO01 DD DSN-(name of personal data bAc)•,D1SP-SHR

//FT06F00l DD SYSWUT-A

//FT05FO01 DD *

Storage Control Deck]

/-

-107-

Appendix IV Input Language Specification

This appendix contains the language specification

in Backus Naur Form of the variant information deck and

the storage control deck.

In the following specification, all terminal symbols

(primitives) are underlined; they are to be considered

self referencing symbols.

A. Variant Information Deck

<variant information deck> ::= BEGIN VARIANT DATA <decks> END

<decks> ::= <component identification deck>i

<compornent Identification deck><retrieval const.deck>

<component Ident~fication deck> ::= COMPONENT ID TABLE

<component lIst>•

<component iist> ::= <data base component codi>I

<component list'<delimiter><databasecomoonent>

<delimiter> J:= bla

<retrieval const. deck> ::= RETRIFVAL CONSTRAINTS<constraiit llst>.

<constraint list> ::= <constraint entry>l<constraint entry>blanJ

<constraint entry>

<constraint entry> :: <property entry><delimiter>

<allowed error entry><delimiter>

<routlise no. eatry><dellmiter)

<contributor entry><delimiter>

Udegree entry>

<property entry> ::= j<interger>

<al'owed er:-or entry> ::= :, I <Interger>4

<routine no. entry> ::= I <interger> I

-108-

<contributor entry> :: < interger>

<degree entry> ::=

B. Storage Control Deck

<storage control deck> :=<password card><c.ontrol deck>

END STORAGE DECK

<password card> ::= OLD PASSWORD = (password>I

NEW PASSWORD - <Password>

<password> :: <nterger>

(control deck> ::<addition deck><update deck>(deletion deck>

* <addition deck> :*ADDITION DECK (data record deck>

<data record deck> ::c <data record> < data record deck>

<data record>

<data record> ::£<characteristic part> UL!.data group)>'

<characteristic part> <: property entry>L<contributor entr-yŽ

(variable range entry>.L

<variable range entry>-*

<max. error entry>-#

<estimation routine entry>'O

<data type>

<variable range entry> :=I <real no.> :<real no.>

<max. error entry> ::=a <interger>.,.

<data group> ::= zI <data part>I~data group>(data Part>

<data part) ::= C <component list> j. (data>)

<data> ::= <constant data> I <coefficient data> I (tabular data>

<constant dz.ta> :ý= <real no.>

<coefficient dat-a > ::- <real no.> < coefficient data>(real no.>

-109-

<tabular data> ::- L <variable values> LJ.<varlable values>j'

<row values>

The <variable values> and <row values> classes cainot al

be specified in BNF form. The reader Is directed to Chapter VII

for an explanation of tabular data.

<update deck> ::= U.PDATEf.EK <data record deck>

<deletion deck> ::- DELETION DECK <deletion record deck>

<deletion record deck> ::= <deletion record> I

<deletion record deck><deletion record>

<deletion record> ::= I <characteristic part> '..

j<component list>))

The following classes are considered primitive

<Interger>.,
FORTRAN definition accepted

<real no.>

i

V

-110-

BIBLIOGRAPHY

1. Yen, Y. C., K., R. Cantwell, and B. L. Giles, "General
Purpose Data System for Computer Process Calculations,"
Ind. and Eng. Chem., 60, no. 2, pp. 70-73 (February,
1968).

2. Zseleczky, E. P., "Computers in Process Analysis and
Design," Proc. Am. Petrol. Instit., 42, sect. III,
pp. 345-350 (1962).

3. Shannon, P. T., A. I. Johnson, C. M. Crowe, T. W. Hoffman,
A. E. Hamielec, and D. R. Woods, "Computer
Simulation of a Sulfuric Acid Plant," Chem. Engr.
Progr., 62, no. 6, pp. 49-59 (June, 1966).

4. Ravicz, A. E., and R. L. Norman, "Heat and Mass Balancing
on a Digital Computer," Chem. Engr. Progr.,60,
no. 5, pp. 71-76 (May, 1964).

5. "Chemically-Oriented Chips," EDP Weekly (December 5, 1966).

6. Kesler, M. G. and P. R. Griffiths, " A Computer System
for Process Simulation," Proc. Am. Petrol. Instit_,
43, sect. III, pp. 49-56 (1963).

7. Motard, R. L., "Optimization of Natural Gasoline Plant
Operation," Computers in Engineering Design
Education, vol. II, pp. 36-70, University of
Michigan, Ann Arbor, Michigan (April 1, 1966).

8. Meadows, E. L.,Jr., "A. I. Ch. E. Physical Properties
Project," Proc. Am. Petrol. Instit.,44, sect. III,
pp. 300-303 (1964).

9. Meadows, E. L., Jr., "Estimating Physical Properties:
the A. I. Ch. E. System," Chem. Engr. Progr., 61,
no. 5, pp. 93-95 (May, 1965)

10. Heitman, R. E. and G. H. Harris, " Estimation of
Physical Properties by Minimum Error Analysis,"
Ind. and Enq. Chem., 60, no. 2, pp. 50-59
(February, 1969).

11. Beirute, R. M., "A Thermodynamic and Physical Property
Package," Master's thesis, University of Houston
(January, 1969).

-111-

12. Evans, L. B., b. a, Steward and C, R. Sprague, " Computer
Aided Chemical Process Desi, gn," Chem, Enqr. Proqr,,
64, no. 4, pp. 39-46 (April, 1968).

13. Komaki, H., "Computer Aided Chemical Engineering Design,"
Master's thesis, The Schoo.- of Chemical Engineering,
University of Pennsylvania (August, 1969).

14. Johnson, A. I., "Chemical Plant Simulation - A Manual
for the Digital Computer Simulation Programs MACSIM
GEMCS," Department of Chemical Engineering,
McMaster University (March, 1968).

C112

-112-)

