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SUMMARY

This report describes the resulte of a study conducted under
Contract F44620-70-C-0014 to develop principles and implement tech-
niques for computerized information handling., Concepts associated
with the design of a physical property information system are des-
cribed. Methods for cathode ray tube man-machine interaction in
design are discussed, with emphasis upon chemical process and
electrical network flow sheets and structural design.
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JNFORMATION SYSTEM DESIGN

I. INTEODUCTION

This report describes the research completed in a Moore School
Information Systems Laboratory study conducted under Contract
F44620-70-C~-0014. The :#..u'y lLas been concerned with developing
principles and implementing techniques for computerized information
handling, with special emphasis on mechanized information storage
and retrieval., These tectniques are important to systems for
computer-aided design because they automatically provide conventional
analysis, simulation and design programs with the information ser-
vices required. As we developed new information handling techniques,
we interfaced them to several previously existing analysis, simulation
gad design programs at the University of Pennsylvania. These include
U.P.PACER and REMUS for steady-state and transient chemical process
computations, ECAP for electrical network simulation, and a nonlinear
structural analysis program.

Three new information handling techniques were studied in this
work:

1. Development of an interactive numerical data base. A
prototype physical property information system was
implemented to store and retrieve property information
for use in chemical process calculations.

2, Development of graphics tools for interactive communication
with network analysis programs. Methods for interfacing
these tools to the U.P.PACER, REMUS and ECAP programs
have been evolving over the past four years. This project
enabled us to develop the network graphics tools and make
substantial progress toward developing generalized inter-
facing methods.

3. Development of graphics tools for communication with
structural design programs. These tools were applied
to the design of civil engineering structures. Similarly,
this project enabled us to develop 3-D graphics tools and
make substantial progress toward developing generalized
interfacing meixcds,

The following sections summarize the results of each study. A list

of publications is provided and copies of the most recent papers are
presented in the Appendix. Other papers have previously been trans-
mitted to the AFOSR office.




II. NUMERICAL DATA BASE

Information systems that handle textural data have been developed
by the Moore School Information Systems Laboratory over the past
seven years. The need to carry out computer-aided design calculations
provided sufficient incentive to extend these methods for numerical
data. This project enabled us to design and implement a prototype
numerical information system. Rather than attempt to handle general-
ized numerical information initially, it was decided to concentrate
on physical property information for chemical process calculations.
In retrospect, this was an excellent cecision and it has now led
to a strong basis from which to consider the more general problem;
namely, to store and retrieve numerical information in a data base
custom~built by the computer for each design application. In the
following paragraphs, some of the history in the development of our
prototype physical property information system is presented. Related
information has been presented in Refevences 4 and 7.

The first objective of our physical property information system
was to allow the engineer to prepare application programs that require
no modifications when the chemical components *r a mixture are altered
and when new and different property estimation techniques are required.

This was accomplished by separating the "variant" and "invariant"
infomation required to request a property value. Only invariant
information such as the identity of the physical property (for example,
heat capacity), the names of program variables that contain stored
values for the independent variables (for example, T and P repre-
senting temperature and pressure), and the name of the program variable
that contains mole fraction values for each mixture component (for
example, X), are incorporated into the application program's request
for property values. Variant information such as the identity of
components in the mixture, and the identity of property estimation
methods are specified separately from the application program.
Invariant information is supplied during program preparation, while
variant information is supplied just prior to esach execution of the
application program.

Ancther objective of ~ur physical property information system
has been to allow easy storage and retrieval of physical property
data. As compared with other information systems, data retrieval
is complicated by the need to also retrieve and apply estimation
procedures for estimating the requested property values., Our
numerical data base is designed to store three basic prerequisite
types of data: constants, correlation coefficients, and tables.

The estimation program library containe programs that combine
correlation coefficient or tabular data with independent variable
and mole fraction specifications to compute “property values".

The former programs allow for estimation by correlation, the latter
by interpolation. Other estimation programs combine a sequence of
estimated property values to produce a single value. For example,




when estimating a mixture enthalpy, one procedure would combine zero

pressure enthalpy a:d enthalpy pressure-correction estimates.

In order to achieve this objective, property data was stored in
fixed format data records which contained several key words and the

essential data:

1) Property code,

2) Contributor code, ,
3) Validity ranges of two independent variables,

4) Maximum expected error,

5) Estimation routine number,
6) Data type,
7) Component code{s), and
8) Property data.

Four illustrative data records are illustrated in Figure 1.

The

first three data records contain heat capacity data for 4,0 over

The fcur%h data
record contains liquid density data for the mixture, methane, ethane,
propane, n-butane, and n-pentane, for 400 < T < 490°R and 0.5< P<

different temperature ranges and 0.5 ¢ P< 2.0,

2,0 atm.
X Data Data Data ~Data
eys Record 1 Rerord 2 Record 3 Record 4
Property 1liq. heat vap. heat vap. heat liquid
capacity capacity capacity density
Contributor 142 142 153 178
Validity range (1) |492-6/2°R 672-3240°R | 3240-6840°R | 400-490°R
(2) | 0.5-2.0atm 0.5-2.0atm 0.5-2.0atm 15~25atm
Maximum error 0.5 1.0% 2.0% 2.02
Estimation routine - 15 14 14
Data type constant coefficient tabular tabular
Component(s) vater water water 2,3,4,6,8
w_—
Data 1.0 T Cc T -]
0.428 3240 10.656 40010.1778
1.42x10-5 4000]0.701 420]0.2060
3.88x10"% | s000j0.743 | as0l0.2355
-7.35:(10-12 600010.771 460{0.2660
6840{0.782 49010.3136
Sar~!~ M~ta Records

ire 1
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A master data base containing property data is maintained by the
property system librarian, and provides a common information pool
available to all users. A private data base is provided for engineers
who obtain property data from the literature or by experiment. The
engineer enters this data ifato his private data base. Only the system
librarian has authority to enter new data into the master data base,
whereas the engineer is free to add new data, update existing data,
or delete data only as regards his private data base using the PPIS
storage routine. '

The PPIS prototype achieved our first two objectives, to provide
for mixture independent application programs and to allow storage and
retrieval of property data. l.ny general purpose programs have been
prepared for use with systems such as U.P.PACER for total process
material and energy balancing. General purpose absorber, stripper,
and flash programs have been run as U.P.PACER subroutines when
material and energy balancing a natural gas process.

However, ar important shortcoming of the PPIS prototype was its
inaccessibility to the engineer who wishes preliminary estimates of
property values; the system compelled him to write a FORTRAN program
for the purpose. This placed an excessive burden upon engineers
interested in obtaining first estimates of property values to be
used in specific application programs.

This shortcoming, coupled with trends in information system
design toward interactive inquiry-response systems, led us to add
capability for communication between PPIS and a typewriter terminal.
The PPIS prototype proved its utility especially after conversion to
an interactive system. Soon afterward PPIS assumed a new role as a
sophisticated handbook. Students began to use the inquiry-response
features to examine property values conveniently, often in prepara-
tion for use of PPIS in application programs.

The PPIS prototype is comprised of FORTRAN IV programs that run
on an IBM 360/75. It was converted to an interactive program for the
RCA Spectra 70/46 in one man-month. The interactive PPIS is executed
within the RCA Time-Sharing Operating System (TSOS). This operating
system provides for telecommunication with teletypewriter terminals,
IBM selectric typewriter terminals, and the RCA video data termin:’
(alphanumeric cathode ray tube). Examples of its usage are presented
in Reference 7.

The inquiry-response feature markedly increased the engineer's
accessibility to PPIS and thereby demonstrated the utility of computer-
based information systems for engineering purposes. The most obvious
benefits follow. The inquiry-response PPIS provided a tool for
estimation of mixture property values when handtook values do not
exist or are not easily accessible. It provided a vehicle for
property estimation using iterative algorithms that are difficul.
to implement manually. And, in so doing, it often provided more




accurate property values in shorter tise., The inquiry-response PPIS
enabled the engineer to scan graphs and tables of property values

over independent variable ranges vnder study in application programs.
This is proving to be a powerful tool whereby engineers may confirm
the accuracy of bench-marl values and gain confidence in an estimation
procedure's ability to reproduce physically known variations with the
independent variable values.

The interactive property information system has been modified to
enable the user to communicate with the computer via s RCA video
display terminal. This terminal cnabies rapid display of physical
property information in the form of tables and graphs. For example,
an engineer commonly wishes to know the density of a liquid mixture
at various temperatures and pressures. Heretofore, the teletype-
vriter terminal presented tabular and graphic information slowly at
10-15 characters per second. The video display terminal allows a
graph to be displayed in 2~3 seconds, an approxinately ten-fold
improvement in the gpeed of preparation.

The property information system has been reprogrammed to enable
random access of property information from disk. Previously all
property information was transferred from disk into the main memory
of the compurér prior to execution of a program that required physical
property infcrmation. The new version of the property information
system retrieves property data from disk only when it has not pre-
viously been transferred to main memory. Transfer of data occurs
only when needed and only vhen the data is not alteady present in
main memory.

I1I. NETWORK COMPUTER GRAPHICS

In the mid-1960's several problea—oriented »rogrars were developed
for the analysis of networks comprised of interconnected modules; for
example, U.P.PACER and REMUS for analysis of chemical plants and ECAP
for analysis of electrical circuits. Because these programs often
carry out expcnsive iterative computations, there hus bean great
incentive to minimize costs by allowing the engineer to monitor the
calcularions very closely. We decided to explore the feasibility of
using an interactive cathode ray tube display (DEC-338) to iwprove
man-sachine interaction in network aralysis. Initially we constructed
a prototype that enabled a process designer to "draw” a process flow
shect using the light pen. Next, we built an interface betveen the
DEC-338 and the RCA Spectra 70/46 to allow for direct comsunication
with the U.P.PACER and REMUS programs. A progress report sumesrizing

the capability was prepared by W. D. Seider, J. Ball, and M. Zaborowski
(see Reference 2).

Concurrently, P. Delaney developed a more advanced softvaTe
package for preparation of electrical retworks. The principal
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improvement was in the daia structure vhich allows for very efficient
storage of network information and easy modification of the same.
Soms of the featurcs of this graphics system are described below, with

emphasis upon the data structure. Further information is provided in
Reference 8.

A key ‘sature is the display file monitor which handles al!
displsy file modifications. To do this effectivecly, a display file
structure bas bsen designed that res.mbles a tree structure. Ju this
graphics system, the instructicns to position the beam are organized
id 2 tree structure that contains the topology of the netwo k. When
an slectrical device, or a wire comnecting :wo devices, is added or
deleted, the display file is m.dified by the display file monitor.
Rfficiency is achieved in that changes in topology cause the display
imstructions and connectivity inforaation to be modified simultaneously.
Consequertly, the DEC-338 responds very rapidly to the designer's
commands wkn draving sn electrical circuit diagram using the light
pen and push duttons. :

8till, the elcctrical network package was specific to electrical
networ<g. It vas prepared using DEC-338 assembly instructions and .
required extensive modifications to handle chemical prccess aetworks,
for example. 'This was pavticulariy discouraging in that most of the
features of chemical and electrical network packages are similar, and
some are identical.

Consequently, we began work to define a general purposz graphics
system. First, Dr. C. West and Mr. J. Xulick identified three types
of graphics users:

1. The "pictorial” user. This type of user is distinguished
by the need to work with pictures. For example, the user
of an architectural design system. This user requires
facilities for picture generation and picture storage and
retrieval. These facilities must be controlled both by the
user at the grapnics terminal, and by computer progr«ms
operating on the data.

2. The "non-pictorial” user that uses the graphics system
as - data display device. Typically, he requires facilities
for preparation of graphs that summariza data. He is not
interested in the display of abstract line drawings. This
type of user may be exsmplified by the user of a simulation
system, vhere input is in the form of card images, and out-
put is in the forwm of tvo-dimensional zraphs. This user
needs sisple picture definftion facilities for output, and
an slphanumeric keyhoard facility for input. There may
also be a need for the terminsl user to select among a
1ist of options using light pen and function keys.
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3. The "meta-pictorial" user. This type of user is concerned
with properties of the picture. Typically, these proper-
ties are not sterad in the picture explicitly, but must
be computed from the picture. For example, topological
properties such as connectivity of a graph. One possible
way to do this is tc post-process the picture and assign
these features via pattern recognition techniques. Another
possibility is to monitor the actions of the user and his
programs at the terminal, and to immediately interpret
each action. As each action is interpreted, cues are
generated to aid in later interpretation of the picture. j
This approach requires that the user programs be able to
sequence actions at the terminal, and generate appropriate
cues., :

During this project, West and Kulick designed the languages for
a general purpose graphics system that would service all three types
of users. Their languages were designed to enable easy interfacing
of application programs to the graphics terminal. One language was
designed to schedule the DEC-338 terminal and the other to send and
receive messages between the terminal and an application program
operating in the RCA Spectra 70/46. The languages were designed to
study the feasibility of implementing and operating such a graphics
system using a small terminal connected to a large computer with a
low-speed telephone line,

During the past year, J. Kulick has been implementing the system
design and is preparing a complete description in his Ph.D. disserta-
tion. The graphics system when complete should enable rapid inter-
facing of the graphics terminal to application programs such as
U.F.PACER, REMUS and ECAP. We expect that the interfacing time will
be reduced by an order of magnitude (to approximately 50 hours)
because there will no longer be a requirement to program in assembly
language.

IV. COMPUTER GRAPHICS FOR STRUCTURAL DESIGN AND TRANSPORTATION
NETWORK DESIGN

During the past two years, we concentrated upon the development
of a unified computer graphics program for structural design and
transportaiion netwerk design,

The folleowing summarizes the results of the studies in inter-
active computer graphics in Structrval Design. Developments in
computing software and hardware make it possible to consign more
of the design labor to the computer than has been possible, and
permit the designer to exercise more fully his role as policy maker.
Formula manipulation computer languages which can be usad to produce
exact differentials of very large nonlinear expressions, and inter-
active graphic terminals which make it possible to modify on~line




the norlinear programming problem representing a design situation.
permit structural desizns to be generaled by the computer which are
complete in all respects, where all design parameters necessary to
define the configurations can be used, and where building code
provisions are usad unchanged as the set of constraints. The
architecture of a man-machine interactive system has been studied
which allows the designer to effectively mold the design with a
light pen as it is being evolved by the computer with the nonlinear
programming algorithm and which appears in effect as an animation
on the scope.

A case study of an optimally proportioned beam is described in
Reference 5. A conventional nonlinear optimization program examined
various I-Beam dimensions in the course of solving a constrained
nonlinear optimization problem. These dimensions were saved at
frequent intervals throughout the optimization procedure and were
used to prepare an animated movie that demonstrates the variations
in design during the optimization procedure.

Ideally, the engineer could interactively monitor the optimiza-
tion process to accelerate the design process even further. A
significant advantage of being able o operate in this manner results
from the fact that execution time is unnecessarily inflated if a
large number uf constraints never become active in any one of the
cycles. These constraints still have to be carried along us compu-
tational overhead in the matrix operations that are involved in
solving the nonlinear programming problem if they are initially
a part of the problem. There might be considerable economic merit
in being able to operate within a bare framework of constraints
that are likely to be active in any given situation, and to be able
to insert dynamically any additional necessary constraints into the
structure of the problem because of violations that might be detected
in any of the iteration cy- .es. For example, beams over certain
lengths are hardly ever governed by shear, and it would be a waste
of computational time to carry all possible code restrictions on
shear alone in the framework of the nonlinear programming problem
for a general beam design routine. If conditions become such that
shear does happen to govern for a certain situation, the violation
i{s easily detectable and the appropriate constraints can than be
inserted without otherwise interrupting the progress of the design.

Douty and Shore developed the principles and procedures in a
batch eavironment because there was no interactive facility yet
available. Their results were demonstrated with an animated movie,
proving tha* such a system is effective and should be designed and
implemented. J. Kulick's Ph.D. dissertation involves the design and
implementation of a general purpose graphics facility that would
indeed serve thie role (see Section III of this report).
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V. 1IN CONCLUSION

AFOSR funds enabled us to develop several computeri:ied information
handling tools. These tools have been and continue to be incorporated
in computer-aided design systems. Several such prograns are currently
in use by students in the engineering schools for their design work.
Among other things, this research enabled us to launch a major effort
in the development of systems for teaching the fundamentals of process
design using the computer. Extensions to this work are currently being
funded by the Esso Education Foundation.

In addition, the work carried out on this project was a contribu-
ting factor to the election of Dr. Warren D. Seider as Chairman of the
National Academy of Engineering's CACHE (Computer Aids for Chemical
Engineering Education) Committee. The CACHE Committee is comprised
of 17 educators from 16 colleges and universities. Its goal is to
cooperatively further the development of computing systems for use
in chemical engineering education. '

- -
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TECHNIQUE FOR INTERACTIVE COMPUTER GRAPHICS IN DESIGN®

By Richard Douty,! M. ASCE and Sidney Shore,? F, ASCE

INTRODUCTION

Events of the past few years relating to the direct design of engineering
systems by appropriate mathematical optimization techniques indicate that
the role of the engineer designing in such an environment could conceivably
and eventually consist merely of having to construct an acceptable criterion
function, array the set of constraints that govern the design situation, and
supply the initial trial configuration that is necessary for setting mathemati-
cal optimization processes in motion, and it is beginning to appear that most
of these tasks can be automated as well,

This paper is an attempt to demonstrate that when the designer is relieved
thusly of having to expend energy, even in a computer-aided environment, in
order to obtain an economically sound configuration, then an opportunity cx-
ists for him to interact dynamically with the machine, permittiny him to treat
the design on a system scale not previously possible. Further, the interaciion
is most effective if the designer’s role i€ primarily that of the key dezision
maker, able to observe the progress of the systemn as it is being mathemati-
cally generated, but retaining the option of being able to alter the direction of
the system’'s synthesis when unforesecen or undesirable trends are observed,

A nonpassive role such as this, of course, is only feasible if the evolution
of the systemn is presented pictorally in all its shades and-nuances, a capa-
bility which is possible with the availabilily ol interactive graphic display

Note.—Discussion op2n until June 1, 1971. separate discussions should be submitted
for the individual papers in this symposium, To extend the closing date one month, a
written request must be filed with the Executive Director, ASCE. This paper is part of
the copyrizhted Journal of the Structural Division, Proceedings of the American Soclety
of Civil Engincers, Vol, 97, No. 8T1, January, 1371, Manuscript was submitted for re-
view for posasible publication on March 1, 1970,

& presented at the Aumust 31-September 2, 1970, ASCE Fifth Conference on Elec-
tronic Coinputation, held at Purdue Univ., Lafayette, Ind.
Prof. of Civ. Ergrg., Univ. of Missouri-Colunbia, Columbia, Mo.; on leave 1969-

70 as Sr. Fellow, Towne School of Civ. and Mech. Engrg., Univ. of Penasylvania, Phil-
adelphia, Pa.

tProf. and Chin., Crad. Div. of Clv. Fngrg., Towno School of Civ. and Mech. Engrg.,
Univ. of Pennsylvaria, Ehiladelphia, Pa.
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terminals having the vector capability for line drawing. A graphic display
augmented design system employing this concept is, in fact, significantly
different from many cxisting graphic design systems, both operational and
under development, where the designer still must piece by picce assemble
und modify the sysiem as the prime mover in the procedure, attempting to
manually produce an optimal configuration while irying tokeep it from stray-
ing beyond the bounds of the design constraints, but never really knowing how
efficiently the balance is maintained. The diesimilarity in the two approaches
is due to rcliance in the former on mathematical optimization to carry the
greater share of the design task,

DESIGN BY OPTIMIZATION VERSUS TRADITIONAL PRACTICE

Mathematically generated design employing optimization meihods might
well be viewed as an approach that is complementary to the design process
as it has been practiced traditionally. In the traditional sense, the respouse
¢f a trial configuration is cxitically examinad (ie., analyzed) :or suitability of
behavior with respect to a given imposed loading, If the response is not suit-
able, the configuration is altered in an upward directjon until suitability ig
reached, On the other Liand, if the response is overly suitable, the configura-
tion may be altered downwardly in an attempt at economy, although in truth
nonsuitability is deemed much more critical than oversuilability; whereas the
former condition requires alteration, the latter docs not. In fact, the cost of
the enzineering labor that may be cxpended towards achieving economies
through shaving may casily obliterate any savings guined thereby.

The ability to move a design subjectively in an economic direction while
maintainiLg a precise balance between all costfactors in the entire procedure
i8 not acquired easily, and the art of doing so has been endowed with certain
mystical traits largely attributed to conditioned intuition reinforced by years
of experience,

The traditional approach is marked by the characteristic that it is the
analysis of a complciely specified systen that is the primary computatioral
component of the entire procedure. Unfortunately, analysis as an end product
does not contain any rational clues as to which is the best direction in which
to proceed next. If design improvement is the object, and if a good design is
cventually to be achicved in this manner, it must be accomplished heuristi-
cally. Computer-aiiced design techniques whieh are based completely on this
traditioral approach are somewhat encumbered because no matter how so-
phisticated tha equipment, the subjcctive nature «of the designer permeates
the process whether he has “a acconiplished the programming of member
selection routines or whether he merely ntilizes standard analysis routines
(STRUDI,, FRAN, etc.) as a bLasis for carrying out design improvement of
more involved systems. The overhanging threat of computational expense
dampens the search for the most imaginative and economical avenues of
development,

On the other hand, when optimization is employcd as an approach {o the
design situation from an entirely different direction, the boundary condition
for the problem, rather than beins a trial cowliguration, is imp.osed on the
response that the system is requived to exhibit. Computational cffort (the
burden of the machine! then, is primarily axpended towards determining that

| —b
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best confisuration that meets these constraints, Asthereare some interesting
developing computational techniques that can seek a good design which satis-
fies a ‘given set of constraints, it appears that much of the mysticism that
has surrounded the craft of obtaining a good design is dissipating; in fact, the
lower level of design, such as proportioning of girders, etc., now appears to
be much more of = rational process than once was thought, As a rational
process it is very likcly to be consigned to the computer, as has almost all
of the processes of analysis. Just howfarti.c concept can be extendcd into the
vroader levels of the design process is at this time problematical, but it may
well turn out to be further advanced than most of us now imagine.

The problem that is cncountered in a design situation is to produce a sys-

tem configuration that gives a good value to some criterion, which, in the
case of structures, might be weight or cost, while at the same time staying
within the confines of a set of limitations, such as those imposed on stresses
or deflections, This, however, is the form of the so-called mathematical pro-
gramming problem, the solution of which is obtainable by rational techniques,
although admittedly the facility of obtaining the solution depends greatly on
the form that the functions exhibit, If the criterion and all design constrainte
are linear, then the problem is that subset of matheinatical programming
called lincar programming, the solution to which is easily obtained by any of
& variety of standard routines available on call on most computing equip-
ment, Thus, finding the solution to lincar programming problems has actuaily
become a trivial matter, If any of the functions contain nonlinearities, then
finding a solution is decidedly more difficult. Algorithms, however, are Leing
cortinually developed and improved and the situation is becoming more fav-
orable. Unfortunately, we exist in a nonlinear world, and design situations
that can be formulated as linear programming problems, or even simplified
to that happy state are excecdingly rare.

In any event, the end product in solving the mathematical programming

' problem represcating a design situation is the desigm itself, rather than an

analysis of a trial design, Any computer-aided design system which is not
based on optimization nicthods will eventualiy be regarded as fairly sterile,
and no doubt will suffer when placed in competition with systems that are.
There are several rcasons, however, why mathematically-based design
systems have not gaincd ascendancy over design systems based on more
traditional methods. The difficulties can be traced to certain characteristics
associated with working enzineering systems that have not been easy to over-
coine by existinz mathematical techniques. For example, the yield stress of
the grades of steels that arecommercialiy available for the design of a struc-
ture are integer (36, 42, 46, etc.), but they belong to only a small set of inte-
gers having the regrettable property of being nonadjacent, so that if yield
stress happens to be a design variable in a given problem, integer program-
ming (another subset of mathematical programming where the solution is
normally selectcd {rom the sct of 21l intcgers lying within the confines of the
feasible design space) is not casy to employ. A more difficult situation than
this is encountered inthe section of platesused in weldments. In this case, the
siandard thicknesses that are commercially available are not even integers.
So-called discrete prerramming techniques devised to handle such situations,
while under active develepment, still have a long way to go before they can be
applied to sigmificant structures, Of course, the solution can always be
rounded off, as long as care istakenthat this action docs not cause constraint
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violatfon, This is probably the best expedient at this time even though the
more puristic approach would undoubtedly yield better optima.

A much more serious difficulty that is not so easily disposed of is shown
in the case of structural systems where the set of constraints that define a
Btructural design, being for the most partdrawndirectly from building codes,
contains varietics of cascading discontinuities. As one cxample, any of a va-
riety of buckling formulas may govern the compression stresses in a certain
structural component (14), depending on the most critical slenderness iatio
in that component that will prevail in the eventual design, Even within these
several formulas, however, that slenderness ratio may take any of several
forms, depunding on the placement of lateral bracing in the several direc-
tions that buckling can occur, .

Such characteristics, together with the extremely large and cumbersome
nonlincaritics that must be dealt with and which produce a huge number of
local minima, give rise to iterative oscillations and other aberrational com-
putational behaviorisms that also are aot casy to handle, Progress is being
made towards developing fairly decent algorithins, however, and with this
expectation it is probably time to consider and prepare for the emerging role
of the engineer designing in an environment where mathematical program-
ming will accomplish automatically most of that which, at this time, is still
laboriously evolved by hand,

- MAN-MACHINE DESIGN TEAM WITH DUAL
DECISION-MAKING LEVELS

Although at first there seems to be an ominous ring in this for the engi-
neer with respect to his acquired skills and intellectual capital, with further
thought it will be realized that there has been and probably always will be
two distinct levels of decision-making in the design process; a secondary
level that can be completely assigaed to the computer, and a primary level
that has (o be shouldered by the designer bLucause perfection in the state of
the art can never be achieved. At present, the secondary level for the most
part in existing systems involves the chore of grinding out analyses. There
may be a few legitimate optimization-based programs devised for special
situations, Lut as yet there is no broadly bascd generalized scheme which
will admit the computer into the picture as a fully versatile design partner.
Most design programs that are being used, in fact, employ an exhaustive
search among a predefired set of possibilities, but this is practical only for
problems of fairly limited scope.

As the use of mathematical programming improves in reliability and gen-
erality, the sccondary level will begin to involve more and more the occupa-
tion of design in the general sense. Eventhouch the rate of prozress in this
direction is somewhat obscurcd by a lackof information of what is (cchnical'y
possible in the way of computing hardware and software, the beginning of the
team effort can be seen with a bit more clarity. In the area of structurces, for
example, the sccondary level initially will undoubtedly be charged with gen~
eraling a meritorious conlizuration that docs not violate the confines of
building specifications. The primary level witl include such tasks as defining

" range limits on design paramoter values, choosing the applicable building

specifications, deciding the form that the structure is to take {{rame, shell,
truss), and the materials that arc to be used.
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As the state of the art inevitably advances, the demarcation zone between
the secondary and primary levels of design decision making will move in-
exorably upward, and it is fair to assume that as time passcs the computer
will be able to take on more and more of the tasks that previousiy had been
the exclusive domain of the designer, For example, it i8 possible to store on
sccondary storage the results of each design as it is accomplished and in
this way accumulale over a sufficient period of time a wealth of design ex-
perience, On the basis of the data stored, it might be possible, using statis-
tical regression techniques, to have reasonable range limits for a given type
of structure of a certain type and loading gencrated by the computer, rather
than established by 'he designer, .

New tools, both in computer software and hardware, have been or are be-
coming operational which boigins to indicate clearly the structure that an fu-
teractive design system which is bascd primarily on optimization technigues
may take, and the cvolutionary development that will probably occur there-
after. Notable amone these tools on the hardware side are on-line graphic
display terininals with vector capability, and ou the software side, poweriul
procedure-oriented languages, such as PL/1 (6), which are not only efficient
in carrying out numerical calcul.tions, but are also adept both at character-
string manipulation and the stora;~ and retriéval of both kinds of data on
secondary storage. Important also are special purpose formula manipulation
languages (15) that can generate the exact difforentiale of large nonlincar
expressions. And of course, an effective meshing of all these slements into
an interactive design system is possible only because of the versatile and
efficient computer operating systems that are now available for controlling
and scheduling the evenis that have to take place in the machine, .

A comprehensive man-machine interactive design system based ons dual-
mode assigument of the decision-niaking responsibility might be viewed as
the following set of capabilitics: (1} Synthesis of design constraints; (2) de-
sign criteria; (3) optimization; (4) analysise; (3) on-line access; (6) data input;
and (7) data output, A large measure of genera®y is imdicated as all of these
clements would be brought to bear on any design situation, whether in the
area of structures, transportation, or water resources, the three primary
system areas that make up the ficld of civil ensincering (11). Some elements
in the list, in fact, would be identical for all three arsas, such as the module
to assemble design constraimts, the functionally distinctive data transfzr ca-
pabilities of: (1) On-line access via graphic display; (2) system initialization
and modification by cards or tape to establish ¢ata bases and extend system
capabilitics; and (3) proluction of hardcoyy output for permanent records.

On the cther hand, the form of some of the elements are dependent on the
particular area to be serviced, For example, while matrix analysis routines
have been reasonably well standarized forarticulated structures and networks
under steady state conditions (5,9), the same programs would be inndequate
for the analysis of transportation and water rcsource systems if transient
loadings and discrete behaviorisms are vital design considerations. In fact,
i1 may be that simulation would have to serve most oflten as the analysis ele-
ment of the system for both of these latter two areas if they were to be han-
dled a5 nonlincar prozrammming problems.

Similarly, the form of the eptimization \echaicue which should be employed
depemds on the nature of the system which is to be optimized. In the complete
absence of constraints, any of 2 variety of simple functional hill climbing
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methods ought to suffice. This situation is quite rare, though, and the design
situation normally has to be formulated as a nonlincarly constrained prob-
lem, which mcans that a nonlinear prozramming problcm has to be con-
fronied. This appears to be the case wili structures,

Cccasionally, if the systcm possesses certain desirable topological prop-
erties that permit littlc or no feedback of loading into the determination of
the design, the mcthod of dynamic programming can be uscd profitably (8,13).
These characteristics are oftcs found in transportation and water resource
systems and the potcntial for its employmnt is probably highest in these
areas. The most telling argument is that in dynamic programming a decom-
position of the system is effectcd and suboplimization carried out indepen-
dently on cach of the parts, leading, however, 1o the optimization of the total
system as a unit. Because any one part is likely to be easily analyzed by ex-
isting formulas, etc., an anxlysis of thetotal sysicm as a unit 15 nat required,
obviating the nced for the relatively cumbersome necessity to simulate, One
has to be prepared, however, to sacrifice the signiticantly large amounts of
compuling time and storaze that dynamic programming requires. If there is
eonsiderable amour: of fcidback in the system, 2s is the casc with indeter-
minate gtructures (the configuration that recults from a set of internal forces
may produce a different set of forces, which in turn requires a configuration
change, etc.,), then dynamic programming tcnds to become oo cumbersome
to use,

Eventhough the matter of design criteria has been {airly well established
for structures, it has not buen for the other two areas, With structures,
weight or erected cost should serve adequately as the function to be mini-
mized; the former can be formulated quitc preciscly in terms of the degicn
parameclers, but the latter is not so clear cut, It may be that even primitive
formulations of cost functions might be adequate, because there appears (1o
be some evidence that the design of a structure is not as sensitive to the
specifics of a cost function as had been thought. For cxample, flanges of WF
beams tend to be as far from the ncutral axis of the beam as constraints per-
mit under almost any reasonable objective function.

Design criteria for tranzportation and water resource sysiems are not so
easily arrived at, or universally accepted, because of the complex interplay
of socio-politico-econamic factors that are involved in the design of such
systems. Cost means little in the face of the social disruption that an unwise
urban hizhway system can cause; however, iI the formulation of some sort of
happiness function is attempted as an alternative, it soon is realized that one
man’s happiness is bound to be another man's despir.

Assuming however that, even in the face of these difficultics, the elements
previocusly noted are the primary modules that have to be considered in an
interactive design system, a clear picture of the fiow of data that would have
to occur emerges. Such a dual-mode graphics-augmented design system is
outlined in Fig. 1.

The cardinal feature of a dual-mode decision-making system is that there
be provision for instant communication detween the primary level (maa) and
the sccondary level (machine) as the latter is ia the process of going about
its assigned task. The ernincer shoild not be limited to monitoring decisioas
made ty 1w macthine only by iaspecting what i3 (00 often literally reams of
aeat columint of numbers. By the time an undesirable secondary decisivn-
making tenclancy is perceived, it might well be too late to do anything about
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it. (In fact, in most operations such output is available only after the job has
terminated.) Rather, the monitoring should be visual, mmeaning that a display
device has to be cmployed that is ableto keep the engineer informed instantly
as to what the machine is doing. Further, the display should not be that type
which displays only text, because of the saae lag period that is experienced
with trying to interpret tables of numbers:Or:lya relatively few lines of num-
bers can be displayed on such devices anyway. The only device that would
really provide adequate visual comnmiunication when engincering sysiems are
involved is a cathode ray scope with vector capability where a pictorial rep-
resentation of the system can be displayed as it is evolving. Further, an in-
terrupt capability is necessary in order to be able to inject into the process
modifications originating from the primary level. Thus, the scope should
have a light pen attachment and function keyboard as each device has its own
particular merits depending on the action that is desired.

.lﬂl::' {3 -"D
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FIG. 1.~ DUAL-MODE OPTIMAL DESIGN SYSTEM

It would be adequate as a beginring to have a set of preprogrammed dis-
plays stored and available on call with either the keyboard, or (o be selected
with the light pen irom a displayed menu of possidilitics. In a structural de-
sign systcm the mienu would include a variety of trusses, frames, girders,
eic. (A). Similarly, the particular specification or building code that is to
govern the design could Be selected in either of the same three modes (B),
H particular structural modules have been preprogcrammed into the system,
there is no difficulty in determining which provisions of the selected codes
govern al critical points in the structure, as this could just as well be in-
cluded in the program. Eventually, however, asdesigners become confortable
and fairly adept at using such a gysten, there is certain to be some {rustra-
tion and dissatisfaction experienced with being limitedtocertain preprogram-
med modules. Creativity, which is cerflain 1o blossom as designors are re-
lcased from the shackles of having to invelve themsclves ia the secondary
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decision making, will gencrate a demand for system gencrality vhere any
system configuration can be skciched and manipulated, 1t is not difficult to
fmagine how the sketching might be accomplished and topology determined;
this reduccs to 1 matter of the manhours nccessary to evolve the program,
In fact, scattered cfiorts in this direction have besn underwav for some time,

Gencrality does cause some concern as to how the constraints might be
selected during the sketching operation, though it might be as simple as
touching the light pen to critical parts of the system in order to cause the
appropriatc constraints to be generated for that p~int, In this way, again in
the case of a structure, all uilding code provisions for shear could be ar-
rayed in the constraint sct where the shear force and desirn parameters in
those provisions were those at the point where the light pen touched the
structure. The designer might do this by depressing a function key labeled
SHEAR and with the light pen touch as many point= on the structure as he
felt should bz investigated for that condition. In 2 similar manner, he could
cause multiple ccnstraints for MOMENT and DEFLECTION, etc. to join the
set of constraints,

Obviously, every tenth point of each component in the assemblage cannot
be investigated for all possibic limitations; the result is likely to produce a
mathematical programming problem much too immense. The fact that the
designer would have to exercise his skill in applying selectivity is merely
ancther indication that designer and machine will be most productive when
interacting dynamically as a team.

Of course, the operation of manually indicating where critical points are
to be considered does not actually formulate the miathematical pregramming
problem which must ve constructed to generate an optimal design. The situ-
ation is much diffcrent than if precprogrammed modules are emplosed where
the constraints can be easily arrayed as part of the program, If generality
is 10 be permitted, an additional system capabilily wou!d be necded which
would move from mass storage ooly those building code provisions which
would be indicated by the above light pen-function key operation, and then
proceed to formulate the mathematical programniing problem nceusd to gon-
erate the design. This capability is shown in Fig. 1 as blocks C and D.

Fortunately, newly developed lanzuages adept at character string manipu-
lation (eg., PL/1) make it possible 'o store in their natural alphabetic form
all provisions of as many building codes as desired or available on mass
secondary stlorage and to move into the central processing unit only those
that are applicable for a given situation. Further, there are editu.® capabili-
ties in these samce languages that permit the parsing of code formulas, ex-
tracting boXh the design parameters that are an imporiant clement of the
mathematical programming problem, and the data clements that must be sup-
plied externally. Even more spectacular, in view of the requiremcnt of most
nonlinear prorramming algorithms that diffcrentials of all constraints be
taken with respect to cach variable (2g;/ 2x; in ¥ig. 1), some of these same
languages (15) can ponerate exact expressions for thedifferentials of gigantic
expressions; the kind of exproysions that result, say, if the AISC interaction
formula for 3 beam-column in a3 frame is expressed in terms of the 10 design
paramcicrs that are neccsxary to define the four cross-scationa! dimensions
{wide flange) and strencths of both componcnts (the stifinesses of the con-
necting members determine the effeciive length of a beam column).

The magnitwie of thiz task cannot b2 overstated. As an cxamgle, if there
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are, say, 100 mostly nonlinear coustrainits that define a system of, say, 40
variables, and if the nonzero density of thedifferential matrix dy,;/dx; is 0.1,
then 400 diffcrentiations would have to be carried out, any one of which is
likely to be a formidakle task if done by hind. Further, the differentials have
to be exacl in al) respects if the nonlinear programming algorithm is to con-
verge to a solution, The alternative is {0 go about the job with numerical dif-
ferentiation, but ther? may be serious questions as to the effectiveness of a
purely numerical approach for the exiremely large, nonlinear, and discon-
tinuous problems that are typical of practical systems. It is always more ef-
fective, of course, to employ exact differentials in a diffcrential process
when they can be obtained, and the new suftware described makes this pos-
sible. (It is a fascinating turn of events that the computer, which is respected
for its number smashing capabilitics and which, because of this, has greatly
accelerated the science of numerical amalysis, is acquiring cqual respect
from the scientific community for its character-siring manipulative abilities,
a capability previously thought to have applications almost exclusively in
commercial data processing, but which appears also to have great potential
in scientific processing,) .

As the set of constraints on the design will contain internal forces result-
ing from tnhe loading that is imposed on the system, an analysis is nzeded to
deteriaine those forces Lefore the math programming program is solved (E).
This might be accomplished by a generalized matrix method in the case of
structures, or as puinted out, a simulation routine in the other areas, assum-
ing that the desizn parameters in a network of transportation or water re-
source componcuts must be simultaneously balanced as the only rational
approach to the design of these systems, and that because of transients and
discrzcte behaviorisms (queueing situalions, traffic lights, etc.), such systems
virtuaily defv mathematical analysis, It might be speculated that some sort
of gradient coefficients might be obtainable with multipie simulations, how-
ever the process is likely to be much too time consuming. Functional rela-
tionships for such systems are prcbably the only practical approach if
automatic design is ihe object, but so much is still to be done in this area.
For this recason, it is probable that the first broad range of practical appli-
cations for the entire system as outlined in Fig. 1 will come in the area of
siructures, where the matter of analysis is much more well defined and
mathematically tidy.

In traditional methods of design there is a pause at this point in the pro-
cess in order to afford the designer the opportunity of pouring over the re-
sults of the analysis to ascertain if, say, stress and stiffness requirements
are satisfied, If this is not the case, the system components are strengthened
and the analysis is perhaps reexecuted in order to check the effect of the
changes. It is worthy to note that if a computer analysis costs several thou=
sand dollars, serious thcught would no doubt be given as to the necessity of
making such a check. This brings up a point relevant to direct design where
an analysis is required for each design improvement cycle that is conducted
by mathematical programming, It is obvious that automatic optimization of,
say, a large roof constructed of a grid of trusses, which may require thou-
sands of doliars of computer time for ecach analysis, is not exactly around
the corner, Smaller systems thaa that will have to be attacked first, where
analysis is not such a costly factor, such as is the case with continuous gir-
ders and gable frames,
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Earenthetically, note that » simply supported girder is a true structural
gystem, as the term system has been used vis a vis optimization, because a
change in any of the design parameters, such as stiffener spacing, alfects the
chioice of other paramecters, such as web depth and thickness when a halance
must be sought to m..ximize the merit of the entire asscmblage, 1t is this
interconnected behavior, or feedback, that makes it so difficult to achicve
such a balance by human endeavor. By this defirition a simply supported
rolled beam of 36-ksi tteel is not a true structural system because only one
paraineter, ‘the section modulus, needs to be chosen in order to obtain the
optimmal design, and that can be achieved simply by a one dimensionai search
through a table of availuble shares, If, however, a variety of steel strengths
are available for selection as weil as the section modulus, system behavior
is present because & balance between the two design variables must be
brought about for an optimal situation. Thi: effort may still be within the
feasibility of optimization by dirert scarch, similar to the section modulus
table wearch, as there aren’t sr Overwhelming number of combinations to
c¢hoose from. Howaver, as a further cxtension one misht {ry to compute the
number of possible combinations of a simply supported hybrid beam where
the strengths of the flange and web can Le different, where the plute wid'hs -
mighi be in ircrements of, sav, sixieenths of an inch, and where the thick-
nesses would be the set of standard thicknesses, It is at this point that mathe-
mutical programring begins to demonsirzie its utility in beine able io home
in directly on an :ptimal combination ov parameters without the need for
carrying out an exhaustive search amcr:: all possibilities.

Structures, then, such as hybrid beams, hybrid girders, trusses and
frames will be treated most effectively {irst by direct optimal system:, such
as that shown in Fig, 1, and larger systems such as roof truss grids, multi-
story bu.ldings, etc, will no doubt have 0 be deferred until major break-
throughs occur in reducing the times for analysis. This may come about v:ith
significant increases in computiug speed, new and novel techniques, ~» per-
haps simply because of studies that may show approximate techniques of
analysis are adequate for large systems until the last few eycles of tihe math
prozramming problem solution. This is not to tay, however, that portions of
those large systemis could not be trenied as i..dependent asscmblages for the
purposes of design, much as they have been in the past.

After an analysis is obtained, the math programming problem which has
been formulated, either in prep.ogrammed modules or by a geaeralized pro-~
cessor, must be solved. And beeause of the mathematically impure charac-
teristics (discontinuitics, many lo:zal optimal, etc.) exhibited by practical
systems, the algorithm which accomplishes this task has to be a real work-
horse, able to demonstrate computational efficiency and reliability for almost
any situation that it is likely to be handed, Work is quite actively in progress
at a variety of research centers to produce such algorithms and the eventual
availability of a general processor should not be discounted.

In the particular system being described herein, the algorithm being used
is a modification (3) of the well-known cutting plane approach (2,7,10,12) to
the solution of nonlincar programming problems, a modification which has
been used quite successfully to design in detail several typns of strustural
systems, including gable frames, with built-up beam colimns as members,
both prismatic and nonprismatic, and where either tapered or 2urved haunches
were employed, complete details of both also designad as part of thie same
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problem (1). Briefly, the modification (L) involves primarily a dynamic cun-
striction of the feasible space at strategic intervals and a unique provision
for handling cyclic infeasibilities which may be caused thercby (4). It has
handled in an efficient computational fashionnonlinear prograraming problems
having over 150 mostly nonlinear constraints and over 50 design variables,
and when uced to design structures invariably produces complcie designs
which are quite competitive with desizns evolved in the traditional manner.
Though it still has yet to stand the test of time, there secms to be some
promise of it being a candidate for the workhorse aigerithm which would be
required for z generalized system,

' To review bricfly the operation of the cutting plane zlgorithm, a Taylor
series expansion is cmployed to reduce the nonlinear functions in the objec-
tive and constraint set to a lincar programming problem in which a trial de-
sign is used as the series expansion point for the first ¢cycle, and the solution
to any given cycle is used as the expansion point for the subsequent cycle
(M). When this scquence of linear programming problems produces unchang-
ing solutions (i), convergence to the solution of the nonlinear programming
probleia has been obtained. )

If this is all there ware to design, no participation of the designer subse-
quent to initiating the process woald be necessary (block B in a gencralized
systemn). However, the natuve of the course of events that may follow produces
interesting opportunities for creative interaction by the designer if, as pre-
viously described: (1) He is able to monitor the progress of the design as it
is being algorithmically generated (J); and (2) if he can, on the basis of what
has been perceived, modily the direction that the design seems to be taking,
and do so before a conclusion is reached (F).

Suppose, for example, that the math programming proulem that was formu-
lated for a fairly substantial structure is in the process of veing solved, and
that its evolution towards an optimal configuration is being observed (J), in
fact almost as an animation.. The designer night suddenly realize that the
web depths, in the inathematical struggle towards optimalty, are tending to
be rather deep and that an implicit desire for a certain amount of headroom,
wucther from a practical standpoint or the view of estheties, is in danger of
being violated because the web depth maxima were soniehow omitted in the
formulation of the problem, (S1ch would not be an unusual situation if a gen-
eralized system were being cmployed.) If, undar the usual batch mode oper-
ating environment, a termination and restart were necessary in order to
correct the situation, not only time but a significant amouut of computing
money would have been lost for this one small point that was overlooked. On ,
the other hand if the additional web depth constraint could suddenly be made
an active part of the constiraint set by use of an interrupt capability such as
that afforded by a ligit pen or function key, ihen the situation would be in-
stantly corrected and an acce;table design still would be obtained in the same
program executicn. The capability for entering (or deleting) constraints on-
line as the computations arc in progress is a remarkable tool for enhancing
ibe creative instincts of thedesigner. Ineffect, he would be molding the struc-
ture almost as a picce of sculpture, pulling here, pushing there, in order to
fit spatial requirements and esthetic inclinations. This would be accomplished
with the freedom from worry that is afforded by knowing that wien he is fin-
ished with the kneading and shaping and the designed has converged to a final
configuration, all the stress and deflection limitations will be satisfied. In
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fact, the nsost critical ones witl be satisfied exactly, for this is the highly
desirable result that mathematical programming accomplishes,

Interaction nced not only strengthen creativity, it can in orove the effi-
ciency of the program execution as well, The rate of convergen. e of a mathe-
matical programming problem ia general varies inversely with some higher
order power of the number of variables involved, although the figures cannot
be determined because so much depends onthe characteristics of the particu-
lar problem which is being solved. (Uccasionally, even a large problem can
snap into a final solution with amazing speed.) If, however, as is pussible
when MP solution progress is being visualiy monitored, the designer natices
that one or several of the parameters are not changing much from cyclc to
cycle, he easily could frceze the current value by using onc of the interrupt
devices, thus effectively switching the status of the parameter from that of a
problem variable to that of a constant. The mechanics of doing this mathe-
matically are actually quite simple, involving nothing more than sctting the
elements in column j of the left-hand side coefticient matrix of the asso-
ciated linear programming problem (K) cqual to zero for cach variable j
which is to be so altered, as well as the coefficient of the same variable
which appears in the linearized objective function (14). Removing even just a
few variables from the math programming problem inthis manner quite often
has a dramatic effect on the rate of convergence,

Existing hardware and software, or at lcast aspects of these that are in
advanccd states of development, hint at even some more alluring capabilitics
which could be made a part of a generalized system, For example, there are,
in almost every graphics syster: being used, capabilities for rotating about
any axis the configuration which is being displayed, so that the designer could
visually inspect every portion of the generated system, and for magaifying
portions thereof in order to clarify details. Hardware is even new conimer-
cially available which will respond vocally according to pregrammed instruc-
tions, so that communication between the secondary level decision maker
(machine) and the primary decision maker (man) need not be entirely visual,

Although several, in fact the most critical, of the components shown in
Fig. 1 are operating quite smoothly, the total system as described is not yet
an operating reality; too many of the additional capabilities that would make
it so have just arrived on the scenc. But sufficient progress is being experi-
enced with each of these so that a drawing together of all of them into the
mosaic necessary for total system capability appears to be merely a matter
of man hours.

ILLUSTRATIVE EXAMPLES

Several working applications have been developed in order to aid in de-
veloping the system. Eventhough they were not made particularly sophisti-
cated because of this role, they do serve to illustrate the nature of the design
system and the potential that it presents, thus meriting some discussion,

In a first example (I, 2), 2 minimum weight simple beam is designed
for a given shear and momeont, to be welded from plate¢s of 36-ksi steel. The
system as presently constructed aceepts range limits from the desizner, or,
in the absence of these, defaultstothe limits of commercially available valucs
if there exists such a sct, such as for plate thicknesses, In the absence of a

.
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standard set, such as for plate widths, the designer must supply range limits
as problem data. The trial vector is cither also given by the designer, or, as
in this case, defaulted to the lower range limits, an approach which somchow
seems to work quite well for a large variety of systems and which will prob-
ably be retained as a permanent feature,

Several prominent events are worthy of note in the ensuing iteration
which was carried out algorithmically. For 20 cycles a wild oscillation in
two of the parameters is observed, and is typical of the behavior that can be
expected in even the smallest of nonlinear systems, such as the beam of this
example. Two of the parameters remained tight against the lower range limit

Initial Conditions: Shear = 12 L, Moment = 720 fn-k

b
- t Trial Design Lower Rang? Upper Range
ﬁ Limits Limits
‘ Tv b 2.0 2.0 i0.0
t .25 28 1.0
d 6.0 6.0 20,0
=L w .25 .28 1.0
Convergence Behavior
Cycle b t d . w

] 2,0 .25 9,884 .25

2 2.0 W25 14.830 .28

3 2.0 1.00 7.12% W25

4 2.0 .25 14,778 .25

- 2,0 1,00 7.095 W25

[ 2.0 W28 14,736 .25

? 2.0 1.00 7,073 .25

] 2.0 .25 14.708 .25

9 2.0 1.00 7.058 .25

10 2.0 .25 14,688 .28

1 2.0 1,00 7.047 .23

12 2.0 .25 14,472 .28

13 2.0 1.00 7.03% .25

M 2.0 .35 14,662 .25

18 .0 1.00 7.033 .25

16 2.0 il 14.654 .25

17 2,0 1.00 7.028 .28

18 1.0 .29 14.¢49 %3]

19 2.0 1.00 7,028 .28

A ) 2.0 .28 14,644 .28

2.0 .583 11123 .25

2 2.0 .M 11,307 .25

2] 2.0 .992 12,088 .28

6 2.0 .999 13.1%9 .28

2 2.0 992 13,236 .28

6 2.0 «992 13,236 .35

2.0 1.000 13.16) .23

8 1.0 1.000 13,164 °29

29 2.0 1,000 13.164 «25

FIG. 2.—~GENERATION OF OPTIMAL BUILTUP BEAM

throughout the run. At the cvent marked A, the accelerator (4) mentioned
previously was employed as an impulse to dampen the oscillation (Block L in
Fig. 1), and it can be seen that the operation was quite effective in that the
design then quickly converged to the solution shown in ecycle 26, The flange
thickness, however, at convergence was not commercially admissable, so an
additional operation, denoted as cvent B, was invoked which rounded that
thickness 1o the ncarcest admissable value, and recycledthe process to further
optimize on thosc paramcters which were not 8o restricted. The final design
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is admissable, the bending stress is almost exactly the specified limit of 22
ksi, and the weight is about five % less than that »of the lightest rolled section
that would suffice, although caution should be exercised in making such a
comparison because of the welding costs that would have been incurred in
building up a section. If the lower range limit on the web plate thickness
had been lower, a lower weight than indicated would undoubledly have been
obtained,

This example was allowed to run to a conclusion without manual fi.terven~
tion. In a dual-mode decision-making cnvironment, however, the designer
would have noticed earlier by inspection, at least by the fifth or sixth cycle,
that the iteration had entered a pathologic oscillaiion, and could manually
have triggered the accecleration impulse long before the twentieth cycle, at
which time it is normally programnied 10 occur (every 10 cycles thercafter).
Or he might have roticed quite early in ihe jteration that the f'ange width was
likely to be less than would be rcquired for a certain attachment he Lad in
mind and which he had thought of after the iteration had begun. In this case
he could have raised that particular lower limit while the iteration was in
progress, perhaps by placing the light pen on the outer boundary of the {lange
width and dragging it outward. Beingabletocarry out such nieasures as these
make a lot of sensc when one is dealiny with 2 much larger system where it
is difficult to anticipate undcsirable practical or esthctic features that might
result because of the design that is finally generated and be abte to build ap-
propriate constraints into the constraint sct beforehand,

* A significant advantzgzd of being able to opevate in this mamer results
from the fact that execution time is unnecessarily inflated if a large number

-¢f constraints never become active inany one of tlic cycles. These constraints

5till have to be carried along as comrutational overheed in the matrix oper-
ations that are involved in solving the nonlinear programming problem if they
arc initially a part of the problem. There might be cunsiderable eccnomic
merit in being able to cperate within a bare framework of constraints that
are likely to be active in any given situation, and to be able to insert dynam-
fcally any additional constraints that are necessary into the structure of the
problem because of violations that might be detected in any of the iteration
cycles, For example, beams over certain lengths are hardly ever governed
by shear, and it would be a waste of computational time to carry all possible
code restrictions on shear alone in the framework of the nonlinear prcaram-
ming problem for a general beam design routine, If conditions become such
that shear does happen to govern for a certain situation, the violution is
casily detectable and the appropriate constraints can then be inserted with-
out otherwise interrupting the progress of the design.

A second example which was formulated also to test the graphics moni-
toring capability (Block J in Fig. 1) demonstrates a simulator, albeit primi-
tive, for a 10-mile stretch of open highway containing both an intersceting
turnoff and a tunnel constriction. Vehicles are injected into the three end
points of the system at various rates, and are scen to move along the simu-
lated highway system as dots of light. In a practical situation the designer
might notice visuaily that qucues are {orming at critical junctions in the sys-
temn and take immudiate action, as the simwulation is procecding, to change
onc or more desirn parameters inaunatiemptto correct the situation, permit-
ting the simulation to continue almost without interruption, While systems
using simulation in order to delermine system rasponsc arc not yet being
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fmproved algorithically by mathematical programming, the broad framework
of the system of Fig. 1 can still be employed, particularly the graphics and
data transfer capabilities.

CONCLUSIONS

As nonlinear prozramming algorithms improve with respect to scope and
reliability, an increasingz amount of the design task will be consigned to the
computer and the designer can perform more strongly the role of nclicy
maker in the design process, Developments contributing to this changeover
recently include developed formula manipulation languages which can produce
exact differential expressions of large nonlinear functions and cathcde ray
tube terminals which permit on-line modification of the mathematical pro-
gramming problem as is going about the task of producing the design, The
computer is then seen to assunie 2 more active role as a partner in the man-
machine design team, frceing the designer to exercise his creative inclina-
tions on a higher level as it, the computer rather than the designer, guidas
the design in optimal directions that 4o not violate imposed constraints,
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7637 INTERACTIVE COMPUTER GRAPHICS IN DESIGN

KEY WORDS: automalion; computers: desizn: drawings: graphic mcibods:
noslinesr programming: strucrural en rincering —

ARSTRACT: Dnelopments in compueting smllware aad hardware make it possible to
consign more of the desiza Iabor to the computer than s been possible, and permit
e designer to exercise more fully his role as policy maker. Formula manipulatioa
compuicr lamruszes which cag be uscd lo produsc exact diflicrenatials of very birre non-
lincar cxpressions and interactive grapiie terminals which make it possible 1o medily
on-line Ihe Ronlimar programmime problem represeatio: 1 desizn situition pormit
siructural d ai-ns to b zeacrated by (ke comnuter which sec complete in all respects,
wheee all design purametors necessary lo define the eoefin:-rations can be used, and
where butldiag codv provivions are usal unchonged 38 the xet of coastraials. The
architecture of 3 man-machine interactive rvsivim is prosetiod which 2iows (he de- .
signcr to cffectively mnld the €esirn with 2 ot pon as i is beins evolved by (he R
computer with the NEP algorithma and whicd appears ia offvvt a5 an animation oa the .
scope. A casc atadv of an optireally proportionsd dbeam is given in tabular form.

REFERENCE: Douly, Hichard, ant Shore, Sidaer, "Teehnigue for Intceaective Com-
puter Geaphicn in [igm ® Jeurzal of the % reetural Divisica, ASCE, Vel. 97, No. 3T1, ,
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- ABSTRACT

A vhysical property inforration systam, including data base and
estimation routines for providing property values directly to a FORTRAI!
program, hec been irplerented. Tne system allows for the development
of chemical engincering progrars that necd not be altered with cheaical
mix and/or property estimation procedures. The system includes an
inquiry-response interface for communication from & typeuriter terminal.
Property valucs can be grapned and tebuluted interactively at the
request of the engineer. In additicn, property data can be stared
interactively in corrclation cocofficient and tabular form for subse-
quent estirstion of property values usiug correlation algorithms or
interpolation procedures.

The role of the physical pror-:ty information system in education
is discussed wvith cmpuasis on the material and cnergy balance course
and the rreparation of rmore gencral process analysis, simulation, and
design programs on the ceniar and graduate levels.

* Moore School of Electrical Engineering only.
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INTRODUCTION

Physical property inforration systems are related to computer-
aided process desipgn, as stoichiometry and thermodynamics are related
to chemical enginecring education. Vhereupon, it follows that as
conmputer-aided aethods are adapted by chemical engineering educators
for analysis and design purposes, physical property (among other)
information systems will play an 1ncréasingly significant role in

courses such as stoichiometry and thermodynamics.

First, however, it is for us to improve upon computer-aided
process analysis, sirulation and design methods, ar ° to discover courses
and problcn types vherein these methods improve the quality of education.
Several apprccoches including curve-fitting process data, steady-st;te
and dynaric process unit simulation, mterial and energy balancing
chemical processes with recycle, ;nﬁ optinizatian of process unit
designs have been examined.(1’2’3) And, to these ends, the role of
nev ran-rachine interfaces, time-sharing and video display terminmals, -
and of informtion systems are being considered.(h’s’ﬁ) For to improve

computer-aided process design methods, interactive information cystems

are an ircportant ingredient.

The purposc of this paper is to describe a physical property
inforration system (PPIS) for computcr-aided process design cocputations
in undergraduate cducation.(7) The cvolution of PPIS will be discussed
vith czphasis placed upon the rcactions of student users at various
storcn of developzent. Haturally, only the sali:nt featurcs of FPIS

arc described; the PPIS Uzor's Manual should be consulted for dctails.(a?
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PHYSICAL PROPERTY VALUES FOR CHEMICAL E'GINEERING APFLICATION PROGRAMS

Computer programs for chemical engineering applications often
require thermophysical property values for pure substances and chemicai
mixtures. A common approach to supplying property values is to prepare
property data cards that are read by the program. Often the property
values are assumed to be conctant for thé temperature and pressure
ranges under consideration. Wwhen this assumption cannot be made, that .
is, vhen independent variable dependence is significant, property
estimation procedures are required. Often the estimation proccdures
are coded into the application program with correlation coefficients,

tables and constants being read from cards by the application program.

A more general approach for vroviding property values is to
separate estiration algorithms from the application program in the
form of subprograms that have access to data necessary for property
value estimation. The application progran'calls upon the froperty
estimation subprograms, rather than reading data from cards and esti-
mting property values. This approach is common today, especially
vhen property estization is required for raterial and energy balance

and design COﬂputations,(ztgxloxll)

Tnese approaches to supplying property values restrict the
applicadility of the engincer's program. When a progrem requiring
property wvalues is prepared, cail statexcnts ceferencing estiration
subprozrans by nase are coded into the program, direcctly linking the

jrogram vith & gpecific set of estiration subprosroxs.

9
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Often, changes in mixture componeﬁts und/or temperature and
pressure ranges require different estimation routines. When applica-
tion programs must be modified frequently, general proczss material and
encrgy balance, simulation and design progran libraries are difficult
to establish and maintain. High operating and maintenance costs help
to explain why few truly gen:sccl purpose program libraries are widely

used today.

I+ has been our experience that general purpose progrems for
material and energy balancing, simulation, and design of process units,
anong other applications, are important to the chemical engineering
educator whose time is not well spent writing ané debugging oi' modifying
programs. Hence, an important design goal for our PPIS has been to
reduce nmodifications, due to variations.in physical property estimation

methodology, in an otherwise general purpose applicetion progran librafy.

For the sake of completeness, we note that no mention of APPES,

(12,13)

the AIChE Physical Property Estimation System, . and other such
physical property information systems has been made because these
systems are not conveniently interfaced with application programs,

if at all. However, we have incorporated several APPES property

estir.tion procedures in cur PPIS library.

PHYSICAL FPOPERTY INFORMATIOH SYSTE: PROTOTYPE

A principal objective of our physical property information

cyst2m has becn to allow the engincer tn prepare application programs

e
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requiring no modifications when the components in a mixture are altersd

and vhen new and different property estimation techniq''2s are required.

One method of eliminating program modification is to separate the
"variant" and "invarisnt" information required to request a property
value. PPIS separates variant and invariant information as follows.
Only invariant information such as the identity of the physical prop- |
erty (for example, heat capacity), the names of program variables that
contain stored values for the independent variables (for example, T and
P representing temperature and pressure), and the name of the propranm
variable that contains mole fraction values for each mixture component
(for example, X), are incorporated into the application program's

request for property valucs. Variant information such as the identity

of ‘components in the mixture, and the identity of property estimation

methods are specified separately from the application program.

~ Invariant information is supplied during program preparation, while

variant information is supplied just prior to each execution of the

application program.

Another objective of our physical property information system has
been to allow easy storage and retrieval of physical ﬁroperty data.
As compared with other information systems, data retrieval is corpli-
cated by the need to also retrieve and apply estimation procedures for
estimating the requested property values. Our “data base" is designed
to store data in the form of constants, correlation coefficients, and
tables. The estimation program library contains programs that combine

corrclation coefficient or tabular data with independent variable and

)
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mole fraction specifications to compute “property values". The former
progrens allow for ectimation by cogrelaﬁion, the latter by inter-
polation. Other estimation programs corbine a sequence of estimated
rroperty values to produce a single value. For example, when estimating
a mixture enthalpy, one procedure would combine zerc pressure enthalpy

and enthalpy pressure-correction estimates.

Retrieval of Prorerty Values

PPIS has been designed to provide property values for pure
chemnicals and mixtures when requested during execution of FORTRAN
programs through calls upon retrieval routines. The retrieval rou-
tines are FORTRAN functions and subroutines that retrieve property
data from the data base, and call upon property estimation routines

to compute requested property values.

Three retrieval routihes a&evavailable for use in an dpplication
program. The function PPCP is used to request pure substance property
values. Two retrieval routines are used to request mixture property ‘
values. The routine PPCF is a function subprogram that is used to
request a single property valve for a mixture (for example, molal
aVerage heat capacity). The routine PPCS is a subroutine tuat is
used to request a property value for each component of a mixture

for exarple, mixture equilibrium coefficients - K values).
b
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The standard requests for property values using the PPCP, PPCF

and PPCS retrieval routines are:

PROP = PPCP(MP,V1,V2, INDEX,IC) Pure substance

property values

PROP = PPCF(}P,V1,V2,X,IC) "Average" mixture

property velues

CALL PPCS(MP,VL,V2,X,RES,IC) Mixture component

property values

The arguments are:

MpP

INDEX

IC

property code (for example, 4Ol = vapor entﬁalpy

given temperature, pressure, and composition, or 305 =
equilibrium coefficients, given temperature, pressure,
and camposition)

value.of the first independent variable, a real number
or real variable (for exsmple, temperature T)

value of the second independént Qariable, a real

number or real variable (for example, pressure P)
chemical. index number, an integer or integer variable
(see component. identification table discussion below)
mole fraction values stored in a singly subscripted
variable for the chemicals indexed in the component
identification table

estimated property values (results) stored in a singly
subscripted variable. Each nemter of the array contains
a property value for each component listed in the
component identification table.

completion code variable, an integer variable. Retains
zero value vhen unusual cifcﬁmstnnces do not cccur dwring

data retrieval and estimation; otherwise, is set uncqual
Ry

to zero.
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Figure 1 contains a list of phys@cal property codes currently

available in PPIS. Assoclated with each property code are two

independent variables. For example, 4Ol is the code for super-heated
vapor enthalpy given temperature (the first independent varisble) and

pressure (the sccond independent variable) as well as compositions.

o ein i R s b S i

Figure 2 contains a list of chemicals for which some property
data 1s currently stored in our PPIS. Note that a data base component
nunber has been assigned to each chemical. Just prior to executing
an application program, the engineer furnishes PPIS with a component
jidentification table (see Figure 3). This table cdntains variant
information that identifies for PPIS the chemicals in a mixture, or

in a list for which pure chemical physical properties are needed.

Each chemical in the table is assigned an index number so as to order

the chemlcals in the mixture or list of pure chemicals.

Figure L illustrates use of the PPCF retrieval routine in an
application program. The PPCF routine is used to obtain the enthalpy
of the five component mixture specified in the component identification
table. The property code is 40O for enthalpy given temperature, T,
and pressure, P. The mole fractions for the five component mixture .

are stored in the array X. j

Physical property data and estiration procedures often differ
with phase. For this reason, we have indexed the property codes such

that those ending with the digit 1, 2, or 3 refer to vapor, liquid,

or so0lid, respectively. In addition, property codes ending in O refer
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to a phase unspecified propurty.

Yhen the property code supplied to a retrievel routine is phase
unspecified, a phase determination is performed. Figure 5 summarizes
the phase determination capabilities of the retrieval routines. At
present, phase detcrmination is carried qut only for propertics whose
independent variables are temperature and pressure. Mixture liquid
and solid phases are not distinguisﬂeh, and all liquids are assumed
miscible. Further, it is the responsidbility of the engineer to avoid
requesting single phase property values; such as dencity and compress-

ibility factor, for a two phase mixture.

Several property estimation procedwres are currently available in
the PPIS library. These ere sumrarized in Figure 6. New estimation
procedures are added to the libraxy by the system librarian as required
in our course work. It should be recognized that the sccpe of a libzary

. for educational pvrposes need not be as comprehensive as a library for

industrial design purposes.(9’1°:11)

In part, this is due to limited
university resources for prograrming and testing estiration programs,
or converting estimation procedures prepare others into FPIS
terminology.‘ Currently, it is not possible for the engineer to easily
enter his own estirmation procedures without knowledge of FPIS internal

details (Chapter 6, User's Lhnual(e)). Steps are being taken to

simplify the installation proccdure for cstiration prograns.

The estimation procedurcs ccmbine data in the data base to

estimatce property values as illustrated in Figure 7. Coumonly,

'.A,
T
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estiration procedures intcrvolate tables, or compute property values
using corrclation formulac, or both. Some estimation procedures
combine other property values, as well; for example, an estimation
procedurc for K-valucs combines a liquid fugacity value with vapor

fugacity and activity coefficient values, and so on.

Data Base and Data Storage

Having considered the retrieval routines for use in a.FORTRAN
program, we turn next to storage of data in the data base. Property
data is stored in the form of data records. Data records contain
.propcrty data characterized by key words. A data record contains
seven key words and the data itsclf:

1) Property code,

2) Ccontributor code,

3) Validity ranges of two indepandent variables,
4) Maximum expected error,

5) Estiration routine nurber,

6) Data type,

7) Component code(s), and

8) Property data.

Fowr sample data records are illustrated in Figure 8. The first
three data records contain heat capacity date for "20 over different
temperaturc ranges and 0.5 < P < 2.0. The fourth data record contains
liquid density data for the mixture, methane, ethane, propane,

n-butanc, and n-pentane, for W00 < T < EQOOR and 0.5 £ P < 2.0 atnm.




The data record key words deserve some exﬁlanation. The property
code identifies thc physical property and {ts associated independent
variables. The contributor code identifies the individual responsible
for stori.g the data record in the data dbase. The vulidity ranges
delimit the high and low limits for independent variable values within
vhich the data record applies. For example, the vapor heat capacity
data in the second data record (Figure 8) is used only vhen tempcrature
falls within 672-3240°R and the pressure vithin 0.5-2.0 atm; data in
the third data record is used when 3240 < T < 6840°R and.O.S SPs
2.0 atm. The maximm crror is the upper-bound estirate of the error
vhen using the data record (within the independent variaiule validity

ranges). The estimation routine nurber identifies the estiration

routine for computing a property value using the data contained in

the data record. For example, in the second dota record (Figure 8)
routine number 15, a third degree polynomial correletion progranm, is
specified to compute vapor heat capacities using the data stored in
the data record. 1In the third and fourth data records routine number
14, a linear interpolation program, is specified to interpolate the
tabular data stored in the data record. And, in the first data record
no estiration progrem is specificd, since a single constant value for
1iquid heat cepacity holds over the ranges, "2 < T < 672°R and 0.5 <
P < 2.0 atnn. The data type identifies the nature of the data storcd
in a data record; cither a single constant, several corrclation
cocfficicnts, or tabular data. The component code(s) indicate the

component(s) for which the property data is valid. Fiunally, the data

~ itself appears.

13
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The application program furnishes the retrieval routines with a
property code, two independent variable values, and mole fractions.
The cousponcnt codes are supplicd by the component identification
tablc. Vhen servicing a request for property values, the retrieval
routines scarch the data base for acceptable data records. An
acccptable data record:

1) cContains the specified property code,
2) Contains independent variable validity ranges that
surround the supplied independent variable values, and
3) Contains data base component codes specified in
the component identification table.

The retricval routines select an acceptable data record and call
the cstiration routine identified in the data record. The estimation
routine obtuins property data from the data récord and other property
values produced by parallel requests to the retrieval rout:_lncs. The
retricval routines return the rcquested property value(s) to the

application progranm.

™Mta Retrieval Constraints

Often the retrieval routines can select from among several
acceptable data records. These data rccords ray differ in estimation
routine, raximum perccentage error, contributor code, and data. The
retricval routines sclect the first acceptable data rccord located

in a search of the data base, unless dirccted othervise.

FPIS has been designed to allow the engincer to specify one of

several acceptable data records if he so desires. He records hie

19
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preferences just prior to execution of ﬁhe application program in a
"retrieval constraint table" (when there are preferenccs). The
retrieval constraint table is another form of variant information
that allows the engineer to specify, fcr any physical property, (1)
the cstimation routine, (2) the maximm allowcble error, and (3) the
data contributor. Figure 9 illustrates a retricval constraint table.
Observe that the table constrains PPIS to locate a vapor heat capacity

{431) data record with maximum expected error less than 1.5%, using

estimation routine 15, and contributor 142; when 672 < T < 3240°R and

0.5 £ P < 2.0 atm, the second data record in Pigure 8 is located from

among other possible alternatives. K-value and vapor density data
records are to be located wvith maxirum expected error less than 1%.

In addition, vapor density data records .&re to use cstiration routine
2. The data record for critical temperature is to have been furnished
by contributor k. Finally, data records for all other properties are
to be located with moximum expected error less than 2%. When the
constraint degree is not entered, upon failing to locate a data record
that satisfies the constraints, PPIS vill use any applicabdlc data
record and print a comment descriving the action taken. When the
constraint degree is absolute, ¥, PPIS prints a pessage describing

the unavailability of the constrained data record and abarts.

A master dava basc containing approved property data is maintained
by the property systcn libdrarian, and is available to all users. A

private data base is provided for cngineers that odtain property data

from the litcrature or by experiront. The engincer enters this data
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into his privnte date hase¢. Only the ‘system librarian may enter new

date into the raster date base. Whereas the engincer is free to add

nev data, update existing data, or delete data from his private data
base using the PPIS ctorage routine. For security purposes, each

uscr sclects a password upon entering property data into his private
data base for the first time. The paésword must be supplied to the

system wvhencver rmodification of the private data base is attempted. .

Material and Fnerry Balance Problem

PPIS has been used to provide enthalpy and phase equilibrium
coefficient values, K-velues, in a progrem prepared for flash separa-
%ion. The program determines the flov rates, moie fractions, and

terperature of vapor and liquid streams 1eaving a ﬂa;h separator,
‘ illustrated in Figure 10. Data to the program includes feed flow
rate, role fractions, terperature and pressure, product pressure,

and the rate of heat loc:, Q.

The method of solution assumes that the li:quid and vapor phases
are scparated perfectly wvithout entrainment. Materizl and energy
balance egquations and phase cquilibrium constraints are summarized

belov for an Nc corponent nixture:

Material Falance Equations -

ZP = XV XL I=1,2,.. K




-4 .
Mole Fraction Constraints -
Bc 1
Z ZJ Z Y, = S‘ X, = 1
J=1 J=1 J=1

K-Value Constitutive Equations -

xJ = xa{'rv,pv} ) § = 1,2,.00,N,

Phase Equilibriun Constraints -

Yy = KX J=1,2,}...,Hc

Enthalpy Constitutive Equations -
hy = h {T s Pes 2, By -ee, 2“c}

hv 1 Yl, 2, --o, }

LTI W 9
Energy Balance Equation -
hr? = va+h‘L+Q
Equipzent Constraint Equations .
Tt
!

- PV

1.
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There are 3Nc + 9 equations and th +Il3 variables; hence, Nc + 4
design variable values may be specified. The set of design voriables
selected is {F, Tos Pos Ly Zps +os By s P Q} . The program
determines all other variable valuec. Fggure 11 illustrates the

algorithm for solution of the equations. Nc and design variable

*
valucs are read fiom cards, Tv is gstimated, and K-valnes are computed.

Next, the matericl balance equations are solved, stream enthalpies are

computed; and the energy balance equation is used 1o estimate a new
Tv' Vhen the Tv convergence tolerance is satislied, results are
prirted. Otherwise, a nev guess value for Tv is prepared and the

material and envrgy bzlance computaticms repeated.

Observe that the PPIS rcquests for mixture K-velues (MP = 305)
and enthalpies (MP = 401,402) do not chznge with chemical mix or
estiration proced.re. Hence, the progran is a general flash prograi:

with respect to ostimated yphysical property values.

Figure 12 illustrates a flash curve cormputed during execution of

the algeorithm in Figure 11. PPIS was constrained to use date records

that provide for enthalpy estination using routines ENTH, ENSV, ENSL,

ENSHV, IDISUL and »-value estimation using rowuvine KTARLE.

Expericences Using the PPIS Prototype

PPIS has becen used to furnish property values in many process

wnit material and energy balencing programs, svch as the flash unit

program. It does achicve the design objectives to provide for mixture

independent application programs and to allow storage and retrievel

'—}3.
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of property data. Many general purpose programs have been prepared
for use with systems such as U.P.PACER (University of Pernsylvania
PACER) for totsl process material and energy balancing.(ls) General
purpose absorber, stripper, and flash programs have been run as
U.P.PACER subroutines when material and energy balancing a natural

gas process, for example.

An important shortcoming of the PPIS prototype has been its

inaccessibility to the engineer who wishes preliminary estimates of

property values. In order to obtain property values, the engincer
is corpelleld Lo write a FORTRAﬁ program. This places an excessive

burden upon engineers interested in obtaining first estimates of

property values to be used in application programs, no matter how

corpact the FORTRAN program need be. In many cases, students prefer
to use handbcok values or roughly estimated values rather than to

write and debug a "simple" FORTRAN program.

This shortcoming, coupled with trends in inforration system
aesien toward interactive inquiry-response systems, led us to add
capability for corranication between PPIS and a typewriter terminal.

These developments are described in the next section.

Other problers are encountered whcﬁ PPIS uses long-executing
estimation procecdures; for example, the Chao-Seader method for esti-
mating K-values (routine KVAL) ani the Bencdict-Webb-Rubin equation

to estirate densities (routines BWRLD and BWRVD). Repeated execution

_of these estination routines is expensive when short-cut methods are

Lk
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unavailable. As a result, we are currently developing methodé for
curve-fitting data using spline polynomial methods. The spline
coefficients will be stored in a data record for rapid interpolation

during design calculations.

DQUIRY~RESPLISE (INTERACTIVE) PROPERTY INFORMATION SYSTEM

The PPIS prototype proveﬁ its utility especially after conversion
to an interactive System that communicates with the engireer through
a tyrewriter terminul. Soon afterward PPIS assvmed the role of a
sophisticated handbook. Sﬁudents now use the inquiry-response features
to examine property values conveniently, often in preparation for ﬁse

of PPIS in epplication programs.

The PPI5 prototype is comprised of FORTRAN IV programs that run
on an IB4 360/75. It vas éonvefted to an interactive program for the
RCA Spectra 70/h6 in one man-month. The interactive PPIS is executed
within the RCA Time-Sharing Operating System (TSOS). This operating .
systenm provides for telecommunication with teletypewriter terminals,
IBM selectric typewriter terminals, and the RCA video data terminal

(elphanureric cathode ray tube).

Using the Inquiry-Resronse PPIS

After a telephone cnll to the RCA Spectra 70/46 computer, the
engincer requests to use PPIS (during "log-on" sequence). FPPIS
initiates the conversation with the engincer by prompiing the

latter for information. FPPIS types o message (in capital letters

c-
i
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on IBM selectric typewriters), skips to the next line, types an
asferisk (%), and awaits the engineer's response (in lower case
letters on IBM selectric typewriters). The first few lines of

conversation are:

UNIVERSITY OF PENNSYLVANIA PHYSICAL PROPERTY INFORMATION SYSTEM

PLEASE IDENTITY YOURSLLYF,
*j.b. omega

DO YOU NEED HELP? (YES OR NO)
*no

THE AVAILABLL COMMAMDS ARE:

STORE, ,DETILE, REVIEY,. .CONSTPAIN, . CIIANGE. . RLTRIEVE, . HALT.
PLEASE TYPE A COMMAID,

PPIS reqpeéts that the engineer identify himself and questions whether
assistance is required to use the system. Vhen help is requested,
PPIS typés detailed instructions for using the system. Thereupon,
PPIS lists the seven commands availablp (each will be described below)

and requests the engineer to type a command.

The "define" command allows the engineer to define the components
and compositions of a mixiure for which property values are subse=-
qguently to be retrieved. After the engineer types the define cormrand,

the conversation proceeds as follows:

*define

HOW MANY COMPONENTS?

*5

INPUT THE COMPONENT IDS. (ONII PLR LINL)
*methane

*ethane

*propane

*n-putane

*n-pentance

INPUT ML MOLE FRACTIONMS.
* 0,10 0.17 0.25 0.38 0.10 -
PLEASE TYPL A COMMAND., : Lb
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The components may be identified using either the component names or
the data base component numbers listed in Figure 2. Mole fraction

valu:s are sep: rated by spaces.

After the mixture has been defined, the "reirieve" command may

be used to request property values. The four options available are

illustrated in the conversations below, beginning with "sinple"

retrieval:
~ w
*retrieve )
CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLE, GRAPH, NONE.
*simple '
INPUT THE PROPLRTY ID,
*enthalpy
INPUT TIHIE TEMPERATURE DLG R AND PRESSURE ATM
* 450.0 5.0
RESULT= =57523,50 BDBTU/LB=MOLE COMPLLTION CODE= 0
CHOOSE A RETRIEVAL OPTIOMN: SIMPLE, TABLL, GRAPH, NONE.

- LY
>

" By sinple retrieval is meant retrieving a probefty value (or values)
for a single pair of independent variable values. Note that a request
for an enthalpy value (the property code = 40O may also be specified)
requires that PPIS determine the phase (or phases) of the mixture at

the independent variable values.

The simple retrieval option is used also to request a set of
K-values for a mixture. Such estirates are espccially useful wi:.n

preparing to use the generalized flash progran described earlier.

*retricve :
CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLE GRAPH, NONE.
*simple

INPUT TUI PROPERTY ID,

*equalibrium cocfficients

INPUT THL TENPEDPATURE DIXG R AND -PRESSURE ATM

*45000 S‘o

REGULY= 16.71063 2,287533 0.4604993 0.101692:
0.20697054K-01 '
UNITG: RO UNITS COMPLETION CODE= 0

CIIOOSE A RLUTRILDVAL OPTION: SIMPLL, TABLE, GRAPH, NONE. Q?
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The "table" retrieval option is used to requesé that a table of
property values be prepared at various independent variable values.

For example,

*retrieve

CHOOSE A RETRILVAL, OPTION: SIMPLL, TABLE, GRAPH, NONFL,.
*table

INPUT THL PROPERTY ID,

*v.enthalpy

ENTER TEIPERATURE DEG R RANGE AlD NO, OF INTERVALS,

* 470.0 520.0 5 ‘ :
ENTER PRESSURE ATM RANGE AND NO, OF INTLRVALS,

* 5,0 5.0 0
. ANY OTHER PROPLRTILS? (YIS OR_NO)
*no
THE TABLLE IS READY. DO YOU WANT IT PRINTED
AT THL TERMINAL? (YES OR RNO)
*yes
PROPERTIES : 401
PRESSURE ¢ 5.00 ATM,

TEMP, 401

470,00 -57336.813
480,00 ~56949,844
490,00 ~-56572.797
500,00 -56203,918
510,00 ~55841,609
520,00 -55484.,414

UNITS: BTU/LB=-IOLE
DO YOU WANT A GRAPH ALSO? (YES OR NO)
*no ’
CHOOSE A RETRILVAL OPTION: SIMPLE, TABLE, GRAPH, NORE.

Values for as rany as five property types caﬁ be tabulated simul-
taneously as they vary with one of the two independent variables.

Or, values for a single property type can be tabulated as it varies
with its two independent variebles (in a two-dimensional table). The
engincer is notified vhen the table is ready at which tire he decides
vhether the table is to be printed at the terminal or on the line

~ printer at the computing center. Finally, he is offcred the option

LB
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to have a graph prepared of the tabulated property values.

no phase deternmination is performed by PPIS when the property type is

specified as v.enthalpy (=401).

The "graph" retrieval option 1s used to request that a graph of

Note that

property values be prepared at various independent variable values.

For example,

*retrieve

CHOOSC A ROTRIEVAL OPTION: SIMPLE, TABLE, GRAPH, NONE.

*graph

INPUT THE PROPLRTY ID.

*].density

ENTER TLIAPERATURE DEG R RANGE AND NO. OF INTERVALS,
* 400.0 490,0 9

LRTEP. PRESSURE AT RANGE AND NO, OF INTLERVALS,
*.20.,0 20,0 0

ANY OTHER PROPERTILS? (YES OR NO)

*no :

THE GRAP!HI IS READY. DO YOU WANT IT PRINTED..

AT THE TLRIINAL? (YES OR NO)

. *yes
PRESSURE= 20,00 AT,
PROPLRTILS: 202
SY:BOLS : *
UNIYS ¢ LB~NOLEL/FT3
*
*
*
*
*

*

D G D et S S e SR G AP W GO T S WS B o M W G S e S W G G D O W G G D G S G G I G NS PO Ol S G S G S G W e

DO YOU WANT A TABLE ALSO? (YRS OR NO)
*no

TEMP. DEG R *

400,00
410.00
420.00
430.00
440.00
450.00
460.00
470.00
480.00
490.00

© CHOOSE A RETRIEVAL OPTION: SIMPLE, TABLL, GRAPH, NONE,

Values for as rany as five property fypcs can be plotted on a

sinsle graph es they vary with one of thic two independcnt variables.

0.1778
0.1917
0.2060
0.2206
0.2355
0.2506
0.2660
0‘281.I
0.2976
0.3136

9
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At tais time, graphs as a functioo of -one independent variable a¢
abscissa and the other independent variable as a parameter cannot be

plotted. Tae other options are similar to those for table retrieval.

The “'constrain" cormmand allows the engineer to direct PPIS to
locate specific data records during subsequent retrieval requests.
The following conversation enables the engineer to supply retrieval

constraint table information interactively:

*constrain
PLEAST SUPPLY THE FOLLOWING:
PROPERTY ID,

*401
CONTRIBUTOR:
* .
. ROUTINE lO.:
*
MAX. ALLOWED ERROR:
¥5,0 _
AllY MORJS CONSTRAINTS? (YES OR NO) -
*no

PLEASE TYPE A COIMAND,

The above conversation instructs PPIS not to use data records for
vapor enthalpy in which the maxirum expected error is greater than

5.0%.

The "store" command allows the engineer to add a data record to:
his private data base; he 1ay also modify or delete a data record.
Using this commﬁnd, the enzineer can maintain a private data base
including constant, correlation coefficient, end tabular property data.
Upon receiving the store compand, PPIS first requests key word infor-

mation to identify a data record. PIPIS searches the priwvate data base

for such a data record. VWhen no such data record is located, PI'IS

S

U
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requests that the engineer type data values, as illustrated below.
Upon locating such a data record, PPIS offers the engineer the option

of modifying or deleting any entry in the data record (not illustrated
below).

tstore
PLEASE SUPPLY THE FOLLOVING:
PROYEPTY ID.:
*1,.density
CONTRIBUZOR:
*oncga,je.be.
ESTIMATION ROUTIVIE NO.:@
*14
VALIDITY RANGE FOR TEMPEDRATURE DREG R
*400,0 490.0
VALIDITY RAIGE FOR PRESSURE AT:
*15.0 25.0
MAXIMUMN LEXPLCTED LERROR (%) :
* 4,0
RHOW MANY COPONLNTS?
*5 .
PYPE IN TIC COMPONEXT IDS. (ONII PER LINE)
*nmethane o
*cethane
*propanc
*n-butane
*n-pentane
DATA TYPL: (CONSTANT, COEFFICIENT, TABULAR)
*tabular
HOW lIANY VALULS OF TN TFEPATURE DEG R?
*5
HOW MANY VALULS OF PIPESSURE ATM ?
*0
TYPLE Il THE CATA.
© *400.0 0.1778
*420.0 0.2060
*440.0 0.2355
*460.0 0.2660
*490.0 0.3136
PLEASE TYPE A COIRMAND.

The store comrand facilitates the storage of tabular values
generated by tihe table or graph retrieve corrrand for subcequent inter-

polation. In the illustration above, liquid density valucs estirated

‘n
b
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using the Benedict-Webb~-Rubin eqéation iteratively (zce the graph
retrieve command illustration), are stored for subscquent lincar

interpolation (estimation routine number 14). The speed of inter-
polation is especially irportant for iterative design computations

at varying temperature values.

The other interactive FPIS cormands, "reviev", "change", and
"halt" are briefly described, but not 1llustrated. The review commnd
causes PPIS £o print (1) corponent nares and mole fractions for the
most recently defined mixture, and (2) a sumrary of the current

retrieval constraints. The change cormand is used to modify selec-

tively the couponents or role fractions in a previously dezfined mixture.

And, the halt' command terminszies an inquiry-response eession.

Evaluation of the Inauiry-Resvonse FPIS

The inquiry-response fecature markedly increases the engirncer's
accessibilily to PPIS and thereby deronstrates the utility of computer;
based inforration systems for engineering purposes. The post obvious
benefits follow. The inquiry-response PPIS provides students with a'
toal for estiration of mixture property vzlues when handbook values
do not cxist or are not casily accessible. It provides a vehicle for
property estiration using iterative algorithms that are difficult to
implcment manually. And, in so doing, it often pr wides more accurate i
property values in chorter tire. The inquiry-response PPIS enables
the engincer to scan graphs and tables of property values over inde-

pendent variable ranges under study in application programs. Thereby,
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the engineer may confirm the accwracy of bench-mark values and gairn
confidence in an estimation procedure's ability to reproduce physically

known variations vith the independent variable values.

Of course, the overhead cost associated with preparation of data
for mchine storage, day-to-day disk or tape rentals, and maintenance
and exccution of an estirntion progrem library is considerable. Cne
goal of our rescarch, accompauying the goal to improve the utility of
paysical properiy infcrmation systems, is to reduce overhead costs.

Souc idecas are included in the following raragraphs.

The estiration of property waluec using iterative algorithms
sonetires requires 0.1 CPU seconds on tie RCA Spectra 70/&6 computer.
This tine is attributed elmoct entirely to the iterative nature of
the computations vwhen commared with approximateiy 0.001 CPU seconds
for table interpolation corputations. For the occasional interactive
query, the order of magnitude difference in estimation times, is not
a8 critical factor. But for the designer, whose appliéation progre =
require repeated cstirates of property values, the CPU sec./cstimnte
is significunt, ecpecially when the application program is a unit

operation redule for ratecrial and energy dalancing using U.P.PACER.(ls)

Consequently, it is often dcsiradble to store in tabular form
property values accurately cstiratcd over a raage of independent
varishle values, for subsequent aigh-spced interpolation. As an
exnrple, the store corrmand vas uscd carlier to store a teble of liquid

dens ity vidues conputed iteratively ucing the Denediet-wWebdb-Rubin
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equation. To climinate egome of the data prepaiation (typing) overhead
associated with the store comrand, work is in progress to automate the
procedure for tabulating property values followed by direct storage in
& data record (at the engincer's request upon satisfaction with the
tabulated values). We are also installing spline polynomial curve-
fitting algorithms that compute and store spline correlation coeffi-

cients for high-speed computation of property values.

A reliadble and up-to-date public file of data records (raster

t. base) and estimation procedures is important to the successful

operation of PPIS. The PPIS programs must be raintained, new data
records stored, old data records purged, and new estimation »rocedures

installed and docurented, arcng other routine inforratioa handling

_activities. For these pwrposes, & PPIS librarian is required; a

person vell-versed in property estimation methods and digital compu-
tation. Since research-oriented faculty and students are not inclined
to assume librarian duties, we expect thet engincering schools will
soon turn to uon-academic staff cembers to maintain the increasing
numdber of inforration systens (the com:zon practice in university

lidbraries).

A recurring problem vhen cstimating property values using alter-
nate methods in overlapping indcpendent varisble ranges is "conscistency”.
The consistency prodlen occurs vhen tvo estization methods predict the
gane property value trends in an overlapping independent wvariable

ran;e, but property valuecs differ over the range duve to nearly coastant

errors in cne or both of the rothods. Consequently, a step chante v
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pruperty values occurs when switching between methods, with the possi-
bility of distortion in the epplication program resulis, especially
when the application program model is based upon the rate of change

of property values with independer +variable values. The inquiry-
respoh'e PPIS allows the engineer to scan graphs and tableé of property
value estirates near those to be used during subsequent executi-n of tﬁe
application program. When inconsistency'is observed, new date can be

obtained and other estimation procedures invoked.

iae consistency problem demonstrnites the desirability of a report
generation facility that licts a1l data records and estimation proce-
dures used during execution of an applicution program. Such a report

would surmarize the frequency of usage of data records and estimation

* procedures, and their sssociated CPU time.. It would identify unex-

pected use of data records or estimation programs due to unusuval
excursions in independent variable values or improperly specified

constraints.

As mewtioned previously, methods are provided for the engineer to
enter new estimation procedures (see Chapter 6, User’'s Manual(g)).
Currently these methods require knowledge of PPIS details not known
to the average éngincer. Hence, the engineer must use public library
progroms or enlist a FPIS expert to instéll a new estimation procedure.
Methods for automatic translation of stand-alone propexrty estimation
procedures into FPIS terninology are under study. Tae approach used
for nﬁtonntic translation of FORTRAN unit balance programs into.

U.DP.PACER programs is especially prqmising.(lﬁ)
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For most application programs,'not all data records in the data
base and estimation procedures in the library are required; in fact,
typically only a few are used. When this is the case, it is 3 .prac-
tical to secarch all data records for the few that apply. Hence, we
are irplementing an extension to PPIS that ensbles the engineer to
prepare a "customized" data base for each new application problem.
For example, a student encaged in the design of an ammonia process
will prepare a cus#omized data base that incluies property data for
N2’ Hé, NH,, Ar, and CHh only. The customized data base is essential
to the successful operation of FPIS on a small macﬁine, vhere searching

a8 large data base is impractical.

The inqniry-responsé PPIS has been used by several undergraduate
students engaged in the preparation of general purpose material and
energy talancing algorithms for absorption. stripping, heat exchange
wnit overations, among othérs. We plan to introduce the system to
chenical engineering sophomores in thermodynamics and stoichiometry
courses during the Spring semesier. At that time, we should be bettef
prepared to discuss the econorics of using such an inforration systen

in the classroon.

SUILARY AND CONCLUSTON

The role of physical property information systems (PPIS) for use
in chemical engineering apnlication programs is discussed, with
emphasis on the desi<n and irplementation of a PPIS for undergraduate

course work. Two design objectives were specified for a prototype PPIS:

Kt

N




-29 -

1) To allow the cngineer to prépare application programs
requiring no modifications when the coumponents in a
mixture are aliered and when new property estimation
techniques are required.

2) To allow the engineer to easily store physicel property
data for subsequent retricval and estimation of property

values using interpolation and correlation algorithms.

The paper discusses these objectives and presents the significant
Teaturcs of the prototype PPIS. A typical material and energr bal-
ancing algorithm for a flash separator is presented, with emphasis on
the role of PPIS in providing for a more generalized unit operation
program to be used in the sophomore stoichiometry course. Several
shortcemings of the prototype PPIS are discussed; the r .st important
being the requirement to write a FORTRAN program simply to obtain

property values.

The inquiry-response interface to PPIS was desighed and implemen-
ted to provide interactive communication through a typewriter terminal.
In this way, the engineer may interactively study the performance of
eétimation procedures for corputing property values over a wide range
of independent variable values. And, the engineer may interactively
store property daté for subscquent interpolation or use with correla-
tion programs. The paper discusses these objectives and presents the
significant features of the inquiry-response FPIS. The role of the
inquiry-response PPIS in the sclection of* property date and estiration

proccdures to be used with application programs is described. Finally,

(9]
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the performance of the inguiry-responge P?IS is revicwed, with cmphasis
on plans for reducing the cost of data preparation end management and

for improving its utility in engineering computations.

Ve conclude that our physical property informatign system is a
fore-rﬁnner of the numerous computer-ba:ed information systems that
will pley a significant role in computer-aided snalysis and design
computations. Several examples and discussions serve to demonstrate
the role of FPIS in undergraduate education today and our expectations

for PPIS in the near future.
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Physical
Property

Code

100
101
102

200
201
202
216

300
302

305

koo
Lol
ko2
411
2
k25

130
131
k32

515
516
L7
518

1001
100z
1003
. 100k
1005
1006
1007
1008
1111

Density
- vapor
- liquid

Fugacity Coefficient
- vapor
- liguid
Vepor Pressure

Activity Coefficient
= liquid

Equilibrium Coefficients

Enthalpy
- vapor
- liquid
Enthalpy Pressure Correction - vapor
, =~ liquid
Zero Pressure Enthalpy

Heat Capacity
- vapor
= liquid

Bubble Pt. Tenrerature
Dew Pt. Temperature
Temperature

Vepor Fraction

Critical Temperature

Critical Pressure

Acentric Factor

Solubility Parameter

Molar Volunre

Molecular Vt.

Melting Pt. Tenperature
Hormel Boiling Pt. Terperature
Critical Compressibility

Physical Property Codes

Figure 1

Independent Variables

Enthalpy

P
P

W s

B . wacy S -




Compound
or
Element

Hydrogen
Mathane
Ethane
Propane
i-Butone
n-Butane
i-Pentane
n-Pentane
neo-Pentane
n-Hexane
n-Heptane
n-Octane
n-Nonane
n-Decane
n-Undecane
n-Dodecane
n-Tridecane
n-Tetradecane
n-Fentadccane
n-Hexadecane
n-Heptadecane
Ethylenc
Propylene
l-Butene
Cis=-2-Butene
Trans-2-Butene
i-Butene
1,3~-Butadiene

-32-

Inta Dase Compound
Conmponent or
Number Element
1 l-Pentene
2 Cis-2-Pentene
3 Trans-2-Pentene
4 2-Methyl-1-Butene
5 3-Methyl-l-Butene
6 2-Methyl-2-Butene
T l-Hexene
8 Cyclopentane
9 Methylcyclopentane
10 Cyclohexane '
11 Methylcyclohexane
12 Benzene
i3 Toluene
1} 0-Xylene
15 M-Xylene
16 P-Xylene
17 Ethylbenzene
18 Anmmonia
19 Hx0
20 Ethy). Alcohol
.21 Acctone
22 Nitrogen
23 Oxygen
24 . Carbon Monoxide
25 Carbon Dioxide
26 ‘Alr
27 Argon
28

Data Base Component Numbers

Figure 2

Data PRose
Component

29
30
31
32
33
3k
35
36
37
38
39
ko
b1
k2
L3
Ly
b5
L6
b7
48
ko
50
51
52
5
54
Py

Nunber

&0
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¢ Data Base
Chemical Component Component
Index ' Number . Name
| 2  Methane
2 10 | n-Hexane
3 5 i -Butane
4 4 Propane
5 20 | ~ n-Hexadecane

Component Identification Table

Figure 3

DIMENSION X(10)
READ (5,10) NCOMP, T, P
READ (5,10) (X(I), I = 1, NCOMP) Segment of
application
* program.
H = PPCF(400,T,P, X, IC)
Chemical Data Base Component ]
Index - Component Name
Code
1 3 Ethane
2 4 Propane Component
3 6 n-Butane .
~ Identification
4 8 n-Pentane Table
* 'NCOMP=5 2 Methane *
Sample Application Progran Retrieval Request ' 81

Figure &




Retrieval
_Routine

PPCP

PECF - FPCS

PoCF only

- 3'4-

Phase Determination Capabilities

If temperature £ melting point, retrieve solid

property value.

If pressure < vapor pressure, retrieve vapor

property.

~ If pressure > vapor pressure, retrieve liquid

property.

If vapor fraction = 0.0, retrieve liquid property.

ff vapor fraction = 1.0, retrieve varor property.

If 0.0 < vapor fraction < 1.0, then two phases

exi.st. Vapor and liquid mole fractions are

cormuted, and vapor and liquid properties retrieved.

Result = VF * vapor property + (1.0 - VF) * liquid property,

vhere VF = vapor fraction.

Phase Determination

figure 5
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Routine Routine . . .
Name » Number Purpose

Thermodynanic Pronarty Estiration

ZPL 3 Zero ypressure enthalpy of a mixture

BUBTP1 b . Bubtle point temperature of & mixture
using Newton's method

DEVWTFL 5 Dev point temperature of a mixture
. uring Newton's method

BWRHPC 6 Enthalpy deviation due to pressure using
. Benedict-Wetb-Rubin equation of state

ENSV 16 Enthalpy departure of superheated vapor
mixture using a corresponding state
correlation based upon the table jin
reference (14), p. 595

ENSL 17 ) Enthalpy departure of subcooled liquid
' mixture using a corresponding state
correlation based upon the table in
reference (14), p. 595

EXNSHV 18 Enthalpy departure of saturated vapor
. mixture uzing a corresponding state
correlation based upon the table in
reference (14), p. 598

ENSHL 19 Enthalpy departure of saturated liquid
mixture using a corresponding state
correlation based on tihe table in
referen:e (1), p. 598

VFRAC T Vapor fraction of a mixture by Chao-
i Seader nethod
VAPFRC 2 Vapor fraction of a mixture by material

balance using X-v.lues

FUGL1 8 Liquid fugacity coefficient for each
cooponent of a mixture using Choo-Seader-
Crayson-Streed method

ACTL1 9 Liquid activity ~ocfficient for cach
corponent of o mixture by Chao-Seador
metlot

Proyory Ecti-ation [roratures 63

Piqure 6




Routine Routine ‘
Name Humber . Rurpose

Thermodynamic Froperty Ectiration (comt.)

FUG 10 Vapor fugncity coefficient for each
component of & mixture using Benedict-
Webb-Rubin equation of state

KVAL 1 ' Ve.pc'r-liqﬁid equilibrium coefficient for
each cozponent of a mixture by Chao-
Seader xethod

KTABLE 20 . Vapor-liquid equilibrium coefficicnt for

each component of a mixture using a
corresponding state correlation based
on the table in refcrence (14), p. Lll

ERTH 12 Enthalpy of a mixture by adding zero
pressurc enthalpy and enthalpy deviation
due to precsure

TSUBH 13 . Temperature of a mixture given the efzthalpy
' ' by Nevton's method

VPRESS 2 Vapor pressure of a component using the
. Antoine correlation

Physical Property Estimation

BWRLD 1 Liquid density of a mixture ﬁzing the
Benedict-kWebb-hubin equation «f state

BWRVD 2 Vapor density of a mixture using the
Benedict-Webb-Rubin equation of state

Interpolation Procedures

XINT 1h Linear i-terpolation of tabular data

General Correlation Fracedures

POLY3D 15 T.ird degree polynomial correlations

Property Estirstion Procedures
Pigure 6 (cunt.)




Property Data
(Tables, correla-
tion coefficients

and rconstants)

Property . Pr?perFy
» Estimation (-——
- values Routine
Property Valuas
(produced
by another
— - estimation
routine)

The Ro.e of Estimation Procedures

.

Figure 7

P
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Data

Data Datda Data ’
Record 1 Record 2 Record 3 Record 4
Property : liq. heat | vap. heat - |vap. heat |[liquid
capacity capacity capacity ¢ 2nsity
Contributor : 142 142 153 178
Validity range(l) : 492-672°R | 672-3240°R | 3240-6840°R| 400-490°R
H O.S—Z.OEtm 0-5-200atm 0.5—2.0atm 15-25atm
Max. error : 0.5% 1.0% 2,0% 2.0%
Estimation routine: - 15 14 14
Data type : constant coefficient| tabular tabular
Component (s) : water water water 2,3,4,6,8
0.428 3240(0.656 |400{0.1778
1.42x10"° |4000]0.701 |420]0.2060
-8
3.88x10 5000{0.743 |[440(0.2355
-12 '
-7.35x10 © |{6000{0.771 {460]0.2660
684010.782 149010.3136
Sample Data Records
Figure 8
Property 2llowable Estimation Contributor Constraint
Code Error Routine No. Code Degree
Vap. heat cap. . l.5% 15 142 -
K-values 1% - - -
Vap. density 1% 2 - *
Crit. temp - - 4 -
- 2% - - -
Retrieval Constraint Table
Figure 9 RS
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N¢, Design Variable
Values

-,‘o-‘

{

Guess Ty = T,¥

K1

Compute Next
Guqss for
Tv = V*

y

CALL PPCS (305, TVSTAR, PV, Z, KVAL, IC)

{

Solve Material
Balance Equations

-

HF = PPCF (402, TF, PF, Z, IC)
HV=PPCF (401, TV, PV,Y,IC)
HL = PPCF (402, TL, PL,%X,IC)

{

Estimate New
Ty Using Energy
Balance Equation

No

{

{co

nvergence ?

A\

Flash Separator Algorithm

Figure 11

Print Results
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AN INTERACTIVE FLOW CHART GRAPHICS SYSTEM
by

Peter L. Delaney, Jr.

INTRODUCTION .

The purpose of the graphics system is to allow a user to
draw a flow chart. The graphics-system is interactive; that is,
it communicates with the user while he is drawing, offering him
a choice of several actions that méy be performed. The system is
designed to be sufficiently fast to keep up with the user;
offering no noticeable delay between operations. 1In addition,
the system is modular to allow for easy programming. And finally,
the graphics'system is implemented on a small computer so as to bé

inexpensive in operation.

The PDP-8 is the computer selected to house the graphics
system. It is a small computer that has 8K of 12-Bit words, . a
32K disc, a small tape unit, and a 338 cathode ray tube (CRT)
display. The 338 is a special purpose computer, controlled by the

PDP-8, that executes a "display program" in the PDP-8's core memory.

The “display program" or “display file" resides in a part of
memory set aside by the PDP-8 to be executed by the display. The
display file is composed of a set of display instructions which tell
the 338 how to draw. There are two states of operation, "control
state" and "data state®. 1In control state, the display program
controls program flow and sets up display registers that contain
drawing parameters (for example, becam intensity, drawing scale,

and drawing mode). In data state, the display program uscs the

12
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data in the display file to positién the cathode ray tube display
beam. A few of the drawing modes are point, vector, and character.
When in point mode and data state, the display will draw points at
the coordinates specified in the display file. For example, a
display program to draw a line from the point P2:(10,10) to the
point P2: (100, 100) at scale one and intensity five would be:

Label Instruction ' Comment

PROGI, SCl INT+5 /SET SCALE =1, INTENSITY=5

/
EDS POINT /SET MODE="POINT",ENTER DATA STATE
10 /¥ - COORD :
10+4000 /X - COORD,ESCAPE TO CONTROL STATE

/.
EDS VEC /ENTER DATA STATE,MODE="VECTOR"
100-10+4000 /0Y=100-10=70 (OCTAL) , INTENSIFY
100-10+4000 /06X=100-10=70, ESCAPE

/ .
STOP /STOP EXECUTION

*Note: All numbers refer to the octal number system.
For details, see the DEC-~-338 manual.

This display program, when executed, draws a vector from the
point Pl:(10,10) with components (AY=70, AX=70) once! In order
to keep it on the screen for more than a fraction of a second
(since the CRT phosphors relax rapidly), a “"JUMP" instruction is
used to transfer control to the beginning of the display file.
For example:

73
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Label Instruction | * Comment
PROG1, SCl INT+5 /SET SCALE AND INTENSITY
/ .
LOOP, EDS POINT /ENTER DATA STATE "POINT"
10 /Y - COORD
4010 /X ~ COORD + ESCAPE
/
EDS VEC /ENTER DATA STATE "VECTOR"
70 /AY=70
4070 /O6X=70,ESCAPE
/
JUMP /TRANSFER CONTROL
LOOP /TO ADDRESS "LOOP"

*Note: The display file must be re-executed frequently
(about 30 cps) to avoid CRT flicker.

. It should be noted that the “JUMP“.instruétion requires two
words of ﬁemory; the first denotes the "JUMP" instruction itself,
and the second indicates the address to which control is to be
transferred. See Figure 1 for an illustration of the picture

drawn by this program.

Another imbortant feature of the 338 is its ability to
execute calls to display subroutines. A “PJMP", or push jump
instruction, is used to put the current display program addrcss
plus two onto a hardware push down stack and then transfer control
to the address contained in the word following the "PJMP". To
return from the display subroutine, a "POP"™ instruction is used
to pop the push down stack and transfer control to the address
retrieved from the top of the stack. For example, a display
program to draw the three squares in Figure 2 would be:




(0,1777)

P2: (100, 100)

| AY=70
Ax=70!

e = = = e

P1:(10,10)

(0,0)

(0,1777)

‘0,0)

X

Figure 1

Picture Drawn by "PROGLl"

(1717,17277)

(1777,0)

(1777,1777)

P3: (1400, 1400)

L]

P2: (1000, 1000)

P1:(400,400)

X

Figurc 2

Picture Drawn by “PROG2"

(1777,0)

- prooememoms e




Label Instruction Comment
53062, §C2 INT+7 /SET SCALE=2, INTENSITY=7
LooP, EDS POINT /POSITION BOX NO.1.
400 /Y - TOORD
400+4000 /X - COORD,ESCAPE
PJMP ; SQUARE /CALL DISPLAY SUBROUTINE TO DRAW
y /A SQUARE.
EDS POINT /POSITION SQUARE NO.2
1000 /Y -~ COORD=1000
1000+4000 /X = COORD=100+ESCAPE
PJIMP; SQUARE /DRAW A SQUARE
/
EDS POINT /POSITION SQUARE NO.3
1400 /¥=1400
1400+4000 /X=1400,ESCAPE
PJIMP; SQUARE /DRAW A SQUARE
/
JUMP ; LOOP /REDRAV PICTURE
/
/
SQUARE, EDS VEC /DRAW 4 SIDES OF SQUARE
4100;0 /LEFT (AY=100,AX=0)
4000;100 /TOP (AY=0,AX=100)
6100;0 /RIGHT (AY=-100,AX=0)
4000;6100 /BOTTOM (AY=0,4X=-100)
popP * /RETURN

*Note: 1) A semi-colon (;) is used to concatenate two
display instructions on the same line.

2) Vector components with negative length are
formed by adding 2000 to the magnitude of
the component.

Clearly, the display file for a large flow chart is very
large and complex. For this reason, a graphics monitor has been

written to simplify display programming.




Before déscribing the graphics monitor, it is advisable to

examine the graphics system as a whole and a few of its important
components. See Figure 3. The light pen, as shown in the upper
right hand corner of Figure 3, is an important input device in

the graphics system. It is a finger operated shutter <onnected to
a fiber optics tube which, in turn, is connected to a photo-
multiplier tube housed in the 338. When the light pen is pointed
at a line being drawn on the screen, the 338 receives a signal
from the light pen. The 338 may then, if condiiions per.’ %, stop
the display and inform the interrupt handler of the "light pen
hit". The pushbuttons, also in the upper right hand corner of

Figure 3, are a set of 12 buttons with light indicators'which nay
be set on ox off by either the interrupt handler or the user. The

user program, shown on the far left of Figure 3, is one of a set

of program overlays that call on the graphics monitor to perform
functions requested by the user. For example, the user program,
after a light pen hit has been recorded (by the interrupt handler),

may call upon the graphics monitor to alter the display file. 1In

this way, picture modification can take place interactively. -

THE GRAPHICS MCNITOR

The graphics monitor is the heart of the graphics system.
Its purpose is to simplify programming of the 338. 1t is éomposed
of two p.rts, the "interrupt handler" and the "display file
monitor" (see Figure 3). The interrvpt handler takes care of all
1/0 activity for the system; for example, loading program overlays,
servicing pushbutton and light pen hits, and data phone communica-

tions, and will be discussed later.

11




User

Program

1/0

Interrupt
Handler

I (

Graphics 338
Monitor ¢ Display
Display z&s
File ﬂ
Monitor :
Display
File
Figure 3

Graphics System Structure

Pushbuttons
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Display File Monitor

The display file monitor handles all dusplay file modifica-
tions in the graphics system. To do this efficiently, a display
file structure has been designed containin§ three basic entity
types:

a) Nodes,
b) Branches, and
c) Devices.

\ : : .
A node is ééfined as a point on the screen with a shape (see
Figure 4.1). A branch is defined as a vector between two nodes
(see Figure 4.2). And a device is defined as a geometric shape
with a set of relative positions for "terminal nodes" (see Figure
4.3). The three entity typés when assembled form a flow sheet
!'see Figure 4.4). Any of these entities, node, branch, or device,
may also have a “"text label" positioned relati%e to that entity.
A fourth entity type called a "light buﬁtbn", or "button" for
short, also exists in the graphics system. A light button is a
temporary entity that is not a part of the flow chart. It
has a shape and a text label and is used to give instructions to

user.

The display file is composed of "primary" and "secondary"
blocks. Each primary block contains information pertaining to one
entity. The primary blocks are linked together using "JUMP"
instructions to cnable entities to be added or removed from the

display file easily, as illustrated below in Figure 5.

9
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/
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R

From Last Block

1 Primary block \ 1 Entity

To Next
Block

x|
JUMP
v
JUMP
JUMP
Figure 5

Primary Block Linkage

>

For identification purposes, an "entity'name" is assigned

to each block. The entity name is composed of two parts; the

entity type (node, branch, device, or button) and an entity

number that ranges from 1 through 377, for example:

a) NODE 5
b) DEVICE 25
c) BRANCH 1
d) BUPTON 10

The entity name is stored in the first word of an entity's

primary block. The entity type is stored with the entity number

in a 12-bit "full name". The "typc* requires 2 binary bits

because there are four entity types. The 'number" requires eight

binary bits because there are 400 possible numbers, with zero

rescerved for system use. For example:

A1

e AR ... .




ol1i21314 1516 |7.18)9 l10 |11

\__..Y el \, Y J
2 bit 8 bit entity number (1 -~ 377)
entity '

type

‘Note: Bits 0 and 1 hold miscellaneous information
and will be described later.

The bit combinations used in bits 2 and 3 have been

selected as follows:

Entity Type Bits 2 and 3 Octal Equivalent
LIGHT BUTTON 00 0000
NODE ' (0 _ 0400
BRANCH 10 o 1000
DEVICE 11 ' 1400

The full name is computed by adding the value of the entity
to the entity number, for example:

Symbolic Name Octal Name ' Binary Number

NODE 5 - 0405 00 0 100 000 101

DEVICE 25 1425 00,1100 010 101
. !

BRANCH 1 1001 001 000 000 001

BUTTON 10 0010 - 00 0 0 00 001 000

:tYPQ' number

Words 2 and 3 contain topological information that describes
interconnections between entitics; for example, the nodes connectced

to a branch. This will be described in more detail later.

A2
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Each entity has a set of'coordinates (x,y) that'positions
the entity on the screen. To position the beam at (X,Y), an
"EDS POINT" instruction is needed to enter the data state,
followed by two words containing the Y and X coordinates,

respectively. Words 4-6 of each primary block are reserved for

this purpose.

Word Instruction Comment
4 EDS POINT /POSITION ENTITY
5 Y~COORD /Y =~ COORD
6 X~COORD+4 000 /X - COORD,ESCAPE *

In addition, each entity has associated with it two para-
meter words. The first parameter word, word 7, sets the blink
register to "blink on“.or “blink off". When blink is on, the
entity will blink on and off about once a second. The second
parameter word, word 8, sets the scale, intensity, and light pen
status registers. The scalé, 1,2,4, or 8, indicates the distance
between points in vector modes. The intensity is set from 0
through 7, to adjust the intensity of the beam when drawing. The
light pen status, on or off, indicates whether an entity may
reccive a light pen hit should it be pointed to with the light pen.
This will be described in more detail in the section about the

interrupt monitor. The symbolic contents of words 7 and 8 are

illustrated below:

a3
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Word Instructions | Comments

7 BKON /BKOF /BLINK (ON/OFF)

8 (scl,sc2,sc4,sc8) /SCALE (1,2,4,8)
+(INT + (0-7)) JINTENSITY (0.-7)
+ (LPON, LPOF) /LIGHT PEN (ON/OFF)

Words 9 and 10 contain a push jump, PJMP, to the display
file of the entity. 1In the cases of branches and devices, the
PJMP transfers control to a secondary block contaiﬁing the
appropriate display subroutines. For nodes and light buttons,
control is transferred to an appropriate "node" display subroutine

stored permanently in the graphics monitor; for example:

Word Instructions Comments
9 PIMP . - . /CALL DISPLAY SUBROUTINE
10 *DISPLAY FILE" /TO DRAW THE ENTITY

Words 11 and 12 contain an optional "PJMP" to the display
file for a label stored in a secondary block. Finally, words
13 and 14 contain a "JUMP" to the next primary block entity
point; for example:

Word Instructions Comments
11 g\ or ] POMP /NOP, or CALL DISPLAY
12 g “LABEL" /FILE WITH TEXT LABECL
13 JUMP /TRANSFER CONTROL

14 “NEXT BLOCK" + 3 /T0 NEXT BLOCK ENTITY
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Thus we have a 14 word primary block. Figure 6 illustrates a

complete primary block.

1 NAME + TYPE
2 POINTER #1
Block Entry 3 POINTER #2
Point > EDS POINT
5 Y
6 X+4000
7 BLINK
8 PARAMETERS
9 PIMP
10 "DISPLAY FILE"
11 0 PIMP
12 o[ °) “LaBEL"
13 JUMP
14 NEXT BLOCK + 3

W—J\'—v“"’

Coordinates

Call Display Subroutine

Blink and Parameters.

Optional Label

o~
I

Figure 7

A Complete Primary Block

Draw Next

Entity

The display files transferred to the primary block differ

with entity type as described below.

85
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Nodes and Light Buttons

Each node and light button has associated with it one of
the shapes illustrated below, numbered 0 through 7. The display
files for the eight node shapes are stored'permanently in the

graphics system.

Shape < NULL > + o A ¢ o
NO. 0 1 2 3 4 5 6 7

The transfer of control to the node display file from the primary’

block is diagramed as fcllows. Upon completion of the display

file, control is transferred back to the primary'block.

Node
or N
Button
EDS VEC Node Shape 1
P POP
1l
P
EDS POINT EDS VEC Node Shape 2
Y POP
X+4000
BLINK EDS VEC Node Shape 3
PARAMS POP
a - (--4_
PJIMP v
1
NODE SHAPE (3) SR SRR EDS VEC Node Shape 4
g PIMP POP
» or -
] LABEL .
JUMP .
NEXT BLOCK + 3
Primary Block System Display Files
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Branches )

Since each branch display file depends on the position of.
its.nodes, a ;eparate secondary bleck is created for each branch.
The branch components are computed (by the graphics monitor) as
the displacement between the "from node"” and the "to node". The
beam begins painting the CRT screen at (X,Y) and finishes at
(X+AX,Y+AY). When an optional arrow is displaced at the midpoint
of the branch, a return vector half the length and in the opposite
dircction of the branch vector is drawn invisibly. The branch
arrow direction is computed (by the graphics monitor) and the
result storad in word 7 of the secondary block. When an arrow is
desired, word 6 contains a JUMP instruction: hence, display control
is transferred to the appropriate arrow display subroutines.
Otherwise, display control returns directly to the primary bilock

(at word 11). Por exampie:

Branch N EDS VEC
P, A
P, POP
EDS POINT
Y EDS VEC
X+4000 v
BLINK POP
PARAMS EDS VEC -
PJNMP 4 AY+4000 EDS VEC
BRANCH(N) VECTOR ax >
0 PIMP - - - -aY/2 t e POP
o | ) “LApEL" s —ax/2+4000 | |
Jump =-- 1 POP OF JUMP || \'r EDS VEC
NEXT BLOCK + 3 : ARROW (N) : <
LT € --- -~ j poP ?
Primary Block Secondary Block System {

nrDpisplay File
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Dévices

. A device.display file (DDF) is of arbitrary size, depending
upon the number of vectors required to draw the device shape.
Thus the first word of the DDF contains the number of sequential
seven word blocks needed to house the DDF. £aven word blocks
were chosen to provide efficient storage. Storage allocation

methods are discussed later in more detail.

Other words of information stcred in each device display
file are:
a) Number of terminal nodes.
b) Relative positions of terminal nodes.
c) Name of device display file shape.
For example, a capacitor display file has 2 terminal nodes
(see Figure 4.3), 2 sets of offset coordinates for terminal
nodes frém device coordinates; and a name.of “CAPACITOR". The
second word in the DDF indicates the display file length, enabling
access to aforementioned information stored in the device display

file. For example:




Davice N . # ALLOC. BLOCKS
Pointer 1 DISPLAY FILE SIZE
Pointcr 2 > EDS VEC
EDS POINT A

Y
| Device Display
X File
A
BLINK
PARAMETERS Y
PJMP r'é* POP
DEVICE (N) DDF > M # OF TERMINAL NODES
S
0 PJOMP AY
} or r : 1l
0 1I.ABEL -~ aX,
JUMP AY2
NEXT BLOCK + 3 A}'{Z
Primary Block ) AYﬁ
AxN
Note: 1) AY,AX are offsets
. S N
from device HA A
coordinates for PE ME
terminal nodes.

2) Device shape name -
is a trim ASCII text
string terminated by
a @@ in a character

: DDF :
Secondary Block

byte. For example,
N|aA '
s | 8
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Since all information particular to eacn device is stored
in the primary blocks, all devices of the same shape share the

same DDF secondary blouck.

Labels

Labels are optional display files with text positioned
relative to the entity. The label block also contains blink
and parameters. The text block is of arbitrary length depending

cn the length of the text string. For example:

Name Number ' # OF ALLOC. BLOCKS
Pointer #1 —_"__| EDS VEC or PO?
Pointer #2 r AY
EDS POINT : AX+4000

Y | BLINK
X+4000 L ,§: ' PARAMETERS
BLINK ;3. STOP __TEXT
PARAMETERS t:: L A
PIMP | B E
DISPLAY FILE . v L T
PIMP | E X
LABEL : T 2g
JuMP fT C<¢ T =-<7] pop
NEXT BLOCK '

| o0
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It should be noted that word #? of the text block is
either a "EDS'VEC" or a "POP". The purpose of this is to
allow the option to "hide" the entity's label, by enabling the
display to skip the text label when desired. The AY and &X '
are vector components of an "offset vector" from the position left
by the display file of the entity. For example, the label for a ‘ 1
branch is positioned relative to the midpoint of the branch since

the beam is left there after the branch is drawn. The "stop ]

text" instruction is a call to a simulated character generator

which takes a six bit character and computes the address of the
appropriate display subroutine to draw the character. A null.
character, ff#, terminates the text string and returns control
back to thé display file.

We now examine the display file for a complete flow chart of -
; an electronic circuit with a capacitor ana diode in parallel.

(See Figure 7.) The diode has a label of "D1". The devices are
connected by branches to terminal nodes on the devices. The
display file is called by a display program ca}led "DISPLAY DRIVER"

which limits the display rate to 30 cycles per second. The last

entity points to the "link block" which contains a "POP" instruc-

tion to return control back to the display driver. . j

Ring Pointers

Words 2 and 3 of eacl- primary block contain topological

e A i

information that describes connectivity in the flow chart. A

ring structurc has been designed for efficient definition of the

flow shect topology. The pointers, 1 and 2, have different

- e o T

: meanings for each cntity, as follows:
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Buttons - Since light buttons are not part of the

Devices

Nodes

flow chart, the pointers are not used.

Pointer #l is used to point to a chain of
terminal nodes. The chain terminates by
pointing back to the device; for example:

Terminal #1 Terminal #2

DEVICE 5 NODE 10 NODE 4

P—

NOT USED

It should be noted that the order in which nodes
are placed in the list corresponds to the
terminal number. Vhen node 10 is removed

from the display file, node 4 will become
terminal #1, and that node can be terminal

of only one device. Note that pointer #2 is

not used. .

Pointer #l, as we have seen, may be part of the
device terminal node chain. Pointer #2 points
to a branch connected to the node, which in
turn points to another branch connected to the
node. The last branch terminates the ring by
pointing to the node. The entry of the pointer
in the branch block indicates whether the node
is the "from" or "to" rode. For example:

NODE 3

BRANCH 3 BRANCH 1 BRANCH 7

Empty Chain or

Devicc Node Ch:\_ig_xl_-'}‘1

NODE BRANCIIES

-

paeed

From Node From Node |-

Y

From Node

To Node To Node

| To Node

a3

U R e e e M o e

PrY
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Branches ~ Both pointers #1 and #2 must be non-empty
to completely define a branch. Pointer #1
is part of a node-branch chain that points
indirectly to the "from'necde. Likewise,
pointer #2 points to the "to" node. See
the figure on page 22 for example chain rings.

Figure 8 illustrates the ring structure for a circuit
containing a device to be deleted. The graphics monitor
examines the rings to delete both the nodes and all branches
on those nodes. First, the chain frem the device to the first
terminal node is examined. Next, all branches connected to that
node are deleted, as well as the node itself. All other nodes
for the device are treated as above. Finally tne device is deleted.
See Figure 9 for a more complex example illustrating the ring-chain

structure.

Storage Allocation

Because this is an interactive graphics system, the display
file monitor uses a dynamic storage allocator to allocate 7 word
blocks of memery set aside, for the display file. A 7 word block
was chosen for efficient storage of primary and branch blocks
which require 14 and 7 word blocks, respectively. These blocks are
linked together to form a list called the "free block list".

See Figure 10. This is a direccted list in which the first word
of the allocation block contains a pointer to the next free block.
The list is terminated with the last block pointing to an "end
block" with a "@" as the next block address. When additional
storage is requircd, for example, to decfine new entities, the
allocator is called upon to find “N" consccutive free blocks,

remove them from the list, and return with the address of the




DEVICE (N) NODE 1 (I) NODE 2 (J)

L

ok -
. -

BRANCH (K) BRANCH (L) _
From Node l From Node
To Node To Node
N2 | ' m Bx
I | B
DN { L
Figqure 8

Inter-Block File Structure

first block. When storage is no longer required, for example,
when deleting an entity from the flowchart, the blocks that are
released and madc available for future use. Each block is inserted

into the list physically as close to other available blocks as

possible.
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NODE (2)

Branch Chain| _

BRANCH (2)

| From Node

To Node —

———

DEVICE (1) | NODE (1)
Node Chain >
Branch Chain,~—
+ BRANCH (1)
From Node
To Node -
DEVICE (2) 4+ NODE (3)
Node Chain ‘
Branch Chain
Figure 9
Display

NQDE (4)

4

Branch Chaiq

File Structure Ring Pointers
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1, INTRODUCTION

This report was undertaken in order to examine the use being made
of cooputer graphics facilities in the Moore School, in particular the
use of the DEC 338. The aim was to discover what aspects of the existing
facilities were likely to limit future research using graphics equipment.
' The main body of the report consists of a series of short sections on
nrious projects which are currently using the DEC 338. These sections are
included to give a general picture of how the DEC 338 is being used. They,

therefore, concentrate on the computer graphics aspects of the projects.

Theeze are followed by short sections on communications and program assembly
i wvhich are of gencral importance to all users of the 338.

The concluding section contains a number of conclusions and suggestions
for improvement of the facilities available. These can be sumparized =cs
follows:

1. Although many users are finding that the slow display speed

and small memory size of the 338 are disadvantages of the system,
these limitations are not severe enough to justify the cost of
) improving thenm.

2. The uncertain future of the TOMO computer makes it necessary to

produce as soon as possidle an assembler for DEC 338 prograss

that can run on the Spectra TO.

l:hl

The usc of the DEC 338 is severely restricted by the lack of a
general purpocse operating system. Systeas that have so far been
developed have oeen devigned for particular applications and are
not generally useful to nev users.

N
"

,
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4, Tt is suggested that a g;anera.l :purpose system be developed
tkat could serve a large number of users and so reduce the -
time taken to de\}elop new applications.

The concluding section contains an outline of one possible system

vhose primary aim would be to provide a means of using the DEC 338 in

conjunction with FORTRAN rrograms run in the Spectra TO.
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2, PROJECT CAID

§ The CAID project is one designed to investigate a number of problems
: associated with the training of helicopter pilots. The project developed
around a simuiator vhich was designed to investigate problems of formation
flying of helicopters. This simulator has been extensively modified.
Whereas the original simulator could simulate the flight of up to 25
helicopters, the one used by CAID can only simulate the flight of one. A
number of features have been added so that the simulator can azcept control
inputf from a student pilot and provide him with resultant changes in
instrument readings in real time. _

"The simulator itself is a FORTRAN program that runs in the 7040, The

"~ student pilot can operate a number of realistic helicopter‘controls. These

w—

are monitored via an A/D multiplexer system linked to the 338 which cen
interact with the 7040 via the dataphone PDP8-7040 data channel lirnk.

The main functions of the 338 at present are:

» . 1. To provide the student pilot with a visual monitor of the

3; helicopter performence by displaying a number of instruments
fér ﬁim fo read.

; 2. To allow the experimenter using the CAID system to instruct the

pilot to fly a course by displaying the control movements

neressary to maintain the helicopter on the course.
-3, To input to the simlator the movements of the controls made by

the pilot.

L: The display seen by the student pilot consists of a nurber of fixed

' scales representing instruments together with_movable pointers and symbols

vwhich represent instrument readings and control positions. By operating

toggle switches the student pilot can, if he desires, suppress sections of

the display.
-3- 102
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The program in the 338 is in principle quite simple. A display
file has been created that represents all of fhe eiements of the display.
Changes of instruvent readings received frow the simulator of movements
of the controls initiate calls to subroutines which produce a rotation
or translation of the pointers or symbols by changing a few words in the
display file. These routines are the same as tﬁe ones used in the DRAW
demonstration program.

The most serious problems of the system is maintaining a high rate of
data transfer to and from the similator and computing the airframe eqyat;ons

faét enough so that the system can operate in real.time, The state of the

helicopter in the simulator is rer 2sented by some 306 parameters; real
time monitoring of any significant fraction of these could easily swamp
the 2400 Baud éataphone link, In fact, information concerning only 20 of
the parameters is needed to update the display. The information is trans-
mitted to the 338 in binary form and the aﬁouht transmitted is kept within
manageable limits by specifying for any particular experimeﬁt the relative
imporfance of the parameters. The rate at which each parameter is trans-
mitted can be specified in the range from iO times a second to once every
10 seconds. The simulator is then made to transmit the data in a pre-
determined sequence to achieve the required rates. The 338 routine that
receives the data is written‘ip a macro form so that it can be readily

changed to accept a different data sequence required for & new experiment.

}—




3. PROJECT CIDS

. The CIDS project is an information retrieval lsystem used
exclusively for chemical compounds. The problem is, given the
structure of part of a chemical compound, to locate in a data bank
8ll compounds that contain the substructure, A number of well
defined methods of describing a chemical compound have been
developed. One of the most precise and the one that is used in the
CIDS project is that in which the structure is defined by giving the
nature of the individual atoms and the bonds that link them as a
two 'dimensiona.l netvork.

Such a representation has obvious disadvantages for computer
processing unless a display device can be used for input and output.

The DEC 338 is therefore used for input and output in the CIDS
project. The lightpen can be used to draw a structure on the display;
suitably coded, the structure can then be included in an information
request. |

ifa request f&r information is not very specific, many
compounds may be located. In this case, the 338 can be used to
quickly examine the res_ults of the request, allowing the operator
to modify his request and so condense the response thus avoiding
excessive hard copy output,

The structure df & compound is input as follows. A menu
of the chemical symbols of the most common elements (extendable to
include all elements) is displayed on the screen. Pointing at an
element with the lightpen identifies it as the one to be added to
the structure. -The structure is actually drawn on a checkerboard

array of squa.re's. Each square can contain one chemical symbol or

.5 . | - 104
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can be crossed by lines representing bonds. This method simplifies
the display geﬁeration, particularly when it is necessary to define
closed rings. |

The required chemical symbol is added to the structure by
pointing at a square with the lightpen and setting a pushbutton.
According to which pushbutton is us‘ed, lines representing bonds
can be produced, liking the symbol to the previous one added to the

display. Different types of bonds are represented by various
“intgnsities and multiplicities of the 1;nés.

The system includes provisions for x;todiryin'g, erasing, magnifying
and storing on disc any structure drawn on the display. The operation
of the pushouttons and lightpen create a display file and two tables
in the 338 which describe the structure. The first contains the x,y
display coordinates and element type of each atom in the structure.
The second contains the position and nature of each of the bonds.

The atom and bond table can be saved on disc. The display file
is not saved but can be regenerated from the atom and bond table
vhen needed;

After the structure has been completed, it can be referenced
in.én information request input via the teletype. The request can
consist of several lines of text of a specific form. It can be
edited and also saved on disc, |

In order to transmit the structure to the 7040, it is represented
a8 a linear string of characters which contains all the information
in the atom and bond tablés except for the geometrical information

used to generate the display.

‘.)
2
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A response to an information request consists of a series of

chemical compounds, each of which is represented in a Dura Mach

code, This code is one which can be used to operate a special type-
writer vhich can type the two-dimensional representat. .ns of the
compounds. The 338 system is capable of producing a display filg
from the Dura code so that the operator can quickly examine the
result of his request by displaying in sequence the compounds found.
He may then edit his initial request and resubmit it. He cannot,
how?ver, use directly one of the compounds retrieved in a further
request as there is no provision for converting from the Dura code
to the atom.a.nd bond tables from whica the input string is generated.
Hard copy output can be produced by punching a paper tape in the
Dura code which will operate a chemical typewriter.

 he 338 display system as it has been written by Andre Gagnoud
is complete but has a number of uﬁxitations and is being extensively
modified. The modifications will provide the user with greater facilities
for manipulating the displayed compounds and remove some existing bugs
of the system. The formats usad to “ra . compound descriptions to and

from the 338 will be mede the same.

r
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L. ANIMATOR MOVIE SYSTEM

Be.fore.describing this system, it »is worthwhile traciné its
development., The system was developed as one which could be used to
make movies using the SCORS package without the need to do a great
deal of laborious FORTRAN programming.

The nucleus of the system is a B.N.F., transmission language which
enables someone using the 338 to specify the complete parameters of a
wmovie sequence in a form that can be transmitted to an interpreter
program in the 360. The interpreter program produces a sequence of
instructions for the SCORS packagye.

The language permits the user to specify a movie sequence in
terms of pictures and motions and was defined in a thesis written
by Patti Talbot.

The realization of the system, namely a 338 program which trans-
lates a sequence of input operations into the transmission language has
been largely the responsibility of Dick Coulter. The program was
developed in two stages which we will refer to as systems 1 and 2.

System 1 was the first 338 program written by Patti Talbot and Dick Coulter

"and was introduced as a tust of the feasibility of the system. With the

" expericnced gained froa system ), the second system, a more complete and

better designed program, was started but has yet to be finished.
The interpreter program which trenslates the transmitted string of
characters into inst-uctions for the SCORS package was written by

Rosa Hwang for the 360/65._ Modifications necessary to make this program

run on the Spectra 70 have been started but not as yet compleie..

i e ———




System 1
The first system was one that did not make use of the disc and

s8o was somewhat restricted in terms pf‘ what it could do. A movie
segment could Le defined in terms of pictw-es and two types of motion,
hold and translate. A total cf 17 pictures or subpictures could be
defined, each one being described by draving on the display using the
lightpen or by typing coordinate information on the teletype. Either
method of input generates a 338 display file and a string of characters
in the transmission language. Each picture or subpicture zould be
defined in terms of vectors or names of other subpictures which had been
previously defined. The limitation on the number of pictures that could
be defined was governed by the DECtape file structure adopted. The
complexity of any picture definition wss limited by the core size of
the 338 to about 300 vectors. Available space in the 338 was rapidly
used up because of the need to have in core a working display file,
display files for each subpicture being referenced as well as the

file containing the transmission language string. Erasing of elements
of defined subpictures resulted in removal of intensify flags in the
display files and additions ﬁo the transmission strings thus consuming
more space rather than regaining it.

When definition of the movie sequence was complcte, the DEC tape
vas ze&ched for all files contaihing the generated transmissicn code
for all picture and motion elements referenced. These were then
assembled into one file vhich was transmitted to the 360/65 in a U out
of 8 code, this method being used as the 338 had to simulate a 360/20
terminal. Any editing necessitated by erasing or rodifying of any of

the subpictures was performed in the 360/65.
100y
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System 2

The specification of the second system differes from that of the

first in the following respects.

1, Up to 126 pictures and subpictures can be defined, the
increase being achieved by a change in the file structure.
More complex motions can be specified including rotations
and parallel and sequential motions.

The system is nov readily expandsble, modular and disc
oriented. The sections of the systenm, nuie]y picture,
motion, scene, movie segment, production and transmission
programs, are normally resident on disc and are called into
core as necded.

L. There are provisions included in the system for late:
addition of a text facility snd also for real time
comounication with the Spectra 70.

At the tine of writing, however, only the motion, scene and
produétion sections of the system are complete. Pictures and :ubpicture't
can be defined via the 0ld system in the following way. The old system, kept
on disc, is called into core, wiping out the monitor of system 2. Picture
files can then be created, tho system 2 monitor restored and the created
files modified to correspond in format to those created by the second
systen.

When cozpleted, the second system will dbe capable of transaitting more
couplex rovie sequences than the first tc either the 360/75 or Spectra 70,
There will, hovever, be nc facility for generating the novie sequence
directly on the 338. This is because the system never actually generates _

e serins of display files that represent the individual francs of the movie,

Ty




orly the display files that represent pictures or cbjects depicted in
the movie.

A thirgl version of the system vhich will permit playback of the
movie veguents on the 338 hus recently been started by Phil Rothenstein.

11y




S. DAL

DALI is s graphics language being dzveloped by Tom Johnson.
Although primarily intended for teaching graphics techniques,
it may have other applications, for example in movie making as it is
easy to learn and use and has powerful image manipulation capadbilities.

- The language consists of a mmber of statements which can bc
processed by SNOBOL to gencrate FORTRAN IV coding. Executable DALI
statements can be freely mixed with PORTRAN statements, adding to
YGB.RAN': computational pover extensive imige manipulation capabilities.

The statements of the DALI language can be divided into two
classcs, ¢:clarastion and. executable stateosents. The foru.. -u-e used
to define PRIMITIVES, OEJECTS and TRAKSFORMMS, PRIMITIVES are
S.vectorr consisting of 4 homogeneous coonlinates and a primitive
type, nué]y point, vector or invisible point. A OBJECT can be
dimensioned to have ;. predetermined nuber of components, each of
vhich can be either a PRIMITIVE or another OBJECT. A TRANSFORM is
a hx 4 patrix vhich can operate on PRDMITIVES or OBJECTS.

The declaration statexents separate a large dlock of common
.store into b sections. The first is an area reserved for the
declared trznsformations. 7This is followed by a list of addresses
specifying subelements of the declared objects, pointers indicating
the start of each object in the above lizt, then the declared
primitives. The disadvenlare of this layout is that all odjects and
transforms must be declared at the start of the prograa. However,

it is sicpler to use than a more complex geueral 1list structure.
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The executable DALI stateme; . are used to define and change
individual elements of .both objects and primitives. They can also
be'med to det‘i.ne complex transformations in terms of the elementary
translation, rotation and scaling trancformations defined as part of
the system. The use throughout of homogeneous coordinates greatly
crimplifies zanipulation of the cbjects and prim.ives using the
transformations developed.

The actual production of pictures is done in two stages.
Firstly statements ISE transform 1, transform 2 ... ON object 1,
pri;itive 2 ... are used. These cause multiplication of the
referenced transforms to produce onc that is stored on a pushdown,
also the objects and primitives are put on an associated pushdown
list. No modification of the referenced transforms, objects or
primitives takes place. '

A statement DISPLAY object 1, object 2, ... etc. initiates a scan
of all referenced objects to determine the primitives usei; .these
are fhen operated on by the transforms linked to them by the
pushdowns set up in previous USE statements. The picture can then
be output on magnetic tape as a series of pramitives. A perspective
transform is also defined as part of the DALI system. This is, however,
used later, |

One overall transformation dbe it a perspective or simple
projection is placed on the output tape vith the primitives of the
assendly of objects that represent the final picture.

The actual picture is generated by reading in the file from
tape, exexuting the transform and producing the output. It is

planned to produce output on the line printer, calcomp plotter or ia

112
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the form of a display file that can be transmitted to the 338 and
written on DEC tape. Initially this will be done using the
Park - Coulter display file transmission systenm, c‘hanging back the
display files on tupe using the Growing Machine playback program.
Eventually, hovever, it is planned to assemble each picture in
stages for debugging purposes, also to give a user at the 338
consnle the ability to modiflr tlie final transformation and retransmit
the picture s¢ that the objects created can be viey:ed from any angle.
The present status of thg system is that is is written but not

completely debugged.

113
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6. THE GROWING MACHINE MOVIE SYSTEM

A complete description of the Growing Machine as implemented in
the 338 by Noel Bernstein is out of place here. The basic 338 system
has been exiended by Noel Bernstein and Alan Hayes to produce mcvies
and will be described as it is interesting to compare it with the
Animator movies system.

The Growing Machine Movie system has been produced by defining a
number of primitives within the framework of the Growing Machine.
These primitives can be used @o define figures and specify a number of
transformations that can be applied to them. The transformation can be
translation, rotation or camera zoom. The figures are defined in terms
of vectors, either visible or invisible. Three methods of defining
figures can be distinguished. Firstly, a figure can be defined as a
string of vector primitives input via the teletype. Secondly, it can
be defined in terms of an algebraic expression expressed as a sequence
of the more géneral computational primitives available in the Growing
Machine. ™hridly, a figure can be drawn directly on the 338 display
using the 1ightpen. For this, the DRAW subroutine is used. This was
developed by Jeff Ball for testing routines used by the CAID display
program.

Execution of a string to produce a movie sequence creates a
series of display files which can be displayed during execution and
also saved on DECtape for later playback. The latier results in a
more acceptable movie sequ:nce because of the computation time taken

during execution.
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The Growing Machine and Animator movie system can be compared. The
first has a number of advantages. Figures can be defined aléébraically
vhere appropriate. Movies generated can be seen essentially when they
are produced, However, for someone not too familiar with the Growing
Machine, a movie would be relatively difficult to produce. It would
also be restricted in complexity as a result of the small size of the
338 memory and be not of very high quality becauvse of the limitations of
the 338 display resultin; from the digital rather than analog vector
gene?ation.

The Animator system could be used to generate some complex movie
sequences, would be easier to use and the movies would be of higher
quality as a result of using the SC 4020. The absence of an immediate
playback facility would be a disadvantage during debugging.

The playback facility of the Growing Machine has proved to be a
useful facility. Combined with thé program written by Bill Park and
Dick Coulter for transmitting 333 display files from the Spectra 70 to
the 338 DECtape, it is used by

1. The MOVIES project for playback of sequences generated on the

Spectra TO.
;.2. The Chemical Process Design project for graphical output of
siuvlator results.

3; Bill Park for output of the walking platform simulator,

4, For output of pictures generated by the DALI language.

The playback facility is just a program thai will display a series
of display files which are written on DECtape. The rate at which the
display file sequence is shown ¢an be controlled using the pushbuttons.

A feature which has been included to increase the maximum playback speed
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is that it is not necessary for a complete display file to be on the

- input tape if it is partly identical to the previous file on the tape.

To be precise, if the second file can be produced from the first by
overwriting part of it, only the changed part need to be on the input

tape.
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T. INTERACTIVE DESIGN OF CHEMICAL PROCESS SYSTEMS

This iystem is in the early stages of development and can at
present be described in two sections., The first is a system
intended toAprovide a graphic input to a chemical process simulator.

Most of the system has been written by Jeff Ball, an undergraduate

_student who has recently left the project. Jeff Kulick has con-

tributed the disc monitor and a number of other I/0 facilities used
by the systenm,

The second part of the system, vhich is beiné developed by
)ﬁk:a Zaborowski, consists of .a. neans of displaying _gra.phs on the 338
which represent the results of simulator runs. This is at a much

earlier stage of development.

Input System

The status of the first part of the system is that it exists
in stand alone form. That is to say, it can be used to draw chemical
plents in diagrammatic form on the 338 display and to input parameters:
that define the properties of the plant's components., However. no
attempt has been made to interface it to a chemical process simulator
of. pecessity resident in a larger computer,

’ A chemical plant that can be defined by the system can consist
of up to 32 components or units., There are 8 possible unit types,
i.e., distillation colum, condensor, heat exchanger, etc.

A chemical plant can be defined as follows. The lightpen and
pushbuttons are used to j.ndicate the position on the screen where a

wnit should be placed, The lightpen can then be used to select a unit

type from & menu displayed. When the unit type has been established,
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it is diéplayed in position and a request for information defining
its parameters is also displayed. This information is typed on the
teletype. The units are interconnected by using the lightpen and
pushbuttons to define the input and output points on the units to be
connected and by drawing the path of the interconnection »r strean.
There are built in facilities for erasing and modifying any part of
the displayed plant and for displaying it et different magnifications.
It is difficult to wnderstand the underlying structure of the
system due to the fact that Jeff Ball is no longer.here and there is
ess;ntially no documentation describing tr- system.
Briefly the structure is as follows., There is a basic monitor
program vwhich is residenf in core and other sections are kept on
disc and calleé in as desired according o what the user is doing.
When a particular unit is established on the screen, an entry
is created in a unit storage map résident in the lower segment of the
core, This entry contains the name of the unit, the number of inputs
and outputs and a flag indicating whether or not the display file
for the particular wnit type is in core or cn disc. A 16 word entry
is also creatid in a large display storage map (DSM) which is maintained
in the upper segment of core. This contains a number of identification
parameters, x,y coordinates of the uanit position on the screen and
8 pushjump to the display routine that represents the unit type.
This display routine is normally kept on disc but is placed as 1 or
more 16 block entries in the DSM the first time each unit type is
referenced. Whén information specifying the parareters of the unit

is typed in, it is stored on disc for later reference. When an
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interconnection or stream is defined, two entries are created in the

DSM. The first is the parameters that define the input and output

connections together with other identifiers. The second, entered

by a pushjump from the first, is the display file generated by drawing

the path of the interconnection. The actual display of the plent is
__generated from this DSM by scanning through all the 16 word entries

ignoring the parametric information but executing all the display

routines for the units and streams in the order they were created.

In order to interface the system to a simulator, it would be
necé;sary to write a program which extracts the topology of the chemical
plant from the DSM and retrieves from disc the description of each

of the units.

Output System

As stated earlier, the output section of the chemical process
design project is at a much earlier stage of develbpment. At
present, a dynamic simuiator is being used to generate information
concerning the time dependence of certain parameters in a chemical
plant, for example, the variation of femperature in a specific u&it.

o Such information is generated in an arrey containing values of
temﬁerature at constant time intervals. The temperature and time are
connected to a series of x and y coordinates of a graph, which,
appropriately scaled and labeled, can be used to generate a display

file., The display file representing tine graph is generated in the

Spectra 70 and transmitted to the 338 using the programs written by
Bill Park and Dick Coulter. The graph is at present saved on DEC

tape and played back for display using the Bernstein playtack program.
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8. MOVIES
_ The mvm:g system which was used to produce the first film in

the "Electromagnetic Fields and Waves" series was fully described
ina thesislwritten last year by Don Deily. The system has changed
1ittle since th2n so that it is probably not appropriate to discuss it
in great detail. |

The system is based on the SCORS package, which is a series of
routines made avalilable by the Stromberg Carlson Users Society.
The?e routines permit a FORTRAN programmer to produce images on film
using a SC 4020 computer recorder. The SC 4020 comprises a precision
cathode ray tube whosq face can be photographed, an instruction
decoder and-a T track tape transport system used to input Instructions.
The cathode ray tube can be used to display printable characters
(not usefﬁl for MOVIES) and vectors. A single instruction can
generate a vector having ccmponents of up to 63 raster counts in the
x and y directicns, there being 102k x 1024 addressable points on the
tube face.

The SCORS package is used to generate the input tape containing
4020 instructions from a sequence of subroutine calls specified by
the progremmer. Its most useful functions, as far as the MOVIES
project is concerned, are those that provide 4020 camera contrcls,
scaling of the output picture frames, and segmenting of long vectors
into sections having components of less than 64 counts that the 4G20
hardware can plot.

The task of the programmer is to translate a movie sequence
defined in terms of objects and motions into a serics of voctors and

film advance instructions. There are at present two ways of doing
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this. The first makes use of the Animator Movie system described
earlier to define a movie sequence in the transmission language which
can be interpreted to produce a sequence o calls to the SCORS routines.
The second method is to define the movie sequence in a FORTRAN program.
Using the latter, more elaborate things can be done; in fact, this ia
the only way that movie sequences involving general motions of three
dimension can be produced, A series of routines exist which can be used
to depict the motion of up to 10 objects as geen by a virtual camera.
The motions of both ebjects ani camera can be compietely general trans-
lations and rotations. Provisions have been made for adding fairings to
the motions vhich simulate the effects of inertia. Also hidden edges

of certain simple objects can be automatically erased. Perhaps the
major disadvan%age of the movies system as it exists at present is the
.1ack of a language for defining three dimensional objeéts which therefore
have to be defined on a line-by-line basis.

The ac’ual production of a movie is a slovw and cecstly érocess. I@
is therefore essential to have efficient debugging facilities for checking
a movie sequence before film is exposed, This can be done for individual
--frames by providing alternztive output on a line printer or Calcomp
plétter. A more complete check can be made by producing a sequence of
338 display files that can be trensmitted to the 338 and played back as
a movie sequence using the Bernstein playback system.

The first rmovie was produced using the 360/65. The system is not
yet completely functional on the Spectra 70. The program developed by
Rosa Hwang that accepts oﬁtput from the Animator system war written in
360 machine language and is not yet working on the T0. The Spectra T0

produces 9 track cutput tape, so that there are somc tape conversion
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problems. The tape problem would not exist if an SC U060 were used to
produce the {ilm as this accepts 9 track tape. It is also a more
sophisticated device, having greater resolution, full screen vector
generation and a programmable processor. In principle, at least,

many of the functions at present in the SCORS package might be per-
formed in the 4060. This could produce a significant saving in main

computer time but has not yet been fully investigated.




9. NAVAL DUZL SYSTEM

The object of the Naval Duel system is to produce a simulator
vhich can be used to study the interaction cf opposing forces at
sea. To take an exarple, the opposing forces might consist of a
destroyer and a gubmarire, the former being assigned the task of
destroying the submarine, the second being required to attack a
convoy the destroyer is r.-otecting. The simulator is an overall
model of the system vhich runs on the 7040 using the MULTILIST
system, The system can be used by two people each' representing the
coln;nander of one of the vesseis. They are able to interact with the
simulator by defining their own course of action, requesting sonar
readings of their opponent's position, and by launching weapons
(e.g., torpedoes) to destroy their opponent. The sonar readings, which
-are made realistic by sirmlating occasional false readings, can be
used to predict the course of the opponent.

The 338 can be used as a terminal by one of the users of the
system. He can defire his course by drawing it on the screén using
the lightpen and receive predictions of his opponent's course in
display fora.

The display program has been- written by Dave -Kristol. The
interesting feature of the program is that a basic nunber of routines
have beun developed which are in principle of use for a large number
of display applications. These consist of routines for creating and
deleting display files, transaitting to and from the 7040, lightpen,
pustbution and light button operctions, disc I/0 as well as rany
others. These basic routines are always in core and can be called by
the more specific part of the progras which is segrented and mainly on
disc.

' 19
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10. ASSEMBLY OF PROGRAMS FOR THE 338

At present, essentially all programs developed for the 338 are
asscabpled using a PDPMAP assembler written some time ago by Tom Johnson
and Mike Wolfberg. This assembler runs on the 7040 and was written as
an extension of the MAP assembler used for that machine.

It includes & number o1 features which are desirable as aids to
writing prograuws for the 338. For exarple, in a PDP-8 memory reference
instruction only 7 bits are availadble for genereting a direct address so
that ‘the memory has to be considered as divided into 2008 word pages.
Only locations on the seme page as ‘the instruction or on the first page
of a memory can be directly referenced. In general, a location not oL
the current page can only be referenced indirectly. The PDPMAP assembler
is able to generate automatically such an indirect address, thus con-
diderably simplifying the work of the prograrmer. It also has extensive
literal and macro facilities and generates cross reference listings and
diagnostics for debugging purposes.

Programs having been assembled are generally punched on the PDP-8
in D.R.L.; using the MULTILIST system, it is possible to transmit them
to the 338 for punching there but this is not generally done. There is
no siilple direct way of assexdling a program onto DECTAPE on the 338.

Some months ago, Dave Kristol started to write a similar assembler
to run on the Spectra 70 but did not ccmplete it for techaical reasons.
Recently Len Bosack obtajned an asserbler that runs on a 0. Thas is
being converted for the Spectra 70 but is not as sophisticated as PUPHAP
and existing prograzs would need extensive modification before they could
be assexbled using it. There does not appear to de xny rlans to producc an

assembler vhich could reproduce the PDi AP facilities on the Spectra T0.
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11. COMMUNICATIONS BETWEEN THE SPECTRA TO AND THE DEC 338
At pr-sent, it is only possible to use the dataphone link between
the two machines when the Spectra TO is operating under the TDOS system.
The communications,programs that are in the Spectra 70 have been written
by Bill Park. The facilities that are most widely used are as follows.
A user vho has, for example, a FOR"RAN program running in the

Spectra 70 c'n transmit a buffer to the 338 by executing a statement
CALL TELCOM (a,b)

vhere b is the name ol an INTEGER¥2 array and a is the number of words
to be transmitted. Each of the 16 bit words can contain 12 bits of
information Lo be transmitted (usually a 3°8 instructior or data word),
right justified end filled out with meros.

Each word is transmitted as follows. Thc 12 bits are split into
two 6 bit numbers between O znd 63. These are used as addresses which
define printable characters in an EBCbIC trans'ation table. Each 6 bit
pattern is thus represeﬁted by an EBCDIC character.

The multichannel communications program takes the string of EBCDIC
characters generated, translates them into USASC.T characters and places
them in another buffer. From here they are transferred to a synchronous
“"data buffer in the communications controller, transformed to ASCII with
odd parity and transmitted over the dataphone preceded by a start of
text (STX) character and followed by an end of text (ETX) character.

The data is generally received in the 338 via the program interrupt.
By setting bit O of the eight bits to 1, each character can be converted
to an ASR-~33 character compatiyle with that generated by the teletype.

Otherwise, an original 12 bit word can be produced by packing the lecast
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significant bits minus hos of two successive characters.

. This system has evolved as being the simplest method of transmitting
338 display files to the 338, given the way the TDOS system is set up.
At present, only a single character message can be transmitted to the
Spectra 70 from the 338. This must be of the form STX b ETX vhere b can
be either A, B, C, or D. A sipgnifies that the 338 is ready to receive
& message, B that a message has been received, C is A and B combined and
D is used to set a logical variable to TRUE in the user program. The
last message essentially acts as a sense switch. A call to CRXIT in
the user program will set a logical variable to TRUE if the message has
been transmitted since the previous call.

The above summarizes the communications facilities that are in
general use between the Spectra TO and the 338. Work is under way to
extend the facilities in‘two ways. Bill Park has been extending the
program used for communications under TDOS; Jeff Kulick is trying to
develop communications under the TSOS operating system. Under TDOS, a
system for transmitting messages in both directions has been developed
using special characters after the STX to indicate whether or no the
previous message has been successfully received and the type of information
conéained in the current message. Provision has been made for transmitting
8 bit bytes, 12 bit 338 words and ASCII characters in suitably economical
formats. Work on the communications, encoding and decoding routines is
essentially complete ard they will soon be available for all users,

As far as @ransmission under TSOS is concerned, an attempt is being
made to make the 338 simulate & Video Display terminal. This is still

in the very early stages of tesﬁing.
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12, CONCLUSIONS

In the Introduction, it was stated that the aim of the report was
to find out the limitations of the graphice facilities that are available
to students and to make some suggestions as to what might be done to
improve them,

In the hope that the suggestions will be both_practical and useful,
tvwo assumptions will be made. The first is that should a need for
additional hardvare be demonstrated then funds might be available to
purchase it. The amount of money that might be fouﬁd is assumed to be
significantxy less than the cost of replacing the DEC 338 to emphasize
the aim of making the best possitle use of what equipment is available.

The second assumption is that the TOLO will not be available after
May of next yea;. The TO4O is currently scheduled to stay until then,
éfter which time its availability cannot be guaranteed. In this case,
the Spectra 70/&6 will have to proQide essentially all central computing
facilities for graphics users.

With these assumptions in mind, khardware and software aspects of the

current facilities are now discussed.

Hardware
| The first conclusion that has been made is that although the DEC 338
has & number of disedvantages, they are not serious enough to represent
major limitations to research in the immediate future.
The disadvantages most frequently mentioned bty users were the slow
speed of the display and the limited core and disc memory of the PDP-8
The slow display speed limits the amount of information that'can be

displayed before flicker is produced. Short of replacing the 338, the

- 28 -
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only improvement that could be made would be to add a hardware character
generator thut would reduce the time taken to display characters by a
factor of the order of 2 to 5 depending on circumstances. The overall
improvement in the display speed would only be fractional as the average
user is not limited solely by the amount of text he is displaying. It
does not therefore appear that the addition of a hardware character
generator would produce e significant enough improvement to justify its
cost,

Problems associated with the small memory size of the DEC 338 are
obvi;usly very serious if it is used as a stand-alone machine. Although
users of the 338 have always in principle had access to the 7040 via a
dataphone link, its use as part of an interactive system has been limited
as it is not a time sharing machine. Anyone devising a system has there-
fbre been faced with the problem that most of the time the TOLO is not
available for on-line use. |

In this situation, more demands are made on the 338 as a processor
than if continuous access to a time sharing cormputer were possible. It
may therefore be that futuie systems will make less striﬁgent demands on
the 338 so that the need for extra memory will be reduced.

. Other suggested improvements to the hardware which the users suggested
included a data tablet and a real time clock. The need for either of these
appearé less universal than for memory or for a character generator,
However s clock would be useful for gen.rating regular interrupts and
coste much less than the other alternatives.

It is perhaps worth hoting that all of the major improvements
suggested would cost of the order of $6,000-$8,000. In the event of the

7040 leaving, it might be more worthwhile to purchase a KV graphics
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system for the PDP-8 in D.R.L. This would cost $8,000 and although its
use of a storage tube display makes it a less flexible system than the
338, its ability to displey flicker free much more text and vectors as

well as circles might make it a useful addition to the graphics

facilities at a relatively .;odest cost.

_S_c_;_iztware
The most urgent software prcblem is the lack of & good assembler

for DEC 338 programs other than the PDPMAL assembler on the 70O, The

continued availability of the 7040 cannot be guaranteed; also, it is
inconvenient to use because of thg slov turnaround time and the need to
punch paper tape.

It therefaore appears that the provision of a 338 assembler on the
Spectra 70 is an urgent necessity, particularly as it would be.some time

before it could be the sole means of assembling 338 programs. As PDPMAP

PN

is an extension of the TOLO MAP assembler, it may not be possible to
duplicate all of its features on the Spectra 7q: In this case, consider-
able time may be needed to convert existing 338 programs once the
assembler is available. T

. It would be useful if an assembler could be written to generate 338
programs i.. & page-to-Page relocateable form. This would make individual
routines useful to more users and reduce the time used by the assembler
as it would be no longer necessary to reassemble complete programs in
order to make changes.

Once an assembler is available on the Spectra TO, the preparation

of DEC 338 programs will be considerably easier. The Spectra 70 File
Editing system can be used for creating source programs and assembled

prograns could be transmitted to the 338 over the dataphene,
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An efficient assembler and editing syster;a on the Spectra 70 will
greatly speed up the development of new systems for the 338. A further
modest improyement might be made by ectablishing a program library con-
taining well documented programs and routines in source or assembled form.
The library might contain character generation, communications routines,

- ete.,, and would fécilitate much of the interchange of programming tech-
niques between users that already exists.

The interchange of techniques between users and the ease with which
new users can adapt existing systems to their cwn needs are not limited
by the lack of a progrem library, rather by the lack of a common operating

system for the DEC 338. This will be discussed in the next section.

A General Purpése System

Reasons for develovning a genera). system

All graphics systems that have been so far developed in the
Moore School have been designed to serve particular applications. As
& result, they are not in general useful to new users of thr~ graphics
facilities, who therefore develop new special purpose systems.

Small parts of existing systems can be adapted for new applications
. and the first part of this report has indicated a number of cases where
this has been done. Because the systems that have been developed are so
highiy specialized, the interchange of routines between users, even those
working on closcly related problems, is not really as extensive as it
might be. For example, the system developed for chemical plant design
performs much the same functions as one that might Ye developed for
electrical circuit design. Its adaptation to do this would represent

so much effort that it might be quicker to develop another system.
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A general purpose system would promote the interchange of techniques
betveen users and make it much easier to develop new applica*ions of

graphics techniques,

Nature of the :eneral purpvose system

It would be difficult to substantiate a statement that a single
systém coulﬁ be developed that ever&one would find useful. The system
described here represents one that would serve a large but finite range
of applications which appear well suited to the available hardware.

‘As the 338 is only a small computer, it is desirable tha: a general .
purpose system should provide a link between the DEC 338 and a program
running in the Spectra 70. The rnature of the interface between the two
machines would &ppear to be the most important factor to be taken into
account when deciding the type of application that a general purpose
system should serve.

It does not appear that applications that reqﬁire a rapid interchange
of messages betveen the 338 and the Spectra 79 cen be effectively '
implemented. The reasons for this are th . under TSOS several seconds
may elapse before the Spectra 70 can respond to a message from the 338,
and that the dataphone link is slow so that the maximum data trans.er
rate is 2400 baud. ' |

The general purpose system described here is therefore intended to
give a user the facilities necessary for creation of a display, its
transmission to the Spectra 70 for processing, and for output of
results rather than facilities for implementing real-time applications.

In order to make the system available to as many users as possidle,

that part of the system resident in thr 338 should be such chat a user
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should not have to do any 338 programming at all. Also the systenm
should provide an interface to FORTRAN programs as FORTRAN is the
most widely used language for engineering and scientific probiem

solving.

Data Structures

In order to provide a well defined set of functions for creating
displays and for tb:ir interpretation it is necessary to adopt specific
data structures for the system. The data structures should have a number
of pfoper**aa.

It should be possible to reference as a éingle ﬁnit the sequence of
vectors in a display that represent an object. The display should have
& hierarchical structure so that objects can be described in terﬁs of
their components. It shtould be possible tc associate with any object or
conponent & series of attributes that describe properties of the object
vhich are not directly associated with the display information. It is
&lso desiresble that the data stracture should contain topological
information such as is needed to describe a network in terms of nodes and
arcs. This feature is less imporvant than the others as, in principle,
topqlogical information can be derived from the geometry of the display.

It is proposed that the general purpose system be designed to
operate on three related data Qtructures, cach of which has the first
three properties listed above. Two of the data structures would be in
the Spectra 70 and wnld contain two and three dimensional data,
respectively. The data structures in the Spectra 7C would contain
display information in a form suitable for interpretation dy the user
program ~nd would need to dbe flexible enough to be incorporated in a

* larger data base associated with the user problem. The structure in the
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338 would contain display information as actual display instru-tions
that could be executed to produce the display.

In both cascs, the data would be accessed via control blocks or
groups. In order to illustrate how a deta structure could be composed,
a possidle implementation of the 338 data structure will be described
in more detail.

A display structure would be formed by linkin~ together a aeries of

control blocks or groups, Each group would have the following 16 word

tom?.t.

1  ENTER DATA STATE
2 Y (NONINTENSIFIED)
3 X (ESCAPE)
L  FJSHIWMP
S  ADDRESS OF DISPLAY DATA
6  SKIP r3 PUSHBUZTON
7  PUSHIUMP
8  ADDRESS OF TEXT STRING )
9  PWSHJUR
20  ADDRESS OF COMPONENT GROUP OR S'MGROUP

' 1 Jup EDS
12  ADDRESS OF NEXT GROUP Y
13  SFARE * ) 4
1b  SPARE POP
15 YLAGS

16 IDENTIFIER

[ VY
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Words 1-3 contain the parameters of an unistensifiad wster s
to move the 338 beam before starting to display the infecuatren
associated with this gtO.uP.

Words & and 5 contain a pushjump to a sequence of display iastrv.-
tions in vector or short vector format. These instructicus repressm oo
object associated with this group and form a closed figure so that hes
control is treturned to the group by a pop, the total beam displacenent
is zero. This form enables multiple uzers of the same instructioms to
form respective displays and aids display editing.

Words 7 and 8 contain a pushjump to a sequence of dieplsy instruc-
tions needed to display a text siring used to describe attributes
asscciated with the group. Again, control is returned via a pop.

Word 6 contains a skip option so that display of the text can be
suppressed,

Words 9 and 10 contain a push.j\mp to ‘a group vhich is in a lower
level of the data stracture such that if the tirst group represents an
object, the lower level group represents a cowponent of the odbject.

Words 11 to 14 contain a jump to another group et the same level
or & vector used to close the sequence of display instructions =t this
level before returning control to a higher leval group.

The last two words contain respectively flags indicating the
history of the group, i.e., whether it originated ir the Spectra 70 or
the 338, vhether or not it can be delet:d or wodified, etc.; and a
pointer to a table containing the naxe atsociated with this g.oup.

The vay in vhich groups are l’nked together to form a display

structurc is best illustrated by the example showr. in Figure 1.
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Groups 1, 2 and 3 would represent objects at the same level in the
structure. Groups 4 and 5 would be components of group 1l and U4 itself
has a component groﬁy 7. Group 6 would be a component of group 3.
Groups 3, 5, 6 and 7 would end in vectors so that the series of groups
(1,2,3), (4,5), (6), (7) would each be closed figures so that any object
and its components can be added or delted from the display without
disturbing the rest of the display.

This type of display structure has a number of.useful features.

The actual display instructions are in closed form so that they can be
called by any number of groups. Groups can be easily added and removed
from the structure. An object can be moved around on the screen easily
(for example, group 1 can be moved by adding opposite sign increments
to the vectors in groups 1 and 2) while maintaining the same spatial
relationship between itself and its components. |

A disadvantage of this particular way Sf implementing the structure
is that extensive use is made of the 338 subroutine instructions. A tush
and p&p together take 3l.Spysec to execute. This time would result in a
significant increase in the time taken to display a file containing a
great deal of structured information.

; Tom Johnson has suggested that this disadvantage might be overcome
by extending a technique developed by Dave Kristol for rapid chafacter
display. Each seqﬁence of display instructions called by a group would
end in a STOP rather than a POP, Vhile the sequence was being displayed,
the PDP-8 would execute a routine designed to interpret a group and
complete the address of the next sequence of display instructions to be
executed. When this computation was complefe, the PDP-8 would wait for

the internal stop flag snd reinitialize the display at the newly computed

>

s

I . ARt e e




-37-

address. Stopping and restarting the display would take only about
10ysec., so that significant time would be saved provided the nezessary
calculation could be performed during the display of the previous
sequence. .

Interpretation rather than execution of the groups would enable
them to be much more compact, in fact the number of words in each group
could be reduced by a factor of two.

The data structures in the Spectra TO would have the same
structural form as in the 338 in order to make the system simple to use.
The representation of control information and coordinate data would of
course be different. Coordinates would be in homogeneous form and
represented as floating point number:, The vector (really a linear
transformation) at the start of each group would be generalized to a
homogeneous transformation that would relate the coordinate system of
the data referenced by a group to that of a group higher in the structure
For example inAFigure 1, the transformations of groups 4 and 5 would

relate their coordinate systems to that of group 1.

Facilities Available to the User

..The system would be organized so that that part in the 338 would
enable the user to create and view displays and also transmit them to
the Spectra TO. Only in the Spectra TO would there be facilities for
interpreting and processing graphics information.

The system wou}d be implemented in stages that would differ in the
range of facilities available to the user. An initial system might give

the user the folleowing facilities.
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In the 338 the user would be able to create, name, and link groups
to foim a structured display. He would be able to draw, type in, or
c0py dispiay information and text associated with each group. Editing
facilities enabling the user to modify display information, text and
the structure itself wovrld also be provided. Routines for rotating and
scaling displayed objects would be available; then use would be restric-
ted to avoid inadvertant transformation of instructions referenced by
several groups.

The user would be able to transmit a completed display to the
Spectrs 70, possibly defining it to be an additior to a modification
of an’existing display structure and alsc specifying a scaling factor
50 that a display struéture in the Spectra 70 could be built up in
stages to have a greater'coordinate range than is possible in the.338.

In the Spectra TO the same facilities for creating a display
would be available using subroutine calls for the application program.
In addition the user wculd b2 able to define the transrormations asso-
ciated with each group and execute them to determine absolute vector
coordinates. In general, interpretation of th= text sirings generated
in the 338 would be application dependent. A few interpreters could
be provided, for example to enable 2 user to input floating point
numbers.

As far as output of displays from the Spectro 7O is concerned,
all output would be from the two dimensional data structure. A user
would access data in the three aimens.onal sutruciure by specifying a
transformation to be used to project it into the two dimensional
structure. The projection would produce & planar representatio- of

the data or‘thc sanme structural form that it had in the three dimensional

. 137
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structure. Output from the two dimensional structure to the 338 would
involve windowing and scaling the data. The dispiay resulting from
outptit from the épectra 70 would be structurally identical to an equi-
valent display composed at the 338 console so that a user could interact
with his applications program to compose a display.

Subsequent versions of the system would give the user facilities
for direct input of three dimensional data from the 338 console, permit
the applications program to direct the flow of the program in the 338
and provide for transmission of standard curves or objects between the
two machines in a compressed form.

The system would be designed to be sufficiently modular and well
documented 50 that a user might add additional features needed for his
specific application.

The overall aim would however be to produce a system that enabled
users to apply graphics techniques by writing epplications programs in

FORTRAN rather than by programming the DEC-338.
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CPAPTER 1

INTRODUCT ION ' |

1.1 Obijective

Chemical physical property values are of importance in
chemical engineering process calculations. Since the mid - 1950's
computers have played an increasingly significant role in
chemical engineering process simulations. The need for develop-
ment of computer systems for supplying physical property values

has been expressed by Yen (1), Zseleczky (2), and Shannon (3).

A common approach to supplying physical property values to
chemical engineering application programs is by reading property
data from cards. The property data is often assumed to be con-

stant for the temperature and pressure ranges under consideration.

When this assumption cannot be made, that is when variable
dependence (for example, temperature and pressure) must be taken
into account, property estimation procedures are required. The
estimation procedures are often coded into the application pro-
gram with correlation coefficients, tables, and constants

being read from cards by the application program, A more
sophist.icated approach to providing property estimation pro-
cedures is to separate estimation algorithms from application
program in the form of subprograms (functions or subroutines)
that contain il the information necessary for property
estimation (1,2). The application program calls on the pro-
perty estimztion subprograms for property values instead of

reading data from cards.

}LIL:




The A.I.Ch.E. (8,9,10) has sponsored development of a
large computer system of subroutines for estimation of physical
properties, Systems for computer-aided design an simulation
(4.5,6,7,14) have been developed that include property esﬁima- y
tion subroutines. The system developed by Beirute (l11) and that

of Johnson (14) are the most general systems of those associated

with design systems,

The above approaches to supplying property values are limited
in that the estimation prpcédures used Dy a given program are

fixed; that is, the estimation procedures are linked directly

it s et s o bmtirt b o

tc an application program by program coding, When changes in
mixture components anq/or'temperature and pressure rainge occur,
the property.estimation procedures used by the application pro-
gram often must be chanced. The approaches above require modi- §f
fication within the application program especially when property 3
estimation procedures have been incorporated into the coding

of the application program. Such changes have practically ”
eliminated the possibility of establishing general chemical

process unit calculation material and energy balance, cesign,

and simula*ion libraries, Maintenance of a general purpose
unit program library becomes expensive when general purpose :
routines must be modified for each variation in chemical mix j?
and operating conditions, Hehce, few general purpose unit ' k

program libraries are widely used today.

The empha..s in previous work has been in development of )
systems that generate physical property values and not in the
developmernt of information storage and retrieval for physical
properties, Most of the systems previously developed lack
flexibility; they were designed specifically for use by special
user programs, Noné of the systems contain a data base for

storage of physical property data, Ay !
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The objective of this thesis is to present a prototype
information storage and retrieval system for chemical phsical

properties that is unique:

1) in its ability to retrieve both stored and computed
physical property values

2) in its structure that allows any FORTRAN program tc
request property values during program execution and

3) in its method for identifying and requesting physical

property values for pure chemicals and mixtures.

1,2 Order of Presentation

Chapter II presents an overview of the property system,
identifying the components making up the system, and discussing
briefly their function, Chapter III details the purpose and
structure of the physical prope "ty data base. The concept of
-a generalized retrieval routine is discussed in Chapter IV

together with the retrieval scheme used by the system,

Chapter V,VI,VII and VIII are directed to users of the.
property system and present system‘conventions'to be followed
by the user. Chapter V defines the application program and
presents the conventior= for using the generalized retrieval
routines, Chapter VI explains the procedures for running an
application program and discusses the conventions for con-
straining the estimation of property values to meet the stan-
dards set by each individual user. The conventions for entering
personél property data into the system's data base are dis-
cussed in Chapter VII. The preparation of property estimation
routines is discussed in Chapter VIII. The final chapter,
Chaﬂter IX summarizes and contains suggestions for future work,
The Appendices contain lists and explanation of each code used
by the system together with messages generated by the property

system,
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CHAPTER II

THE PROPERTY SYSTEM

2,1 Design Considerations

Physical property values are required in chemical engineering
process calculations. The chemical engineer often performs
process calculation through the use of FORTRAN programs, Several

computer-aided design systems for chemical processes are written

ol i 0 S A S s s

in the FORTRAN language (12)., Therefore, any system that is to
provide property values for pure chemicals and mixtures for pro-
cess calculations should be compatible with FORTRAN programs

if the system is to be useable., The property system is there-

fore written entirely in the FORTRAN programming language,

Physical property déta can take the form of constants, » fi
correlation coefficient, or tables, therefore, the property 5'
system contains a data base that can store each of the data |
types. When properties.can be expressed as a functional
relationship of independent variables such as temperature
-and pressure, subprograms for estimation of property values
are prepared. The property system contains a library into

which estimation routines can be entered.

Within a FORTRAN application program requests for property
values must be simple. The reguest must specify the property
value to be obtained without indicating the method to be used
to retrieve the value from the data base or the method to be .
used to estimate the value. Once a request for property
data has been encoded into an application program, changes

must not be required when mixture components and/or independent
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variable ranges (such as temperature and pressure ranges) change,
Generalized retrieval routines with standardized arguments are
provided for use within an application program. The generalized
retrieval routines determine at the time of execution of an
application program the method for obtaining requested property

values.

The engineer must be able to constrain retrieval of property
values to meet his own standards. Variant information con-
straining retrieved property values can be specified by the user

externally to an application program.

The state of the property estimation field is dynamic (101,
obsolescence can be prevented only if the system is open ended.
The property system allows additions, updates, and deletions
to data stored in its data base and allows insertion of new

estimation subprograms into its estimation routine library.

2,2 Property System Structure

The discussion below outlines the structure of the property
system, and the information flow among the components of the .
system, The property system is decomposed into two subsystems

(1) the storage subsystem and (2) the retrieval subsysten,

2,2,1 Storage Subsystem

The storage subsystem adds, updates, and deletes stored
property data and enters new estimation routines into the
system library. Figure II-1l illustrates the components and

lines of information flow of the storage subsystem,
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The user modifies the contents of the data base by supplying

a storage control deck composed of data records containing

identifiers and property data, and commands to the data base
storage routine. (The command language specification is
presented in Chapter VII,) The data base storage routine reads
the storage control deck and performs the specified modifica-

tions to the system's data base. ]51
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New‘estimation routines are entered into the estimation
library through the use of library storaqe routines. The
library storage routines are dependent upon the particuler
computer facility used in the implementation of the property
system, and are composed of a FORTRAN compiler and in the case
of the IBM 360 system the Linkage Editor. An estimation
routine preprocesser used to insure that new estimation routines

conform to system conventions will be discussed in Chapter VIII,

2,2,2 Retrieval Subsystem

The retrieval subsystem of the propert§ sysiem is composed
of routines that are used during the execution of an application
program to retrieve property values requested within an ap-
plication program. Figure II-2 illustrates the components

of the tetrieval subsystem and the lines of information flow.

A FORTRAN application program containing requests for
property values is compiled and an executable module is
generated containing the application program, property system
routines, and required estimation routines. The executable
module is generated by a loader or linkage editor provided
within the computing system that supports the implementation
of the property system., The application program calls the

activation routine to read the disk resident data base into

core storage, and to read the variant information deck. The
variant information deck contains execution time information
constraining property value retrieval to meet the user's
particular standards., (Chapter VI contains the command
language specification of the variant information deck).
Property values are requesced during application program

execution through calls to the generalized retrieval routines.
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The generalized retrieval routines use the retrieval service
routines to interrcgate the data base in order to locate pro-
perty data medting the request. The generalized retrieval
routines either return data stored in the data base or call one

of the communication routines that select an estimation routine

to compute the requested property value. The generalized
retrieval routines return to the application program either

stored or computed property values,

In subsequent chapters each component routine of the pro-

perty system is discussed in detail.
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CHAPTER III

THE DATA BASE

The property system's data base contains physical property
data for pure chemicals and mixtures. Property data is logically
organized into data records. Physically the data base is com~-
posed of a directory and a data pool. The data base normally
resides in disk storage, and is read into core storage by the

activation routine during the execution of an application pro-
gram. Loading a complete property system data base into core
storage in the case of this prototype system corresponds to
loading essential directories and a segment of the data pool

of a full scale implementation of the property system. In
Chapter IX recommendations are made concerning the disk

resident data base and its purpose in a full scale implementation
of the property system.

3.1 Data Records

The data base is logically organized into data recoxds.
Bach data record is compcsed of seven attribute values together
with property data. The attribute values completely characterize
each data record. A data record contains:
1. a physical property code (for example 401 = vapor

enthalpy as a function of temperature and pressure).

-]l0-




2. the ranges of the independent variables associated
with the property for which the data is valid.
(for example, 200°K-400°K for temperature and 1 atm -
3 atm for pressure),

3. a code specifying the contributor who entered the
data record into the data base (for example 427 =
John Jones),

4. the data base component code(s) of the pure chemical
or mixture for which the data is applicable (for
example, 2 = methane),

5. the number of the estimation routine that produces
- property values from the data contained in the data

record. (for example, 20 = third degree polynomial
routine),

6. the maximum percentage error expected in the property
value produced by the estimation routine (for example
3%),

7. the data type code that indicates the form of the
property data contained in the data record (for

example, 2 = correlation coefficient),

8. the property data itself (for example, the third

degree polynomial coefficients a,b,c,d).

Appendix I contains the lists of established codes for each
attribute.

[
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Conceptually data records can be thought of as the basic
unit of storage in the data base, but actually the content of

a data record is divided into directory elements and data pool
elements,

3,2 Directory

Directory elements form the nodes of an inverted tree
structure of lists called the directory. The directory pro-
vides a mapping from a set of property data attribute values
to an element of the data pool containing property data.

The directory is of depth three, that is, there are
four nodes including the root in every inverted trec. EBach
node represents a list of directorv elements. Rach directory
element within a nodal list has a unique corntent. The
branches of each tree represents pointers from a dirsctory
element in a list at depth i to the head cof a list at depth i+l,
with the root being a list at depth zero. The terminal points
of the branches of the directory (inverted tree) are <Zata pool

e lements.

The single node¢ at depth zero is a list of directory
elements each containing a unique property code and a pointer
to a node at depth one. The nodes at depth one are each @
list of directory elements, each containing two independent
variable ranges and a pointer to a node at depth two. The
nodes at depth two are each a list of directory elements, each
containing a data base component code and four pointers, one
for each data type, to a node at depth three. The nodes at
depth three of the directory tree ars esch a list of directory
elements, each containing a contributor code, an estimation
routine number and a pointer to ar element of the data pool.

Figure III-1 illustrates the inverted tree structure of the

) b
T
e~
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data base together with the list structure.

In the figure each box represenis one directory element
and the set of contiguous directory elements between double
bars represents a list making up one node. From the figure,
one sees also that the directory is made up of four master

lists, the property list, the variable range list, the

component~data-type list, and the contributor=-routine-number

list. Each master list represents the union of all nodes at

the same depth in the directory tree.

The basic building unit of each master list is a track.
A track is a set of contiguous directory hlocks. The size of
a track can be set to any value for each master list, but once
set, ~ach track within a master list is fixed in'size. Each
sublist making up a node consists of one or more tracks. The_
tracks in a sublist need not be contiguous since the last '
two directory elements in each track contains a forward link
tn the next track in the sublist and a backward link to the
previous track in the sublist. Figure III-2 illustrates the
layout of directory elements and tracks within each master

list.

2.3. Dbata Pool

The data pool is a master list of data elements. Each
data element is a terminal point at a branch from a directory
element at depth three. Each data element contains the
maximum expected error associated with the data together with
property data itself. Figure III-1l illustrates the data
posl. - -

The format of each data element depends upon the data
type of the data contained in the element. There are four

data types: constant data, (data type 1), correlation

~14-
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coefficients (data type 2), tabular data (data type 3) and null
data (data type 0).

The data pool, like the other master lists, is built of
tracks whose size is fixed but can be specified at the time
of implementation. Figure IiI-3 illustrates the layout of

data elements and data pool tracks.

3.4 Justification of Directory levels

The data base directory provides a mapping from a set 6f'
attributes to a data element within the data pool. The
mapping is accomplished through traversing the directory tree
f.om the root through connected nodes to the data pool. It
will be seen in Chapter IV that the minimum set of attribute
that can be specified in a request for property values is a
property code, values of two independent variakles, and a
component code (or codes in case of a mixture). The remaining
four attributes may be optionally specified. Therefore, the
manditory attributes were given the highest level nodes in the
tree structure to insure that the most "promising" braches of
the directory tree are traversed first. Once the directory

tree is traversed to a depth of two,any branch leading to the

" data pool may be taken, when none of the optional attributes

are specified.

The combining of attributes at depth two and three saves
core storage, since the two additional master lists required
if combining had not been done, would be lists made up of
tracks of length one or two. Such tracks require more core
storage for forward and backwar~™ links than for productive
directory elements, a very inefficient use of core storage.
The maximum expected error is contained within each data

element since it can be expected that the values of maximum

-16- ' 1
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expected error for each data record will vary considerably. If

maximum expected error were given a directory level of its own,

the effect would be to construct a maximum expected error list /
(node) for each data element; such a situation constitutes ;?
!

inefficient use of storage.

/63
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CHAPTER IV
RETRIEVAL

4.1 Definition

Within the context of the property system,retrieval is

a multi-step task composed of:

(1) accepting a retrieval request that ideantifies
property data or values,

(2) locating data records within the data base
that meet the request,

(3) retrieving data contained in the data records
or values computed by an estimation routine
using data contained in the data records and

independent variable values,

Before continuing, some terminology must be defined.
In the property system a distinction is made between property
values and property data., Property values are determined
using a property estimation procedure, Property data is
raw data in the form of tables, correlation coefficients and
constants stored in the system's data base, A property
estimation routine uses property data stored in the data
base, and/or property values produced by other estimation
routines to produce property values, For example, a cor-
relation routine (property estimation routine) uses correlation
coefficients (property data) to determine estimated property

values,
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Only in the case of "constant" data are property values
and property data equivalent, No estimation procedure is
required to transform a constant, for example, molecular

weight, to a property value,

4,1,1 Accepting Retrieval Requests

A request for property values or data is made within
a FORTRAN program or subprogram through a call statement to
one of the FORTRAN subprograms called the retrieval routines.
A request must identify the property data or values desired
within the calling program. Property values and data are
identified by a minimum of three attribute values; (1) pro-
perty code, (2) values of the two independent variables
asgsociated with the property and (3) the data base component
code(s) of the pure chemical or mixture for which the informa-
tion is desired. The values of these three attributes make
up the minimum set of keys required to locate the requested
property data or values, Tl.. minimum set of keys is called

the compact set of retrieval keys. The compact set of

retrieval keys are the arguments to the retrieval routines.

4.1,2 Locating Data Records

Ir order tc return requested property data a data record
containing the property data must be located in the data base.
In order to return requested property values a data record
containing required property data and the number of an
estimation routine to compute the value(s) using the data
must be located. The data base therefore serves the
important role of providing property data and information to
direct the retrieval routines to an estimation routine when
a property value must be computed using stored property data.

_20- 165




A data record is located when a retrieval routine
determines the address i.> the data pool of the data element
that contains the data record's data part, The data elements
are the terminal points of the inverted rooted tree of
attribute values called the directory. Therefore, to locate
a data record a retrieval routine must traverse the branches
of the tree (directory) until a terminal point is reached.
Traversal of a branch of the directory between a node at
depth i and a node at depth i+l occurs when a pointer to the
head of a nodal list at depth i+l is found within a directory
element in a nodal list at depth i, |

Traversal of the directory can be described in terms of
a directory search function F., The domain of F is the set
of seven-tuple attribute values, one attribute value for each
of the seven attributes that characterize a data record, The
range of F is the set of subse . of the data elements within
the data pool together with zero, the trap address, indicating
non-existant deta. Symbolically,

o
n

F (p,v,c,t,k,r,e)

where

= get of data element addresses
= property code

= two independent variadl. values
data base component code(s)

= data type code

= coatributor code

= routine number

e 1 » o 0 < U o
"

= maximum allowed error

t e
T
Y.
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If each of seven attributes is defined, d is the singleton

set containing one data element address,

If any t,k,r, or e

is undefined 4 is a set of addresses of data elements whose
data records contain the defined attribute values, Figure

IV-1l illustrates the two cases.

4 = singleton set

d = non-singleton set

Directory Search

Figure IV-1

The directory search function F is further broken down

into five nodal list search functions
ti (i=1,5) .

Symbclically this can be written

b
J
~
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a, = fz(az,v)

a4 £3(a3,c,t)

5 f4(a4,k,r)

(-}
"

fs (as. e)

4 = P(p,v,c,t k,r,e)

wvhere al,az,a3,a4,a5 represent, respectively, addresses of
the headwords of nodal lists within the property master list,
variable range master list, component-data type master list,

contributer-routine number master list and data pool.

Section 4.1.1 explained that the compact set of retrieval
keys (p.,v,t) was supplied to the retrieval routines to identify
requested property values or data. 1If the directory search
function F is applied to the compact set of retrieval keys
a set of data element address is obtained,

=P (p,v,t,x,x,x,6x)

where x indicates undefined attributes values. Since only
one data element address is required, one of the addresses
contained in d is picked arbitrarily. To insure that the
engineer has complete control of the data he wishes to
use, the additional four attributes can be specified
externally to his application program through the use of
the retrieval constraint table. By specifying important

attributes the set of data elements d is made zmailer,
and the retrieval data meets the engineers specification.
Chapter VI, “Running an Application Program”, discusses the

preparation of the retrieval constraint table.
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4,1,3 Returning Property Data and Property Values

Once a data element has been located either the data

contained in the element must be returned to the calling
program or subprogram, or an estimation procedure must be
applied to the data to compute a property value, IXf the
retrieval routine called by the application program or estima-
tion routine is of the type that returns property data, the
contents of the located data element is returned to the
calling program or subprogram., If the retrieval routine
called returns property values, the retrieval routine calls
the estimation routine whose number is contained in the data
record containing the data within the located data element.
The property value(s) produced by the estimat..n routine are
ther: returned to the calling program or subprogram,

4,2 Retrieval Routines

There are three types of retrieval routines: (1)
retrieval service routines, (2) communication routines and

(3) generalized retrieval routines.

The retrieval service routines retrieve stored property
data. The routine rnamed SER]l retrieves constant data
(data type 1), the routine named SER2 retrieves correlation
coefficients (data type 2), the routine named SER] retrieves
tabular data (data type 3) and the routine nawed SER4

retrieves the rouline number stored within a data record,

The retrieval service routines are used primarily by
estimation routines to obtain property data used to compute
property values. Chapter VIII, “"Property Estimation Routine”,
discusges the conventions for using the retrieval service

routines.

§ b
[ ¢
<&
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The communication routines sole purpose is to call pro-
perty estimation routines., Once the routine number of the
estimation routine to be used to determine property values has
been found a communications routine calls the estimation
routine to obtain property values. Communication routines
are called by the generalized retrieval routines, and by
property estimation routines. An application program never
has the need to call a communication routine,

The generalized retrieval routines are called by the
application program to request property value(s). There
are three generalized retrieval routines: (1) the'routine
named PPCP for retrieval of a property value for a pure
chemical, (2) the routine named PPCF for retrieval of a
property value for a mixture, and (3) the routine named
PPCS for retrieval of a property value for each component
of a mixture. Chapter V1, "The Application Program”, dis-
cusses in detail conventions for using the generalized

retrieval routines.

4.3 Justification of Retrieval Scheme

The retrieval scheme developed for the property system
was designed with a primary concern for the user of the
system, Such a concern dictated that the system be easy
to use and yet completely controllable. The retrieval

acheme reflects this.

The retrieval routines fall into three catagories
(1) routines for retrieving stored data (the retrieval
service routine), (2) routines used only by the system
itself (communication routines) and (3) routines allowing
retrieval of stored or computed property information
(generalized retrieval routines). The wore sophisticated
174
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user may choose to use the retrieval service routines, and
the less sorhisticated user may use the generalized retrieval
routines; in either case the user has a tool that is easy to

use for obtaining property information.,

The retrieval scheme allows the user to specify a minimum
amount of information in requesting property values, namely
a compact set of retrieval keys, and yet allows the user the
option of completely directing the retrieval activities of
the system by specifying retrieval constraints. The tree
structure Girectory used in the retrieval scheme is very well

sulted to this mode of retrieval.
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‘ CHAPTER V

THE APPLICATION PROGRAM

5,1 Definition

Within the context of the property system, an application
program is a computer program that is written in the FORTRAN
programming language and that requires property values for ‘
pure chemicals and mixtures during its execution. An applica-
tion program is not restricted in its structure or use of
labelled or unlabelled COMMON, since the property system uses
no COMMON statements in system or estimation routines. The
only restriction placed upon an application program is that
requests for property values conform to the conventions
established for using the property system. This chapter

discusses the conventions for requesting property values and

-explains the use of the property system from the point of view

of the engineer who writes applicaticn programs,

5,2 Requesting Property Values

Property values for pure chemicals and mixtures are
requested in an avplication program through FORTRAN function
and subroutine call statements that call the generalized
retrieval routines, Invariant information identifying the
requested property value is supplied to the property system
in the form of arguments to the subprogram calls of the
generalized retrieval routines. (Variant information

specification is discussed in Chapter VI on "Running An

17,
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Application Program"). The generalized retrieval routines call
upon property estimation routines that combine data (from the
data base) to compute property values or retrieve data directly

from the data base (when applicable).

There are three generalized retrieval routines that can
be called by an application program. The FORTRAN function
subprogram named PPCP retrieves pure substance property values
requested within an application program, There are two
generalized retrieval routines that retrieve mixture property
values, The routine named PPCF is a FORTRAN function.sub-
program that retrieves a single property value for a mixture
(e.g., heat capacity). The PPCS FORTRAN subroutine retrieves
a property value for each component of a mixture (e.g., equili-

brium coefficients).

The remaining sections of this chapter discuss conventions
for calling the generalized retrieval routines, giving examples
and explaining the semantics of each requést for property
values. The reader is encouraged to read Chapter Iv for a
discussion of the retrieval scheme used by the generalized

retrieval routines,

5,2.1 Pure Substance Property Value Reguests

The standard request for a pure substance property value

such as density or critical pressure uses the PPCP retrieval

routine; for example,
PROP = PPCP (MP,V1,V2, INDEX, IC) .

The arquments of the PPCP routine are:

173
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MP - physical property code (for example, 401 =
vapor enthalpy).
V1 - value of first independent variable, a real
number or a real variable,
V2 - value of second independent variable. a real

number or a real variable,

INDEX - pure substance index number an integer or
integer variable,

IC - completion code variable,

Appendix I of this thesis contains a list of the established
property codes, Associated with each property code are two
independent variables (for example 401 is the code for vapor
enthalpy with temperature the first independent variable and
pressure the second). The pure substance index identifies
the chemical for which the property value is requested. The
pure substance index establishes that component in the
component identification table for which a property value is
requested. See Figure V-1 for illustration of a sample

component identification table.

Pure Data Base Component
Substance Component Name
Index Code

1 2 Methane

2 10 n-Hexane

3 5 i-Butane

4 4 Propane
NCOMP=5 20 n-~Hexadecane

component Identification Table

Figure V-1

174
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The component identificatioﬁ table identifies to the property
system the components for which property values are required,
Appendix I contains the list of established data base component
codes., The completion code variable is used to inform the
application program whether all phases of property estimation
have succeeded. The integer variable IC is returned with a
zero value if retrieval has been successful, A noh-zero

value indicates that the validity of the returned property
value is questionable, Figure V-2 illustrates a typical

call to the PPCP routine,

The program segment illustrates retrieval of the vapor
heat capacity for each of three chemicals, Notice that the
component identification table is provided as data and is
not a part of the application program, The identity of the
chemicals is classed as variant information and is supplied
to the property system outside of the application program
(method to be discussed in Chapter VI). Hence, when
changing the component mixture no alterations are required
in the application program; only the component identification

table requires change,

17y
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DO 10 K=1,NCOMP Segment of an
| CP (K) =PPCP (431, T, P, K, IC) application
, program
10 CONTINUE
. -
Pure Data Component
Substance Component Name
Index Code —_ Component
1 40 Benzene ;::;tlflcation
2 42 o-Xylene e.
NCOMP=3 41 Toluene J

Example Use of the PPCP Routine
Figure V-2

The information provided in the PPCP request is invariant,
The property code 431 specified vapor heat cépacity as a
function of temperature, the first independent variable, and

pressure, the second. The program var‘ables T and P provide

temperature and pressure values to t. PCP routine. The

integer variable K specified the pure substance index.

In the above example the property code indicates an

assumed phase, that is, the vapor phase. Property codes ending

with 1 (e.g., 431 = vapor heat capacity) specify vapor phase
properties while codes ending in 2 (e.g., 432 = liquid heat
capacity) specify liquid phase properties, and codes ending
in 3 (e.g., 433 = solid heat capacity) specify solid phase

properties, When a phase specified property code (that is,
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a property code ending in 1,2, or 3) is supplied to a generalized
retrieval routine, the phase of the substance for which the
property value is requested is taken as that specified in the
property code. The property value is obtained using estimation
programs and data for the specified phase even if under the
conditions indicated by the two independent variables a different
phase exists (assuming data is available in the independent
variable ranges specified - to be amplified in Chapter VIII).

For example, if the vapor he~t capacity of water at 300°K and

1 atm. is requested in an application program, the generalized
retrieval routine uses vapor data and estimation programs to
obtain the pseudo - vapor heat capacity of water (even though

the vapor phasze does not exist at this temperature and pressure) .

The generalized retrieval routines perform no phase checking

"“... when phase specified property codes are provided in a request

for a property value.

Phase unspecified property codes end in 0 (e.g., 430 =
heat capacity). If the phase is unspecified, the generalized
retrieval routines perform phase determination. (For the
present, phase determination takes place only for properties
using temperature and pressure as associated independent
variables). The pure substance property retrieval routine
PPCP requests the vapor pressure of the pure substance.

When the phase is determined not to be vapor, the PPCP
routine requests the melting point (property code 1007) to
determine whether liquid or solid exists. Once the phase
is determined, the PPCP routine prepares a property value

using the phase specified property code.
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5.2.2 Mixture Property Value Requests

There are two routines for retrieving property values for
mixtures., The function named PPCF retrieves a single property
value for a mixture. The standard form of a request for

mixture property data using the PPCF routine is
PROP = PPCF (MP,V1,V2,X,IC)

The arguments of the PPCF routine are:

MP - physical property code, an integer

V1l - value of first independent variable associated
with the property. V1 is either a real number'
or real variable, .

v2 - value of second independent variable associated
with the property, V2 is either a real number
or real variable,

X - mole fraction array. X is a singly subscripted
variable containing the mole fractions of the
components listed in the component identification
table in the same order as the components appear.
in the table.

IC - completion code variable, an integer variable.

The PPCF routine retrieves the requested property value
for the mixture whose components are given in the component
identification table, Figure V-3 illustrates the use of the
PPCF generalized retrieval routine. Here the PPCF routine
is used to obtain the enthalpy of the five component mixture
specified in the component identification table. 1In the
example, the property code 400 of enthalpy as a function of

temperature and pressure is used. The associated independent
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variables, temperature and pressure are represented by the
program variables T and P, and the mole fractions of the

five components are contained in the array X.

DIMENSION X(10)

READ (5,10) NCOMP, T, P Segment of !
READ (5,10) (X(I), I = 1, NCOMP) | application ;
. program, i

H = PPCF(400,T,P, X, IC)

Pure Data Base Component I
Substance Component Name
Index Code’
1 3 Ethane
2 4 Propane
3 6 ) n-Butane Component
4 8 n-Pentane Identification
NCOMP=5 2 Methane Table.

Example Use of the PPCF Routine
Fiqure V-3

Property codes that are a multiple of ten (that is, end
in 0 as in the above example) do not specify the assumed phase
of a mixture. Property code 401 indicates vapor enthalpy,
and property code 402 indicates liquid enthalpy. If the pro-
perty code provided tc a generalized retrieval routine is
phase unspecified, a phase determination is performed. The
PPCF and PPCS retrieval routines determine the phases of a
mixture hy requesting the vapor fraction of the mixture
(property code 518). (At present phase determination takes

place only for properties with temperature and pressure as
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associatec independent variables. Mixture liquid or solid
phases are rot distinguished., All mixtures that do not exist
in -the vapor ‘phase are treated as liquids. All liquids are
assumed miscible). Once the vapor fraction is obtained, the
phase(s) of the mixture is identified as liquid and/or vapor.
When a phase unspecified property value is requested the
value of the property returned is given by, '

PROP = (VAPOR FRAC,)X VAPOR PROPERTY VALUE +

(1-VAPOR FRAC.)X LIQUID PROPERTY VALUE,

Care should be exercised to avoid requesting a property
value for a two-phi:e mixture when using phase unspecified
property codes for non-state properties (e.g., compressibility
or density of a mixture, either the vapor or liquid phase
may exist independenﬁly, but not together. Wwhen a two-phase
mixture is provided, the generalized retrieval routines print

a diagnostic and abort.

The third generalized retrieval routine is the PPCS
subroutine. The PPCS routine returns a property value for
each component of a mixture and is used to retrieve properties

such as vapor-liquid equilibrium coefficients,

The standard form of a request for property values using

PPCS 1is

CALL PPCS (MP,V1i,V2,6X,RES, IC)

!\)?;
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The arguments of PPCS are:

MP
vl

v2

RES

physical property ccde, an integer.

value of the first independent variable associated
with the property. V1 is either a real number

or real variable.

value of second independeant variable associated
with the property. V2 is either a real number

or real variable,

mole fractiocn array. X is a singly subscripted
variable containing the mole fraction of tl.e
components specified in the component identifica-
tion tabie i1n the same order as the components
appear in the table.

result array. RES is a singly subscripted variable
that is returned with a prcperty value for each
component in the crder the compcnents aopear

in the component identification table.

return code variable,

Figure V-4 illus*rates the use of the PPCS routine,
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DIMENSION X(10) l
REAL KVAL (10)

READ (5,10) T,%¥ "~ 'OMP

READ (5,20) (X! . =1, NCOMP) Segment of
. application
. program

CALL PPCS (305,T,P,X,KVAL, IC)
IF(IC.NE,0) GO TO 999

. § .
Pure Data Base Ccapone.. * ]
Substance Component Name
Index _ Coda
1 4 Propane
2 6 n-Butane
3 8 n-Pentane Component
4 57 i-Hexane Identification
5 12 n~Octane Table
NCOMP=6 11 n-Heptane

Example Use of the PPCS Routine
Figqure V-4

Temperature, the first independent variable, is supplied
by the program variable T, and pressure, the second independent
variable, is supplied by the variable P. The component mole
fractions are contained in the array X, and equilibrium co-
efficients are returned in the array KVAL, Notice that the
value of the completion code variable IC is tested before

the equilibrium coefficients are used.
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5.3  Property Svstem Activation

Before requests for a property value(s) can be serviced
by any of the three generalized retrieval routines the prc-
perty system must be activated. During activation the pro-
perty system prepares itself for the first retrieval request,

The property system is activated by coding
CALL ACTIVE

as tuhe first executable statement in the application progrant,

All the conventions necessary to preparz an application
program have becn discussed. To further illustrate the pre-
paration of an applicetion program that uses the property

system an example program is rnrepared helow,

5.4 Example Application Program

The examp.e application program determines the compcsition
of vapor and/or ligquid phases in a process stream, Schematically,
the process stream of unknown phase composition may be
visualized as entering into a process unit where vapor and /or
liquid streams exit in equilibrium. The process unit main-
tains iscth-rmal and isobaric conditions throughout. The
program accept ‘eed stream “emperature, pressure, flow rate,
and mole fractions for each product stream. The physical
property system is used to calculate vapor fraction, eguilibrium
constants (K-values), and enthelyy (of the product stream) .
Figure V-5 presents the application program fiow chart,

Figure V-6 illustrates the FORTRAN application program

Jiscusscd above, The results of the example application pro=-
grum are discussed in Chapter VI "Running an Application

Program",

RY
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Unit Schematic

Input _T.P.F,2

T,P,FV,Y

T,?,F, X

Application Prcgram Flow Chart

C Start )
1

READ
T,P,F,2

1

1

COMPUTE:

F, P Y. X

{

Determine
vapor
fraction.

l

Determine
output
stream
enthalpies
H lH‘l

Y

s

Determire
equilibrium
coefficients

l

Print

results:

T,P,F ,F ,
v

Y, X,H ,Hy
v

!
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c
C-- EXAMPLE APPLICATION PROGRAM
¢
DIMENS ION X(10),Y(10),2(10)
REAL KVAL(10)

C-- ACTIVATE THE PROPERTY SYSTEM

c
VALL ACTIVE
c
~ C=- READ INPUT STREAM INFORMATION
c
READ(5,10) T,P,F,NCOMP
READ(S5,10) fx{i),I=1,NCOMP)
c

C-- DETERMINE VAPOR FRACTION ( PROPERTY 518 )
C
’ VFRAC=PPCF(518, T, b, Z, IC )
, IFC 1IC .NE. 0 ) GO TO 99
«C
‘.g-- DETERMINE K-VALUES ( PROPERTY 305 )

i CALL PPCS(305, T, P, Z, KVAL, IC )

IF ( IC NE, 0 ) GO TO 98
C-- COMPUTE OUTPUT STREAM MOLE FRACTIONS
DO 20 K=1,NCOMP

Y(K) = Z(K)/(VFRAC+(1.0-VFRAC)/KVAL(K))
20 X(K) = Y(K)/KVAL(K)

c
C-~ COMPUTE OUTPUT STREAM FLOW RATES
c

FV = VFRAC * F

FL'= F - FV
C
C-- DETERMINE ENTHALPIES OF OUTPUT STREAMS
C-- (PROPERTY 401 VAPOR ENTHALPY)
C-- (PROPERTY 402 LIQUID ENTHALPY)
c

Hv = PPCF (401, T, P, Y, IC )
HL = PPCF (402, T, P, X, IK)
iIF (IC ,NE. 0 .OR. IK .NE.O ) GC TO 999

Example Application Program

Fiqure V-6
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c
C-= PRINT CUTPUT
c
50  WRITE(6,24)
WRITE(6,23) T, P, F, (Z(1),1=1,NCOMP)
WRITE(6,21) T, P, FV, HV, (Y(1),1=1,NCOMP)
WRITE(6,22) T, P, FL, HL, (X(1),1=1,NCOMP)

. C

c

STOP
c
C-= ERROR CONDITIONS
99 -WRITE(6,30) T, P, F, (Z(1),1=1,NCOMP)
. STOP
999 WRITE(S,31)
HL = 0.0
HV = 000'
GO TO 50
C-- FORMATS
¢

10 ° FORMAT(5G15.7)

24  FORMAT(10X,' EXAMPLE PROGRAM RESULTS'/)

23  FORMAT(' INPUT STREAM :'//' Te!,G15.7,' Pa!,
$G15.7/' F=',G15,7/(* MOLE FRACTIONS = ',3G12.5))

21  FORMAT(/' OUTPUT VAPOR STREAM :'//!' T=',G15.7
$,! P=',G15.7/' Fe',G615.7,"' H=',G15.7/ :
$(' MOLE FRACTIONS = ',3G12.5))

22  FORMAT(/' OUTPUT LIQUID STREAM :'//' T=!,
$615.7,' P=',G15.7/" F=',G15.7,' Hs',G15.7/
$(' MOLE FRACTIONS = ',3G12.5))

30  FORMAT(' COMPLETION CODE PROBLEM-|NPUT!',
$' STREAM'/' T=',G15.7,' P«',G15,7,"' Fe!,
$G15.7/' MOLE FRACTIONS = ',4G15.7)

31  FORMAT(' COMPLETION CODE PROBLEM-OUTPUT',
$' STREAM'/' T=',G15.7,' P=',G15.7,' F=!,
$G15.7/' MOLE FRACTIONNS = !',4G15.7)

END

Figure V-6 (continued)
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CHAPTER VI

KUNNING AN APPLICATION PROGRAM

Chapter V explained that invariant information identify-
ing requested property values is supplied to the property
system as arguments in subprogram calls to the generalized
retrieval routines from within an application program,
Variant information such as the mixture components' identities
and the identities of estimation techniques and/or data used
to obtain property values are supplied to the property system
outside of the application program, By separating the in-
variant and variant information, application programs can
be prepared that do not require modification when mixture
component changes are made and/or when property estimation
techniques must be changed. This section discusses the
orocedure for specifying variant information to the property

system,

variant information is supplied@ to the property system
in the form of a deck of cards that is read by the system
after it is activated and before the first request for
property values is serviced. Variant information is organized
into two tables: (1) the component identification table,

and (2) the retrieval constraint table.

6.1 Component Identification Table

The component identification table (i: ~oduced in
Chapter V) identifies to the property system the components
for which property values are required. The ccmnonent
jdentification table is punched onto cards according to the

following rules:

187
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The first card of the component identification

deck must contain the words
COMPONENT ID TABLE

The first word may begin in any column of the
card,

The second card of the deck and as many additional
cards as are required must contain the data base

component codes of the components for which

property values are required., The data base
component codes must be separated by commas
or blanks and can be entered in any column of
the cards.

The last data base component code must be

followed by a semicolon,

Figure VI-1 illustrates a component identification table

and the component identification deck corresponding to it.

Pure Data Base Component
Substance Component Name
Index Code
1 2 Methane
2 10 n-Hexane Component
Kl 5 i-Butane Identification
4 4 Propane Table
NCOMP=5 20 n-Fexadecane

Component Identification Table

Figure VI-1

1Ry

-43-~




) /4, 20 H
/ 2, 10, 5

/COMPONENT ID TABLE

Component Identification Deck

Figure VI-1 (continued)

Notice that the component identification deck is punched
in free format and that the list of data base component codes
can be continued from one card to another, A component
identification table must be supplied to the property

system on cards each time an application program is run,

6.2 Retrieval Constraint Table

The retrieval constraint table contains variant informa-

tion used by the generalized retrieval routines to select
estimation procedures for requested property values, Before
discussing the preparation of a retrieval constraint table

some required background informatinn is presented.

1A
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In the property system a distinction is made between
property values and property data. Property values are

determined tising a property estimation procedure., Property
data is raw data in the form of tables, correlation co-
efficients and constants stored in the system's data base,

A propersty estimation routine uses property data stored in
the data base and/or property values produced by other
estimation rovtines to produce property values. For e:xample,
a correlation routine (property estimation routine) uses
correlation coefficients (property data) to determine
estimated property values., Frequently, property estimation
routines use a combination of property values determined by
other estimation routines as well as property data, For .
example,‘enthalpy.is often determined by evaluating separately
zero-pressure enthalpy and a pressure-correction term, The
estimation procedure for enthalpy then requires use of two

property values determined by other estimation procedures.

Only in the case of "constant" data are property values
and property data equivalent. No estimation procedure is
required to tiansform a constant, for example, molecular

weight, to a property value,

Figure VI-2 depicts graphically the relation between
property data, property values, and property estimation

routines. -

T
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Property Data
(tables, correla-
| tion coefficient
and constants)
Property Property
le———  Estimation h——j
Values Routine
Property Values
] (produced by
— another
Property DPata and est imation
Property Values routine
Figure VI-2

The generalized retrieval routines accept a request for
, & property value or values, search the data base for
property data required to produce the requested property valuc.,
select the proper estimation routine and call on the estima-

tion routine to produce the requested property values.

Property data is stored in the data base in the form
of data records. Data records contain property data
together with information specifying its characteristics.

A data record contains:

1, a physical property code (for example 401 =
vapor enthalpy as a function of temperature
and pressure),

2. the ranges of the independent variables
associated with the property for which the data
is valid (for example, 202°K - 400°K for

141
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temperature and 1 atm ~ 3 atm for pressure),
3. a code specifying the contributer who entered
- the data record into the data base (for example,
427 = John Jones),

4, the data base component code(s) of the pure
chemical or mixture for which the daca is
applicable (for example 2 = Methane), |

5. the estimation routine number *hat prc3duces
property values from the data contained in the
data record (for example 20 = third degreee
polynomial routine)

6. the maximun percentage error expected in the
property value produced by the estimation
routine (for example, 3%), i

7. the data type cnde that indicates the form of
the property data contained in the data record
(for ekample, 2 = correlation coefficient),

8. the property data itself (for example, the third

degree polynomial coefficients, a,b,c,qd).

A data record is either a pure chemical data record or a
mixture data record, Pure chemical data recoris contain
one data base component code and property data applicable
to the chemical identified by that code. Mixture data
records contain several data base component codes and pro-
perty data applicable to the mixture whose components are

identified by the data base component codes.

Chapter V explained that the inva.iant information
supplicd as arguments to the gencralized retrieval routines
serves to request property values from within an application
program, The generalized retrieval routines search the data

base for valid data records., A valid data record:
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1, contains the property code specified as invariant
information,

2. contains independent variable ranges into which
the supplied independent varialle values fall,

3, contain data base component code(s) specified in

the component identification table.

The generalized retrieval routines select a valid data record,
and call the estimation routine whose routine number is con-

tained in the selected data record. The estimation routine

obtains the necessary property data from the data base and/or '

property values produced by other estimation routines and
produces the requested property value, The generalized
retrieval routines return the property value to the applica-

tion program;'

Often the generalized retrieval routines locate several
valid data records. The valid data récords may differ in the
estimation routine used to calculate a property value, the
maximum percentage error expected betveen the true value(s)
and the estimated property value(s), and/or the identity
(code) of the contributor who entered the data record into
the data base. The generalized retrieval routines select

one of the valid data records. The retrieval constraint

table provides variant information used to direct the
selection of a valid data record. If no retrieval constraint
is supplied, the first valid data record encountered in a

search of the data base is selected,

In the retrieval constraint table the user can specify

for any property:

1. the estimation procedure to be used (Appendix
I contains the current list of estimation

routines).,

-48-~
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2, the percentage error within which the difference

between true and estimated physical property
.values must fall,
3. the identity of the contributor of the property
data to be used, and
4, the degree of the constraint (to be defined

below) .

The retrieval constraint table provides the basis for
selection of one valid data record from amcng several competing
records., If none of the valid data records meet the
specified constraints and the constraints are absolute.a
message is printed and the system aborcs. In the special
case when the constraints are not absolute, a message is
printed and the first valid data record is selected (even
though the constraints are .not satisfied). (Appendix iII
contains the generalized retrieval routine logic diagrams that
illustrate the role of the component identification t7hle

and the retrieval constraint table.).

Figure VI-3 illustrates a retrieval constraint table.

Property Allowable Estimation Contributor Constraint

Code Exrror Routine Code Degree
Number
518 - 27 - o
305 1% - - -
401 - - 342 *
432 - Cc 343 -
- 2% - - -

Retrieval Constraint Table

Figure VI-3
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The exe~ple retrieval constraint table has the following

interpretation:

1.

If vapor fraction (property code 518) is
requested, estimation routine number 27 is to
be uzed., The asterisk, *, in the constraint
degree column indicates that this is not an
absolute constraint; therefore, if routine
number 27 cannot be located in a valid data
record, a message will be printed and the search
will continue until a valid data record is
located, .

{f equilibrium coefficients (property .ode 308)
are requested, any means for obtaining the data
+is permitted, so long as the estimated values

differ from the true values by less than 1%.

The dash in the constraint de'ree column indicates

~hat this is an absolute constraint. If an
equilibrium coefficient data record with 1% or
less error cannot be located, a message is

printed and the system aborts,

If vapor enthalpy (property code 40l1) is requested,

data supplied by contributor 342 should be used
if avaiilable, This constraint is not absolute
(*), therefore, data supplied by other con-
tributors may be used if none is available from
contributor 342,

If liquid heat capacity (property code 432) is
requested, constant data stored by contributor
342 must be used. ("C" in the estimation routine
number column indicates that a stored constant

is required). This is an absolute constraint.

1—a
L
(O 4
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5. For all property values returned (other than
those mentioned in the retrieval constraint
table), true values must not differ from
estimated property values by more than'z%.
This is an absolute constraint; therefore, if
this constraint cannot be met, a message will

be printed and the system will abort).

In preparing a retrieval constraint table any combination
of the five entries (property code, allowable error, estimation
routine number, contributor code, and constraint degree) can
be used, A property code may appear more than once in the
retrieval constraint table, Consider the retrieval constraint

table illustrated in Figure VI-d4

Property Allowable Estimation Contributor Constraint

Code Error Routine Code Degree
Number
305 - 26 343 *
305 - 29 344 *

Example Retrieval Constraint Table

Figure VI-4

The retrieval constraint table in Figure VI-4 is
interpretted as follows: if equilibrium coefficients
(property code 305) are requested, estimation routine number
26 or 29 is to be used together with data contributed by
contributors 343 or 344, respectively (assuming that valid
data records can be located). The constraints are not

absolute,

}—a
L
.
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Retrieval Constraint Deck

The retrieval coustraint table is punched onto cards

according to the following conventions:

1,

The first card of the retrieval constraint

table must contain the words
RETRIEVAL CONSTRAINTS

anywhere on the card (free format).
Each row of the retrieval constraint table

is punched on a separate card.

. Bach of the five entries on a card (property

code, allowable error, estimation routine
number, contributor code and constraint degree),
is separated by a comma or a blank, A missing"
entry is replaced by a dash (minus sign).

The last entry on the last card is followed

by a semicolon (:).

Figure VI-5 illustrates the retrieval constraint deck for

the table of Figure VI-3

card 1l: RETRIEVAL CONSTRAINTS
card 2: 518, -, 27, -, *
card 3: 305, 1%, -, - -
card 4: 401, -, -, 342, *
card 5: 432, -, C, 343, -
card 6: - 2%, -, =, =3

card column 1

Retrieval Constraint Deck

Fiqure VI-5

197
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The retrieval constraint table may or may not be used
by the engineer when using the property system, It is an
optional feature provided for convenience in specification

of constraints by the engineer,

The component identification deck and the retrieval
constraint table deck (when used) arz combined into one
deck of cards, hereafter referred to as "the variant informa-
tion deck". The conventions for making up a variant informa-
tion deck are:

1, The first card of the deck contains the words
BEGIN VARIANT INFO

anywhere on the card (free format),

2, The component identification table deck follows
the first card,

3, The retrieval constraint deck (when used
follows the component identification table
deck,

4. The last card of the variant information deck

contains the word
END

anywhere on the card (free format).

Figure VI-6 illustrates a variant information deck.
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[card column 1

card . 1: BEGIN VARIANT INFO
card 2: CUMPONENT ID TABLE
card 3: 2, 10, 5,

card 4: 4, 29;

card 5: RETRIEVAL CONSTRAINTS
card 6: 518, -, 27, -, ¥
card 7: 305, 1%, - , -,

card 8: 401, -, -, 342, *
card 9: 432, -, C, 343, -
card 10: - ,' 2%, =, -, =3
card 1ll: END

variant Information Deck

Figure VI-6

6.3 Computer Operating System Control Specificatidns

The preparation of an application program and a variant
information deck is independent of the particular computing
system used to compile and execute the application program.
However, the procedure to be followed for submitting an '
application program for execution diffe:rs with each computing
gystem, It is therefore not possible to specify in this
paper the exact procedure to be used to execute an
application program on all computers. Without regard for
the computing system used the following information must be
supplied (the format for IBM 360/75 at the University of

Pennsylvania follows in the next section):

[
L
L
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1, Control cards specifying that the application
program is to be compiled and executed.

2. Control cards specifying the location (physical
storage location) of the library of storage,
retrievel and property estimation routines.

3. Control cards specifying the location of the
data base (stored on some external device) to
be read by the property system using FORTRAN
input /output unit number 3.

4. Control cards specifying that the variant
information deck is read by the property system
using FORTRAN input/output unit number 5.

5, Control cards specifying that the property
system writes diagnostic messages on FORTRAN
input /output units 6 and 11,

Figure VI-7 illustrates the structure of a typical

application program together with data and control cards.

Control cards specifying that |
compilation and execution are

required i

Application program

Control cards specifying

library lccations

Application Program Run Deck
Fiqure VI-7

o
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Application Program Run Deck
Figure VI-7 (Continued

r Control cards specifying
iocation of data base and

3 other FORTRAN input/output units
Variant information deck

Application program data

6.4 .Universitx of Pennsylvania IBM 360/75 Control Cavds

Appendix III contains a list of the control cards

360/75 at the University of Pennsylvania Computing Center.

required for running an application program on the IBM System

-
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6.5 Example Application Program Results

Figure VI-8 illustrates the printed output of the

examnle application program discussed in Chapter V. A component

identification table containing the data base component codes
of propane, i-butane, i-pentane, n-pentane, n-butane, and

n~hexane was provided as variant information,

swseonn N E W soovesee

MIXTURE COMPONENT LIST

. MIX COMP #|DATA BASE ¢

OW TN
QNN E

\ END o

“DATA BASE SUCCESSFULLY INITIALIZED

EXAMPLE PROGRAM RESULTS
INPUT STREAM
T=  380.0000  P=  11,90000
F=  450,5999
. MOLE FRACTIONS = 0.32000  0.15000  0.80000E-01
MOLE FRACTIONS = 0.50000E-01 0,10000E 00 0.30000

OUTPUT VAPOR STREAM :

- T=  380.0000 P=  11.90000
F=  260.5024 Hes  20946.00
MOLE FRACTIONS = 0,43937 0.17904 0.90167E~01

' MOLE FRACTIONS = 0.44350E-01 0.83229E-01 0.16369
OUTPUT LIQUID STREAM :
Y= 380.0000 Pe  11.90000

F= 190.097% He 15847.09 )
MOLE FRACTIONS = 0.15642 0.11021 0.66067€-01
MOLE FRACTIONS = 0.57743E-01 0.12298 0.48679
Figure VI-6
-57-
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CHAPTEF. VII

DATA STORZGE

A data base containing physical prcperty data records is
an integral part of the property system, A master data base
containing approved property data is maintained by the pro-
perty aystem librarian, and is available to all users.

Often a user wishes to add personal property data to the
data base to be used with one of the property estimation
routines. To insure the integrity of the master data base:
only the system librarian may enter new data into it.
Perasonal property data is entered into a user's personal data

base using the property system's storage routine,

When an application program requests ptoperty values, the
generalized retrieval routines search the data base for a
valid data record. The user's personal property data is
searched first to locate a valid data record. If none is
found, the data records contained in the muster data base
are searched. In thie manner preference is given to the

user ‘s personal property data,

Through the use of the property system's storage routine

the user ran:

1. 2dd new personal property data to the user'’'s data
base,
2. update property data existing in the user's data

base, or

3. delate property daia existing in t:e user's data
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To insure hat o wser ‘s porsonsl 4908 BESs e Bs BNl vew
by only the user himself, the wser scleots & paamaNd op»
shtering property data intc his personal dsta base fer sis
first time, Thz selected password is stored by the systen
and must be svpplied each time data is added, updated er
deleted from the user's personal data base.

The engineer generally will have need to add persomal
property data when working with new chemicals or when cbtaining
new data from the literature and/or by experiment., The new
data can be added to the data base at any time, but cannot be
used unless the appropriate property estimation routine is
available. Appendix I contains a description of property
estimation routines currently stored in the property system
library. Often it is necessary to define new property
estimation routines. cChapter VIII of this paper describes
the procedures for writing new estimation programs and storing

them in the property system library.

The procedurss for using the property system's data

storage routine are discussed below,

7,1 Adding New Personal Propertv Data

The data storage routine is used t» add new data records
to a user's personal data base. The data records to be added
are punched oﬁto cards to be read by the data storage
routine. The deck of data records in card form is hereafter
called the addition deck.

Adding new property data to the data base involves
entering new directory elements .o the directory where
nucessary together with adding a new data elem=snt to the
data pocl. The storage routine first searche: the property
code nodal list to determine if the prcperty

2Ny
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code of the new data record exists. If it does not, the new
directory element containing the property code is added to
the list and new lower level nodal lists are created. If
the code is found, the branch to the associated variable
range nodal list is followed, Thé storage routine searches -y

that list for the variable ranges of the new data record.

If a matching directory element is not found, one is created
together with new lower level nodal lists, If a match is
found, the branch to the associated component-data type list
is searched for a matching entry. 1If one is not found, a

new directory element.containing the component code(s) and

data type is added to the list and new lower level nodal list
are created. If a matching directory element in the component-
data type nodal list is found, the branch to the associated
contributor-rqutine number nodal list is followed. If a

match is not found in this lowest level nodal list, a new
directory element is added to the list together with a

pointer to an empty data element of the data pool and the

data contained in the new data record is then added to

the empty data element, If a match is found in the lowest
level nodal list, an error condition exists., All of the
attribute values of the new data record have been found

in the directory, therefore, data already exists, 1In such

a case naw data cannot be added to the data base; the existing 
data must instead be updated. The storage routine prints

a message and goes on to the next data record.

To simplify the preparation of an addition deck the data
records are punched in a special way., Each data record is .
separated into two parts; (1) the characteristic part, and
(2) the data part. Figure VIII-l illustrates the two parts

of a data record.

~ND
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1. Property code - 425
2. Contributor code - 317 Charac-
3. validity ranges ~ 200°K-400°K terist.c
Part
(no second range)

4. Max., expected % error -~ 2%

Data 5. Estimation routine no, =~ 24

Record 6. Data type code - 2
7. Data base component - 3 | bata

code 1 _, | Part

;?' Data - 4,0,5.2x10 ,6,7x10

Data Recoxd

Fiqgure VII-1

Data records to be added that have identical characteristic
parts are grouped together. For each such group it is necessary
to punch the common characteristic part of the data records
only once. Fcllowing the common characteristic part of the
data records are one or more data parts, Figure VII-2

illustrates the punched form of data records,

group 1 (Common Characteristic Part

' (Data partl)(Data partz)...(Data partn)'

group 2 (Common Characteristic Part)

' (Data part1 (Data partz)...(Data partm)'

Punched Form of Data Records AN

Fiqure VII-2
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Notice that the common characteristic part of the data

records and each data part are preceded by a left pareﬁthesis,

"(", and followed by a right parenthesis, ")" and that

each set of data parts is preceded and followed by an apostrophe.

Characteristic Part

The rules for punching the characteristic part of a data

record onto cards are:

1, The first character must be "(" and can begin in

any column of the card,

2, The entries in the characteristic part appear in

order:

a) property code,
'b) contributor code,

c¢) 1lst Ind. variable validity range,
d) 2nd Ind. variable, validity range,
e) maximum percentage error,

f) estimation routine number,.

g) data type code,

and are punched in free format. Separated by commas,

3. Each validity range is punched as

lower value - upper value

4, Any missing entry is rrplaced by a dash (minus

sign),

5. The last character must he ")",

6. The characteristic part of a data record may be

continued from one card to another,

The characteristic part of the data record in Figure VII-1

would be punched as,

(425,317,200.-400,,-,2%,24,2) .
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The data part of a data record is punched in free format
in the form.:

(component (s) : data)

In pure chemical data records only one data base component
code appears, but in mixture data records several data base
component codes appear, each separated from the others by a
comma. The component codes are followed by data entries
separated by a colon, Data may appear following the ceclon
in the following forms: (1) a constant data value, (2) a set
of correlation coefficients, (3) a table, or no deta at all

when the estimation procedure does not require property data.

Data Part

The rules for punching the data part of a data record are:
1, The first character is a left parenthesis " (",
2, The data base component code(s) follow "(", each
separated by commas if more than one appears,
3. A colon (:) follows the data base component codes,
4, The data follows the colon.

a) If the data is a constant, the single value is

entered in "E" or "F" format. (For example 27.5
or 2,75E+l) ‘

b) If the data is in the form of a set of
correlation coefficients, the coefficients are
entered, in "E" or "F" format separated by
commas, (For example, 5.10,6,1E2,7.5E-3)

‘e}) If the data is in the form of a table, the values

of the first independent variable are entered
first, the values of the second independent
variable next, and then the body of the table
is entered row by row., (2ach row corresponds
to a single value of the first independent
variable), For example the table, 1B
L

-63-

JUT S TP SN e




T T TEVEEET

e N M 1
Y121 212 23
Yo 1221 222 233
Y3 | 231 233 333

(with Yl’Yz’Y3 values of the first independent
variable, and xl,x2,x3 values of the second)

is entered as,

(¥,.7,,¥,), (k) %y
(a3;3350253) .-

If the table has only one independent variable

- the missing independent variable entries are

replaced by a dash (~). For example, the
table,

Y a
¥, 2
¥, a3
(with Yl'YZ'Y3 values of the first independent

variable) is entered,

(Y11Y20Y3) ’ (-) ) (al) ' (az) ' (33) .

3)(agy0a50a55) 0 (ayy,8,,,8,5)

e e am

e siaenimine e T . ..

d) If no data appears, a dash (-) is entered.

The data part of the data record illustrated in Figure
VII-1 would be punched as, '

2093
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(3 : 4.0,5,2E-1,.067) .

When punching numbers in the characteristic part or data
part of data records any FORTRAN number representation format
may be used (integers have no decimal point and real numbers

are represented in F or E format).

Figure VII-3 illustrates four data records and the
corresponding card images for addition of the data records

into a user's personal data base,

Data Data Data - Data

Record 1 Record 2 Record 3 Record 4
Property : 425 424 425 431
Contributor: 153 153 153 153

validity (1): 300-400°K 300-400°K 300-400°K 1800-3600°K
range

(2) . - - ‘ - 0,5 -~2,0 atm

Max, error : 2% 2% 2% 5%
Estimation : 10 10 10 21
Routine
Data Type : 2 2 2 3
Component : 2 3 6 47
Data : 4,75 5.99 5.76

1..2x102 3.Ox102 3.5x102 1800. | 0.656

5.0x207%  4.77x10"1  3.sx10”! 2222.|0.701

2777. 1 0.743
3333, 0.771
3600. | 0.782

Example Data Records

Figure VII-3
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Punched data records:

card column 1
¢
card 1 : (425,153,300-400,~-,2%,10,2)

card 2 : '(2:4.75,1.2E2,0.5)(3:5.99,300.,0,477)

card 3 : (6:5.75,3,5E2,3.5&-1)"

card 4 : (431,153,1800-3€00,,0.5-2.0,5%,21,3)

card 5 : '(47: (1800.,2222.,2777.,3333,,3600.), (=),
card 6 : (0.656), (0,701), (0.743), (0.771), (0.782))

Fiqure VII-3 (Continued)

Notice that data records 1,2, and 3 have the characteristic
part in common; therefore the three data records are grouped
together, Card 1l contains the characteristic part, and card

2 and 3 contain the data parts. The fourth data record is
punched ontc cavds 5 and 6. Notice that the dash (-) indicates
that the table is represented only as a function of the

first independent variable (temperature). This data record
will be used only when the second independent variable
(pressure) falls within 0,5 and 2.0 atm, The table represents
data that is independent of pressure in the validity range

specified,

Additions Deck

An additions deck is made up of punched cards containing
data records to be added to a personal data base, The

control card containing the words,

ADDITION DECK
211
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in free format is the first card of an additions deck. The

punched data records follow the control card.

7.2 Updating Existing Data

Property data contained in data reccrds stored in a
personai data base can be altered through the use of the
storage routine, Updating existing data is performed‘similarly
to adding new data. The updated version of a record is
punched onto cards as previously discussed, The storage
routine then locates an existing data record stored in the
personal data base that is identical to the data record
punched on cards except in the data itself. The storage
routine replaces the data in the existing data record with
the data in the new data record, The storage routine will

update only the data portion of a data re;ord: the other

items (property code, contributor code, etc.) cannot be
updated,

An update deck is made up of punched cards containing

the updated records. A control card containing the words,
UPDATE DECK '

in free format is the first card of an update deck. The

punched data records follow the control card.

7.3 Deleting Existing Data

Data records that exist in a personal data base can be
deleted by using the property system's storage routine, To
delete an existing data record, the entire data record
excluding its data part is punched onto cards. The storaye

routine searches the users personal data base for an exact
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duplicate of the data record to be deleted., When the data
record is located in the users personal data base it is
deleted. The punched version of the data records to be

deleted together with a control card make up a deletion deck.

If data record 1 from Figure VII-3 was to be deleted
from a personal data base, the punched version of the data
record (without its data) would take the form,

(425,153,300."400.,"92%:10120(2)) .
Notice that the above consists of the characteristic part of

the data record together with the data base component code(s).

The control card containing the words,
DELETION DECK p

in free format is the first card of the deletion deck. The
punched data records (without their data) to be deleted follow.

the control card.

7.4 Storage control Deck

The additi: 1 deck, update deck, and deletion deck are
assembled into a single deck of cards that direct the data
storage routine to perform its function, Figure VII-4

illustrates the storage control deck.
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password card

=

addition deck
(when necessary)

B update deck 7
(when necessary)

" deletion deck
(when necessary)_

end card

Storage Control Deck
Figure VII-4

The first card of a storage control deck is the password
card. The password card has two forms, One form is used only

tlhie first time personal property data is added to a personal
data base. The form of the card is,

NEW PASSWORD = user provided password .

Any password may be chosen by the user. The password is

stored by the property system and must be supplied by the
user each subsequent time that modifications to the user's
personal data base are requested. The second form of the

password card is

OLD PASSWORD = user piovided password .

The last card of the storage control deck is the end

card. The end card contains the words,

END STORAGE DECK '

2'4

in any column of the card (free format).
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Arpendix III ~ontains the control cards required to
execute the property system's storage routine on the University
of Pennsylvania‘'s IBM 360/75 computing system,

Appendix IV contains the Backus Naur Form specification
of the storage control deck.
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CHAPTER VIII

PROPERTY ESTIMATIOM ROUT INES

8,1 Definition

A property estimation routine is a FORTRAN function or
subroutine subprogram that computes a property value or
property values using property data stored in the data base -
and/or property values generated by other estimation routines,
The advanced user frequently has recourse tce add new property
estimation routines to be used with new property data in the
estimaéion of physical property values, New property estima-~
tion routines are prepared in the form of PORTRAN subprograms
and entered into the estimation routine library. The new
property estimation subprogram is available for use with
new and/or updated data records that refer to its routine
number.

Property estimation subprograms become a part of the
property system when they are entered into the system's
library, therefore, their preparation is regulated by a set
cf conventio. 1wuch more restricting than those governing
the preparation of an application program. The remainder
of this chapter discusses the conventions for preparing
estimation rcutines and for entering the routines into

the gsystem's estimation routine library.
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8,2 Estimation Routine Types

There are three types of estimation routines: (1) pure
chemical property estimation routines that compute a single

property value for a pure chemical, (2) mixture property

estimation routines that compute a single property value for .

a mixture, hereafter called single-valued mixture property
estimation routines, and (3) mixture property estimation
routines that estimate a single property value for each com-
ponent of a mixture, hereafter called multiple-valued mixture
property estimation routines, Notice that the three types of
estimation routines correspond to the three types of gener-

alized retrieval routines, PPCP, PPCF, and PPCS.

8.3 BEstimation Routine Conventions

The estimation routines are an integral part of the
property system and must conform to conventions concerning
their structure. That is, each estimation routine must follow .

the conventions outlined below:

l. An estimation routine is a FORTRAN subprogram, Each
type of estimation routine has a standard form for

its FUNCTION statement or SUBROUTINE statement.

Pure Chemical Property Estimation Routines are

FUNCTION subprograms having the following . :

standard FUNCTION statement,
R>.L FUNCTION NAME (MP,V1,V2, INDEX, IC)

where the arguments are:

<

NAME - the name of the estimation routine

MP - physical property code, an integer
variable

211
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V1

V2

INDEX

IC

first independent variable, a real
variable

second independent variable, a real
variable

pure substance index, an integer
variable

completion code, integer variable

Single~Valued Mixture Property Estimation
Routines are FUNCTION subprograms having the

following standard FUNCTION statement,

REAL FUNCTION NAME (MP,V1,6V2,NCOMP, IC)

where the arguments are:

NAME
MP

vl

NCOMP

IC

the name of the estimation routine
physical property code, an integer
variable

first independent variable, a real
variable

second independent variable, a real
variable

m.le fraction array, a real singly
subscripted variable

number of mixture components, an
integer variable

completion code, an integer variable

Multiple-Valued Mixture Property Estimation

Routines are SUBROUTINE subprograms having the

following standard SUBROUTINE statement,

SUBROUTINE NAME (MP,V1,V2,X,RES,NCOMP, IC)

where the arguments are:

ARG
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the name of the estimation routine

physical property code, an integer

variable
vl - first independent variable, a real

variable -!
V2 - second independent variable, a real E

variable . E
X - mole fraction array, a real singly ?

subscripted variable
RES - result array, a real singly sub-

scripted variable

NCOMP - number of mixture components, an
integer variable
IC - completion cod¢, an integer variable

Each argument of the FUNCTION and SUBROUTINE statements

has been previously discussed in Chapter V, with _;
the exception of the variable representing the number

of mixture components (NCOMP). The number of -
mixture components is supplied to the estimation

routines by the generalized retrieval routines via

the variable NCOMP,

An estimation routine must not alter the value of
any of its arguments with the exception of the result

array (RES) aud the completion code variable (IC).

Each estimation routine must initialize the com-
pletion code variable to zero, If the estimation
routine performs check procedures during computation
and determines that an abnormal condition exists,
adversely affecting the property value estimated,

the completicn code variable is assigned a non-zero
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value, Each abnormal condition that can arise in

an estimation routine is assigned a unique completion

code,

4, An estimation routine contains no WRITE, PRINT,
1
READ, or STOP statements.

S. An estimation routine may not use blank or labelled
COMMON ,

8,4 Requesting Property Values and Data

An estimation routine may require préperty values pro-
duced by other estimation routines and property data in the
form of constants, correlation coefficients, or tables con-

tained in data records stored in the data base,

8.4,1 Requesting Property Values

In preparing property estimation routines, requests for
property values are coded as FORTRAN function and subroutine
call statements that call the generalized retrieval routines,
The PPCP generalized retrieval routine is used to request |
pure chemical property values, the PPCF generalized retrieval
routine is used to request a single mixture property value,
and the PPCS generalized retrieval routine is used to
request property values for each component of a mixture.

Due to the lack of the recursive property in FORTRAN sub-
programs, (discussed in section 8.6) the calls to generalized
retrieval routines coded at the time of preparation of the
estimation routine are changed to calls to one of the
corresponding communication routines, The modification

of calls to the generalized retrieval routines takes place
prior to entering the estimation routine intc the estimation .
routine library, and is discussed in the last section of
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this chapter. For clarity in the discussion of the preparation
of estimation routines, requests for property values of pﬁre

chemicals and mixtures are discussel as calls to the generalized
retrieval routines. The conventions for calling the generalized h
retrieval routines are discussed in Chapter V, "The Application

Program",

8,4.2 Requesting Property Data

Estimation routines often require property data in the
form of constants, correlation coefficients, and/or tables,
For example, an estimation routine that evaluates a third
degree polynomial requires data in the form of four correla-
ticn coefficients associated with the polynomial, Property
data for chemicals are requested by and supplied to
estimation routines using the property system's retrieval
gervice routines., Within the estimation rcoutines, invariant
information identifying the requested property data is supplied
to the retrieval service routines in the form of arguments |

(similar to the generalized retrieval routine arguments),

There are three retrieval service routines that can be
called by an estimation routine, The FORTRAN function sub-
program SER]l retrieves stored constants, the FORTRAN
function subprogram SER2 retrieves a stored correlation
coefficient, and the FORTRAN subroutine subprogram SER3

retrieves a stored table,

Retrieval Service Routine SER1

The retrieval service routine SERl retrieves constant
property data (data type 1) contained in a data record that
is stored in the data base, The standard request for con-

stant property data such as critical temperature or acentric
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factor using the SER1 routine is,

CONST = SER1 (MP,V1,V2, INDEX),

The arguments of the SERl routine are:

MP - physicgl property code, an integer or
integer variable '

vl - value of first independent variafle
associated with the property, a real
number or real variable

V2 -vvalue of second independent var:able
associated with ﬁhe property, a real
number or real variable

INDEX

pure substance index number, an integer

or integer variable

Appendix I of this thesis contains lists of the estab-
lished property codes. Associated with each property code
are as many as two independent variables. If the property
code does not have two independent variables associated with
it (for example 1006 = molecular weight has no associated
independent variables) a constant (preferably zero) must be
entered in place of each missing independent variable. The
pure substance index identifies the chemical for which the
property data is requested. The pure substance index is
given a value of zero, if the requested property data is for
a mixture rather than for a pure chemical, Figure VIII-l
illustrates the use of the SERl retrieval service routine,
In Figure VIII-1, the SERl rcttine is used to obtain the
critical temperature and pressure for the components of a
mixture from within a multiple-valued mixture property
estimation routine, Since the SER]1 routine is a FORTRAN
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function subprogram, a call to SER1l can be incorporated into
an arithmetic assignment statement as illustrated in the

example.

SUBROUTINE FUGL (MP,T,P,X,RES, NCOMP, IC)
DIMENSION X(25),RES (25)
IC=0

DO 20 K=1,NCOMP
TR=7/SER1 (1001, T, P,K)
PR=P/SER1 (1002,T, P,K)

20 CONTINUE
RETURN
END

' Example bse of the SERl Routine
Figure VIII-1

e

v The retrieval service routines do not perform phase
checking, therefore, only phase specified physical property
codes are allowed as arguments to the retrieval service

routines,

Retrieval Service Routine SER2

The second retrieval service routine is SER2. The SER2
routine returns one of the coefficients in a set of correla-
tion coefficients contained in a data record. The standard
request for a correlation coefficient (data type 2) using
the SER2 routine is,

223
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COEFF = SER2 (MP,V1,V2, INDEX, ISUB),

The arguments of SER2 are:

MpP ~ physical property code, an integer or
integer variable

\'A - value pf first independent variable
associated with the property, a rcal
number or real variable

V2 - value of second independent variable
associated with the rroperty, a real.
number or real variable

INDEX - pure substance index number, an integer

or integer variable
ISUE - subscript of the correlation coefficient,

an integer or integer variable

The arguments to SER2 are identical to those of SERl with

the exception of an additional argument ISUB, The argument
ISUB indicates the particular correlation coefficient to be
retrieved from a data record by SER2., If there are N
correlation coefficients, then ISUB can take on the values
1,2,....,N.‘ If the SER2 routine is called upon with a zero
value for ISUB, SER2 returns the value N, the number of
correlation coefficients in the set. Figure VIII-2 illustrates
the use of the SER2 routine in the estimation routine POLYD3
for evaluating a third degree polynomial using coefficients

stored in a data record.
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REAL FUNCTION POLYD3 (MP,V1,V2,INDEX,IC)
1C=0 :
" CO=SER2 (MP,V1,V2, INDEX, 1)
C1=SER2 (MP,V1,V2, INDEX, 2)
C2=SER2 (MP,V1,V2, INDEX, 3)
C3=SER2 (MP,V1,V2, INDEX, 4)
POLYD3= ( (C3*V1+C2) *V1+Cl) *V1+CO
RETURN
END

Example Use of the SER2 Routine
Figure VIII-2

Retrieval Service Routine SER3

The third retrieval service routine is the FORTRAN sub-
routine SER3. The SER3 routine returns sets of values of
two independent variables together with the tabulated pro-
perty data. The standard request for tabular property data
(data type 3) using the SER3 routine is

CALL SER3 (MP,V1,V2, INDEX,Nl,VINDl,6 N2,VIND2, TABLE)
The arguments of SER3 are:

MP - physical property code, an integer or
integer variable

vl - value of first independent variable, a
real number or real variable

V2 - value of second independent variable, a

real number or real variable

INDEX - pure substance index number, an integer
or integer variable
N1l - number of tabulated values for the first

independent variable, an integer variable
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VIND1 first independent variable value vector,

a real singly subscripted variable

Y]
LN ]
!

number of tabulated values for the second
independent variable, an integer variable
VIND2 - second independent variable value vector,

a real singly subscripted variable

TABLE - tabulated property data array, a real

doubly subscripted variable

The arguments representing physical property code, independent
variable values, and pure substance index have been discussed
earlier in this section of the manual, The variables N1 and
N2 must contain the dimensions of the array TABLE as specified
in the DIMENSION statement of the estimation program when

the SER3 routine is called. The variable N1 contains the
number ¢f rows and N2 contains the number of columns that

are specified in the estimation routine's DIMENSION state-
nent for the array TABLE. The SER3 voutine replaces

the value of N1 with the number of rows found in the array
retrieved from a valid data record (not always equal to the
specified value of N1), and replaces the value of N2 with

the number of columns found in the retrieved array of
property data. Upon completion of SER3 retrieval of data

from a valid data record, the first indzpondent variable
vector VINDl contains the tabulated values for the first
independent variable vector, VIND2 contains the tabulated
values for the second independent variable (one value for
each column of the retrieved property data array), and

array TABLE contains tabulated data, all for subsequent

use in the estimation routine. Each row of the array TABLE

contains the tabulated property data for a single value of

22%
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the first independent variable contained in VINDl, and each
column contains the tabulated property data for a single
value of the gsecond independent variable contained in VIND2,
If the property data is tabulated as a function of only one
independent variable, the variable N2 wiil be returned to
the estimation routine with the value zero, Pigure VIII-3
illustrates the use of the SER3 retrieval gervice routine.

REAL FUNCTION INTERP (MP,V1,V2, INDEX, IC)
DIMENSION Y(20),X(20),7T(20,20)
IC=0

NY=20

NX=20

CALL SER3 (MP,V1,Vv2, INDEX,NY,Y,NX,X,T)
DO 10 I=1,6NY

pO 10 J=1,RY

BExample Use of the SER3 Routine
Fiqure VIII-3

8.5 Example Estimation Routine

The example estimation routine ia a single valued
mixture property estimation routine named HLIQ. The routine
computes the liguid enthalpy of a mixture-using a correlation
to determine a zero pressure enthalpy and using the gener-
slized retrieval routine to obtain en enthalpy pressure
correction, Figure VIII-4 illustrates the loyic flow
diagram of thoe «stimation routine and Figure VIII-5 illustrates

the program,
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( stare )

Initialize

constants and
completion code.

Temperature € 0.01? es Set completion
code: to 1,

no

Request molecular Compute zero -

wei?hts using SERI1, pressure enthalpy.

| |

Request pressure

Request coefficients correction using

using SER2, PPCF.
Molar average Campute corrected
the coefficients, enthalpy.

y
( Return >.___

Estimation Routine Logic

Figure VIiII-4
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REAL FUNCTION HLIQ(MP,T,P,X,NCOMP,IC)

THIS. 1S AN EXAMPLE SINGLE-VALUED MIXTURE
PROPERTY ESTIMATION ROUTINE.

DIMENS ION X(20),C(20)
INITIALIZE VARIABLES
ICx0
DO 10 K=1,5
C(K)=0.0
CHECK TEMPERATURE
{FC T .LT. 0.01 ) GO TO 99
REQUEST COEFFICIENTS AND MOLECULAR WT. FOR
EACH COMPONENT, AND THEN AVERAGE THE
COEFFICIENTS.
DO 20 K=1,NCOMP
IFCACK) . LT.0.001) GO TO 20
XMWT=SER1(1006,T,P, K)
DO 15 I=1,5
CC1) = (1) + SER2(MP,T,P,K, )X (K) XMWT
CONT I NUE
COMPUTE ZERO PRESSURE ENTHALPY
ZPH = T#(C(1)+T#(C(2)+T*C{3)))+C(L)/T+C(5)
REQUEST PRESSURE CORRECTION (PROPERTY 412 )
PCOR = PPCF( 412,T,P,X, 1K)
COMPUTE ENTHALPY AND RETURN

HLIQ = ZPH - PCOR
RETURN

SET COMPLETION CODE
IC =1
HLIQ = 0.0

RETURN
END

Example Estimation Routine

Figure VIII-5
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8.6 Entering an Estimation Routine Into the Library

All property estimation routines r=side in the property
system's library. At present only the system librarian can
enter an estimation routine into the estimation routine
library. The librarian must alter the new estimation
routine to modify all calls to generalized retrieval routines.
Since estimation routines contain calls to the generalized
retrieval routines, the generalized retrieveal routines

must have recursive capabilities. FORTRAN subprograms

cannot directly or indirectly be called recursively. There-

fore, modifications to the calls on generalized retrieval
routines are made prior to entering the routine into the

library.

The modification that is made is a subtitution of a
call to a communication routine for the call to a generalized
retrieval routine. There is a set of communication routines
corresponding to each type of generalized retrieval routine.
Each communication routine has the capability of calling a
set of estimation routines. In setting up the communication
routines care is taken to insure that no two estimation
routines that require property values computed by each other
is called by the same communication routine, By taking
such precautions the communication routines partition the
estimation routines into sets of unrelated routines. This
procedure insures that no estimation routine is called

recursively.

At present the responsibility for partitioning the
set cf estimation routines falls upon the system librarian,
A processor system should be developed to partition the set
of estimation routines and to modify calls to the generalized
retrieval routines from within an estimation routine., If

such a system is developed the "recursion" problem will be
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solved and the system librarian will be relieved of a tedious

task.

Appendix I contains the current list of property estima~
tion routines that are resident in the system's library. A

list of completion codes for each estimation routine may also

be found in Appendix I,
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CHAPTER IX

CONCLUSION AND RECOMMENDAT IONS

9,1 Conclusion

A prototyre system for storage and retrieval of physical
properties of pure chemicals and mixtures has been described,
The system allows the engineer to prepare general purpose
application prograias that do not require programming modifica-
tion when chemical mix and/or operating conditions change.
Variant and invariant information concerniné the attributes
of requested physical properties are separated, allowing
general purpose application programs to be written and
allowing limited or complete control over property data and
value retrieval. The system has a data base and library thus
allowing storage of property data in several forms. Storage
routines allow the user to add, update or delete property

information,

The property system has been used to provide property
values to a large computer-aided design system created by
Mr. Hajime Komaki (13). The property system performed
successfully in providing property values for design and

simulation of a natural gasoline plant studied by Mr. Komaki.

9.2 Recommendations

In using the property system many features that would
enhance the system and would allow full scale implementation

have been recognized,
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Provision for allowing several different sets of
engineering units to be used should be inplemented.
‘(for example, temperature in °K,°R,°C,°F and
pressure in atm,, psia, mm/Hg) )
A preprocessor should be developed that would

scan an application program before execution to
determine the required properties, and then generate
a personal property set containing only the

property data and estimation routines required.

. The system should be expanded to allow retrieval

of property data from disk together with retrieval
from the core resident data base.

The application program should be given the
capabiiity of altering the retrieval constraint
table during execution,

A new attribute for estimation routines should

be added to the seven existiug, The attribute
should give indication of time requirements

for property estimation.

A trace feature should be incorporated into

the system in order to determine, after execution,
the estimation routine used, and the time required.
The system should have a mode of operation for
generating tables of estimated property values

and then generating a correlation for the
property. This would allow cons iderable savings

of time during application program execution.
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8. Assembly language recursive generalized retrieval
,routines should be written to eliminate the need

for the communication routines.

9, A system for interrogation of the property system's
data base is needed to simplify the task of
determining the available proper“y data. 'The
system could be implemented in a time shared

environment to allow interaction.

10. The property system should be implemented in a
time shared environment to allow storage and

retrieval of property data and vilues interactively

at a terminal,
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Appendix I

Appendix I contains the lists of property codes, data base
component codes, data type codes, and estimatiorn routines, The
lists of codes used by the property system are the lists of
assigned codes, Physical property data does not exist in the
master data base for all property codes and for each data base
component code, At present the user must use the property
system to determine if property data is available. A system that
allows the user to inquire concerning availability of property

data is planned.
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A, Physical Property Codes

Code . Independent Variables
100 Density T P
101 - vapor T P
102 - liguid

200 Fugacity Coefficient T P
201 - vapor '
202 - liquid

300 Activity Coefficient T P
302 - liquid

305 Equilibrium Coefficients T P
400 Enthalpy T P
401 - vapor

402 . = liquid

411 Enthalpy Pressure Correction - vapor T P
412 - liquid

425 Zero Pressure Enthalpy T P
430 Heat Capacity T P
431 - vapcr

432 - liquiad

£15 Bubble Pt. Temperature P -
516 Dew Pt. Temperature P -
$17 Temperature Enthalpy P
£18 Vapor Fraction T P

1001 Critical Temperature - -
1002 Critical Pressure - -
1003 Acentric Factor -

1004 Solubility Parameter - -

1005 Molar volume - -

1006 Molecular Wt, - -

1007 Melting Pt. Terderature - -
J3k
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B, Data Base Component Codes

Compound
or
Element

Hydrogen
Methane
Ethane
Propane
i-Butane
n-Butane
i-Pentane
n-Pentane
neo-Pentane
n-Hexane
n-Heptane
n-0Octane
n-Nonane
n-Decane
n-Undecane
n-Dodecane
n-Tridecane
n-Tetradecane
n-Pentadecane
n-Hexadecane
n-Heptadecane
Bthylene
Propylene
1-Butene
Cis-2-Butene

Trans-2-Butene

i-Butene
1,3-Butadiene

Data Base
Component

Number

NN RN RN bt bt ot ot b s ot oot pet
ﬁUNHOOQQOW#wNﬂOc@QC\U\#UNH

25
26
27
28

C., Data Type Codes

wNn >0
L]

Null data

Constant data
Correlation coefficient data
Tabular data

Compound
or

Element

l-Pentene
Cis~2~Pentene
Trans-2-Pentene
2-Methyl-1-Butene
3-Methyl-1-Butene
2-Methyl-2-Butene
l-Hexene
Cyclopentane
Methylcyclopentane
Cyclohexane
Methylcyclohexane
Benzene

Toluene

O-Xylene
M-Xylene

P-Xylene
Ethylbenzene
Ammonia

H O

Eéhyl Alcohol
Acetone
Nitrogen
Oxygen

Carbon Monoxide
Carbon Dioxide
Air

Argon
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Data Base
Component
Number

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
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D, Estimation Routines:

Routine number: 1

Name - ¢ BWRLD

Type

Purpose t BWRLD computes liquid density of a mixture
(property code 102) using the Benedict-
Webb-Ruben equation of state. |

FUNCTION, mixture routine

Requirements: BWRLD requires the eight BWR coefficients
AO,BO,CO,a,b,c,a,y (Ao the first, -~ the
eighth) for each component of the mixture
0 - 0K

Completion

Codes 1l - Non~existent

2 - All mole fractions = 10-6, BWRLD = 0,0
Routine number: 2 i
Name : BWRVD
Type : PUNCTION, mixture routire
Purpose : BWRVD computes vapor density of a mixturc

(property code 101) usirg the Bencdict-
Webb-Ruben equation of cstate,
Requirements: BWRVD requires eight BWR coeificients
AO'BO'CO‘
the cighth) for each corpcnent of the

a,b,c,a,y (Ao the first, »,

mixture,

Completion : 0 - OK

Codes 1l - Non-existent

2 - All mole fractions 10-6. BWRVD = 0.0
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Routine number: 3

Name H
Type 3
Purpose H
Requirements:
Completion :
codes

ggutine number: 4

Name :
Type 3
Purpcse :

Requirements:

Completion :
codes

ZPH
FUNCTION, mixture routine
ZPH compute zero pressure enthalpy
(property code 425) using the equation
Hy = ¢;T + czrz + cara + c4/r-+ Cg
(1) ZPH requires the five coefficients
cl.cz,ca,c4,c5, for each component of the
mixture. Reference: API Data Book
{2) molecular weight of each component
(property code 1006)
0 - OK
1l ~ Temperature < 0,0,

ZPH = 0.0

BUBTP1

FUNCTION, mixture routine

BUBTP1l camputes the bubble point temperature

of a mixture (property code 515).

(1) liquid fugacity coefficient foxr each

component (property code 202)

(2) liguid activity coefficient for

each component (property code 3C2)

(3) vapor fugacity coefficient for each

component (property code 201)

0 - OK

1 - No nixture components. BUBTPl = 0.0

2 - Non-existent

3 - Temperature iteravion failed, BUBTP]l
= last iteration temperature
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Routine number: 5

Type
Purpose

Requirements:

Completion
* codes

Routine number

Type
Purpose

6

4 - Equilibrium coefficient iteraticn
failed. BUBTPl = last iteration

temperaturc,

DEWTP1

PUNCTION, mixture routine

DEWTPl computes the dew point temperature
of a mixture (property code 516)

(1) vapor fugacity coefficient for each
component (property code 201)

(2) liquid fugacity coefficient for each
component (property code 202).

(3) liquid activity coefficient for each
component (property code 302)

0 - OK

1l - No mixture components. DEWTPl = 0.0
2 - Non-existent

3 - Temperature iteration failure

DEWTPl = current value

E
]

Bquilibrium coefficient iteration

failure., DEWTPl = current value,

BWRLPC

FUNCTION, mixture routine

BWRLPC computes the liquid enthalpy
correction to zerc pressure enthalpy
due to pressure (property code 412)
using the Benedict-Webb-Ruben equation

of state
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Requirements:

Completion
codes

Routine number: 7

Name

Type

Purpose

Requirements:

Completion
codes

. each component (property code 201)

(1) eight BWR coefficients A_,B_,C

o olalbl

c,q,y for each component

(2) liquid density (property code 102).
0 ~ OK

1l - Non-existent

2 - All mole fractions < 10-6. BWRLPC = 0,0

3 - Density s 10, BWRLPC = 0.0

VFRAC

FUNCTION, mixture routine

VFRAC computes the vapor fraction of a
mixture (property code 516).

(1) liquid fugacity coefficient for
each component (property code 202)

(2) vapor fugacity coefficient for

{3) liquid activity coefficient for

each component (property code 302Z)

0 - OK

1 - vapor fraction converged, VFRAC?1,0°
VFRAC = 1.0

2 ~ Vapor fraction iteration failed
VFRAC = 0,0

3 - Equilibrium coefficient iteration
failed. VFRAC = 0,0

4 - vVapor fraction converged, VFRAC < 0,0,
VFRAC = 0.0
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Routine number:

Name

Type
Purpose

Requirements:

Completion :
codes

Routine number:

Name

Type

Purpose

Requirements:

8

FUGL1

SUBROUTINE, mixture routine

FUGL1 computes the liquid fugacity
coefficient for each component

(property code 202). The method is

that discussed by Chao-Seader (AIChE
Journal, 7,598, 1961), Coefficient by
Grayson = Streed. (Sixth World Petroleum
Congress, Section VII, Paper 20 - PL7/,
June 1963).

(1) coefficients C
Cc

c..Cc,.,C

o' ll 2 31
7,c8,c9 for each component.
(2) critical temperatuvre (property code

lo0l).

C4,C5,C6,

(3) critical pressure property code (1002)
(4) acentric factor (property code 1G03)
0 - OK '

ACTL1
SUBROUTINE, mixture routine
ACTL1 computes a liguid activity co-
efficient for each component (property
code 302). The method is that discussed
by Chao-Seader, (AIChE, Journal, 7,598,
1961)
(1) molar volume @ 25°C (property code
1005)
(2) solubility parameter (property code
1004)
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Completion :
codes

Routine number:

Name

Type

Purpose

Requirements:

Completion
codes

Routine number:

Name

Type
Purposeq

Requirements:

»

Completion
codes

0 - OK

10

FUG

SUBROUTINE, mixture routine
FUG computes a vapor fugacity coefficient
for each component (property code 201
using the Benedict-Webb-Ruben equation

of state. ‘

(1) eight BWR coefficients A_,B

0’70’
a,b,c,a,ry for each component

CO'

(2) vapor density (property code 101),
0 - OK

1 - All mole fractions < 10-6, XFUG(I) = 1.0

2 - Density s 10-6, XFUG(K) = 1.0

KVAL

SUBROUTINE, mixture routine

KVAL computes a equilibrium coefficient

for each component (property code 305).

(1) ligquid fugacity coefficient for each
component (property code 202).

(2) vapor fugacity coefficient for each

component (property code 201)

(3) liquid activity coefficient for each
component (property code 302).

0 - OK

1 - vapor fraction converged > 1.0

2 - Vapor fraction failed to converge

XK(I) = latest iterated value.
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Routine number: 12

Name

Type
Purpose :

Requirements:

Completion
codes

Routine number: 13

Name

Type

Purpose s

Requirements:

3 - Equilibrium coefficient iteration

failed, XK(I) = latest iterated
value,

4 - vapor fraction converged < 0,0

ENTH

FUNCTION, mixture routine

ENTH computes the enthalpy of a vapor
or liquid mixture (property code 401 or
402). |

(1) zero-pressure enthalpy (property
code 425) |

0 - OK

1l - property code does not end in ;1"

or "2 ".

TSUBH

FUNCTION, mixture routine

TSUBH computes iteratively the temperature
given enthalpy of a mixture (property
code 517)

(1) bubble point temperature (property
code (515)

(2) dew point temperature (property
code 516)

(3) vapor fraction (prcperty code 518)
(4) equilibrium coefficients (property
code 305)
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(5) vapor enthalpy (property code 401)

(6) liguid enthalpy (property code 402)
- OK

Completion

codes
- Bubble point failed, TSUBH undefined,

- Dew point failed, TSUBH undefined

0
1
2
3 - Vapor fraction failed, TSUBH undefined.
4 - K-valued failed. TSUBH undefined.

5

- Temperature iteration failed. TSUBH =

last iteration value.

E, Property System Messages

1, "DATA BASE SUCCESSFULLY INITIALIZED"

Generating Routine : COMP
Reason : All is well; initialization complete,

2. "BUBBLE PT. FAILURE"

Generating Routine : PPCF or PPCS "

Reason : Phase determination was required and

bubble point determination failed.

3, "DEW PT, FAILURE"

Generating Routine : PPCF or PPCS j

Reason : Phase determination was required

and dew point failed.

4, "VAPOR FRACTION FAILED" #

Generating Routine : PPCF or PPCS

Reason : Phase determination was required

and vapor fraction failed,

S ——
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5. "ERROR*ERROR*PPnF NOT AVAILABLE"
Generating Routine : PPCPF

Reason : Communication routine PPnF (n an

integer) is required but has not been
entered into the library., Contact

system librarian,

6. "ERROR*ERROR*PPCF -~ COULD NOT DISTINGUISH ROUTINE TYPE"

Generating Routine : PPCF, PPCS or PPCP

Reason : The system library directory contains

an error, Each estimation routine

should have "S" or "F" associated
with it (SUBROUTINE or FUNCTION).

The routine in grestion did not

7. "ERROR*ERROR*PPaS NOT AVAILABLE"
Generating Routine : PPCS
Reason : Same as 5,

8. "ERROR*ERROR*PPnP NOT AVAILABLE"

' Generating Routine : PPCP

Reason : Same as 5,

9, "ERROR*ERROR*WRONG PPn[F)CALLED** .¢n(F)"
s S
P P
Generating Routine : PPnF,PPnS, or PPnP (n an integer)

Reason : Catastrophic malfunctior.. Contact

— __ P

system librarian., Data base must be

: rebuilt,
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10, "ERROR*ERROR*REQUESTED ESTIMATION ROUTINE NOT ENTERED*¥#

PPn[EY
(]
P

Generating Routine : PPn¥F,PPnS,PPnP (n an integer)

Reason : Calling statement for estimation
routine has not yet been entered.

Contact system librarian.

11, "**WARNING***COMPLETION CODE = n, FOR ROUTINE NUMBER

n [T X
2

Generating Routine : PPnF,PPnS, or PPnP (n an integer)

Reason : An estimation routine encountered computa-
tiun difficulties. See section in
Appendix I concerning estimation routines

for completion codes.

12. “ERR N e < TEXT >"

Generating Routine : Data base storage and retrieval

routines

Reason : Each error message is numbered and
contains text explaining the error
that came up. Text is self explanatory.
A "POST MORTEM" dump of important variables

is made and the system aborts,

N
£
-~
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Appendix II Loqic Diagrams

A, Pure Chemical Property Value Retrieval Using PPCP

Invariant information provided:
, 1. property code
2, pure substance index

3. independent variable values

Logic diagram:

( stare )

p

Perform phase

determination.

¢

Consult Component
Identification
Table to get data
base component code.

J

. Any valid data

records found :in | no bigOR

data base? A/// AZORT
//’»Has a retrieval no Select first valig
i constraint been data record

specified? encountered.

]
s &
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Do any valid data

Is the constraint

records meet the no
constraint? absolute?

lyes lno
Select first valid Print message and
data record meeting select first valid
the constraint, data record

encountered,
G}

| |

Is an estimation no Return stored data

routine required?

[

as property value,

Call estimation
routine for
property value,

Return computed
property value to
application program,

‘——-CReturn j

24y
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B. Mixture Property Value Retrieval Usina PPCF or PPCS

Invariant information provided:

1. property code

. 2, independent variable values

3. mole fractions

Logic diagram:

oo )

Perform phase

determination,

Consult Compcnent
Identification Table
to get data »ase
ccmponent codes.

L |

Any valid mixture

in data base?

yes

2

data recordéds found tol

Call FPCP
repeatedly,onc2
for each mixtuce
component.

o

\

g
PPCF or PPCS PPC&l
called?

PPCF

Compute averace |

property value J
using mole fraction

-

Return average
property value to

application program.

Retur: sct of
proper-y valiecs %o
application program.

Return }———J
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‘Has a retrieva;‘\\\;
constraint been
specified? 4‘//}

yes

no

Do any valid

mixture data no

records meet the
constraint?

yes

Select first valid
mixture data record
meeting the
constraint,

Is the constraint

absolute?

nok

Select first valid
mixture data
record encountered.

Is an estimation no

routine required?

yes

Call estimation
routine for
property value,

4

Return property
value(s) to the
application
program,

Return stored data
as property value.
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Appendix IIT U of P IBM 360/75 JCL

A, Execution of an Application Proaram

//name JOB (nnnn,bbbb), 'soc. sec, . ,CLASS={:}
//STEP1 EXEC FORTGCLG
//FORT .SYSIN DD *
[ Application Program ]
/*
//LXED.SYSLIB DD DSN=SYS1l.FORTLIB,L "SP=SHR
// DD DSN=(name of property system library),DISP=SHR

//GO.FTO3FOC1l DD DSN=(name of personal data base), DISP=SHR
//GO.FTilFO01 DD DUMMY
//GO.SYSIN DD *

variant Information Deck

Application Program's Data
/*

B, Executior of Storage Routine

J
//name JOB (nnnn,bbbb), 'soc. sec. no.‘,CLASS=lH]

//JOBLIB DD DSN={(name of property system library), DISP=3HR
//STEP1l EXEC PGM=STORAGE

//FTO3F001 DD DSN={(rame of master data base), DISP=SHR
//FTO4F001 DD DSN={name of personal data ba<c), K DISP-SHR
//FTO6FO01 DD SYSOUT=A

//FTOSFOOL1 DD *

[ Storage Control Dock]

/‘Q

)
S 4
“~
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Appendix IV Input Lanquage Specification

This appendix contains the language specification
in Backus Naur Form of the variant information deck and
the storage control deck,

In the following specification, all terminal symbols
(primitives) are underlined:; they are to be considered

self referencing symbols,

A, Variant Information Deck

{variant information deck> ::= BEGIN VARIANT DATA <decks> END .
{decks> ::= <{component identification deck>!

¢component identification deck><retrieval const.deck>
{component lident.ficatlion deck> ::= COMPONENT ID TABLE
{component list)>;
{component ilist> ::= {data base component code) |
{component list><{delimiter><{databasecomnponent>
(delimiter> ::= . { blank
{retrieval const. deck> 1:= RETRIFVAL CONSTRAINTS<constraint 1lst>:
Zconstraint 1istd> ::= {constraint entry>|<{constraint entry>blank
{constraint entry>
{constraint entry> ::= {property entry><delimiter>
<allowed error entry><delimiter>
{routiive no., eatry><{delimiter>
Ccontributor entry><{delimiter>
{degree entry>
{property entry> ::= =|<interger>
¢al'owed er-or entivy> ::= = | <interger>}

(routine no., entry> ::= = | <interger> | C

"’108" é\bd
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{contributor entry> ::= = | <interger>

(degree entry) ::= = | »

B. Storage Control Deck

{storage control deck> ::= {password card><control deck>
END STORAGE DECK
{password card> ::= QLD PASSWORD = <{password>|
NEW PASSWORD = <password> _ .

{password)> ::= <(interger>

(control deck)> ::= <addltion deck><update deck><{deletion deck>
¢addition deck> ::= ADD|TION DECK <data record deck>
¢(data record deck) ::= {data record> | <(data record deck>
{data record>

(data record)d ::= ( <characteristic part> )'<data group>!
(characteristic partd ::= {property entryds.<{contributor entry2s

{variable range entry>es

{variable range entry>’

{max, error entry>s

Cestimetion routine entry>’
{(data type>
(varlable range entry> ::= = | <real no.> = <real no.>
¢max. error entry> ::= = | (interger>}
¢data groupd ::= = | <data part>|<data group><data part>
(data partd> ::= { <component list> : <data’ )
? ¢data) ::= <{constant datad | <(coefficlent data> | <tabular data>
(constant d&ta> ::= <(real no.>

(coefficient data > ::=® <real no.> | <coefficient data><{real no.>

-109~

I
ShG




. T R —"

Llocd

{tabular data> ::= ( <variable values>)s(<varlable values>)’
{row values> |
The (vartable values> and {row values)> classes caynot
be specified in BNF form. The reader is dlirected to Chapter Vil
for an explanation of tabular data.
{update deck> ::= UPDATE DECK <data record deck>
{deletion deck> ::2 DELETION DECK <deletion record deck>
{deletion record deck> ::= <{(deletion record> |
{deletion record deck><{deletion record>
{deletion record> ::= ( <{characteristic part> 2
{ <component 1lst> ))
The followlng classes are considered primitive :

{interger>
FORTRAN definltion accepted

{real no.>
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