
BOLT BERANEK AND NEWMAN >«c

h
CONSUITING DEVCIOPMENT I E S E A « C H

I
I
t
t
i
1
1
I
L
L
L

tfOSK " ^
^i~%n** 00

©

(^INFORMATION PROCESSING MODcLS AND

^COMPUTER AIDS FOR HUMAN PERFORMANCE

Report No. 2187

Job No. 11431

S* INAL REPORT, SECTION 3

ask 3: PROGRAMMING LANGUAGES AS A

TOOL FOR COGNITIVE RESEARCH

30 June 1971

ISSEÜTTE
A

rv

u

ARPA ORDER NO. 890, Amendment No. 5

Sponsored by the Advanced Reseürch Projects Agency,
Department of Defense, under Air Force Office of
Scientific Research Contract F44620-67-C-0033

Prepared for:

Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va J2151

"DISTRIBUTION STATEkLNT A

Approved for public release;
Dislribuiion Unlimited

V &

C A M B (I 0 G E NEW Y O « K CHICAGO IOS ANGEIES

toc«Ht^CU*«irtcalle^

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge. Massachusetts 02138

INFORMATION PROCESSING MODELS AND COMPUTER AIDS FOR
HUMAN PERFORMANCE TASK 3: PROGRAMMING LANGUAGES AS A TOOL FOR
COGNITIVE RESEARCH

« oc*cm^Tivft NOT«« {Tnm ml up»» am* mihmlw

Final
• »itTHOHtä! fKUSi mam». mtOR MUmU EM«MW>

Wallace Feurzeig and George Lukas

S

DOCUMENT COHTROL DATA R&D
to rl—IHCJII»II W tUt». *m*r ■! •»•wet —< »mumming ummmtmHtm mg» hm »nimd »»— mm mmmaU rmpoti It €lm»aUI»4}

tm. mi PONT SKCURITV CLAMtriCATION

UNCLASSIFIED
26. «nouP

F44620-67-C-0033

Mb TOT4V NO.

134
»». NO. or mm

Mu OHiSINATON't NCPOHT MUM«««!*»
5 4- (9 Appendix)

•». OTMCM MK^OMT NOIt» f*V «KM» niMllW «kaf «Mr *• a

AFOSR-TR-7 1-27 91

Approved for public release;
distribution unlimited.

TECH, OTHER

!■■ ■»OMWmM«MII.IT«H« «CTIWITV

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (*l~)
1400 WILSON BLVD

 ARLINGTON, VIRGINIA 22209

b

Through study and analysis of data from previous teaching, several
linguistic and conceptual difficulties In the way of acquiring the
skills of problem-solving were Identified. The LOGO programming
language was taught to a group of teachers to explore Its use as
the basis for a course on mathematical problem-solving. L0G0-based
courses In problem-solving were given to two groups of students with
well-established difficulties in formal and mathematical work. Based
on these teaching experiments, LOGO teaching sequences for an intro-
ductory problem-solving course were developed. An experiment was
carried out to evaluate the validity of standard test measurements
of achievement level. Programs were developed for monitoring,
recording, and displaying students' problem-solving interactions
with LOGO. A remote LOGO-controlled vehicle was developed to assist
students in conqeptualizing formal problem-solving tasks in a

!

concrete context. K~
• .. -

■

DD .^..1473 UNCLASSIFIED

r
r

r

r
i

i

i
i
i
i
L

1
I

Report No. 2187 Bolt Beranek and Newman Inc.

INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

FINAL REPORT, SECTION 3

Task 3: PROGRAMMING LANGUAGES AS A

TOOL FOR COGNITIVE RESEARCH

30 June 1971

by

Wallace Feurzeig

and

George Lukas

ARPA Order No. 890, Amendment No. 5
Sponsored by the Advanced Research Projects Agency,
Department of Defense, under Air Force Office of
Scientific Research Contract P44620-67-C-0033

Prepared for
Air Force Office of Scientific Research

1400 Wilson Boulevard
Arlington, Virginia 22209

Approved for public releases
distribution unlinked. ^

■

Report No. 218? Bolt Beranek and Newman Inc

TABLE OF CONTENTS

Page

SUMMARY 11-lv

1. PREFACE 1

2. INTRODUCTION 2

2.1 Problem-Solving and Programming Languages ... 3

2.2 A Brief Description of the LOGO Programming
Language 8

3. THREE LOGO TEACHING EXPERIMENTS 15

3.1 Teaching Teachers - Summer Workshop, 1969 ... 15

3.2 Teaching "Problem Students" - Muzcey Junior
High School, 1970 26

3.3 Teaching Unmathematical Undergraduates —
University of Massachusetts, Boston, 1971 ... 35

4. INTRODUCTORY LOGO COURSE ON PROBLEM-SOLVING 37

H.l Geometry Sequence 38

^.2 Language Sequence 59

4,3 Turtle Sequence 64

5. METHODOLOGICAL DEVELOPMENTS 79

5.1 Dribble Files 80

5.2 The "Turtle" - A LOGO-Controlled Vehicle 91

6. REFERENCES 104

APPENDIX

Report No. 2187 Bolt Beranek and Newman Inc,

FINAL TECHNICAL REPORT

ARPA Order No. 890, Amendment No. 5

Program Code No. 9D20

Contractor: Bolt Beranek and Newman Inc.

Effective Date of Contract: 1 November 1966

Contract Expiration Date: 30 June 1971

Amount of Contract: $80^,896.00

Contract No. PJU620-67-C-0033

Principal Investigators: John A. Swets

Mario C. Grignetti

Wallace Peurzeig

M. Ross Quillian

Telephone No. 617-^91-1850

Title: INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

ii

B
D

i.

Report No. 2187 Bolt Beranek and Newman Inc.

TASK 3: PROGRAMMING LANGUAGES AS A TOOL FOR COGNITIVE RESEARCH
*

1. Technical Problem

This task is an investigation of the use of programming languages

as a means of studying and overcoming difficulties in solving

formal problems.

2. General Methodology

Our method of investigation is by teaching experiments of the

following kind. Trainee-subjects are taught the use of an

appropriate programming language, LOGO, as a tool for problem-

solving work. Their specific difficulties in learning and

applying LOGO in various problem-solving tasks is studied and

evaluated.

3. Technical Results

Through study and analysis of data from previous teaching,

several linguistic and conceptual difficulties in the way of

acquiring the skills of problem-solving were identified. The

LOGO programming language was taught to a group of teachers to

explore its use as the basis for a course on mathematical problem-

solving. LOGO-based courses in problem-solving were given to two

groups of students with well-established difficulties in formal

and mathematical work. Based on these teaching experiments,

LOGO teaching sequences for an introductory problem-solving

course were developed. An experiment was carried out to evaluate

the validity of standard test measurements of achievement level.

Programs were developed for monitoring, recording, and displaying

iii

.

Report No. 218? Bolt Beranek and Newman Inc.

students' problem-solving Interactions with LOGO. A remote

LOGO-controlled vehicle was developed to assist students in

conceptualizing formal problem-solving tasks in a concrete

context.

4. Department of Defense Implications

One area of direct application is that of teaching basic academic

subjects and skills in military dependent schools. Problem-

solving skills are important, not only in direct application to

formal work in mathematics and military science, but also in

less formal areas of problem-solving such as are encountered in

military operational planning and decision-making.

5. Implications for Further Research

We expect the use of programming languages such as LOGO will

make important contributions to both the theory and practice

of education. Possible directions for further work are:

(1) the use of programming languages as the operational frame-

work for experimental studies on cognitive development in

children, (2) the development of programming as a core subject

for the mathematics curriculum, and (3) the LOGO program-

controlled robo+- as a new framework for studying interactive

man-machine systems. With appropriate sensors and effectors,

such systems may provide useful operational applications.

D
L

iv

i
I
I
I
1

mm

I
D
Q
a
a

Q
ii

11
[1

ü
U
0

Ü

a

Report No. 2187 Bolt Beranek and Newman Inc.

1. PREFACE

At its inception in 1966, this contract was devoted solely

to the one area of second-language learning. Later amendments

have added three more tasks: Models of Man-Computer Inter-

action; Programming Languages as a Tool for Cognitive Research;

and Studies of Human Memory and Language Processing. The present

contract was scheduled for termination on 31 December 1970, but

the final reporting date was changed to 30 June 1971, to allow

completion of data analysis in the various tasks.

Due to the amount of information to be presented in the

Final Report, we have bound it in four Sections, one for each

task. In addition to a copy of this page, each Section contains

an appropriate subset of the documentation data required for the

report: a contract-information page, a summary sheet for the

*, particular task at hand, and a DD form 1^73 for document control.

-1-

'

.

Report No. 218? Bolt Beranek and Newman Inc.

2. INTRODUCTION

-2-

0

E This report describes research Investigating the teaching of

programming languages as a means of studying problem-solving.

The work utilized a new programming language, LOGO, expressly

designed for teaching mathematical thinking and problem-solving.

In this section we discuss the connection between programming and

problem-solving and we give a brief description of our principal

tool, LOGO.

11

■■

j

The research was carried out In the context of three teaching

experiments Involving subjects over a range of age, aptitude, and

achievement levels. The main result of the teaching was the

development of an introductory course In problem-solving. The

teaching experiments and the course are described In Sections 3

and 4. The work also generated two new tools for studying

problem-solving Interactions. These are described In Section 5.

Several persons participated In these efforts. Wallace Feurzelg

designed and coordinated the program. The three teaching experi-

ments were conducted by Seymour Papert and Cynthia Solomon;

Wallace Feurzelg and George Lukas. Walter B. Welner performed

the system programming required to incorporate "dribble files"

for monitoring and displaying student interactions. Michael

Paterson and Paul Wexelblat designed and constructed a computer-

controlled vehicle for problem-solving study. Seymour Papert and

Richard Grant assisted in the design and planning of the earlier

phases of the work; George Lukas made major contributions to

methodological developments during the final phase. The report

was prepared by Wallace Feurzelg and George Lukas.

y

i
i

i
i

Report No. 218? Bolt Beranek and Newman Inc.

2.1 Problem-Solving and Programming Languages

An Important open question In the theory and practice of education

Is whether the notions and skills of formal reasoning and problem-

solving can be taught. These skills are Important, not only for

their own sake. In direct application to formal work, but even

more for their side effects. It Is plausible that persons who

have the skills and habits of organizing their approach to mathe-

matical and formal problems will be better able to deal with more

complicated and realistic situations.

New approaches to teaching mathematical problem-solving skills

have been explored by a number of Investigators. These Include

the various "discovery" methods and several experimentally-

oriented curricula employing mathematics laboratory materials of

many kinds. Such approaches generally have the object of making

students welf-consclous about the process of solving problems.

The most explicitly elaborated program was described by George

Polya. Polya seeks to Inculcate an understanding of mathematical

ways of thinking by making students familiar with the kinds of

steps performed in the course of solving mathematical problems.

His major contribution was to provide an explicit and systematic

checklist of procedures a student can apply when faced with the

kind of problem that has no obvious solution. Students are

directed toward solving problems in a deliberate and systematic

fashion, through following heuristic guidelines for conceiving,

executing» and testing plausible plans of attack.

Teaching the art of solving problems nevertheless remains an art.

The new approaches have had very limited success. For example,

Polya's heuristics — find a similar but simpler problem; formu-

late a plan of attack and try it, divide the problem into

-3-

Report No. 218? Bolt Beranek and Newman Inc

subproblems, etc. — cannot be carried out with students who do

not already possess considerable mathematical experience and

sophistication. Indeed, for many students the concept of a pro-

cedure for solving problems is vague because the very idea of

procedure is itself vague. Further, Polya does not tell us what

happens when students attempt to follow his excellent precepts.

Careful studies of the specific difficulties actually experienced

by students in the course of trying to solve mathematical or

other intellectual problems are difficult to design and expensive

to carry out. The problems include finding an appropriate problem

context, and observing the steps in the reasoning of a subject,

his manipulation of material, his reaction to conflict and counter-

suggestion, etc. Nevertheless, significant advances in teaching

problem-solving will very likely depend on improving our under-

standing of, and our ability to diagnose, student difficulties.

Our thesis is that teaching the use of a suitable programming

language will provide a substantially improved means of studying,

diagnosing, and helping to overcome students* difficulties in

solving problems. Such a programming language must be easily

accessible to persons inexperienced in formal thinking, and must

provide a natural way of expressing problem-solving procedures

of many kinds, including the simple tasks suitable for beginning

students. Moreover, it must be particularly useful in elucidating

the set of issues which cause the greatest difficulties for

beginning students. We have created such a programming language,

LOGO, described In brief in Section 2.2.

Using LOGO, the process of formulating problems as computer

programs is useful in helping students and teachers in several

ways including the following.

0
fl

I

i.

Q
D
!;

.

i
I
I

-4-

:

Report No. 218? Bolt Beranek and Newman Inc.

(1) The use of LOGO facilitates the acquisition of rigorous

thinking and expression. Students impose the need for precise

statement on themselves through attempting to make the computer

understand and carry out their commands. The literal-mlndedness

of the computer clearly shows the necessity for precise formal

description, not only of the problem itself, but of the student's

own steps — successful and unsuccessful — towards a solution.

(2) The partial, tentative steps towards a solution are programs

and thus are concrete, reactive objects. Any program used pro-

vides feedback to the student. Thus, we have a natural and

effective experimental approach toward solving problems.

(3) LOGO programming provides highly motivated models for all

the principal heuristic concepts.

It lends Itself naturally to discussion of the relation of

formal procedures to intuitive understandlne; of problems.

It provides a wealth of examples for heurisclc precepts

such as "formulate a plan", "separate the difficulties",

"find a related problem", etc. Thus, it provides a natural

context for realizing Polya's approach to teaching.

It provides a sense of formal methods and their purpose.

It gives the student a chance to learn to distinguish

situations where rigor is necessary from those where looser

thinking is appropriate.

In particular, it provides models for the contrast between

the global planning of an attack on a problem and the formal

detail of an elaborated solution. In the context of program-

ming, the concept of subproblem or subgoal emerges crisply.

i

-5-

Report No. 218? Bolt Beranek and Newman Inc.

The concrete form of the program and the Interactive aspect

of the machine allow "debugging" of errors to be Identified

as a definite, constructive, and plannable activity. The

programming concept of a "bug" as a definite, concrete,

existent entity to be hunted, caught, and tamed or killed

is a valuable heuristic idea.

(4) By enlarging the scope of applications, LOGO allows every

problem to be embedded in a large population of related problems

of all degrees of difficulty, for example:

Through LOGO programming, mathematical Induction can be

presented and generalized by its relation to recursion.

The extension of an operation to a larger domain becomes an

everyday activity.

Generalizing this, generalization becomes an activity

undertaken routinely by students.

(5) Solving a mathematical problem is a process of construction.

The activity of programming a computer is uniquely well suited to

transmitting this idea. The image we would like to convey could,

roughly speaking, be described thus: A solution to a problem is

to be built according to a preconceived, but modifiable, plan.

-6-

i
Functions become familiar things one constructs to serve

real purposes. Students use these functions as building

blocks for constructing more complex functions which often

are elements of still more powerful structures, useful in

dealing with more difficult problems.

li
11
0

L

i
-

,i

Report No. 2187 Bolt Beranek and Newman Inc

out of parts which might also be used in building other solutions

to the same or other problems. A partial, or Incorrect, solution

is a useful object; it can be extended or fixed, and then incor-

porated into a large structure. This image is mirrored in the

activity of writing LOGO programs.

(6) The use of computers and LOGO is relevant to what is perhaps

the most difficult aspect of mathematics for a teacher: helping

the student strive for self-consciousness and literacy about the

process of solving problems. High school students can seldom

say anything about how they work towards the solution of a

problem. They lack the habit of discussing such things and they

lack the language necessary to do so. A programming language

provides a vocabulary and a set of experiences for discussing

mathematical concepts and problems. LOGO programs are more

"discussable" than traditional mathematical activities: one can

talk about their structure, one can talk about their development,

their relation to one another, and to the original problem.

(7) Finally, a by-product of using LOGO is the automatic

generation of printed protocols showing a record of the in vivo

interaction between the student and the computer. His work is

thus available for diagnostic study at a level of detail suffi-

cient for making plausible hypotheses about his underlying

thinking and ostensible difficulties.

An understanding, or even a clear appreciation, of thsse points

is impossible without a brief description of the LOGO language.

The presentation that immediate]y follows introduces the elements

of LOGO. The use of LOGO programming in problem-solving is

discussed subsequently.

-7-

Report No. 218? Bolt Beranek and Newman Inc.

2.2 A Brief Description of the LOGO Programming Language

OUTPUT has the meaning "the answer is". Thus, OUTPUT SUM OF

/NUMBER/ AND /NUMBER/ means that the answer is SUM OF /NUMBER/

-8-

Q

Q
fl

The LOGO programming language was specifically designed for teach-

ing mathematical thinking and problem-solving. The structure of

LOGO programs and the flavor of the language are illustrated next. i:
D
0
D

LOGO is a language for expressing formal procedures. A LOGO pro-

cedure is written in an idiom similar to recipes in cooking. It

has a name; it usually has ingredients (these are called its

inputs); and It has a sequence of instructions telling how to

operate upon its inputs (and upon the things made from them along

the way) to produce a desired effect or to make some new thing

(this is called its output).

To Illustrate, we define a procedure for doubling a number. We

begin by choosing a word for the name of the procedure — DOUBLE

in this case. Next we choose names for the Inputs — in this

case there Is a single input — NUMBER. So, the title of the

procedure is TO DOUBLE /NUMBER/ (like to boil an egg). Note the

slash marks around NUMBER — slashes are used to demarcate names

of things', names for proaedures like DOUBLE and for already-

built-in instructions are written without any marks around them.

When we give LOGO the command PRINT DOUBLE OF 5 we want the tele-

type to respond 1,0; when we say PRINT DOUBLE OF 9999 we want the

response 19998. So now we set down the instructions for perform-

ing DOUBLE. Actually, one instruction suffices.

OUTPUT SUM OF /NUMBER/ AND /NUMBER/

This instruction is composed of two elementary (I.e., already-

built-in) instructions — OUTPUT and SUM.

Ü

\1

0

Report No. 218? Bolt Beranek and Newman Inc.

AND /NUMBER/. SUM is an operation which needs two inputs (these

must be integers). Its output is their sum. Thus, SUM OF 3 AND

2 has the output 5. The LOGO instruction: PRINT SUM OF 3 AND 2

causes the teletype to print 5.

The entire procedure definition is:

TO DOUBLE /NUMBER/
1 OUTPUT SUM OF /NUMBER/ AND /NUMBER/
END

where the Integer 1 is used to label the instruction line (In

this case there is only one line, but procedures often have

several lines of instructions), and END marks the end of the

definition. When this completed definition is typed in, LOGO

acknowledges by responding: DOUBLE DEFINED. From that point on,

the procedure DOUBLE can be used as if it had always been part

of LOGO, Just like PRINT and SUM. The new procedure is used by

typing:

PRINT DOUBLE OF 2

The machine responds with the answer

^We underscore the student's typing in these and the following

examples to distinguish them from LOGO'S responses.)

Procedures can be chained. Thus:

PRINT DOUBLE OF DOUBLE OF 2
8

Procedures can also be embedded in the definition of new

procedures. For example:

TO QUAD /NUMBER/
1 OUTPUT DOUBLE OF DOUBLE OF /NUMBER/
END

PRINT OUAD OF 123
49 2
PRINT DOUBLE OF QUAD OF 7
56

-9-

Report No. 218? Bolt Beranek and Newman Inc.

There are a relatively small number of elementary operations and

commands In LOGO. An operation which is analogous to the opera-

tion SUM for integers Is the operation WORD for alphanumeric

words. Thus, PRINT WORD OP "SUN" AND "STAR" will cause the LOGO

word SUNSTAR to be printed. The operations SUM and WORD are

used to put things together. LOGO also has operations for taking

things apart. These are FIRST, LAST, BUTPIRST, and BUTLAST.

PRINT FIRST OF "BOX"
B

PRINT BUTFIRST OF "BOX"
OX

PRINT LAST OF "BOX"
X

PRINT BUTLAST OF "BOX"
BO

BUTFIRST means all but the first letter of the word and BUTLAST

means all but the last letter.

Some elementary LOGO operations have no inputs. An example is

the operation RANDOM whose output is a one-digit random number.

PRINT RANDOM
7
PRINT RANDOM

MAKE
NAME: "EVENS"
THING: "0 2 «♦ 6 8"

-10-

Ü

D
11 Two basic acts in procedures are making new LOGO things and

testing them to see whether they satisfy some condition, such as

a stop rule. To make a new LOGO thing, we type the command MAKE. |

LOGO responds by asking first for the name and then for the

thing, i.e., for a LOGO expression for the new thing. Thus, if

we want to make a list of the even digits, and call this "EVENS": D
li
Q
L

....,-

Report No. 218? Bolt Beranek and Newman Inc.

If we then type PRINT /EVENS/, LOGO responds:

0 2 (* 6 8

PRINT "EVENS", would have caused LOGO to print EVENS. Quotation

marks refer to a LOGO thing directly. Slash marks refer to a

thing by its name.

To test whether a LOGO thing satisfies some condition, we intro-

duce the notion of predicates, i.e., operations which have two

possible outputs, "TRUE" and "FALSE". The identity operation IS

is one of the elementary LOGO predicates. IS takes two inputs

and has the output "TRUE", if these inputs express the same thing.

Otherwise it has the output "FALSE". Thus,

PRINT IS 2 SUM OF 1 AND 1
TRUE

PRINT IS 2 1
FALSE

The command TEST, and the associated commands IF TRUE and IF FALSE,

are used with a predicate as in the following program:

TEST IS 2 2

IF TRUE PRINT "GOOD"
GOOD

The use of RANDOM, MAKE, and TEST in introducing recursion is

illustrated in the following procedures for printing lists of

random numbers.

TO NUMBER
1 PRINT RANDOM
END

This procedure is used by typing:

NUMBER

The machine responds with a number

8

NUMBER
5

etC- -11-

--■-.

Report No. 2187 Bolt Beranek and Newman Inc.

The repetitive act of typing NUMBER Is easily mechanised by

writing a new procedure to do Just this.

TO SLEW
1 NUMBER
2 SLEW
END

We have Incorporated into SLEW the instruction to perform another

procedure, NUMBER, and then the instruction to SLEW, i.e., to do

the same again. So when we type SLEW, we obtain an endlecs

sequence.

SLEW
7
3

9

e
ii

o
D

As well as using another procedure, NUMBER, SLEW also uses itself

— it is a Himple example of a recursively defined procedure. To

modify SLEW üO as to proc.ice a definite number of random digits,

we introduce an input /NTIMES/: the number of times we still

have to SLEW.

TO SLEW /NTIMES/
1 TEST IS /NTIMES/ 0
2 IF TRUE STOP
3 PRINT RANDOM
H MAKE

NAME: "NEWNUMBER"
THING: DIFFERENCE OF /NTIMES/ AND 1

5 SLEW /NEWNUMBER/
END

(The elementary
operation DIFFERENCE
denotes integer sub-
traction. Thus
DIFFERENCE OF 3 AND
1 is 2.)

The use of this new SLEW procedure is illustrated by:

SLEW 2
0
3

0
ü
y
D
ü

Ü

Ü

-12-

,

Report No. 218? Bolt Beranek and Newman Inc.

SLEW 1

SLEW 3
2
5
6

etc.

To show how LOGO performs SLEW, let's ask It to do SLEW 2 and

trace through its subsequent operation, instruction by instruction.

When we type in SLEW 2, LOGO takes the definition of the procedure

SLEW and uses it as follows:

Round 1 TO SLEW ,l2,l

Title Line;
Line 1;
Line 2;
Line 3;

Line 4;
Line 5:

/NTIMES/ is "2"
"2" is not "0"
Therefore this instruction is ignored
LOGO prints the output of RANDOM, say the
digit 4
/NEWNUMBER/ is "1" (that is, 2-1)
LOGO invokes SLEW OP "1"

Round 2 TO SLEW "1"

Title Line:
Line 1:
Line 2;
Line 3:

Line 4:
Line 5:

/NTIMES/ is "1"
"1" is not "0"
Ignored
LOGO prints the output of RANDOM, this time
perhaps the digit 5
/NEWNUMBER/ is "j3" (that is, 1-1)
LOGO invokes SLEW OF "0"

Round 3 TO SLEW "0"

Title Line:
Line 1:
Line 2:

/NTIMES/ is "0"
"0" is "0"
Therefore LOGO stops

Using LOGO, recursive procedures can be written and systematically

extended in a rich variety of mathematical contexts. An example

of a deeper recursive procedure, closely related to the principle

of ''mathematical induction", is the factorial function:

FACTORIAL(l) = 1
FACTORIAL(N) = N X FACT0RIAL(N-1), N >1

-13-

■

Report No. 218? Bolt Beranek and Newman Inc.

In LOGO we write a corresponding procedure as follows:

TO FACTORIAL /N/
1 TEST IS /N/ 1
2 IF TRUE OUTPUT 1
3 MAKE (The operation PRODUCT

NAME: "N-l" denotes integer multi-
THING: DIFFERENCE OF /N/ AND 1 plication.)

^ OUTPUT PRODUCT OF /N/ AND FACTORIAL OF /N-l/
END

PRINT FACTORIAL OF 7
5040

PRINT FACTORIAL OF DOUBLE OF 3
720

A syntactically similar non-numerical procedure, for reversing

the order of the letters in a word (i.e., writing a word backwards),

is:

TO REVERSE /W/
1 TEST IS COUNT OF /W/ 1 (COUNT OP /W/ is the
2 IF TRUE OUTPUT IM I number of letters in /W/.)
3 MAKE

NAME: "NEWWORD"
THING" BUTLAST OF /W/

4 OUTPUT WORD OF LAST OF /W/ AND REVERSE OF
/NEWWORD/

END

PRINT REVERSE OF "ELEPHANT"
TNAHPELE

PRINT REVERSE OF FACTORIAL OF 7
0405

The basic capabilities of LOGO described above can be developed

and extended in a natural way. In Section 4 we show how LOGO is

used in several teaching sequences where these capabilities are

used to build up complex program structures in various problem-

solving contexts.

-14- L

Ö

-i-vmh.'r'trmmmmKmmamm

Report No. 2187 Bolt Beranek and Newman Inc.

3. THREE LOGO TEACHING EXPERIMENTS

The LOGO course In problem-solving was developed and tested by

means of a sequence of three teaching experiments. In the first,

the participants included both school teachers and developmental

psychologists with educational interests. The object of this

phase of the teaching was to test our ideas about the use of LOGO

in studying problem-solving and to develop specific LOGO materials

for further use.

In the subsequent teaching experiments we further developed and

tested these ideas and materials-. This work involved two groups

of students with distinctly different motivational and conceptual

difficulties. The first was composed of eighth grade "problem

students" who had developed strong resistance to working on

virtually any kind of organized intellectual tasks. The other

group comprised college students with a history of poor perform-

ance in mathematical work. The three experiments are described

in the sections following.

3.1 Teaching Teachers - Summer Workshop, 1969

We developed with professional subject-trainees the idea of using

LOGO as a tool for Introducing constructive methods of problem

solving. In this investigation we built on earlier work involving

LOGO in studying problem-solving concepts such as planning,

modeling, and testing. We also sought to obtain some experience

with the problems of training teachers to learn and use LOGO in

this way.

The course was given as an intensive summer workshop in July-

August, 1969. The participants were two elementary school

-15-

..

Report No. 218? Bolt Beranek and Newman Inc.

0
Ö

8 teachers with limited mathematical background, two Junior high

school mathematics teachers who had majored In college mathe-

matics, three Canadian professors of education and psychology 4

who were personally Interested In learning research based on the

use of LOGO and were planning to Implement LOGO In a French "T

version to be used In Plagetlan experiments, and two staff members

of Bolt Beranek and Newman (BBN) with backgrounds In mathematics

curriculum research and teaching. Except for one of the Junior

high school teachers and one of the BBN staff members, the

participants had no previous familiarity with programming. D
The plan was to Immediately plut-0e the workshop participants Into

using LOGO. Thus, the following recursive procedure for adminis-

tering an addition quiz was Introduced to them on the first day

of the course.

Ü TO ADDQUIZ
10 PRINT "TYPE A NUMBER11

20 MAKE
NAME: "NUMl"
THING: REQUEST

30 PRINT "TYPE ANOTHER NUMBER"
40 MAKE

NAME: "NUM2" U

THING: REQUEST
50 PRINT "WHAT IS THE SUM OF YOUR TWO NUMBERS?"
60 MAKE

NAME: "ANSWER"
THING: REQUEST

70 MAKE
NAME: "RIGHT ANSWER"
THING: SUM OF /NUMl/ AND /NUM2/ „

80 TEST IS /ANSWER/ /RIGHT ANSWER/
90 II- TRUE PRINT "YES, THAT'S RIGHT." "
100 IF FALSE PRINT "NO, TRY AGAIN."
110 ADDQUIZ
END

11
11

L
n

-16-

Report No. 2187 Bolt Beranek and Newman Inc.

The trainees were Introduced to LOGO operations, commands, names,

and features gradually, as needed for their programming assign-

ments. In the first two weeks, while writing and debugging

programs, they did, in fact, learn virtually all of the LOGO

vocabulary without any special emphasis on this. This "Berlitz"

technique of requiring the use of the language in a working con-

text ab initio, introduced some confusion and sense of pressure

during the first few days. The participants benefited in the

long run, though, from having to confront more realistic problem-

solving situations. After the first weeks, they were confident

about approaching and handling tasks of moderate to large scope.

Heuristics for Planning a Procedure

Even for the simplest programs, planning precedes implementation.

To assist in this stage of problem-solving, the class was intro-

duced to various heuristics for planning a procedure. An example

of such a heuristic is

(1) Find easy cases,

(2) Reduce the hard cases to these easy ones.

It was emphasized that these plans do not always work, but that

having a collection of plans enables one to "do something" when

faced with a problem.

The use of the foregoing heuristic is illustrated with the LOGO

procedure FIND. FIND is an operation with two inputs, the first

of which is a word and the second of which is the position of

the character in the word to be "found". Examples of its use

are:

FIND "ABC" 1 = "A"

FIND "ABC" 3 ■ "C"

-17-

Report No. 218? Bolt Beranek and Newman Inc.

The easy case for FIND is when the first character is to be

found. So we begin by writing this part of the procedure

TO FIND /SENTENCE/ /NUMBER/
10 TEST IS /NUMBER/ 1
20 IF TRUE OUTPUT FIRST OF /SENTENCE/

Now we turn to the reduction of the harder cases to this easy

case. Sometimes, especially for young children, a physical model

is useful. So we construct one to illustrate this idea Here.

Model for FIND "ABCDE" Ü

To perform FIND "ABCDE" 4, one merely peels beads off the string,

reducing the count by one, each time, until it becomes 1.

Discussion of this model leads to the conclusion that FIND

/SENTENCE/ /NUMBER/ is equivalent to the problem FIND BUTFIRST OF

/SENTENCE/ DIFFERENCE OF /NUMBER/ AND 1. So we MAKE two new

things:

BUTFIRST OF /SENTENCE/

DIFFERENCE OF /NUMBER/ AND 1

and we give these the names "NEWSEN" and "NEWNUM", respectively.

Thus,

TO FIND /SENTENCE/ AND /NUMBER/
10 TEST IS /NUMBER/ 1
20 IF TRUE OUTPUT FIRST OF /SENTENCE/
30 MAKE

NAME: "NEWSEN"
THING: BUTFIRST OF /SENTENCE/

-18-

I
0

i
[

0
D

—(ÄMEMD-®-©— D
String of beads representing "ABCDE"

0
I

Report No. 218? Bolt Beranek and Newman Inc.

1*0 MAKE
NAME: "NEWNUM"
THING: DIFFERENCE OF /NUMBER/ AND 1

50 OUTPUT FIND OF /NEWSEN/ AND /NEWNUM/
END

LOGO provides a natural framework for approaching problems with

well formulated strategies. Thus, as well as the "reduce the

hard cases to easy ones" heuristic, other heuristics can be

Implemented in LOGO in a straightforward fashion. An example of

such a useful heuristic is "subdivide a complex problem into

subproblems". The use of this heuristic was discussed at some

length in application to developing strategic game-playing

programs such as NIM.

The NIM-playing program was divided into subprograms for initial-

izing play, requesting a user's move, checking the legality of a

move, generating the computer's move, sequencing the play (comput-

ing the next player), keeping score (computing the current number

of chips remaining), and checking after each move to see whether

the game has been won or lost. These components can be further

subdivided into simpler ones until each program is adequately

clear and transparent. (Alternatively, a component program can

be made more complicated. For example, the first version of a

program for generating the computer's move might simply choose

a move at random. In subsequent extensions it can be replaced

by a series of programs to carry out more effective strategies

for computing moves.)

An example of a related planning heuristic developed in the

workshop was "build complex procedures out of previously

developed simpler ones". The use of this heuristic was illus-

trated in the generation of a series of successively more

-19-

Report No. 218? Bolt Beranek and Newman Inc.

An example is provided by the following discussion of the work

of a beginning student, Steven, a few weeks after his introduction

to LOGO. He was working on a project to write a program called

COUNTDOWN which was to mimic the numerical countdown procedure

accompanying a space launch. Steven's program was to work as

follows. (The ♦ indicates that LOGO is ready for the user's

input.)

i
E English-]ike grammatic sentences, and of complex structures such

as poetic forms of various kinds. The reverse problem of analyz-

ing such given structures to determine the rules which could have

been used to compose them was also discussed. The feasibility

of implementing planning heuristics like "to analyze a structure

first try to synthesize it from simpler structures" was considered

in the context of generating algebra story problems starting from

formal equations.

Heuristics for Debugging a Procedure

E
i:

In addition to the general lack of the notion of a planning phase

of work on a problem, students seldom have definite ideas or

methods for diagnosing or even detecting the errors in their own

work. Students frequently give up when their steps in solving a

problem are not successful — rather than trying to understand

and correct them. The potential value of LOGO in this connection

showed up in even the simplest tasks in our earlier teaching.

The kind of problem "debugging" experience it makes possible was

illustrated in the workshop by presenting actual instances of

student programming particularly chosen to show the erratic

course of program development in some detail.

0
I

-20-

Report No. 218? Bolt Beranek and Newman Inc.

"-COUNTDOWN
10 9876543210 BLASTOFF!

He then wrote a more general COUNTDOWN procedure with a variable

starting point. For example, if one wished to start at 15:

♦COUNTDOWN 15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BLASTOFF!
■«-

He had already studied LOGO programs having a similar effect,

though in rather different, nonnumerical, contexts. Thus, for

example, he had used the program CHOP which worked as follows:

•«-CHOP "ABCDE"
ABODE ABCD ABC AB A

In the case of CHOP, each successive output is obtained from the

previous one by chopping off the rightmost letter. The procedure

terminates after it has "chopped off" all the letters and there

is nothing left in the word (i.e., the word has become /EMPTY/).

Steven had this procedure in mind when he tried to write

COUNTDOWN. His first attempt, however, followed CHOP a little

too closely. It was written as follows.

TO COUNTDOWN /NUMBER/
1 TYPE /NUMBER/
2 TEST IS /NUMBER/ /EMPTY/
3 IF TRUE TYPE "BLASTOFF!"
4 IF TRUE STOP
5 MAKE

NAME: "NEW NUMBER"
THING: DIFFERENCE OF /NUMBER/ AND /NUMBER/

6 COUNTDOWN /NEW NUMBER/
END

-21-

Report No. 2187 Bolt Beranek and Newman Inc.

When Steven tried his procedure, this is what happened.

■«■COUNTDOWN 5
5 0 0 0 0 0 ... (it went on and on until he stopped
♦ the program manually)

Obviously, something was wrong. He saw his first "bug". He had

performed the wrong subtraction in instruction line 5; he meant

to decrement the number by 1. He fixed this by changing the

instruction to:

5 MAKE
NAME: "NEW NUMBER"
THING: DIFFERENCE OF /NUMBER/ AND 1

Then he tried again.

•«-COUNTDOWN 5
5 't 3 2 1 0 -1 -2 -3 -^ . . . (and again he had to stop the program)

Somehow, his stopping rule in instruction line 2 had failed to

stop the program. He saw his bug — instead of testing the input

to see if it was /EMPTY/, he should have tested to see if it was

0. Thus,

2 TEST IS /NUMBER/ 0

He made this change in line 2 and then tried once more.

•«-COUNTDOWN 5
5 4 3 2 10 BLASTOFF!
^-

And now COUNTDOWN worked.

As a follow-on, he wrote a LOGO procedure for counting down by

two's. His strategy was to build the n'w procedure (he called

it C0UNTD0WN-2) from the current one, COUNTDOWN, simply by

-22-

.1
il

i
I

I
I

Report No. 218? Bolt Beranek and Newman Inc.

changing Instruction line 5 to decrement /NUMBER/ by 2 Instead

of 1.

TO C0UNTD0WN-2 /NUMBER/
1 TYPE /NUMBER/
2 TEST IS /NUMBER/ 0
3 IF TRUE TYPE "BLASTOFF!"
k IF TRUE STOP
5 MAKE

NAME: "NEW NUMBER"
THING: DIFFERENCE OF /NUMBER AND 2

6 COUNTDOWN-2 /NEW NUMBER/
END

Then he tried It out.

^COUNTDOWN-2 5
5 3 1-1-3-5 -7 ... (and so on, until he stopped the program)

He spotted his bug Immediately — the stop rule had to be changed.

It worked all right for an even starting number but not for an

odd one. So he changed it to:

2 TEST EITHER (IS /NUMBER/ 0) (IS /NUMBER/ 1)

Now his program worked for odd-number sequences,

■«-COUNTDOWN-2 5
5 3 1 BLASTOFF!
+■

as well as for even ones.

^COUNTDOWN-2 10
10 8 6 «+ 2 0 BLASTOFF!

■*■

His work In developing subsequent procedures (for counting up

from a given number to a given larger number, for counting down

-23-

Report No. 218? 3olt Beranek and Newman Inc.

from a number to an arbitrary smaller number, and for counting

up and down between two limits, i.e., oscillating, a specified

number of times) was also reconstructed in like fashion.

Such protocols of student sequences, together with the ones

drawn from the participants' own work, provided a rich source

for studying bugs of many kinds. Through such comparative and

clinical study we described several of the more common types,

the program contexts in which these occurred, and good ways to

find and correct them.

Program Forms and Structures

As well as heuristic aspects of problem-solving, LOGO was used to

study the associated formal aspects. A particularly Important

one is the concept of program form. A series of standard recur-

sive program forms of increasing complexity was introduced.

These served as models for expressing a great variety of problem-

solving processes. Some standard uses of these forms were dis-

cussed along with the bugs typically encountered in each case.

The simplest form, simple recursion, is shown in:

TO SING
1 PRINT "LA LA"
2 SING
END

■«-SING
LA LA
LA LA
LA LA

1]

D
Q

D
E
[i

0
0

D
y

£
I

-24-

Report No. 2187 Bolt Beranek and Newman Inc.

A variant is simple recursion with an input, as in

TO SAY /SOMETHING/
1 PRINT /SOMETHING/
2 SAY /SOMETHING/
END

••-SAY '
CAT
CAT
CAT

CAT"

Simple recursion is used to express non-terminating invariant

processes. A more interesting form Includes both varied effects

and a termination condition. This form of recursion is equivalent

to simple Iteration. An example is Steven's COUNTDOWN procedure,

and the procedure SLEW discussed in Section 2.2.

A more complex form of recursion uses the OUTPUT command to

transmit intermediate outputs. Recursive procedure, ^f this kind

can be used to express significant processes. For example, the

procedure FIND was used to carry out the "reduction to easy cases"

heuristic. Variations where the recursion is embedded in some

larger operation are often rueful — examples are the procedures

REVERSE and FACTORIAL given in Section 2.2.

Recursive procedures of a variety of forms of still greater

complexity and power, including some which are not reducible to

iteration, can easily be written. Recursive forms like those

already introduced, however, are sufficient for representing

problem-solving processes in virtually all applications of inter-

est outside of advanced mathematical work.

-25-

Report No. 2187 Bolt Beranek and Newman Inc.

tion. Examples of some student program structures are shown and

discussed in Section 5.1.

In the last phases of the teaching experiment, the participants

worked on a set of diverse demonstration projects of their own.

The work was presented and critically analyzed by the entire

group in a series of clinics. The participants were generally

successful in working on problems with well formulated strategies.

But they needed help in planning and organizing their work with

more open-ended and complex problems. Thus we felt it necessary

to write a number of extended LOGO sequences as paradigms for

teachers. As a first step in this direction, we developed the

material presented in Section 4, which introduces problem-solving

with LOGO.

-26-

a
ii

Further complexity in formal problem-solving capabilities is

better obtained by appropriately combining procedures of the

various forms already introduced with nonrecursive procedures of T

certain standard forms to create composite structures. The idea *"

of program structure gives the other dimension needed to enable

relatively complex problem-solving processes to be built up from

relatively simple procedures. Examples of some standard forms

of multi-procedure structures were introduced to serve as models

for student work. The extended development in the geometry

drawing sequence, discussed in Section kt is a concrete illustra-

I

D

D
I

3.2 Teaching "Problem Students" -
Muzzey Junior High School, 1970

In this section we deacribe a teaching experiment conducted with

a small class of eighth-grade students at Muzzey Junior High T

School from March 1970 through June 1970. The class comprised

six students each of whom had a history of resistance to

L

L

Report No. 218? Bolt Beranek and Newman Inc.

participating In Intellectual work In the school. These students

were frequently expelled from class for disciplinary reasons.

They had difficulties with reading as well as In their mathe-

matics and science.

In fact, we chose from the entire eighth-grade class those

students with the greatest deficiencies In reading comprehension

as consistently measured by standard tests — the tested measures

varied from three to five years below eighth-grade norms. The

students showed no indication of deafness or other organic

factors — their learning performance problems were Judged to be

primarily motivational in character. Their IQ levels ranged from

87 to 117, averaging somewhat over 100. They were regarded as

underachievers by teachers. Two of them were Judged to be

performing enormously below their potential.

The main object of this teaching was to explore the use of LOGO

in motivating such students to do Intellectual work. We believed

that they would find appropriate work with LOGO on the computer

so compelling that they would become genuinely engaged in

many kinds of problem-solving tasks. We planned in the last

phase of the teaching to see whether we could break through their

conceptual barriers as well, and help them gain in both mathe-

matical problem-solving skills and reading comprehension.

Lesson Materials

The students were involved in two main kinds of class activities.

They first worked through a series of 24 programmed lessons

giving an introduction to LOGO programming. The students usually

worked at the computer terminal individually. Occasionally two

were scheduled to work together on a lesson. As they learned how

-27-

Report No. 2187 Bolt Beranek and Newman Inc.

to write procedures, they worked on various projects of their

own choice, though they usually needed a great deal of guidance

In modifying their ideas and in helping them plan and carry out

their work.

The programmed lessons were written in LOGO itself in an inter-

active mode and in a relatively open-ended style, mixing straight

exposition and test items with freer problem assignments calling

for the student to write his own procedures. The lessons had

previously been used with ease both by younger students and adults.

As a side advantage, these lessons actively involved the students

in doing a great deal of reading.

a
o
p
e
il
D
li
D

In the following pages, a fragment of a student's lesson tran-

script is reproduced to illustrate the material and the type of

student-computer interaction involved. The student's typing is

underscored. The + mark indicates that the student is to press

the carriage return key when he has finished reading the current

line and is ready for the next line.

HERE IS A PROCEDURE WE USED WHEN WE STARTED WORKING WITH THE
COMPUTER.+

FIRST TELL THE COMPUTER TO -- LIST SAYHI.I

THEN TRY OUT THE PROCEDURE SAYHI TO SEE WHAT IT DOES.+

WHEN YOU ARE READY TO GO ON TYPE -- MORE.+

■»-LIST SAYHI
TO SAYHI
10 PRINT "HI"
20 SAYHI
END

0
D

-28-

I
I
I
I
r

I
■

Report No. 218? Bolt Beranek and Newman Inc.

SAY HI (A typical bug - splitting a LOGO procedure
name made up of English words) SAY IS NOT DEFINED

•«-SAYHI
HI
HI
HI
HI
HI (The student stopped the program by hitting

the break key at this point)
I WAS AT LINE 10 IN SAYHI

■«-MORE
NOW I^S YOUR TURN TO WRITE A PROCEDURE.+

TRY TO WRITE A PROCEDURE WHICH WILL PRINT YOUR NAME JUST THE
WAY SAYHI PRINTED HI.+

WHEN IT WORKS TYPE -- NEXT. 4-

•«-TO SAYMIKE
>10 PRINT "MIKE"
>20 SAYHI
>END
SAYMIKE DEFINED

«■SAYMIKE
MIKE
HI
HI
HI
HI

(Note the bug - probably a careless copy-
ing error when Mike looked back at the
SAYHI definition above)

(The error is evident)

(He stopped the operation of SAYHI again)

I WAS AT LINE 10 IN SAYHI
■«•EDIT SAYMIKE
>20 SAYMIKE
>END
SAYMIKE DEFINED

■«-LIST SAYMIKE
10 PRINT "MIKE"
20 SAYMKE
END
■«-SAYMIKE
MIKE
MIKE
MIKE
MIKE

(Students were taught to list procedures
which they had just edited to check their
changes)

(This time SAYMIKE worked)

(So he stopped)

-29-

Report No. 218? Bolt Beranek and Newman Inc.

THIS TIME TRY TO WRITE A PROCEDURE THAT WILL WORK TO COPY
ANY WORD YOU GIVE IT.i

CALL YOUR PROCEDURE -- WORK. SO WHEN YOU WRITE WORK AND
THEN USE IT WITH THE INPUT "MARGE" IT SHOULD TYPE --
MARGE -- RIGHT DOWN THE PAGE.

• • •
• • •
• • •

Student Projects

-30-

3
Q

■*-NEXT (and continued to the next part of the
assignment)

ARE YOU READY FOR A CHALLENGE? ANSWER YES OR NO.
«YES I

D
D
D

Observing the students' work at the computer It was apparent that

LOGO provided a means of overcoming their resistance to formal

ways of thinking. Working with computers was seen by them as

"a good thing". Just like shop and gym. Our task apparently

reduced to finding programming contexts and problems going beyond

the expository lesson materials which would be accepted as

"relevant" by the students.

■

i.

We found from early on In the class that most students were

Interested in using LOGO at two distinct levels of Involvement.

First, they simply liked to work at the computer terminal. The

content and context of the work was often unimportant; Indeed,

the students often were quite happy doing routine, tedious,

repetitive, mechanical tasks assigned to them so long as they

could do these interactively at the terminal. In carrying out

this assigned work, including much of the lesson material, they

did not always find it important to think a great deal about

what they were doing. They simply liked to do it. Just as they I

liked running. Their compelling interest in using the machine

i
I
I

1
1

Report No. 218? Bolt Beranek and Newman Inc.

continued throughout the three-month period, from start to

finish. During this course of time, they gradually acquired the

formal material covered in the lessons.

The other and deeper level of involvement came from working on

their own projects. There were three sources of such projects:

some projects came out of what the students perceived as real,

personal problems, some were expressions of protest directed at

the school establishment, and some developed out of activities

and games they already were interested in. Examples of these

three kinds follow.

One student first consolidated the concept of formal procedure

as the direct result of a real life problem that confronted him

on his way to school. To seek redress from a bitter fight with

a school bus driver that morning, he urgently needed to compose

an affidavit. He decided to write it as a LOGO program since

this would facilitate making additional copies for the school

principal, the bus company, and his mother's attorney. (The

school did not have typewriters and Xerox-type copying equipment

readily available to students.) The first part of his program,

COMPLAIN, is listed next.

TO rOMPLAliM
1« PRIM "OIN. THE DAY Of MM *» 1970 1H£ BoS OKI VCK 1ÜLÜ i'iK lü Ü£'l Off

IHZ PUS AND I SAID »vMi AND ti& SAID ÖE1 Ur>" THE «US AwO J DIlJiv'l . •'
PCI PRIM "HF. AAINKD Mg Off BSCAU&i OF .«if «US PASS Ai\0 I SAID 11 wAS ALL

RIGHT HE HAD SAID, «EfUht lJ bEl 11 CHAl\OED AM} I DID "t MR. 1:<;KRY
AND HE PUT A |4 IN HE MIDDLE Of THE CAKDA ftiMD HE wA.MT£D A NOlE fHOct
rtR. TEKI^Y AI\D HE AANIED 11 UN tlAY 4* 1970."

•^0 PRIM "IHE DAY THAI II riftpREN ftftfl UN MAY 1*1970 AND I TULD Hl.'i I WAS
GOING TO wALK TO SCHOOL THAT DAY."

40 PRINT "AND ON MAY^19V*) i GO 1 ON THE BUS AND I SHOwED HIM MY PASS
AND HE SAID GET Off AND SAID NO *HE GOT OUT OF HIS SEAT AND GRABED
ME AND TOLD HIM TO LET GO AND DIDN'T •"

50 PRINT "HE TRYED TO TKlF ME AND 1HEN HE STARTED 10 PUSH ME AROOND AND
AS HE »AS POSH ME Off IHE «US HE äAS KNOCKING DtU.M OTHER PEURLE«"

60 PRINT "HE TOLD MR. TERRY *HA1 HAPPEN AND HE SAID HE HAD ROAD ROS 15
AND I TOLD MR. TERRY THAT I ROAD ÖOS 14 AND 1 COULD PKOVE THAI 1 wAS
ON BUS |4 ,"

• • •
• • •

-31-

Report No. 218? Bolt F ranek and Newman Inc.

-32-

0
Ö

e

D

The effect of COMPLAIN Is evident. The procedure Is an instance

of the most elementary program form. The same student became

involved in writing more Complex programs through subsequent ,:

personal incidents. After one of these he was charged to write

the sentence "I will never throw a book out of the window again"

200 times. He conceived the notion of doing this by writing the

following LOGO procedure. u
TO SWEAR-OFF /NTIMES/ rj
10 TEST IS /NTIMES/ 0
20 IF TRUE STOP
30 PRINT "I WILL NEVER THROW A BOOK OUT OF THE WINDOW AGAIN"
40 SWEAR-OFF (DIFFERENCE OF /NTIMES/ AND 1)
END

The procedure is essentially the same as Steven's COUNTDOWN

procedure discussed in Section 3.1. The effect, however, is

different. When SWEAR-OFF 200 was executed it produced a list

of 200 copies of the designated sentence. This computer printout

was deemed an acceptable way of carrying out the punishment.

As a follow up we gave the student the problem of writing a more

general procedure COPY with two inputs designating the message

to be copied and the number of times it was to be copied. For

example, COPY "I'LL NEVER SLEEP IN CLASS" 10000 would print the

sentence "I'LL NEVER SLEEP IN CLASS" ten thousand times. He

needed some help, but he was able to write the following procedure.

TO COPY /ANYTHING/ /NTIMES/
10 TEST IS /NTIMES/ 0
20 IF TRUE STOP
30 PRINT /ANYTHING/
40 COPY /ANYTHING/ (DIFFERENCE OF /NTIMES/ AND 1)
END

E
I
L

L

D

I
0
0
i
I
I
Ö

fl

e
D
0
11
G

.:

a
i

Report No. 218? Bolt Beranek and Newman Inc.

This task was a formidable one for the student In question. It

showed a considerable advance In his formal and Intellectual

grasp during the three-month period. Other students arrived at

this level of skill at earlier points and went on to carry out

larger projects Involving the development of more complex proce-

dures and program structures.

An example Is a program for playing ROULETTE which a student

wrote on his own initiative and with little outside help. A run

from one of the later versions of his program is shown next.

fcOULETTC

YOU START WITH A S100 BILL« S100 IS THE HOUSE LIMII • YOU MUSI BET SI U.
MORE.
THE WHEEL SPIiMS. PLACE YOUR BET ON < I) A SINGLE MUrtBEK. (2) ArtY TwO
NUMBEKS. (3) ANY THREE NUMBERS (4) ANY FOUR iMUi^iÖERS .<5) ANY SIX
CONSECUTIVE NüIIBERS. < (6) TWELVE CONSECU'fl V£ NOS» (?) ANY J8
CONSECUTIVE NOS« <8)' ALL ODD OR EVEN NOS.
*_L
HOW MUCH MONEY DO YOU BET?
♦ 50
OK* YOU HWE DECIDED TO BET ON ONE SINGLE NUMBER. YUU MAY BET ON ANY
NUMBER» «-36. IF YOU BET ON ONE NUMBER 1-36 AND THE NUMBER IS 0 YOU MA»
KEEP YOUR BET ON THE TABLE FOR THE NEXT BET. WHAT NUMBER DO YOU BET
YOUR MONEY ON?
♦ 3?
I'M AFRAID YOU HAVE LOST YOUR BET.
YOU HAVE ONLY 50 DOLLARSTHE NUMBER WAS 6
WOULD YOU LIKE TO BET AGAIN? ANSWER Y OR N
♦ Y

YOU NOW HAVE 50 DOLLARS
WHAT TYPE OF BET ARE YOU MAKING ?
♦ 8.
HOW MUCH MONEY DO YOU BET?
♦ 25

-33-

,

Report No. 218? Bolt Beranek and Newman Inc.

a
i

B
0

• • •
• • •
• • • . .

D
The procedure in its final form was several pages long. It

probably was the most Intense, extensive, and concerted Intellec-

tual enterprise the student had ever undertaken.

YOU HAV£ DECIDED TO BET ON 2 NOS. PLEASE NOTEtYOU MAY NOT BET ON ZERO
YOUK FIRST NUMBER IS:
♦ 26
AND YOUK SECOND NUMBER I St

*H
ALL RIGHT» LET'S SEE HOW YOU DID* THE NUMBER WAS 20
SORRY BUT YOU CANT WIN THEM ALL
YOU NOW HAVK ONLY P5 DOLLARS
WOULD YOU LIKE 10 BET AUAIN? ANSWER Y OR N

Some students were involved in an extended project to generate

geometric drawings and pictures at the teletype. A sequence

based on this drawing project, as further developed in the Uni-

versity of Massachusetts teaching, is described in Section 4.1.

-34-

(J

;:

By the end of the course most students' intellectual resources —

recognizing problems, urganizing work into transparent programs,

debugging simple programs, and modifying and extending work —

were much improved. This success carried over to other areas of

school work — teachers remarked particularly on the students'

increased classroom involvement and participation. These findings

are subjective but "objective" evaluations were also carried out.

In doing this we found that computer testing provides an improved

means of measuring performance of low achieving students. This

study is described in the Appendix.

B
I
I
[
L

Ü

L
■

Report No. 2187 Bolt Beranek and Newman Inc.

3.3 Teaching Unmathematlcal Undergraduates --
University of Massachusetts, Boston, 1971

An undergraduate course, within the Mathematics Department of the

University of Massachusetts at Boston, was conducted by George

Lukas in the spring semester of 1971. This course was one of a

number of courses intended to meet the needs of undergraduates

who, it was felt, had no chance of passing the normal, required,

mathematics course. Selection of students for this special

program was based on a score of less than 400 on the mathematics

aptitude part of the College Entrance Examination Boards and on

an interview with the faculty member in charge of the program.

We felt that LOGO could serve a very special role for students

at this level. Thr chief deficiency in such students is a lack

of basic problem-solving skills, and not, as appears superficially,

a lack of mathematical aptitude. The lack of problem-solving

skills is most evident in work with mathematics, but, if careful

study is made of language skills and other intellectual areas,

the same deficiency is noted in each. Thus, we wanted to use

LOGO, not as a vehicle for conveying specific subject matter, but

to teach the most fundamental aspects of reasoning at a formal

level — generalization, planning, error debugging, etc.

This teaching experience has had a number of useful results:

We have developed and tested sequences for use at this level of

teaching, based on word-form generation and on teletype geometry.

These are included in later sections of this report. We developed

a means of having the computer save student work in the form of

"dribble files" for later analysis. This too is discussed later.

Finally, and most important, we ascertained the utility

of using LOGO in this way for teaching basic problem-solving

-35-

■

Report No. 2187 Bolt Beranek and Newman Inc.

skills to students who are considerably below average in this

area.

Nine students were chosen at random from the group of University

of Massachusetts students eligible for this course. They met

for five hours a week and spent all their class time at teletype-

writers. There were no homework assignments. There were three

teletypewriters connected to LOGO via BBN's TENEX system by

telephone lines. The students were carefully divided into groups

of three, each of whose members worked together. Reassignment

of students to groups was made from time to time to keep each

group balanced so that each student contributed to the work.

Each group of three worked in a separate office. The instructor

walked from office to office in the course of a lesson, monitoring

the student work. He interceded only when a serious error had

been made which the students were unlikely to diagnose on their

own, or when a new topic was to be introduced.

The course began with an introduction to the elements of LOGO.

Some existing materials of a CAI nature, written in LOGO, were

used for this. The remainder of the term was spent on various

projects. These included the geometry and language generation

mentioned earlier, as well as a craps playing program, code

deciphering programs, and work on a number of similar topics.

The criteria for choice of topic were that the students could

achieve interesting results, that it involved new aspects of

problem-solving skills, and that it would engage student interest

over an extended period of time. Given the resistance of the

students to material that looked anything like mathematics,

satisfying the last of these was by no means a trivial matter.

-36-

Ü

Ü

0
I

L

D

.

Report No. 218? Bolt Beranek and Newman Inc.

As the term progressed, student ability to handle program details

and simple program forms became automatic in most cases. This

was very encouraging, as it indicated an internalization of

rather general algorithms, something the students were unable to

do previously. Also, their ability to communicate their ideas

in general terms improved, and this development of a problem-

solving meta-language is extremely important. The quality of

results achieved, as seen, for example in the geometry sequence,

improved over the course of the term and concurrently so did

student confidence. To indicate the extent to v/hich students

at the end of the term felt themselves capable of handling formal

processes, over half indicated their intention of taking further

mathematics courses.

Extensive examples of both student-written procedures and the

uses to which they were put are contained in tne sections on the

geometry and language sequences and in the section describing

"dribble files".

4. INTRODUCTORY LOGO COURSE ON PROBLEM-SOLVING

The three-sequence course is described in the sections following.

The material was designed for introductory use. The initial

sequence on teletype geometry is developed in greatest detail as
1 -

it evolved from the teaching at Muzzey Junior High School and in

more refined form at the University of Massachusetts. The shorter

sequences give two distinctly different problem contexts —

generating English and controlling the robot "turtle". The more

advanced sequences on problem-solving have been written as part

of our LOGO mathematics curriculum in work supported by the

National Science Foundation (Ref. 1).

-37-

Report No. 218? Bolt Beranek and Newman Inc.

We present a teaching sequence In which geometric Ideas are

developed by use of the teletype as drawing device. The sequence

Is based on part of the teaching done at University of Mass. at

Boston. The programs and examples are taken from student work,

unless otherwise Indicated. The only changes have been In the

names used for procedures and dummy variable names, and this was

only done where clarity was substantially Improved thereby.

-38-

U
Ö

4.1 Geometry Sequence

i:
0

The sequence falls naturally Into two parts. In the first, draw-

ing procedures draw figures line by line. There are several

advantages In starting with this approach: A simple recursive

form suffices for most procedures so that a student can write f]

many procedures quickly. There Is no need for communication of v ■>
results when a procedure Is Invoked by another one. In other

words, the Invoking procedure Is not affected by the result of (J

executing the one It Invoked. This means that we are writing

only commands and not operations, thus problems of communication

are avoided. Finally, the ideas developed in this introductory

sequence lead naturally to the more sophisticated ideas and jl

program structures involved in a Cartesian description of geometry,

the second part of the sequence. 1"

D

The second part of the geometry sequence uses a Cartesian descrip-

tion of figures — descriptions of figures as pair lists are now

the basic objects to be studied. Storing the figures makes

possible a wide range of geometric and set-theoretic operations

on figures. Due to the fact that these ideas were presented so

late in the term at U.Mass./Boston, the sequence description is 1

no longer so closely tied to student work. The procedures

E
I

I
1
1

...

Report No. 2187 Bolt Beranek and Newman Inc.

described In this part of the work were given to the students;

only the examples arise from student work. If the Ideas had been

presented earlier, students would have had little trouble writing

most of the programs they used. The only really difficult ones

are those for drawing and for ordering sets of points.

The use of the material presented here, preceded by a suitable

Introduction to the LOGO language, and Including some of the

suggested extensions, would form a coherent one-term course.

Students begin by generating patterns, using just the PRINT

command within a procedure definition. Some of these patterns

are freeform.

TO CURVE
10 PRINT "
20 PRINT "
30 PRINT "
END

others are more

C"
C"

TO DIAMOND
10 PRINT '
20 PRINT '
30 PRINT '
40 PRINT '
50 PRINT '
END

or less

X"
X X x"

X X X X X"
X X X"

X"

TO DIAMOND
10 PRINT " :"
20 PRINT " :;:::"
30 PRINT ":::::::::::"
40 PRINT " BBBBBBB"
50 PRINT " :"
END

regular. The progression, in time, is generally from less to

greater regularity. At this stage of procedure, though, the

-39-

...

Report No. 218? Bolt Beranek and Newman Inc.

-40-

0

i:

pattern form Is in the student's head. It is the form, or

equlvalently the algorithm defining the form, that we want him

to externalize into the computer. It is very easy to encourage

him in this — there are several advantages to it: fewer and

shorter instructions are required; a single procedure can be

written to generate a whole class of patterns; and, therefore,

combination of patterns is simplified.

If one asks a student the simplest figure that can be generated

on a teletype, the answer is nearly invariably a straight line.

In fact, this is almost the only possible starting point,

although many paths are subsequently possible. Thus,

TO MARK /CHARACTER/ /N/
10 TYPE /CHARACTER/ j I
20 TEST IS /N/ 1
30 IF TRUE STOP
M MARK /CHARACTER/ (DIFFERENCE /N/ AND 1) n
END I I

i'

i:

«-MARK "+" 8
++++++++•♦- (MARK, as written, does not

produce a carriage return)

The MARK procedure above, or a similar procedure, can now be used

to generate a variety of left-Justified patterns, zigzags, and

various geometric figures. A somewhat more fruitful approach is

to embed MARK within a procedure SUPERMARK, which indents a given

number of spaces before MARKing. The use of SUPERMARK makes it

easy to "draw" figures, like diamonds and hexagons, having a *

vertical axis of symmetry. It is also useful when several figures «-

of different sizes are to be stacked neatly. »

70 SUPERMARK /N/ /LET/ /M/ |f
10 MARK /BLANK/ /N/ 1^
20 MARK /LET/ /M/
30 PRINT "" (Carriage return) -»
END

Report No. 218? Bolt Beranek and Newman Inc

SUPERMARK Is very general, but requires three Inputs each time

It Is used, which Is Inconvenient. Many students settle on a

standard space about which to center their lines. For example,

to center lines on the 19th column,

TO MIDDLE /N/ /CHAR/
10 SUPERMARK (DIFF 19 QUOTIENT /N/ 2) /CHAR/ /N/
END

■•-MIDDLE 8 """

«-MIDDLE 16 "r1

And now a "flood" of patterns ensues:

TO RECTANGLE /HEIGHT/ /WIDTH/ /CHAR/
10 TEST IS /HEIGHT/ 0
20 IF TRUE STOP
30 MIDDLE /WIDTH/ /CHAR/
^0 RECTANGLE (DIFF /HEIGHT/ 1) /WIDTH/ /CHAR/
END

«-RECTANGLE 6 10 "?"
??????????
??????????
??????????
??????????
??????????

TO TRIANGLE /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/
10 TEST IS /HEIGHT/ 0
20 IF TRUE STOP
30 MIDDLE /CHAR/ /WIDTH/
«+0 TRIANGLE /CHAR/ (SUM /WIDTH/ /CHANGE/) /CHANGE/

(DIFF /HEIGHT/ 1)
END

In this last procedure, the students overshot their mark. They

found. In trying TRIANGLE out, that they had, In fact, written a

program which generated any trapezold, symmetric about the 19th

column!

-m-

■

Report No. 218? Bolt Beranek and Newman Inc

■TRIANGLE 'V1 4 2 k

and by using negative /CHANGE/, we can invert this.

■•-TRIANGLE "." 10 -2 4

• « ■ •

We can even use this procedure to make triangles!

■•-TRIANGLE """ 1 4 6

»« «« «««« ««

• ** «• «» ** «* «» «« «« «* «* »* «# ** %0

These procedures are representative of student work at this level.

To create more complex figures, say hexagons, there are now two

courses. A student can continue to write a completely new proce-

dure for each class of figures he wishes to generate. Or, he

can realize (as most do eventually) that the shape procedures

written up to that point can themselves be used with considerable

savings in labor. Thus, following the writing of the TRIANGLE

procedure given above, the same students wrote DIAMOND, again

overshooting their mark.

TO DIAMOND /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/
10 TRIANGLE /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/
20 TRIANGLE /CHAR/ (SUM /WIDTH/ (PRODUCT

(DIFF /HEIGHT/ 2) /CHANGE/)) /CHANGE/
(DIFF /HEIGHT/ 1)

END

0
D
0

!!

Q

i
i

::
-42-

___.

Report No. 21.87 Bolt Beranek and Newman Inc.

The "Joining" of the two triangles (trapezolds) presents a mathe-

matical problem of some complexity. Initial efforts yielded

"diamonds" like

KM
KNKM

HMHH

and

These initial attempts prodded the students into a more systematic,

general approach to this problem and they solved it in very nearly

algebraic terms. Not having any mathematical background beyond

arithmetic, this was a considerable achievement both in terms of

concepts developed and in results. Then,

-•-DIAMOND M+M 3 *+ 4
+++

+++++++
+++++++++++

+++++++++++++++
+++++++++++++++++++

+++++++++++++++
+++++++++++

+++++++
+++

Such procedures, yielding polygons of various types, can themselves

be comclned but the only natural direction to go is vertical

stacking. Since all procedures above the level of MARK draw

figures in their entirety, and since there is no means of return-

ing to a previous line under computer control, we cannot extend

-43-

■ •

Report No. 218? Bolt Beranek and Newman Inc.

our procedures to generate sets of figures which are next to each

other. This is a serious deficiency of this current approach and

its amelioration is discussed later. The following is typical of

the stacking generated by the students.

^GLIRP 2 3 3 5
000
000
000
X

XXX
XXXXX

XXXXXXX
xxxxxxxxx
XXXXXXX
XXXXX
XXX
X

000
000
000
X

XXX
XXXXX

XXXXXXX
XXXXXXXXX
XXXXXXX
XXXXX
XXX
X

Stacking procedures included some of the type above, for which

all parameters of the stack had to be specified as input. More

interesting results were obtained by the use of the LOGO operation

RANDOM to generate randomly-chosen patterns. Another idea, not

found by the students, is to generate patterns with further

constraints such as symmetry about a horizontal line. This leads

to patterns like the ones below:

-44-

ii

I
I

I
I
0

i

D
D
.:

D
:

Report No. 218? Bolt Beranek and Newman Inc.

♦

♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦

##♦##
♦♦♦

♦♦♦♦♦
♦♦♦+++♦♦♦

♦♦♦♦♦4++++*++
♦♦+♦♦♦♦♦+♦♦+♦♦♦♦♦

♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦■f*

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦»♦»♦♦♦♦♦♦»»♦♦

♦♦♦♦♦♦♦♦♦♦++♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦
♦ ♦♦♦♦
♦ ♦♦

♦ ♦♦♦♦
♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦
♦

♦
♦ ♦♦

♦ ♦♦♦♦
♦♦♦♦♦+♦

♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦+♦♦+♦♦♦♦♦♦♦♦+♦♦♦

♦♦♦♦♦♦♦♦♦♦+♦♦♦♦+♦♦+♦♦♦+
♦+♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦+♦♦♦♦♦♦♦

♦ ♦♦♦ + ♦ + ■♦■♦ + + ♦♦♦♦♦♦♦♦♦♦♦♦♦♦ + ♦♦♦♦♦
♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦■♦•♦♦

♦ ♦♦♦♦♦ + ♦♦♦♦♦♦♦♦♦•»♦♦ + ♦♦ +
♦♦♦♦+♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦++♦+♦♦+♦++♦♦♦♦
♦♦♦♦♦+♦♦♦♦♦

♦♦♦♦♦♦♦
♦ ♦♦♦ +
♦ ♦♦
♦

-^5-

Report No. 2187 Bolt Beranek and Newman Inc.

Some students choose not to automatically center their lines with

the use of MIDDLE: they use SUPERMARK directly. This leads to a

very different choice of pattern type, in fact the vertical stack-

ing above is somewhat tedious when SUPERMARK is used directly.

This is due to the fact that the use of SUPERMARK leads naturally

to the inclusion of the indentation of a figure as an input param-

eter. But this extra degree of freedom, if systematically varied,

gives new and interesting patterns. The student-written procedure

STRIPE, for example, gives us:

-»-STRIPE 3 2

o
E
I
I
I
i

ij

Procedures such as STRIPE and GLIRP are the most advanced ones

achievable from the MARK, SUPERMARK beginnings: it is difficult

to extend these further (although many more procedures at this

level can be written).

.

The reason that we are blocked at this level is that we can

produce most of the basic figures of interest but we can only

manipulate them in very simple ways. We can indent figures, that

is to say, translate them horizontally. We can produce any

desired vertical grouping of our basic figures*. That is about

all, however. We cannot perform so simple an operation as making

That is, we can superimpose patterns as long as they are
on separate sets of rows.

-US-

Q

:.

Report No. 2187 Bolt Beranek and Newman Inc.

a horizontal array containing several polygons. Our present

approach forces us to print each figure line by line; we cannot

have a procedure manipulating the figure as a whole, e.g.,

ROTATE (RECTANGLE "*" 3 ^).

Thus, we start afresh from a completely different point of view,

our goals and hence our methods being quite different from those

we chose initially. We will now concentrate on the implementation

of geometric transformations rather than on generation of specific

figures. Although all earlier programs will be useless in this

new approach, the algorithms developed for the generation of the

various shapes of interest are easily reprogrammed.

This approach was only used very briefly at the end of the semester

at U.Mass./Boston. In order to attain a reasonable level of

achievement within the context of this material, some basic pro-

grams were given to the students to experiment with. The major

really useful result gleaned from the students' experience with

it was that enthusiasm and aptitude for this material ran very

high and one might not expect this to be the case, considering

the anti-mathematical prejudices of the majority of the class.

The students used the translation and reflection procedures

given to them with considerable insight and facility. The

following, teaching sequence based on geometric transformations

follows along the lines studied at the end of the U.Mass./Boston

course.

The first consideration in the Implementation of geometric trans-

formations must be that of data base. Probably the simplest

choice is to represent a figure as a set of ordered pairs of

numbers, corresponding to the Cartesian coordinates of the

characters composing the pattern. A third character for er.ch

-1*7-

i

Report No. 2187 Bolt Beranek and Newman Inc.

Our first set of procedures will translate the computer'3 version

of a figure Into geometric form. These are fairly complex pro-

cedures, certainly more complex than the procedures for manipula-

tion of pair lists, to be written later. For this reason, some

teachers may choose to regard them as part of LOGO and not have

the students write the drawing procedures.

-48-

a

■»

point, to Indicate the nature of the character at that point,

adds both versatility and complexity. We will not do so here.

A slightly unusual convention adopted In the following Is that

of numbering the vertical axis to Increase In the downwards

direction. This corresponds to the way the teletype goes to TT

successive lines. The pairs can be represented In several ways »«•

In LOGO; certainly the simplest Is to write them as LOGO sentences, _,

the add elements being x-coordlnates and even ones the correspond-

ing y-coordlnates.

D
D

Before we give the drawing procedures, we write three very

generally useful procedures particularly applicable to pair list

problems.

TO NTH /N/ /LIST/ (Gives /N/th element of /LIST/)
10 TEST IS /N/ 1
20 IF TRUE OUTPUT FIRST /LIST/
30 OUTPUT NTH (DIFF /N/ 1)

(BUTFIRST /LIST/)
END

TO DELETE /N/ /LIST/ (Deletes first /N/ element from
/LIST/) t

10 TEST IS /N/ 0 I
20 IF TRUE OUTPUT /LIST/
30 OUTPUT DELETE (DIFF /N/ 1)

(BUTFIRST /LIST/)
END

L

I

1
1
1
I

Report No. 2187 Bolt Beranek and Newman Inc.

TO PULL /N/ /LIST/ (Outputs first /N/ elements of
10 TEST IS /N/ 0 /LIST/ as a sentence)
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCE

FIRST /LIST/
PULL (DIFF /N/ 1) CBUTFIRST /LIST/)

END

Thus, given a list of two pairs, /LIST/, "1 2 -1 -2" NTH 2 /LIST/

is 2, the second coordinate of the first pair; DELETE 2 /LIST/

deletes the first pair, and PULL 2 /LIST/ gives Just the first

pair.

We next write some general "drawing" procedures. They allow for

an arbitrary choice of origin and marking character. PLOTP

/POSITION/ /POINT/ /EDGE/ /CHAR/ is the basic procedure. It

takes its present position as /POSITION/, then moves to /POINT/

and types /CHAR/. If /POINT/ is on a subsequent line and to the

left of /POSITION/, PLOTP must first carriage return, then space

across to get the right "x-coordinate". /EDGE/ is the x-value

assigned to the left-hand column. If the point has already been

passed, PLOTP outputs "FALSE", if successful, it outputs "TRUE".

TO PLOTP /POSITION/ /POINT/ /EDGE/ /CHAR/
10 TEST EITHER

GREATER? NTH 2 /POSITION/ NTH 2 /POINT/
GREATERP /EDGE/ FIRST /POINT/ (Can we plot /POINT/?)

20 IF TRUE OUTPUT "FALSE" (If not, we output "FALSE")
30 TEST GREATERP

FIRST /POSITION/ (Are we already too far to
FIRST /POINT/ the right?)

40 IF TRUE TYPE /CARRIAGE RETURN/
50 IF TRUE SPACE (DIFF FIRST /POINT/ (If so, return to margin and

/EDGE/) space across suitably)
60 IF FALSE SPACE (DIFF FIRST /POINT/(Otherwise, move over from

FIRST /POSITION/) FIRST /POSITION/)
70 SKIP DIFF (NTH 2 /POINT/) (Move vertically the requisite

(NTH 2 /POSITION/) number of rows)
80 TYPE /CHAR/
90 OUTPUT "TRUE"
END

-49-

- ■ • ■ ; ., yv

!l
Report No. 218? Bolt Beranek and Newman Inc.

0
SKIP /M/ and SPACE /N/ move the carriage vertically and horizon-

tally /M/ and /N/ spaces.

TO
10
20
30
40
END

SKIP /M/
TEST IS /M/ 0
IF TRUE STOP
TYPE /LINE FEED/
SKIP (DIFF /M/ 1)

(Without carriage return)

TO SPACE /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 TYPE /BLANK/
40 SPACE (DIFF /N/ 1)
END

PLOT? plots (or tries to plot) a single point. We incorporate

this procedure within a higher level one, PLOTLIST /LIST/ /EDGE/

/CHAR/, which successively plots all but the first pair of

/LIST/. /EDGE/ and /CHAR/ have the same meaning as in PLOTP.

PLOTLIST plots the second pair on /LIST/ relative to the first

one. If PLOTP Is successful, then we eliminate the first pair

and keep on. Otherwise, the second pair has not been plotted

and we are still at the position of the first point. We there-

fore delete the second pair, and keep going.

TO PLOTLIST /LIST/ /EDGE/ /CHAR/
10 TEST GREATERP 3 (COUNT /LIST/) (Is there only one pair left?)
20 IF TRUE STOP
30 TEST PLOTP

SENTENCE (SUM FIRST /LIST/ 1) (We are already one space to the
NTH 2 /LIST/ right of the first pair. This

is our position.)
PULL 2 (DELETE 2 /LIST/) (Plot second pair)
/EDGE/
/CHAR/

I
D
0
n

UJ

n

ü
0

If

-50-

I
I

Report No. 2187 Bolt Beranek and Newman Inc.

40 IF TRUE PLOTLIST (If second point is plotted,
(DELETE 2 /LIST/) /EDGE/ /CHAR/ eliminate first point)

50 IF FALSE PLOTLIST (If not, eliminate the
SENTENCE (PULL 2 /LIST/) second pair, we are still

(DELETE 4 /LIST/) at the position of the
/LIST/ /EDGE/ first pair.)

END

And now, we need only a top-level procedure, DRAW /LIST/ /ORIGIN/

/CHAR/. It prefaces /LIST/ with /ORIGIN/, makes /EDGE/ NTH 2

/ORIGIN/, and calls PLOTLIST,

TO DRAW /LIST/ /ORIGIN/ /CHAR/
10 PLOTLIST

SENTENCE SENTENCE (DIFF FIRST /ORIGIN/ Ij
NTH 2 /ORIGIN/ /LIST/ (PLOTLIST assumes we are 1

NTH 2 /ORIGIN/ square to the right of the
/CHAR/ first pair)

END

-•-MAKE "VERTICAL LINE" "303132333V1

•♦•DRAW /VERTICAL LINE/ "0 0" "+"
+
+
+
+
+♦■ (no carriage return)

••-MAKE "TRIANGLE" "201121310212223242"
••-DRAW /TRIANGLE/ "0 0" "?"

?
???

We find, however, that the inability of the teletype to return

to previous lines severely limits our drawing ability.

••-MAKE "BOTH" SENTENCE OF
/TRIANGLE/
/VERTICAL LINE/

-51-

■■,: ■ , - ■

. i.wU atluauU.

Report No. 218? Bolt Beranek and Newman Inc.

-DRAW /BOTH/ "0 0" "«"

5!

::

"•-PRINT /BOTH/
2011213102122232'f2303132333't

The top point of the vertical line, 3 1, Is too late In the list

to be marked.

Thus, a second Important program Is required to put lists of

pairs in proper order. Without such an ordering procedure we

cannot combine figures, or even transform thorn in some ways (like

rotating them).

We first write a procedure ADDLISTS which combines two ordered

lists, giving the correct order for their union.

TO ADDLISTS /LIST1/ /LIST2/
10 TEST EITHER

EMPTYP /LIST1/ (If either list is empty,
EMPTYP /LIST2/ output the other)

20 IF TRUE OUTPUT (SENTENCE /LIST1/ /L/ST2/
30 TEST IS (PULL 2 /LIST1/) (PULL 2 /LIST2/)
40 IF TRUE OUTPUT SENTENCE (If the first pair of /LIST1/

PULL 2 /LIST!/ and /LIST2/ are identical,
ADDLISTS (DELETE 2 /LIST1/) output this element (once)

(DELETE 2 /LIST2/) and repeat with it deleted from
both /LIST1/ and /LIST2/)

50 TEST EITHER
GREATERP (NTH 2 /LIST2/) (First element of second list

(NTH 2 /LIST1/) is lower)
BOTH
(IS NTH 2 /LIST2/) (NTH 2 /LIST1/) (First elements in same row,
GREATERP (FIRST /LIST2/) first element of second is

(FIRST /LIST1/) rightmost)
60 IF TRUE OUTPUT SENTENCE

PULL 2 /LIST1/
ADDLISTS (DELETE 2 /LIST1/) /LIST2/

70 OUTPUT SENTENCE
PULL 2 /LIST?/
ADDLISTS /LIST1/ (DELETE 2 /LIST2/)

END

-52-

t /

u
[J

il

U

Ü

Ü

U

•mtnanM

Report Mo. 2187 Bolt Beranek and Newman Inc.

Then, using ADDLISTS, a procedure ORDER can be written. ORDER

repeatedly decomposes its input into halves until there are at

most two pairs in each piece. ORDER then uses ADDLISTS to join

these sublists, placing their elements in the right order.

TO ORDER /LIST/
10 TEST GREATERP 5 (COUNT /LIST/)
20 IF TRUE OUTPUT ADDLISTS

(PULL 2 /LIST/)
(DELETE 2 /LIST/)

30 OUTPUT ADDLISTS OF
ORDER PULL (EVENHALF /LIST/) /LIST/
ORDER DELETE (EVENHALF /LIST/) /LIST/

END

Where EVENHALF /LIST/ is the closest integer to half of the count

of /LIST/. (We don't want a list of 3 pairs separated into 2

triples.)

TO EVENHALF /LIST/
10 OUTPUT PRODUCT 2 QUOTIENT (COUNT /LIST/ 4)
END

•♦-PRINT ORDER /BOTH/
20301121 3102122232423334

DRAW (ORDER /BOTH/) "0 0" »♦*'
++

+++
+++++

+
+

Now we can address ourselves to the more interesting (and easier)

problems of manipulating pair lists. This Is perhaps the best

point in this sequt ■'.ce for average students to start writing
their own programs. Translating a figure by /ACROSS/ units

horizontally and /VERTICAL/ units vertically involves simply

adding /ACROSS/ to each first coordinate of the points constitut-

ing the figure and /VERTICAL/ to each second coordinate.

-53-

Report No. 218? Bolt Beranek and Newman Inc.

TO TRANSLATE /FIGURE/ /ACROSS/ /VERTICAL/
10 TEST EMPTYP /FIGURE/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCE SENTENCE

SUM (FIRST /FIGURE/) /ACROSS/
SUM (NTH 2 /FIGURE/) /VERTICAL/
TRANSLATE (DELETE 2 /FIGURE/) /ACROSS/ /VERTICAL/

END

The procedure ADDLISTS can be used to combine figures:

«-MAKE "TRIANGLE TWO" TRANSLATE /TRIANGLE/ 6 0
^-MAKE "TWO TRIANGLES" ORDER ADDLISTS /TRIANGLE/ /TRIANGLE TWO/
«-DRAW /TWO TRIANGLES/ "0 0" "+"

+ +
+++ ++++

+++++ ++++++

To write any such transformation procedure, we need only specify

the action on the first point of the list. Simple recursion can

then repeat this action on subsequent pairs until the list Is

exhausted. To reflect a figure about any vertical line /L/ units

from the origin, for example.

TO REFLECTVERT /L/ /LIST/
10 TEST EMPTYP /LIST/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCE SENTENCE

(DIFF /L/ FIRST /LIST/)
NTH 2 /LIST/
REFLECTVERT (DELETE 2 /LIST/)

END

We write In Just this manner:

REFLECTHOR /L/ /LIST/ (reflects pairs on /LIST/ about
horixontal /L/)

REFLECTORIGIN /LIST/ (reflects /LIST/ through the origin by
simply multiplying every number on
/LIST/ by -1)

REFLECT45 /LIST/ (reflects /LIST/ about the line 45° to
the horizontal by interchanging the
coordinates of each pair)

-54-

a
o
o
D
D
n
D

'

U
Ü

E
I

Report No. 218? Bolt Beranek and Newman Inc.

|

Rotation Is Just as easy from a programming point of view, but,

because the formula giving the new coordinates in terms of the

old ones involves some trigonometry, it is more difficult for

many students. A table of sines and cosines for angles at 15°

increments is adequate, since the "graininess" of the teletype

gives smaller rotations an extremely uneven character.

The above include all transformation procedures given to the

U.Mass. students. There were, in addition, three non-transform-

ational procedures they could use. They could, for example, use

ADDLISTS to take the union of two figures. It is also interesting

to find the intersection of two figures.

TO CONTAINSP /PAIR/ /LIST/ (Tests if /LIST/ contains /PAIR/)
10 TEST EMPTYP /LIST/
20 IF TRUE OUTPUT /EMPTY/
30 TEST BOTH

IS (FIRST /PAIR/) (FIRST /LIST/)
IS (NTH 2 /PAIR/) (NTH 2 /LIST/)

M IF TRUE OUTPUT "TRUE"
50 OUTPUT CONTAINSP /PAIR/ (DELETE 2 /LIST/)
END

TO INTERSECT /LISTA/ /LISTB/ (Gives intersection of /A/ and /B/)
10 TEST EITHER EMPTYP /LISTA/

EMPTYP /LISTS/
20 IF TRUE OUTPUT /EMPTY/
30 TEST CONTAINSP (PULL 2 /LISTA/) /LISTB/
40 IF TRUE OUTPUT SENTENCE

PULL 2 /LISTB/
INTERSECT

DELETE 2 /LISTB/
/LISTA/

50 OUTPUT INTERSECT
DELETE 2 /LISTB/
/LISTA/

END

And now a variety of set theoretic operations can be constructed

such as symmetric difference, complement, etc.

-55-

Report No. 218? Bolt Beranek and Newman Inc.

-•-MAKE "DIAGONAL" "112233t♦I♦5566778 8l,

«-DRAW /DIAGONAL/ "1 1" "+"
+

+
+

+
+

+
+

+

■•-MAKE l,DIAG0NAL2,I TRANSLATE /DIAGONAL/ "5 0"
■•-DRAW /DIAG0NAL2/ "1 1" ":"

■•-MAKE "D3" ADDLISTS /DIAGONAL/ /DIAG0NAL2/
■•-DRAW /D3/ "1 1" "!:"
:: ::
M ::

• • **
• ♦ ••

:: ::

:: ::

| *• •»

:: ::

;: ::

♦■ etc.

In only one case was a new program written by the students,

built upon what was given them:

All the procedures described as part of this second, Cartesian, »
1

drawing sequence were given to the students. They then spent ..,

the little time left In the term familiarizing themselves with

these: I
I
I
I
I
I

1

Ü

u

Ü

u
u

-56-

Report No. 218? Bolt Beranek and Newman Inc.

TO MOVE /FIGURE/ /NUMBER/
10 TEST IS /NUMBER/ 0
20 IF TRUE STOP
30 DRAW /FIGURE/ "0 0" """
40 MAKE "FIGURE" TRANSLATE /FIGURE/ "2 2"
50 MOVE /FIGURE/ (DIFF /NUMBER/ 2)
END

♦■MAKE "BOX" "00100111"
♦-MOVE /BOX/ 4

MM

This Is a very rudimentary animation. On this note the term

ended.

There are a large number of things to do at this level which the

students were working on as the term ended. Also, there are a

number of very Interesting extensions. For example, the combina-

tlor. of random figure generation with reflections produces

Interesting symmetries.

-57-

Report No. 3187 Bolt Beranek and Newman Inc.

TO EIGHTFOLD /N/

10 MAKE "PAIR LIST"
OF /N/

20

30

40

50

RANDOMLI ST

MAKE
ADDL
AND
/PA

MAKE
ADDL
AND
/PA

MAKE
ADDL
AND
LIS

DRAW
II.U

"PAIR LIST"
ISTS OF (/PAIR LIST/)
(REFLECT'+S OF

IR LIST/)
"PAIR LIST"
ISTS OF (/PAIR LIST/)
(REFLECTY OF

IR LIST/ AND 0)
"PAIR LIST"
ISTS OF (/PAIR LIST/)
(REFLECTX OF /PAIR

T/ AND 0)
ORDER OF /PAIR LIST/

(/N/ is the number of pairs on the
pair list that will be generated)
(RANDOMLIST is user-written and
generates a random list of /N/
pairs)
(Form the union of /PAIR LIST/ and
the pair list formed by reflecting
it around the 45 degree line, and
make this the new /PAIR LIST/)
(Form the union of the new list
and its reflection about the
Y-axis)

(Do the same with the resulting
list and its reflection about the
X-axis)

(Put the resulting pair list in
lexicographic order and draw it

END
using + s)

EIGHTFOLD generates random drawings such as the following.

+ +

+
++ ++
++ ++

++ ++
+

+++
+ +

+ +
+ + + +

+ + + + + +
+ +

+ +

+ +

+ +
+ + + + + +

+ + + +
+ +

• 58-

Report No. 218? Bolt Beranek and Newman Inc

Another interesting extension begins with a simple procedure

which enables a user to type in a figure, pointilllstically,

the procedure converting it to a pair list. One can then write

programs which determine if two given figures are congruent, or

geometrically similar.

A student might choose. Instead, to study more complex transfor-

mations such as uniform or nonuniform changes of metric. This

leads into yet another rich area of study.

4.2 Language Sequence

Most students find the automatic random generation of poetry and

prose forms of great interest. Work in this area is especially

beneficial for the average student who considers formation of

algorithms and problem-solving as skills associated exclusively

with mathematics and the sciences. His discovery that these

skills are equally applicable to problems related to language

and discourse is, therefore, an Important one. The sequence

presented here, an automatic generation of word-forms, is based

on teaching done at U.Mass./Boston in the spring of 1971. The

conduct of the course and a description of the students was

given previously. Programs and examples are taken from student

work over the course of about three weeks.

The first step in randomly generating word forms is to write a

procedure R-CHOOSE, which outputs an element chosen at random

from the list given as its input. We need, as a subprocedure,

one which removes the element in a given position on a given

list.

-59-

Report No. 218? Bolt Beranek and Newman Inc,

TO CHOOSE /N/ /LIST/
10 TEST IS /N/ 1
20 IF TRUE OUTPUT (FIRST /LIST/)
30 OUTPUT CHOOSE CDIFF /N/ 1) (BUTFIRST /LIST/)
END

«-CHOOSE 3 "ABRACADABRA"
R

We also need a procedure which uses the built-in random digit

generator, RANDOM, to generate random numbers between 1 and a

given upper limit. To do this, we first write a procedure RND

which produces a random number of the requisite number of digits,

and then RAND, which keeps on using RND until the number obtained

lies in the right range.

«-PRINT RAND 3
2
«-PRINT RAND 3
2
«-PRINT RAND 3
1
«-PRINT RAND 3^567
29843
«-

-60-

0
Q
0

:

i»

0
TO RND /| DIGITS/
10 TEST IS /# DIGITS/ 1
20 IF TRUE OUTPUT RANDOM
30 OUTPUT WORD OF

RANDOM
RND (DIFF /# DIGITS/ 1)

END

u

•*■

TO RAND /NUMBER/
10 MAKE "DIGITS" (COUNT /NUMBER/)
20 MAKE "TRIAL" RND OF /DIGITS/
30 TEST BOTH

GREATERP /TRIAL/ 0
AND EITHER

GREATERP /NUMBER/ /TRIAL/ I,
IS /NUMBER/ /TRIAL/

40 IF TRUE OUTPUT /TRIAL/ |"
50 IF FALSE OUTPUT RAND /NUMBER/
END

Ü

:.

Report No. 218? Bolt Beranek and Newman Inc

Now, R-CHOOSE is easy.

TO R-CHOOSE /LIST/
10 OUTPUT CHOOSE (RAND COUNT /LIST/) /LIST/
END

••-PRINT R-CHOOSE "GOATS SHEEP COWS"
SHEEP
♦PRINT R-CHOOSE "A 0 V P A"
A

One can now make up lists for each of the main parts of speech

and use R-CHOOSE with these as Input:

♦WAKE "VERBS" "APPEARS WAS SMELLS GROWS LIVES DEVELOPS MOVES
STAGGERS SEEMS FLOATS STANDS DIES SMOKES DECAYS SMILES YAWNS
CHEWS PRE-REGISTERS FLUNKS-OUT GROOVES"

■»-MAKE "NOUNS" "TREE GRASS LONNIE RAVEN SUMMER ROCK BILLBOARD
MOUNTAIN WATER COMPUTER WINDOW CAVE SOCK PAVEMENT DIRT ELEVATOR
CARROT WITCH MOON WO .LD"

♦MAKE "ADVERBS" "SLOWLY QUICKLY SMOOTHLY NOISILY QUIETLY ANGRILY
HAPPILY PROFUSELY DEJECTEDLY KNOWINGLY SUSPICIOUSLY BRILLIANTLY
SEEMINGLY GRACEFULLY STUPIDLY ABRUPTLY PATIENTLY WILLINGLY
FORCEFULLY PEACEFULLY"

♦MAKE "ADJECTIVES" "FAT LAZY GREEN DUMB COOL DANK FLUID
COMPLICATED MEAN FLAMING UGLY HARSH LUMINOUS SWEATY HUNGRY
DRUNK DEGENERATE SOFT DRY HUGE"

The number of such lists is dependent on the imagination and

sophistication of the students. The creation of general compound

sentences is not possible with just the lists given. Also, by

making lists which apply only in certain situations, semantic

distinctions can be made. For example, we could have /PEOPLE

ADJECTIVES/ be "PAT THIN TALL SHORT LAZY HAPPY INDUSTRIOUS".

In any case, the use of R-CHOOSE with lists like the above makes

the generation of simple word forms easy. For example:

-61-

--■■■■ -V ..'V- .,,•>..

Report No. 218? Bolt Beranek and Newman Inc.

TO POEM
10 OUTPUT SENTENCE SENTENCE SENTENCE SENTENCE

"THE"
R-CHOOSE /ADJECTIVES/
R-CHOOSE /NOUNS/
R-CHOOSE /ADVERBS/
R-CHOOSE /VERBS/

END

TO POEM-1
10 PRINT POEM
20 PRINT POEM
30 PRINT POEM
h0 PRINT POEM
50 PRINT POEM
END

-•-POEM-1
THE DANK CAVE SUSPICIOUSLY STANDS
THE DUMB WITCH PROFUSELY PRE-REGISTERS
THE MEAN ELEVATOR FORCEFULLY SMOKES
THE SOFT WITCH KNOWINGLY MOVES
THE DUMB COMPUTER QUIETLY YAWNS

The random verse generating procedures can now be extended in

any of several ways. More complex sentence forms can be produced

If additional parts of speech are taken into account in the same

way as the four already treated. Semantic connections can be

established by making lists containing appropriate associations.

For example, as mentioned before,

■»-MAKE "NAMES" "JOHN JACK FRED"
«-MAKE "PEOPLE ADJECTIVES" "FAT THIN TALL SHORT LAZY HAPPY

INDUSTRIOUS"

TO DESCRIPTION
10 PRINT SENTENCE

R-CHOOSE /PEOPLE ADJECTIVES/
R-CHOOSE /NAMES/

END

«-DESCRIPTION
FAT JACK
«-DESCRIPTION
LAZY FRED

-62-

Ü

i
D
E
0
D
D
D

--;- .- ■

Report No. 218? Bolt Beranek and Newman Inc,

Another extension Is the generation of verse with some metric

or other constraints. This can be done with relative ease,

again by separating the parts of speech into classes. If the

verse form is broken, then separation according to number of

syllables is required. Meter requires similar, thouph more

complex, considerations.

The U.Mass. students writing the poetry sequence discussed here

decided to take yet another problem, that of producing rhymed

verse. They looked at the blank verse they were generating and

realized that each line ended with a verb. It was, therefore,

only necessary to select rhyming verbs. This was done by having

/VERBS/ a list of names for alateee of rhyming verbs, rather

than of the verbs themselves.

Thus, they made the associations:

/B/ IS "MAKES TAKES BREAKS FLAKES WAKES"
/C/ IS "FLIES LIES DRIES PRIES DIES"
/D/ IS "SINGS BRINGS FLINGS SPRINGS RINGS"
/BB/ IS "GROWS BLOWS SNOWS GOES KNOWS"

/VERBS/ IS "B C D BB"

TO TWORHYME
10 MAKE "ZZ" R-CHOOSE /VERBS/
20 PRINT SENTENCE SENTENCE SENTENCE SENTENCE

"THE"
R-CHOOSE /ADJECTIVES/
R-CHOOSE /NOUNS/
R-CHOOSE /ADVERBS/
R-CHOOSE (THING OF /ZZ/)

30 PRINT SENTENCE SENTENCE SENTENCE SENTENCE
"THE"
R-CHOOSE /ADJECTIVES/
R-CHOOSE /NOUNS/
R-CHOOSE /ADVERBS/
R-CHOOSE (THING OF /ZZ/)

END

-63-

Report No. 2187 Bolt Beranek and Newman Inc.

TO POEM-RHYME
10 TWORHYME
20 TWORHYME
30 TWORHYME
END

-•-POEM-RHYME
THE LAZY ELEVATOR PATIENTLY TAKES
THE HUGH ROCK SMOOTHLY FLAKES
THE FAT WINDOW SUSPICIOUSLY RINGS
THE FLUID DIRT QUICKLY RINGS
THE DANK SOCK FORCEFULLY BREAKS
THE HARSH SOCK KNOWINGLY MAKES

4.3 Turtle Sequence

We have developed a remote-controlled vehicle, the "turtle",

which responds to a set of motion commands embedded within LOGO.

This section will deal with its use at an elementary level. Use

of the turtle In Introductory classroom work provides a strong

motivational factor, but a more important result is the intro-

duction of new classes of algorithms especially useful for

unsophisticated beginners. Such students will often find it

easier to develop algorithms and write LOGO programs for

"concrete" problems like traversing a given pattern, than to deal

with the "abstract" simple string manipulation problems which

serve as an introduction in the absence of the turtle.

Following a description of the turtle, .•;«= give a sequence of

programs, centered on use of the turtle, which show a natural,

gradual progression from the most rudimentary algorithms (and

LOGO programs) to quite sophisticated ones. This sequence has

not yet been comprehensively used in a classroom situation as

have the two preceding. Preliminary results, however, based on

short-term use of the turtle by single students, indicate that

the sequence is realistic and engaging.

-6U

Report No. 2187 Bolt Beranek and Newman Inc

Finally, we will briefly discuss some of the many possibilities

opened up by use of feedback from the turtle through the opera-

tion of various sensing devices. The material presented deals

exclusively with touch sensors. Preliminary forms of such

sensors have already been implemented on our turtle.

The Turtle

The turtle's "skin" consists of a shallow cylinder three inches

high, mounted on two wheels and two ball bearings, surmounted by

a transparent hemispherical dome 12 inches in diameter. Details

of the design and construction of the turtle and associated

interfaces are given in Section 5.2. It has a repertoire of

five actions, performed upon execution of corresponding no-input

LOGO commands:

FRONT turtle moves forward k Inches
BACK turtle moves backwards ^ inches
HIÜHT turtle rotates 15° clockwise
LEFT turtle rotates 15° counterclockwise
HORN turtle toots

The touch sensors currently used are two thin wires bent around

the front of the turtle like insect antennae. They are suffi-

ciently far from the body that the possibility of contact can be

discovered before the turtle actually collides. Touching of an

object causes one of two flags to be set, depending on which

sensor was activated. The no-input operations TOUCH LEFT and

TOUCH RIGHT output the states of the flags and reset them to

FALSE.

-65-

Report No. 218? Bolt Beranek and Newman Inc.

First Steps

The very simplest work with the turtle consists of typing direct

commands: ...

•«-FRONT (moves ahead one step) [j
•"-RIGHT (
--RIGHT (turns 45° clockwise) r-s
•«-RIGHT (
•«-FRONT (moves ahead ono step)

The sequence above has the turtle travel in a "knight move".

This use of the turtle can soon be supplanted by the writing of

simple turtle procedures. At first, these will use the basic '--'

turtle commands directly:

TO EL
10 FRONT |
20 FRONT
30 FRONT
40 FRONT
50 FRONT
60 RIGHT (each RIGHT is 15°)
70 RIGHT
80 RIGHT
90 RIGHT
100 RIGHT
110 RIGHT M
120 FRONT
130 FRONT
END I? D
It is immediately apparent that the small quanta of rotation

(15°) and of linear travel (*< inches) necessitate a large number ;
of instructions even for modest patterns. An easy way to much

reduce this labor is to define a new set of basic motions in

terms of procedures with inputs.

-66-

I
I
I
[

Report No. 218? Bolt Beranek and Newman Inc.

TO RIGHTTURN /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 RIGHT
'♦0 RIGHTTURN CDIFF /N/ 1)
END

TO LEFTTURN /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 LEFT
40 LEFTTURN CDIFF /N/ 1)
END

TO FRONTS /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 FRONT
40 FRONTS (DIFF /N/ 1)
END

TO BACKS /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 BACK
40 BACKS (DIFF /N/ 1)
END

These new procedures are useful in defining "large patterns",

TO BIGELL
10 FRONTS 10
20 RIGHTTURN 6
30 FRONTS 20
END

but, more Important, they are useful in defining procedures

which allow variations in execution

TO ELL /N/
10 FRONTS /N/
20 RIGHTTURN 6
30 FRONTS (PRODUCT 2 /N/)
END

-67-

Report No. 218? Bolt Beranek and Newman Inc.

Tracing a square In terms of ELLL Is very easy.

TO SQUARE /SIDE/
10 ELLL /SIDE/ «+
END

-68-

a
D

Or, to trace a square of side /N/,

TO SQUARE /N/ T
10 FRONTS /N/ *
20 RIGHTTURN 6
30 FRONTS /N/
1t0 RIGHTTURN 6
50 FRONTS /N/
60 RIGHTTURN 6
70 FRONTS /N/
80 RIGHTTURN 6
END

I

0
At any point the student Is free to design his own tools. He

may very well notice. In the course of writing polygon tracing

procedures such as the above, that a linear motion Is always

followed by a turn. Thus, a useful "tool" Is

TO ELLL /LENGTH/ /N/ (Repeats a forward motion and right
10 TEST IS /N/ 0 turn /N/ times)
20 IF TRUE STOP
30 FRONTS /LENGTH/
U0 RIGHTS 6
50 ELLL /LENGTH/ (DIFF /N/ 1)
END

Ü

Ü

Ö

11
Such patterns as square can themselves be used as parts of more

complex patterns.

I
D
Ü

Ü

Report No. 218? Belt Beranek and Newman Inc.

TO SQUIRAL /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 SQUARE /N/
40 SQUIRAL (DIFF /N/ 1)
END

TO PRECESS /SIDE/ /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 SQUARE /SIDE/
»♦0 RIGHTS 1
50 PRECESS /SIDE/ (DIFF /N/ 1)
END

PRECESS gives the following sort of figure:

-69-

Report Mo. 218? Bolt Beranek and Newman Inc

Many other procedures can be written which transform tracings of

primitive figures:

II
0

TO LOOP /S/ /N/
10 SQUARE /S/
20 FRONTS /S/
30 LOOP (DIFFERENCE /N/ 1)
END

which gives a

, ^ ,

path like

T i \
1

P.

ö
D

More general figurations are obtained by writing transformation

procedures which have the name of the primitive shape as an

input. For example, we can generalize PRECESS in this way:

TO PRECESS /SHAPE/ /SIDE/ /N/
10 TEST IS /N/ 0
20 IF TRUE STOP
30 DO SENTENCE OF /SHAPE/ AND /N/!!

40 RIGHTTURN 1
50 PRECESS /SHAPE/ /SIDE/ (DIFFERENCE /N/ 1)
END

SQUIRAL and LOOP are easily generalized in just the same way.

0

DO is a LOGO command which results in its one input being
executed as a LOGO command. DO is useful in cases where, as
here, some procedure name is not specified within the procedure
being written.

-70-

Report No. 2187 Bolt Beranek and Newman Inc.

Programs With "Memory"

A somewhat different, complementary approach is to write procedures

which interact with the user. A simple, somewhat amusing proce-

dure of this form is:

TO CONTRARY
10 DO OPPOSITE OF REQUEST
20 CONTRARY
END

CONTRARY uses the procedure OPPOSITE to do just the reverse of

the typed instructions. (These instructions are assumed to

start with one of the commands FRONTS, BACKS, RIGHTTURN, or

LEFTTURN.)

TO OPPOSITE /COMMAND/
10 TEST IS FIRST OF /COMMAND/ "FRONTS"
20 IF TRUE OUTPUT SENTENCE "BACKS"

BUTFIRST /COMMAND/
30 TEST IS FIRST OF /COMMAND/ "BACKS"
40 IF TRUE OUTPUT SENTENCE "FRONTS"

BUTFIRST /COMMAND/
50 TEST IS FIRST OF /COMMAND/ "RIGHTTURN"
60 IF TRUE OUTPUT SENTENCE "LEFTTURN"

BUTFIRST /COMMAND/
70 TEST IS FIRST OF /COMMAND/ "LEFTTURN"
80 IF TRUE OUTPUT SENTENCE "RIGHTTURN"

BUTFIRST /COMMAND/
90 EXIT SENTENCE "I DON'T KNOW THE (Exit if the starting command

OPPOSITE OF" /COMMAND/ is not one of the four above)
END

•«-PRINT OPPOSITE "RIGHTTURN 3"
LEFTTURN 3

Another, more generally useful, interactive program is one which

both executes the user's typed-in commands and forms a list of

-71-

Report No. 218? Bolt Beranek and Newman Inc.

them, outputting the completed list when the command END Is

encountered. This gives the turtle a sort of memory and trans-

formations of various kinds can then be applied to these

"memorized" paths. Commas are used to separate commands.

(Blanks are not adequate for this purpose, since a turtle

command may have an input.)

TO REMEMBER
10 MAKE "MOVE" REQUEST
20 TEST IS /MOVE/ "END"
30 IF TRUE OUTPUT /EMPTY/
**$ DO /MOVE/
50 OUTPUT SENTENCE SENTENCE

/MOVE/ V REMEMBER
END

This procedure is used as follows

u
0
0

::

o

-«-PRINT REMEMBER
"SQUARE k (Turtle traces a square of side 4)
"FRONTS 10 (Turtle moves forward-10 steps) U

"END
SQUARE i» , FRONTS 10 , u

I

To make use of such lists of memorized moves, we need an easy U

means of extracting the first command and also of obtaining the
part of the list remai.iing. This is easily done with two new i

procedures. Each searches for the first comma, but otherwise

they act differently. They are the analogues of FIRST and

BUTFIRST for our new data structure.

TO FIRSTCOM /LIST/
10 TEST IS FIRST /LIST/ "/'
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCE OF

FIRST /LIST/
FIRSTCOM (BUTFIRST /LIST/)

END

-72-

Report No. 218? Bolt Beranek and Newman Inc.

•«-PRINT FIRSTCOM "FRONTS 2 , BACKS h . RIGHTTURN 5
FRONTS 2

TO BUTF1RSTC0M /LIST/
10 TEST IS FIRST /LIST/ 'V
20 IF TRUE OUTPUT BUTFIRST /LIST/
30 OUTPUT BUTFIRSTCOM CBUTFIRST /LIST/)
END

•«-PRINT BUTFIRSTCOM "FRONT 2 , BACKS k , RIGHTTURN 3
BACKS h , RIGHTTURN 3 ,

it

With these two procedures, we can reverse any path given by a

list of commands — replacing each command by its opposite and

reversing the order In which they appear.

TO REVERSE /PATH/
10 TEST IS /PATH/ /EMPTY/
20 IF TRUE OUTPUT /EMPTY/
30 OUTPUT SENTENCE SENTENCE

REVERSE BUTFIRSTCOM /PATH/
OPPOSITE (FIRSTCOM /PATH/)
ii it

END

•«-PRINT REVERSE "FRONTS 3 . RIGHTTURN 2 . FRONTS 5 ,"
BACKS 5 . LEFTTURN 2 , BACKS 3 .

A procedure which returns the turtle to its original position

after having executed any number of typed commands is easy to

write, given the above procedures

TO RETURN
10 EXECUTE REVERSE REMEMBER
END

where the procedure EXECUTE performs a series of LOGO commands

separated by commas:

-73-

0 Report No. 218? Bolt Beranek and Newman Inc.

TO EXECUTE /LIST/
10 TEST EMPTYP /LIST/
20 IF TRUE STOP |F
30 DO FIRSTCOM /LIST/ t
«♦0 EXECUTE BUTFIRSTCOM /LIST/
END

An example of the use of RETURN is:

•«-RETURN
»FRONTS 7 (Turtle moves forward 7)
"LEFTTURN 3 (Turtle turns counterclockwise 45°)
"FRONTS t» (Turtle moves forward 4)
♦ (At this point the turtle moves backwards 4,

turns right 45° and goes backwards 7,
finishing at its initial position)

One can extend the manipulation of paths given as lists of

commands considerably further. Possibilities for extension are

creation of paths symmetric in different ways with respect to

the given path, use of the given path in area-covering procedures,

etc. We turn, however, to yet another topic — the automatic

generation of procedures corresponding to given paths.

Procedure-Writing Procedures

The procedure CREATE, given below, writes a procedure with name

/PROCEDURE NAME/, which traces out the path given by /PATH/.

Mote again that the LOGO command DO simply executes its one input

as a complete LOGO instruction line.

TO CREATE /PROCEDURE NAME/ /PATH/
10 DO SENTENCE "TO" /PROCEDURE NAME/
20 CREATESTEPS /PATH/ 10
30 DO "END"
END

I
I

-71-
0
L!

Report No. 218? Bolt Beranek and Newman Inc.

TO CREATESTEPS /PATH/ /N/
10 TEST IS /PATH/ /EMPTY/
20 IF TRUE STOP
30 DO SENTENCE /N/ FIRSTCOM /PATH/
40 CREATESTEPS (BUTFIRSTCOM /PATH/) (SUM /N/ 10)
END

Then, for example,

■«-CREATE "ELL" "FRONTS 3 . LEFTTURN 6 ," (and the procedure ELL
•«•LIST ELL has been created.)

TO ELL
10 FRONTS 3
20 LEFTTURN 6
END

Much more elegant program generating procedures are possible.

We assume each command on the input list has one input which must

be given explicitly, since the commands are executed as direct

lines. Then by including a dummy variable on the title line of

the procedure being defined, and by multiplying all linear

motions by that variable, we "generalize" the given path. Such

a general procedure traces all paths which are either Identical

to the given one or larger than it by integral factors. Thus,

TO GENERALIZE /NAME/ /PATH/
10 DO SENTENCE SENTENCE "TO" /NAME/ "/J/"
20 GENERALSTEPS 10 /PATH/
30 DO "END"
END

TO GENERALSTEPS /N/ /PATH/
10 TEST EMPTYP /PATH/
20 IF TRUE STOP
30 TEST EITHER

IS FIRST /PATH/ "LEFTTURN" (If command is a turn,
IS FIRST /PATH/ "RIGHTTURN" enter it unchanged)

-75-

Report No. 218? Bolt Beranek and Newman Inc.

ones.

■^GENERALIZE "TRIANGLE" "FRONTS 1 , RIGHTTURN 8 , FRONTS 1 ,
RIGHTTURN 8 , FRONTS 1 . RIGHTTURN 8 ."

-••LIST TRIANGLE ' " '

TO TRIANGLE /J/
10 FRONTS PRODUCT OF 1 AND /J/
20 RIGHTTURN 8
30 FRONTS PRODUCT OF 1 AND /J/
'♦0 RIGHTTURN 8
50 FRONTS PRODUCT OF 1 AND /J/
60 RIGHTTURN 8
END

And we now have a "general" triangle tracing procedure.

Furthermore, procedures created by CJEMERALIZE (as well as others

of suitable form) can themselves be used as part of generallzable

procedures. For example, the procedure TRIANGLE above can be

used as part of a diamond-drawing procedure. To make the use of

GENERALIZE easier, *• embed It within a procedure ACCEPT, which

builds up the input to GEIMERALIZE by means of REQUESTS; perform-

ing the typed commands as well:

TO ACCEPT /NAME/
10 GENERALIZE /NAME/ ACCEPTSTEPS
END

J
D
I 40 IF TRUE DO SENTENCE

/N/
FIRSTCOM /PATH/

50 IF FALSE DO SENTENCE SENTENCE I
/N/ (Line # of first command on /PATH/)
FIRST /PATH/ (Command)
"PRODUCT OF"
FIRST BUTFIRST /PATH/ (Input of first command of path)
"AND /J/"

60 GENERALSTEPS (SUM /N/ 10) (BUTFIRSTCOM /PATH/)
END

I
I

We use GENERALIZE to create general paths patterned un specific

D

-76-

Report No. 218? Bolt Beranek and Newman Inc.

TO ACCEPTSTEPS
10 MAKE "MOVE" REQUEST
20 TEST IS /MOVE/ "END"
30 IF TRUE OUTPUT /EMPTY/
40 DO /MOVE/
50 OUTPUT SENTENCE SENTENCE

/MOVE/
it ii

ACCEPTSTEPS
END

Thus,

"-ACCEPT "DIAMOND"
-TRIANGLE 1 / / \ \
"RIGHTTURN h
-TRIANGLE 1

•«-LIST DIAMOND N X / '

TO DIAMOND /J/
10 TRIANGLE PRODUCT 1 AND /J/
20 RIGHTTURN 4
30 TRIANGLE PRODUCT 1 AND /J/
END

The Use of Sensors

Thus far we have simply been using the turtle as an alternative

output device. This kind of use restricts work with the turtle

to the contexts described in the earlier sections. Adding

sensors to the turtle enables it to Interact with its environment,

opening wide ranges of new phenomena to be studied. Perhaps the

simplest and most natural form of sensor is the obstacle detecting

type. Such sensors can be implemented in a number of ways —

through photoelectric, mechanical, or electrical switches for

example. We have, thus far, experimented with several versions

of mechanical touch sensors.

-77-

Report No. 2187 Bolt Beranek and Newman Inc.

First work with such sensors might consist of moving the turtle

across a crowded room. This is distinguished from the more

complicated maze traversal programs which follow naturally through

a series of relatively simple situations given to the student.

Another possibility for rather simple introductory programs is

area-covering search techniques. These topics have complex and

mathematically interesting ramifications.

iJ

0
0
0
I:
u
D
0

A more difficult and rewarding area of study is associated with

topologlcal situations involving recognition. For example, we

can start with the proglem of recognizing a simple polygonal

shape using the turtle as probe. A very difficult problem —

recognizing connectivity of given configurations soon follows. .,

Here we are well within the realm of finite topology problems

encountered in artificial intelligence. Thus, use of sensors,

spans an enormous range of teaching possibilities.

0
Ü

11
Ü

-78-

Report No. 218? Bolt Beranek and Newman Inc.

5. METHODOLOGICAL DEVELOPMENTS

Even when students are nominally working on the same problems

their methods, programs, and resolutions of difficulties, i.e.,

their problem-solving and programming interactions, are very

different and highly individual. When several students are

working concurrently and independently during a LOGO laboratory

session, an instructor cannot adequately monitor and follow all

their work during that session: too much is happening and a

great deal of concentration is required to penetrate particular

sources of difficulties and to suggest new directions of work

with even a single student. To make easier the reading, editing,

and analysis of student work, we developed facilities for record-

ing the students' interactions with LOGO as they are produced.

In the next section we describe the generation of such "dribble

files", illustrate their use in analyzing student work, and

discuss some important extensions of this facility.

Section 5.2 is a comprehensive engineering description of the

LOGO-controlled robot turtle.

-79-

Report No. 218? Bolt Beranek and Newman Inc.

5.1 Dribble Files

In the next pages, we shall discuss the content and the uses of

such dribble file information. The following example shows the

listing of a fragment of a dribble file made from the work of

one of the students in this course, RC. The file is identified

on the top line: RC.DRB;2, along with the date and time it was

generated. We have prefixed the lines with reference numbers 0

through 17. Each line starts off with the time stamp. Thus in

line 0 the number J3:j30:lj3 means 0 hours 00 minutes and 10 seconds

of time required to complete this line.

-80-

I
0
0
Ö

E

The use of programming languages to individualize Instruction

creates new problems for the teacher, both in monitoring the

students' work and in helping to debug it. In this connection,

we wrote a set of programs for creating dribble files as a

by-product of student work. We store the student's type-ins but

not the associated computer responses. (These can be regenerated

subsequently.) We have produced dribble files of student work in

the introductory mathematics course given at the University of

Massachusetts. In about eight weeks the nine students in the

course generated the equivalent of about 1500 printed pages of

dribble file information. (This would be approximately doubled

with the inclusion of the associated responses.)

0
0

§

Q

U
11

E

The material concerns the development of a procedure for drawing l

triangles. Lines 0 and 1 direct the definitions of the proce-

dures NUM and TRIANGLE to be listed. The resulting printouts are

shown on the right. The TRIANGLE procedure is edited several

times during this session: in lines 2, 3, and 4; later in lines

6, 7, 8, and 9; and once again in lines 12, 13, and 14. In

between these successive editing modifications, the effect of the

changes mad« in TRIANGLE is tested by executing the procedure NUK

"■" -

Report No. 218? Bolt Beranek and Newman Inc.

with the Input 8. This is done in line 5, then in line 11, and

finally in line 15. The computer printouts from the executions

the various drawings - are shown on the right. At the end of

this exchange (line 16), the final version of TRIANGLE (which

still has a "bug" in its stopping rule) is listed. In line 17

NUM and TRIANGLE are stored in their current forms in a file

labeled "JOHN CAD".

RC.DRB;2 THU 29-APR-71 12;'»0PM

0 0:00:10 LIST NUM TO NUM /H/
10 MAKE "NU" 1
20 TRIANGLE /N/
END

1 0:00:11 LIST TRIANGLE TO TRIANGLE /N/
10 MARK "X" /NU/
20 PRINT /EMPTY/
30 TEST IS /NU/ /N/
»♦0 IF TRUE STOP
50 MAKE "NU" SUM OF
60 TRIANGLE /N/
END

/NU/ AND 1

2
3

S

00:10 EDIT TRIANGLE
00:43 10 MIDDLE 50 "X" /NU/
00:05 END
00:09 NUM 8

6 0:01:05 EDIT TRIANGLE
7 0:00:26 50 MAKE "NU" SUM /NU/ 2
8 0:00:25 30 TEST IS SUM /NU/ /N/
9 0:00:03 END
10 0:00:09 NuM8\8
11 0:00:07 NU" 8

X
XX

XXX
xxxx

xxxxx
xxxxxx

xxxxxxx
xxxxxxxx

NUM8 NEEDS A MEANING
X

SOMETHING MISSING. IS NEEDS
ANOTMER INPUT. I WAS AT LINE 50
IN TRIANGLE

■

-81-

Report No. 218?

12 0:02:H9 EDIT TRIANGLE
13 0:00:17 30 TEST IS SUM /NU/ 2
14 0:00:02 END
15 0:00:06 NUM 8

16 0:00:38 LIST TRIANGLE

Bolt Beranek and Newman Inc.

/N/

X
XXX

xxxxx
xxxxxxx

xxxxxxxxx
xxxxxxxxx/x

WHEN YOU STOPPED ME I WAS AT
LINE 50 IN TRIANGLr

TO TRIANGLE /N/
10 MIDDLE 50 "X" /NU/
20 PRINT /EMPTY/
30 TEST IS SUM /NU/ 2 /N/
«♦0 IF TRUE STOP
50 MAKE "NU" SUM /NU/ 2
60 TRIANGLE /N/
END

17 0:01:00 SAVE JOHN CAD

i
0
0
0
0
Ö

D
D
!!

This material illustrates dribble files for a single session.

To Investigate the acquisition of problem-solving skills, it is

useful to consider a student's work from a more global point of

view. To see the kind of analysis possible, we consider the work

of a single student, RC, on the teletype geometry sequence. RC,

early in the term, was confronted by the need for a procedure to

find the integral half of a number. Her algorithm consisted of

successively adding 1 to a trial "half" and testing to see

whether its double was within 1 of the original number. Having,

after considerable effort, written the recursive procedure FIND

to do this, she then saw the need for another program to do the

Initialization and wrote HALF. Annotated listing of both programs

are given following. 'T'hey fall neatly into distinct parts as

labeled. The algorithm itself is, perhaps, not one that a more

sophisticated programmer would use. Also, in many places RC is

more obscure than is necessary. Real student-written programs

are like this, however.

-82-

Report No. 218? Bolt Beranek and Newman Inc.

Initiali ze

Call Simply-
Recursive
Procedure

TO HALF /N/

10 MAKE "TRIAL" 0

20 OUTPUT FIND OF /N/

END

(/N/ is the number
to be halved)
(Set the "trial"
value of half to 0)
(Output the result
of FIND as the
answer)

End-Test

Increment

Recursion

TO FIND /N/

10 TEST GREATER? OF 2
AND DIFFERENCE OF
(/N/) (PRODUCT 2 /TRIAL/)

20 IF TRUE OUTPUT /TRIAL/

30 MAKE "TRIAL"
(SUM OF /TRIAL/ AND 1)

40 OUTPUT FIND OF /N/
END

(Is 2x/TRIAL/
within 1 of /N/)

(If so, /TRIAL/ is
the answer)
(Otherwise, add 1
to /TRIAL/)
(and repeat FIND)

About a week later the same student wrote a pair of programs to

automatically draw triangles. We showed the dribble file for

the last part of this development ,1ust above. The form of

these programs is nearly identical to the ones for halving. The

only change is that each step of the recursive procedure TRIANGLE

results in an action and this was not true for FIND. This task.

however, only took about half the time required for the earlier

one. Along with this, the problem was approached much more

directly, as is evident from looking at the dribble file.

Clearly, this program form was being internalized.

Initiaii ze

TO NUM /N/

10 MAKE "NU" 1

Call Simply- 20 TRIANGLE /N/
Recursi ve -
Procedure

END

(/N/ is the number
of X's in the botto:
row of the triangle
(Make the number of
X's the current i n
row i)
(Draw the triangle")

-83-

Report No. 218? Bolt Beranek and Newman Inc.

Action

End-Test

Increment

Recursion

TO TRIANGLE /N/

10 MIDDLE 50 "X" /NU/

20 PRINT /EMPTY/

30 TEST IS (SUM OF
/NU/ 2) (/N/)

^0 IF TRUE STOP
50 MAKE "NU"

(SUM OF /NU/ 2)

60 TRIANGLE /N/

END

(Mark the current
row)
(Start the next row)

(Is this the last
row)
(If so, done)
(Otherwise, get
number of marks in
current row)
(and repeat
TRIANGLE)

This example forms a small part of RC's work on the geometric

figure drawing sequence. In all, she used three different prograr

forms: the one which we have Just discussed which we will call

form II; simple recursion which we label form I; and form 0 which

is a linear sequence of steps. The diagram given as Figure 1

shows all the connections between the various parts of the

drawing sequence. The program forms are indicated in parentheses

after each procedure name. A more complete and useful "flow

chart" would give the conditions for recursion and termination

of each procedure of form I or II. This information has been

omitted, however, for the sake of clarity and conciseness.

Another student was working on programs for drawing geometric

figures during the same period. The diagram associated with the

work of this student, AP, is shown in Figure 2. These students

spent about three weeks near the beginning of the term writing

these programs. Thus it is apparent that complex structures can

be generated quickly, even by "beginners". These examples show

some of the issues involved in analyzing complex student inter-

actions. Great differences in program organization in the two

cases are apparent, even though the set of programs have the

same final effect.

I
D
Q

0
0
0
0
0

Ü

y

ii

-84-

Report No. 218? Bolt Beranek and Newman Inc.

CIO

MIDDLE (I)

UPD (I)
("upside-down"
triangle)

DIAMOND (0)

i

MARK (I)

SUPERMARK C0)

GLIRP CO
(The student's name for a
series of diamonds and
rectangles)

RECTANGLE CO
i (rectangle start-
Y ing at left margl:

STRIPE CO
(rectangular
strips)

RECTANGLE CO
(rectangle
centered on
page)

Figure 1. Diagram of RC's Drawing Program

-85-

Report No. 218?

RECTANGLE (O

(rectangle with
specified start-
ing margin)

SIM-RECTANGLE (0)
(centered
rectangle)

Bolt Beranek and Newrnan Inc.

MARK CD

*
SUPERMARK C0)

f
MIDDLE (0)..

1 TRIANGLE (O

CONE CD
("upside-dov/n"
triangle)

DIAMOND C0)
(This really draws
a hexagon) I

SIMPLE-DIAMOND C0)
| (This one draws a
I diamond)

SAW CD
(series of
diamonds)

SUPERSAW C0)
(fixed series of diamonds
and rectangles)

Figure 2. Diagram of AF's Drawing Programs

I
0
D
n
ö
o
D
i
I
Q

y

-86-

Report No. 218? Bolt Beranek and Newman Inc.

Extending the Utility of Dribble Files

The "dribble file" we have described contains all details of the

student-computer interaction as it occurs at the teletypewriter.

By replaying a dribble file, we can even get all the Information

at the systems level. Thus, the dribble file certainly contains

all the raw data available for analysis. The very completenesä

and bulk of the information in the dribble file, however, dis-

courage us from doing any searching and processing directly. We

could have collected the data selectively to reduce the size of

the file but preselection of the data to be preserved can turn

out badly. Furthermore, any preselection rules can be applied

to the dribble file itself which can then be saved as a backup.

With this strategy, if it turns out in light of consequent results

that a poor choice has been made, a new "preselection" can be

done on the dribble file. This is our rationale for saving all

the data.

Since it is inefficient to use dribble files directly, we must

ask what aids exist or can be devised to make their use manageable.

The most rudimentary such aid is a text-editing language, such as

TECO, as implemented on the PDP-10 computer system. Direct

character-by-character matching is made very easy by such a

language. Thus, for example, one could delete all time marks in

a given file or all directly executed input lines. One could

also delete all lines followed by an error message, if one can

specify the format of an error diagnostic statement. These

actions are all the results of simple format matching. Also, it

is easy for a user to insert comments into a dribble file using

TECO. If, in addition, one can combine series of the basic

searching, inserting, deleting, and pointer-moving commands, with

-87-

Report No. 218? Bolt Beranek and Newman Inc.

numeric and branching capabilities, there is the possibility of
extremely sophisticated types of processing. In fact, the

"Q-registers" that TECO provides for storing stacks make the
language perfectly general and permit Turing-machine-like

programs to be written for all computable functions. One could,
for example, with some effort write a program using TECO to find
and enumerate all simple recursive programs in a dribble file. 1

Thus, two requirements that a dribble file analysis language must
satisfy are already apparent. The language itself iraist be natural
in form to accommodate the unsophisticated user, and user-written

procedures must be transparent to permit their use in further
procedures. It is clear that such a language should appropriately

incorporate the text-handling and editing features which are
already in common use. By making the language self-extensible,
so that sets of programs of any depth can easily be written, we
satisfy the requirement of transparency. Also, it is much easier
to write general programs in a self-extensible language. For

example, instead of writing a TECO program which looks in the

dribble file for an object of some given form, one can, with

about the same effort, write a program in such a language, one

of whose inputs specifies the form to be found. Also, a SNOBOL-

like set of matching procedures could be written in the file
analysis lansuage itself instead of being given as part of the

set of primitives.

Let us discuss the use of the analysis language next. Often

a teacher tfishtl to classify the programs written by his
stude.it in a way he specifies. It would clearly be very

-88-

I

I
E

Unfortunately, in a practical sense this is about as far as one *r

can go with TECO. First, one Is writing programs in what is "
essentially machine-language, a rather tedious undertaking. Also,
it is difficult to write programs that are easily extensible. I

D
0

Report No. 218? Bolt Beranek and Newman Inc.

inefficient to have to perform this analysis on the same programs

each time he looked at the dribble files. The standard result

of an analysis of a dribble file should therefore be a new file

containing the processed data, with tags Joining it to the

original file at points of correspondence. This means that the

user can look through the processed file using his own set of

descriptors arui can go back to the ra'.«.' data whenever necessary.

The idea of being able to operate upon the file at multiple levels

of detail is of very general use. In analyzing the work of

a student through his dribble files, there are several levels

which may be of nearly simultaneous interest. For the top level,

a good mode of presentation might be a flow chart, dynamically

changing as the user scans the student's work, indicating all the

programs in the student's workspace and showing the changing

connections between them. At a lower level one might have a

complete specification of all the student's programs at that

moment in time. At the lowest level one would probably want a

"cleaned up" version of the dribble file with (what the user

considers) the obscuring features deleted. The analysis of the

dribble file would begin at the top level. When programs of

particular interest appeared, they might be listed or executed.

Still further, the details of their creation and use by the

student might be explored at the lowest level.

Thus, we anticipate the need for a set of programs enabling the

user to switch back and forth between levels, zooming in when he

needs more information, allowing him to vary his scanning rates,

to go back and forth between current and previous material, to

switch from scanning to execution r.iode, and so on. Let us

consider next some kinds of information that will be of interest.

-89-

i
Report No. 218? Bolt Beranek and Newman Inc.

0
0

I
D

Apart from considerations specific to the content being studied,

the user probably will be interested in general questions regard-

ing the formal structure and organization of the student's work,

examples are: (1) What kinds of programs were used, i.e., what

standard functions did the programs have (such as initialization,

testing, and computation)? (2) What elementary program forms

were used (loop-free sequence, iteration, simple recursion,

etc.)? (3) What was the program organization, i.e., how were

the various programs combined (program tree, substructure type,

recursion diagram)? Thus, using this extended system, we can

characterize the functional, formal, and organizational features

of the work of particular students.

L

u

Ü

I
E

-90-

Report No. 218? Bolt Beranek and Newman Inc

5.2 The "Turtle" - A LOGO-Controlled Vehicle

A teaching sequence centered on use of a LOGO-controlled remote

vehicle, the "turtle", was described In Section ^.3. Here we

discuss the design and construction of the turtle. Figure 3 Is

a block diagram showing the main components Involved In turtle

operation, and the links between them. A turtle command is

Initiated by the computer, which sends a signal to the teletype,

which In turn activates a transmitter. This signal Is picked up

and decoded by a receiver built Into the turtle. This decoded

signal is fed Into a control unit which applies a suitably

polarized voltage to each of the motors turning the turtle's two

wheels. The angle of rotation Is precisely measured by a cam

switch mounted on each wheel. Besides the four motion commands,

the HORN command sounds the turtle's horn. The turtle's motors

and electronics are powered by a nickel-cadmium battery pack.

The design criteria were that the turtle's motions should be

accurately repeatable and that the material used in construction

be readily available to facilitate replication. Each of the

components of the turtle system, and the sequence of events

Involved in complete execution of a turtle command is described

In detail below.

Computer CPU

LOGO executes a turtle command by sending a string of characters

to the teletype (TTY). The first character of this string is a

control character to specify the command, which the TTY decodes

and sends to the transmitter unit (TU). This control character

is followed by a number of waiting characters which are sent to

ensure that succeeding turtle commands are not transmitted

-91-

e
Report No. 218? Bolt Beranek and Newman Inc. |,

0
II
0
0
0
I5

before the completion of the current one. The character strings

resulting from the five turtle commands are:

Mtllllf FRONT (Go 1 unit forward)

fKfflll BACK (Go 1 unit backward)

tHHH RIGHT (Rotate 15° clockwise)

+V##H LEFT (Rotate 15° counterclockwise)

t]«« HORN (Sound horn)

(f before a character indicates control character.

indicates wait character.)

All of the charactet-s In these strings are non-prlntlng. The

number of ^'s In the strings varies because the times necessary

for completion of the actions vary.

Teletype (TTY)

The teletype Is a KSR 33 teletype to which six function levers

and function switches have been added. The turtle command

characters are six reserved, non-printing control codes. Receipt

of one of these characters causes the corresponding function

lever to activate a function switch which transfers a signal down

one of six control wires to the transmitter unit.

Transmitter Unit (TU)

The transmitter unit contains two sections-the transmitter (XMTR)*

and the timing circuits. The XMTR operates on the 27 MHz Citizens

Band, modulating the RF carrier with one of six discrete audio

*The transmitter and receiver are standard Citizens Band units,
purchased complete. The modifications made are described below.

-92-

LI

0
li
II
I
i
I
I

L

Report No. 218? Bolt Beranek and Newman Inc.

frequencies. Computer execution of a turtle command results In

a signal on one of the six lines from the TTY. This pulse is

smoothed and lengthened by the timing circuitry and is used to

activate a relay which switches an appropriate capacitor into

the audio oscillator circuitry of the XMTR and starts the oscil-

lator. The RF control signals are then transmitted for a time

period sufficient for the receiver unit (RU) to receive them

accurately.

Receiver Unit (RU)

The receiver unit (RU) used in the turtle control link is similar

to those commonly used in transistor portable radios, with two

major differences. The first is that RU is crystal-controlled

to accept signals only on the control transmitter frequency.

The second difference is that the RU has no loudspeaker, instead

it has a resonant reed relay with six tuned reeds. When a signal

Is applied, that reed which is tuned to the frequency of the

excitation signal, vibrates back and forth making an electrical

connection at one extreme of its path. The six output wires of

the RU are taken from the contacts of these reeds. Thus, the RU

acts not only as a receiver, but also as a discriminator which

determines which function was selected at the transmitter. The

signal appearing on one of the six output wires of the RU is

smoothed to a 12-volt level and sent to the control logic.

Control Unit (CU)

Two of the six outputs of the receiver unit are designated as

accessory channels. Currently one of these controls the bell*

and the other is a spare.

Actually a Mallory SONALERT® with a 20yf capacitor In parallel

-93-

Report No. 218? Bolt Beranek and Newman Inc,

0
0

The other four channels are used for motor controlling — one

channel for each of the four motion commands. The control unit

consists of two parts, the motor control logic (MCL) and

accessory controls. The MCL has separate control sections for

each of the two wheels. These wheels have cam switch operators

on their shafts. The MCL determines when the specified rotation

has been completed by each wheel by counting the number of opera-

tions of the cam switches. The use of cam switches makes it

possible to maintain high precision in the motion of the turtle

and obviate concern for all but gross differences in the speeds

of the two motors and in battery life.

I
c
D
0

Q

Functioning of the MCL

The sequence of events is depicted by the flow chart in Fig. H.

When a motion control command is received from the RU, a 12-volt

signal is diode gated to actuate motor relays which start the

motors in appropriate directions. (See Table 1.)

Any motion command also generates an ENB (enable) signal. This

12-volt signal is converted to a 0 or 5 volt TTL logic signal

(for the integrated circuits) which is used to set the holding

flip-flops PF-, and FFp via the SET,, SET2 signals, respectively.

(See Fig. 6a.) When these flip-flops are set, they energize

relays G-, and Q« which, in turn, generate signals GSIG, and GSIGp. f

The GSIG signals are fed back to the coils of the motor relays •

to keep them actuated after the control command is removed.

These relays remain "on", keeping the motors rotating until

motion is completed and FF, and FF- are cleared. Each wheel has

its own complement of counting and reset logic and operates

independently.

-94-

t
I
I
I
11

Report No. 218? Bolt Beranel: and Newman Inc.

A typical sequence of events for the right wheel logic starts

with a "FRONT" signal from the RU. A flow chart of the sequence

appears in Pig. i*. The actions of the wheel logic in response

to this command can be broken down into a sequence of distinct

steps: All lettered actions under any one step number occur

nearly simultaneously.

1. A. The signal comes from the RU into the diode gating network.

(Left side of Fig. 5a.)

B. This signal goes through the coils of FR, and FR2 energiz-

ing them. (Fig. 5a.) From this point on, the logic

associated with motor 1 and with motor 2 function Identi-

cally so we will refer only to the former.

C. It also appears at the ENB (enable) point as the ENB

signal.

2. A. Two sets of normally open contacts of the FR, r^lay now

close applying 6 volts to the motor M,. (Fig. 5d.)

B. The 12-volt ENB signal is converted to a logic signal

SET-, for the integrated circuits and is used to set PF,.

(Fig. 6a.)

C. The output of FF,, signal G. goes through a relay driver

(Fig. 6b) and energizes relay G,. (Right side of Fig. 6a.)

D. There are two sets of contacts In the G, relay: one set

open, removing the brakes from the motor (Fig. 5d)j the

other set of contacts close, generating QSIGk (Fig. 5c).

3. GSIG, is fed back to the coil of FR, through a closed set of

contacts of FR, (Fig. 5a

the motion is completed.

contacts of FR, (Fig. 5a) to hold this relay actuated until

-95-

Report No. 218? Bolt Beranek and Newman Inc.

^. A. The cam switch senses (In about .1/2 second) that the wheel

has rotated one detent (15°) (Fig. 6a) and generates

signal CLOCKj^.

B. CLOCJ^ triggers the counting 8-bit shift register SFL

(which has been previously cleared to all 0fs) which

shifts a logic 1 into bit 1 (Pig. 6a).

5. Subsequent pulses of CLOCK, from the cam switch will shift

logic I's right until bit 6 switches from logic 0 to logic 1.

Resetting PP, removes signal G, and deactivates relay 0,

(Fig. 6a).

1]

0
(At this point, the motor and wheel are rotating forwards, FF-,

is set, the brakes are off, and the motor control relay FR-, is

being held on by GSIG,. This state will be maintained until the

counting logic has counted the correct number of increments of

wheel rotation (six for an F command).) I

Ö

0
n

6. When the output of bit 6 of SR-, goes to a logic 1, this

output signal fires the ONE-SHOT generating a 100 ms. square

pulse. This CLEAR, pulse is used to clear SR-. and to reset -'

PP, (Fig. 6a).

Ü

9r
8. A. With G-, deactivated, GSIG, goes to zero (Fig. 5a) removing

the holding voltage on FR-, (Fig. 5a).

B. The motor voltage is removed (Fig. 5d). |

C. The brakes (Fig. 5d) stop the motor.

I
I
..

-96-

Report No. 2187 Bolt Beranek and Newman Inc

If a rotation (R or L) command is Initiated, the system resets

after both wheels have gone only one detent, (15°). This Is

accomplished through the use of the H relay.

When an R or L rotation Is requested, along with starting the

motors In the correct directions, the H,-,, signal Is generated in

the diode gating (Fig. 5a and Table 1). This signal energizes

the H relay (Pig. 5b) which Is held on by OSIQ, and/or GSIGp.

The shift registers SR, and SRp both have the outputs of bit 1

connected through the now closed contacts of the H relay to the

resetting ONE-SHOTs (Pig. 6a). When the H relay is energized,

the systems reset on the first clock pulse. If one wheel

completes before the other, the logic for that wheel will reset,

but the GSIG of the moving wheel will hold the H relay energized

until both wheels have completed their 15° rotation. At this

point, the system is ready for another motion command.

Mechanical Design

The driving mechanism of the turtle consists of a pair of motors

each driving one wheel, through a gear train. The angular

velocity at the wheels is about 14 rpm. The axle for each wheel

holds a driving wheel, a cam wheel, and a driving gear (Fig. 7).

The cam switches are mounted on the base plate in such a way as

to Insure operation regardless of the direction of rotation of

the wheels. The basic dimensions of the turtle are:

diameter of turtle 12"

diameter of wheels 3•75"

distance between wheels 7.5"

There are two ball coasters mounted on the bottom of the base

plate for balance and there is a 12" diameter clear plastic

hemisphere which mounts on the top above a 3" rim.

-97-

Report No. 218? Bolt Beranek and Newman Inc.

Sensors

Possibilities exist for several types of sensors on the turtle.

Thus far the only ones we have incorporated are touch sensors.

These are implemented as two long semi-rigid wire actuators

attached to microswitches which are thrown when the turtle comes

close to a solid object. The signal train for returning these

data to LOGO is very similar to the command train sequence except

that the radio link is on a different frequency to avoid inter-

ference. When the sensor signal gets to the teletype, a relay

is actuated which closes the appropriate keyboard contacts and

triggers the teletype to send the character selected to the

computer.

Other possible sensors include a pair of photocells which could

be used to seek a light or follow a printed line, an electro-

magnetic detector of metallic strips or filings, and an ultra-

sonic "ear" to allow sound seeking or to relay audible signals.

Table 1.

Command Received Right Motor Left Motor HSig

F (FRONT) Forwards Forwards 0 V

B (BACK) Backwards Backwards 0 V

R (RIGHT) Backwards Forwards +12 V

L (LEFT) Forwards Backwards +12 V

-98-

I

6
I
o

-1f^

m

oo
oo
oo
00

-'X

u

/
$

T

I
I
I

via go

4

i! or

II
o

^ÄAÄ

0M+M*gi

■ £

I

o»

si

Mi hi
SI«

-99-

.

%/•

^ »A
'%
^

YES i>

sat S/A/ei£

IE
ro START mim

\[/
\iNiff/iri HOL$/HG
\\/QLTftQ£S ro Keefl
\siaroAS AuA/^fA/Q I
t^r/4 PUNCTfW
COMPLETION

^

tftftr
OJHE£L

^/Ni/
w*tr

FOlt
HAM

„ stHFr

\,
\,

N^Ci

*0. COUNT

vifiir

i

 vl/

K&ysreA.

 ^
. /S x

/5 v
COUNT v ^

6?
^»* sTJ/ ^*

6/;/y5£/. mthiNL OJHBE- ttoihfW
vcirwe. frcP^p^, srot

\Horo£. WAIT ' MOTOZ mfijT
FQ«L owe ft IFQK. OTHBA J
T-Q COfiiHETE.TO ooMPitrel

1
££S£T S//Y0l£ COUNT
PLfidQLEftG. 3*/FT

T

FIGURE H. FLOWCHRRT POR MCL

0
U

\.

-100-

1
5
m

^ ^0 ^ -i-:"^'
w ro ro - -jfV

1

3
Ui

tt u «
u

tt o 4] ^| T

UI
4
«I

y
-I
•i»
tt

/

t
^ a

a

2

»-
<r

lii
T

Ui
tt

V3

0

CD

-101-

>

■
v

V5
0
-i

tu

Ui

Of

o
z

2
P
7
0
0
o

o
V»

Ul
or

l\
-102-

 1 ■ p '

/

.*

5u w ox

g
M

8

mi n,!1 n imjc

—H—

)

\

\

/

2

7

IU

a
0

-103-

I]
Report No. 218? Bolt Beranek and Newman Inc.

0

Peurzeig, W. and Lukas, C., LOGO - A Programming Language for
Teaching Mathematics, Educational Technology (in preparation)
Nov. 1971.

Polya, G., How to Solve It, Princeton, 19^5, Doubleday Anchor,
1957.

" Mathematics and Plausible Reasoningy Princeton, 195^.

" Mathematical Discovery, Vols. 1,2, Wiley 1962,1965.

0 6. REFERENCES

Peurzeig, W., Lukas, G., ..., BBN Report 2165, "Programming f|
Languages as a Conceptual Framework for Teaching Mathematics," ^
Final Report on National Science Foundation NSF-C 615, June 1971.

I
0
D
0

-104-

APPENDIX

REEVALUATING LOW ACHIEVERS WITH COMPUTER-ADMINISTERED TESTS

This appendix contains a detailed report of the reading test
study carried out as part of the teaching experiment described In
Section 1*.2. The material Is being submitted for publication In
the Journal of Educational Measurement.

Abstract

We have recently obtained experimental results which Indicate
that standard tests of reading comprehension significantly under-
assess the actual achievement levels of many low-scoring children,
When the computer was used to administer a standard test, the
scores of low-achievers Increased dramatically. Comparable
Improvements did not occur with hlgh-achlevers — in fact, their
performance actually suffered somewhat on the computer-adminis-
tered version of the test. These shifts in performance are not
substantially changed when the effect of regression toward the
mean is taken into account. Neither can they be explained as
an artifact due to order of administration nor by Hawthorne or
novelty effects. They probably are due to attention-engagement
phenomena associated with control, interaction, pacing, and
partitioning aspects of the computer presentation. If these
results are generally true for large segments of the school
population, they will bear importantly on testing theory and
educational placement.

1. Introduction

This report describes an experiment comparing the results of
administering computer and paper-and-pencil tests on reading
achievement to a group of eighth grade pupils at the Muzzey Junior
High School in Lexington, Massachusetts in June 1970. Other
comparisons of the results of tests by paper-and-pencil and by
computer administration have been made previously. In one study
with a group of "lowest-achieving" elementary pupils, a consider-
able number did better when they took the California Reading Test
on a computer than when they took an equivalent form with paper-
and-pencil. (Serwer and Stolurow, 1970).

In another study, two matched samples of lower-division students
attending a university summer session took the sentence under-
standing (Part I) and word meanings (Part III) sections of the
Cooperative School and College Ability Test (SCAT); one group
took it under standard test conditions, the other took it under

A-l

Computer administration. The computer subjects scored signifi-
cantly higher than the paper-and-pencil subjects; the variance
in their scores was significantly smaller primarily because of
the smaller proportion of low scores in the computer administra-
tion. In effect, for the computer group, there were fewer low
scores, more middle-range scores, and about the same number of
high scores. (Vinsonhaler, Mollneux, and Rogers, 1965).

Our testing experiment was a by-product of a larger research
Investigation involving the teaching of an experimental computer-
based course in programming and problem-solving to six eighth-
grade pupils. The pupils chosen were six boys with the greatest
measured deficiencies in reading comprehension level in the
school. Their comprehension scores ranged from three to five
years below their current (eighth) grade level. They did not
have observed physical or perceptual handicaps of any kind. With
one exception, they had little Interest in intellectual activity
(and sometimes showed enormous resistance to it).

The teaching project had two objectives. One was to explore the
use of computers and programming as a means of "turning on" these
intellectually-alienated pupils and involving them in constructive
thinking and problem-solving work. The other objective was to
investigate our conjecture that the pupils' work with programming
might significantly help their reading.

We were sure that all the pupils would enjoy working at the
computer, and this was indeed confirmed. We designed the course
on this premise: if learning to use the computer required pupils
to do a great deal of reading of computer-administered lessons,
they would be very willing to do so. We thought that this in-
volvement might open up ways to improve their reading comprehen-
sion skills.

We did not expect that the pupils would show significant gains in
reading over the relatively short time span of the course (about
three months). Our interest was limited to making a Judgment
about the feasibility of such an indirect approach to reading
instruction through the teaching of a programming language.

Nevertheless, our plan included administering standard pretests
and posttests of reading comprehension to our six pupils and to
a comparable control group. As the time for administering the
posttests approached, we surmised that, in the same sense that
our pupils did not give serious attention to official school work
In the classroom, they probably did not take tests. We conjectured
that their reading test scores did not adequately reflect their

A-2
I
H

actual achievement levels (or, at least, the levels at which they
were actually capable of performing). Moreover, we hypothesized
that if they took equivalent forms of the posttest, one in conven-
tional paper-and-pencil fashion and one administered on the
computer, they would do a great deal better on the latter.

We thought this hypothesis might hold generally for a larger
group of reading "underachievers." We therefore extended our
posttest design with the purpose of performing a new experiment
focused on testing rather than irstruction. We selected an
expanded sample of 6l eighth-grade pupils in the school (includ-
ing four of our six computer class pupils). The sample included
about twenty pupils with a history of low reading achievement
scores, about twenty pupils reading at levels that seemed low
relative to their intelligence quotients, and about twenty per-
forming at moderate to high levels.

All students took two forms of the (Triggs) Diagnostic Reading
Test, upper level, survey section, comprehension scale designed
for use from seventh through twelfth grades. Form B was adminis-
tered in the standard fashion; form D was administered on the
computer. Approximately half of the students (25 of the 61),
randomly chosen, took the computer test before the paper-and-
pencil test.

This achievement test presents a fairly extensiv«1 reading passage
followed by twenty four-part multiple-choice questions. In the
computer administration, the reading material was fragmented and
presented sequentially on a teletype in segments averaging about
three lines each. The pupil called for each segment when he was
ready by striking a teletype key. In the same fashion, he
called for and responded to each question in sequence whenever
he wished. He could skip questions and subsequently go back
and change answers.

No time limits were imposed in either administration (though we
clocked the computer test times every three minutes). Pupils
required from thirty to forty-five minutes to take the tests.
The computer version generally took five to ten minutes longer
than the paper-and-pencil version. Virtually all pupils reported
that they enjoyed taking the computer version, even those who
scored relatively low rm it.

A-3

2. Analysis and Findings

[Tables 1, 2 and 3 about here]

I
0
0
0

The basic data from which our findings are derived are shown In
Table 1. Pupils have been given Identification numbers according
to the rank of their I.Q.'s; I.Q. scores are from the Stanford-
Blnet tests that most of the pupils took when they were In the
second grade. Junior high pupils take Survey E (seventh through
ninth grades). Form IN of the Qates-MacOlnltle Reading Test In
April each year. Table 1 lists their scores on the comprehen-
sion scale of the tests they took In the seventh and eighth
grades; these scores are recorded In terms of grade-level equi-
valents. The comprehension scale of the survey section of the
upper-level Diagnostic Reading ("Trlggs") Test was used as the
experimental measure; Form B was administered as a paper-and-
pencll test and Form D as a computer-administered test In June
of the pupils' eighth grade year. Table 1 records the number
of correct answers to the 20 questions asked.

B
0
0

The distribution of computer scores over the corresponding paper-
and-pencll scores Is shown In Table 2. For purposes of analysis,
the range of the 21 possible scores In the Diagnostic Reading
Test (0-20) have been divided Into septlles of three potential r,
scores each. The data from Table 2 are analyzed In terms of
these septlles In Table 3. In the latter table, the gross dlf- u

ference In means has been adjusted on the last line by subtracting
the effect of the difference In the grand means; the last line of
Table 3 represents a regresslon-toward-the-mean effect. U

[Tables M and 5 about here] If

Table H shows the distribution of computer scores across the
paper-and-pencll scores. Table 5 presents this distribution In «.
terms of septlles of the range of scores. [

We shall analyze these scores In two general ways: one by looking
at the relations between the paired scores, the other by looking
at the total distribution of scores.

2.1 Analysis of Paired Scores

The most striking finding In the data Is the great superiority of
computer administered over paper-and-pencll administered test
scores for those who scored low on paper-and-pencll tests; this
is shown in Table 5. One way to analyze this and other effects

A-il

is within the framework of the regression-toward-the-mean
phenomenon. We expect to find this phenomenon whenever two sets
of similarly derived scores are compared. In Table 3, there is
a tendency for paper-and-pencil scores to be closer to the mean
on the average than the corresponding computer scores; similarly,
in Table 5, there is a tendency for the computer scores to be
closer to the mean than the corresponding pencil-and-paper scores
As mentioned above, however, where paper-and-pencil scores are
low, the regression-toward-the-mean effect is an extreme one.

In order to improve our understanding of this effect, we suggest
three models to describe a regression toward the mean. If two
sets of scores are perfectly related, that is, if one score pre-
dicts another score perfectly, there is no such regression; the
difference in the means of the two sets of scores will predict
the relation between any two pairs. If, on the other hand, two
such sets are randomly related, the regression toward the mean,
theoretically at least, will be complete; even if one knows one
of a pair of scores, the best predictor of its counterpart is
the mean of Its set. In practice, we normally anticipate neither
of these extreme conditions, but a condition somewhere between
them. We do not expect two sets of scores on similar tests to
be perfectly correlated because of the differential reactions
of individual subjects; neither do we expect random relation-
ships since the same individuals are taking tests measuring
similar attributes. What we predict is simply that the Y scores
will be closer to the mean than the X scores in any given
stratum.

[Figure 1 about here]

In Figure 1, we have tried to model these three conditions. X-
scores are shown on the abscissa and Y-X differences on the
ordinate. For the case where scores are perfectly correlated
and differences are constant, our model would consist of a hori-
zontal line set at the zero level. For the case where scores
are randomly related, we show a diagonal broken line from comer
to corner with a slope of b «-1.00; at any point along this line
Y-X (the ordinate distance) equals the X-score minus the mean of
the Y scores; as drawn the line assumes the X and Y means to be
equal.

These regression lines are theoretically derived. We must derive
the in-between case empirically.

V/e have done this by using the scores of the comprehension scale
on the Gates-MacGinltie reading test pupil scores for 1969 and

A-5

A-6

0
0

1970 as shown in Table 1. The scores are comparable to those
on the Diagnostic Reading Test in the sense that they are for
the same pupils and measure the same ability. Since we are not
interested in a substantive comparison of the two sets of scores,
we pooled the regression of the eighth grade (1970) on the
seventh grade (1969) scores and that of the seventh grade (1969)
scores on those for the eighth grade (1970). This pooling
doubles the number of pairs available to us, gives us two sets
of scores—X and Y—both of whose means and distributions are
identical, and gives us a symmetrical distribution of differences.

0
E
Ö

B
D

These data for the Gates-MacGinitie scores have been analyzed
in the same fashion as the Diagnostic Reading Test scores.
First, the range of the Gates-MacGinitie scores was made ap-
proximately comparable to the range of the Diagnostic Reading
Test scores. This range was then divided into septiles and the
regression toward the mean was caicuiated. The results are
shown in Table 6.

The range of Gates-MacGinitie scores is shown across the top of
Figure 1. The ordinate for the difference (regression toward
the mean) in Gates-MacGinitie scores, similarly proportioned, is
scaled on the right-hand side of the graph. The XJ and YJ - X*
values from Table 6 are plotted on Figure 1 and Joined by a ' U
light, solid line. A regression curve fitted to these points
is represented by a dashed line. This dashed line constitutes Q
a model for the regression toward the mean of actual test scores
where the forms of the test and the methods of administration
were the same. Whereas for the line representing randomly _.
paired scores, slope is expressed by b » -1.00 and In the per-
fectly coordinated pairs b ■ 0.00, for the line relating com- *=*
parable tests, b » -.M. Since these tests were given a year
apart, there may be more error variance, hence a steeper slope
than would be true for tests taken close together. (The fit ii,
of the line to the data points is a good one: r ■ -.98.)
We now have three models v;lth which to compare the regression
of computer scores on paper-and-pencil scores in the Dlapnostlc *"
Reading Vest: random pairing, perfectly related pairs, and
imperfect but related pairs of scores on the same test. The
actual rerresslon of computer on paper-and-pencil scores is
shown by the heavy solid line. This line connects points that
represent the values on the bottom line of Table 5; the scales
for these Dolnts are along the bottom and left-hand margin of
Pig. 1.

£
I

What seems to happen Is that from the first to the fifth septile
of the scoring range, the regression of the computer on pencil-
and-paper scores follows the regression curve for random pairings
It is as though youngsters who scored in these ranges on the
paper-and-pencil test took an entirely different test when they
took the computer test. Prom the fifth to the seventh sep-
tile, it may be that the regression pattern is more like that
of the two Gates-MacGinitie tests, although the data points are
too few to establish a trend with any degree of certainty.

Another way of comparing the paired scores is by correlating
them. The intercorrelations of all five sets of Table 1 scores
are shown in Table 7. As one would anticipate from the regres-
sion-toward-the-mean analysis, the computed correlation between
the computer and the paper-and-pencil Diagnostic Reading Test
scores Is .25 (accounting for (.24)2 or six percent of the
variance). The correlation between the two Gates-MacGinitie
administrations—both paper-and-pencil—is much higher—.52.
In fact, the correlations between the computer-administered
Diagnostic Test and the three paper-and-pencil tests are com-
parable, ranging from .20 to .30. Similarly, the intercorrela-
tions between the three paper-and-pencil tests are comparable—
and higher—ranging from .50 to .57' (As measures of reliability
and validity, they are disappointingly low.) One small piece
of evidence that the computer administration may be no leas valid
than the paper-and-pencil administrations is that its correlation
with the second-grade I.Q. scores—.37—is in the range of the
correlations of the paper-and-pencil scores with I.Q,—.29 to
Al. (Obviously, this does not establish the validity of the
computer-administered test.) These data indicate a strong
"methods variance" (Campbell and Piske, 1959); the tests' modes
of presentation may be as Important in determining the correla-
tions between them as are the reading comprehension abilities
that they are designed to measure.

In short, this correlation analysis confirms the near-randomness
of the relation between computer and pencll-and-paper scores on
these reading tests; it f-rUier Indicates that a test's method
of presentation may have a substantial influence on the resulting
scores.

2.2 Analysis of Score Distributions

Prom our analysis of paired computer and paper-ana-pencil scores,
we turn to a brief analysis of the distribution of these scores.
Table 5 shows that the means of the two distributions are 11.0

A-7

Q

for the paper-and-pencll scores and 12.1 for the computer score.
The difference does not reach the .05 level of significance level **
If we apply a t-test for the difference of means of matched
samples. (Hays, 1963, pp 333-335). E

[Figure 2 about here]

The two distributions are shown graphically in Figure 2. Though
the two means are not vastly different, the variabilities are;
the range of the paper-and-pencll scores is from 2 to 18; its
variance is 18.8; the range for the computer scores is from 6
to 17; its variance is 8.2. When these variances are compared *»
by the F test, the probability that they are different by chance
is less than .01. (Hays, 1963, 31<8-352). It is clear from
Figure 2 that much of the larger variation in the paper-and-
pencll scores comes from a greater number of low scores.

I

J!
A-8

•

3. Discussion

In summary, a group of eighth graders took two forms of the com-
prehension scale of the Diagnostic Reading Test, one form by
paper-and-pencil and one form by computer. Looking at the
paired scores, a strong regresslon-toward-the-mean effect is
apparent. Lower paper-and-pencil scores seem to be randomly
paired with computer scores, while the more moderate regression
that one usually encounters when tests are administered twice to
the same group may be characteristic of high computer scores.
The correlation between the two sets of scores is low—very low
considering that we are dealing with two forms of the same test
scale administered within days of one another. Correlations
among three pencil-and-paper forms are higher. In the aggregate,
mean scores for the two administrations differed by only a single
scale score; but the range and variance of the computer scores
were much smaller than for the paper-and-pencil scores; range
and variance were smaller largely because there were fewer low
scores on the computer than on the paper-and-pencil tests.

One effect that might influence the results is an order effect.
Students might learn enough from the first test to make some dif-
ference in their scores on the second test. Table 8 compares
first- and second-administration scores for extreme cases, that
is the pairs where pupils had at least one score of five or less
and those where they had one score of fifteen or more. Two pairs
in which the differences were as large as twelve fall into BOth
classes. The pairs are also divided into those where the paper-
and-pencil form (B) was administered first and those where the
computer form (D) was administered first. Numbers of cases
(pupils) and mean differences between second scores are given
for each category. Where pupils improve their performance from
the first test to the second, the differences will be positive.
In pairs having at least one score of five or less, there was an
average gain in scores when Form B was administered first; but
there was at least as large a loss when Form D was administered
first. This pattern can be accounted for by the higher scores
on the computer administration when paper-and-pencil scores were
low. In pairs having one score of fifteen or more, there is an
average loss from the first to the second administration no mat-
ter which form was taken first. This can be accounted for by the
normal regression toward the mean between first and second ad-
ministrations. No order effect is apparent.

A-9

•

A-10

U

0
Another possible explanation for the Increase of computer over
paper-and-pencll scores Is that» for most of the students, com-
puters are new and exciting; these would be motivating factors
resembling the familiar "Hawthorne effect" (Roethllsberger and
Dlckson, 1939). If this effect Is operating, the operation Is
confined to those who score low on the Diagnostic paper-and-
pencll test, since, as we have seen In Table 5» the scores of M
those whose paper-and-pencll scores were In the upper three
septlles of the range average lower on the computer-administered
test.

D

Q While the numbers are small, we do have a group that should be
reasonably free of the novelty effect. Earlier, we spoke of
having exposed six boys who had reading difficulties to a
computer language; these boys each had at least an hour a week
at a teletype terminal over a period of ten weeks; we assume
that this Is long enough to have attenuated any novelty effect r-i
that the computer may have had for them. Four of these boys
are In our sample.

Although the number Is small, they have been matched with pupils
who had the same scores on the paper-and-pencll administration
of the Diagnostic Reading Test and whose eighth grade scores on
the Gates-MacGlnitle Reading Test were not over the 7.5 grade
level equivalent. Table 9 shows the results. There are five
"matching students," one each with Diagnostic paper-and-pencll
scores of two, four, and eight and two with scores of five. The
scores of the latter have been averaged and paired comparisons
made. On the basis of these four pairings, there would appear
to be some novelty effect. Average scores on the Gates-MacGlnitle
scale are almost identical. The experienced "novelty-proof"
group gained 5.5 points on the computer-administered version,
the "novelty susceptible" group gained 7.2 points. Certainly,
the possibility of motivation from new experience cannot be
thrown out; neither does it seem to explain all of the variance. D
One way to summarize these results is as follows: pupils who -»
had low scores on reading tests when they were administered by
pencil-and-paper actually "took the test" when it was administered *
by computer. We must assume that the low paper-and-pencll scores
that Improved with the computer administration represented some-
thing less than the actual learning level of the low-scoring
students and that the computer system used permitted a better
measurement of those pupil's abilities.

I
i

A possible explanation Is that the presentation pattern used
with the computer system Is more compatible with the test-taking
skills of the students. The teletype emitted the material
slowly—108 words per minute—and In chunks—two or three sen-
tences of text (and, later, one question) at a time. The pupil
was thus relieved of the task of analyzing the material or of
setting a reading rate for himself. The comprehension task was
not a big one, but a series of small ones. Not only may this
partitioning have reduced the pupil's work In performing the
task, but It may have provided for more sustained motivation by
giving him a series of subgoals In addition to the goal of com-
pleting the whole task. This effect may apply both to the
fragmenting of the reading text material and of the presentation
of questions one at a time.

A second possibility Is that the Interactive aspects of the pre-
sentation were rewarding. Not only did the pupil get at least
a minimal response by asking for the next unit to be presented,
but he was able to control the situation by calling for the
next unit when he was ready. What may be even more Important
Is that there was a response to his control effort.

A third possibility Is the novelty effect which may or may not;
be separable from the experimental or "Hawthorne" effect. We
have already seen evidences for some novelty effect based on the
performance of nine students. If there is a novelty effect. It
points out the desirability of test conditions that motivate
students to work at the testing task, but Implies that the ef-
fects of the computer administration itself may be transient.

The hypotheses we have put forward to this point are advanced
to explain the finding that pupils who did poorly on the paper-
and-pencil test improved greatly when they took the computer-
administered version. We need also to seek reasons for the
reduced performance of students who did well on paper-and-
pencil tests. Other hypotheses that would explain the finding
that pupils who scored high on the paper-and-pencil test scored
lower on the computer administered test tend to be the mirror
image of those we have Just advanced.

For students who did well on the paper-and-pencil comprehension
test, the teletype emission rate or the fragmentation of the
material may have made the task more difficult. Similarly,
their motivation may have been lowered if their desire to com-
plete the whole task was thwarted by the interruptions. They
may have felt that they were in better control of the pencll-
and-paper test situation than of the computer situation.

A-ll

.

4. Conclusion

Computers are making a strong bid for serious consideration as
teaching tools. If using them rather than classical testing
methods changes test results, we need to understand the nature
of these changes. It Is clear that, to the degree that our data
are representative, computer administration makes a difference
in test results. The reasons for this difference appear to lie
In the realm of notlvatlon. Specifically, we expect that varia-
tions In partitioning, pacing, and control variables will be
significant in accounting for it.

It may be that standard tests rank students low in ability un-
necessarily with all the discouragement and erosion of purpose
that this labelling Implies. There is a strong hint in the data
that there are ways to estimate students' learning capacities
that are superior to our standard methods for making these
estimates.

5. Acknowledgments

The experiment was conducted by Wallace Peurzeig, who performed
the initial analysis. Glenn Jones carried out the detailed
analysis. Nannette Feurzelg contributed keen insights into the
meaning and presentation of the results. George Lukas of BBN
and Ralph D'Agostlno, BBN consultant and Professor of Mathematics
at Boston University, made some invaluable suggestions about the
statistical analysis and interpretation of the data. Margaret
Morse and Eileen Lynn, reading specialists at Muzzey Junior High
School, helped in selecting the pupils used in the study^
administered almost all of their tests, managed the scheduling
and proctoring, and gave practical suggestions throughout.
Melba Jones, reading specialist, contributed time and skill in
administering reading tests needed for auxiliary studies.
Santo Marino, Principal, and David Terry, Assistant Principal,
at Muzzey, generously contributed space and personnel facilities,
and as well their good will and counsel.

A-12

UJ

Q
Q

I
:

:

Table 1. I.Q. and Reading Scores by Pupil

Pupil IQ

Reading Tests

Grade-level
equivalent scores Raw Scores

Gates-MacGinitie
Given in

Diagnostic (Triggs)

7th grade 8th grade Form B Form D

3.6 4.8 6 11

3.4 4.1 8 9

6.2 7.8 12 11

4.3 4.8 7 9

3.5 5.5 10 11

3.6 4.1 4 8

5.1 4.1 6 10

7.8 7.2 10 15

8.6 7.8 10 14

5.3 6.5 5 9

4.5 5.5 10 13

8.6 7.8 11 11

? 6.7 5 15

7.8 6.2 9 9

8.9 7.2 12 9

6.2 8.9 14 6

5.8 6.0 17 13

4.5 8.2 12 13

4.3 8.6 10 13

3.9 2.7 2 12

8.4 9.2 12 14

8.6 9.6 18 14

1
2

3

4

5

6

7

8

9

10

11

12

13

14

18

21

?

76

82

86

86

87

88

93

94

96

97

98

99

99

101

102

105

105

106

107

107

108

A-13

Table 1. I.Q. and Reading Scores by Pupil (cont.)
e
I

Reading Test

Pupil IQ

23 108

24 109

25 109

26 110

27 111

28 114

29 116

30 117

31 110

32 111

33 111

34 113

35 115

36 115

37 115

38 116

39 116

40 117

41 117

42 117

43 119

44 120

Grade level
equivalent scores

Gates-MacGinitie
Given in

Raw scores

Diagnostic (Triogs)

7th grade 8th gr

8.2 3.7

8.9 8.4

8.9 9.6

3.7 4.8

6.0 5.5

3.2 4.8

6.0 3.9

2.8 2.6

8.9 10.4

5.1 3.6

4.3 9.6

7.2 4.1

9.2 10.9

5.3 7.6

5.8 7.6

8.9 9.2

6.2 7.8

8.6 10.0

7.8 2.7

12.9 3.1

9.2 10.4

6.7 8.2

8th grade Form B Form D

18 15

15 17

18 11

5 17

13 10

8 7

9 10

2 11

13 8

10 14

8 10

6 13

17 12

10 15

13 9

11 9

9 10

14 10

8 9

18 17

12 13

8 9

I

0
n

u

Ü

£
I
I
I

A-IH 1
■

Table 1. I.Q. and Reading Scores by Pupil /cont

Pupil IQ

Reading Tests

Grade-level
equivalent scores Raw Scores

Gates-MacGinitie Diagnostic (Triggs)
Given in

7th grade 8th grade Form B Form D

45 121

46 121

47 122

48 122

49 122

50 125

51 126

52 127

53 127

54 130

55 131

56 112

57 133

58 136

59 140

60 142

61 144

6.2

9.6

6.2

8.9

5.3

8.9

3.1

5.5

4.3

8.4

8.2

9.2

7.2

8.9

9.2

6.7

7.4

7.8

9.6

5.8

8.9

9.2

10.0

3.1

8.9

7.0

8.6

11.4

10.9

9.2

10.9

10.9

8.6

9.2

8

11

13

17 14

14 7

11 15

13 16

11 14

16 12

18 16

18 15

9 13

16 16
3 15

14 17

A-15

1

I

n

g
£

§

o
CM

vo

m

n

CN

V0

in

tn

in «f m oo

ro so oo

mmco H m oo oo

^ o O iH M r* oo

VOODOO NOl^Cl^

N vo r»

N VO O H (M M 00
i-t p-l ft H H

vc oo (Ti o\ m ^a-

mt^oooo oo <yi I-H eg to

«r n m

oo v

o

Q Ö

CN

0

M
0
Ü
to

£
0)
M

8
CO

A-16

G C
0 •H

5
w •H

1 (0
0 c
fc id

1
n
0) «w
VI 0
0 u (0
n 0)

H e
•H V
ü w
c 0)
« U-l
a «w

•H
•0 •0
c
10 •0

c u ta
0)
a ft
I« CO
a.

«w 0)
0 E

c ii
0 (0

•H u
0) 0
10 A
<!)
M D
tr c
£

*
it ^^
+J Q
01 i 1

0
tr h
c *—' 0)

•H 0»
•0 10 c
n> 4) 10

& 0
u

; •M
0 (0 0

•H
*J h (0
10 0) (Ü
0 +J H

&
3

a 6 a
•H 0 0)
Q Ü 0)

•
po

(U
H i
H

5

o
M

00

SO
ID

m
«N

M

N

I

ao
I

IP
I

<N
l
o

I
0
fa
••
0)
0^ c Q
10
u e

^
«w 0
0 fa

0)
H ••
•H 0) +» &
a c
S £

so

O I

in

O I

O I

CM

m iH
r-t I

O

O

SO P» iH o
• • • •

If» CN in n <M
H i-l iH l 1

o
I

VD a\ <n 00
• • • •

M Ov a» o o
CM I

o en f* CO
• • • •

VD iH t- CO ^r

IQ •0
1

ICQ i
CO Q 10

c
10
0)

tr

(0 a 1 •0 i
iH 0 0 & 1
■H fa fa 1
0, c 0
0 • • •• •H i
(X to (0

(U 0) 0) C H
«l-l i i Ü 0 •
0 0 0 1 •H H

u 0 0) w * 10 IQ u w CO 1
(0 0) 0) 1

c e M-) u m g 10 10 M-l 0»

z i £ i i
.

A-17

■ ■■~ m Km. •• ' " - 11.11 IIB^I^^^I^IVB '■ ' l>

s

n
2

u I

c
0
•H
u 0)
m h
0) 0
h u
tr (0

s 3
10
M

• •
4J %
0) «^
0) n
H

e
&> M
c 0

■H b
-0
<d
0) (0
« 0)

h u 8
■u 01
(0
0 iH
c ■H

0> O
«0 c

•«-' 0
Q c.

•

5
5

ON

VO

in

ro

f>i

oo

in

CQ

E

0 0
K h
M • •
i ■ i 1
0 0 6 P
(0 w

in m »o r-

(N «n ^

n vo

m r»

vo i^ o en r«

co oo o» o vo

OV rH iH «n ro ^

c\ iH m

iH r-l

iH
•H iH

in
PH

in

er o o «n
iH iH rH

r^ <?\ ON ^ o
iH

ON

o M rn
(■< #4 H
ON in r»

00 ^
H

- i (N

J
n
o
o
ö
0

. '

Q
> -

ü

11

A-18 I

■■ - ■ -- i n naiai

•^^^^rw r^m^mmm mm»

I
i
0
0
D
s

u
0
Q

u

c I
i u e
Ok JC
« -P
a «H
c
0 «

c
a v

M «w
o o
*^ n
n o
« c
u »
0 u
o V
m
u •H
V •Ö
*i
9 •0
a C

<d o
ü

(0
•M e
0 10

0)
c E
0

•H %
m m
n u
0) ai
u
tr g
0) 3
« C

>i
•• 03
*i
n ^^
V a
H

tj> i
c 0 0)

•H h o>
|

^
g

S n
0)

u
h MH

Ü 5 0
•H 11
4J m m
0) 0)
O -H H
i: •H •H
tr U ■P
10 c a

•H 0) 0)
Q a (0

•

0)
iH

I
EH

«o

in

<M

5
£

CM
I
00

1 rH ft 1 |
m
•H

0> a\ o *
* • • • •
H VC O w CM n

1 iH •H H 1
CM l
•H

* O "• f»>
»H • • • •
rH in M c CM H
I
9

00
I
NO

«n
I

CM
i
o

£
0)
tr

IM
o
0)

•H

a
0)
w

o
h

0)

c

fH CM iH r-l
NO p-l i-t

NO V 00
•H i-l

•H O

NO CM

NO

(M

o\

o

in

CM

<n

in

CM

oo

o in
• •

«M 0^

NO

in
i •0

ID c
«0

•• n
Q o

0)

0»

n e e •0
u

H 0 0 g to
•H Cu fa 3 H
a e 3 •
9 • • •• •H •H
a n n 1

0) ai 0> c in
M-l E u i 0 .Ä 0 0 0 c •w4

t) u 0) w
Wi n w i 0) c
0) <u « 10

c e •M u a»
B id (0 «M IT E

2 l 1 •H
Q S

A-19

11 ■■' -r—— ipim»P«JU!,P.^jaM.U14.llL*iUlll I

•0 i
CHH
« • H

•0
1

mm
■P c
c 10
0)
> ft
0) m •
0) c 0)

<0 tr
c 0) c
0

1

«0
u

x: m "O
■P u 0)
£ 0) c
D •H

•H
0) 1 1

c a>
tw P
0 >i 0>

Ä "O
c
0 (0 >s

•H 0) .H
10 V4I-I
(0 0 <o
a> u o
u (0 •H
XT P
a» -P 0)
n c h

0) 0
-o <H 0)
« <0£
•H > p
0 •H
0 3»W
04 tro

(1)
(0

• • «H 0)
p (U^H
10 > •H
0) (U 4J
EHPH 0

(U
tr a) 10
c-o

•H ax:
-0 U P
10 tr-iH
0 i 3
«x:

•J to
0) X c

•H IT «0
P •H 4)
•H 0 E
c

•H c««
Ü 0 O
0
m 1 (0
£ £ 0)

1 p u
to c c
0) 0) o
p > ^
n <D a;
ü CO M-t

vo

I
in

\o
o
I o

•
CO

ID I
m

I
o

in

* o
• •

00 •H

o

I

00
r» m
• •

oo a«

oo

f»

o

m
m
i
in

rs> I
o

i
m

tr
c
m

0)

•H
P
a
I

0)
tr
e
2

00
in

m

CO

in

\o

o
IN

in

00

o

o\

o

00 a\
fN r*

o • «
fM in m

o>

r^ o r«
M r^ m

v • •

••

•a

•
1-4

0) i § c
a

u >> X •H M
■H c (0 IT
10 • • • • •H 10
0. in CO 0) 0>

0) 0) 0) 1 Ä
<w B 6 Ü &> P
0 8 0 c 0)

6 tt) ^ •a
u to w i M <-,
0) 0) «3 c

c c IM IX <0
<0 <0 •M 1 0 0)
(U 0) •H l>1 p E ■ s s a

J

0

0

n

D

A-?0

i

' - -

■—*»■■- r—r--— —

-*««•■

I
I

u

I ■

1

1
♦' Table 7. Coefficients of correlation between five test scores

-j for 61 eighth grade pupils
y

D
Pfil

Test

G-M 7th

G-M 8th

D-P-and-P

D-Comp. .37 .30 .20 .24

G-M G-M
I.Q. 7th 8 th

.32

.41 .52

.29 .57 .50

.37 .30 .20

Key:

I.Q.t Stanford-Binet in second grade

G-M 7th; Gates MacGinitie Reading Test, Serie» E

(for grades 7-9), Form IM, Comnrehcnsion

w Scale, paper and pencil in April of 7th

grade.

G-M 8th: Same as G-M 7th in Anril, 8th grade

D-P-and-P; Diagnostic Reading (Triggs) Test, Uopor

Level Series (7th Grade to College

Freshman Year).

Form B, Administered as a paper-and-

pencil test in June, 8th grade.

D-Comp.; Same as D-P-and-P excent Form D, administered on a

teletype computer terminal.

A-21

I ■

Table 8. Numbers of pupils and mean difference between first

and second administrations (second minus first) of

comprehension scale on Diagnostic Reading test for

pupils having at least one score of five or less or

at least one score of 15 or more, by form of test

administered first

3
1]

Ql

Cases with one score
in the range of

0-5 15-20 n
Administered first N x 2nd-lst N x 2nd-lst

Form B (paper-and-pencil)

Form D (Computer)

+ 8.25

- 9.50

13 - 1.08

8 - 2.25
n

li
:

I
i
I
I
i

A-22

"*-* _ .nmfi ■—■ - ' - - -— - - -^,...-.r.,u..i._.. ...- .. .y .ui.^ifii —— -—IF""«»--»»».«*

!

HVMMBMHHnRaManBm

I
1
«■

Table 9. Scores on comprehension scales of Gates-McGinitie Reading

Test given in the eighth grade and of the Diagnostic

Reading Test given by paper-and-pencil and by computer

for four students who had computer-terminal experience

and for five matched students with little or none, by

student and by mean test scores.

i Matching
Criterion
(D-P&P)

Pupil
No.

experienced

D
Comp.

G-M
8 th

Puoil
tlo.

.\'aivc

V)
Comp.

G- i
8 th

2 30 11 2.6 20 12 2.7

4 6 8 4.1 47 14 5.8

5 1 15 6.7

'26

0

4.8* 17

8 28 7 4.8 2 0 4.1

D

Mean

Mean dif-

ference

(Comp-P&P)

4.8 10.3

5.5

4.8 12.0 4.6

u *For purposes of compart sei, t/io scores of the two "naive"

pupils who scored five on the Diagnostic paper-and-pencil

test have been averaged and treated as single scores.

; '

'J

A-23

- -- -- - ■■-- -
i ,■■ ^ ■ ■ - ■ ■■■ —.. - ■ ■-. - ... --1.— -^ ■,,:--■•-■■■■■■■ -■- -

 -„ ., -„ —T. i.1... mmmmmm ■ ' "'•H-"1 I' ! Ll '

69 at. m-^'-m ONV ^-KO-^W© oz.,.,

1-
V)
LÜ
H

5

Ü

h-
q
o <
o
o
LÜ

•ÖL
f 3
CO

Ö
eg

w

o
o

Ü

to
UJ

o o
■vo

nioM3d-aNv-H3dVda_ ö3in#wooQ

o — >—
in </»
u- O

O C'
o <
to — o
SI

—' a.

- o
o

■j- oo
O -J

— Vi to

o --
UU LU

Oi

3
a)

0
fl

D

ß
D

0
•

A-2^

Ö

:

i
i
i
i
i
i

M^y^ ■MMMUMM - * -■ :- "• -"•--- ■*■*

. . <...i i i Liinain i '^^^mmmmmmw^^^^m ^~^mmm\i n m

E
I

:;

a

IV

i

I
I

.:

.

..

., v
^

#"

<?

I
I
I
I
I

 I

L

a
UJ
cc
UJ
H

_J co
o 2
s »>
Q.

i <
Q I
2 CC

i CO
en iu

Ul
trcA)
? LÜ

tu r: ^:C-
0.0 /iO
< o oa
a. v) oco

i 1
1

1 1
1

I
o
CM

O OJ CO

siN3Qnis ^o yaavMAN

A-25

r.)

i —— -

1° C^/

t u
r*

o
o
to

N
>J

1 t—<

CO
vc
:a
c

i

a

.^

1 *• *
f.; I^J

a.
< i-

CO G- l^i

l;J a i-
i> .• 7* o < cs CVJ

7 o ss
(/) o ►--• a>

c> UJ i^ b
» oi <: 3 .— UJ L.J a> c^ i— ni •r—

u-J tA, Li.

H i-< o

C-J ;r <./•»
1 C o
o

i U5

UJ >-•

3
&. "
:z uj

1
C ~!

JO U_ (/■)
o
i-r o

cv: ;i; UJ
1
o

d ~
>—i U.'
ct Ei
H- a.
oo :r
•-' o

t a o

o

 - ■■ ■ 111 —■■ ■ ■■■ - - - — - ■--— — ■..■...»»■..■ ■ — ■-■-—■■ -■ mifiwil

HIP "*- ■"' "" "

*

References

Campbell, Donald T., and Donald W. Piske, 'ConverRont and Dis-
criminate Validation by the Multitrait-Multimethod Matrix,"
Psuchologioul Bulletin, 56: 81-101) U959).

Committee on Diagnostic Reading; Tests, Inc., Diagnostic Reading
Tests, Survey Section, Forms J3 and D, New York, II. Y. (1963).

ETS, Cooperative School and College Ability Tests, Technical
Report, Cooperative Test Division, Educational Testing Service.
Princeton, W. J., (1957).

Harman, li-.^y n.. Helm, Carl K., and Loye, David E., ed.,
•»Computer Assisted Testing," Conference Proceedings, November
1566, Educational Testing Service, Princeton, N. J. (1968)

Hayes, V.'. L., Statistiaa for Psychologists. New York: Holt, ,
Rinehart, i—i Winston (1963).

Roethlisberger, P. J. and Dickson, W. J., Management and the
Worker. Cambridge: Harvard University Press (1939)

Serwer, Jilanchc L. and Stolurow, L. M., Computer-Assisted
Learning in Language Arts. Elementary English 47: 6^11-650
(1970).

Teuohera College Press, Gates-MacOinitie Reading Tests, Survey E,
Forus 1,2,3, Forms 1M,2M,3M, Teachers College, Columbia University,
New York (1965).

Vlnsonhaler, John F., Molineux, J. E., and Rogers, D. G.,
"An Experimental Study of Computcr-Aided Testing," Computer
Institute for Social Science Research, Michigan State Univ.,
East Lansing, Michigan, (November 1965) (Mimeographed).

A-26

a
o

D
D
d
Ö

D
r
B

0

i

I
I
i
I
I
I

anifrtJMmMJhriMrflflHli (|.ft^...,^^^.„.-. ..„.- ■■.^■..^■.^n. i i r i niiiii tf"^-

