P
BOLT BERANEK AND NEWMAN INC

TSR,

ki

C ONS UILTI NG - D EV EL OPMENT « R ESEATRCH
3 Report No. 2187
(¢ & 1-2791
-TR- 7 Job No. 11431
[AFOSR
(~ 0

G\ INFORMATION PROCESSING MODELS AND
CY)COMPUTER AIDS FOR HUMAN PERFORMANCE

D

&INAL REPORT, SECTION 3.
ask 3: PROGRAMMING LANGUAGES AS A

TOOL FOR COGNITIVE RESEARCH

30 June 1971

DD C
wmmam

KGV 13197 ll_U
~~— A e '
ARPA ORDER NO. 890, Amendment No. 5

Sponsored by the Advanced Reseurch Projects Agency,
Department of Defense, under Air Force Office of
Scientific Research Contract F44620-67-C-0033

Approved for public release;

DISTRIBUTION STATEMENT A \
Prepa red for: Distribuiion Unlimited

Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

Reproduced by

NATIONAL TECHNICAL

INFORMATION SERVICE (P
Springfield, Va. 22151 6

CAMBRIDGE NEW YORK CHICAGO LOS ANGELES

UNCLASSIFIED =~ |
—Security Clossificstion -t :
DOCUMENT CONTROL DATA-R& D

) (Seswrily closelfication of Htlo, body of ab 1 and indooing lan ®wel be entered when he evessl)
) ORIGINATING AC TIVITY (Corperale suiher) 20. BRI FORY SECUMITY CLASSIPICAYION

Bolt Beranek a.nd Newman Inc, UNCLASSIFIED
50 Moulton Stréet I, GROUP
02138

INFORMATION PROCESSING MODELS AND COMPUTER AIDS FOR -
HUMAN PERFORMANCE TASK 3: PROGRAMMING LANGUAGES AS A TOOL FUR

COGNITIVE RESEARCH

i 4. NEICMIPYIVIE NOTES (Type of repert and inclusive dotes)
L Scienti ﬁ% ' %E a&
8 Ay THORIS) (Fira: name, fneme)

Wallace Feurzeig and George Lukas

y e 6. TOTAL WO. OF PaGRS 7. 40, OF REFY
30 June 1971 134 5 + (9 Appendix)
. cou‘?:ncv OR emanT M0 144620-67-C-0033 ~— omomnio"\'m"'_wu%la

b. PROJEC T NO. 890

e. 61101D : M SISO AR PONT RO (Any ot ammbars Gvof ey b0 ovs.

AFOSR -TR-71-2791

‘ 681313

10 DISTRIBUTION STATEMENT

Approved for publioc releash}
distribution unlimited.

" wﬂ-t.ucuvnw NOTES 185. SPONSORING MILITARY ACTIVITY
‘ AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (A/L)
TECH OTHER ‘ 1400 WILSON BLVD
ARLINGTON, VIRGINIA 22209

] asTRA
3 2

b A N s M NN 5 S T ST TRl 1 S D ' el s 3, it ol em . e o bt - el st i o o A v B

»Through study and analysis of data from previous teaching, several
~linguistic and conceptual difficulties in the way of acquiring the

' 8kills of problem-solving were identified. The LOGO programming

| language was taught to a group of teachers to explore 1ts use as

the basis for a course on mathematical problem-solving. LOGO=-based
courses in problem-solving were given to two groups of students with
well-established difficulties in formal and mathematical work. Based
on these teaching experiments, LOGO teaching sequences for an intro-
ductory problem=-solving course were developed. An experiment was
carried out to evaluate the validity of standard test measurements

of achievement level. Programs were developed for monitcring,
recording, and displaying students' problem-solving interactions ke
{with LOGO. A remote LOGO-controlled vehicle was developed to assist
students in congeptualizing formal problem-solving tasks in a

' econcrete context. | :

- - e

; PORM : |
DD " wov 031473 UNCLASSIFIED |
ty (lassification

’

— gy omy iy o=y ey ¢

—— e

Report No. 2187 Bolt Beranek and Newman Inc.

INFORMATION PROCESSING MODELS AND
COMPUTER AIDS FOR HUMAN PERFORMANCE

FINAL REPORT, SECTION 3
Task 3: PROGRAMMING LANGUAGES AS A
TOOL FOR COGNITIVE RESEARCH

30 June 1971

by

Wallace Feurzeig
and
George Lukas

ARPA Order No. 890, Amendment No. 5
Sponsored by the Advanced Research Projects Agency,
Department of Defense, under Alr Force Office of
Scientific Research Contract FU4U4620-67-C-0033

Prepared for

Alr Force Office of Scientific Research
1400 Wilson Boulevard
Arlingtcn, Virginia 22209

Approved for public releaso;
distridvution uolimited.

Orevmms

(— S— = (=

Y

p——

Report No. 2187 Bolt Beranek and

TABLE OF CONTENTS

SUMMARY L] . . .
1 . PRE FA CE .

2, INTRODUCTION . & & 4 ¢ ¢ o o o o o o o s o o s
2.1 Problem-Solving and Programming Languages .

2.2 A Brief Description of the LOGO Programming
Language « o« « o o o o o o o o o o o o o o

3. THREE LOGO TEACHING EXPERIMENTS . . . « « « « + &
3.1 Teaching Teachers ~ Summer Workshop, 1969 .

3.2 Teaching "Problem Students" - Muzczcey Junior
High School, 1970 L[] L] L] L] L] L] L] L] L] * L] L] *

3.3 Teaching Unmathematical Undergraduates --
University of Massachusetts, Boston, 1971 .

4, INTRODUCTORY LOGO COURSE ON PROBLEM-SOLVING . . .
h,1 Geometry Sequence . . . « o« o o o o o o &
4,2 Language SeqUENCEe « « « « o o o o o o o &+ o
b,3 Turtle Sequence . « « « « o « o o o o o o

5. METHODOLOGICAL DEVELOPMENTS . ¢« ¢ ¢ ¢ ¢ o o o @
5.1 Dribble Files . & ¢ ¢« ¢ o ¢ o o o o o o o o
5.2 The "Turtle" - A LOGO-Controlled Vehicle . .

60 REFERENCES L]

APPENDIX

Newman Inc.

Page
] . ii-iV
o o 1
.« o 2
. 3
6 o 8
. 15
o o 15
5 26
5 35
37
. . 38
. . 59
S5 64
79
. . 80
. 91
. . 104

Report No. 2187 Bolt Beranek and Newman Inc.

FINAL TECHNICAL REPORT

ARPA Order No. 890, Amendment No. 5

Program Code No. 9D20

Contractor: Bolt Beranek and Newman Inc.

Effective Date of Contract: 1 November 1966

Contract Expiration Date: 30 June 1971

Amount of Contract: $804,896.00

Contract No. F44620-67-C-0033

Prinecipal Investigators: John A. Swets
Mario C. Grignetti
Wallace Feurzeig
M. Ross Quillian

Telephone No. 617-491-1850

Title: INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

i1

=

== &3 =

| S—— I

= B N ene-

S——

=)

& =

[———n — — [,

Report No. 2187 Bolt Beranek and Newman Inc.

TASK 3: PROGRAMMING LANGUAGES AS A TOOL FOR COGNITIVE RESEARCH

1. Technical Problem

This task 1s an investigation of the use of programming languages
as a means of studying and overcuming difficulties 1n solving
formal problems.

2. General Methodology

Our method of investigation 1s by teaching experiments of the
following kind. Trainee-subjects are taught the use of an
appropriate programming language, LOGO, as a tool for problem-
solving work. Thelr specific difficulties in learning and
applying LOGO in various problem-solving tasks 1is studled and

evaluated.

3. Technical Results

Through study and analysis of data from previous teaching,
several linguistic and conceptual difficulties in the way of
acquiring the skills of problem-solving were 1identified. The
LOGO programming language was taught to a group of t~achers to
explore its use as the basis for a course on mathematical problem-
solving. LOGO-based courses in problem-solving were given to two
groups of students with well-established difficulties 1in formal
and mathematical work. Based on these teaching experiments,

LOGO teaching sequences for an introductory problem-solving
course were developed. An experiment was carried out to evaluate
the valldity of standard test measurements of achievement level.
Programs were developed for ﬁonitoring, recording, and displaying

ii1

Report No. 2187 Bolt Beranek and Newman Inc.

students' problem-solving interactions with LOGO. A remote
LOGO-controlled vehicle was developed to assist students in
conceptualizing formal problem-solving tasks in a concrete
context.

4, Department of Defense Implications

One area of direct application is that of teaching basic academic
subjects and skills in military dependent schools. Problem-
solving skills are important, not only in direct application to
formal work in mathematics and military science, but also in

less formal areas of problem-solving such as are encountered in
military operational planning and decision-making.

5. Implications for Further Research

We expect the use of programming languages such as LOGO will
make important contributions to both the theory and practice

of education. Possible directions for further work are:

(1) the use of programming languages as the operational frame-
work for experimental studies on cognitive development in
children, (2) the development of programming as a core subject
for the mathematics curriculum, and (3) the LOGO program-
controlled robo* as a new framework for studying interactive
man-machine systems. With appropriate sensors and effectors,
such systems may provide useful operational applications.

iv

1

—

o =

|

g i SN ey e

== &5 = o O CO O c9 == se

S v S s

==

Report No. 2187 Bolt Beranek and Newman Inc.

1. PREFACE

At its inception in 1966, this contract was devoted solely
to the one area of second-language learning. Later amendments
have added three more tasks: Models of Man-Computer Inter-
action; Programming Languages as a Tool for Cognitive Research;
and Studies of Human Memory and Language Processing. The present
contract was scheduled for termination on 31 December 1970, but
the final reporting date was changed to 30 June 1971, to allow
completion of data analysis in the various tasks.

Due to the amount of information to be presented in the
Final Report, we have bound it in four Sections, one for each
task. In addition to a copy of this page, each Section contains
an appropriate subset of the documentation data required for the
report: a contract-information page, a summary sheet for the
particular task at hand, and a DD form 1473 for document control.

Report No. 2187 Bolt Beranek and Newman Inc.

2. INTRODUCTION

This report describes research investigating the teaching of
programming languages as a means of studying problem-solving.

The work utilized a new programming language, LOGO, expressly
designed for teaching mathematical thinking and problem-solving.
In this section we discuss the connection between programming and
problem-solving and we give a brief description of our principal
tool, LOGO.

The research was carried out in the context of three teaching
experiments involving subjects over a range of age, aptitude, and
achievement levels. The maln result of the teaching was the
development of an introductory course in problem-solving. The
teaching experiments and the course are described in Sections 3
and 4. The work also generated two new tools for studying
problem-solving interactions. These are described in Sectlon 5.

Jeveral persons participated in these efforts. Wailace Feurzeig
designed and coordinated the program. The three teachling experi-
ments were conducted by Seymour Papert and Cynthia Solomon;
Wallace Feurzeig: and George Lukas. Walter B. Welner performed
the system programming required to incorporate "dribble files"
for monitoring and displaying student interactions. Michael
Paterson and Paul Wexelblat designed and constructed a computer-
controlled vehicle for problem-solving study. Seymour Papert and
Richard Grant assisted in the design and planning of the earlier
phases of the work; George Lukas made major contributions to
methodological developments during the final phase. The report
was prepared by Wallace Feurzeig and George Lukas.

=) ==

1
o]

v

ol

L

Smnd L-::J [H—

-

o B I =l s

P S ey e

<o A e

YRS | b R g i

— T Ed e e

=l

L b, bl

| e

Report No. 2187 Bolt Beranek and Newman Inc.

2.1 Problem-Solving and Programming Languages

An important open question in the theory and practice of education
is whether the notions and skills of formal reasoning and problem-
solving can be taught. These skills are important, not only for
their own sake, in direct application to formal work, but even
more for thelr side effects. It 1s plausible that persons who
have the skills and habits of organizing thelr approach to mathe-
matical and formal problems will be better able to deal with more
complicated and realistic situations.

New approaches to teaching mathematical problem-solving skills
have been explored by a number of investigators. These include
the various "discovery" methods and several experimentally-
oriented curricula employing mathematics laboratory materials of
many kinds. Such approaches generally have the object of making
students welf-conscious about the process of solving problems.
The most explicitly elaborated program was described by George
Polya. Polya seeks to inculcate an understanding of mathematical
ways of thinking by making students familiar with the kinds of
steps performed in the course of solving mathematical problems.
His major contribution was to provide an explicit and systematic
checklist of procedures a student can apply when faced with the
kind of problem that has no obvious solution. Students are
directed toward solving problems in a deliberate and systematic
fashion, through following heuristic guldelines for concelving,
executing, and testing plausible plans of attack.

Teaching the art of solving problems nevertheless remains an art.
The new approaches have had very limited success. For exampie,
Polya's heuristics -- find a similar but simpler problem; formu-
late a plan of attack and try it, divide the problem into

Report No. 2187 Bolt Beranek and Newman Inc.

subproblems, etc. -- cannot be carried out with students who do
not already poscess considerable mathematical experience and
sophistication. 1Indeed, for many students the concept of a pro-
cedure for solving problems is vague because the very idea of
procedure is itself vague. Further, Polya does not tell us what
happens when students attempt to follow his excellent precepts.
Careful studies of the specific difficulties actually experienced
by students in the course of trying to solve mathematical or

other intellectual problems are difficult to design and expensive
to carry out. The problems include finding an appropriate problem
context, and observing the steps in the reasoning of a subject,
his manipulation of material, his reaction to conflict and counter-
suggestion, etc. Nevertheless, significant advances in teaching
problem-solving will very likely depend on improving our under-
standing of, and our abllity to diagnose, student difficulties.

Our thesis 1s that teaching the use of a suitable programming
language will provide a substantially improved means of studying,
diagnosing, and helping to overcome students' difficulties in
solving problems. Such a prcgramming language must be easily
accessible to persons inexperienced in formal thinking, and must
provide a natural way of expressing problem-solving procedures

of many kinds, including the simple tasks suitable for beginning
students. Moreover, it must be particularly useful in elucidating
the set of issues which cause the greatest difficulties for
beginning students. We have created such a programming language,
LOGO, described in brief in Section 2.2.

Using LOGO, the process of formulating problems as computer

programs is useful in helping students and teachers in several
ways including the following.

-4~

= =

o=

= &3 &=

—
bred

40O &9 &8

ey
Aemaped

= 6= o

| S—

—- =

e

»

e

i:“.

Report No. 2187 Bolt Beranek and Newman Inc.

(1) The use of LOGO facilitates the acquisition of rigorous
thinking and expression. Students impose the need for precise
statement on themselves through attempting to make the computer
understand and carry out their commands. The literal-mindedness
of the computer clearly shows the necessity for precise formal
description, not only of the problem itself, but of the student's
own steps -- successful and unsuccessful -- towards a solution.

(2) The partial, tentative steps towards a solution are programs
and thus are concrete, reactive objects. Any program used pro-
vides feedback to the student. Thus, we have a natural and
effective experimental approach toward solving problems.

(3) LOGO programming provides highly motivated models for all
the principal heuristic concepts.

It lends itself naturally to discussion of the relation of
formal procedures to intuitive understanding of problems.
It provides a wealth of examples for heuristic precepts
such as "formulate a plan", "separate the difficulties",
"find a related problem", etc. Thus, it provides a natural
context for realizing Polya's approach to teaching.

It provides a sense of formal methods and thelr purpose.

It gives the student a chance to learn to distinguish
situations where rigor is necessary from those where looser
thinking is appropriate.

In particular, 1t provides models for the contrast between
the global planning of an attack on a problem and the formal
detall of an elaborated solution. 1In the context of program-

ming, the concept of subproblem or subgoal emerges crisply.

Report No. 2187 Bolt Beranek and Newman Inc.

(4)

The concrete form of the program and the interactive aspect
of the machine allow "debugging" of errors to be identified
as a definite, constructive, and plannable activity. The
programming concept of a "bug" as a definite, concrete,
existent entlty to be hunted, caught, and tamed or killed
is a valuable heuristic idea.

By enlarging the scope of applications, LOGO allows every

problem to be embedded in a large population of related problems

of all degrees of difficulty, for example:

(5)

Through LOGO programming, mathematical induction can be
presented and generalized by its relation to recursion.

The extension of an operation to a larger domaln becomes an
everyday activity.

Generalizing this, generalization becomes an activity
undertaken routinely by students.

Functions become familiar things one constructs to serve
real purposes. Students use these functions as building
blocks for constructing more complex functions which often
are elements of still more powerful structures, useful in
dealing with more difficult problems.

Solving a mathematical problem 1s a process of constructilon.

The activity of programming a computer 1s uniquely well suited to
transmitting this idea. The 1mage we would llke to convey could,
roughly speaking, be described thus: A solution to a problem is
to be built according to a preconceived, but modifiable, plan,

I R G R see S s S R © I —— [e R sy

| —

S

—/ /= = &= D

1 &8 &8 &mm &=

o W (R

Report No. 2187 Bolt Beranek and Newman Inc.

out of parts which might also be used in building other solutions
to the same or other problems. A partial, or incorrect, solution
is a useful object; it can be extended or fixed, and then incor-
porated into a large structure. This image is mirrored in the
activity of writing LOGO programs.

(6) The use of computers and LOGO is relevant to what is perhaps
the most difficult aspect of mathematics for a teacher: helping
the student strive for self-consciousness and literacy about the
process of solving problems. High school students can seldom
say anything about how they work towards the solution of a
problem. They lack the habit of discussing such things and they
lack the language necessary to do so. A programming language
provides a vocabulary and a set of experiences for discussing
mathematical concepts and problems. LOGO programs are more
"discussable" than traditional mathematical activities: one can
talk about their structure, one can talk about their development,
their relation to one another, and to the original problem.

(7) Finally, a by-product of using LOGO is the automatic
generation of printed protocols showing a record of the in vivo
interaction between the student and the computer. His work is
thus available for diagnostic study at a level of detail suffi-
cient for making plausible hypotheses about his underlying
thinking and ostensible difficulties.

An understanding, or even a clear appreciation, of thsse polnts
i1s impossible without a brief description of the LOGO language.
The presentation that immediately follows introduces the elements
of LOGO. The use of LOGO programming in problem-solving 1s
discussed subsequently.

Report No. 2187 Bolt Beranek and Newman Inc.

2.2 A Brief Description of the LOGO Programming Language

The LOGO programming language was specifically designed for teach-
ing mathematical thinking and problem-solving. The structure of
LOGO programs and the flavor of the language are 1llustrated next.

LOGO 1s a language for expressing formal procedures. A LOGO pro-
cedure 1s written in an idiom similar to recipes in cooking. It
has a name; 1t usually has ingredients (these are called its
inputs); and it has a sequence of instructions telling how to
operate upon its inputs {(and upon the things made from them along
the way) to produce a desired effect or to make some new thing
(this 1s called its output).

To illustrate, we define a procedure for doubling a number. We
begin by choosing a word for the name of the procedure -- DOUBLE
in thls case. Next we choose names for the lnputs -- 1in this
case there 1s a single input -- NUMBER. So, the title of the
procedure is TO DOUBLE /NUMBER/ (like to boil an egg). Note the
slash marks around NUMBER -- slashes are used to demarcate names
of things; names for procedures like DOUBLE and for already-
built-in instructiong are written without any marks around them.

When we give LOGO the command PRINT DOUBLE OF 5 we want the tele-
type to respond 10; when we say PRINT DOUBLE OF 9999 we want the
response 19998. So now we set down the instructions for perform-
ing DOUBLE. Actually, one instruction suffices.

OUTPUT SUM OF /NUMBER/ AND /NUMBER/

This instruction is composed of two elementary (i.e., already-
built-in) instructions -- OUTPUT and SUM.

OUTPUT has the meaning "the answer 1s". Thus, OUTPUT SUM OF
/NUMBER/ AND /NUMBER/ means that the answer is SUM OF /NUMBER/

-8~

, D | oo}

\s

) &= &=

== T e

[y '-.—--}

[&

et L T e ——

Report No. 2187 Bolt Beranek and Newman Inc.

AND /NUMBER/. SUM is an operation which needs two inputs (these
must be integers). Its output is their sum. Thus, SUM OF 3 AND
2 has the output 5. The LOGO instruction: PRINT SUM OF 3 AND 2
causes the teletype to print 5.

The entire procedure definition is:

TO DOUBLE /NUMBER/

1 OUTPUT SUM OF /NUMBER/ AND /NUMBER/

END
where the integer 1 is used to label the instruction 1line (in
this case there 1s only one line, but procedures often have
several lines of instructions), and END marks the end of the
definition. When this completed definition is typed in, LOGO
acknowledges by responding: DOUBLE DEFINED. From that point on,
the procedure DOUBLE can be used as if it had always been part
of LOGO, just like PRINT and SUM. The new procedure is used by

typing:
PRINT DOUBLE OF 2

The machine responds with the answer
4

(We underscore the student's typing in these and the following
examples to distinguish them from LOGO's responses.)

Procedures can be chained. Thus:

PRINT DOUBLE OF DOUBLE OF 2
8

Procedures can also be embedded in the definition of new

procedures. For example:

TO _QUAD /NUMBER/
1 OUTPUT DOUBLE OF DOUBLE OF /NUMBER/

END

PRINT QUAD OF 123

492

PRINT DOUBLE OF QUAD OF 7
56

Report No. 2187 Bolt Beranek and Newman Inc.

There are a relatively small number of elementary operations and
commands 1n LOGO. An operation which is analogous to the opera-
tion SUM for integers 1s the operation WORD for alphanumeric
words. Thus, PRINT WORD OF "SUN" AND "STAR" will cause the LOGO
word SUNSTAR to be printed. The operations SUM and WORD are

used to put things together. LOGO also has operations for taking

things apart. These are FIRST, LAST, BUTFIRST, and BUTLAST.

PRINT FIRST OF '"BOX"
B

PRINT BUTFIRST OF "BOX"
oX

PRINT LAST OF 'BOX"
X

PRINT BUTLAST OF ''BOX"
B8O

BUTFIRST means all but the first letter of the word and BUTLAST
means all but the last letter,

Some elementary LOGO operations have no inputs. An example is
the operatlion RANDOM whose output 1s a one-digit random number.

PRINT RANDOM
7
PRINT RANDOM
m

Two baslc acts in procedures are making new LOGO things and

testing them to see whether they satisfy some conditlon, such as

a stop rule. To make a new LOGO thing, we type the command MAKE.

LOGO responds by asking first for the name and then for the

thing, i.e., for a LOGO expression for the new thing. Thus, 1if

we want to make a lilst of the even diglts, and call this "EVENS":
MAKE

NAME: '"EVENS"
THING: "g 2 4 6 8"

=10~

,._._—
[S

Pam—— A worenl Sy |

= &=

—

R £ 9 | S | Sm— C: .

L-—‘; ‘:m!'l

O O &30 & s

o

s

== e

Report No, 2187 Bolt Beranek and Newman lnc.

If we then type PRINT /EVENS/, LOGO responds:

#2468

PRINT "EVENS", would have caused LOGO to print EVENS. Quotation
marks refer to a LOGO thing direectly. Slash marks refer to a
thing by 1ts name.

To test whether a LOGO thing satisfies some condition, we intro-
duce the notion of predicates, i.e., operatlons which have two
possible outputs, "TRUE" and "FALSE". The ldentity operation IS
is one of the elementary LOGO predicates. IS takes two inputs
and has the output "TRUE", 1f these inputs express the same thing.
Otherwise it has the output "FALSE". Thus,

PRINT IS 2 SUM OF 1 AND 1
TRUE

PRINT IS 2 1
FALSE

The command TEST, and the associated commands IF TRUE and IF FALSE,
are used with a predicate as in the following program:

TEST IS 2 2

1F_TRUE PRINT ''GOOD'"
GOO0D

The use of RANDOM, MAKE, and TEST in introducing recursion is
1llustrated in the followlng procedures for printing lists of
random numbers.

TO NUMBER

1 PRINT RANDOM
END

Thils procedure is used by typing:

NUMBER
The machine responds with a number
8

NUMBER
5

te.
etc -11-

Report No. 2187 " Bolt Beranek and Newman Inc.

The repetitive act of typing NUMBER 1s easily mechanized by
writing a new procedure to do just this.

TO SLEW

1 NUMBER

2 SLEW
END

We have incorporated into SLEW the instruction to perform another
procedure, NUMBER, and then the instruction to SLEW, i.e., to do
the same again. So when we type SLEW, we obtaln an endlecs
sequence.

LEW

see u:uava\1m

As well as using another procedure, NUMBER, SLEW also uses 1itself
-- 1t 1s a simple example of a recursively defined procedure. To
modify SLEW so as to procuce a definite number of random digits,
we 1introduce an input /NTIMES/: the number of times we still
have to SLEW.

70 SLEW /NTIMES/

1 TEST iS /NTIMES/ §

2 1F TRUE STOP
3 PRINT RANDOM

4 MAKE
NAME: "NEWNUMBER" (The elementary
THING: DIFFERENCE OF /NTIMES/ AND 1 operation DIFFERENCE
5 SLEW /NEWNUMBER/ denotes integer sub-
END traction. Thus

DIFFERENCE OF 3 AND

1l 1is 2.)

The use of this new SLEW procedure is illustrated by:

SLEW 2

g
3

-12-

= =

—1 . &

O &

\.d

Report No. 2187 Bolt Beranek and Newman Inc.

o1 ey

SLEW 1
2

1

SLEW 3
2
5
6

| o

etc.

To show how LOGO performs SLEW, let's ask it to do SLEW 2 and
trace through its subsequent operation, instruction by instruction.
When we type in SLEW 2, LOGO takes the definition of the procedure
SLEW and uses it as follows:

—

ey
4

Round 1 TO SLEwW '"2"
Title Line: /NTIMES/ is "2"

==

Line 1: "2" 1s not "g"

Line 2: Therefore this instruction is ignored

Line 3: LOGO prints the output of RANDOM, say the
digit 4

Line A4: /NEWNUMBER/ is "1" (that is, 2 - 1)

Line 5: LOGO invokes SLEW OF "1"

Round 2 TO SLEwW "1"
Title Line: /NTIMES/ is "1"

o O & o=

Line 1: "1" is not "g"

Line 2: Ignored

Line 3: LOGO prints the output of RANDOM, this time
perhaps the digit 5

Line 4: /NEWNUMBER/ is "#" (that is, 1 - 1)

Line 5: LOGO invokes SLEW OF "g"

{ B

Round 3 TO SLEW '"g"

Title Line: /NTIMES/ is "g"
Line]: "ﬂ" iS "g"
Line 2: Therefore LOGO stops

I

Using LCGO, recursive procedures can be written and systematically
extended in a rich variety of mathematical contexts. An example

| G

of a deeper recursive procedure, closely related to the principle
of "mathematical induction", is the factorial function:

1
N X FACTORIAL(N-1), N >1

FACTORIAL(1)
FACTORIAL(N)

A

- -13-

Report No. 2187 Bolt Beranek and Newman Inc.

In LOGO we write a corresponding procedure as follows:

TO FACTORIAL /N/

1 TEST IS /N/ 1

2 IF_TRUE OUTPUT 1

3 MAKE (The operation PRODUCT
NAME: 'N-1" denotes integer multi-
THING: DIFFERENCE OF /N/ AND 1 plication.)

4 OUTPUT PRODUCT OF /N/ AND FACTORIAL OF /N-1/

END

PRINT FACTORIAL OF 7
5pu4g

PRINT FACTORIAL OF DOUBLE OF 3
720

A syntactically similar non-numerical procedure, for reversing
the order of the letters in a word (i.e., writing a word backwards),
is:

TO REVERSE /W/

1 TEST IS COUNT OF /w/ 1 (COUNT OF /W/ 1is the
2 IF TRUE OUTPUT /W/ number of letters in /W/.)
3 MAKE

NAME: "NEWWORD'
THING" BUTLAST OF /wW/
4 OUTPUT WORD OF LAST OF /W/ AND REVERSE OF

/NEWWORD/
END

PRINT REVERSE OF "ELEPHANT"
TNAHPELE

PRINT REVERSE OF FACTORIAL OF 7
pugs

The basic capabilities of LOGO described above can be developed
and extended in a natural way. In Section 4 we show how LOGO is
used in several teaching sequences where these capabilities are
used to build up complex program structures in various problem-
solving contexts.

14~

| =—e [N et R =]

— O & &= &

C =

e B = =

]

t=

 S—

- = o

A ———y
3 J

—] T3 €3O

S— e — I —

—

o
e

C

=

<4

—

Report No. 2187 Bolt Beranek and Newman Inc.

3. THREE LOGO TEACHING EXPERIMENTS

The LOGO course in problem-solving was developed and tested by
means of a sequence of three teaching experiments. In the first,
the particlipants included both school teachers and developmental
psychologists with educational interests. The object of this
phase of the teaching was to test our ideas about the use of LOGO
in studying problem-solving and to develop specific LOGO materials
for further use.

In the subsequent teaching experiments we further developed and
tested these 1deas and materials. This work involved two groups
of students with distinctly different motivational and conceptual
difficulties. The first was composed of eighth grade "problem
students" who had developed strong resistance to working on
virtually any kind of organized intellectual tasks. The other
group comprised college students with a history of poor perform-
ance in mathematical work. The three experiments are described
in the sections following.

3.1 Teaching Teachers - Summer Workshop, 1969

We developed with professional subject-trainees the 1ldea of using
LOGO as a tool for introducing constructive methods of problem
solving. 1In this investigation we built on earlier work involving
LOGO in studying problem-solving concepts such as planning,
modeling, and testing. We also sought to obtain some experience
with the problems of training teachers to learn and use LOGO in
this way;

The course was given as an intensive summer workshop in July-

August, 1969. The rarticipants were two elementary school

-15-

Report No. 2187 Bolt Beranek and Newman Inc.

teachers with limited mathematical background, two junior high
school mathematics teachers who had majored in college mathe-
matics, three Canadian professors of education and psychology

who were personally interested in learning research based on the
use of LOGO and were planning to implement LOGO in a French
version to be used 1n Plagetian experiments, and two staff members
of Bolt Beranek and Newman (BBN) with backgrounds in mathematics
curriculum research and teaching. Except for one of the junior
high school teachers and one of the BBN staff members, the
participants had no previous familiarity with programming.

The plan was to immedliately plur..e the workshop participants into
using LOGO. Thus, the following recursive procedure for adminis-
tering an addition quiz was introduced to them on the first day
of the course. '

TO ADDQUIZ
1§ PRINT "TYPE A NUMBER"
2¢ MAKE

NAME: ' NuM1"

THING: REQUEST
3¢ PRINT "TYPE ANOTHER NUMBER"
4g MAKE

NAME: '""NUM2"

THING: REQUEST
5@ PRINT "WHAT IS THE SUM OF YOUR TWO NUMBERS?"
6§ MAKE

NAME: "ANSWER"

THING: REQUEST
78 MAKE

NAME: "RIGHT ANSWER"

THING: SUM OF /NUM1/ AND /NuM2/
88 75ST 1S /ANSWER/ /RIGHT ANSWER/
9F IrF TRUE PRINT "YES, THAT'S RIGHT."
18 1F FALSE PRINT "NO, TRY AGAIN."
11§ ADDQUIZ
END

-16-

- TR = [~ S aomy

O &3 &3 =2

brwwes Fovewery

s

:::::c::r.-:z-u-%

Iy

| &2 &3 &=

= EE =

— .= =

U TR AR TR Gl PR e T et —— A

Report No. 2187 Bolt Beranek and Newman Inc.

The tralnees were introduced to LOGO operations, commands, names,
and features gradually, as needed for their programming assign-
ments. In the first two weeks, while writing and debugging
programs, they did, in fact, learn virtually all of the LOGO
vocabulary without any special emphasis on this. This "Berlitz"
technique of requiring the use of the language in a working con-
text ab initio, introduced some confuslon and sense of pressure
during the first few days. The participants benefited in the
long run, though, from having to confront more realistic problem-
solving situations. After the first weeks, they were confldent
about approaching and handling tasks of moderate to large scope.

Heuristics for Planning!a Proqedure

Even for the simplest programs, planning precedes implementatilon.
To assist in thils stage of problem-éolving, the class was 1ntro-
duced to various heuristics for planning a procedure. An example
of such a heuristic is

(1) Pind easy cases,

(2) Reduce the hard cases to these easy ones.

It was emphasized that these plans do not always work, but that
having a collection of plans enables one to "do something" when
faced with a problem.

The use of the foregoing heuristic is illustrated with the LOGO
procedure FIND. FIND 1s an operation with two inputs, the first
of which 1s a word and the second of which is the position of
the character in the word to be "found". Examples of its use
are:

FIND "ABC" 1 = "A"

FIND "ABC" 3 nen

~17-

T T ey

Report No. 2187 Bolt Beranek and Newman Inc.

The easy case for FIND is when the first character 1s to be
found. So we begin by writing this part of the procedure

TO FIND /SENTENCE/ /NUMBER/
1§ TEST IS /NUMBER/ 1
28 1F TRUE OUTPUT FIRST OF /SENTENCE/

Now we turn to the reduction of the harder cases to this easy
case, JSometimes, especially for young children, a physical model
is useful. So we construct one to illustrate this idea here.

Model for FIND "ABCDE" 4

—(B—000O-0-06—

String of beads representing "ABCDE"

To perform FIND "ABCDE" 4, one merely peels beads off the string,
reducing the count by one, each time, until it becomes 1.

Discussion of this model leads to the conclusion that FIND
/SENTENCE/ /NUMBER/ 1s equivalent to the problem FIND BUTFIRST OF
/SENTENCE/ DIFFERENCE OF /NUMBER/ AND 1. So we MAKE two new
things:

BUTFIRST OF /SENTENCE/

DIFFERENCE OF /NUMBER/ AND 1
and we give these the names "NEWSEN" and "NEWNUM", respectively.
Thus,
TO FIND /SENTENCE/ AND /NUMBER/
19 TEST IS /NUMBER/ 1

2@ IF TRUE OUTPUT FIRST OF /SENTENCE/

38 MAKE
NAME: "NEWSEN"
THING: BUTFIRST OF /SENTENCE/

-18-

-

—

gr:::::m:::::zc::n:.,l

oy Oup SN0 SN N Pmy ey

et

/| &

[

4

= e Ga e - =

| —

_ = CC = =

Report No. 2187 Bolt Beranek and Newman Inc.

4@ MAKE

NAME: "'NEWNUM"

THING: DIFFERENCE OF /NUMBER/ AND 1
58 OUTPUT FIND OF /NEWSEN/ AND /NEWNUM/
END

LOGO provides a natural framework for approaching problems with
well formulated strategies. Thus, as well as the "reduce the
hard cases to easy ones" heuristic, other heuristics can be
implemented in LOGO 1n a straightforward fashion. An example of
such a useful heuristic 1s "subdivide a complex problem into
subproblems". The use of this heuristic was discussed at some
length in application to developling strategic game-playing
programs such as NIM.

The NIM-playing program was divided into subprograms for initial-
izing play, requesting a user's move, checking the legality of a
move, generating the computer's move, sequencing the play (comput-
ing the next player), keeping score (computing the current number
of chips remaining), and checking after each move to see whether
the game has been won or lost. These components can be further
subdivided into simpler ones until each program is adequately
clear and transparent. (Alternatively, a component program can
be made more complicated. For example, the first version of a
program for generating the computer's move might simply choose

a move at random. In subsequent extensions it can be replaced

by a series of programs to carry out more effective strategles
for computing moves.)

An example of a related planning heuristic developed 1n the
workshop was "build complex procedures out of previously
developed simpler ones". The use of this heuristic was illus-

trated in the generation of a series of successively more

-19-

Report No. 2187 Bolt Beranek and Newman Inc.

English-like grammatic sentences, and of complex structures such
as poetic forms of various kinds. The reverse problem of analyz-
ing such given structures to determine the rules which could have
been used to compose them was also discussed. The feasibility

of implementing planning heuristics like '"to analyze a structure
first try to synthesize it from simpler structures" was considered
in the context of generating algebra story problems starting from
formal equations.

Heuristics for Debugging a Procedure

In addition to the general lack of the notion of a planning phase
of work on a problem, students seldom have definite ideas or
methods for diagnosing or even detecting the errors in their own
work. Students frequently give up when their steps 1n solving a
problem are not successful -- rather than trylng to understand
and correct them. The potential value of LOGO in this connection
showed up 1in even the simplest tasks in our earlier teaching.

The kind of problem "debugging'" experience it makes possible was
illustrated in the workshop by presenting actual instances of
student programming particularly chosen to show the erratic
course of program development in some detall.

An example 1s provided by the following discussion of the work

of a beginning student, Steven, a few weeks after hils introduction
to LOGO. He was working on a project to write a program called
COUNTDOWN which was to mimic the numerical countdown procedure
accompanyling a space launch. Steven's program was to work as
follows. (The « indicates that LOGO is ready for the user's
input.)

-20-

& e 3 [) '.::1

[am—

| DD S o |

[St | S | S

bomend

-y
Cmmd icormed

- ==

—

Report No. 2187 Bolt Beranek and Newman Inc.

+COUNTDOWN
14 9 87 6 54 3 21 @ BLASTOFF!

-+
He then wrote a more general COUNTDOWN procedure with a variable
starting point. For example, if one wished to start at 15:

+<COUNTDOWN 15
15 14 13 12 11 1§ 9 87 6 54 3 21 f BLASTOFF!

<+

He had already studied LOGO programs having a similar effect,
though in rather different, nonnumerical, contexts. Thus, for
example, he had used the program CHOP which worked as follows:

+CHOP "ABCDE"
ABCDE ABCD ABC AB A

<+

In the case of CHOP, each successive output is obtained from the
previous one by chopping off the rightmost letter. The procedure
terminates after it has "chopped off" all the letters and there
is nothing left in the word (i.e., the word has become /EMPTY/).
Steven had thils procedure in mind when he tried to write
COUNTDOWN. His first attempt, however, followed CHOP a little
too closely. It was written as follows.

TO COUNTDOWN /NUMBER/
1 TYPE /NUMBER/
2 TEST IS /NUMBER/ /EMPTY/
3 IF TRUE TYPE "BLASTOFF!"
4L IF TRUE STOP
5 MAKE
NAME: '"NEW NUMBER"
THING: DIFFERENCE OF /NUMBER/ AND /NUMBER/
6 COUNTDOWN /NEW NUMBER/
END

=21~

Report No. 2187 Bolt Beranek and Newman Inc.

When Steven tried his procedure, this is what happened.

+COUNTDOWN 5
s5gpgpep ... (it went on and on until he stopped
& the program manually)

Obviously, something was wrong. He saw his first "bug". He had
parformed the wrong subtraction in instruction line 5; he meant
to decrement the number by 1. He fixed this by changing the
instruction to:

5 MAKE

NAME: '"'NEW NUMBER"
THING: DIFFERENCE OF /NUMBER/ AND 1

Then he tried again.

+«COUNTDOWN 5
54 3 21§ -1 -2 -3 -4 ... (and again he had to stop the progran)

<+

Somehow, his stopping rule in instruction line 2 had failed to
stop the program. He saw his bug -- instead of testing the input
to see if it was /EMPTY/, he should have tested to see if it was
@. Thus,

2 TEST IS /NUMBER/ §#

He made this change in line 2 and then tried once more.
+COUNTDOWN 5

5 4 3 21 f BLASTOFF!

<+

And now COUNTDOWN worked.
As a follow-on, he wrote a LOGO procedure for counting down by

two's. His strategy was to build the n-w procedure (he called
it COUNTDOWN=-2) from the current one, COUNTDOWN, simply by

-2l

— =

o B = = B

—— b

| (g

(=
|

]

¢ roe

L B

== B

Brrsmare C.:_. L- 5 L..-__,_. [;_- L——:_.

P

T e e ek e b S

Report No. 2187 Bolt Beranek and Newman Inc.

changing instruction line 5 to decrement /NUMBER/ by 2 instead
of 1.

TO COUNTDOWN-2 /NUMBER/
1 TYPE /NUMBER/
2 TEST IS /NUMBER/ ¢
3 IF TRUE TYPE "BLASTOFF!"
4 IF TRUE STOP
5 MAKE
NAME: '"NEW NUMBER"
THING: DIFFERENCE OF /NUMBER/ AND 2
6 COUNTDOWN-2 /NEW NUMBER/
END

Then he tried it out.

+«COUNTDOWN=-2 5
531-1-3-5-7... (and so on, until he stopped the program)
<+

He spotted his bug immediately -- the stop rule had to be changed.
It worked all right for an even starting number but not for an
odd one. So he changed it to:

2 TEST EITHER (IS /NUMBER/ @) (IS /NUMBER/ 1)

Now his program worked for odd-number sequences,

+COUNTDOWN~-2 5
5 3 1 BLASTOFF!

-

as well as for even ones.

+COUNTDOWN-2 1§
19 8 6 4 2 g BLASTOFF!

<

His work in developing subsequent procedures (for counting up
from a given number to a given larger number, for counting down

-23-

Report No. 2187 Bolt Beranek and Newman Inc.

from a number to an arbitrary smaller number, and for counting
up and down between two limits, i.e., oscillating, a specified
number of times) was also reconstructed in like fashion.

Such protocols of student sequences, together with the ones
drawn from the participants' own work, provided a rich source
for studying bugs of many kinds. Through such comparative and
clinical study we described several of the more common types,
the program contexts in which these occurred, and good ways to
find and correct them.

Program Forms and Structures

As well as heuristic aspects of problem-solving, LOGO was used to
study the associated formal aspects. A particularly important
one 1s the concept of program form. A series of standard recur-
sive program forms of increasing complexity was introduced.

These served as models for expressing a great variety of problem-
solving processes. Some standard uses of these forms were dis-
cussed along with the bugs typically encountered in each case.
The simplest form, simple recursion, is shown in:

TO SING

1 PRINT "LA LA"
2 SING

END

+SING
LA LA
LA LA
LA LA

24

s B —— I —— B —— R = R s

] =3

—

o WM N1 T)

P E 23 a mae

]
—

(o—

[

&

Report No. 2187 Bolt Beranek and Newman Inc.

A variant is simple recursion with an input, as in

TO SAY /SOMETHING/
1 PRINT /SOMETHING/
2 SAY /SOMETHING/
END

+SAY "CAT"
CAT
CAT
CAT

Simple recursion is used to express non-terminating invariant
processes. A more interesting form includes both varied effects
and a termination condition. This form of recursion is equivalent
to simple iteration. An example 1s Steven's COUNTDOWN procedure,
and the procedure SLEW discussed in Section 2.2.

A more complex form of recursion uses the OUTPUT command to
transmit intermediate outputs. Recursive procedure. Jf this kind
can be used to express significant processes. For example, the
procedure FIND was used to carry out the "reduction to easy cases"
heuristic. Variations where the recursion is embedded 1n some
larger operation are often vseful -- examples are the procedures
REVERSE and FACTORIAL given in Section 2.2.

Recursive procedures of a varlety of forms ¢f still greater
complexity and power, includlng some which are not reducible to
iteration, can easily be written. Recursive forms like those
already introduced, however, are sufficient for representing
problem-solving processes in virtually all applications of inter-
est outside of advanced mathematical work.

-25-

Report No. 2187 Bolt Beranek and Newman Inc.

Further complexity in formal problem-solving capabilities 1is
better obtalned by appropriately combining procedures of the
various forms already introduced with nonrecursive procedures of
certain standard forms to create composite structures. The idea
of program structure gives the other dimension needed to enable
relatively complex problem-solving processes to be bullt up from
relatively simple procedures. Examples of some standard forms
of multi-procedure structures were introduced to serve as models
for student work. The extended development in the geometry
drawing sequence, discussed in Section 4, is a concrete illustra-
tion. Examples of some student program structures are shown and
discussed in Section 5.1.

In the last phases of the teaching experiment, the participants
worked on a set of diverse demonstration projects of their own.
The work was presented and critically analyzed by the entire
group in a series of cliniecs. The particlpants were generally
successful 1n working on problems with well formulated strategies.
But they needed help in planning and organizing their work with
more open-ended and complex problems. Thus we felt it necessary
to write a number of extended LOGO sequences as paradigms for
teachers. As a first step in this direction, we developed the
material presentad in Section 4, which introduces problem-solving
with LOGO.

3.2 Teaching "Problem Students" -
Muzzey Junior High School, 1970

In this section we describe a teaching experiment conducted with
a small class of eighth-grade students at Muzzey Junlor High
School from March 1970 through June 1970. The class comprised
six students each of whom had a history of resistance to

-26-

—] e

i e ey e

3 =

PRV,

e

o
[)

[oo B

=t res

t'] ""]
BESONSIR L7, P Ve T e B Srum e Ty o it e

w—
»

—

4 v

/ &0 &=

pm—
—

—

—

C—

—_— = [(T

e

R s . oy \

Report No. 2187 Bolt Beranek and Newman Inc.

particlipating in intellectual work in the school. These students
were frequently expelled from class for disciplinary reasons.
They had difficulties with reading as well as in their mathe-
matics and science.

In fact, we chose from the entire elghth-grade class those
students with the greatest deficlencles in reading comprehension
as consistently measured by standard tests -- the tested measures
varied from three to filve years below elighth-grade norms. The
students showed no indication of deafness or other organic
factors -- thelr learning performance problems were judged to be
primarily motivational in character. Their IQ levels ranged from
87 to 117, averaging somewhat over 100. They were regarded as
underachievers by teachers. Two of them were judged to be
performing enormously below theilr potential,

The main object of this teaching was to explore the use of LOGO
in motivating such students to do intellectual work. We believed
that they would find appropriate work with LOGO on the computer
so compelling that they would become genuinely engaged 1n

many kinds of problem-solving tasks. We planned in the last

'phase of the teaching to see whether we could break through thelr

conceptual barriers as well, and help them gain in both mathe-
matical problem-solving skills and reading comprehension.

Lesson Materials

The students were involved in two main kinds of class activities.
They first worked through a series of 24 programmed lessons
giving an introduction to LOGO programming. - The students usually
worked at the computer terminal individually. Occasionally two
were scheduled to work together on a lésson. As they learned how

-27-

ar gy

Report No. 2187 Bolt Beranek and Newman Inc.

to write procedures, they worked on varlous projects of thelr
own cholce, though they usually needed a great deal of guidance
in modifying theilr 1ldeas and in helping them plan ané carry out
their work.

The programmed lessons were written in LOGO itself in an inter-
active mode and in a relatively open-ended style, mixing straight
exposition and test 1ltems with freer problem assignments calling
for the student to write hls own procedures. The lessons had
previously been used with ease both by younger students and adults.
As a slde advantage, these lessons actlvely involved the students
in doing a great deal of reading.

In the followlng pages, a fragment of a student's lesson tran-
script 1s reproduced to i1llustrate the material and the type of
student-computer interaction involved. The student's typing is
underscored. The + mark indicates that the student 1s to press
the carrilage return key when he has filnished reading the current
line and 1s ready for the next 1l1ine.

HERE IS A PROCEDURE WE USED WHEN WE STARTED WORKING WITH THE
COMPUTER. +

FIRST TELL THE COMPUTER TO -- LIST SAYHI.+

THEN TRY OUT THE PROCEDURE SAYHI TO SEE WHAT IT DOES.+

WHEN YOU ARE READY TO GO ON TYPE -- MORE.+

«LIST SAYHI

TO SAYHI

1§ PRINT "HI"

2@ SAYHI
END

-28-

el e

L

Report No. 2187 Bolt Beranek and Newman Inc.

+«SAY HI (A typical bug - splitting a LOGO procedure

SAY IS NOT DEFINED name made up of English words)

+SAYHI

HI

HI

HI

HI

HI (The student stopped the program by hitting
- the break key at this point)

I WAS AT LINE 1§ IN SAYHI

+MORE

NOW IT'S YOUR TURN TO WRITE A PROCEDURE.+¥

TRY TO WRITE A PROCEDURE WHICH WILL PRINT YOUR NAME JUST THE
WAY SAYHI PRINTED HI.+

WHEN IT WORKS TYPE -- NEXT.+

+T0 SAYMIKE
>18 PRINT '"MIKE"

>2f SAYHI (Note the bug - probably a careless copy-
>END ing error when Mike looked back at the
SAYMIKE DEFINED SAYHI definition above)

+«SAYMIKE

MIKE

HI : :

HI (The error is evident)

HI

HI (He stopped the operation of SAYHI again)

I WAS AT LINE 1§ IN SAYHI
«<EDIT SAYMIKE

>2Q SAYMIKE

>END

SAYMIKE DEFINED

«<LIST SAYMIKE

1§ PRINT "MIKE" (Students were taught to list procedures
2@ SAYMIKE which they had just edited to check their
END changes)
+SAYMIKE
MIKE (This time SAYMIKE worked)
MIKE
MIKE
MIKE (So he stopped)
-29-

Report No. 2187 Bolt Beranek and Newman Inc.

+«NEXT (and continued to the next part of the
assignment)

ARE YOU READY FOR A CHALLENGE? ANSWER YES OR NO.

“YES

THIS TIME TRY TO WRITE A PROCEDURE THAT WILL WORK TO COPY
ANY WORD YOU GIVE IT.+

CALL YOUR PROCEDURE =-- WORK. SO WHEN YOU WRITE WORK AND

THEN USE IT WITH THE INPUT '"MARGE" IT SHOULD TYPE --
MARGE -- RIGHT DOWN THE PAGE.

Student Projects

Observing the students' work at the computer it was apparent that
LOGO provided a means of overcoming their resistance to formal
ways of thinking. Working with computers was seen by them as

"a good thing", just like shop and gym. Our task apparently
reduced to finding programming contexts and problems going beyond
the expository lesson materials which would be accepted as
"relevant" by the students.

We found from early on in the class that most students were
interested in using LOGO at two distinct levels of involvement.
First, they simply liked to work at the computer terminal. The
content and context of the work was often unimportant; indeed,
the students often were quite happy doing routine, tedious,
repetitive, mechanical tasks assigned to them so long as they
could do these interactively at the terminal. In carrying out
this assigned work, including much of the lesson material, they
did not always find it important to think a great decal about
what they were doing. They simply liked to do it, just as they
liked running. Their compelling interest in using the machine

-30-

e |

—

e
L

Gl Gmd Oup)) N e T O

OO = &

=

— =

Report No. 2187 Bolt Beranek and Newman Inc.

continued throughout the three-month period, from start to
finish. During this course of time, they gradually acquired the
formal material covered in the lessons.

The other and deeper level of involvement came from working on
thelr own projects. There were three sources of such projects:
some projects came out of what the students percelved as real,
personal problems, some were expressions of protest directed at
the school establishment, and some developed out of activities
and games they already were interested in. Examples of these
three kinds follow.

One student first consolidated the concept of formal procedure
as the direct result of a real life problem that confronted him
on his way to school. To seek redress from a bitter fight with
a school bus driver that morning, he urgently needed to compose
an affidavit. He decided to write 1t as a LOGO program since
this would facilitate making additional copies for the school
principal, the bus company, and hls mother's attorney. (The
school did not have typewriters and Xerox-type copying equipment
readily avallable to students.) The first part of his program,
COMPLAIN, is listed next.

TO COMPLA]WN . 0 g
12 PRINT "ON THE DAY OF MAY 4» 1970 THE BUS DRIVER TOLD ¢E 1V GET UFF

THE RUS AND 1 SALD »wHY AND He SAID GE1T ufF 1d4E RUS AND | DIDW'T o
20 FPRINT HE wANTAD #E OFF RECAUSE OF wY RUS PASS AnD [SALID 171 wAS ALL
KIGHT HE HAD SAIN, RErFuke 1Y GET 11 CHAKRGEND AND 1 DID RY MiRe TUKRKY
AND HE PUT A 14 In THE vIDOLE OF THE CAKNDA AND HE wWANTED A NOIE Fruw
MRe TERRY AND HE wANTED 11 ON MAY 4, 1970

A0 PRINT *IHE DAY THAT 11 HAPFEN wAS UN MAY 151972 AnD I TOLD HIvi 1 wAS

GOING TY wALK TU SCHUOL THAT nNAY."

A% PRINT *AND ON MAY 4, 1970 | GU1 U THE BUS AND 1 SHOWED HIM MY PASS
AND HE SALID GET OFF AND SAID NO »HE GOT OUT OF HIS SEAT AND GKABED
ME AND TOLD HIM TO LET GO AND DIDN'T

50 PRINT *"HE TRYED TI TRIF #E AND THEN HE STARTELD 10 PUSH vE ARUUND AND

AS HE wAS PUSH MEZ UFF THE HUS HE wAS ANOCAING DUAN UTHER PEUPLE."
60 PRINT "HE 1TULD MRe TERRY aHA1 HAPPEN AND HE SAID HE HAD RUAD HUS 15

AND I TULD MRe TERRY THAT I KkUAD BUS 14 AND [CUULD PROVE THAT 1 wAS

ON BUS 14

-31-

Report No. 2187 Bolt F:ranek and Newman Inc.

The effect of COMPLAIN is evident. The procedure 1s an instance
of the most elementary program form. The same student became
involved in writing more complex programs through subsequent
personal incidents. After one of these he was charged to write
the sentence "I will never throw a book out of the window again"
200 times. He conceived the notion of doing this by writing the
following LOGO procedure.

TO SWEAR-OFF /NTIMES/

1§ TEST IS /NTIMES/ #

2@ IF TRUE STOP

39 PRINT "I WILL NEVER THROW A BOOK OUT OF THE WINDOW AGAIN"
4P SWEAR-OFF (DIFFERENCE OF /NTIMES/ AND 1)

END

The procedure is 2ssentlally the same as Steven's COUNTDOWN
procedure discussed in Section 3.1. The effect, however, is
different. When SWEAR-OFF 200 was executed it produced a 1list

of 200 copies of the designated sentence. This computer printout
was deemed an acceptable way of carrying out the punishment.

Ls a follow up we gave the student the problem of writing a more
general procedure COPY with two inputs designating the message
to be copied and the number of times 1t was to be copled. For
example, COPY "I'LL NEVER SLEEP IN CLASS" 19990 would print the
sentence "I'LL NEVER SLEEP IN CLASS" ten thousand times. He

needed some help, but he was able to write the following procedure.

TO COPY /ANYTHING/ /NTIMES/

19 TEST IS /NTIMES/ §

2¢ 1IF TRUE STOP

38 PRINT /ANYTHING/

4y COPY /ANYTHING/ (DIFFERENCE OF /NTIMES/ AND 1)

-32-

.

e B o N —— QR e [cut

O &= &

-

= 8 =t = T

| Z===r

$omewsd

| Si—

CC OO &5 &8 e3¢«

[S———

e =

Report No. 2187 Bolt Beranek and Newman Inc.

This task was a formidable one for the student in question. It
showed a considerable advance in his formal and intellectual

grasp during the three-month period. Other students arrived at
this level of skill at earlier points and went on to carry out
larger projects involving the development of more complex proce-

dures and program structures.

An example is a program for playing ROULETTE which a student
wrote on his own initiative and with little outside help. A run
from one of the later versions of his program is shown next.

KOULETTE

Wrw e s b ———

YOU START wITH A $100 BILL. $100 IS THE HOUSE LIM1T. YOU MUST BET St Un

MORE

THE wHEEL SPINSe PLACE YOJR BET Otv (j) A SINGLE NUMBEKe (2) ANY TWO

NUMBERSe

(3)ANY THREE NUMBERS (4) ANY FOUK NUNMBERS «(5) ANY S!X

CONSECUTI VE NUMBEKRSe ((6) TWEL VE CONSECUTI VE NOSe (7? ANY 18

CONSECUT

*1

1VE NOSe (¢8) ALL 0DD OR EVEN NQSo'

HOW MUCH MONEY DO YOU BET?

OK» YOU HAVE DECIDED TO BET ON ONE SINGLE NUMBERe YOU MAY BET ON ANY

NUMBE R»

M=36e 1F YOU BET ON ONE NUMBER 136 AND THE WNUMBER 185 @ YOU wvir

KFEEP YOUR BET ON THE TABLE FOR THE NEXT BET. WHAT NU4BER D0 YOU BET
YOUR MONEY Oin? '

*A3

I'M AFRAID YOU HAVE LOST YOUR BETe
YOU HAVE ONLY 50 DOLLARSTHE NUMBER WAS 6
WOULD YOU LIKE TO BET AGAIN? ANSWER Y OR N

ot

YOU NOW HAVE 5@ DOLLARS
WHAT TYPE OF BET ARE YOU MAKING ?

*2

HOW MUCH MONEY DO YOU BET?

*25

-33-

Report No. 2187 Bolt Beranek and Newman Inc.

YOU HAVE DECIDED TO BET ON 2 NOS.PLEASE NOTE:YOU MAY NOT BET ON ZERO
YOUK FIRST NUMBEK 1S3

*26

AND YOUR SECOND NUMBER IS:

*11

ALL RIGHT, LET'S SEE HOW YOU DID. THE NUMBER WAS 20

SORRY BUT YOU CANT wIN THEM ALL

YOU NOW HAVE ONLY 25 DOLLARS

WOULD YOU LIKE T0 BET AGAIN? ANSWER Y OR N

1 e] o] o

1

The procedure in its final form was several pages long. It

1
probably was the most intense, extensive, and concerted intellec- [
tual enterprise the student had ever undertaken.

Some students were involved 1In an extended project to generate
geometric drawlngs and pictures at the teletype. A sequence
based on thls drawing project, as further develcped in the Uni-
versity of Massachusetts teaching, 1s described in Section 4.1.

7
| S

By the end of the course most students' intellectual resources --
recognizing problems, uvrganizing work into transparent programs,
debuggin_; simple programs, and modifying and extending work --
were much improved. Thils success carried over to other areas of
school work -- teachers remarked particularly on the students'
increased classroom involvement and participation. These findings
are subjective but "objectlive" evaluations were also carried out.
In doing this we found that computer testing provides an improved
means of measuring performance of low achieving students. This
study 1is described in the Appendix.

= == =

Weronen

| S

-34-

-

b= e e

PR

Report No. 2187 Bolt Beranek and Newman Inc.

3.3 Teaching Unmathematical Undergraduates --
University of Massachusetts, Boston, 1971

An undergraduate course, within the Mathematics Department of the
University of Massachusetts at Boston, was conducted by George
Lukas 1n the spring semester of 1971. This course was one of a
numter of courses intended to meet the needs of undergraduates
who, it was felt, had no chance of passing the normal, required,
mathematics course. Selection of students for this special
program was based on a score of less than 400 on the mathematics
aptitude part of the College Entrance Examination Boards and on
an interview with the faculty member in charge of the program.

We felt that LOGO could serve a very speclal role for students

at this level. The chief deficiency in such students is a lack

of basic problem-solving skills, and not, as appears superficially,
a lack of mathematical aptitude. The lack of problem-solving
skills is most evident in work with mathematics, but, if careful
study is made of language skills and other intellectual areas,

the same deficiency is noted in each. Thus, we wanted to use

LOGO, not as a vehicle for conveying specific subject matter, but
to teach the most fundamental aspects of reasoning at a formal
level -- generalization, planning, error debugging, etc.

This teaching experience has had a number of useful results:

We have developed and tested sequences for use at this level of
teaching, based on word-form generation and on teletype geometry.
These are included in later sections of this report. We developed
a means of having the computer save student work in the form of
"dribble files" for later analysis. This too is discussed later.
Finally, and most important, we ascertained the utility

of using LOGO in this way for teaching basic problem-solving

-35-

Report No. 2187 Bolt Beranek and Newman Inc.

skills to students who are considerably below average in this

area.

Nine students were chosen at random from the group of University
of Massachusetts students eligible for this course. They met

for five hours a week and spent all their class time at teletype-
writers. There were no homework assignments. There were three
teletypewriters connected to LOGO via BBN's TENEX system by
telephone lines. The students were carefully divided into groups
of three, each of whose members worked together. Reassignment

of students to groups was made from time to time tu keep each
group balanced so that each student contributed to the work.

Each group of three worked in a separate office. The instructor
walked from office to office in the course of a lesson, monitoring
the student work. He interceded only when a serious error had
been made which the students were un%}kely to diagnose on their
own, or when a new toplc was to be introduced.

The course began with an introduction to the elements of LOGO.
Some exlsting materlals of a CAI nature, written i1n LOGO, were
used for this. The remainder of the term was spent on varlous
projects. These 1ncluded the geometry and language generation
mentioned earlier, as well as a craps playing program, code
declphering programs, and work on a number of similar topics.
The criteria for choice of toplc were that the students could
achieve interesting results, that it involved new aspects of
problem-solving skills, and that it would engage student 1lnterest
over an extended period of time. Gilven the resistance of the
students to material that looked anything like mathematics,
satisfying the last of these was by no means a trivial matter.

-36-

|

- 0 S

—— =

B e 2 O T = =3

| S

| Sp—

in

—

::'c.:::::xm}

[P—
| VIS

— ==

o OO &3 &8 em &

c— =

Report No. 2187 Bolt Beranek and Newman Inc.

As the term progressed, student ability to handle program detalls
and simple program forms became automatic in most cases. Thils
was very encouraging, as 1t indicated an internalization of
rather general algorithms, something the students were unable to
do previously. Also, their ability to communicate their ideas

in general terms improved, and this development of a problem-
solving meta-language 1s extremely important. The quality of
results achleved, as seen, for example in the geometry sequence,
improved over the course of the term and concurrently so did
student confidence. To indicate the extent to which students

at the end of the term felt themselves capable of handling formal
processes, over half indicated their intention of taking further
mathematics courses.

Extensive examples of both student-written prccedures and the
uses to which they were put are contained in the sections on the
geometry and language sequences and in the section describing
"dribble files".

4. INTRODUCTORY LOGO COURSE ON PROBLEM-SOLVING

The three-sequence course 1s described in the sections following.
The materlal was designed for introductory use. The initial
sequence on teletype geometry is developed in greatest detall as
it evolved from the teaching at Muzzey Junior High School and in
more refined form at the University of Massachusetts. The shorter
sequences give twc distinctly different problem contexts --
generating English and controlling the robct "turtle". The more
advanced sequences on problem-solving have been written as part
of our LOGO mathematics curriculum in work supported by the
National Secience Foundation (Ref. 1).

-37-

Pwhec i g A -

Report No. 2187 Bolt Beranek and Newman Inc.

4.1 Geometry Sequence

We present a teaching sequence in which geometric ideas are
developed by use of the teletype as drawing device. The sequence
is based on part of the teaching done at University of Mass. at
Boston. The programs and examples are taken from student work,
unless otherwlise indicated. The only changes have been in the
names used for procedures and dummy variable names, and this was
only done where clarity was substantially improved thereby.

The sequence falls naturally into two parts. In the first, draw-
ing procedures draw figures line by line. There are several
advantages in starting with this approach: A simple recursive
form suffices for most procedures so that a student can write
many procedures quickly. There 1s no need for communication of
results when a procedure 1s invoked by another one. In other
words, the invoking procedure 1s not affected by the result of
executing the one it invoked. This means that we are writing
only commands and not operations, thus problems of communication
are avolded. Finally, the ideas developed in this introductory
sequence lead naturally to the more sophisticated i1deas and

program structures involved in a Cartesian description of geometry,

the second part cf the sequence.

The second part of the geometry sequence uses a Carteslan descrip-
tion of filgures -- descriptions of figures as pair lists are ﬁow
the basic objects to be studied. Storiﬁg the figures makes
possible a wide range of geometric and set-theoretic operations
¢n figures. Due to the fact that these i1deas were presented so
late 1In the term at U.Mass./Boston, the sequence description is

no longer so closely tied to student work. The procedures

-38-

L = I~ i e

S R e R

—

—
——

fa

—_—
—

Ny e e O

g

= Biah s o
& ot e e e T D

oo = o

5T

e
[

fr— : { v

o

| S

Report No. 2187 Bolt Beranek and Newman Inc.

described in this part of the work were given to the students;
only the examples arise from student work. If the ldeas had been
presented earlier, students would have had l1little trouble writing
most of the programs they used. The only really difficult ones
are those for drawing and for ordering sets of points.

The use of the material presented here, preceded by a suitable
introduction to the LOGO language, and including some of the
suggested extensions, would form a coherent one-term course.

Students beglin by generating patterns, using just the PRINT
command within a procedure definition. Some of these patterns
are freeform,

TO CURVE

19 PRINT " @

2¢ PRINT * C
3¢ PRINT | ceer
END

others are more

TO DIAMOND

18 PRINT " X

2@ PRINT " X X X"
38 PRINT "X X X X X"
4P PRINT ' X X X%
5@ PRINT " X"

END

or less

TO DIAMOND

19 PRINT " "

2@ PRINT " 333833W

3@ PRINT "ot
4P PRINT '' BBBBBBB"
5¢ PRINT " At

END

regular. The progression, in time, is generally from less to
greater regularity. At this stage of procedure, though, the

-39~

Report No. 2187 Bolt Beranek and Newman Inc.

pattern form is in the student's head. It is the form, or
equivalently the algorithm defining the form, that we want him
to externalize into the computer. It 1s very easy to encourage
him in this -- there are several advantages to it: fewer and
shorter instructions are required; a single procedure can be
written to generate a whole class of patterns; and, therefore,
combination of patterns 1s simplified.

If one asks a student the simplest figure that can be generated
on a teletype, the answer 1is nearly invariably a straight line.
In fact, this is almost the only possible starting point,
although many paths are subsequently possible., Thus,

TO MARK /CHARACTER/ /N/

19 TYPE /CHARACTER/

28 TEST IS /N/ 1

3 IF TRUE STOP
LP MARK /CHARACTER/ (DIFFERENCE /N/ AND 1)

END
+MARK "'+" 8
++++tt+eE (MARK, as written, does not

produce a carriage return)

The MARK procedure above, or a similar procedure, can now be used
to generate a variety of left-justified patterns, zigzags, and
various geometric figures. A somewhat more fruitful approach is
to embed MARK within a procedure SUPERMARK, which indents a given
number of spaces before MARKing. The use of SUPERMARK makes it
easy to "draw" figures, like diamonds and hexagons, having a

vertical axis of symmetry. It is also useful when several figures

of different sizes are to be stacked neatly.

70 SUPERMARK /N/ /LET/ /M/

1§ MARK /BLANK/ /N/

2§ MARK /LET/ /M/

38 PRINT " (Carriage return)
END

40~

— G

vwed

——
&

1
»

Y R

¥

b D P R 7

groam

=

womngd

7 -

&0 = .

it is used, which 1s inconvenient.

Report No. 2187

Bolt Beranek and Newman Inc.

SUPERMARK 1s very general, but requires three inputs each time

Many students settle on a

;] standard space about which to center their llnes. For example,
to center lines on the 19th column,

|| TO MIDDLE /N/ /CHAR/

L 1§ SUPERMARK (DIFF 19 QUOTIENT /N/ 2) /CHAR/ /N/
END

{ 1

L] +<MIDDLE 8 "»
+~MIDDLE 16 "4"

() fiftinAndnNAtnNdH

o And now a "flood" of patterns ensues:

- TO RECTANGLE /HEIGHT/ /WIDTH/ /CHAR/

1§ TEST IS /HE
2§ IF TRUE STO

1GHT/ @
P

3 MIDDLE /WIDTH/ /CHAR/
4P RECTANGLE (DIFF /HEIGHT/ 1) /WIDTH/ /CHAR/

i
i} END

+<RECTANGLE 6 1

o =

—

1§ TEST IS /HE
B 28 IF TRUE STO
3@ MIDDLE /CHA

g non
222722227222

IGHT/ @
P
R/ /WIDTH/

TO TRIANGLE /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/

4@ TRIANGLE /CHAR/ (SUM /WIDTH/ /CHANGE/) /CHANGE/

(DIFF /H
END

EIGHT/ 1)

In thlis last procedure, the students overshot thelr mark. They
found, in trylng TRIANGLE out, that they had, in fact, written a
program which generated any trapezoid, symmetric about the 19th

column!

-

Report No. 2187 Bolt Beranek and Newman Inc.

+<TRIANGLE "."™ 4 2 4

and by using negative /CHANGE/, we can invert this.

+TRIANGLE "." 18 -2 4

We can even use thls procedure to make triangles!

+«TRIANGLE "#*" 1 4 6

These procedures are representative of student work at this level.
To create more complex figures, say hexagons, there are now two
courses. A student can continue to write a completely new proce-
dure for each class of figures he wishes to generate. Or, he

can realize (as most do eventually) that the shape procedures
written up to that point can themselves be used with considerable
savings in labor. Thus, following the writing of the TRIANGLE
procedure given above, the same students wrote DIAMOND, again
overshooting their mark.

TO DIAMOND /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/

1§ TRIANGLE /CHAR/ /WIDTH/ /CHANGE/ /HEIGHT/

2§ TRIANGLE /CHAR/ (SUM /WIDTH/ (PRODUCT
(DIFF /HEIGHT/ 2) /CHANGE/)) /CHANGE/
(DIFF /HEIGHT/ 1)

END

42

wed

[

(N

P S Yoonem | fgmvmny |

L e g e

TR o DAL S o O

i A =8

o & G

ey
4

Report No. 2187 Bolt Beranek and Newman Inc.

The "Joining" of the two triangles (trapezoids) presents a mathe-
matical problem of some complexity. Initial efforts ylelded
"dliamonds" 1like

LY
i
s W5 af ap w2 s

.
o

and

.s
o

s ws as wa

% Ja av @%

These 1nitlal attempts prodded the students into a more systematlc,
general approach to this problem and they solved 1t in very nearly
algebralc terms. Not having any mathematical background beyond
arithmetic, this was a considerable achlevement both in terms of
concepts developed and in results. Then,

+DIAMOND "+'" 3 4 4
+4++
+++tt++
+h+tt b+
N T T arar s
++++tb bttt bbb+
++++++t b+
N Ct s
++++++4+
+++

Such procedures, ylelding polygons of various types, can themselves
be comiined but the only natural direction to go 1s vertical
stacking. Since all prccedures above the level of MARK draw
figures 1n thelr entirety, and since there 1s no means of return-
ing to a previous line under computer control, we cannot extend

—43-

Sao hukho i it g aly S

Report No. 2187 Bolt Beranek and Newman Inc.

our procedures to generate sets of figures which are next to each
other. This is a serlous deficiency of this current approach and
its amelioration 1s discussed later. The following is typical of
the stacking generated by the students.

+«GLIRP 2 3 3 5
000
000
000
X
XXX
XXXXX
XXXXXXX
XXXXXXXXX
XXXXXXX
XXX XX
XXX
X
000
000
000
X
XXX
XXXXX
XXXXXXX
XXXXXXXXX
XXXXXXX
XXX XX
XXX
X

Stacking procedures included some of the type above, for which

all parameters of the stack had to be specified as input. More
interesting results were obtalned by the use of the LOGO operation
RANDOM to generate randomly-chosen patterns. Another idea, not
found by the students, 1s to generate patterns with further
constraints such as symmetry about a horizontal line. Thils leads
to patterns like the ones below:

b

—
T

/=

QTS

[SU—

==

{1

Report No. 2187 Bolt Beranek and Newman Inc.

+
+*ee
+
et ete e
+eee e
+eeee
+44
+éeee
44440400
LTI E L LTL 2
F4444 444444004444
FEEEEEP4 4444440040444
4L 4444404040404 0404040
PEE42044444 344444444
4444444444000 400
T R T R
+eetettee
4444
+4e
+e44e
*eitt e
+P4444444
+
+4e ‘
*

*
*4e
*reote
*4tete e
ettt ot s
P4ttt botee
44444t PPttt e
FLEP 4405000444444 44
LA AL Al 22X A A2 a2l dd]
L PP PSP 3P4 4404000004+t 4 e
AL XA LA LIS IS LIRS L X 22 L X L)
(I A ISR I A A2 2L L
PP 4P 4P 400000t b oi e
PPt 400400440040
L4404+ 4ot ee
(AL A X 2L X2
(A2 22l
*4ttete
+44+44
++ e
+

~45-

Report No. 2187 Bolt Beranek and Newman Inc.

Some students choose not to automatically center their lines with
the use of MIDDLE: they use SUPERMARK directly. This leads to a
very different choice of pattern type, in fact the vertical stack-
ing above 1s somewhat tedious when SUPERMARK is used directly.
This is due to the fact that the use of SUPERMARK leads naturally
to the inclusion of the indentation of a figure as an input param-
eter. But this extra degree of freedom, if systematically varied,
gives new and interesting patterns. The student-written procedure
STRIPE, for example, gives us:

«STRIPE 3 2

Procedures such as STRIPE and GLIRP are the most advanced ones
achievable from the MARK, SUPERMARK beginnings: it 1s difficult
to extend these further (although many more procedures at this
level can be written).

The reason that we are bloi«ed at this level is that we can
produce most of the basic figures of interest but we can only
manipulate them in very simple ways. We can indent figures, that
is to say, translate them horizontally. We can produce any
desired vertical grouping of our basic figures*. That is about
all, however. We cannot perform so simple an operation as making

¥
That is, we can superimpose patterns as long as they are
on separate sets of rows.

46~

Rnroed

=

e e o B v ~—= B s B S

o R~ N =

.s

i

g

ooy

sy
1

C

i

Report No. 2187 Bolt Beranek and Newman Inc.

a horizontal array containing several polygons. Our present
approach forces us to print each figure line by line; we cannot
have a procedure manipulating the figure as a whole, e.g.,
ROTATE (RECTANGLE "#*" 3 4),

Thus, we start afresh from a completely different point of view,
our goals and hence our methods being quite different from those
we chose 1nitially. We will now concentrate on the implementation
of geometric transformations rather than on generation of specific
figures. Although all earlier programs wlll be useless in this
new approach, the algorithms developed for the generation of the
various shapes of interest are easlly reprogrammed.

This approach was only used very briefly at the end of the semester
at U.Mass./Boston. In order to attain a reasonable level of
achievement within the context of this material, some basic pro-
grams were given to the students to experiment with. The major
really useful result gleaned from the students' experience with
it was that enthuslasm and aptitude for this material ran very
high and one might not expect this to be the case, considering
the anti-mathematical prejudices of the majority of the class.
The students used the translation and reflection procedures
given to them with considerable insight and facility. The
following teaching sequence based on geometrlic transformations
follows along the lines studied at the end of the U.Mass./Boston
course.

The first consideration in the implementation of geometric trans-
formations must be that of data base. Probably the simplest
cholce 1s to represent a figure as a set of ordered pairs of
numbers, corresponding to the Cartesian coordinates of the
characters composing the pattern. A third character for each

~47-

B

Report No. 2187 Bolt Beranek and Newman Inc.

point, to indicate the nature of the character at that point,

adds both versatility and complexity. We will not do so here.

A slightly unusual convention adopted in the following is that

of numbering the vertical axlis to increase in thz downwards
direction. This corresponds to the way the teletype goes to
successive lines. The pairs can be represented in several ways

in LOGO; certainly the simplest is to write them as LOGO sentences,
the add elements being x-coordinates and even ones the correspond-
ing y-coordinates.

Our first set of procedures will translate the computer's version
of a figure into geometric form. These are fairly complex pro-
cedures, certainly more complex than the procedures for manipula-
tion of pailr lists, to be written later. For this reason, some
teachers may choose to regard them as part of LOGO and not have
the students write the drawing procedures.

Before we give the drawing procedures, we write three very
generally useful procedures particularly applicable to pair 1list
problems.

TO NTH /N/ /LIST/ (Gives /N/th element of /LIST/)
1§ TEST IS /N/ 1
2@ IF TRUE OUTPUT FIRST /LIST/
38 OUTPUT NTH (DIFF /N/ 1)
(BUTFIRST /LIST/)

END
TO DELETE /N/ /LIST/ (Deletes first /N/ element from
JLIST/)
19 TEST IS /N/ @
2¢ IF TRUE OUTPUT /LIST/
3¢ OUTPUT DELETE (DIFF /N/ 1)
(BUTFIRST /LIST/)
END
~48-

&=

i

.,,
Yrnmituyey

Lieaer | [|

[l

L4

e

y——
4

et S

o ;oo e A b ey e e s B A R s e

& Bl e

(BT

———
et

[P

Report No. 2187 Bolt Beranek and Newman Inc.
TO PULL /N/ /LIST/ (Outputs first /N/ elements of
14 TEST IS /N/ @ /LIST/ as a sentence)

2@ 1IF TRUE OUTPUT /EMPTY/
3@ OUTPUT SENTENCE

FIRST /LIST/

PULL (DIFF /N/ 1) (BUTFIRST /LIST/)
END

Thus, given a list of two pairs, /LIST/, "1 2 -1 -2" NTH 2 /LIST/
is 2, the second coordinate of the first pair; DELETE 2 /LIST/
deletes the first pair, and PULL 2 /LIST/ gives Just the first
palr.

We next write some general "drawing" procedures. They allow for
an arbitrary choice of origin and marking character. PLOTP
/POSITION/ /POINT/ /EDGE/ /CHAR/ is the basic procedure. It
takes its present position as /POSITION/, then moves to /POINT/
and types /CHAR/. If /POINT/ 1s on a subsequent line and to the
left of /POSITION/, PLOTP must first carriage return, then space
across to get the right "x-coordinate". /EDGE/ 1s the x-value
assigned to the left-hand column. If the point has already been
passed, PLOTP outputs "FALSE", if successful, it outputs "TRUE".

TO PLOTP /POSITION/ /POINT/ /EDGE/ /CHAR/
19 TEST EITHER
GREATERP NTH 2 /POSITION/ NTH 2 /POINT/
GREATERP /EDGE/ FIRST /POINT/ (Can we plot /POINT/?)

2¢ IF TRUE OUTPUT "FALSE" (If not, we output "FALSE")
38 TEST GREATERP
FIRST /POSITION/ (Are we already too far to
FIRST /POINT/ the right?)

4P IF TRUE TYPE /CARRIAGE RETURN/
50 IF TRUE SPACE (DIFF FIRST /POINT/ (If so, return to margin and

/EDGE/) space across suitably)

6@ IF FALSE SPACE (DIFF FIRST /POINT/(Otherwise, move over from
FIRST /POSITION/) FIRST /POSITION/)

78 SKIP DIFF (NTH 2 /POINT/) (Move vertically the requisite
(NTH 2 /POSITION/) number of rows)

8¢ TYPE /CHAR/
9@ OUTPUT "“TRUE"
END

-Lg-

A i 2 5 tEi ekttt e

Report No. 2187 Bolt Beranek and Newman Inc.

SKIP /M/ and SPACE /N/ move the carriage vertically and horizon-
tally /M/ and /N/ spaces.

TO SKIP /M/ (Without carriage return)
1§ TEST IS /M/ §

28 IF TRUE STOP

3§ TYPE /LINE FEED/

4g SKIP (DIFF /M/ 1)

END

TO SPACE /N/

1§ TEST IS /N/ @

2§ IF TRUE STOP

3§ TYPE /BLANK/

4g SPACE (DIFF /N/ 1)
END

PLOTP plots (or tries to plot) a single point. We incorporate
this procedure within a higher level one, PLOTLIST /LIST/ /EDGE/
/CHAR/, which successively plots all but the first pair of
/LIST/. /EDGE/ and ,/CHAR/ have the same meaning as in PLOTP.
PLOTLIST plots the second pair on /LIST/ relative to the first
one. If PLOTP is successful, then we elimlnate the first pair
and keep on. Otherwise, the second palr has not been plotted
and we are still at the position of the first point. We there-
fore delete the second pair, and keep going.

TO PLOTLIST /LIST/ /EDGE/ /CHAR/

14 TEST GREATERP 3 (COUNT /LIST/) (Is there only one pair left?)
2f IF TRUE STOP

3¢ TEST PLOTP

SENTENCE (SUM FIRST /LIST/ 1) (We are already one space to the

NTH 2 /LIST/ right of the first pair. This
is our position.)
PULL 2 (DELETE 2 /LIST/) (Plot second pair)
/EDGE/
/CHAR/

-50-

b
-

=

[| [-

e, |

[

S G 8 o) e S) BN 0 G0 B 6B

=
-

| LR STh W

Report No. 2187 Bolt Beranek and Newman Inc.
4G IF TRUE PLOTLIST (If second point is plotted,
(DELETE 2 /LIST/) /EDGE/ /CHAR/ eliminate first point)

5¢ IF FALSE PLOTLIST (If not, eliminate the
SENTENCE (PULL 2 /LIST/) second pair, we are still
(DELETE & /LIST/) at the position of the
/LIST/ /EDGE/ first pair.)
END

And now, we need only a top-level procedure, DRAW /LIST/ /ORIGIN/
/CHAR/. It prefaces /LIST/ with /ORIGIN/, makes /EDGE/ NTH 2
/ORIGIN/, and calls PLOTLIST.

TO DRAW /LIST/ /ORIGIN/ /CHAR/
1§ PLOTLIST '
SENTENCE SENTENCE (DIFF FIRST /ORIGIN/ 1)

NTH 2 /ORIGIN/ /LIST/ (PLOTLIST assumes we are 1
NTH 2 /ORIGIN/ square to the right of the
/CHAR/ first pair)

END

+MAKE "VERTICAL LINE"™ "3 g 3 1 3 2 3 3 3 4"
+DRAW /VERTICAL LINE/ '@ g" "4©
+
+
+
+
++ (no carriage return)
+MAKE "TRIANGLE" "2 g 11 213 1#2122232%42"
+DRAW /TRIANGLE/ ''g gm "2n
?
?272?
2?2220

We find, however, that the 1lnability of .the teletype to return
to previous lines severely limits our drawing ability.

+MAKE "BOTH" SENTENCE OF
/ TRIANGLE/
/VERTICAL LINE/

-51-

Report No. 2187 Bolt Beranek and Newman Inc.

+DRAW /BOTH/ "g g" nun

[Y3
on

as as

sa s

ar as

sn o

as as as

#% sa sn en
an
o

+PRINT /BOTH/
24112131 8#212223242331323334

The top point of the vertical line, 3 1, is too late in the 1list
to be marked.

Thus, a second important program is required to put lists of
pairs in proper order. Without such an ordering procedure we
cannot combine figures, or even transform them in some ways (like
rotating them).

We first write a procedure ADDLISTS which comblines two ordered
lists, giving the correct order for their union.

TO ADDLISTS /LIST1/ /LIST2/

1§ TEST EITHER
EMPTYP /LIST1/ (If either list is empty,
EMPTYP /LIST2/ output the other)

2§ IF TRUE OUTPUT (SENTENCE /LIST1/ /LiST2/

3¢ TEST IS (PULL 2 /LIST1/) (PULL 2 /LIST2/)

4@ IF TRUE OUTPUT SENTENCE (If the first pair of /LIST1/
PULL 2 /LIST1/ and /LIST2/ are identical,
ADDLISTS (DELETE 2 /LIST1/) output this element (once)

(DELETE 2 /LIST2/) and repcat with it deleted from

both /LIST1/ and /LIST2/)
5§ TEST EITHER

GREATERP (NTH 2 /LIST2/) (First element of second list
(NTH 2 /LIST1/) is lower)
BOTH
(IS NTH 2 /LIST2/) (NTH 2 /LIST1/) (First elements in same row,
GREATERP (FIRST /LIST2/) first element of second is
(FIRST /LIST1/) rightmost)

6§ IF TRUE OUTPUT SENTENCE

PULL 2 /LIST1/

ADDLISTS (DELETE 2 /LIST1/) /LIST2/
78 OUTPUT SENTENCE

PULL 2 /LIST?2/

ADDLISTS /LIST1/ (DELETE 2 /LIST2/)
END

-52-

T

e R TR

=]] 2 d [= -]

LN |

" & x] ']

b

<
N w—

Report No. 2187 Bolt Beranek and Newman Inc.

Then, using ADDLISTS, a procedure ORDER can be written. ORDER

repeatedly decomposes its input irto halves until there are at

most two pairs in each piece. ORDER then uses ADDLISTS to join
these sublists, placing their elements in the right order.

TO ORDER /LIST/
1§ TEST GREATERP 5 (COUNT /LIST/)
28 IF TRUE OUTPUT ADDLISTS
(PULL 2 /LIST/)
(DELETE 2 /LIST/)
3§ OUTPUT ADDLISTS OF
ORDER PULL (EVENHALF /LIST/) /LIST/
ORDER DELETE (EVENHALF /LIST/) /LIST/
END

Where EVENHALF /LIST/ is the closest integer to half of the count
of /LIST/. (We don't want a list of 3 pairs separated into 2
triples.)

TO EVENHALF /LIST/
1§ OUTPUT PRODUCT 2 QUOTIENT (COUNT /LIST/ &)
END

«PRINT ORDER /BOTH/
2 38112131 82122232423373%4
DRAW (ORDER /BOTH/) g g" "+"
++
+++
+++++
+
+

Now we can address ourselves to the more interesting (and easier)
problems of manipulating pair lists. This is perhaps the best
point in thils seque 'ce for average students to start writing
theilr own programs. Translating a figure by /ACROSS/ units
horizontally and /VERTICAL/ units vertically involves simply
adding /ACROSS/ to each first coordinate of the points constitut-
ing the figure and /VERTICAL/ to each second coordinate.

-53-

Report No. 2187 Bolt Beranek and Newman Inc.

TO TRANSLATE /FIGURE/ /ACROSS/ /VERTICAL/
1§ TEST EMPTYP /FIGURE/
2§ IF TRUE OUTPUT /EMPTY/
38 OUTPUT SENTENCE SENTENCE
SUM (FIRST /FIGURE/) /ACROSS/
SUM (NTH 2 /FIGURE/) /VERTICAL/

TRANSLATE (DELETE 2 /FIGURE/) /ACROSS/ /VERTICAL/
END

The procedure ADDLISTS can be used tn combine figures:

+MAKE "TRIANGLE TWO" TRANSLATE /TRIANGLE/ 6 2
+MAKE "TWO TRIANGLES'" ORDER ADDLISTS /TRIANGLE/ /TRIANGLE TWO/
+<DRAW /TWO TRIANGLES/ “g @' "4+
+ +
+++ +4+++
+4++++ FH++++

To write any such transformation procedure, we need only specify
the action on the first point of the 1list., Simple recursion can
then repeat this action on subsequent pairs until the list is
exhausted, To reflect a figure about any vertical line /L/ units
from the origin, for example,

TO REFLECTVERT /L/ /LIST/
1§ TEST EMPTYP /LIST/
2¢0 1IF TRUE OUTPUT /EMPTY/
3@ OUTPUT SENTENCE SENTENCE
(DIFF /L/ FIRST /LIST/)
NTH 2 /LIST/
REFLECTVERT (DELETE 2 /LIST/)
END

We write in just this manner:

REFLECTHOR /L/ /LIST/ (reflects pairs on /LIST/ about
horixontal /L/)
REFLECTORIGIN /LIST/ (reflects /LIST/ through the origin by

simply multiplying ecvery number on
/LIST/ by -1)

REFLECT4S /LIST/ (reflects /LIST/ about the line 45° to
the horizontal by interchanging the
coordinates of each pair)

~5li~

» j - 1

e S ot

3 =

| e | SS—

f:':' ':-: | Sv—

L2 P L [S Y

Report No. 2187 Bolt Beranek and Newman Inc.

Rotation is just as easy from a programming point of view, but,
because the formula giving the new coordinates in terms of thre
0ld ones involves some trigonometry, it is more difficult for
many students. A table of sines and cosines for angles at 15°
increments is adequate, since the "graininess" of the teletype
gives smaller rotations an extremely uneven character.

The above include all transformation procedures given to the
U.Mass. students. There were, in addition, three non-transform-
ational procedures they could use. They could, for example, use
ADDLISTS to take the union of two figures. It is also interesting
to find the intersection of two figures.

TO CONTAINSP /PAIR/ /LIST/ (Tests if /LIST/ contains /PAIR/)
1§ TEST EMPTYP /LIST/
2¢ IF TRUE OUTPUT /EMPTY/
3¢ TEST BOTH
IS (FIRST /PAIR/) (FIRST /LIST/)
IS (NTH 2 /PAIR/) (NTH 2 /LIST/)
4P IF TRUE OUTPUT "TRUE"
58 OUTPUT CONTAINSP /PAIR/ (DELETE 2 /LIST/)
END

TO INTERSECT /LISTA/ /LISTB/ (Gives intersection of /A/ and /B/)
14 TEST EITHER EMPTYP /LISTA/
EMPTYP /LISTB/
2@ IF TRUE OUTPUT /EMPTY/
38 TEST CONTAINSP (PULL 2 /LISTA/) /LISTB/
LP IF TRUE OUTPUT SENTENCE
PULL 2 /LISTB/
INTERSECT
DELETE 2 /LIST8B/
/LISTA/
50 OUTPUT INTERSECT
DELETE 2 /LIST8B/
/LISTA/
END

And now a variety of set theoretic operations can be constructed
such as symmetric difference, complement, etc.

-55-

Report No. 2187 Bolt Beranek and Newman Inc.

All the procedures described as part of this second, Cartesian,
drawing sequence were glven to the students. They then spent
the little time left 1in the term familiarizing themselves with

these:

+MAKE "DIAGONAL" "1 12 23 34 45566778 8"
+DRAW /DIAGONAL/ "1 1" "4

+«MAKE '""DIAGONAL2" TRANSLATE /DIAGONAL/ "5 g"
+<DRAW /DIAGONAL2/ '1 1M m:n

+MAKE '"'D3" ADDLISTS /DIAGONAL/ /DIAGONAL2/
«DRAW /D3/ "1 1T nxn

In only one case was a new program written by the students,
built upon what was glven them:

-56=

_— 0

o = == =N -y

=

= O BB OES

==

=y s e

[) —— - = F—

Report No. 2187 Bolt Beranek and Newman Inc.

TO MOVE /FIGURE/ /NUMBER/

1§ TEST IS /NUMBER/ #

2§ 1F TRUE STOP

3§ DRAW /FIGURE/ "g g nun

4@ MAKE "FIGURE" TRANSLATE /FIGURE/ "2 2"
S# MOVE /F'GURE/ (DIFF /NUMBER/ 2)

END

+MAKE "BOX" "g g 1 g g 11 1"
+MOVE /BOX/ &

ases
a oy

asasr
Ly

LYY
Iy

as ap
s v
as as
v o

asas
vasa

This 1s a very rudimentary animation. On this note the term

ended,

There are a large number of things to do at this level which the
students were worklng on as the term ended. Also, there are a
numher of very interesting extensions. For crxample, the combina-
tion of random figure generatlion with reflections produces

[SSS S

| SES

[=]

interesting symmetries.

-57-

Report No. 2187

TO EIGHTFOLD /N/

1§ MAKE "PAIR LIST" RANDOMLIST
OF /N/

29 MAKE "PAIR LIST"

ADDLISTS OF (/PAIR LIST/)
AND (REFLECT4S OF
/PAIR LIST/)

3§ MAKE "PAIR LIST"

ADDLISTS OF (/PAIR LIST/)
AND (REFLECTY OF
/PAIR LIST/ AND §)

4@ MAKE '"PAIR LIST"

ADDLISTS OF (/PAIR LIST/)
AND (REFLECTX OF /PAIR
LIST/ AND #)

5§ DRAW ORDER OF /PAIR LIST/

H+"

END

Bolt Beranek and Newman Inc.

(/N/ is the number of pairs on the
pair list that will be generated)
(RANDOMLIST is user-written and
generates a random list of /N/
pairs)

(Form the union of /PAIR LIST/ and
the pair list formed by reflecting
it around the 45 degree line, and
make this the new /PATR LIST/)
(Form the union of the new list
and its reflection about the
Y-axis)

(Do the same with the resulting
list and its reflection about the
X-axis)

(Put the resulting pair list in
1ex1cograph1c order and draw it
using +'s)

EIGHTFOLD generates random drawings such as the following.

+ +
+44

++ ++
++ ++
-+ ++

++4+
+ +

+ +
+ +
+ +
+ +

-58-

=4 N e

o R e B

-

| S

¥ m | | Z—

| ras—"

=3

|

R

ST ALYt St S D N ———

Report No. 2187 Bolt Beranek and Newman Inc.

Another interesting extension begins with a simple procedure
which enables a user to type in a figure, pointillistically,
the procedure converting it to a pair list. One can then write
programs which determine if two given figures are congruent, or
geometrically similar.

A student might choose, instead, to study more complex transfor-
mations such as uniform or nonuniform changes of metric. This

leads into yet another rich area of study.

4.2 Language Sequence

Most students find the automatic rarndom generation of poetry and
prose forms of great interest. Work in thls area is especilally
beneficial for the average student who considers formation of
algorithms and problem-solving as skills associated exclusively
with mathematics and the sciences. His dlscovery that these
skills are equally applicable to problems related to language
and discourse is, therefore, an important one. The sequence
presented here, an automatic generatlion of word-forms, 1s based
on teaching done aft U.Mass./Boston in the spring of 1971. The
conduct of the course and a description of the students was
given previously. Programs and examples are taken from student
work over the course of about three weeks.

The first step 1n randomly generating word forms is to write a
procedure R-CHOOSE, which outputs an element chosen at random
from the 1list given as 1ts 1nput. We need, as a subprocedure,
one which removes the element in a given position on a given
list.

-59-

- AR TEORE IR RS s

Report No. 2187 Bolt Beranek and Newman Inc.

TO CHOOSE /N/ /LIST/

14 TEST IS /N/ 1

2@ IF TRUE OUTPUT (FIRST /LIST/)

38 OUTPUT CHOOSE (DIFF /N/ 1) (BUTFIRST /LIST/)
END

+CHOOSE 3 "ABRACADABRA'"
R

We also need a procedure which uses the built-in random digit
generator, RANDOM, to generate random numbers between:1l and a
given upper limit. To do this, we first write a procedure RND
which produces a random number of the requisite number of digits,
and then RAND, which keeps on using RND until the number obtained
lies in the right range.

TO RND /4 DIGITS/
19 TEST IS /# DIGITS/ 1
2f IF TRUE OUTPUT RANDOM
3 OUTPUT WORD OF
RANDOM
RND (DIFF /# DIGITS/ 1)
END

TO RAND /NUMBER/
19 MAKE "DIGITS" (COUNT /NUMBER/) ,
2 MAKE “TRIAL" RND OF /DIGITS/
3¢ TEST BOTH

GREATERP /TRIAL/ @

AND EITHER

GREATERP /NUMBER/ /TRIAL/

1S /NUMBER/ /TRIAL/
4g IF TRUE OUTPUT /TRIAL/
5 IF FALSE OUTPUT RAND /NUMBER/
END

«PRINT RAND 3
3PRINT RAND 3
EPRINT RAND 3
iPRINT RAND 34567
29843

<+

=60~

o el) e

r SN
v J

=

Report No. 2187 Bolt Beranek and Newman Inc.

Now, R-CHOOSE 1s easy.

TO R-CHOOSE /LIST/
1§ OUTPUT CHOOSE (RAND COUNT /LIST/) /LIST/
END

+PRINT R-CHOOSE "GOATS SHEEP COWS"
SHEEP

+«PRINT R-CHOOSE "A O vV P A"

A

One can now make up lists for each of the malin parts of speech
and use R~-CHOOSE with these as input:

+MAKE "VERBS'" "APPEARS WAS SMELLS GROWS LIVES DEVELOPS MOVES
STAGGERS SEEMS FLOATS STANDS DIES SMOKES DECAYS SMILES YAWNS
CHEWS PRE-REGISTERS FLUNKS-OUT GROOVES"

+«MAKE '"NOUNS'" "TREE GRASS LONNIE RAVEN SUMMER ROCK BILLBOARD
MOUNTAIN WATER COMPUTER WINDOW CAVE SOCK PAVEMENT DIRT ELEVATOR
CARROT WITCH MOON WC:LD"

+MAKE '"ADVERBS'" "SLOWLY QUICKLY SMOOTHLY NOISILY QUIETLY ANGRILY
HAPPILY PROFUSELY DEJECTEDLY KNOWINGLY SUSPICIOUSLY BRILLIANTLY
SEEMINGLY GRACEFULLY STUPIDLY ABRUPTLY PATIENTLY WILLINGLY
FORCEFULLY PEACEFULLY"

+MAKE "ADJECTIVES" "FAT LAZY GREEN DUMB COOL DANK FLUID
COMPLICATED MEAN FLAMING UGLY HARSH LUMINOUS SWEATY HUNGRY
DRUNK DEGENERATE SOFT DRY HUGE"

The number of such lists is dependent on the imagination and
sophistication of the students. The creation of general compound
sentences is not possible with just the lists given. Also, by
making lists which apply only in certain situations, semantic
distinctions can be made. For example, we could have /PEOPLE
ADJECTIVES/ be "FAT THIN TALL SHORT LAZY HAPPY INDUSTRIOUS".

In any case, the use of R-CHOOSE with lists like the above makes
the generation of simple word forms easy. For example:

-61-~

Report No. 2187 Bolt Beranek and Newman Inc.
TO POEM
1§ OUTPUT SENTENCE SENTENCE SENTENCE SENTENCE

"THE"

R-CHOOSE /ADJECTIVES/
R-CHOOSE /NOUNS/
R-CHOOSE /ADVERBS/
R-CHOOSE /VERBS/

END

TO POEM-1

1§ PRINT POEM
2@ PRINT POEM
28 PRINT POEM
LE PRINT POEM
5@ PRINT POEM
END

+POEM-1

THE DANK: CAVE SUSPICIOUSLY STANDS

THE DUMB WITCH PROFUSELY PRE-REGISTERS
THE MEAN ELEVATOR FORCEFULLY SMOKES
THE SOFT WITCH KNOWINGLY MOVES

THE DUMB COMPUTER QUIETLY YAWNS

The random verse generating procedures can now be.ektended in

any of several ways. More complex sentence forms can be produced
if additional parts of speech are taken intov account in the same
way as the four already treated. Semantic connections can be
established by making lists containing appropriate associations.
For example, as mentioned before,

+MAKE '"'NAMES' "JOHN JACK FRED"

+MAKE '"'PEOPLE ADJECTIVES'" "FAT THIN TALL SHORT LAZY HAPPY
INDUSTRIOUS"

TO DESCRIPTION

14 PRINT SENTENCE
R-CHOOSE /PEOPLE ADJECTIVES/
R-CHOOSE /NAMES/

END

+DESCRIPTION
FAT JACK
+DESCRIPTION
LAZY FRED

62~

[o— [e o |

 E—

L

Report No. 2187 Bolt Beranek and Newman Inc.

Another extension is the generation of verse with some metric
or other constraints. This can be done with relative ease,
again by separating the parts of speech into classes. If the
verse form is broken, then separation according to number of
syllables is required. Meter requires similar, though more
complex, considerations.

The U.Mass. students writing the poetry sequence discussed here
decided to take yet another problem, that of producing rhymed
verse. They looked at the blank verse they were generating and
realized that each line ended with a verb. It was, therefore,
only necessary to select rhyming verbs. This was done by having
/VERBS/ a 1ist of names for clarses of rhyming verbs, rather
than of the verbs themselves.

Thus, they made the associations:

/B/ 1S "MAKES TAKES BREAKS FLAKES WAKES"
/C/ 1S "FLIES LIES DRIES PRIES DIES"

/D/ 1S "SINGS BRINGS FLINGS SPRINGS RINGS"
/BB/ IS "GROWS BLOWS SNOWS GOES KNOWS"

/VERBS/ IS "8 C D BB"

TO TWORHYME
19 MAKE "ZzZ" R~CHOOSE /VERBS/
28 PRINT SENTENCE SENTENCE SENTENCE SENTENCE
"THE"
R~CHOOSE /ADJECTIVES/
R-CHOOSE /NOUNS/
R~CHOOSE /ADVERBS/
R~CHOOSE (THING OF /2Z/)
38 PRINT SENTENCE SENTENCE SENTENCE SENTENCE
"THE"
R~CHOOSE /ADJECTIVES/
R~CHOOSE /NOUNS/
R-CHOOSE /ADVERBS/
R-CHOOSE (THING OF /22/)
END

-63-

Report No. 2187 Bolt Beranek and Newman Inc.

TO POEM-RHYME
1§ TWORHYME
2§ TWORHYME
38 TWORHYME
END

+POEM-RHYME

THE LAZY ELEVATOR PATIENTLY TAKES
THE HUGH ROCK SMOOTHLY FLAKES

THE FAT WINDOW SUSPICIOUSLY RINGS
THE FLUID DIRT QUICKLY RINGS

THE DANK SOCK FORCEFULLY BREAKS
THE HARSH SOCK KNOWINGLY MAKES

PY

4.3 Turtle Sequence

We have developed a remote-controlled vehicle, the "turtle",
which responds to a set of motion commands embedded within LOGO.

This section will deal with 1ts use at an elementary level. Use

of the turtle iIn introductory classroom work provides a strong
motivational factor, but a more important result 1s the intro-
duction of new classes of algorithms especlally useful for
unsophlsticated beginners. Such students will often find it
easler to develop algorithms and write LOGO programs for

"concrete" problems like traversing a given pattern, than to deal

with the "abstract" simple string manipulation problems which
serve as an 1introduction in the absence of the turtle.

Following a description of the turtle, we give a sequence of
programs, centered on use of the turtle, which show a natural,
gradual progression from the most rudimentary algorithms (and
LOGO programs) to quite sophisticated ones. This sequence has
not yet been comprehensively used in a classroom situation as
have the two preceding. Preliminary results, however, based on
short-term use of the turtle by single students, indicate that
the sequence 1s realistic and engaging.

T

O CO & &= 8 & &2 & |

r

e B B - s R S

| g

—

| WSS

Report No. 2187 Bolt Beranek and Newman Inc.

Finally, we will briefly discuss some of the many possibilities
opened up by use of feedback from the turtle through the opera-
tion of various sensing devices. The material presented deals
exclusively with touch sensors. Preliminary forms of such
sensors have already been implemented on our turtle.

The Turtle

The turtle's "skin" consists of a shallow cylinder three inches
high, mounted on two wheels and two ball bearings, surmounted by
a transparent hemispherical dome 12 inches in diameter. Detalls
of the design and construction of the turtle and associated
interfaces are given in Section 5.2. It has a repertoire of
five actions, performed upon execution of corresponding no-input
LOGO commands:

FRONT turtle moves forward 4 inches

BACK turtle moves backwards 4 inches
RIGHT turtle rotates 15° clockwise
LEFT turtle rotates 15° counterclockwise

HORN turtle toots

The touch sensors currently used are two thin wires bent around
the front of the turtle like insect antennae. They are suffi-
ciently far from the body that the possibility of contact can te
discovered before the turtle actually collides. Touching of an
obJect causes one of two flags to be set, depending on which
sensor was activated. The no-input operations TOUCH LEFT and
TOUCH RIGHT output the states of the flags and reset them to
FALSE.

—65-

Report No. 2187 Bolt Beranek and Newman Inc.

First Steps

The very simplest work with the turtle consists of typing direct

commands:

+<FRON

4

R

GH’

-

4
)

GH

—

“RIGHT

+«FRONT

(moves ahead one step)

(

(turns 45° clockwise)

(

(moves ahead orne step)

The sequence above has the turtle travel in a "knight move".

This use of the turtle can soon be supplanted by the writing of

simple turtle procedures. At first, these will use the basic

turtle commands directly:

TO
14
29
3g
4y
59
68
70
8¢
94

14f RIGHT
118 RIGHT
12g FRONT
13§ FRONT
END

EL

FRONT
FRONT
FRONT
FRONT
FRONT
RIGHT
RIGHT
RIGHT
RIGHT

(each RIGHT is 15°)

It 1s immediately apparent that the small quanta of rotation
{15°) and of linear travel (4 inches) necessitate a large number
of instructions even for modest patterns. An easy way to much
reduce this labor is to define a new set of basic motions in

terms of procedures with inputs.

-66-

=2

-

B

==

e man

meo el /= e D

=3]

— =

Report No. 2187 Bolt Beranek and Newman Inc.

| TO RIGHTTURN /N/

' 1§ TEST IS /N/ §
2f IF TRUE STOP

l 3§ RIGHT

) 4@ RIGHTTURN (DIFF /N/ 1)
END

TO LEFTTURN /N/
16 TEST IS /N/ 8

[2§ IF TRUE STOP

: 3§ LEFT
4@ LEFTTURN (DIFF /N/ 1)
END

TO FRONTS /N/

16 TEST IS /N/ §@

2@ IF TRUE STOP

38 FRONT

4g FRONTS (DIFF /N/ 1)
END

TO RACKS /N/

1§ TEST IS /N/ §

2§ IF TRUE STOP

3§ BACK

4@ BACKS (DIFF /N/ 1)
END

These new procedures are useful in defining "large patterns",

TO BIGELL
1§ FRONTS 14
2 RIGHTTURN 6

} 38 FRONTS 2§
END
j but, more important, they are useful in defining procedures

which allow varlations in execution

TO ELL /N/

1§ FRONTS /N/

2f RIGHTTURN 6

3§ FRONTS (PRODUCT 2 /N/)
END

-67-

Report No. 2187 Bolt Beranek and Newman Inc.

Or, to trace a square of side /N/,

TO SQUARE /N/
19 FRONTS /N/
28 RIGHTTURN 6
38 FRONTS /N/
4@ RIGHTTURN 6
5@ FRONTS /N/
6f RIGHTTURN 6
78 FRONTS /N/
8¢ RIGHTTURN 6
END

At any point the student 1s free to design his own tools. He
may very well notice, in the course of writing polygon tracing
procedures such as the above, that a linear motion 1s always
followed by a turn. Thus, a useful "tool" 1is

TO ELLL /LENGTH/ /N/ (Repeats a forward motion and right
14 TEST IS /N/ 8 turn /N/ times)

2@ IF TRUE STOP

3@ FRONTS /LENGTH/

Lg RIGHTS 6

5¢ ELLL /LENGTH/ (DIFF /N/ 1)

END

Tracing a square in terms of ELLL is very easy.
TO SQUARE /SIDE/

1§ ELLL /SIDE/ &
END

Such patterns as square can themselves be used as parts of more
complex patterns.

BB

\

.l &/ T

— =N .

—

)

r

— (= = BB = = O o

Report No. 2187 Bolt Beranek and Newman Inc.

TO SQUIRAL /N/

1§ TEST IS /N/ @

2¢ IF TRUE STOP

38 SQUARE /N/

4P SQUIRAL (DIFF /N/ 1)

TO PRECESS /SIDE/ /N/

1¢ TEST IS /N/ @

2§ IF TRUE STOP

39 SQUARE /SIDE/

4P RIGHTS 1

5§ PRECESS /SIDE/ (DIFF /N/ 1)
END

PRECESS gives the following sort of figure:

-69-

Report No. 2187 Bolt Beranek and Newman Inc.

Many other procedures can be written which transform tracings of
primitive figures:

TO LOOP /S/ /N/

14 SQUARE /S/

2@ FRONTS /S/

38 LOOP (DIFFERENCE /N/ 1)
END

which gives a path like

e
Y *
T . |

More general figurations are obtained by writing transformation
procedures which have the name o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>