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ABSTRACr
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properties of truncated quadratic estimators of variance components.
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1. Introduction. Quadratic estimators of the variance components

associated with random-effects models are in coamn use. If the experimental

design is a balanced completely-nested one, if the usual independence and

normality assuuptions are appropriate, and if the estimators are those

derived by analysis-of-variance techniques, then each of the estimators,

save that of the residual variance, is distributed as a linear difference

between two independent chi-square variates. More generally, any quadratic

form in multivariate-normal data and in particular any quadratic

variance-component estimator based on such data is either distributed

as a linear difference between two independent chi-squares or, as Press [2]

has shown, its distribution can be represented as a mixture of such

distributions.

In cases where a quadratic estimator of a variance component can take

on negative values, it is comon practice to replace negative estimates

by zero. If the data are multivariate-normal, the distribution of the

modified estimator is identical to that of a truncated (at zero) linear

difference between independent chi-squares or is a mixture of such truncated

distributions.

It will be our purpose to investigate the distribution of a truncated

linear difference between independent chi-square variates. Rather than

assume that the truncation is from below and at zero, we will consider the

more general situation where the truncation is either from above or below

or both and at arbitrary 'values. In particular, we will obtain expressions
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for the probability density function, distribution function, moments,

moment generating function, and characteristic function of such a distribution.

In the case of the probability density function, distribution function,

and moments, emphasis will be on obtaining represertations that appear to

be convenient computational forms. Extensive use will be made of known

results on hypergeometric functions.

Previously, Press (2] obtained the probability density function of

a -linear difference between independent chi-squares in terms of a confluent

hypergeometric function of the second kind. Wang (5) found a simpler

,xpression for the probability density function for the special case

where the degrees of freedom associated with both chi-squares are even.

She also gave, for that same special case, convenient expressions for

the moments of that distribution, after its truncation from below at zero.

2. -Notation and preliminary results. Define

X - ow1 - OW2 ,

where a and B are positive constants, and W1 and W2 are indpendent chi-square

variates having m and n degrees of freedom, respectively. Truncation of

X from above and/or below yields the random variable

Y " Yl ifX > yl,

a X if Yl >X >YO,

a Y0  if X < Y0 ,

where y0 and yl are known constants with -- <y 0 
< y <

A chi-square variate with r degrees of freedom has kth moment 2k(r/2)k,

where (a) 0 - 1 and (a)k - a(a+l)...(a+k-1), k- 1, 2, ...; moment

generating function

M(O) - (1 - 2 e) "r/2 e < 1/2;

and characteristic function

C(e) - (I- 2i)-



It follows that X has kth moment

0k j .

where - B/a; moment generating function

(2) MX(e) - (1 - 2a8)"m/2 (1 + 208)-n/2  (-20)-l < e < (2a)'1;

and characteristic function

C(e) - (I - 2aie)"m/2 (1 + 20i)n/2.

Take

U(c, d; x) - (l/r(c)] r, e 'xt t)d 'c l dt, c > 0, x > 0,

to be a confluent hypergeometric function of the second kind, and put

(3) g~r, s, a, b; t) - t(r+s2)/2 e't/(2a) U(s/2, (r+s)/2; (a+b)t/(2ab)]
2(r+s)/2 a r/2 b s[2 r(r/2)

for r - 1, 2, ...; s - 1, 2, ...; a > 0, b > 0; and t > 0.

Fran (2., we have that the probability density function of X is

fx(x) " g(m, n, a, 0; x) if x > 0,

(4) a g(n, m, B, a; -x) if x < 0,

c"" 2 r m/2 + n/2 - 1) ifx- .

2
((C1n)/2 (cl)/2](m+n-

2)/2 r(m/2) r(n/2)

It will prove convenient to express the distribution functions of

X and Y and the moments, moment generating function, and characteristic

function of Y in terms of the function

G(r, s, a, b; k, z, u) - 0 tk eZt g(r, s, a, b; t) dt for u > 0,

00 for u - 0,

where k o 0, 1, 2,

Note that, for v < 0,

(6) 1v0 tk ezt g(s, r, b, a; -t) dt - (-1)k G(s, r, b, a; k, -z, -v).

The distribution function of X is

Fx(x) - G(m, n, a, 8; 0, 0, x) + G(n, m, 5, a; 0, 0, a) if x > 0,

• G(n, m, B, a; 0, 0, ) - G(n, m, 8, a; 0, 0, -x) if x < 0.
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Denote by P the distribution function of an F random variable

having r and s degrees of freedom. Note that

PM,n[(nB)/(mna)J - FX(O) a G(s, m, B, a; 0, 0,-).

The distribution function of Y is

Fy (y) - 1 if y ? Yly

a FX(y) if Yo -S y < y1 ,

a 0 ifyy O.

If yo and y1 are finite, Fy(') is discontinuous at those points. It

makes a jump of Fx(yo) at yo and 1 - Fx(yi) at yl. At other points, the

probability density function of Y is

FjCy) - fx (Y) if YO < y < Y1

a 0 ify < yo ory > yI.

Define

H(u1. m: k. z) - G(m. n. a, S; k, z, ul) - G(m, n, a, 8; k, z, UO}

if 0< UO < ul ,

," G(m, n, a, 8; k, z, ul) + (-l)k G(n, m, 8, a; k, -z, -uo)

if uO < 0 1 Ul,

* (-1)k [G(n, m, 8, a; k, -z, -uo) - G(n, m, 8, a; k, -z, -ul)]

if U0 < u1 < 0;

and

H'(u1 , UO; k, z) - H(u1, UO; k, z) * u eZUI Fx(Uo) + ul eZU1 [ - Fx(ul) ]

for < u0 < u1 <s,

H*(-, uo; k, z) * H(-, uo; k, z) + u6 eU 0 Fx(Uo) for -- < uO,

H*u -'; k, z) -H(ul, -'; k, z) + uk eZU1 (1 - Fx(ul)] for u1 <,

and

H*(o, --; k, z) = H(-, .o; k, z),

with 00 1.

The kth moment of Y is H*(yI, yo; k, 0), and its moment generating
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function and characteristic function are

ye) - H*(yl, yo; 0, e), e > (-20) "' ifyo < 0 and 6 < (2c) ifY, > 0,

and

CY ,,) H(y1 , Yo; 0, ie),

respectively.

It is clear that the problem of evaluating the probability density

function of X or Y can be reduced to one of evaluating g(r, s, a, b; t)

for appropriate values of that function's parameters. Moreover, to

evaluate the distribution function of X or Y and the moments and moment

generating function of Y, it suffices to evaluate G(r, s, a, b; k, 6, u)

for eppropriate values of r, s, a, and b and for k = 0, 1, 2, ... , 8 real,

and u > 0. For the most part, we will find it convenient to carry out

the analysis for all such (k, 9, u) triplets, rather than to separately

consider only those particular triplets that are relevant to the evaluation

of the distribution function, the moments, and the moment. generating function,

respectively. Because, in (S), tk ezt is 'absorbed' by g(r, s, a, b; t),

the more general approach is no more difficult. It has the advantage of

avoiding repetition. Since the expressions for both the moment generating

function and the moments are to be obtained directly, the derivatives at

zero of expressions for the moment generating function can be conared

with the corresponding expressions for the moments, so as to obtain a

check on the correctness of the results.

Expressions for the characteristic function Cy(e) of Y will not be

given explicitly; however, substitution of i8 for e, in any of the

expressions indicated for the moment generating function My(e), produces

a valid representation for CY(e), provided that representation is

meaningful.

3. Evaluation of g(r, s, a. b; x). Us .1 relationships. It is

- - --------
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easy to show that, for c > 0,

(7) g(r, s, a, b; t) -c g(r, s, ca, cb; ct).

The recurrence relations for confluent hypergeometric functions giwn

by (13.4.15) - (13.4.20) of Slater [43 yield

(8) g(r, s, a, b; t) - (b/a)(r-2)"1 {[t(a 1'+b "') + s - r + 41 g(r-2, s 2, a, b; t)

+ (b/a)(s Z) g(r-4, s+4, a, b; t)},
(9) g(r, s, a, b; t) - b(a~b)-'(r-2) "l ([t(a-'+b-' ) + s + r - 41 g(r-2, s, a, b; t)

- (t/a) g(r-4, s, a, b; t)},

(10) g(r, s, a, b; t) = [a(r-2)] "1 [bs g(r-2, s 2, a, b; t) + t g(r-2, s, a, b; t)],

(11) g(r, s, a, b; t) - (a~b) "  [b g(r-2, s, a, b; t) + a g(r, s-2, a, b; t)),

(12) g(r, s, a, b; t) - b(a~b)I (r-2)- ([t(a 1'+b 1 ) + s] g(r-2, s, a, b; t)

+ (bs/a) g(r-4, s+2, a, b; t)),

and

(13) v~r, s, a, b; t) - b/a)(r-21"  irt~j-1+b "  I al "(V-7, C4, k,., *

- (t/a) g(r-4, s+2, a, b; t)).

The probability density function of a chi-square variate with r

degrees of freedom is

Pr~t) - [2r / 2 r~r/2)] "  t (r / 2) - 1 e' t / 2 ,  0 < t < -

0 0, elsewhere.

The domain of the function g can be extended by putting

g(r, 0, a, b; t) = (1/a) pr Ct/a)

for r = 1, 2, ...; a > 0; b > 0; t > 0. The relationships (7) -(13)

remain valid. Thus, tables of the chi-square density may be of use in

evaluating the densities of X and Y.

Case (i): r an even integer. For c > 0 and p = 1, 2, ... ,

U(c, c+p; x) = ir(c)] JP__' (P-1) f' e- x t t c+j ' l dt

J=O j 0(S4) ofhi p () gives

Subst.-tution of this exTpression into (3) gives
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(15) g(r, s, a, b; x) * [a 2r/2 r(r/2)]
"1 [a/(a+b)] s/2 e-x/(2a)

• y/2-1 (r/2-1 /-1
,.jo Cj ( s/2)j [ 2b/Ca+b)]j Cx/a)r "j 1

for r - 2, 4, 6, .

Case (ii): s an even integer. Denote by Pu() the distribution

function of a chi-square variate with u degrees of freedom. For p - 1, 2,

and 2c - 1, 2, ...,

U(p, p+c; x) - [l/r(p)] r, e-X(V 'l) (v - I)P1l vc'1 dv

- [1/r(p)] ex IP-1 (p-1) (.1)P-j-1 f e-XV vc+J-1 dv
3=0 3

- [l/r(p)] ex jP-1 (P-l) (-1l)P j 1 x-c'j r(c.j)

[1 - P 2c+2j(2x)].

Substituting this expression into (3), we find

g(r, s, a, b; x) [2 s/2 r(s/2)] "1 [b/(a+b)]r / 2 ex/(2b)
•r/2-1 (s/2-1) _/s2-1

3j=0 ( r/2)ji [2a/(a~b)]j (-b s 2 " '

(1 -A r2 ((a+b) tau)I)

for s a 2, 4, 6,

Case (iii): Both r and s are odd integers. Let

Cu) .
c.(u, v) - 1,

(v), ,..

Take

O(u, v; z) " - c.(u, v) zJ
330 3

to be a confluent hypergeometric function of the first kind. This series

is absolutely convergent for all values of u, v, and z, save v - 0, -1, -2,

Its remainder after q terms will be denoted by the symbol

R Cu, v; z) - c.(u, v) zi.
q j-q J

The numerical evaluation of U(s/2, (r+s)/2; (a+b)x/(2ab)] and

consequently of g(r, s, a, b; x) can be accomplished for r = 1, 3, 5,

s a 1, 3, 5, ..., by applying the well-known relationship

(16) U(v, l+p; t) a [(-1)p p! r(v-p)]" L(v, l+p; t)

+ [(p-l)!/r(v)] P cj(v-p, l-p) tj
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for p = 0, 1, 2, ...; where, taking v(t) - r'(t)/r(t) to be the logarithmic

derivative of the ganma function and y = - 'P(I) = 0.57721 56649... to be

Euler's constant, L(v, l+p; t) is obtained by adding together the three

convergent series

(17) (-Y - lr ) O(v, 1+p; t),

(18) 7=o c-(v, l+p) tj [N(l+j+p) - P(v+j)],

and

(19) UZI

Here, the meaningless sums and are interpreted as zero.
)NO U-I

The series (17), (18), and (19) can be approximated by their partial

stums. We now show, for 0 < v < 1 + p and t > 0, how to estimate the

errors incurred in these approximations. These results, together with

(16) and tables of the gamna function, allow us to calculate U(v, l+p; t),

for such v. p, and t values, with known accuracy.

Denote by [v] the largest integer that is less than v. By assumption

0 < v < 1 + p and t > O, so that

(20) 0 < Rq (v, 1+p; t) < R(l+[v], lp; t).

Furthermore, since 1'9(y) > 0 and ,v'"(y) < 0 for y > 0, we have

0 < r;, c.(v, l+p) tj [(l+j+p) - '(v+j)]
J, q J

(21) < [0(l+q+p) - '(v+q)] R (v, l+p; t)
q

(22) < ['(l+q+p) - i(v+q)] R q(l+[v], l+p; t).

Also, for q > 1,

0 < c(v 1+p) u-I

_<j=q i cj (v, '+p) t3

vt (l+p) "l Rq l(l+v, 2+p; t)

(23) s vt (l+p)-1 RqI( 2+[v], 2+p; t).

The recurrence relationship
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(24) w(w+l) O(y, w; t) - (w+l)(w+t) t(y, w+l; t)

+ t(w-y+l) t(y, w+2; t) = 0;

together with the formulas

0(j, j; t) - et

and

(j, l+j; t) a (-1)j ji t-i [1 - et ej l (-t)], j = 1, 2,

where eCt) -1q tJ/j!; can be used to construct convenient procedures
q Jac

for computing R q(l+[v], l+p; t) and Rql(2+[v], 2+p; t) and thus, in light

of (20), (22), and (23), can be used for estimating errors resulting from

the use of partial sums in place of the series (17), (18), and (19), and

for determining the number of terms that need be included in each partial

s U.

For many v, p, and t values, it may be advantageous to modify the

outlined procedures for aTroximatine the series (17), (18), and (19) with

known accuracy. Existing tables, Kummer's transformations, recurrence

relationships like (24), and/or other techniques from the theory of

confluent hypergeometric functions (see e.g. (3] or (4]) can often be

utilized to approximate O(v, l+p; t) and consequently the series (17)

in more efficient fashion than the partial-sum approach described above.

Our more efficient approximation for *(v, l+p; t) also yields R q(v, l+p; t)

which, upon applying (21), can also be used to estimate the error

resulting from approximating (18) by one of its partial sums. Note that

this error estimate is more precise than, the one based on R q(l+v], l+p; t).

Similarly, it may be possible to approxi,ate (l+v, 2+p; t) and consequently

Rq_1 (l+v, 2+p; t) to known accuracy with techniques not requiring the

computation of Rq. 1(2+[v], 2+p; t); thus permitting more precise, and possibly

easier, estimation of errors resulting from truncation of the series (19).
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4. Evaluation of G(r, s, a, b; k, 0, x). Useful relationships.

Using (7), we find--° k
G(r, s, a, b; k, 0, x) a c k G(r, s, ca, cb; k, 9/c, cx).

Upon substituting the expression (8) for g into the definition (5),

we obtain

G(r, s, a, b; k, 0, x)
•(b/a)(r-2) "i {(a'X+b-' ) G(r-2, s+2, a, b; k+l, e, x)

+ (s-r+4) G(r-2, s+2, a, b; k, 9, x)

+ (b/a)(s+2) G(r-4, s+4, a, b; k, 6, x).

Recurrence relations for G, corresponding to (9) - (13), can easily be

obtained in the same way.

The domain of G can be extended by defining G(r, 0, a, b; k, 6, x)

-* in terms of g(r, 0, a, b; *) through application of (5). Our recurrence

relations for G remain valid. Thus, tables of the chi-souare distribution

function may prove useful in evaluating the distribution functions of X

and Y and the moments of Y.

By making use of (1), (2), (4), and (6), we obtain

(25) G(r, s, a, b; k, 0, -) (-I)k+l G(s, r, b, a; k, 0,-)

+ (2a)k k0 (k) (-b/a)3 (s/2) (r/Z)k. j

and

C26) G(r, s, a, b; 0, 0, *) = (1 - 2a8) r / 2 (1 + 2b6)s/2

- G(s, r, b, a; 0, -e, ),

-1/(2b) < e < 1/(2a).

Case (i): r an even integer. Using (15), we find

G(r, s, a, b; k, e, x)

.[a2r/2 r(r/2)) "' [a/(aeb)js!2

r/2-1 (r/2-1) (s12) [2b/(a+b)j a-r/2*j+l

ix t r / 2 k ' j ' exp[-t(l-2aO)/(2a)J dt
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[2 12 r(r/2)] 1f [a/(a~b)js/2 a

ir/2-1 (r/2-1)r(s/2)j [2b/(a~b)] j C1-2ae)
r/2 k j

• jx(1-2ae)/a yr/2k-j-1 e- dy

(s/2)j (r/2-j) k  b

(27) U(2a)~ [a/(a~b)J]s' g' 21  lZj (-a+T

(l-a2) r/2"kJ p k [x(l-2ae)/a];

for r 2, 4, 6, ...; 0 < l/(2a); 0 x 1

In particular,

(28) G(r, s, a, b; k, 0, a) - (2a)k [a/(a+b)Js/2 jr/2-i (s/2) (r/2-j)

b(a, (l-Zao)-r/2-kej.

for r 2, 4, 6, ... ; < < l/(2a).

Applying the well-known relationship

P2v(2x) - [r(v+l)] "1 xv #(v, lv; -x)

to (27), we obtain, for 0 _ x < ., the alternate representation

G(r, s, a, b; k, e, x)

* xk [x/(2a)Jr/
2 [a/(a+b)]s/2

1~l (sf2).rir/2-1 Cs/ab (x )J
LJ-0 jl (r/2'-j-l 1 (r/Z~k-7 (x- - T

#[r/2+k-j, r/2+k-j+l; -x(l-2aQ)/(2a)J;

r - 2, 4, 6, ... ; 8 1 I/(2a).

Case (ii): s an even integer. By working with the joint probability

distribution of the random variables W1 and X, we obtain the representation

(29) fxCt) , (1/) 'max(O,t/a) Pm(u) Pn[(a lt)/8] du

for the probability density function of X.

Using (29), together with (4) and (6), we find; for s - 2, 4, 6, ... ;

-1/(2b) < 0 < 1/(2a); 0 < x <

G(r, s, a, b: k. e, x)

1 (I)k+l G(s, r, b, a; k, -0, co)

+ (1/b) x dt tk eet f- P (u) Ps((au-t)/b] du

JC max(O,t/a) r S
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1 -l)1 G)s, r, b, a; k, -e, -)

+ ak (a/b) [x/a dv vk eaev ra(O,v) pr(u) ps[a(u-v)/b] du

(30) ( 1)k+l G(s, r, b, a; k, -6, co)

+ GI(r, s, a, b; k, e, x) + G2 (r, s, a, b; k, 0, x)

where

Gl(r, s, a, b; k, e, x)

ak (a/b) u p r (u) Um aPS) ] dv

k a ( (a(u-v)/b]
= ak jx/a du pr(u) r, (u - by/a)k 0 a8(u ' by/a) Ps(y) dy

fx. -u j- (.b/)k-j k-j e-bly p(y ) dy

duk c/ Pr (u) ea~ (-4 ) uj (-b/a~k y k eb) PS

* (-2b) k (1-2a8) r/2 (1+2b) "s/ 2 "k

" j ( ) (r/2). (s/2 (-a/b) j ((1+2b0)/(l-2a8)J Pr.2j[x(12a 8)/aJ

and

G2(r, s, a, b; k, e, x)
ak (alb) t" du- P xa .k av_ rp.....),'b f..

SJX/a rTk ') j -00 Pstak.u-0 V IV

a (a/b) s / 2 [2s/2 r(s/2)]'J x/a du Pr (u) eau/(2b)

/sl2-1 (s/2-1) .s/Z-j-l (_-)j fx/a vk+j eav(1+2b0)/(2b) dv

C, -s)((1 2b6)(+be/(b
* (-2b) [b/(a+b)]r/2 (1+2b) - eX(l+bS)/(2b)g . /2-1 (r/2) i (s/,A-j) k  a )j12b)

Ja0 jI- a +

es k [-x(l+2b8)/(2b)] (1 - P .[x(a~b)/(ab)]).
es/2.k-i-l +2

Note that G(s, r, b, a; k, -8, a*), which appears on the right hand

side of (30), can be evaluated from (28). Expression (28), together with

(25) and (26), can also be used to evaluate G(r, s, a, b; k, 0, 0) and

G(r, s, a, b; 0, 0, -) for s - 2, 4, 6,

Case (iii): General case. Take

F(a, b, c; z) = r(c) l tb-i (1-t)cb (1-tz) dt,
f(b) r(c-b) a

Re c > Re b > 0, larg(l-z)l < w,

to be the analytic continuation of the hypergeometric function.
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For the Laplace transform of yv- U(c, d; y), we have
ro ezy v-i Uc, d; y) dy

, i{F(v) J(lc-d )
= - r(l+v-d), F(v, lv-d, l+c+v-d; 1-z)

r(i+c+v-d)
providing Re v > 0, Re d < Re v+ 1, Re z > 0 (equation (3.2.51) of

Slater [3] and its extension by analytic continuation); so that

G(r, s, a, b; k, 8,)

* (rrs)/2 r/2( [2fs/ 2 ar/2 bS/2 r(r/2)] "1 (2ab/(a+b)]r/2+s/2 k

Syr/2+s/2+k-1 exp[-yb(l-2a6)/(a~b)] U(s/2, r/2+s/2; y) dy

= (Za)k a s/2 ( b )r/2+k r(k+l) r(r/2 s/2 k)( a) ' k a+-bj r(r/2) r(s/2+k+l)

F[r/2+s/2+k, kil, s/2+k+l; a(l+2b6)/(a+b)]

for 8 < 1/(2a).

By making use of linear transformation formulas for the hypergeometric

function ((9.5.2) and (9.5.3) in Lebedev's book j1]), we obtain alternate

representations

G~r, s, a, b; k, 6, a)

(2ak aa s/2 rb jr/2-1 r(k~l) r(r/2+s/2 k'
(31) (a, t a+b' -rrl/2) "(s/2k l)- (i-2a6) k')

F[l-r/2, k+l, s/2+k+l; -(a/b)(l+2b6)/(l-2a6)],

8 < 1/(2a),

and

G(r, s, a, b; k, 8, ®)

• (Za)k (a)s/2 r(k~i) r(r/2+s/2+k) .- r/2-k(2a)+~l (1-2a)/ 2(32) ar (r2) r(s/2+1t)

F[l-r/2, s/2, s/2+k+l; a(l+2b0)/(a+b)],

0 < 1/(2a).
In particular, the representation (31) yields

G(r, s, a, b; k, 0, -)

S(2a)k a s/2 r b r/2-1 r(k l) r(r/2+s/2+k)
(33) (a+ (a+ )Ffr-2 T-(72+k +1)

F(l-r/2, k+l, s/2+k+l; -a/b).
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This expression is an especially fruitful computational form.

For r - 2, 4, 6, ... , it reduces to

(34) G(r, s, a, b; k, 0, ) a (2a)k a b r/ 2+s/ 2 1

Fr2-1  (1-r/2-s/2-k). (r/ 2-j)k('b/a),I ino -j!

providing an alternative to (28) for computing purposes.

For a/b .< 1 and r - 1, 3, 5, ... , terms (r-l)/2, (r+l)/2, (r+3)/2,

of the right hand side of

(35) F(l-r/2, k+l, s/2+k+l; -a/b) ( 1 (,-r/2). (k+l)I
j-,0j! (sl +1). (

coprise a convergent alternating series, whose remainder is smaller in

absolute value than the first neglected term and has the same sign; so

that, by making use of the series representation (35), G(r, s, a, b; k, 0, )

can be calcuiated to any desired accuracy.

In evaluating G(r, s, a, b; k, 0, -) from (25) for s - 2, 4, 6, ... ,

formula (34) can be used as -n alternative to (28) for computing

G(s, r, b, a; k, 0, x). Similarly, if a/b z 1 and s 1 1, 3, 5, .P

G(s, r, b, a; k, 0, c), which appears on the right hand side of the

expression (25) for G(r, s, a, b; k, 0, -), can be evaluated by making

use of (31) and the series representation (35).

From (32), we obtain

G(r, , a, b; k, 0, (2a)k (r/2+s/2)k . ( [r /

(-i) j (lb/a)3 { - Pr,s+2 j [ (b/a)(s+2j)/rj } '

so that this function can also be computed from tables of the F distribution

function or the incomplete beta function.

For 0 < x < -, we find

San12 bs 1 2 r(r/2) r(s/2) G(r, s, a, b: k, 6, x)

du us / 2 I (l+u)r/2-l fx tr/2+s/2+k-1 exp{-tfu(!+a/b)+l-2a0]/(2a)) dtdu /2-1 0



*(r/2+s/2+k)- I Xr/2+s/2+k exp[-x(l-2a0)/(2a)J

*{,r/2+s/2+k+1; x~u(1+a/b)+l-2a61/(2a)} du

*(r/2+s/2.k) x r2+/. expf-x(I-2a6)/(2a)J

* r L(a4LP _ (J? (l+afb)3 (l-2ae)P-j
Poo0 (r/2-s2+k+1) Ljato

r(s/2+j) U~s/2+j, r/2.sf2+j; x(a~b)/(2ab)J

* r2+/+ exp[-x(l-2a8)/(2a)]

(36) * f(s/ 2tL fx(a+b)/(2ab)J3 U[s/2.j, r/2+s/2+j; x(a+b)/(2ab)J

0*[j+l, r/2+s/2+k+j+l; x(1-2a6)/(2a)J,

6 < 1/(2a).

Using Kimr's transformation, we obtain an alternate representation

2(r~)/2a r2bs/ r(r/z) r(s/2) G(r, s, a, b; k, 6, x)

- r/2s/2+k i~v r(s/2:j) fx(a~b)/(2ab)]3

U~s/2-ij, r/2+s/2+j; x(a+b)/(2ab)]

t[r/2+s/2+k, r/2+s/2.k+j~l; -x(l-2a6)/(2a)J,

0 < x < -, 8 < 1/(2a).

We now consider; for r - 1, 3, 5, ... ; s - 1, 3, S, ... ; estimation

of the error incurred in approximating the series appearing on the right

hand side of (36) by a partial su.

We will need the simple inequalities

o r(c) U(c, d; t) < r(c-6) U(c-6, d; t),

t >0, c> C-6>O0,

and

o < O(c, d; t) < et,

t >O, d> c>O0,

and formula (14).
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Putting rA r + 1 and 5* - s - 1, we find that, for r - 1, 3, 5,

s *1, 3, 5, ... , and for any positive integer v,

0 < J' [r(s/24j)/(r/2+s/2+k)j ][x(a~b)/(2ab)jj
:1-v j1
* V[s/2+j, r/2+s/2+j; x(a+b)/(2ab)J t0(j+l, r/2+s/2+k~j+l; x(1-2a9)/(2a))

(3) < [I(s*12+j)I(r*12+s*/2+k)j )[x(a~b)/(2ab)lj

*U[s*/2+j, r*/2+s*/2+j; x(a+b)/(2ab)]

- (j+1, r*/2+s*/2+k+j.1; x(1-2aO)/(2a)1

< ex(l- 2a@)/(2a) ~ [~*2j/~z*2k xab/2b]
)Mv rs*2j/r/s/2kj+llxab/2bj

,Ufs*/2+j, r*/2es*/2.j; x(a+b)/(Zab)]

a [xab/2b)s*/2 ex(1-2ae)/(2a)

r4 f (r*/2.s*/2.k)j.1 i*/- yr/21 r(s*/2+p+j)

(x(a+b)/(2ab)J -'
(3S m xab/(a)s*/2 ex(1-2a8)/(2a)

(38) [x~a~b)/(2ab)jJ e

p
*f r(s*12+p+l) yv-1 r~s/ +D4j) 1

j+1

For r *1, 3, 5, ... , s - 3, 5, 7, .... we note that the error

bound (37) equals

2(r~s)/2 ar*/2 b se2 f(r*/2) r(s*/2) x-r/2-s/Z-k

(39) V-1 x(1-2a8)/(2a) G(r*, s*, a, b; k, e, x)

* [S*/2+j, r/2.s12+j; x(a+b)/(2ab)J

*(Oj+l, r/2+s/2+k+j.1; x(1-2ae)/(2a)].

Here, G(rb, s*, a, b; k, 0, x) can be coMuted, for example, from (27);

U[s*/2+j, r/2.s/2.j; x(a+b)/(2ab)I can be calculated from (14); and

*[j+i, r/2+s/2+k+j+1; x(1-2a6)/(2a)J can be evaluated by using the recurrence

relationship (24) together with its two accompanying formulas.
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The error estimate (38) is less precise than (39); however it

should prove easier to copute. Also, it can be calculated for s - 1.

To use (36) to approximate G(r, s, a, b; k, 0, x) for r - 1, 3, 5,

s - 1, 3, 5, ..., by replacing the infinite series with a partial sum,

we must of course be able to compute the terms of the series. The

evaluation of 0[jl, r/2+s/2+k+j+l; x(1-2a0)/(2a)] can be accomplished

as described above. A method for approximating U[s/2+j, r/2+s/2+j; x(a+b)/(2ab)]

to any desired accuracy can be found in Section 3 under Case (iii).
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