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FOREWORD

This report was prepared by D, A, Harville of the Applied Mathematics
Research Laboratory, Aerospace Research Laboratories, Wright-Patterson
: ] Air Force Base, Chio., The research comprises part of Project 7071,
| “Research in Applied Mathematics".
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1. Introduction. Quadratic estimators of the variance components

associated with random-effects models are in common use. If the experimental
design is a balanced completely-nested one, if the usual independence and
nomality assumptions are apprcpriate, and if the estimators are those
derived by analysis-of-variance techniques, then each of the estimators,
save that of the residual variance, is distributed as a linear difference
between two independent chi-square variates. More generally, any quadratic
form in multivariate-normal data and in particular any quadratic
variance-component estimator based on such data is either distributed

as a linear difference between two independent chi-squares or, as Press (2]
has shown, its distribution can be represented as a mixture of such
distributions.

In cases where a quadratic estimator of a variance component can take
on negative values, it is common practice to replace negative estimates
by zero. If the data are multivariate-nommal, the distribution of the
modified estimator is identical to that of a truncated (at zero) linear
difference between independent chi-squares or is a mixture of such truncated
distributions.

It will be our purpose to investigate the distribution of a truncated
linear difference between independent chi-square variates. Rather than
assume that the truncation is from below and at zero, we will consider the
more general situation where the truncation is either from above or below

or both and at arbitrary 'values. In particular, we will obtain expressions




for the probability density function, distribution function, moments,
moment generating function, and characteristic function of such a distribution.
In the case of the probability density function, distribution function,
and moments, emphasis will be on obtaining represertations that appear to
be convenient computational forms. Extensive use will be made of known
results on hypergeometric functions.
Previously, Press [2] obtained the probability density function of
a linear difference between independent chi-squares in terms of a confluent
hypergeometric function of the second kind. Wang (5] found a simpler
2xpression for the probability density function for the special case
where the degrees of freedom associated with both chi-squares are even.
She also gave, for that same special case, convenient expressions for
the moments of that distribution, after its truncation from below at zero.
Z. Notation and preliminary results. Define
X = oN, - BW,,
where o and 8 are positive constants, and Wl and WZ are indpendent chi-square
variates having m and n degrees of freedom, respectively. Truncation of
X from above and/or below yields the random variable
Y = Y1 if X > Y1»
= X ify, 2X2y,,
= Y if X < Yo
where Yo and y, are known constants with - SYp <Y £
A chi-square variate with r degrees of freedom has kth moment Zk(r/Z)k,
where (a)o = 1 and (a\)k = a(a+l)...(a+k-1), k=1, 2, ...; moment
generating function

M) = (1 - 20) 72, 8 < 1/2;

and characteristic function

cee) = (1- 2i0)° 72,




It follows that X has kth moment
6y @* I, () o) o) wvay,
where ; = B/a; moment generating function
@ W© = a-20™ a0, (207 <0<
and characteristic function

C(8) = (- 2i8)™2 (1 + 2810)/2,

Take

Ue, s x) = [W/T@] [feX et aed®la, c>0, x>0,
to be a confluent hypergeometric function of the second kind, and put

t(r*s-Z)/Z e't/(za) U{s/2, (r+s)/2; (a+b)t/(2ab)]
2(1“'5)/2 a!‘/z bsfz r(x/2)

(3) g(r,s,a, b;t)=

forr=1,2, ...; s=1,2, ...; a>0, b>0; andt > 0.

From [2_, we have that the probability density function of X is

fy(x) = g(m, n, a, 8; x) ifx>0,

(4) = g, m, B, a; -X) if x < 0,
2

CM/ P(m/Z + n/Z - 1) if X = O.

2)/2 g [ (241 /2)-2/2 ry2) T(n/2)

It will prove convenient to express the distribution functions of

X and Y and the moments, moment generating function, and characteristic
function of Y in temms of the function
G(r, s, a, b; k, z, u) = [‘: tk e?t g(r, s, a, b; t) dt foru»>0,
® =0 foru= 0,
where k=0, 1, 2, ...

Note that, for v < 0,
© [ t*e*ges, 1, b, a5 -t dt = (-DKGGs, 1, b, a5 k, -z, -v).

The distribution function of X is

Fy(x) = G(m, n, a, 8; 0,0, x) +G(n, m, 3, 0a;0,0,=) ifx20,

« G(n, m, 8, a; 0, 0, ») - G(n, m, B, a; 0, 0, -x) if x < 0.




Denote by Pr 5(0) the distribution function of an F random variable
having r and s degrees of freedom. Note that
Pa,nl(8)/(ma)] = Fy(0) = G, m, B, a; 0, 0, =).

The distribution function of Y is

@) = 1 ify >y,
= Kb ify,<y<yg,
= 0 ify < Yo

if Yo and y, are finite, FY(') is discontinuous at those points. It
makes a jump of Fx(yo) at y, and 1 - Fx(yl) at y,. At other points, the
probability density function of Y is
@) = f£(y) ifyg <y <y
= 0 ify<yoory>y1.
Define
H(ul. U, k. 2) = G(m. n, a, 8; k, 2z, ul) - G(m, n, a, 8; k, z, “0)
if 0 < U <y,
g O, 0, 85k, 2, u) ¢ (DX G, m, 8, o k, -z, -y
if Y, < 0< U,
= (-1)k [G(n, m, 8, a; k, -2, -uo) -Gn, m, 8, a; k, -2, -ul)]
if Uy <y < 0;
and
H‘(ul, U k, 2) = H(ul, uy; k, 2) ¢ ug et Fy(ug) + ull< e 1 - Fx(ul)]
for-~<u0<u1<~,
HA(e, ug; k, 2) = HO=, ugi K, 2) + uf €™ By for -= <y,
H*(ul, -wo: k. 2) = H(ul, -0 k.z) + u‘{ e 1 - Fx(ul)] for u <,
and
H4(w, -=; k, z) = H(=, -=; k, 2),
with 0° = 1,
The kth moment of Y is H‘(yl, Yo k, 0), and its moment generating
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function and characteristic function are

M/ (8) = H¥(y;, vp; 0, 8), ©> (-28)"" if yo < 0 and 6 < (a)”! if ¥, > 0,
and

G (8) = H(y,, g O, 16),
respectively.

It is clear that the problem of evaluating the probability density
function of X or Y can be reduced to one of evaluating g(r, s, a, b; t)
for appropriate values of that function's parameters. Moreover, to
evaluate the distribution function of X or Y and the moments and moment
generating function of Y, it suffices to evaluate G(r, s, a, b; k, 6, u)
for eppropriate values of r, s, a, and b and for k = 0, 1, 2, ..., 9 real,
and u > 0. For the most part, we will find it convenient to carry out
the analysis for all such (k, 9, u) triplets, rather than to separately

consider only those particular triplets that are relevant to the evaluation

of the distribution function, the moments, and the moment generating function,

k e”t is 'absorbed’ by g(r, s, a, b; t),

respectively. Because, in (5), t
the more general approach is no more difficult. It has the advantage of
avoiding repetition. Since the expressions for both the moment generating

function and the moments are to be obtained directly, the derivatives at

zero of expressions for the moment generating function can be compared
with the corresponding expressions for the moments, so as to obtain a

check on the correctness of the results.

Expressions for the characteristic function CY(a) of Y will not be
given explicitly; however, substitution of ig for ¢, in any of the
expressions indicated for the moment generating function MY(e) , produces
a valid representation for Cy(e) , provided that representation is

meaningful.

3. Evaluation of g(r, s, a, b; x). Us .l relationships. It is
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easy to show that, for ¢ > 0,
(7 g(r, s, a, b; t) = cg(r, s, ca, cb; ct).
The recurrence relations for confluent hypergeometric functions given
by (13.4.15) - (13.4.20) of Slater [4] yield
(8) g(r, s, a, b; t) = (b/a)(r-2)"" {[t(a '+b') +s - 1+ 4] g(r-2, sz, a, b; t)
+ (b/a)(s+2) g(r-4, s+4, a, b; t)},
(9) g(r, s, a, b; t) = b(ash) ' (r-2)" {[t(a '+b”') + s+ - 4] g(r-2, s, 2, b; 1)
- (t/a) g(r-4, s, a, b; t)},
(10) g(r, s, a, b; t) = [a(r-2)]"' [bs g(r-2, s+2, a, b; t) + t g(r-2, s, a, b; t)],
(11) g(r, s, a, b; t) = (a*b)”' [b g(r-2, s, a, b; t) + a g(r, s-2, 8, b; t)],
(12) g(r, s, a, b; t) = b(a*b) '(r-2)"* {[t(a '+b"') + 5] g(r-2, s, a, b; t)
+ (bs/a) g(r-4, s+2, a, b; t)},
and
(13) glr, s, a, by t) = (b/a)(r-2)"" {[t(a '+b™') + &) g(r-2, =42, 2, b5 ©)
- (t/a) g(r-4, s+2, a, b; t)}.
The probability density function of a chi-square variate with r
degrees of freedom is
p®) = 7oyt D g ctce,
= 0, elsewhere.
The domain of the function g can be extended by putting
g(r, 0, a, b; t) = (1/a) p (t/a)
forr=1, 2, ...; a>0; b>0; t>0. The relationships (7) - (13)
remain valid. Thus, tables of the chi-square density may be of use in
evaluating the densities of X and Y.

Case (i): r an even integer. Forc>Oandp =1, 2, ...,

U, ctp; X) = [1/1(c)] Z?;i (psl) [ e Xt il g

= §p-1 p-1 -c-j
(14) 2j=° ( j ) OFENE

Substitution of this expression into (3) gives




(15) glr, s, a, b; x) = [a 272 1(r/2)]" [a/(a4b))3/2 ™/ (22)

BN (s (@)l va) I,

j=o
forr=2,4,6, ...

Case (ii): s an even integer. Denote by Pu(°) the distribution

function of a chi-square variate with u degrees of freedom. Forp = 1, 2, ...

and 2c = 1, 2, ...,
U@, pre; X) = [T [T e XV v o Pl ol gy
- (@] & P O (0PI 7 e v
= /) & B B (oPIT S ren)
« [1- P2c+2j(2x)]'
Substituting this expression into (3), we find
g(r, s, a, b; x) = [b 272 1(s/2)]"" [b/(asb)]T/? /()
B Y o) paran)) GBI
- {1- Pr*zj{x(a+b)/(ab)}},
fors=2,4,6, ...
Case (iii): Both r and s are odd integers. Let

(u) .

cj(u, V) = 31—63-.—, j'l, 2, cee

J

Take
o(u, v; z) = Z;so cj(u, V) 27

to be a confluent hypergeometric function of the first kind. This series

is absolutely convergent for all values of u, v, and z, save v = 0, -1, -2, ...

Its remainder after q temms will be denoted by the symbol
Rq(u, v, z) = Z;aq cj(u, v) zj.

The numerical evaluation of U[s/2, (r+s)/2; (a*+b)x/(2ab)] and
consequently of g(r, s, a, b; x) can be accomplished for r = 1, 3, 5, ...,
s=1,3,5, ..., by applying the well-known relationship
(16)  UQv, 1+p; t) = [-1P p! T(v-p)]™" L(v, I+p; 1)

+ e nYrW) B ciovp, 1-p) U7,

£ e




forp=0, 1, 2, ...; where, taking v(t) = I''(t)/I(t) to be the logarithmic
derivative of the garma function and v = - ¥(1) = 0.57721 56649... to be
Euler's constant, L(v, 1#p; t) is obtained by adding together the three

convergent series

(17) (-y - 1In ) ¢(v, 1+p; t),

(18) Do 500 10 ¢ [v(230p) - wvei)],
and

(19) Two €5, 19 8 [y w™,

=) are interpreted as zero.

Here, the meaningless sums Z;:o and )
The series (17), (18), and (19) can be approximated by their partial
sums. We now show, for 0 <v <1+ pand t > 0, how to estimate the
errors incurred in these approximations. These results, together with
(16) and tables of the gamma function, allow us to calculate U(v, l+p; t),
for such v. p, and t values, with known accuracv.
Denote by [v] the largest integer that is less than v. By assumption
0<v<l+pandt >0, so that
(20) 0< Rq(v, 1+p; t) < Rq(1+[v], 1+p; t).
Furthermore, since v'(y) > 0 and ¥''(y) < 0 for vy > 0, we have

0<[s

cj(v, 1+p) tJ (V(1+j+p) - V(v+j)]

j=q
(21) < [¥(1+q+p) - ¥(v+q)] Rq(v, 1+p; t)
(22) < [¥(1+q*p) - ¥(v+q)] Rq(l*[v}, 1+p; t).

Also, for q > 1,
igl g
0 < Z;;q cj(v, I+p) t Zug‘ u
< Joq § €50vs 1op) ¥
= vt (+p) F R (1%, 2p; 1)
(23) < vt ()T R 20V, 2ops 1),

The recurrence relationship




(24) wwrl) oy, w; t) - (wl)(wet) o(y, wtl; t)
+ t(w-y+1) ¢(y, wt2; t) = 0;

together with the formulas

8(G, j; t) = e*

and
oG, i3 8) = (13 jredqn-et et L2 ..,

where eq(t) = Z?-o tj/j!; can be used to construct convenient procedures
for computing Rq(1+[v], 1+p; t) and Rq_1(2+[v], 2+p; t) and thus, in light
of (20), (22), and (23), can be used for estimating errors resulting from
the use of partial sums in place of the series (17), (18), and (19), and
for determining the number of terms that need be included in each partial
sum.

For many v, p, and t values, it may be advantageous to modify the
outlined procedures for anmproximating the series (17), (18), and (19) with
known accuracy. Existing tables, Kummer's transformations, recurrence
relationships like (24), and/or other techniques from the theory of
confluent hypergeometric functions (see e.g. [3] or [4]) can often be
utilized to approximate ¢(v, l+p; t) and consequently the series (17)
in more efficient fashion than the partial-sum approach described above.
Our more efficient approximation for ¢(v, 1l+p; t) also yields Rq(v, 1+p; t)
which, upon applying (21), can also be used to estimate the error
resulting from approximating (18) by one of its partial sums. Note that
this error estimate is more precise than the one based on Rq(l+[v], 1+p; t).
Similarly, it may bc possible to approxivate ¢(l+v, 2+p; t) and consequently
Rq_1(1+v, 2+p; t) to known accuracy with techniques not requiring the
computation of Rq_l(Z*[v], 2+p; t); thus permitting more precise, and possibly

easier, estimation nf errors resulting from truncation of the series (19).
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Using (7), we find

G(r, s, a, b; k, 8, x) = ck G(r, s, ca, cb; k, 8/c, cx).

Upon substituting the expression (8) for g into the definition (S),
we cbtain

G(r, s, a, b; k, 6, x)

« (b/a)(r-2)"" {(a"'+b"') G(r-2, s+2, a, b; kel, 6, X)
+ (s-r+4) G(r-2, s+2, a, b; k, 6, x)
+ (b/a)(s+2) 5(r-4, s+4, a, b; k, 6, x) .
Recurrence relations for G, corresponding to {9) - (13), can easily be
obtained in the same way.

The domain of G can be extended by defining G(r, 0, a, b; k, 68, x)
in tems of g(r, 0, a, b; °) through application of (5). Our recurrence
relations for G remain valid. Thus, tables of the chi-square distribution
function may prove useful in evaluating the distribution functions of X
and Y and the moments of Y.

By making use of (1), (2), (4), and (6), we obtain
(25) G(r, s, a, b; k, 0, =) = (-1D¥*1 G(s, r, b, a1 k, 0, )

+ @* I, ) corad Gray oy
and
(26) G(r, s, a, b; 0, 8, ®) = (1 - 2a8) /% (1 + 208)"5/2
- G(s, r, b, a; 0, -8, =),
-1/(2b) < 8 < 1/(2a).

Case (i): r an even integer. Using (15), we find

6(r, s, a, b; k, 8, x)
= (3272 £(r/2)]7" [af(avb) 52

. Z;{f‘l (r/§~1) (5/z)j [2b/(a+b)]j 2 T/2¢541

s t7/24k3-1 oen[-t(1-2a0)/(2a) ] dt

RO ey




11

o (272 (e/2)17F [/ (a00))/ 2 a¥

 HEL (MY /), 20/ aob)) 1-200) T/ EK

LY

. I:(I-Zae)/a yr/Z*k-j-l e-y/z dy

. (8/2); (x/2-)) j
(27 = @a)¥ [a/(a+0)1/? Z;ﬁ ! Jj; X (;?5')

. (1—2ae)"'/ 2-k+; pr+2k-2j {x(1-2a6)/a];
forr=2,4,6, ...; 6<1/(2a); 0<x <=,
In particular,

<

.1 (8/2); (r/2-3)
@5 G, s, a, b; k, 8, =) = (2a)¥ [a/(asb)]¥/2 [T/2 j k

j= L
-r/2-k+j.

. (;‘,35)J (1-226)
forr=2,4,6, ...; 6 < 1/(2a).
Applying the well-known relationship
Py(2x) = [P(wD)]™' xV o(v, 1+v; -x)
to (27), we obtain, for 0 < x < =, the alternate rcpresentation
G(r, s, a, b; k, 6, x)
« X (x/@2a)]7/? [/ (2eb) 1%/

r/2-1 (8/2); 2ab 4
e DT @y vy
o &[r/2+k-j, r/2+k-j+1; -x(1-2a6)/(2a)];
r=2,4,6, ...; 6<1/(a).
Case (ii): s an even integer. By working with the joint probability

distribution of the random variables wl and X, we obtain the representation
(29) £(8) = (/8) [lor(0.t/a) Pn(®) Pylleu-t)/8] du
for the probability density function of X.

Using (29), together with (4) and (6), we find; for s = 2, 4, 6, ...;
“1/(2) < 8 < 1/(2a); 0 < x < =;

G6(r, s, a, b: k, 6, x)

= (-1)]“'1 G(s, r, b, a; k, -0, »)
sy Faedk et p ) p (/) du

e e T it
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(s, r, b, a; k, -6, )
+ ¥ (a/b) ff/a dv v& 2% [;ax(o,v) p(v) ps[a(u-v)/b] du
o) = D¥lGi, 1, b, ai k, -8, )
+ Gl(r, s, a, b; k, 8, x) ¢ Gz(r, s, a, b; k, 6, x)

where

G (r, s, a, b; k, 8, x)

e & (ab) [/ qup_(w) % vF e pylaluv)/b] dv

& [/ aup @ 7 @byt e Gt b ) dy

k px/a gy p ) @ 1, (8 0 (o 7Y e ) oy
(-2)¥ (1-200)"7/? (1+zbe) -s/2°k

1 (9 @y /D Camy (4200 (1-260) Py (x0-268)/a)

k aﬂv

and

Gz(r, s, a, b; k, 8, x)

- oy (X/a Kk Jabv -
~/a & B Xla, pla(uv)/b] &

- & @m¥? (2 v [, dupw) e/
. Je/Tl (S/§-1) GS125°1 (L) X8 e av(14200)/ (D) 4,
i [b/(a+b)]r/2 (1+2b9)-s/z-k eX(l*Zbe)/(Zb)
s/2-1 (t/2); (s/2-3)y
z).ﬂ J!
s/z+k.j-1['x(1*2b9)/(2b)] {1- Pr*zj[x(a*b)/(ab)]}.
Note that G(s, r, b, a; k, -8, =), which appears on the rignt hand

® 3 {a/v) J

= (-2b)

(&) (e20)

side of (30), can be evaluated from (28). Expression (28), together with
(25) and (26), can also be used to evaluate G(r, s, a, b; k, 0, ») and
G(r, s, a, b; 0, 8, ») for s = 2, 4, 6,

Case (iii): General case. Take

F(a, b, ¢; 2) = f{5§1§%3:57 a0t (e e,
Rec>Reb >0, larg(1-2)| < =,

to be the analytic continuation of the hypergeometric function.
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For the Laplace transform of yv'l U(c, d; y), we have
Le?ylue, gy g

) {r§¥i+££3f;5d)} F(v, l+v-d, l#c+v-d; 1-2)

providing Re v > 0, Re d <Rev + 1, Re z >0 (equation (3.2.51) of

Slater [3] and its extension by analytic continuation); so that
G(r, s, a, b; k, 8, «)
- [2(t+s)/2 af/2 872 rar/2)]" [2ab/(a+b)]r/2+5/2’k
o [T yT/BSIK) oplyb(1-2a8)/ (ath)] U(s/2, r/2+s/2; y) dy

- (Za)k (agst/Z (ager/z*k P(k:l) F(r£2+f/fzk)

* Flr/2+¢s/2+k, k+1, s/2+k+1; a(1+2b6)/(a+b)]
for 6 < 1/(2a).

By making use of linear transformation formulas for the hypergeometric
function ((9.5.2) and (9.5.3) in Lebedev's book {1}), we obtain alternate
representations

G(r, s, a, b; k, 8, #

ok G (R D IORIE gy

D * F[1-r/2, k+1, s/2+k+1; -(a/b)(1+2b8)/(1-2a8)],
6 < 1/(2a),
and
G(r, s, a, b; k, 08, =)
I
* F(1-r/2, s/2, s/2+k+1; a(1+2b6)/(a+b)],
6 < 1/(2a).

In particular, the representation (31) yields
G(r, s, a, b; k, 0, «)

] k (a35/2 (b yr/2-1 T(k¢l) T(r/2+s/2+k)
(2a)" (557 (%) T(r/2) T(s/2+k+1)

« F(1-1/2, k+1, s/2+k+1; -a/b).

(33)

RRTN JRCTNTNY
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This expression is an especially fruitful computational form.

Forr=2,4, 6, ..., it reduces to

(38) G(r, s, a, b; k, 0, ®) = (2a)k (B)T/&s/21

a+b
., (1-vr/2-s/2-k). (r/2-j) .
PHt P (bra),

providing an alternative to (28) for computing purposes.
Fora/b<landr=1, 3,5, ..., terms (r-1)/2, (r+1)/2, (r+3)/2, ...
of the right hand side of

w  (1-1/2); (k#1); :
(35) F(1-1/2, ko1, s/2ke1; -afb) = [y — o7y (o)
j

comprise a convergent alternating series, whose remainder is smaller in
absolute value than the first neglected temm and has the same sign; so
that, by making use of the series representation (35), G(r, s, a, b; k, 0, =)
can be calcu.ated to any desired accuracy.

In evaluating G(r, s, a, b; k, 0, ) from (25) for s = 2, 4, 6, ...,
formula (34) can be used as 7n alternative to (28) for computing
G(s, r, b, a; k, 0, =), Similarly, ifa/b 2>21lands =1, 3, 5, ...,
G(s, r, b, a; k, 0, »}, which appears on the right hand side of the
expression (25) for G(r, s, a, b; k, 0, =), can be evaluated by making
use of (31) and the series representation (35).

Fram (32), we obtain

6r, 5, 8, bi k, 0, =) = @a)* (v/2vs/2)y [h, (§) (/205 (/24s/2) )

c (DI /e - R 0/a) (52 /),
so that this function can also be computed from tables of the F distribution
function or the incomplete beta function.

For 0 < x < », we find
2483/ 2 gT/2 4812 1(1s2) 1(s/2) G(r, s, a, bt k, 6, x)
=[5 du oS e/ B X (T8I BRL ot u(ivasb)+1-2a8)/ (22)} dt
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= (r/2¢05/2¢k) " X7/ 272K eyn(-x(1-226)/(22)]
c [0 ey E L expl-ux(ash)/ (2aD)]
« {1, r/2+¢s/2+k+1; x{u(1+a/b)+1-2a8]}/(2a)} du

1

- (r/205/24k) " xT/2*S/ 2K onix(1-226)/(22)]

p . -
T I B ) 0o e
p

* T(s/2+j) U[s/2+j, r/2+s/2+j; x(a+b)/(2ab)]

o XTSI o (-x(1-228)/ (22)]

G (,,ifzfézi}j’l [x(a*b)/(22b) 1 U[s/2+3, T/205/2+3; x(ash)/(2ab)]

o §[j+1, r/2+s/2+k+j+1; x(1-2a8)/(2a)],
6 < 1/(2a).
Using Kimmer's transformation, we obtain an alternate representation
2(r¥8)/2 gt/2 4812 1 (272) 1(s/2) Gr, s, a, b; k, 8, x)

o (T/245/2¢k o I(s/2+3) j
x Line T77vs/ T Ty (X))

* U[s/2+j, r/2+s/2+j; x(a+b)/(2ab)]
* ¢[r/2+s/2+k, r/2+s/2+k+j+1; -x(1-2a8)/(2a)],
0 <x <o 8 < 1/(2a).

We now consider; forr=1, 3,5, ...; s=1,3,5, ...; estimation
of the error incurred in approximating the series appearing on the right
hand side of (36) by a partial sum.

We will need the simple inequalities
: 0 < r(c) U(c, d; t) < T(c-6) U(c-8, d; t),

t>0, c>c¢c-§>0,
and
0 < ¢(c,d; t) <« et,
t>0, d>c»>0,

and formula (14).

e
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Putting r* = r + 1 and s* = s - 1, we find that, forr =1, 3, 5, ...,
s=1,3,5, ..., and for any positive integer v,
0 < L., (F(s/203)/(x/2vs/240) ] [x(a%b)/ (2ab) )}
* Uls/2+j, r/2+s/2+j; x(a+b)/(2ab)] ®[j+1, r/2+s/2+k+j+1; x(1-2a6)/(2a))
(1) € Gy [FGY/250/ (x4 2054/ 20K0) 1, ) x(ab)/ (280) )
* Uls*/2+j, r*/2+s*/2+j; x(a+b)/(2ab))
o O{j+l, r*/2+s*/2+k+j+1; x(1-2a8)/(2a)]
Xx(1-2a8)/(2a) (e A/ 9es . . j
e zjsv [T(s*/2+j)/ (x*/2+s /Z*R)j,ll [x(a*b)/(2ab)]
* U[s*/2+j, T*/2+s%/2¢}; x(a+b)/(2ab)}
[x(a+b)/(23b)]'s./2 ex(l-ZaG)/(Za)

A

* Djuy (/2052720017 IEIEY (T2 1 (suj20p05)

J pno
[x(a*b)/(2ab)] P
[x(a+b)/ (2ab)]"S"/2 ¢X(1-228)/(2a)

(38)

. §T*/2-1 (r*/2-1 17 frani 1D
Lo (7577 [x(arb)/ (2ab)]

. [(s*/2+p+1) . vl T(s*/2+p+j)
(r*/2+s*/2+K) (r*/2+k-p) j=1 17*72*-";77’%554{[ ’

0 <x <=, 8 < 1/(2a).

Forr=1,3,5 ..., s=3,5 7, ..., we note that the error
bound (37) equals
2(r’5)/2 ar‘/z bS'/Z r(r*/z) r(s./z) x“P/Z'S/Z'k

(39) ex(1~2ae)/(2a) G(r*, s*, a, b; k, 6, x)
o Lag [FS%/205)/ (1720512500 1 x(avb)/ 235) )

J- Uls*/2+j, 1/2+s/2+j; x(a+b)/(2ab)]
© #[j+1, v/2+¢s/2+k+j+1; x(1-2a8)/(2a)]).
Here, G(r*, s*, a, b; k, 8, x) can be computed, for example, from (27);
Uls*/2+j, r/2+s/2+j; x(a+b)/(2ab)] can be calculated from (14); and
#[j+1, r/2+s/2+k+j+1; x(1-2a8)/(2a)] can be evaluated by using the recurrence

relationship (24) together with its two accompanying formulas.

AN o AR e
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The error estimate (38) is less precise than (39); however it
should prove easier to compute. Also, it can be calculated for s = 1.
To use (36) to approximate G(r, s, a, b; k, 8, x) forr=1, 3,5, ...,
s=1,3,5, ..., by replacing the infinite series with a partial sum,
we must of course be able to compute the terms of the series., The
evaluation of ¢[j+1, r/2+s/2+k+j+1; x(1-2a8)/(2a)] can be accomplished
as described above. A method for approximating U[s/2+j, r/2+s/2+j; x(a+b)/(2ab)]

to any desired accuracy can be found in Section 3 under Case (iii).
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