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Technical Report sumnrey

The objeetive of this rescarch program is to develop computer progriams,
using the finkte clement method, to predict stresses and deformations in the vicln-
Ity of underground exeavations,  The computer programs will have the capabllity
to allaw for arbiteary inftial stresses in rock, arbiteary shape and size of the
opening, any ghven sequenee of construction, nonhomogencous materiil propertles,
interaction of rock with supporting structures, progressive damage, and time
dependent deformation and load development on supporting structure, Limited
experimenta] work to verify Key points in the theory 18 planned,

Research during the first year is directed towards survey of literature
on the subject, seleetion of mathematieal models for mechanical behavior of rock,
and developmient of computer programs for elastic-plastic Mohr-Coulomb muteriais,
for brittle rock folloving Griffith's theory, and for progressive deformation and
fracture of rock around underground openings under stress changes associated with
excavation,

At this reporting, selection of mathematical models for elastic-plastic Mohr-
Coulomb muaterials and for elastic-brittle materials failing nccording to Griffith
theory has heen completed, Chapter 1 of the report describes the theoretical con-
slderations leading (o the mcdel selected, The stress-strain relations for incre-
mental or rate type theory of plasticity are generally based on the normality rule

and convesxity and regularity of the vield surface in a *stress-space’, Using these



coneepts, various investigators have proposed conflicting constitutive equations,
In tais report the elastie-plastie behavior of materials has been re-examined as

1 mathematical gencralization of observations on a one-dimensional test, The
role of hinematic constraints upon yield conditions has been studied and adequacy
of certain postulates examined, Current theories of elastic-plustic behavior ave
found to be inadequate as it is, in gcneljal, not possible to satisfy the '‘normality’
rule as well as ceriinuity of stress path under plane strain conditions, Further
research into this aspect of material behavior is needed to clear the air, Experi-
mental phase of the research program is being planned with this requirement in
view, In the mathematical model scleeted as the basis for development of com-
puter programs, a modification of the yield surface is introduced to eliminate
discontinuity in stress paths, For behavio: of elastic-hrittle roek, the mode!
selected assumes elements of rock to be incapable of supporting tensile and
shearing forces across a crack, A review of literature showed errors in simil: r
formulations by other investigators, These have been correeted in the present
development, The mathematical models of elastic-plastic and elastic-brittle rock
have been incorporated into finite element eomputer programs for analyses of
stresses and deformations of plane strain systems, Chapters III and IV of the
report present two computer codes along with relevant deseription, instruetions

for usage and illustrative examples for:



i, Plane Strain Analysis of Elastic-Plastic Mohr-Coulomb Materials

ii, Two-Dimensional Analysis of a Non-Tension System

Further work on these computer programs is continuing, However, even in their
present form, program capabilities include consideration of arbitrary initial
st;'esses, arbitrary shape of openings with or without linings, and considerable
variation in material properties. These computer programs should be of immediate
application to a variety of problems,

Adequate mathematical models of rock behavior have been chosen, The
finite element niethod has been used successfully to develop computer codes for
analysis of complex problems of stresses, deformations and fracture in rock,

The method appears to be suitable for further development to realize the objectives
of the current research program,

Experimental woik so far has been directed towards development of suit-
nble laboratory material (exhibiting elastic-plastic behavior), No equipment has
so far been purchased under the contract, However, procurement of a plane strain

testing machine has been initiated, It is expected to be received in September 1971,



PREFACE

The terrestrial crust is in a complex state of stress, Underground
excavations in this stressed medium profoundly influence the distribution of
stress which in turn determines the stability of the opening and of the rock in
the vicinity, Traditional methods based upon the theory of linear elastic solids
are inadequate, It is necessary that the sequence of construction and realistic
material properties be taken into accourt in calculation of stresses and defor-
mations in rock.

The objective of the present research program is development of finite
element techniques to predict stresses and deformations in the vicinity of
underground excavations allowing for arbitrary initial stresses in the rock,
arbitrary shape and size of the opening .. . any given sequence of construction,
The procedures will :;,llow for nonhomogeneous material properties, interaction
of rock with supporting structures, progressive damage, time dependent defor-
mation and load development on supporting structures, Limited experimental
work to verify key points in the theory is also planned, The entire program is
expected to extend over three years,

This is the first semi-annual progress report covering the period 2/1/71
to 7/31/71. The main activity in this period has been a review of the work done
by other investigators in mathematical simulation of mechanical behavior of

elastic-plastic solids and of jointed rock, Models of stress-strain behavior
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have been proposed and work 2n development of relevant computer programs
started. A secquential approach has been followed whereby a basic program is
coded and then modified to include all the ramifications of material behavior and
actual loading sequences. 7Two computer programs, viz.

i. Plane Strain Analysis of Elastic- Plastic Mohr-Coulomb Materials

ii. Two-Dimensional Analysis of a No-Tension System
are included, The present capabilitics of each program are indicated in the
program descriptions, Further development on all these is continuing and will
be included in future reports,

The work is supported by the U,S, Governnment through the Advanced
Research Projects Agency, ARPA, and its agent the Bureau of Mines, Department
of the Interior, At the Ohio State University the work is under direct supervision
of Professors T,H. Wu, R,S, Sandhu, and J,R, Hooper. Messrs, S, W, Huang,
R.D. Singh, C,W, Chang and T, Chang, graduate students in the Department of
Civil Engincering, have contributed to the research reported. Dr, William Karwoski
of the Spokane Mining Research Center, Spokane, Washington is the Project Officer
designated by the sponsor, In early stages D.', Syd Peng of Twin Cities Mining
Research “enter, Twin Cities, Minnesota acted as the Project Officer,

The opinions, findings and conclusions expressed in the report are those of
the authors and not necessarily those of the U,S, Bureau of Mines, Department of
the Interior or the Advanced Research Project Agency,

R. S, Sandhu
Project Supervisor
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CHAPTER I

THEORETICAL CONSIDERATIONS



Chapter 1, Theoretical Considerations

1.1, Mechanical Behavior of Rock

Figs, 1-1 and 1-2 show, respectively, typical stress-strain plots for a
granite and a marble (Swanson 1970). Upon loading the stress-strain curve is
almost linear and reversible over a short portion, Unloading from higher loads
does not coincide with initial loading, This characteristic along with rate inde-
pendence distinguishes elastic-plastic behavior. Reloading closely follows un-
loading until the previous maximum is reached; whereupon the original curve
is foillowed. This leads to some simplifying assumptions,

i. A yield point exists below which the material is
linear elastic,

il, 'The yleld point corresponds to the maximum
atress level proviously attained,

iii, Unloading and reloading paths are linear, coin-

cident and parallel to the initial elastic loading

curve,
Fig, 1-3 shows this simplification, Clearly the yield point can be described by
the permanent or irrecoverable strain or the area bounded by the loading curve,
the unloading curve and the horizontal axis., Whereas in generalization to the
three-dimensional case, the stresses and strains become second rank tensors
and are, therefore, unordered, the area is still a scalar product and retains

its ordering characteristics, To this extent, it is often preferred as a measure

of the elastic limit,
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Mechanical behavior of rock under polyaxial state of stress has been
exmmnined In the light of brittle fajlurc theories (Brace, 1964; Bieniawski, 1967,
1969; Brady, 1969, 1970), Four regions of behavior are identified in Figure 1-4,
The first region corresponds to closure of pre-existing open cracks and is pecul-
iar to compressional loading, In region Il material behavior is linear elastic,
Frarture initiation occurs near the end of this region in accordance with Griffith
or modified Griffith Theory, This stage also corresponds to onset of nonlinearity
in the stress to volumetric strain curve (Brace, 1966). Stable fracture propaga-
tion characterizes region I, In region IV, unstable fracture propagation results
in strength failure and rupture, Differences in loading and unloading behavior
are ohserved (Walsh, 1965),

We have, thus, two general approaches to the characterization of stress-
strain behavior of rock. One follows the theory of elastic-plastic solids without
consideration of micro-mechanics of the system, 7The other uses Griffith theory
o modifed Griffith theory to relate deformation and failure to initiation and pro-
pagation of fracture, It has been observed (Swanson 1970) that Mohr-Coulomb
failure lavs applies for moderate values of confining pressure and that at low
confining pressures, failure is by rupture, Contrary to plastic behavior, strength
of material drops to almost zero in the direction normal to the crack if rupture
theory is followed, Figs, 1-6 and 1-6 depict typical relationships of failure strength
and post failure behavior in relation to confining pressures, It is reasonable to

assume that the material is linear elastic upto yleld or rupture , as the case may
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be, and that the post-failure behavior only is governed by the theory used to
define failure, Both the elastic-plastic Mohr-Coulomb failure theory and the
Griffith theory have been used in the course of present research to develop

computer programs for analysis of stress and deformation in rock,

1.2  Stress-Strain Relations for Elastic-Plastic Solids

Several approaches have been used for formulation of elastic-plastic
behavior, Excellent presentations of the theory are available in literature
(Drucker, 1951; Naghdi, 1960; Green and Naghdi, 1965; Koiter, 1953; Hill,
1950). Specializations to Mohr-Coulomb solids under plane strain (Drucker
and Prager, 1962; Drucker, Gibson and Henkel, 1955; Reyes, 1965; Reyes & Deere,
1866) have been presented, Not intending to survey the entire range of dif-
ferent philosophies, we present briefly a discussion of elastic-plastic behavior
under kinematic constraints leading to the plane strain formulation for Mohr-
Coulomb materials used in the computer program in Chapter III, Wé present
a generalization of observations on the ¢ 'aventional uniaxial test to the case
of three-dimensions before discussing the role of constraints,

An isothermal system undergoing infinitesimal deformations is of
interest to the present report., Extension to more comprehensive situations
is direct,

1,2,1, AGeneralization of One-Dimensional Test Results to Three-Dimensional
Theory

Analogous to the case of one-dimensional test, we assume the existence
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of a set D consisting of ail admissible states of stress, D is convex,* has boun-
dary B and includes the original or reference state, Clearly D is six-dimensional
(assuming symmetric stress tensors, i.e. absence of body couples) and is con-
tained in the six-dimensional linear vector space V spanned by the six components
Tl of the stress tensor, The stress in uniaxial test is given by a real number and
in this case D is ordered and convex, To introduce an ordering in the six-dimen-
sional stress space so that 'increase’' and ‘decrease’ of stress are meaningful,
a mapping g is defined

gt V—~ap R (I-1)
with the following properties

i. The image of D under g is a positive interval
ICR,

ii, Image of complement of D in V is the complement
of Iin R and g maps the interior Dy of D to the (1-2)
interior of I, ,

ili. g maps the 'original' or 'reference' state to zero
€l

Then D is ordered by its image i.e. for vy, v9ED, If g(ry) = 81, 8(V2) = 82, V2 I8

greater than, equivalent*#o, or less than ) depending upon gz being greater than,

sConvexity of D is the property that vy, v2€EDwpavy + (1-a) szDVae [O,ﬂ 5
In literature, there are frequent references to a convex yield surface, This is in-
accurate, It is easy to see that convexity of D does not imply convexity of its boun-
dary B, Indeed, B is in general not convex,

**The term equivalent is used because g, in general, is not one to one.
Thus, v,, vy may be distinct while their images coincide.




equal to or less than g;. The mapping preserves convexity of D, The interval
I= [o,f] where f is the image of boundary B of D.

In one-dimensional tests, the set of admissible stress states may include
negative points, The limiting stress states in tersicn and compression provide
a positive supremum and a negative infimum to this set, The boundary B of this
set is clearly discontinuous., In a multi-dimensional stress space, B may be
continuous, To ensure correspondence between the one-dimensional and multi-
dimensional cases, g is a two to one mapping in the case of one-dimensional
loading, Thus the image of B is in all cases the supremum of non-negative
interval I.

The boundary B of D and hence its image f under g are defined by prior
deformation and load history, Considering components €kl of the strain tensor,
on the analogy of the results of one-dimensional test, a plastic strain tensor
with components ¢ "kl is defined such that

i, For a given ¢'k|, there is one to one correspondence
between elements of D and a set of points in the six-
dimensional space spanned by e'k]l = ekl - ¢"kl. ¢'kl
are identified as components of the elastic strain tensor,

(I-3)

{i. If a generalization of Prandtl's simplifying assumption
is admitted, the one to one correspondence between
o)) € D and e ') is independent of prior deformation
history, and for stress states defined by interior Dy of
D, &'} vanish, ’

A positive m2asure of history of deformation can be defined in various

ways, If plastic strain is used as representative of deformation history, a



mapping X on H the six-dimensional linear vector space spanned by components

c"kl of the plastic strain tensor is introduced

X: H—P (I-4)
where P is the positive class of real numbers, Other measures using bilinear

or nonlinear maps involving both the stress and plastic strain components are

in use, An example is*
t
X (ks €'k1) = f ok(T) de"(T) (I-5)
T== o

In all cases the objective is to define a positive number k such that it equals the
image f under g of boundary B of D, For elastic-perfectly plastic solids, k is
constant but, in general, for stable material, k is a monotone increasing function
of history of deformation and stress, In certain cases, the mapping g may also
vary with plastic deformation, This happens when kinematic constraints are pre-
sent, Theory of kinematic hardening is an instance in which the reference point
in D, having image zero in I, depends upon s3tress and deformation history,

Considering, for the present discussion¥** X (‘"ij) =k,

goxk) < f =k = X(") (I-6)

*Here and in subsequent work, standard indicial notation is used, Sum-
mation on repeated indices is implied unless otherwise indicated,

t
**A more general assumption uses X=X(«k, e"u) where k = f ’ij(f) d ,nij(.,.).
In that case X = X (2. ST T==0
L3 dc" ij
1j
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In the interior of D, £k = 0 BOD< f=kand

o1 = Ex1 (€'mp)
En Cmn (I-7)

For differential changes in stress and strain components, using a superposed dot

to indjcate differential quantities,

;'kl = Ekimn ‘;'mn

= Egimn “mn (I-8)
assuming that Ex] s sufficiently smooth and its derivative Exjmp,a tensor of
fourth rank,exists,

On the boundary B of D,

glog) = f = k = X("g (I-9)

For g, X sufficiently smooth in their arguments

X =X @€") = hgey (I-10)

g z‘("'kl) = qy :'kl (I-11)
In the case of elastio-perfectly plastic solids, hy) = 0 and arbitrary plastic straining
can occur for X =0 t.e. X=k, apositive constant, Also g = f = k requires é= 0
leading to the relationship

Qo =0 (I-12)
Equation I-12 requires the stress changes to be in a plane tangent to the hyperplane
defined by g (7)) = k. However, for hy, # 0,for nonvanlshingé"kl. X »0and g =

f 0. This is termed loading and g = f = k = X, For vanishing ':'"kl' X =0 and

10



once again equation I-12 applies, This is the case of neutral loading, In all

cases g <0 implies decreasing loard, This is the case of unloading and equation

I-8 npplies with '"kl =0,
1.2.2 Evaluation of Increinental Plastic Strain in Loading
Equations I-10 and I-11 suggest a rclationship of the type
"kl = Skimn Fmn (=49
where Syymn may depend upon ¢"'mny ¥ mn . Resolving ;mn into components along

the boundary B and normal to it, ...c plastic strain is due only to the normal com-

ponent, Prager (1949, showed that

(#45)

Skimn * Sk P - (;’::;)
( "pq)("m) i
- By, —:j:-nn (I-14) !1

independent of o . Hence direction of ¢ "1y {s independent of the direction of

stress change given by ‘."mn- Other relations for plastic strain increments have
been proposed. Using a thermo-dynamic postulate, Drucker (1951) obtained the
normality rule 3
NS 'f

" af“ at g=f1 (I-15) :

"
[ 4

where \ i8 a positive scalar which for rate independence must be homogeneous ]

of order one in ;kl'

11
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Drucker used the normality rule to evaluate A, Defining

;:ne == [2_ E" lJ] (1_16)
— E.'”4:.5 atg=f (I-17)
EYSN T L
30'” aﬂ'ij
1
Now defining Ty =[% 8 sij]§ (I-18)
o
where Sy = oy - sij 1:‘ (I-19)

ag
and writing €, the slope of the og, ¢ ', curve as H, equation I-17 gives, with
€ "
e
the normality rule

_2g
;"n = 09ij v,
Y g 1t
Hlsz . Y4 0 ]
mn mn

Ty S Sk
W 1 (I-20)
2 o [ ] 28 _E__]

P%mn %%mn

This formulation was used in the so-called tangent modulus methods e.g. Swedlow
and Yang (1965).

Hill used the normality rule assuming \ to be a fourth rank tensor linear
in ‘;'kl and introduced a plastic potential, Using normality as well as the condition

g=f=k=X on the boundary B of D, Prager (1949) obtained

‘%‘% 7y

A = (I-21)




This formulation breaks down for elastic-perfectly solids where X is independent
of e", . Felippa (1966) obtained \ in terms of 'cij, increment in the total strain

tensor. In this procedure

U [Eljkl 8km Fin = Efjki Lklmn] £ mn (1-22)

where -1

(X R 2 28 2F 2g
Lytmn = [36"11 CLST] * Voyy Eiipq prq] ?%rs Ereld P%mn

(I-23)

This approach is valid for all cases including perfect plasticity and was used by
Zienkiewicz, Valliappan and King (1969) in developing finite element procedures.

Using rate of work equations, it is possible to evaluate A in terms of stress
rates for materials of von Mises or Mohr-Coulomb type, Yamada (1968) used this
approach for finite element analysis of von Mises solids, Using Drucker and Prager's
generalization of Mohr-Coulomb law, Reyes (1965) developed the stress-strain equa-
tion for generalized Mohr-Coulomb elastic-perfectly plastic solids under plane
strain conditions, The finite element procedures presented by Reyes and Deere
(1966), Baker, Sandhu and Shieh (1969) and those included in Chapter III of this

report were based on these equations, For plane strain

11 D;; D2 Digq(tn
va2( = 206 D21 Da2 D23 | {22 (I-24)
T12 D33 Dga Dgz]) [vi2

where
Dj; = 1-hg-2hyo1)~hze;2

Doz = 1-hg -2 h ogg - hg ogg2

13
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"

93 = -y,

Dijg = Dgy = -hy o159 -hgoip0yy

Dyg = Dgp = =y 719 "By %15 pp
and
3 4, K K
hy = 2 G 6Jy
Jj a+9a2 X,
G
a “kk 3a£ Tk
hy = 6353 G 33,3 . 3¢ féK 1
J E(1+9a2 K
(1+9a2 K 2 ( G)
G
hg = L
2354 (1+902 K
. G
Jp = % 8y 8§y

E, K, G = elastic Young's modulus, bulk modulus and shear modulus, respectively,

a = tan ¢

A/9+12 tan? ¢

the angle of internal friction

Tkk %

-_ + J
s 3 9

S
]

1.2,3, Kinematic Constraints
Plane strain conditions impose a kinematic constraint upon the deforming

solid. In relation to elastic-plastic behavior, a consequence is that the yield sur-

14



surface from the elastic side ~nd plastic side do not, in general, coincide (Baker
et.al 1969). Consider the deformation of a body undergoing deformation. F, the
set of all admissible deformation, is contained in the six-dimensional vector
space S spanned by components r; of the strain tensor. A kinematic constraint
can be written as

Cekp) = 0 (I-26)
and the admissible deformation is restricted to the intersection of F with the hyper-
plane in S defined by equation I-268, If several constraints are present, the admiss-

ible deformation is restricted to
n

N [cl € = o] (1-27)
{=1

As the multiple intersection reduces the dimension of the vector space by n, it is
clear that n cannot exceed six,

Consider a single constraint, In differential form the equation is

Ckl ¢kl = 0 (1-28)
where coefficients C) depend upon ¢, ...

As elastic-plastic behavior is studied with reference to loading paths in
the stress space V, it is necessary that kinematic constraints be rewritten as
constraints on stress, Here, for no plastic strain, we simply use the inverse of
equation I-8 to write equation I-27as

Cx1 Cximn ';'mn E 0 (I-29)

or Gmn Ve 0 (I-30)
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where Cximn = [ Eklmn] (I-31)

and Gmn = Ck1 Ckimn (1-32)

For the case of not all of é"kl vanishing, two alternative procedures are available,

Using definition of elastic strain tensor,

ekl = €'kl + "k (I-33)

If Tklmn is the inverse of Skimn 1P equation I-13

ekl = Ckimn ®mn* Tklmn “mn (I-34)
= [Iklpq * Tkimn Emnpq] ¢ bq (I-35)

= b 1-36
Kiipg ©'pq (1-36)

where Iklp q is a fourth rank identity tensor. Thus the constraint is expressed by

Cafia = i Kipq *'pq - (1-37)

= Ck1 Kklpq Cpgmn Tmn (I-38)

= Lyjn Smn= 0 (I-39)

where Tape + Ci [rklpq % Erqu] € oqnn (1-40)

An alternative procedure is to use the noi'mality rule and to satisfy the constraint
both upon loading an(i unloading i.e. Cyy ’;'kl =0 =Gy é"kl . Then the first equa-

tion is identical with equation I-29 but the second equation gives

Cg N & =0 (I-41)
30' kl
Equation I-41 may or may not coincide with equation I-39, Equations I-29 and I-39

have linear relationship between incremental stresses and describe hyperplanes

16



tangent to any loading path in the stress space V. As the two equations are in
general different, there is a slope ciscontinuity in the stress path as plastic
straining begins upon reaching the boundary B of D. We note in particular that
proportional stress paths in V may not he possible in the presence of kinematic
constraints, In the case of linear elaslicity, let equation I-30 define a plane
passing through the origin in V, A proportional loading path lying in this plane
1s possible upto the point of intersection with boundary B, Beyond that, upon
loading, stress path has to be in the surface determined by Equation I-39 and
this will in general be non-planar, If loading is continued to a certain point
along this surface, unloading therefore will be along a path lying in a plane
parallel to the original loading plane but different fromit and not passing through
the origin, Thus unloading to initial state is impossible, Thia corresponds to
setting up of residual stresses corresponding to kinematic constraints,
Specifically considering plane strain conditions and elastic-perfectly
plastic Mohr-Coulomb material, the mapping g from the set of all admissible

stress states to the positive interval [o, f ]s

Tkk %
g(qj) =a g *+ Jo 3 (I-42)
Tkk
2 4oy - da
Linear isotropic elasticity implies, for E"u =0
- -1 .
ey T FE oy T EL Ok (149}
Plane strain condition implies
Cls = t23 — C33 =0 (1'45)

17
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From equations I-44 and I-45

013 = 03 = 0 (1-46)

Tag = V (a’u + 0'22) (1-47)

'}
For ¢ 1y not all vanishing, using normality rule
RN EO T 2T
i K 2 Jp}

okk
% +738-"7T =0

23,4
2 . _ 20J35' . 711 + 722
or Tg3= -0 Jzi + (011 +0g9) (I-48)

Equations I-47 and I-48 define different surfaces in a three-dimensional space
spanned by ¢,,, 095, ¢34, Let their intersectionswith B be respectively, P and
Q. The stress path is constrained to lie in tha nlane defined by equation I-47 for
stress stotes in the interior of D and for neutral loading, For plastic deformation
to occur the stress path must lie in the surface defined by equation I-48, For a
continuous stress path to be possible, P and Q must coincide. In general this
is not the case, Figure I-7 illustrates the difference between the surfaces P
and Q for Mohr-Coulomb plane strain case,

Considering that the stresses o054 do not contribute to energy/work of the
system, it appears reasonable to assume that progress from P to Q is possible

with gradually increasing the value of o33. This 7ould amount to following the
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boundary B, Growth of o33 in progress from P to Q and the behavior upon unloading
are not clearly understood. Later investigations may throw light on this aspect of
material behavior., For the purpose of the computer program in Chapter III, it is
assumed that elastic loading in plane strain can be continued upto a point from which
the transition to plastic plane strain loading is possible merely by adding a residual

value of 744, Referring to Drucker and Prager (1952), this is given by

k

I = 8(0)7s 799:719)

2 b
3 11~ ©C 2
2 8O+ o) + V1-307 [__11 LT ]

1.3, Stress-Strain Behaviar of Jointed/Cracked Rock

Mathematical simulation of behavior of jointed rock must allow for closing
of pre-existing open joints under compressive loads tollowed by linear elastic
behavior upto initiation of fracture. After fracture occurs, the material cannot
take any tension locally in the direction normal to the plane of crack. Non-monotonic
loads may involve closing-cracking-closing cycles.

The finite element method has been applied to jointed rock (Anderson and
Dodd, 1966; Goodman et al, 1968; Duncan and Goodman, 1968; Malina, 1971).
Anderson and Dodd used pin ended one-dimensional elements across a fault to
allow compressive stresses to be transferred in the direction normal to the fault,
The fault plane was assumed to have no resistance against shear or tensile loads,

This capability is now routinely incorporated in most finite element programs, A

20



two-dimensional 'soft' materiai element has long been used to represent wenk
joint planes in rock, Duncan and Goodman (1968) object to this on the basis of
large number of elements needed to ensure a reasonable 'aspect ratio' in shape
of elements, This becomes a problem for elements representing very thin joints,
A one-dimensional element with shear and normal stiffness characteristics was
proposed by Goodman et al (1968) to eliminate this objection. Recently (1971),
the same investigators have introduced nonlinear properties in this type of ele-
ment, This apprcach is quite effective for the case of pre-existing joints in rock.
For well defined orthogonal joint svstems, an orthotropic continuum approach
was suggested by Duncan and Goodman (1968). Christian is credited (Einstein,
Bruhn and Hirschfeld, 1970) with development of an element capable of simulating
constant shear and residual shear characteristics,

In all these investigations, a distinct set of elements is used to represent
the joint, This is alright for pre-existing joints but is impracticable for dis-
continuities arising as a result of fracture under applied load, To use the same
procedure both for pre-existing joints as well as post failure cracks, it is nec-
essary to allow cracks and joints within elements. Then, the mesh layout is
more flexible and arbitrary failure laws can be used. Malina (1971) used this
approach to study failure along joint planes and then went on to compute the
amount of slip and accompanying stress redistribution on the basis of deforma-

tion or slip theory of plasticity.
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Apparently, a bimodular analysis procedure (Sandhu and Wilson, 1970)
can be used to represent pre-existing joints as well as fractures, Bimodularity
would be dependent upon the joint opening. However, noting that fractured or
open jointed rock has no resistance to tension in the direction normal to that of
fracture, a simple approach following the procedure introduced by Zienkiewicz
et al (1968) is more convenient, The 'no tension' method of Zienkiewicz consists
of first obtaining a solution assuming the system to be linear elastic, Then the
elements in tension are relizved of the tensile stresses by application of self-
equilibrating forces in elements and at nodal points, This gives an iterative
scheme for redistribution of loads to surrounding rock and a lower bound to
the exact solution, This approach is essentially an orthotropic continuum
approach with the orthotropy being applied to individual elements depending
upon the orientation of the fracture plane, The fracture plane defines also a
plane of material orthotropy, The relationship between principal stresses and
strains can be written as

Ty Cu1 Ci12 €1
= (1-50)
; T2 ‘ Ciz2 Ca K

or symbolically
op = Cp €p (I-51)

The laws of transformation of stress and strain give,

€4 cos2 @ sinZ @ singcospl | €tx

(I-52)
€y sin2 @ cos2e -sin6cos8| | Vxy
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and T "cos® n sin’ 0 1
» ’ 'l
oy = |sin® 0 cos® @ ! (1-563)
]
"xy Llln A cos @ ~8in 0 cos A 4
where o, Tys Txy 8T€ components of stress and ¢, ty+ Yxy 8T® components of

strain in x, y coordinate system and 0 is the angle between the principal direction

1 and x-axis, Symbolically, the above equations are
o = JT (1'5‘)

e, =J ¢ (1-56)

Substitution in I-51 gives

¢ = JT Cp Je (1-56)
e Ce¢ (I-57)
where c:=J7 C, J (1-68)

Equation I-58 gives the transformution for stress-strain relation for principal
direction to any arbitrary choice of coordinates, The matrix C is singular only
for 6 = 0 or 90°, It is thus possible to use the relationship in principal siresses
and principal strains as the starting point,

In finite element analysis procedures, the stiffness mxtrix for the system

is the sum of element stiffnesses.

K = Z kM (1-69)
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where K is the system stiffness, k™ is the stiffness of the nth element, and Z
is viewed as a direct stiffness summation operator. Further, element stiffness

is related to constitutive relationship through the equation

K™ =Vm/[bT c b] dv (1-60)

where b is the matrix relating strains to nodal point displacements, and V is the

volume of the element, Using Equation I-58, the integrand in I-60 can be written

blcb=1b" 3T cpdb (1-61)
=T JT o (1-62)
= BT o (1-63)

where BT = bT JT relates principal stresses to nodal point forces,

Occurrence of fracture in an element reduces its ability to take tensile
stresses normal to the fracture plane, Also there can be no shear transmitted
across a crack which therefore is a principal direction. Thus, it is reasonable
to reanalyze the system assigning an orthotropic constitutive relationship and a
presecribed principal direction to the element containing a fracture, The proce-
dure is to be repeated until no further fracturing occurs under a given load. To
allow for nonlinearity introduced by progressive cracking, incremental procedures
are required,

In Zienkiewicz et al (1968), a change in element stiffness was considered

equivalent to a pseudo-load, Thus an iterative solution scheme was set up in
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which each iteration only involved a back-substitution operation. The pseudo-
loads were computed as equivalent to tensile principal stresses. This is satis-
factory when both principal stresses are tensile. However, when only one of
the principal stresses is tensile, use of pseudo-load corresponding to one prin-
cipal stress introduces a non-symmetric constitutive law, Actually if the phy-
sical concept of 'unloading without any displacements' be followed, a change in
the second principal stress corresponding to Poission's effect due to the first

stress must be included, This modification is included in the computer program

in Chapter IV,
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Chapter II, The Finite Element Method

2,1, Basic Concepts

A boundary value problem can be stated in the form

Au =fon F (II-1)

where u is the unknown function to be determined, A is an operator, and f is the
'foreing' function. F is the domain of interest and may be an open, connected,
bounded spatial region embedded in R3 or in a cartesian product, RS x [0, o)
where [0, o) 18 the non-negative time interval, In addition to the field equation
II-1, there will be some conditions to be satsifed on boundary S of F, For A
linear positive, it can be shown that equation II-1 has a unique solution, Nec-
essarily, any approximate solution will in general not coincide with the unique
solution of II-1 and consequently no approximate solution is expected to satisfy
the field equation as well as the boundary conditions completely.

Solutions to engineering problems as well as the forcing functions are
in general bounded and therefore belong to Lg,the space of square integrable
function, However u may be contained in a subset D of L, such that A is defined
on D. We assume that D is dense in Ly. If the set of functions { e k=1,2,.. m}

is an orthonormal basis in D, then any function u can be expressed as an infinite

sum; N
u=2X ak 9% 1-2)

A scheme to generate approximate solutions is to use a finite set of terms in the
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infinite sum above. Thus, we use
N

u = kE 1 ak ¢k (H-3)

as an approximation, The approximation process then consists of appropriate
choice of N, ¢, and the coefficients a,, Several alternative procedures are avail-
able, The finite element method is a special process of selection of a finite sub-
set of the basis { ¢k} . The coefficients ay are evaluated by an extension of Ritz
method or other standard procedures.,

The finite element method is well documented in literature (Zienkiewicz,
1967; Bell and Holand, WPAFB Conference, 1965,1968; Felippa, 1966; Clough, 1960,
1965), Its theoretical basis (Oden, 1969; de Arantes e Oliveira, 1968, Zlamal,
1968; Melkes, 1970) and relationship to variational principles (Melosh, 1963, Pian
and Tong, 1969) have been examined, Essentially, a finite element idealization
partitions the spatial region F into a finite number of nontrivial discrete elements
or subregions. The geometry of the elements is defined by a set of points in space
called the nodal points of the system,

Over an element e let an approximation to u be

Ne
w = T ake ake (I1-3)
k=1
or in matrix form
u® = [3° ]T { ae} (II-4)

—-e,T -
where { ¢e } is a row vector consisting of ¢ke as its elements and {ae}is a
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column vector of coefficients ake. Evaluating the function at nodal points

()7 ()
where {uie} is the vector of nodal point values of the function andféle } T i the
metrix of base functions evaluated at each nodal point. Rows and columns of[ﬁe]T
are linearly independent, If square, the matrix is invertible, If the number of
nodal peints i8s not equal to the number of independent base functions, a least

square procedure can be used for inversion, Hence, we can write
—eqT] !
e e e
(e} [BT]7 o)

[A]7! { e} (T1-6)
where A= [tﬁe] T

Substituting II-6 in II-5

T
“{E
- fo° }T fu®) (I1-8)
whore{d, 0} can now be regarded as a set of interpolating functions relating nodal

point values of a function to the value of an arbitrary point within the element.

2,2, A Potential Energy Formulation

We aesume the rock continuum or 'discontinuum' to be stepwise linear for

sufficiently wmnll atepa in londing, For such a case the governing equations are

“kik Tk Pkt PF =0 (1=}
Tkl u(k,l) (H-ll)
28



where Tifs €t » Eijkl » Fi,u are components respectively,of the symmetric
stress tensor, the symmetric strain tensor, the isothermal elasticity tensor, the
body forces vector per unit mass, and the displacement vector, » is the mass
density and B 18 the kronecker delta, ;11 are components of initial stress cor-
responding to zero displacement and 7 is the pore pressure, Potential energy
formulation uses the functional

n = F/[.ij Eljkltkl = ui‘n’j"zlij a'ij+U1’0'u
-2yp K - 2u17r’i+2qj ;u]dF

+ / ui(d'ijnj-2?1)ds - /(ui-szi) ojjny ds  (O-12)
'1 82

where we have included the boundary condition

A
Gij nj = ti on 8, (II-13)
A

8, 89 are complementary subsets of S the boundary of F and nj are components

of unit vector normal to surface,

Symmetry of the field equations leads to the functional

q- l_/‘[‘11 Ejgkitia - 2550y +2Y g oy =29 P R

-2 /uitids - 2 /(ui-ci) oy ny ds (I1-15)
8

81

Further assuming that we restrict our choice of e 0 Yy such that II-11 and II-14
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are identically satisficd, the functional in II-15 reduces to

Q = F/[ui'j Eijkl uk, 1 ~2uip K -2y n,i*zui,j—’ij] dF

A
-2 ui ti ds (II-16)

81

m

Replacing F f by Z 1 17":“ where F™ represents the subregion or element
m=

m, and using suitable interpolation scheme to express the integrandin terms of nodal

point vectors of displacement, vanishing of variation of the functional yields the matrix

equation

[k] {u} = (R} (1-17)

where [K] = r; [ -km] (I-18)
m=1

{n}:m:;l “L"'z +3p’“‘ - 3Q’“$ +!Tm‘ ] (T-19)

Components of element stiffness matrix and load vectors are:

m m m
Ky = f S n E ¢ 1-20
y = g Fimn Emopg %p,q (H-20)
L - [n p 4 F (@-21)
F
m - f m _
R Im b1 T (TI-22)

i
qQ

m A

m m
Q = [ ¢im,n mn (I-23)

m

]
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and "'ij are components of a matrix formed by the row vectors{d)e } 2 corresponding
to each degree of displacement freedom. The vectors {L™}, {P™}, {Q™ b, ™}
represent the contribution to the load vector made respectively by the body forces,
the pore pressure gradients, the initial stresses and the boundary loads in the ele-

ment m,

2.3 Incremental A-nalxsis

In case of incremental construction and incremental application of loade,
the loads, stresses and displacements for any incremental step can be written as
{Rn} , {on} and {un}. Then for the next stage, {on} and {un} can be regarded
as the initial stresses and the initial displacements for the structural system, Thus

the matrix equations are
[&'Nl] {%ﬂ = “n} = [Km_l]{Aun} = {ARn> (II-25)

where m m = m =
ARn = X ;AL : + ;AP : - zAQ ‘ + EAT ‘ (T1-26)
m=1
and {ALm} , { Apm} ,{AQm} ’ { TN Tm} are increments in the respective quantities,
For elastic-plastic analysis, the stiffness depends upon stress and has to be
re-evaluated at small increments of load, To ensure manageable computation, the

increments are kept at the largest practicable without loss of accuracy,
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CHAPTER 111

COMFUTER PROGRAM FOR PLANE STRAIN ANALYSIS OF
ELASTIC-PLASTIC MUHR-COULOMB MATERIALS
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Chapter I, Conipuser Frogesun Mlane Strain Analysis of
Elastic- Plastic Mohr-Coulomb Materials

3.1, Organization

Computer program described here is haged on the theory presented earlier
in this report, The program is written in Fortran IV language,

The program is intended to calculate stresses and strains for a plane strain
problem in rock mechanics. Mohr-Coulomh yield criterion has been used. It
makes allowance for the boundary conditions, residual stresses, stresses due to
temperature change, and varying pressure houndaries, The structure may consist
of different materials, It uses Wilson's (1965) quadrilateral elements and generates
stiffness in line with the integration procedures discussed by Felippa (1966).

The principal program called MAIN controls all the data input and control
information, It does the basic system initialization and prints the control data and
material and geometrical properties of the structure, Stiffness formulation, equa-
tion solving and stress calculations are done by the subroutines called by MAIN,
3.12, Stiffness and Load Matrices

Stiffness matrix for each analysis is computed in blocks by the subroutine
STIFF, For the element stiffness it calls QUAD for triangular and quadrilateral
elements which have been allowed by this program, The element stiffness {8 added
to the total stiffness using the direct stiffness technique., Concentrated loads are
included in the load matrix, Equations are modified for the displacement boundary

conditions by calling subroutine MODIFY, For the stress-strain matrix QUAD
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calls STRSTR, With the constitutive tuw being avatiable, stiffness of the system
and foad matrix are computed in the STiFL' subroutine,
3.13. Calculations of Displacements

After the stifiness and joad matrices for a stage have beeri computed, the
resuiting equatfons ire solved by calling subroutine BANSOL, This uses Gaussian
climiration technique for banded e¢quations by Wilson (1963), In this the triangulari-
zution of stiffness matrix is done, Back substitution through the triangulized matrix
gives the solution,
2. 14, Calculutions of Stresees

In the ficst eycle o purely «#lastic solution is obiained for the problem by solving

[RC] fr} { R} (0I-1)

wh(.m[l\"‘]is the olastic stiffness

r{ is the displacement vector

{R} is the load vector,

This can be done easily by assuming all the eluiaents to be elastic to begin with,
As the problem is a nonlinear one, thereforc this solution will not be correct, In
our analysis the system is assumed to be stepwise linear hetween the yielding of
one clement to the other, This is assumed not to cause any significant error, In
IFig. 3-1 point A represents the initial stresses and C the final stresses in an ¢le-
ment, The curve f - k represents the yield surface, For tiose elements which
hecome plastic under this loading R meets the surface f = k at pt. B, It is seen
casily that for the element it is not possible to Le 'oaded to po'nt C but it can he

loaded to point B only, assuming proportional loading,



—
lLet Sr :2 B: . Sr is called the stress ratio, ‘I'o caleulate S'_ w
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Ty = O, (- Sp - S0y Ve
As the point B lies on the yleld surface f = k
f [ (c'ru)i (a- Sr) L8, (cu)f] = k (1I1-2)
From equation (ITI-2) the value of S can be calculated. This stresrs ratio repre-
sents the fraction by which the increment in stress is to be scaled to bring the final
load on the yield surface,

Value of S, is calculated for all the elements, The element in which the
final stress state is farthest from the yield surface will have the :ninimum stress
ratio, If we scale down the displacements and stresses in this ratio, we shall have
the stresses and straine precisely at the point when the system has its first element
just going into the plastic region from purely elastic system,

In the next step the element having stress ratio equal to the minimum value
is assumed to be plastic, To economize on computer time all such elements which
have their value of stress ratio in the vicinity of minimum were alsc allowed to go

plastic, As the stress-strain matrix is known the stiffness is calculated again and

equation [K,] { r,} - { 31} (ITI-3)
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is solved, This procedure is repeated until the whole load has been applied to
the system and cumulative stresses and displacements calculated, The stresses

in (i-1)th step become the initial stresses for ith step,
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3.2, Input Data Preparation

1.

Control Card (A6). This card will carry the characters START in columns
1-5, This will start the processing of the data deck which consists of the
following set of cards,

Job Title (72H). This card will give the descriptive identification for

the job,

Control Information (415, 2F10,2, I5)

Information Columns
Total number of nodal points 1-5

Total number of elements 6 - 10
Number of different materials 11 - 15
Number of pressure boundary cards 16 - 20
Body Force in x~direction 21 - 30
Body Force in y-direction 31 - 40
Number of Approximations 41 - 45

Material Property Cards, One set of 2 cards is provided for each material,
In each set:
a, first card (115, F10.0) will give the following information

Material identification number 1-5

Maas density of the material 6 -156

b, The second card will carry the foilowing information (4F10,0)
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prowones

[91]

Information Columns
Elastie Modulus 1-10
Poisson's Ratio 11 - 20
Cohesion 21 - 30
Friction Angle in Degrecs 31 - 40

Nodal Point Cards (I5, F5.0, 5F 10,0).

One card for each nodal point with the following information:

Nodal Point number 1-5

Type of Nodal point 6-10
X-ordinate 11 - 20
Y-ordinate 21 -30
XR 31 - 40
XZ 41 - 50

If the number in columns 6 - 10 is

Zero XR is the specified X-load and XZ is the specified Y-load

1 XR is the specified X~displacement and XZ is the specified Y-load

2 XR is the specified X-load and XZ is the specified Y-displacement

3 XR is the specified X-displacement and XZ is the specified Y-displaceme

All loads are considered to bhe total forces acting on an element of unit thickness,
Nodal point cards must be in numerical sequence, If cards are omitted, the

omitted nodal points are generated at equal intervals along a straight line between
the defined nodul points, The type of the nodal point, as well as XR, XZ, are set

equal to zero,




Element Cards (6I5).

Information

Number of element
Nodal point I
Nodal point J
Nodal point K
Nodal point L

Material type

One card for each element will provide the following data,

Columns
1-5
6 -10
11 - 15
16 - 20
21 - 25
26 - 30

Nodal points I,J,K, L are corners of each individual element in a counter-

clockwise order for a right handed system of coordinates, For triangular

elements set nodal point L. same as nodal point K, The element cards must

be in the numerical sequence, Any cards that are omitted will be automatically

generated in the program by incrementing cach of the I,J,K, and L nodal points

by one, The material

type wil! be taken the same as for the last element defined.

Pressure Boundary Cards (215, 2F10,.0), One card for each boundary element

which is subjected to 4 normal pressurc will carry the following information:

Information

Nodal Point I

Nodal Point J
Normal Pressure at I

Normal Pressure at J

Columns



| \ \

As shown in the sketch, the boundary element must be on the left as one

progresses from I to J, Surface tensile forces is input as a negative pressure,

Output Information:

The following information is developed and printed by the program:

1. Reprint of input data
2, Nodal point displacements
3. Stresses at the center of each element
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3.3 Program listing

50

55

60

10
80

PLANE STRAIN ANALYSIS OF ELASTIC-PLASTIC MOHR-COULOMB MATERIALS

IMPLICIT REAL®8(A-H,0-2)

COMMON ACELR,ACELZ,VOL,TEMP, SIGI(400,7),HED(18)+E(4412),RO(12),

*R(500),2(500),UR(500),UZ(500),CODE(500),T(500),PR(100,2),
*NUMMAT ¢ NUMPC ¢y NyMTYPE , KKK s NUMNP , NUMEL +NNN,
*18C(100),JBC(100)yMTAG(400)

COMMON/ARG/ RR{5),22(5),S(10,10)+P(8),ST(3,10),C(343),SIGIT),EE(4)

*,B80(1000),SR1,SR2,
*RATIO(400) ¢LM{4), IX(400¢5)sXC,yYC
COMMON /BANARG/ MBAND,NULMBLK,B(108),A(108,54)
DIMENSION WORD(2)

DATA WORD/ 6HSTART (6HSTOP /
CALL ERRSET(207+256+-141)
CALL ERRSET(208,2569~191)

READ (5,1006) WORD1

IF (WORD1.,EQ.WORO(1)) GO TO 50

IF (WORD1.EQ.WORD(2)) STOP

GO TO 5

READ (5,1000) HED¢ NUMNP, NUMEL yNUMMAT y NUMPC ¢ ACELRyACELZ NP
WRITE(692000) HEDy NUMNP, NUMEL ¢y NUMMAT ,NUMPC y ACELRyACELZ NP
DO 55 M=],NUMMAT

READ (541001) MTYPE,RO(MTYPE)

WRITE(6,2001) MTYPE,RO(MTYPE)

READ (541002) (E(JyMTYPEDJ=1,y4)

WRITE(642002) (E(JyMTYPE) yJd=1,4)

CONT INUE

WRITE (6,2003)
L=0

READ (541003) N,CODEUN) ¢R(NDIoZIN)oURIN) yUZIN){T(N)
NL=L¢1

IX=N-L
DR={(R(N)=-R{L))/IX
DZ=(Z(N)=Z(L))/2X
DT={(T(N)-T(L))/2ZX
L=L+l

IF(N-L) 100,90,80
CODE(L)=0,0
R{L)=R(L~-1)+DR
2(L)=2(tL~-1)+02
T(L)=T(L-1)+DT
URIL)=0,0
uzZ(L)=0.0
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90
100

110

130
135
140

150

160
170

180
190

290

300
310

320
325
340

GO 7O 70

WRITE (642004) (K,CODE(K) RIK) Z(K)yUR(KDUZ(KD)gTE(K)ypKaNLyN)
[F(NUMNP-N) 100,110,60

WRITE (6,2005) N

CALL EXIT

CONTINUE

WRITE (6,2006)

N=0

READ (591004) Mu(IXIMoI)gI=195),(SIGI(Myl)yI=1,4)
IX=M-N

DO 135 I=1,4

SIGUII=(SIGI(MyI)=-SIGI(N,I))/IX

N=N+1

[F (M=-N) 170,170,150

IX(Ngl)=IX(N=-1o91)¢1

IX(Ny2)=IXIN=-142)¢1

IX(Ny3¥=IX(N=-1,3)¢1

IX(Nyod=IX(N=-194)¢1

IX{NsSI=IX(N=1,5)

00 160 I=1,4

SIGI(NyI)=SIGI(N-1,1)¢SIG(I)

WRITE(642007) No(IXINsI) 9I=195)s(SIGI(NoI)oI=lo4)
[F (M=N) 180,180,140

I[F (NUMEL-N) 190,190,130

CONTINUE

[F (NUMPC) 290,310,290

WRITE (6,2008)

DO 300 L=1,NUMPC

READ (5,1005) IBC(L)sJBCI(L)oPR(LsLIPR(Ly2)
WRITE (6,2009) IBC(L),JBC(L)PRILyL)PRIL,2)
CONT INUE

J=0

D0 340 N=1,NUMEL
MTAG(N)=0
SIGI(N,5)=0.
SIGI(N,61=0,
SIGI(N,7)=0,

D0 340 1=1,4

DO 325 L=1,4
KK=TABS(IX{NyI}=IX(N,L))
IF (KK=-J) 325,325,320
J=KK

CONTINUE

CONTINUE

MBAND=2%J¢2
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WRITE(6+1007) MBAND
00 350 N=1,NUMNP
BO(2%N-1)=0.

350 BNO(2*N) =0,

SR1=1.0
SR2=0.,0
D0 500 NNN=1,NP
KKK=0
CALL STIFF
CALL BANSOL
CALL STRESS
DO 400 N=1,NUMNP
NN=2*N
BOINN=1)=BO(NN-1)+B(NN-1)
BO(NN)I=BO(NN)+B(NN)
400 CONTINUE
WRITE(6,2010) (NyBO(2%N-1),B0(2%N),N=],NUMNP)
IF(KKK.EQ.0) CALL EXIT
500 CONTINUE
GO T0 5

1000 FORMAT (18A4/741542F10.24215)

1001 FORMAT (115,1F10.0)

1002 FORMAT (6F10,0)

1003 FORMAT (I54F5.0¢5F10.0)

1004 FORMAT(615,4F10.0)

1005 FORMAT (215,2F10.0)

1006 FORMAT{A6)

1007 FORMAT({ * BAND WIDTH FOR THIS DATA = * , [5 )
2000 FORMAT (1H1 1BA4/

1 30HO NUMBER OF NODAL POINTS====== 13 /
2 30HO NUMBER OF ELEMENTS-====-w=-- 13/
3 30H0O NUMBER OF DIFF. MATERIALS=-- 13 /
4 30HO NUMBER OF PRESSURE CARDS==-- [3 /
5 30HO X-ACCELERATION=====cc—cccc=a El2.4/
6 30HO Y-ACCELERATION========cccac-= El2.4/
T 30HO NUMBER OF APPROXIMATIONS--=-- 112)

2001 FORMAT (17HOMATERIAL NUMBER# 13, 15H, MASS DENSITY# El2.4)
2002 FORMAT{16HOELASTIC MODULUS 14X 2HNU BX B8HCOHESION 2X 14HFRICTIUN A
*NGLE/(2E16.592F16.5)) .
2003 FORMAT (111HLINODAL POINTY TYPE X ORDINATE VY ORDINATE X LO
1A0 OR DISPLACEMENT Y LOAD OR DISPLACEMENT PORE PRESSURE )

2004 FORMAT (1124F12.292F1243¢92E24.74F15.3)

2005 FORMAT (26HONODAL POINT CARD ERROR N# [5)

2006 FORMAT(96H1ELEMENT NO. [ J K L MATERIAL X=-ST
*RESS Y-STRESS XY=-STRESS L-STRESS)

2007 FORMATI(I12+41641112,4F12.3)
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2008 FORMAT (29HOPRESSURE BOUNOARY CUNDITIONS/ 4O0H [ J
*URE 1 PRESSURE J
2009 FORMAT (21642F12.3)

2010 FORMAT (12HIN,P,
END

NUMBER 18X 2HUX 18X 2HUY / (111242€20.7))
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SUBROUTINE STIFF

IMPLICIT REAL®8(A-Hy0-1)

COMMOMN ACELR,ACELZ+VOL,TEMP, SIGI(400,7)oHED(18),E(4,12),RO(12),
*R(500)42(500) ,UR(500) yUZ(500),CODE(500),T(500)PR(1G0+2),
*NUMMAT o NUMPC y Ny MTYPE ¢ KKK ¢ NUMNP ¢ NUMEL oNNN,
*[BC(100),JBC(100)yMTAG(400)

COMMON/ARG/ RR(S5)¢22(5)¢S(10,10),P(8),4ST(3,10),C(3,3),SIG(T),EE(4)
*,80(1000)9SR1,ySR2,
*RATIO(400) yLM(4),IX(400+5)4XCyYC

COMMON /BANARG/ MBAND,NUMBLK,B(108),A(108,54&)

REWIND 2

NR=27

ND=2%«NB

ND2=2#ND

STOP=0,0

NUMBLK=0

D0 S0 N=1,ND2

BIN)=0,0

DO 50 M=1,ND
S0 A(NyM)=0.0

60 NUMBLK=NUMBLK+1

NH=NB*{ NUMBLK+1)

NM=NH-NB

NL=NM-=NR+1

KSHIFT=2%&NL-2

DN 210 N=1,NUMEL

IF (IX{Ns5)) 210,210,465
65 DO 80 I=1,4

IF (IX{NyI)=NL) 80,70,70
T0 IF (IX(NyI)=-NM) 90,90,80
80 CONTINUE

GO T0 210
90 CALL QUAD

IX{NyS)==1X(Ny5)

IF(vOoL) 100,100,110
100 WRITE(6,42000) N

STOP=1,0

110 MM=¢
IFCIX(N93)=IX(Ny«)) 130,120,130
120 MM=3
130 DO 140 I=1.MM
140 LMIT)=2%IX(NyI)=-2
00 200 I=1,MM



S s M s oeme Oum GED O P B D OB e e

o D

175
180

196
200
210

220

225

235
2640

265
270
275
300
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N0 200 Kel,2
T1=sLM(1)oK=KSHIFY
KKe2¢]=2¢K
REILIeBLILDOP(KK)

D0 200 Jel,MM

00 200 L=1,2
JdslMlJ)eoL=11¢l=-KSHIFT
LLe20J=2¢L

1F(JJ) 200,200,179
{FIND-JJ) 180,199,199
WRITE (6,2001) N
STOPe1,.0

G0 Y0 210
ALLLodJ)oAlLLodd)oSIRK,LL)
CONT INVE

CONT INUE

DO 220 N=NL,NM
Ke2O0N-KSHIFT
BIXK)eBIK)ISUL2IN)
Bi(K=1)=B(K=L)¢URIN)
TIN) =0,

UZIN)I=0,

UR(N)=O,

IF (NUMPC) 229,310,229
0N 300 Le]l,NUNPC
I=IR8CIL)

JeJRCIL)

PReZ(l)=2(J)
NDI=R(JI=RLY)
PP2s(PR(L,2)¢PRIL,L) ) /0.
PPL=PP2¢PR(L,1) /6.,
PP2aPP2¢PRIL,,2) /6.
112201 =KSHIFTY
JJu20)-KSHIFT

IFCLL) 265,205,239
IF(I1=ND) 260,260,265
B(ll=1ieB(l1=1)ePPlODR
ALl IeR(lLl)ePPLlOO2
1FtJs) 300,300,270
IF(JJ=-ND) 279,279,300
8(JJ=1)eB(JJ=-1)ePP2ODR
REJIDI=B(IIIePP20D2
CONT INVE

00 400 “=NL,NM
IF (M=NUMNP) 319,315,400
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315 UsUFR (M)
N=2¢ =) -KSHIFT
IF (CONE(M)) 390,400,316
316 IF (CODE(M)=1,) 317,370,317
317 IF (CODE(M)=-2.) 318,390,118
I 318 1F (CODE(M)I-3,.) 390,380,390
370 CALL MOODIFYIA,B,ND29MBANDN,U)
GO 70 400
380 CALL MOOIFY(A,8,ND2,MBAND,N,U)
390 Usylmn)
NesNe L
CALL MODIFY(A,8oND2oMBAND,NoVU)
400 CONTINUVE

WRITE (2) (BINIo(AINIM) M=l oMBAND) N1 (ND)

00 420 N=],ND

KeNeND

BIN)oB(K)

8({K)=0,0

N0 420 M=} (ND

AINJM)IsA(K M)
420 A(X M)=0,0

IF (NM=NUMNP) 60,480,480
480 CONTINUE

ACELR=0,

ACELZ=0,

NUMPC=0

IFISTOP) 490,300,490
490 CALL EXIT
SO0 RETURN

2000 FORMAT (26HONEGATIVE AREA ELENENT NO. 14)

2001 FORMAY (29HOBAND WIDTH EXCEEDS ALLOWABLE 14)
END
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SUBROUTINE QUAD

IMPLICIT REAL®B(A-H,0-1)

COMMON ACELR¢ACELZ +VOLTEMP, SIGI(400+7)oHEDI108),E(4,12),RO(12),
SR(S500)+2(500) yUR(S00) UL(500)CODEI500),T(500)4PRI1GCO,2),
SNUMMAT o NUMPC ¢ NoMTYPE ¢ KKK ¢ NUMNP ¢ NUMEL ¢ NNN
¢1BC(100),J8CL100) MTAGI400)

COMMON/ARG/ RRES) oZ2US)oSt10010)PEBD)oSTEI90100,CE393),SIGIT) EELS)
¢,80(10C0)sSR19SR2,
SRATIO(400) oL M( &) IX{&00¢5) ¢XCyVC

COMMON /BANARG/ MBAND NUMBLK,8(108),A(108,54)

DIMENSION U3 VI

CALL STRSTR
NO 130 J=1,10
00 120 11,3

120 ST(14J0=0,

00 130 I=}1,10

130 Stl1,J0=0,
0N 140 I=1,6
NPPaIX(Ny1)

RR(I)=R(NPP)

160 22(1)=2(NPP)
XCs(RR(1IGRR(2)0RRISIGRRIG) ) /s,
YCa(220L)eZ202)022(3)02216) ) /4,
RR(S5)=XxC
12(S)=YC
KeS
Jei
I=4
LM(3)=9
NT=6
IFCIXINGI)=IX(Ne&)) 160,150,160

150 NT=|
LM(3)eS
I=}

K=3

Je2
XC=(RRIL1)I¢RR(2)6RR( 3D/,
YC=(Z22C1)42202)622(3))/),
RR{S)=RR())

2L(S)I=22( )

160 DO 200 NN=1,NT
LM(1)=28]~])

LM2)=28y~-]

Ul1)=22030=-22(K)
Ul2)=22(k)=22¢1)
JE3N=22¢10=22¢J)
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VI1)=RR(K)=RR{J)

VI2)=RR(T)-RR(K)

VI3)=RR(JI=RR(I)
AREA=(RRIJISUI2)¢RRITISU(LIGRRISISUIDIIN/2,
VOL=VOL*AREA

COMM=,25/AREA

XNT=NT

COM=2,0/XNT

COM=COMSCOMM

r —

00 180 L=1,3
Ii=LM(L)
STULo TR I=STULoITIOUILISCOM
ST(2411¢1)=ST(2o110))eVILISCON
ST(3,110=ST(3 11 0evVILIOCOM
ST(3o11610=ST(3o110l)oUILIOCOM
NO 180 M=],3
JJsLM(M)
SITToJdJdaStTlodINetUILIOCIL L IOUIMIeVILISCII I)OVINIOVILIOCIL,3)OU
LIM)eUILISCIL 3 )OVIN)ISCOMM
SITTeJJel0aSI1103J¢100(ULLIOCIL,200VIMICGVILICCII IICUINIOVILISCI2,
1300viMIeU(LISCIL oI VCUIN) ) SCOMM
SITTeledJelieSIITOLoJJeldetVILIOCI2,208VINICUILISCII IISUINIOUILIS
1C(2,300VIMIOVILISC(2,3)8U(M))OCONNM
StdJelellN=StITodIlod)
180 CONTINUE
1=J
JeJel
200 CONTINUE

oy o= o= O G D o =

1

- TFCIXINGINI=IXINo4)) 22002%50,220

220 DO 240 1=1,2

] KK=10-]

! N0 240 K=],KK
CCeSIKKeLloKI/SIKKSL KKeL)
00 230 J=1,3

230 ST(JoKI=ST(JeKI=CCOSTI{JoKKe))
D0 240 J=1,KK

2640 SUJoKI=S(JoKk)I=-CCOS(JoKKe1)

250 CONTINUE

o

(1=C
IF(NNN.EQ.1) GO TO 260
(BT

260 SIG(1)==SIGI{N,TT1eL)eTEMP
SIG(2)==SIGI(Ny1102)¢TEMP
SIG(3)==SIGI(NsT1103)
00 520 1=1,8
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510
520

%30

PL1)s0.0

DO 510 Jsl,yd
PUL)sP(1)eSTII 10 OSIGLND
P(1)sP(L)eVOL

OXsVOLSACELRORO(MTYPED /4,
DY=VNLSACELZSROIMTYPED /4.
N0 530 1=l,4
P(2e)spP(201) DY
P(2sl-1)eP(201~1)¢DX
RETURN

END
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SUBROUTINE STRSTR

IMPLICEY REAL®B(A=HyO=2)

COMMON ACELR.‘CELZ.VOL.'E"PQ 5561‘40007‘oHED‘l.‘OE“olZ.ORO‘lz.o
‘R"OO'.Z(’OO'oUR‘5°°.oUl‘5°°|QCODE‘SOO.Q"5°°.o'l‘lOOoz.0
‘NUNN"QNU"'CQNON'YPEOKKKQNUNNPQNU"ELQNNNO
OIDCClOOl.JBC(IOOl.NtAG(bOOl

COMMON/ ARG/ lﬂ".oll‘5‘05‘l°ol°.o"l‘o$"30[0.0“303.05‘5‘7‘QEE‘Q‘
‘ODO‘IOOO‘QSRlOSQZO

‘R"lO‘QOO‘oLH‘Q‘olx‘4°°o5.olCoVC

COMMON /BANARG/ NOANO.NUNBLK.I(IOOl.A(lOl.Sbl

IsIX{Ns 1)
JelX(N,2)
K=IX(Ny3)
LeIX{Ny&)
MTYPE=IXINGS)
VOL'OQ

YF“P'(T"l"(JlOT(KlOY(L‘lIQ.O
00 50 KK=lyé
EE(KK.'E(KKQN'VPE‘
IF(MTAGIND) 60,60, 70
CC'EE(Z.I‘Io-EE‘I"
ﬂﬂ'EE!l'l‘lo-&F‘Zl“Z'
CO“"'DNI‘I.‘CC“Z.
Cl1,1)°COMM
Cel,2)eCOMMSCC
Clle300.
Cl(2,10=Cl1,2)
Cl2,2)sCl1y1)
C(2,3)1=0.

C(3.lll0.

C(3,21=0.
C‘3o3l'05‘C0HN“IoOCCl
CC'D'ANCEECQ.IQ7.296'
88'050!'(9.0012o0'CC‘CCl
EF(4)s=CC/BB
FEC3)=3.*EELI)/BA

6o 7

0 %00
70 CC=DTANCEE(4)/57,296)

BB'DSORV(9.0012.0‘CC‘CCl

EE(4)=CC/BB

€EE(3)s3,oFE(3) /BB
CC-Z.'(I.OEECZliICSo-b.‘EEIZDl
00-(SlG!(Nol'-SlGl(NoleIZ.
BJZ-(OO'ODOS!GI(No3"‘2'l(l.-3.‘(€£(6l“2il
8J2=DSQRT (BJ2)
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BJL1=l.5%(SIGIINILI®SIGIIN,2))=3,0EE(4)*B2
ND=BJL/BJ2

BBal.¢9,8(EE(4)002)0CC

CC=3,¢EE(4)eCC-DD/3,

DDsEE(4)-DD/6.

Hlw,5¢CC/(B8B¢BJ2)
H2sD00¢CC/BB-EE(2)¢EE(3)/(BB*BI2% 1,-2,9EE(2)))
H3=,5/(80%8J2¢8J2)

B8»FE(1)/7(1.¢EE(2))
COLyLInmARS(L,~H2=-2,%H1C¢SIGI(N,1)=-H3I®(SIGI(NyL)0e2))
Cllo2)a=RBO(H20HIS(SIGIIN L)IOSIGIING2))eHIOSIGI(N,1)®SIGIIN,2))
Cllo3)==BBS(HI®SIGIINI)eHICSIGI(N,L1)*SIGIIN,3))
Clteoli=Cll,2)
Cl242)=88%(1.-H2-2.¢HLOSIGI(Ny2)=HI®(SIGI(N,2)002))
Cl293)a=BBO(HISSIGI(N,I)oHIOSIGIINy2)0SIGI(N.3))
C(3.,10sC(1,3)

C(3,2)=C(2,3)

CU3,3)sRAS(,5-HI*(SIGI(N,3)0e¢2))

RE TURN

ENOD
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SURRNUTINE MODDIFY(AsByNEQsMBANDIN,yU)

IMPLICIY REAL®B{A=H,0=2)
DIMENSION A(108,54),8(108)
N0 250 M=2,MBAND
K=N=Me]

IFIK) 239,239,230
AIK)sBIK)=AIK,M) OV
AlXoM)=0,0

K=NeM=]

IFINEQ=K) 250,240,240
B(K)aR(K)=AINM)®Y
A(NyM)=0,0

CONY INUE

A(Ny1)=1,0

BIN)=U

RE TURN

END
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" 100

125

150

20C
225

230

250

275
300

375

400

SURRQOUT INE BANSOL
IMPLICIT REAL®B(A-H,0N=2)
COMMNN /7BANARG/ MM,NUMBLK +B(108),A(108,54}

NNs=54
NL=NN¢1
NH=NNeNN
REWIND 1
REWIND 2
NB=0

60 70 1%0

NA=NB«l}

DO 125 Ns] NN
NM=NNeN
BIN)=BINM)
A(NM)=0,0

D0 125 M=) MM
A(NoM)ISA(NM M)
A(NM,M)=0,0

IF (NUMBLK-NB) 150,200,150
READ (2) (BIN)o(AINOM) ¢M=1 ,MM) ¢NaNL o NH)
IF (NB) 200,100,200

00 300 N=]¢NN

IF (AINoL)) 225,300,229
BINI=BIN)/AIN,1)

DO 275 Ls=2,MM

IF (AIN,L)) 230,279,230
CAINJLI/AIN,L)

IsNelL-1

J=0

00 250 Ksi MM

JuJel
ALLoJ)=Al10J)=C*AIN,K)
BUTI=BLII-AIN,L)SBIN)
A(NoLI=C

CONTINUE

CONT INUE

IF (NUMBLK=NB) 375,400,375
WRITE (1) (BIN)o(AIN M) oM=2,MN)N=]l,NN)
GO 10 100

00 450 M=],NN

NstiNel=M
DN 425 K=2,MM

63



b e e oum) o N G B e

4

v

¢

o o ] ] o o — —

425

450

075

500

600

e werare

LsNeK=1]
AIN)=BIN)-A(NyK)®BIL)
NM=N+NN

AINM)=C(N)
AINM,NB)=BR(N)

NB=NH=-1]

IF (NB) 475,500,475
ARACKSPACE 1

READ (1) (BIN)y(A(NyM) Mu2,MM) yN=],NN)
BACKSPACE 1

GO TN 400

K=0

U0 600 NA=] ,NUMBLK
0D 600 N=],NN
KsKel

NMsNeNN
RIK)sA(NM,NB)

RETURN
END
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SURRNUT INC STRESS

IMPLICIYT REAL®BIA-H,0-2)

CMMON ACELKGACELZ ¢VOL ¢ TEMP, SIGI (400,70 ¢HEDILS8) 4F14,412),ROC12),

O (%001, 2(5000,URIS001,UZ(500),CNOF(500),T1500)PRILCO,2),
ONUMMAT o NUMPC ¢ NoMTYPE o KKK o NUMNP ¢ NUME | ¢ NNN,
*IBCIL1N01 JRCILCOIMTAG(400)

COMMON/ ARG/ RRIS) 22191 9S(10020)ePIRIGSTIZ0000,CU3¢3)¢SIGIT)IEE(S)

¢,A0(1000),SR14SR?,
SRATIO(G00) oLMI&)IX(400,5?¢XCyYC

160
170

180

190

19%

196

COMMON /BANARG/ MAANDoNUMALK,BI10A),A(1008,54)

TOL=0,

SRe},

NUMR =0

MPRINT=0

KK=0

D0 300 N=1,NUMEL

RATIOIN)=},
IXINSI=IARS(IXIN,S))
MTYPE=IX(N,S)

CALL QUAD

MMe 4

IFTIXING II=IX(N,4)) 170,16G,170
MM=)

ND 1RO [=1,)

RR(I 120,

N0 180 Je)l MM

[1=2¢y

JJu2OIXINyJ)
RRUTISRRUTIIOSTIL o 1TI0OBLIIIOST L1 I=1000¢0J0J=1)
NO 190 1=1,3

S1G(11=0,

NO 190 J=i,)
SIGIII=SIG(I)eCIIJIORR(J)

0N 195 (=1,3

[i={es
SIGIIN,TII)=SIGIINoI)eSIGIE)
ND=(SIGII(N.S)I=SIGIINsG6)V/2,.
AJ2=(00*DD*SIGIIN,T)I*¢2)/1]1.~3,0(EE(4)002))
AJ2=DSQRTIAJ2)

AJLe ]l SO(SIGIINISIOSIGIINGG)I=3,.5EEL4)OAJ2
TAIL=AJ2¢EE(4 oA
IF(MTAG(N) . EQ.O0) GO TO 200
IF(MTAGIN) ,FOQ.2) GO TO 300
ND=DARSIFAIL~EELI))
CHECK=,02¢€EEL D)

IF (DO-CHFCK) 300,300,196

KKXe}
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CReCHICK/ND
IE(CLR=-SR) 197,300,100
197 SReCR
60 TN 300
200 CONTINUE
IF(FATLLTLEE(3!) GO TD 3CO
KKsKKe)
NO=(SIGIINL1)=-SIGIIN,2))/2,
BJ2s(00SDDGSIGIIN,3)®02)/(1.=3,¢(FE(H)Oe2))
AJ2sDSORTIRJI2)
ARIIs L SO{SIGII(N,1)eSIGIIN,2))=-3,%EE(4)eB)2
AAA=BJ2¢BJ2
BOR=AJ28AJ2
FEFu ] =3,0EE(4)*FE(S)
CCC= (SIGIINILI=SIGIINs2))C(SIGI(N:S)=SIGIIN,6))/4,¢SIGI(N,3)OSIGI
(N, T)
ODD=SIGI (Ns 1) ¢SIGI(N,2)
GGGsSIGIINGS)*SIGIIN.G)
FFsFFFOFFF
GG=GGG*GGo
00=000¢000
EFn2,25¢EE(4)SEE(S)
AASAAASFF-EFeDD
AR=BBBOFF-EFOGC
CCsCCCO*FFF-EF*0D0D*GGO
NMNs] ,S¢EE(SG)GEE(I)*0ND
FFa]l ,SOEE(S)SEE(I)OGGE
GG=EE(I)*EE(])
AAA=AA+BD-2,.¢CC
ARASAA=-CC+ND~-FF
CCC=2,000-GG*AA
GGG=8808¢8BB-AAA*CCC
GGG=DSORT(GGG)
IF(AAA) 220,210,220
210 RATIO(N)=,5¢CCC/BBB
G0 10 300
220 AASARB/AAA
BB8=DAAS(GGG/AAA)
RATIOIN)=AA-AB
IF(RATININ) «LT.0.) RATIOIN)=AAGAN
IF(RATIOIN) cGEele) RATIOIN)=,99999
IF(RATIOIN) oLT.0.) RATIOIN)=O,
300 CONTINUE

IFIKK.EQ.0) GO YO 420

D0 350 N=],NUMEL
IF(MTAGIN) .GT.0) GO TO 350
ND=RATIOIN)
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360

260

355
3710

" 420

«l10

%60

4«70

450

455

IF(DD=-SR) 305,350,350
SRsDL

NUMK *N

KKK =]

CONT INUE

IF(SR.LT,041l) SR=0,1
(FINUMK,EQ.O0) GO TO 420

00 370 N=1,NUMEL
IF(MTAGIN).GT.0) GO TO 370
IF(RATININ).LE.SR) GO TO 355
DD=RATIN(N)=-SR

IF(DD=-.05) 355,355,370
MTAG(N)=]

CONT INUE

CONT INUE

DN 410 N= { NUMNP

11s2%N=-1

BCI1)=B(I1)*SR
ALTI+Ll)=B(11¢]1)8SR

00 600 N=1,NUMEL

I=IX(N,y1)

J=IX{N,2)

K=IX(Ny3)

L=IX(Ny&)

MTYPE=SIXIN,S)

IFIK.EQeL) GO TO 460
XC=(R{I)eR{JI+R{K)ISR(LI) /4,
YC=(ZUT1)e2{Jde2iK)OZ(LY) /4,
GO YO 470
XCz(R{I)eR(JI*R(KI) /3,
YC={2(1)e20J)¢2(K))/3,
CONTINUE

DD 450 1=1,3

1l=z1+6
SIGUII=SIGI(N,II)=-SIGI(N,I)
SIGIINI1)=sSIGLI}*(]l,~-SR)
SIGI{N. I3 )==SIGIIN,II)
SIGULI)=SIGUI)*SR+SIGI(N,1)
SIGIL{(N, 1)=SIGLI)
SIGUTI=EF(2)%(SIG{L)+SIG(2))
D0 455 [=z1,4
EECI)=E(1,MTYPE)
IFI(MTAGIN).EQ.0) GO TOD 500
CC=DTAN(EE(4)/5T7.296)
BB=DSQRT(9.,0+12.0%CC*CC)
EE(4)=CC/AB

97



— omp oun IR SN m e wd s = oee o B B B B e

———

C

“00

510
520
550

560

600

650
660
700
710

800

ND=(SIG(1)~SIG(2))/2,
RI2=(ND*ND+SIG(IIR*2)/(1l.-3.8(EE(&)**2))
RJ22DSQRT(RJ2)

STGEE) 3050 (STGUNDeSTIGU2) ) -, 00 (G )*RY?
STGLINGGb=SIGRT)

CC=(SIG(1)eSTIGL2))/2,
AR=(SIGI1)=-SIG(21)/2,
CR=DSQRT(AB**2+S[G(I)s*2)

SIG(4)=CC+CR

SIG(5)=CC-CR

SIGL6)=0.0

IF ((BB,FQ.0+0).AND.(SIGI3).EQ.0.0)) GO TO 510
SIG(6)=28,698*DATAN2(SIG(3),88B)

CONT INUE

IF(MPRINT) 520,520,550

WRITE(642000) NNN

MPRINT=50

MPRINT=MPRINT-1

WRITE(692001) NoXCoYCo (SIGUI)oI=loT7)oMTAGIN)
IF(MTAGIN).EQ.0) GO TO 560
DO=(SIGI(NyS)-SIGI(N,6)) /2.
BJ2=(DD*DD¢+SIGI(Ny7)8¢2)/(1.=3.,8(EE(4)8*2))
RJ2=DSQRT(BJ2)

TOL=TOL ¢BJ2

GO TO 600 .
SIG(7)=EE(2)*(SIGI(N¢5)+SIGI(N,6))

BJ2= DSQRTC((SIGI(NyS)=SIGI(Ns&6))**2+(SIGIINV6)-SIG(T))®s24(SIG(7)
*-SIGI(Ny5)1%%2)/6,0¢SIGI(N,T7)*¢2)
TOL=TOL+RJ2

CONTINUE

SR2= (SR1*SR) + SR2

SR1= (1.,0-SR) ¢ SR} .
WRITE(6+2002) TOL,SR oNUMR,KKySR2
IF(TOL-1.) 660,660,650

KKK=1]

GO TO 700

KKK=0

CONTINUE

11=0

DO 710 I=1,NUMEL

IFI(MTAG(I).GE.1l) [Ii=[[¢}
IFIKK.GE.NUMEL) CALL EXIT¥

RETURN

2000 FORMAT(1HL/

#36H STRESSES AFTER APPROXIMATION NUMBER 14///7/

#TH ELoNOs TX LHX TX IHY 4X BHX=STRESS 4X BHY-STRESS 3IX 9HXY-STRESS

* 2X 1OHMAX-STRESS 2X 1QHMIN-STRESS 7TH ANGLE 4X BHI-STRESS 5X THPL
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*ASTIC)
2001 FORMAT (17,2F8+2+1P5EL12.4,0PLFT7.,241PELZ2.4,112)
2C02 FORMAT(3I9HOTHE UNRALANCED LOAD AT THIS STAGE IS Ele.5//
*47H THF RAYIO FNR CORRECTION OF STORED STRESSES IS F10.4//
*31H THE NEXT ELEMENT YIELOING IS 14/
*91H AND THE TNTAL NUMBER OF ELEMENTS THAT CAN YIELD WITH THE LINEA

*R ADOIVION OF VYOVAL LOAD IS 14/
*50H LNAD UP YO THIS STAGE AS A FRACTION OF TOTAL IS F20.5 )
END
59



3.4 Example

Naghdi (1957) solved the problem of an elastic-perfectly plastic wedge under
uniform loading on one face (Fig. 3.2). Plane strain conditions were considered,
The wedge material was assumed to yield according to Von Mises' yield criterion,
This type of material is a special ease of Mohr-Coulomn material having the angie
of internal friction = 0,

Figures 3,3 and 3.4 show the theoretical and computed results for the dis-
tribution of radial and circumferential stress at various stages of loadings., The
angle ¢ denotes the angle upto which the yielding has progressed from the boun-
daries, Fig, 3,5 shows the radial strain distribution at various stages,

Generally the agreement between results computed by the method outlined

and the exaet analysis were found to be good,
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CHAPTER IV

COMPUTER PROGRAM FOR ANALYSIS OF JOINTED ROCK



Chapter IV, Computer Progeam for Analysls of Jointed Rock

4.1 Organization

The computer program described here is based on the theory described in
Chapter I and I, The rock mass is considered as a linear elastic material in the
direction of compressive stresses and is assumed to have no resistance to defor-
mation in the direction of principal stresses, The program corrects the discrep-
ancy in the method presented by Zienkiewicz et al (1968)., This was pointed out
towards the end of Chapter I, It makes allowance for the boundary conditions,
residual stresses, stresses due to tcmperature change, and varying pressure
boundarics, This program also usrs the quadrilateral elements and generates
stiffness the same way as that described in Chapter I,

The principal program called MAIN controls all the data input and control
information, It does the system initialization, prints the contro! data, geometrical
and material properties, MAIN calls the subroutines for stiffness, solution of
equations and stress calculations,

4,12, Stiffness Matrix

Stiffness matrix for the analysis is computed in blocks by the subroutine
STIFF., For element stiffness, it calls QUAD for triangular and quadrilateral
clements and ONED for bar elements, Direct stiffness technique was used to get

the total stiffness, Equatians are modified for displacement boundary conditions.



4,13. Load Matrix

Load matrix for the analysis is computed in LOAD subroutine, The varying
pressure boundary is taken into account, The load matrix is modified in the LOAD
subroutine for each iteration performed, This accounts for the nonlinearity intro-
duced by progressive cracking by considering the change in element stiffness as a
pseudo load,
4,14, Calculations of Displacements

Afteur the stiffness and load matrices for a stage have been computed, the
resulting equations are solved by calling subroutine SYMBAN, This subroutine
was developed to take the advantage of the fact that stiffness matrix reniains the
same throughout, Gaussian elimination technique is used to solve the equations,
The elimination is done once for all and the reduced matrix stored on auxiliary
units, Solution for each iteration consists of back-substitution only. This approach
results in considerable economy in machine time,
4,15, Calculations of Stresses

After the displacements have been computed, the stresses are computed
using the constitutive law, A change in the minor principal stress corresponding
to Poisson's effect has been introduced when one of the principal stresses was

compressive and others tensile,
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4,2,

1.

Input Data Preparation
Control Card (A6). This card will carry the characters START in columns
1-5. This will start the processing of the data deck which cornsists of the
following set of cards,
Job Title (72H). This card will give the descriptive idertification for the job,

Control Information (415, 3F10.2, I5, E15.4)

Information Columns
Total number of nodal points 1-5
Total number of elements 6 - 10
Number of different materials 11 - 15
Numher of pressure houndiry cards 16 - 20
Body Force in X-direction 21 - 30
Body Force in Y-direction 31 - 40
Reference (stress-free) temperature 41 - 50
Number of Iterations 51 - 55
Tolerance to Convergence 56 - 70

Material Property Cards, Onme set of cards must be provided for each material,
In each set:

a. First card (215, F10. 3, I5) will give the following information:

Material identiilcation number 1-5

Number of temperature cards (8 maximum) 6 -10

Mass density of the material 11 -20

68



Material code to designate matcrials 21 - 26
which cannot take tension

code = 1 for materials which cannot take tension
0 for materials which can take tension.

b, Subsequent cards, one for each temperature, the number being
defined in columns 6-10 of the first card, will carry the following infor-

mation (4F10.0):

Information Columns
Temperature 1-10
Elastic modulus 11 - 20
Poisson's ratio 21 - 30
Coefficient of thermal expansion 31 -40

Nodal Point Cards (I5, ¥5.0, 5F10.0)

One card for each nodal point with the following information:

Nodal point number 1-5

Type of nodal point 6 -10
X-ordinate 11 - 20
Y-ordinate 21 - 30
XR 31 - 40
XZ 41 - 50
Temperature 51 - 60

If the number in columns 6-10 is

Zero XR is the specified X-load and XZ is the specified Y-load

1 XR is the specified X-displacement and XZ is the specified Y-load
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2 XR is the specified X-load and X7 is the specified Y-displacement

3 XR is the specified X-displacement and XZ is the specified Y-displacement
All loads are considered to be total forces acting on an element of unit thickness,
Nodal point cards must be in numerical sequence. If cards are omittcd, the
omitted nodal points are generated at equal intervals along a straight line between
the defined nodal points., The necessary temperatures are determined by linear
interpolation, The type of the nodal point, as well as XR, XZ, are set equal to

zZero,

Element Material Cards (1215)

These cards shall carry the material type of all the elements, Each card
shall have material types for 12 elements in sequence, The material type
for each element must be read in as no interpolation has been provided for,
Element Cards (515, 5X, 3 F10,0)

One card for each element will provide the following data,

Information Columns
Number of clement 1-5
Nodal point I 6 ~-10
Nodal point J 11 -15
Nodal point K 16 - 20
Nodal point L 21 -25
Initial stresses:
(i) component in x-direction 31 - 40
(il) component in y-direction 41 - 50
(iii) shearing stress on x-y planes 51 - 60
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Nodal points I,J,K, L are corners of each individual element in a counter-
clockwise order for a right handed system of coordinates, For triangular
elements set nodal point L. same as nodal point K, The element cards
must be in the numerical sequence, Any cards that are omitted will be
automatically generated in the program by incrementing each of the I, J,
K, and L nodal points by one,

Pressure Boundary Cards (2I5, F10.0)

One card for eacin boundary element which is subjected to a normal

pressure will carry the following information:

Information Columns

Nodal Point I 1-5

Nodal Point J 6 ~10

Normal Pressure at I 11 - 20

Normal Pressure at J 21 - 30
J

As shown in the sketch, the boundary element must be on the left as one

progresses from I to J, Surface tensile force is input as a negative pressure,

Output Information:

The following information is developed and printed by the program:
1. Reprint of input data
2, Nodal point displacements

3. Stresses at the center of each element
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4.3 Program Listing

BREAG R 0O REESNTREE RSO EEOEBROKO LSS SO S ESSEEEESESOEEE 2SR RO SR
“ TWN DITAENSTONAL ANALYSIS NF A N TENSION SYSTEM .
naey 1 BGIEEREE L KEB0R00 4L 0020 KB SR ECCRESEEESEEEEEEERCE SRS EEIEEES
MY PRECISION SyCoBoAsPoSTSIGoU,V4CCydBICRyAREA,COMM,DU,DV,0L,
LOXe v ¢ XL oRRGFNRyTOLWURGUZ +SIGIoVOL,COMWNRDI2) ¢ WORDL,E9COSA,SINA
2000l yEL o XC o YCoPRGJACELRGACELZyTEMP,T, RyQ,R0,2
TeD29)7 DT g2 X 3

COMMIN ACELRGACFL 7 oTEMP,QoRN(12),R(9C0)42(900),T(90C)PR(200,2),
INUMNP ¢NUMEL e NUMMA T  NUMPC ¢MTYPEZLLL ¢ NoHED(18),NTC(10),CODE(900),
ZMTCLLO) IRCHL2CC) 4 JRCL200) 9y NCHECK

COAMMON/SYSARG/UR(900) 4UZ(900),SI1G1(900,6),CU(1800),T0L,VOL
1+E(Hy4,12)

CNMVON ZARG/C(343)4SU10410)9SIGLE)sP(B)oSTUI410)RRIS)22(5)
CNYMMAON /HANARG/Z MBANDGNUMBLK 481 1800),A(108954) KKK oJA

NATA WNRD/ZGEHSTART L6HSTOP /

DEFINF FILE 1(50,1500,U¢NRK) 42(800,256,U,y10)

CALL FRRSEFTU20GRe2504=1,41)

READ(SH,1C06) WOKRDL

IFUANRDLILEQ.WARNILY) GO TN 30

IF(wIRND]LEQeWNRN(2)) sSTop

GO 10 10

HFEFAD (5,1000) HED NUMNP, NUMEL ¢ NUMMAT yNUMPC yACELRACELZ»QoNP,TOL
WRITE(G42000) HEN NIJMNP o NUMEL ¢ NUMMAT s NUMPCyACELR(ACELZyQ NP, TOL
Ny %) M=1,NUMMAY

PEAD (%9 1001) MIVYPF NTCIMTYPE ) oRNIMTIYPE) ¢y MICIMTYPE)

WETIN(he2001) MTYPF NTCLUTYPE) JROIMIYPE) yMTCIMTYPE)
NUMTC=NTC(MTYPE)

REAL (941002) ((ELToJoMIVPE)edsleb),y I=losNUMTC)

WRITF (642002) ((ECToJoMTYPE) 9J:l %) 4 I3l NUMTC)

CONTINUE

WRITE (6,2703)

L=n

R(L)=0C,

7(L) =0,

T(L)=0,

READ  (5,1003) NGCHODEIN) yRIN)IZIN)+URIN) JUZIN),TIN)

ML=L+)

I¥=N=L

NDR=(KIN)=-RIL)IZ7X

NZ=z=(ZIN)=2LL)D/2X

NT=(TIN)=-TIL))/2X

L=Lel}

IFIN=L)} 1CG0,90,87

CODE (LY=CL?

RIL)=RIL=1)¢DR

TtL)=Z(L=-1)eD2
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1€n

110

130

135
140

150

16C
170

18¢€
190

29N

on
310

440

320

32%
340

TEL)=TLL=-1)+D)7
HUR(L)=C,N
uztL)=r,n
6O TN 70

r WRITE (6+2004) (KoCODE(K) yRIK)oZ(IK) ¢URIK) ¢UZIK)yTIK)¢K=NLyN)

IF(NUMNP=N) 1C0,110,60

WRITE (6,2005) N

CALLL EXIT

CNNT INUE _
READ(S,1007) (IXUNs5)eN=1,yNUMEL)
WRITE (6,2006)

N=0

READ(S91C064) Mo lIX(MeI)oI=104)e(SIGI(MyI),yI=1,3)
IF(M,EQ.1) GO TO 140

IxX=M=N

NO 135 ]=1,3
SIGII)=(SIGI(M,I)=SIGI(N,I))/2X
N=N+1

IF (M=N) 170,170,150
IX(Nel)=IX(N=-1,1)¢1
IXINg2)=sIX(N=192)¢1
TY(Ne3I)=IX(N=1,3)¢]
IX(Nya)=sIX(N=1y4)¢]

NN 160 1=1,3
SIGI(N.I)=SIGI(N=-1,1)¢SIG(])
WRITE(692007) NoelIXINgI)oI=1e5)o(SIGI(NsI)oI=1,3)
IF (M=N) 180,180,140

IF (NUMEL=-N) 190,190,130

CONT INUE

[F (NUMPC) 290,31C,290

WRITE (642n0R)

NN 300 L=1,NUMPC

REAN(S5,1CCS5) IBCIL) ¢JRCIL) 4PRILyL)4PR(L,2)
WRITE(6,20C9) IBCIL)JBCIL)PRILs1)PRIL,2)
CONT INUE

DO 440 N=1,.NUMNP

NN=2 *N

CUINN=-1)=20,

CUINNI=Q,

J=9

DO 340 N=]1,NUMEL

DO 340 I=1,4

DN 325 L=],4
KK=TARSUIX(N,I)=IX(N,L))

IF (KK=J) 325,325,320

J=KK

CONT INUE

CONT INUE
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M AND)=2® J42
WRITF(6,2012) MRAND
350 CALL SVYIFF
MCHECK=1
KKK=1
CALL SYMBAN
KKK=?
nn 579 LLL=1,NP
CALL LOAD
CAlLL SYMBAN
NO 400 N=1,NUMNP
NN=2%N
CUINN=1)=CU(NN-1)+B(NN-1)
400 CUINNI=CU(NN)+B(NN)
WRITE(A,2013) LLL
WRITE(6+2010) (NyB(2%N-1),B(2*N),CU(2%N=-1),CU(2%N)y N = 1,NUMNP)
CALL STRFESS
IFIMCHECK.EQ.0) GO TN 600
500 CONTINUE
6O 1) 700
600 WRITE(HA,2011) LLL
70¢ GO TU 10
999 FORMAT(IS5)
1G0C FNRMAT (18A4/41543F10429154E1544,15)
1011 FNRMAT (215,1F1C.3,15)
1002 FORMAT (5F10.3)
1003 FORMAT (I15,F5.1,5F10,4)
1604 FORMAT (51545Xy3F10.4)
1805 FORMAT(215,2F10.3)
1C06 FORMAT(AG)
1007 FORMAT(1215)
20CH FORMAT (1H1 18A4/

1 39H0 NUMBER 0OF NNDAL POINTS—-=e~=- 13 /

2 30HOD NUMBER OF FLEMENTS=~==- ——e-= 13 /

3 3INHD NUMBER OF DIFF. MATERIALS~--~- 13/

4 30HO NUMRER 0OF PRESSURE CARDS==-=-- [3 /

5 3ICHD X-ACCELERATI(IN=~er—crecvecas=- El2.4/
6 3CHT Y-ACCELERATI(ON==ecrcceccccce= El2.4/
7 30HO REFERENCE TFMPERATURE=======~ El2.4/
R 3NHO NN. OF APPPROXIMATIONS ~====== 15/

9 3CHN TOLERANCE FOR CONVERGENCE==-~- El12.4)

2001 FNRMAT {17HOMATERIAL NUMBER= 13, 30H, NUMBER OF TEMPERATURE CARDS=
1 13, 15H, MASS DENSITY= E12.4916Hys MATERIAL CODE= 15)

2002 FORMAT (15H0 TEMPERATURE 10X SHEC 9X 6HNU 10X SHALPHA/
1(F15.243E15.5))
2003 FORMAT (10BHINODAL PNINT TYPE X ORDINATE Y ORDINATE X LO

140 OR NDISPLACEMENT ¥ LOAD OR DISPLACEMENT TEMPERATURE )
2CC4 FNRMAT (112¢Fl2.442F12.542E24474F12.3)
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2G0% FNEMAT (26HONADAL PIIINT CARD ERROKR N= [5)

2006 FORMAT (99HL1FLEMFNT NO. I J K L MATERTAL
1SIGIXX SIGIYY SIGIXY )

20CT FORMAY (1113,44164111243F12.3)

2008 FNRMAT({29HCPRESSURE BOUNDARY CONDITVIONS/40H I J PRESSUR

| R PRESSURE J)

2009 FORMAT(21642F14.3)

2G1% FNRVMAT(12HONLP.NUMBER 17X 3HDUX 17X 3HDUY 18X 2HUX 18X 2HUY/
10111244F20.70)

2011 FORMATI3SHO NUMBFR OF CYCLES TO CONVERGENCE = I5)
2012 +NRMAT(23H BAND WIDTH FOR THIS DATA = 15)
2C13 FNRMAT(30HY RESULTS OF ITERATION NO. - 15777)
FND
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60

65

70
80

qQr;
85

95

SURROUTINF STIFF

NNURLE PRECISIOM SeCoBoAsPST14SIG4UsVCCyBByCRy AREA,COMMyDU4DV DL,

INXyDY XL RRyFORGTOLyURGUZ 4SIGIyVOL ¢COMyECOSA,SINA
29CUs 27 4EFgXCoVYCoPRVACELRJACELZ TEMP, Ty R;Q+R0y2Z

COMMOIN ACELR)ACELZ TEMP,QyRO(12),R(90C)1,2(900),T(900),PR(200+2),
INUMNP o NUMEL ¢ NUMMAT  NUMPC yMTYPE o LLL ¢yNoHED(18) yNTC(10),CODE(900)
2MTC(1D)IBC(200),JBC1200) 4 NCHECK

COMMON/SYSARG/ZUR(900) yUZ(900)4+SIGI(900,+6) ,CU(1800),TOL,VOL
14E(B44,412)

COMMON /ARG/C(343)4S(10910)4SIGL6)P(8),STLI,10),RRIS)2Z(S5),
IXCoVYCoFE(3)LM(&),IX(B80C,5)

COMMON /BANARG/ MBANDyNUMBLK,8(1800),A{108,54) KKKeJA
DEFINE FILE 1(50,15000UsNBK),2(800+2564U,1D)

NB=27

ND=2%NB

ND2=2%ND

STOP=0.0

NUMBLK=0

JA=ND2*(MBAND+1)/1500+1

NBK=1

DO 59 N=1,ND2

DN 50 M=1,ND

A(N,M)=0,0

NUMBLK=NUMBRLK+1

NH=NB%({ NUMBLK+1)

NM=NH=-NR

NL=NM=NR+1

KSHIFT=2%NL=2

0N 210 N=1,NUMEL

IF (IX{N,S5)) 210,210,65

DN 80 I=1,4

IF (IX{NyI)=NL) BOs70,70

IF (IX(NyI)})=NM) 90,90,80

CONT INUE

6N 70O 210

IFUIXING3)=-IX(Ny2}) 95,85,95

CALL ONED

IX({NsS)==IX{(N,5)

MM=2

GN 10 130

CALL QUAD

IX{Ny5)==1X(Ny5)

ID=N

WRITE(27ID) ((CUITIK9JJK) 9JJIK=193) EE(TIK) y1IK=1,3)
T o CCSOJIToKKI) oKKI=198)9JJI=198) o ({STIIKKoJKK) 9 JKK=198)yIKK=1,3)
2 »(RRUJIT) oZZUJIT) odII=144) oyXCyYCyTEMP,VOL

IF(VAL) 100,100,110
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160
nn
120

130
140

175
180

195
2090
210

315

316
317
318
379

38C
390

40N

420

WRITF(642N00) N

STNP=1,0

L B

TFCIXINGI)=IX{NyA)) 130,120,130
MMz}

DN 140 I=1yMM

LMOI ) =2%1X( Ny )=2

DN 23C I=14MM

DN 207 K=1,2
11=LM(])¢K=KSHIFT
KK=2%]=2¢K

NO 20C J=1,MM

DO 200 L=1,2
JI=LMJ)eL=114]1-KSHIFT
LL=2%J=2¢L

1F(JJ) 200,200,175
IFIND=JJ) 180,195,195
WRITE (642001) N

sTOP=1,0

GO 10 210

ACTT S =ACT T JJ)eSIKK,LL)
CONTINUE

CONT INUF

DN 4)C MaNLNH

IF (M=NUMNP) 315,315,400
U=UR (M)

N=2%M=]«KSHIFT

IF(CIDE(M)) 39C,40G,316
IF(CIDE(M)~1,.) 317,370,317
IF(CIDE(M)=-2.) 318,39C,318
IF(CONNE(M)=-3,) 390,380,390
CALL MODIFY(A,ND2yMBANDyN)
GO T 400

CALL MODIFY(ALND2,MBAND,N)
Usyz (™)

N=N+1

CALL MPNIFY(AND2,MBAND,N)
CONTY INUE

WRITFOLONBK) ((2(NyM)oM=]1,MRAND) ¢N=]1,ND)
NAK=NK e JA

ND 420 N=1,ND

K=N¢ND

NO 420 M=]1,ND
A{N,M)=A(K M)

A{KyM)=0,0

IF(NM.LT.NUMNP) GO TO 60
DN 430 N=1,NUMEL
IX{N+5)=]ABSCIX(N,5))

(k]



4RO CONTINUE
[FISTNP) 49C,5CC,49C
49, (ALL EXIY
500 RETURN
2CCC FORMAY (26HONEGATIVE AREA ELEMENT NO. 14)
2001 FORMAT (29HORAND WIDTH EXCEEDS ALLUWABLE 14)
END
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SHUKRDIYTINE ONED

DOUBLE PPECISION SyCoByAsPySTySIGU.VCCyBByCRyAREA,COMM,0U,DV,0L,
LOX DY g AL sRR4FURGTOL yURGUZ 4SI1GT,VOL 4COM,E COSAy SINA
21CUs2LyFEGXCoYCyPRJACELR (ACELZ,TEMP,T, RyQsRO,Z
CMMMON ACELRyACELZ +TEMP,QoRO(12),R{9001,Z2(900),T(900),PR(200,+2),
INUMNP ¢ NUMEL ¢ NUMMAT ¢ NUMPC ¢ MTYPE,LLL 4N,HED(18) {NTC(10),CODE(900),
2MTC 121, IRC(200),JBC1200) ¢NCHECK

COMMDON/SYSARG/UR(900) 4yU2(900),S1G1(900+6),CU(1800),TOL,VOL
1eE(8y4,12)

COMMIN ZARG/C(3¢31+4S{10+10),SIGI6),PUB)oST(3,10),RR(S5)422(5),
IXCoYCoEE(3)yLM(4),IX(800,5)

COMMON /BANARG/ MBAND,NUMBLK,B{1800)+A(108,54) +KKKyJA

PO 190 I=1,8
P(1)=0.0

N0 19¢ J=1,8
S(1,J1=0.0
MTYPE=TX(N,5)
I=1X(Ny1)
J=IX(Ng2)
OX=R(J)=R(T)
DY=Z2(J)-2(1)
XL=DSQRT(DX#%2+DY*#2)

COSA=DX/XL

SINA=DY/XL

COMM=E( 1,2 MTYPE)®E(L,4,MTYPE) /XL

S{1s1)2COSAXCOSA®COMM
S{1,2)=COSA*SINA*COMM
S{le3)==S{1,1)
S{le4)==S{1,2)
S(2,1)=S(1,2)
S(2,2)=SINASSINA*COMM
S{243)==S(1,2)
St244)==S(2,2)
S(3,1)=S(1,3)
S{3,2)1=5812,3)
S(3,3)=S(1,1)
S(3,4)=S(1,2)
St4,1)=8(1,4)
S(4,2)=S1(244)
S{4,3)=S13,4)
S(6,4)=512,2)

RE TURN
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50
60

70
10
920
100
106
110

SUBRINIT INE QUAD

DOYBLE PRECISICN SvC'B'A'P'S"SIG'UQV'CC'BB'CR'AREA'COHH'DU'DV'DL'
INX g 1Y o XL RRyFUR G TOL yURGUZ 4STGI,VOLCOMyEoCOSA,SINA

290U/ 14CC ¢ XCyoYC yPRJACELRyACELZTEMP,Ty RyQyROs2
3oUeVoXT o XSeRATIOZDEN s XNT

COMMIN ACELR,ACELZyTEMPyQyRO(12),R(S900),2(900),T(90C)PR(200+2),
LNUMNP s NUMEL o NUMMAT  NUMPC ,MTYPE,LLL ,N,HED(18) ,NTC(10),CODE(900),
2MTC(10),1BC(2C0) yJBC(200) 4 NCHECK

COMMNON/SYSARG/UR(900) 4UZ(900),SIGI(90046%,CU(1800),V0L,VOL
19E(Ry4,12)

COMMON /ARG/C(343),S(10,10),SIG(6),P(8)ySTI3,10)4RR(5),22(5),
LXCoYCoFE(3)oLM(4),IX(BOO,5)

CNMMAN /BANARG/ MRAND,NUMBLK,B(1800),A0108,54) KKKy JA

NIMFENSION U(3),V(3)

I=IX(Ns1)

J=IX(N,2)

K=IX(Ny3)

L=IX(Ny&)

MIYPE=TIX(N,5)

voL=0,
TEMP=(T(I)I+T(JIeT(K)I+T(L))I/4,.C
RATIN=C,.0

NUMTIC=NYC(MTYPE)

IF (NUMTCL.FQ.1) GO TO 100

DO 50 M=24,NUMTC

IF (E(My,1,MTYPF)=TEMP) 5C+60Gs60
CONTINUE
DEN=E(My L yMTYPE)-E(M=-1,41,MTYPE)
1F(NEN) 75,80,70
RATIO=(TFMP-FE(M=-1,14MTYPE)) /DEN
DD 99 Kk=1,3

EF(KK)=E (M=1,KK+1,MTYPE) +RATIO®(E(M,KK+1,MTYPE)=E(M=1,KK+1MTYPE))
GN 10 110

DO 105 KK=1,3
EE(KK)I=E(]l,KK+1,MTYPF)

CANTINUE
COMM=ELC(1)/(1.-EC(2)%%2)
Cll,1)=C01MM

Clley2)=COMMREF (2)

C(l,3)=0,

(2:11=C(1,2)

((2+62)=C(1,1)

C(2'3,=00

C(3,11=0.

(((3,2)=0,
C(3,3)=,5*COMM*(]1,.-EE(2))

NN 13C J=1,10
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129

130

140

145

150

160

DN 120 [=]1,3

STU14J)=0,

nn 135 I1=1,10

S(1.4)=0.

00 140 I=1,4

NPP=IX(NyI)

RR(I)=R(NPP)

1701 )=2(NPP)
IFCIXIN,3)=IX(Ny4)) 145,150,145
XC=(RR{1)4RR{2)+RR(3)+RR(4)) /4.,
YC=(ZZU1)+22(2)+22(3)1422(4)) /4,
RR(5)=XC

72(5)=YC

=5

J=1

1=64

LM(3)=9

NT=4

GO TN 160

NT=1

LM(3)=5

M e K =
wonon
N W e

C=(RR(1)+RR(2)+RR(3))/3,
YC=(22(1)¢22(2)422(3))/3,
RR(5)=RR(3)

22(5)=22(3)

DO 200 NN=1,NT

LM(1)=2#%]-1

LM(2)=2%9-1

UL =2208)=22(K)
UL2)=72(K)=Z2Z(1)

U3 =7701)-22(3)

V1) =RR(K)=RR(J)
VI2)=RR(T)=RR(K)
VI3)=PR(JI-RR(T) ,
AREA=(RR(JI®U(2)+RRITISULLI4RRISI®U(3))/2,
VOL=VOL+AREA

CNMM=,25/AREA

XNT=NT

CNM=2, /XNT

C M= COM*COMM

N0 180 L=1,3

TT=LM(L) _ o
ST(Ly11)=STUL, 11 )+UTL) *COM
ST(2,1141)=ST(2,1141)4V(L)*COM
STU3,11)=ST(3,11)4V(L)*COM
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STUA,T1141)=ST(3,11¢1D4U(L}=COM
0N 18C Vv=1,3
JJ=LM{")
SUTT9JJ)=SUI14Jd)e0IL_)*CUL,1)%U(M)eVIL)*C(3,3)%V(M))*COMM
SUIT o JJ41)=SETT,dJ4 )4 (UIL)RCIL,2)#VIM)+VILI*C(3,3)%U(M))*COMM
SITT#Ll,JI¢1)=SETT41,J0¢1)4(VIL)SCUL,1)aVIM)I+UIL)I*C(343)2U(M))*COMM
S(JJel,113=St11,JJ¢1)
1R2 CONTINUE
1=
J=J+l
200 CONTINUE
TFCIXING3)=IXINya)) 220,250,220
220 DO 240 1=1,2
KKk=1(C=-1
NN 240 K=1,KK
CC=SIKK®l4K)/SIKK+]1,KK+1)
DN 230 J=1,13
23C STUJWK)I=ST(J9K)I=-CCEST(JyKK+1)
DO 240 J=1,KK
260 SUJeKI=SUIyK)=CCSUJyKKe])
250 CONTINUF
RFTURN
END
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60

100

0

SURRNDUTINE STRESS

POUBLE PPECISIUN SyCoByAgPySTySIGoUyV4CCoyBByCRyAREA,CNMM,DU,DV,DL»
LOX g DY o XL gRRyFORyTOL yURWUZ 4SIGIyVOLWCOMyELCOSAySINA

29CU 72 yEE 9 XCoyYCyPRyACELRyACELZ TEMP,T, RyQ,RO,Z
F39CCoHB9CR SS9y SC9S29C2,4,EPS,DT

COMMON ACELR,ACELZ TEMP,QyRNO(12)4R(90C),2(900),T{9GC),PRI2CG0,2),
INMUMMP S NUMEL y NUMMAT s NUMPC y MTYPEZLLL yNoyHEDI( 18),NTC{10),CODE(90Q),
2MTC(10),1RC(200),JBC(200) y NCHECK

COMMON/SYSARG/UR(900) 4UZ(900),SIGI(900,6),CU(1800),TOL,VOL
IOE(BQ‘OQIZ'

CMMNON /ARG/CU3+3)4,SU10,1C)SIG(6)P(B),ST(3,10),RR(5),2Z2(5),
IXC o YCHFEL3) yLM{4), I1X(B00,5)

COMMON /BANARG/ MBANDyNUMBLK,B(1800),A{108,54) ¢KKK,JA

DFFINE FILE 1(50,1500,U0yNBK),2(80C,2564U,1D)

FOR = 0,0

MPRINT=0

NN 6G0 M=1,NUMEL

1D=M

FIND(2'ID)

M=M

IX{NyS)I=TARS(IXIMN,6))

MTYPE=IX({Ny5)

SIGI(N,4)=0,

SIGI(N'5’=OQ

SIGI{Ny6)=0.

IFCIX(Ny3)=IX{Ny?2)) 9G960,90

I=1IX(Ny1l)

J=I1X(Ny2)

XC={R(IV#R(J))/2.0

YC=(2(1)+2{(J))/2.0

NDX=R(J)=R(T)

PY=2¢0¥=2(1)

XL=DSORTIDX®%24DY®%2)

DU=b{2¥J-1)-R{2%1=1)

NV=E(24))-R(2*1)

DI =rveDY/XLeDURDX/ XL
SIGEL)=E(ly4oyMTYPE)XDL*E(1 42 yMTYPE)/XL¢SIGI(N,1)®E(L,4,MTYPE)
IF{SIG(1).GT 06} GO TO 1GO

SIGI(N,1)=SIG(1)

GO 70O 5C0

SIGI(Ny&)=E(1+s2)MTYPE)*DL/XL+SIGI(N,1)

SIGI(N,1) =0,

GO T0O 420

KREAD(2°10)  ((CIITKyJJIK) 9JIK=1,3),EBE(IIK),1IK=1,3)
1 |((S(JJ'QKK!"Kkl’loa'oJJl=l'8'o(‘ST(lKK.JKK’pJKK’lpB.'[KK=1'3’

2 J(RR{JITIIZZZ(JIIT) o JI1=1434) 4 XCo¥YCTEMP,VOL

MM=4
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TFOIX N3V =IX(Nsa)) 170,162,170
16C MM=3
1777 DO 18C 1=143
RP(I)=C,
PO 19C J=1,MM
[1=2%)
JU=2%IX(NyJ)
180 RRUTIDI=RRITII*ST(I I1)*B(JI)eST(I,11-1)#*B(JJ=1)
IF{LLL.GTL1) GO YO 182
DY=TEMP=-Q
DX=EE(3)*0T
pyY=DX
SIG(1)==C(1,1)%DX-C(1y2)%DY ¢+SIGI(N,y1l)
SIG(2)==C(2,1)%DX=-C(2,2)*DY +SIGIIN,2)
SIG(3)=SIGI(N,3)
GNh TN 184
182 DN 183 1=1,3
183 SI1G(!1)=0.C
1A4 CNNTINUE
N0 190 1=1,2
npn 185% J=1,3
185 SIGUI)=SIG(I)*C(1,J)*RR(J)
19C CNNTINUE
TFILLL.EQ.1) Gf) TO 195
DN 192 I=1,3
192 SIG(TI)= SIG(I)4SIGI(N,1)
195 CONTINUF
CC=(SIG(1)+SICI2))/72,.0
BR=(SIC(1)=-SIG(2))/2,
CR=DSQRT(RD**2+SIG(3)*%2)
SIG(4)=CC+CR
SIGI5)=CC-CR
SIG(6)=C,0
IFI(RRFQsCe) e AND,(SIG(3).EQ.0.)) GO TO 200
SIG(6)=28,648*%CATAN2(SIG(3),BR?
DX=C,0
200 SIGLIN,1)=SIG(])
SIGI(N,2)=SIG(2)
SIGIIN,3)=SIG(3)
IF((SIG(4)eLELO.CO)OR,(MTC(MTYPE).EQ.O0)) GO TO 500
IF(SIG(S).GE.0.,C20N1) GO TO 370
EPS=SIG(6)/5T7.296
CC=0COS(EPS)
SS=LSIN(EPS)
C2=CC*CC
$2=55*SS
SC=5S*CC
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]

31N

40C

420

450G

5C0
52n

55¢C

600

2C00

OXx= EF(2)*S]G(4)
SIGI(Mea)= SIG(&)*C24DX%S2
SIGIINGS)I= SIG(6)*S24NXeC2
STHIING6)=SIG(&)*SO-NX*SC

60 TO 4GQ0

SIGI(N,4)=SIG(1)
SIGIINGS5)=S1G(2)
SIGIIN.6)=S1G(3)
SIGIINy1)=SIG(L)-~SIGI(Ny4)
SIGI(N,2)=S1G(2)-SIGI(N,5)
SIGI(N,3)=SIG(3)-SIGI(Ny6)
DX=SIGI(N.4)*%2¢SIGI(NyS)**24SIGI(N,6)*%2
NDX=DSQRT(DX)

IF(DX,LE.FOR) GO TO 450
IJK=N

FOR=DX

CONT INUE

IF(MPRINT) 55C,52C+550
WRITE(6,2C00)

VMPRINT=80

MPRINT=MPRINT~1
WPITF(6920N1)INgXCoYCo(SIGIT)yI=146),0X
CONTINUF
WRITE(6¢92C02)FUR,1JK
IF(FORLLE.TOL) NCHECK = ©
RETURN

FORMAT (THLIEL.NO. 7X 1HX 7X 1HY 4X BHX-

STRESS 4X 8HY-STRESS 3X

1 9HXY=STRESS 2X 10HMAX-STRESS 2X 1OHMIN-STRESS 7H ANGLE 2X LTHUNB

2ALANCEN FORCF )

2001 FNRMAT (JT742FBe291PSF12.440PLFT.2¢1PE20.4)

2nG?

FNRMAT ( 30HCMAXIMUM UNBALANCED FORCE =
1 15)
FND
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SURENTINE MODIFYLASNEQMRAND N )
NGULBLE PRECISTON A
DIMENSINON A(10B8,5%4)

B 250 M=2,MBAND
K=N=M+]

IF(KsLFL.0) GO TO 235
AMKyM)=C,0

K=N+M~-]

IFINEQ.LT.K) GO TO 250
A(NyM)=0,0

CNONTINUFE

A(N,1)=1,0

PETURN

tND
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50

200
3co

320

SURRQUTINF LOAN )

DOURLE PRECISICHN SeCoBoAePySToSIGyU,V,CCoBByCRyAREA,COMM,DU,DV,DL,
INX DY o XL JRRyFORSTOL,URGUZ +SIGI VOL,COM,E,COSA,SINA
?’CU".’OFEQXC'YCQPR'ACELR 'ACELZ'TE”P'T' R'Q'ROIZ
39PP1yPP24DR¢D2 4EPyXMM, DT

COAMMON ACFLR,ACEL2,TEMP,Q,R0O(12),R(900)+2(900)TI90C) PR(200,2),
INUMNP ¢ NUMEL y NUMMAT ¢ NUMPC ,MTYPE LLLyNyHED(18)yNTC(10),ZODE(900),
’MTC(10),1RC(200),JBC(200) ,NCHECK
CNMMON/SYSARG/UR(9N0) ,UZ(900)+SIGI(900,6),CU(1800),TOL,VOL
1,E(8By4,12)

COMMON /ARG/C(393),S{100100),SIGL6)4P(B)yST(3,10),RRIS5)22(5),
IXCoYCWEF{3)4LM{4),1X(B00,+5)

COMMNN /RANARG/ MBAND NUMBLK B{1800),A1108,54) +KKKyJA
DO 50 N=1,NUMNP

R(2%N=1)=UR(N)

R(2*N)=UZ(N)

UR(N)=0,

UZ(N)=0D,

CONT INUE

IF((NUMPC EQeC) s R {LLL.GT 1)) GO TO 300
NN 200 L=1,NUMPC

I=18C(L)

J=JRC(L)

DR=Z7(1)=2(J)

DZ=R(J)-R(I1D

PP2=(PR{L,2)+PR(Ly1))/6.

PPL=PP2+PR(L,1)/6.

PP2=PP2+PRIL,2)/6.

[1=2%1

JJ=2%J
BUII-1)=P(1I=~1)+PP1%DR
BOID)=B(I1V+PP1%D2Z
RUJJI=1)=R(JJ=-1)+PP2%DP
B(JJ)I=B(JJ)+PP2%D2
CONTINUE
DO 7CH N=1,NUMEL

l=lX(N'1,

J=IX{N,2)

K=1X(N,3)

L=l!(N04’

MTYPE=IX{N,5)

JFILLL.EQLLY GO TN 330

IF(MTC(MTYPE) .EQ.0) GO TO 700

IF(SIGI(Ny&) .NF.0,) GO TO 320

IF(SIGIIN,S5)«NE.CW.) ‘GO TO 32C

IF{SIGIINLZ6) NELCe) GO TO 320 ' o o
GD TN 700
CONTINUE
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33n [F(J.EO.K)Y GO 10 500
1N=N
READ(2°ID)  ((CUTITIKoJJK) ¢JJK=193) 4EELTIK) 9 11K=143)
1 2 (USEIIT gKKI) gKKT=14B8) 3 JJT1=198) o ((STUIKKgJKK) 9 JKK=148)9IKK=1,y3)
2 o (RRIJITIQZZ(ITID4JII=1,44)oXCyYC,TEMP,VOL
IF(LLL.EQ.1) GO YO 400
SIGI1)==SIGI(N,4)
SIG(2)==SIGI(N,S)
SIGU3)==SIGIINy6)
GO TO 45C
400 NT=TEMP=-Q
PX=FF(3)*%DT
DY=€EE(3)%DY
SIG(L)==C(1l,y1)%DX=Cl1,2)*DY +SIGI(N,1l)
S1G(2)==Cl2y1)%DX=C(2,2)*DY +SIGI(N,2)
SIG(3)=SIGI(N,3) :
450 NN 520 [=1,8
PlLIY=n.0
DO 510 J=1,3
51N PLIY=P(I)=-ST(J,y1)%SIGLJY)
52C PLIY=PLT1)VOL
[IFILLL.EQ.L) GO TO 540
NN 530 I=1,3
83C SIGLI)=0.C
6N TO 6CO
567 MM=4
IF(IXING3)LEQ.IXINys4)) MM=3
XMM=MM
NY=VOL*ACFLZ*RO(MTYPE)/XMM
NX=VINl *ACELR®*ROIMTYPE ) /XMM
NN 550 1=1,MM
PL2%)=P(2%])+DY
550 P(2%1-1)=P(2%1-1)¢+DX
6N 70 6CO
SCO CALL ONED
NX=R(J)=R(I)
Dy=20d)=2(1)
FPz==SIGIINg&4)/E(Ls2,MTYPE)
HX=PXeEP
NY=NY*EP
PL1)=S{1,1)%DXeS5(1,2)%0Y
PL2)Y=S(2,1)%DX+S(2,2)%DY
PL3)==P(])
Pla)==P(2)
H00 DN 620 T11=1,4
R20 IM(TI)=2%IX(N,IT)=-1
NN 6850 JJ=1,4
[1=LM(J))
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BOTIV=R(I1)eP2%JJ-1)
G50 DUTIT1)=R(TIT4L)4P(2%0J)
700 CONYINUE
NC 750 N=1,NUMNP
IF(CONCIN)«EQ.O.) GO TO 750
IFLICONDEIN) eEQels) ¢OR.(CODE(N).EQe3.)) B(2*N-1)=0,
IFL(CODE(N) cFQe24)sOR{CONEIN)EQe3.)) B(2*N)=0,0
757 CONTINUE
RETURN
END
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SURRNUYT INE SYMBAN

NDOUBLF PRECISION SeCoRyA4PoSToSIGoUsVCCoBByCReAREAZCOMM,0U,0V,0L
INXo0:Ve XL oRRyFUR,TOLyURGU? ,SIGIVOL,COMyE +yCOSA,SINA

21CU g 224EE G XCyoYCoPRIACELR\ACELZ »TEMP,T,DT QRO

CNMMNN /BANARG/ MBAND,NUMBLK ,B(1800),A(1CB8,54) sKKKoJA

DFFINF FILF 1050,1500,U,NRK),2(8009256,U,10)

NN=54&
NL=NN+1
NH=NN&NN
NR=C
NNK=0
NRX=1
FIND(1%1) |
IFIKKK.GT.,1) GO TO 2000
60 TO 150

1N NRK=NNK+ JA
FINC(1'NBK)
NB=NB+1
DN 12% N=1,NN
NM=NN&N
DN 12% M=]1,MRAND
A(NeM)2AINM M)

125 A(N".M)SO.

1F(NUMRLK=NEB) 15C4200.,150
150 READ(L'NBK)((A(NyM) M=), MBAND) ¢ N=NL o NH)
NNK=NRK
IFINR) 2C0,1C0,270
200 DN 370 N=14AN
IFCAING 1)) 225,30Cy225
225 NN 275 L=2,MRAND
IFCAINGL)) 230,275,230
230 C=A(NILI/AIN,1)
[=NeL~-1
J=n
NN 250 K=L ,MBAND
J=J+1
250 AlT14J)=A(T9J)=C*A(N,K)
ANy L) =C
275 CNNTINUE
309 CONT INUF
NAK=NAK=-JA
WRITFCL'NRK) ((A(NyM),M=2],MBAND) ¢N=1,NN)
IFINUMBLK .FQ.NB) RETURN
6N 10 120
2000 NQ=
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4CL

450

5C0

540

545
560

740

745
75¢

820

NEQ=18CC

N

NI =
NHK=MNMNK 4 JA
FINDCL1*NBK)
DO 42% N=1,NN

NM=

TN 45C
N+ )

NNeN

PN 425 M=]  MARAND
A(NyM)=A(NMM)

A(NM'M'=OQ

TFUNUMBLK=-NB) 450,500,450

RFALUL'NBK)((A(NyM) M=1,MBAND) ¢ N=NL y NH)
NNK=NBK
MB)Y 50COQ000500

IF(

DN 55C N=1,NN

J=NQ+N
D} 547 L=2,MBAND

I=J

+L-1

IFINEQ-1) 545,540,540
BUII=BCI)=-A(N,LI*B(J)
IFCAINy 1) EQ.0e) A(Nyli=1l,
BLJ)=RIJ)/A(N,1)

NBK=NNK=JA

TF(NUMBLK.EQ.NB) GO TD 700

NQ=
6N

DN 750 M=]1,NN

N=N

NQ+NN
T0 4CO

Nel-M

J=NC+N
PO 750 L=2,MBAND
IF(AINJL)) T760C4750,740

1=J

+H-1

TFINEQ=1) T75C 745,745
REJI=RIJI=AIN,LI*R(T)
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