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ABSTRACT

The objective of this report is the presentation of an analytical-
stochastic model capable of predicting relevant statistical scattering
features of electromagnetic waves propagating within vegetated environ-
ments. The propagation phenomena are described by formulating the
scattering associated with random permittivity fluctuations superimposed
on a lossy deterministic background slab. The mean backscattered power,
its variance and one-point distribution are calculated. The spectral
characteristics of clutter from windblown foliage are investigated using
two models; one presuming the velocity field to constitute a multi-variate
normal process and another presuming the scatterer's motion to be quasi-

harmonic over limited time segments.
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CLUTTER RETURN FROM VEGETATED AREAS

A, INTRODUCTION

The objective of this report is the presentation of an
analytical-stochastic model capable of predicting relevant statis-
tical scattering features of EM waves propagating within vegetated
environments, Of interest are such features as the spectral
content of the clutter return as well as the received power (and
related statistics) from gated range-cells., Other pertinent wave
features not discussed but which can be pursued within the frame-
work of the suggested model are mentioned at the end of this
section.

The forest constitutes a complicated transmission medium.
Its characterizing parameters (i.e., permittivity and conductivity)
are random functions of space and time. Furthermore, its inten-
faces, particularly the air-vegetation interface which may play a
major role in the transmission process (e.g., through its support
of a '"'lateral'" wave) are "rough'. Further discussion of the
stochastic character of the interfaces and the corresponding
effects on the EM radiation is omitted at present. This by no
means implies lack of significance., It is the surface roughness
which conceivably causes the deterioration of the '"lateral' wave.

The forest constitutes an ensemble of various scattering
constituents, Fortunately, not all influence the EM characteris-

tics in the same manner., The outstanding difference between




these scatterers is their physical dimension compared to the
wavelength of the incident radiation.

Small-scale scatterers are characterized by small scattering
cross-section, Their relative contributions to the scattered
field (the elementary scattering event is virtually isotropic)
are expected to be small, The presence of small-scale scatterers,
however, is extremely significant because of the modifications
they impose upon the effective propagation features of both the
incident as well as the scattered radiation. Multiple-scattering
events experienced by either the incident wave or by the wave
back-scattered to the receiving antenna have a two-fold effect(1-3):

(a) Scattering losses (additional to the ever-present

absorption losses) reduce the efficiency of the channel

and must be properly accounted for. The medium which

effectively describes the propagation of the mean wave

predicts losses which may become considerably higher than
those anticipated from absorption alone.

(b) In addition to the scattering losses the mean wave

experiences an effective slowdown., The medium seems

denser than that expected in the absence of scattering.

The small-scale scattering effects indicated above are
accounted for by a proper choice of the effective background
permittivity and conductivity., The relative contributions of

small-scale scatterers to the scattered-wave may not be small




throughout the contributing spectrum, Specifically, attention
must be paid to the spectral '"tail'" region to which small-scale
scatterers may, despite their small cross section, contribute

significantly since they may attain relatively high velocities.

The effects of scattering centers contributing to the bulk
of the back-scattered energy cannot be accounted for in an anal¢-
gously simple manner since the scattering is controlled by the
random deviations of the (complex) permittivity function from the
background, a more accurate description of the space-time medium
fluctuations is called for. First order scattering theories high-
light the need for more detailed knowledge; that contained in the
space-time auto and cross correlation functions of the pertinent
electromagnetic parameters.

At relatively low frequencies (say below 100 MHz) virtually
all the forest constituents are in the small-scale category. The
effect of the scattering on the propagation characteristics of the
mean wave is totally describable by an effective background selec-
tion leading to the familiar deterministic '"'forest-slab" modelca’s).
The scattered wave is both small in magnitude and inconsequential
to applications at these frequencies and thus has been totally
ignored. As the frequency rises to the range which includes UHF
and L-band, the scattered wave can no longer be ignored. The
small-scale scattering constituents cannot be ignored either;

their determination of the background slab (over which the random




fluctuations are to be superimposed) is of utmost importance.
At still higher frequencies (say X-band and beyond) most scat-
terers appear to be large-scale. Coherent background effects no
longer exist and all scattering centers must be regarded as
belonging to the "fluctuation' spectrum,

Figure 1 describes the physical configuration consistently
with previously presented arguments. The medium is modeled as a
slab of average height h (which may not coincide with the average
height concluded from visual observations); a complex background
permittivity €Caff = €9 which is presumed constant (more precise
models may necessitate more complicated plan-stratified or possibly
anisotropic backgrounds); and permittivity fluctuations (¢ (E’t))
which are random functions of space and time with supposedly
known two-point space-time correlation functions. €5y is neces-
sarily complex accounting for absorption as well as scattering
losses. The ground is taken to be a perfect reflector (a
reasonable assumption for horizontally polarized waves). As
mentioned above, the random nature of both vegetation-air and
vegetation-ground interfaces is disregarded at present. The
forthcoming analysis presumes the dominance of geometric-optical
contributions to both the incident as well as the backscattered
radiation. This is not the case under a wide variety of circum-
stances such as (a) antenna within the vegetation (or within few

wavelengths above it), (b) range cell in the shadow region of the




geometric-optical refracted wave due to hilly terrain, etc. It
can be assumed that the coupling between the interfaces is small
(a reasonable assumption in view of the prevailing scattering and
absorption losses). This allows one to treat the forest as a
half-space, with ground effects accounted for as the single and
double reflections illustrated in Figs. 8a, b. These ground
reflections render the determination of the range-cell's location
uncertain., However, the introduced errors are expected to be
minimal in the present context.

It is anticipated that the solution of the random scattering
problem (i.e., the determination of the analytical relations
between the presumably known forest parameters and the pertinent
wave statistics) via '"distorted wave Born approximation' would
provide acceptable accuracy under the prevailing circumstances.

Contributions to the crossed polarized wave do, in general,
stem from both coherent background effects (reflection, refraction
and diffraction) as well as random multiple-scattering events
(first order description of the cross polarized field is provided

by the second order Born approximation(6)). Since it is a single-

scatter mechanism which is believed to dominate, depolarization
due to random scattering is presumably insignificant. Coherent
refraction and diffraction (giving rise to a lateral-wave) are
likely to become major contributors to the crossed-polarized wave.

However, the rather small discontinuity at the air-forest inter-
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face suggests that the overall effect is small. This is not to

say that the original polarization dominates everywhere., For
example, near the ground, or at minima occurring due to destructive
interference of the horizontally polarized wave, the vertical
crossed-polarized component may dominate locally despite its
smallness, The total amplitude of the incident field will be

small and as a result the backscatter from these spatial regions

is negligible,

Section B describes the physical configuration and formu-
lates the scattering problem associated with the random permit-
tivity fluctuations superimposed on a lossy deterministic back-
ground slab, The background problem is discussed in Section C,
starting from the exact field solutions. Asymptotic, geometric-
optical forms are derived, tailored to the specific parameter
range; relevant to the prevailing experimental conditions.
Conditions, restricting the validity of the geometric-optical filters
are discussed and a comparison with possible ''lateral''-wave con-
tributions is given. 1In Section D (and in the Appendix) we derive
expressions describing the scattered field consistently with the
distorted wave Born approximation and the observations made in
Sections A and B, The mean received power, its variance and one-
point distribution as well as the field's temporal correlation
associated with the clutter return are calculated, The clutter's

spectral characteristics are investigated in Section E. Two




models, one presuming the velocity field to constitute a multi-
variate normal process and another presuming the scatterer's
motion to be quasi-harmonic over limited time segments are
discussed.

Certain relevant aspects not presented in this report
but which can be readily described within the general framework

of the proposed model are mentioned below:

(a) Situations in which the geometric-optical field
no longer constitutes a major contribution. This is
the case whenever the transmitting and/or receiving
antennas are situated within (or slightly above) the
vegetation. A similar situation arises whenever the
range-cell is situated in the shadow region of the
refracted wave, owing, say, to hilly terrain. The
'""lateral' wave constitutes the major channel.

(b) Distribution laws of the scattered field.
Amplitude (power) fluctuations and related two-

point statistics associated with target and clutter

returns.

(c) Effects of vegetation (random slab) on target
spectrum.

(d) Smoothing effects owing to finite aperture of the

receiving antenna and/or finite extent the target.




(e) Generalization to bi-static situations.

(£) Pulse-shape distortion and the resulting range-

cell diffusion.

The analytical details of the model are, at times, tailored
to the specific parameter range of interest. Many of these

restrictions may be waived if the need arises under varying

circumstances.

B. FORMULATION OF THE PROBLEM

The pertinent physical configuration is described in
Fig. 1. Heuristic arguments in support of the random slab model
have been presented in a previous interim report and the
Introduction above. It should be noted that the permittivity
¢, + e(x , t) is generally complex reflecting absorption as well
as scattering losses within the slab region. Since the
absorption and more so the random scattering constitute frequency
sensitive phenomena it could be anticipated that both €y and
e(r , t) (and its characterizing statistics) are frequency-
dependent (dispersive) as well. Also, the assumption of perfect
ground conductivity while generally valid for the horizontal
polarization is unsatisfactory for the vertical polarization.
The propagation and scattering characteristics of the EM

waves are determined by Maxwell's equations:




€ Ho 18-00- 7201 (1)

€g» Tgr Hg

€, +elr, t), Ko = Ko

<e(r, t)>=0

h (average height)
'
r//x////////// /7/ e

PERFECTLY CONDUCTING GROUND

Fig. 1. Physical configuration.
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_ = oo d a ~

VxH = ==+7 VxHy, =e) == +35- (¢ E) +J, (1)
A
3H off

VXE, =-u 1 fo=-u;2 (2)

=1 o ot =2 o dt
together with the continuity conditions
A _ A AN _ N
Eie = Epe > Hye = By ()

at the interface and a causality condition which in the steady-
state case becomes the radiation-condition at r=+ = ,

It is presumed that the temporal medium variations,
characterized by the correlation time T, » are slow compared to
these of the wave, i.e., w T, >> 1 where w, is the angular

frequency of the presumedly monochromatic transmitter.

Let,
B @,0) = Re[E; (,¢) eI @)
2 2
Hy (£,t) = Re[H; (r,t) ed®ot] 5)
2 2
J, @,t) = Re[il () ej‘”ot] (6)
2 2
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(Note: since the source is taken to be monochromatic J; 2
b
is time independent,) The substitution of Eqs. (4-6) into

Maxwell's equations (1,2) results in:

vV x E = =juu (1 + j—i; —aa-E) H +J; (r) (7)
v x Hy = jweg (1 i J_]UZ 5%) E, (8)
v xE, = -jwouo (1 + i %) i, (9)
v x Hy = ju (1+ﬁ %)Eez E, + ¢ Ey| +J, (r) (10)

from which the following vector wave equations are readily derivyed:
oxvxE k(14 2\ E =g g (11)
Lo st Jug 3t) =17 %Mo =1
vx9xE, -K 1+—1——a—2E=' J+2u 1 + |2\ E
R ) 2 jwo ot | =2 JWHo =2 Yoo Jwy| ot =2

(12)
2 _ 2
where kl = wg Mg €
2

Terms associated with the slow temporal derivative may
-1
be safely omitted due to the smallness of (w T, ~ % 1.
o

(here Aw denotes the frequency deviation of the wave from wo).
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For example, comparing the terms |e EQ‘ with \j%r-g% (e EQ)\ one
o

has
ju, ot =2 = Ju, 3t =2 3t e Ey
@)t +Le (13)
oc w
o
consequently, we may take
1 3
l++— —=1
Jug ot
and equations (11, 12) reduce to
Ux 9xE -k E =-jupu J (14)
&) 18 T %M. &1
Vx99 xE, -Kk:E, =-jwuu J, +wiu_ eE e = ¢ (r,£) (15)
=2 2 =2 o o =2 oo =2 —?

in which time appears as a parameter.

Let G; , denote the Dyadic Green's function defined by

the equations,

2

VxVxG -kjG =0 z)0 (16)
VX Vx gz - k% 9‘2 = ;['5 (£_£') -h{z(0 (17)

the radiation condition at infinite and the appropriate

continuity conditions at z = 0. Here, I denotes the unit dyadic.

12




0) _ - =l (0)
Let E) 5 = E) ,(¢=0) and E) )5 = E) , -Ej ) denote

the unperturbed (background) and the scattered waves, respectively.

From the basic definitions and Eqs. (14, 15) one obtains:

vaXgls-k§§lS=o (18)

2
vV X VXEZ,S “k% E‘ZS ] UJO HO G(E_,t) Ez (19)

which may via Eqs. (16, 17) be converted to the convenient

integral forms

Eis T ‘”g “o,[d3 ry e(r;,t) G (£, ;) " E, (r;,t) (20)
S

E, . = w a3 vy oe(xy,t) G, (@, r;) " E, (£,,t) (21)

=2s = Yo YoJy 1 fEt) 2 & L)) & 5

Equations (20,21) constitute integral equations which generally
cannot be solved. The simplest applicable approximation to
these equations is the so called ''distorted wave Born approxima-
tion" in accordance with which one replaces E, (El’t) in the
integrands of Eqs. (20,21) with géo) (El’t)' The quantities
géo) and 91,2 are associated with the background problem which
is discussed in the next section. It should be noted that the
validity range of the Born approximation (in absence of any
wave distorting background) has been thoroughly imw estigated

(e.g., ref. (2)) and further elaboration seems redundant.
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CF THE BACKGROUND PROBLEM (EVALUATION OF G AND g(o))

For the sake of simplicity the ground effects are
presently ignored; they will, however, be added separately at
the end of this section. The problem to be considered is that
of a dielectric half-space excited by an arbitrary dipole. It
is assumed for definiteness that the source is located in region
2 (the half-space z)0). To obtain solutions applicable for a
source situated in region 1, one simply replaces 1 by 2, 2 by 1
and z by -z. The excitation properties of a dielectric half-
space by a dipole are well understood, extensively elaborated.
upon in the literature and are regarded as textbook material.
Despite their simplicity, no exact closed-form solutions are
available and one must resort to an asymptotic description which
is readily interpretable in geometric-optical terms.

1. The Exact Solution.

The satisfaction of the equations

0) - - (0) 0) - _; (0)
vV x Ep = J¥H, H VxEy JwoHo HZ

0 . 0 0 =
O = gugey O v iy =5y By v 3y sG-x

with the continuity conditions
0) _ z(0) (0) _ 4(0) -
Eje” = Ep¢’» Hpe” = Hy” at 2=0

and the radiation condition at infinity is required.

14
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The boundary value problem is conveniently describable by

the vector potential

By = Vxdy s By = Jugly, L4yl A (24)
2 2 2 1 2
2
with él obeying the reduced wave equation:
2
7% +K3) A} = 0 (25)
(V2 + kz) A, = -J, 6(r - x’) (26)
27 =2 =2 "= =
Assume the following plane-wave representation.
. 4
A, (r) = —% a2 kA, (k, ,z) e ikt - @ -2 27)
=1 2 2 t =1 ‘=t
2 (TT) 2
hence
) R
d VA IEA
— + ]| A = 0 (28)
| dz J =L
gii- +x2| A, = -J 5(z - z') w2 = k2 - K2
4 21 =2 =2 i | 1 t (29)
Ldz
2 2
where, p =xr -z 2z , p’ =r’ -z z' and k_ denotes the transverse
wavevector.
A
él are of the form
2

15




- =inp (z-z") ixg z+ 2|,

A, [l e +T e Ay (30)
N s . ’
B =1, AR TR (1)
where

7(.2 1 [ )(.2

r =T - T -2
~ S _ZEOECJ tE 252, 7 2o K¢ (32)

k Kk

t t

%y ] [ %,
Doty [de v 2 2o 5| *Te %% " (7% & (33)

t - t

consistently with the continuity conditions at z = 0, and

J.
& = 2jn,

(34)

consistently with the prescribed dipole excitation. I represents

the transverse dyadic

e = L - 25 2, (35)

—-

Tn (TH) and I'g (TE) denote the reflection (transmission) coefficients
associated with the H and E-mode constituents, respectively.
They are given by:

Xy = Aq 2x2

r = e— T =

I 5 — (36)
H %o + xl H xz + xl

16




2 2 2
- k1 x2 - k2 L2 - 2kl %,
k1 x2 + k2 L k1 %, + k2 nl

It is customary, although for some purposes, inconvenient,
to make a transition from the plane-wave representation (27)
which involves a two-fold integration to a cylindrical represen+
tation involving a single integral. Omitting intermediate

algebraic steps, one obtains:

B @ ) = gy fdﬁ = 1 (8lp-p 1) IL; e-ix2]2-2"|

4o
. [ Y4
1T ()ed¥2 (e )]- J, + 32 Vt/da ,-% ()
x (8lgp'1) T, () J2CHD |y (38)

~ —

' 1 F o8 (@ : —juizHingz’
é]_(E’.E) = Fj' / ds 7(.—2-H0 (B\Z-Z ‘) T]. (B) e JXLETIND . J2

Z
+ 32 | v, /ds %Ho(z) (Ble-'1) T, (8)

-0

o2 +- 4
x e JH1Z2TIn2zZ s 22 (39)

- 3 . B
where vV = V - z_ = denotes the transverse gradient, a—\gt\ and

Ti» Ei, T, and Té are defined by the relations:

17




T, =T, I +T, 2 z (40)

~] H ~t E -0 -0
D =Tal+TE5 % (41)
1
*2
P2 = - Ef (Ih + Té) (43)

Eeh thhz bk (44)
LEIy FUz, k& (45)

Equations (38, 39) cannot be further reduced and as
expected the resort to approximation is unavoidable.

2, The Asymptotic Evaluation. The Geometric-Optical
Contribution,

We first replace Ho(z) (B]g-g'\) in Eqs. (38, 39) by its
asymptotic values

5 s
H (D) )L emIxHZ [1+o (%)]

resulting in

iz, 5 ¥ = -jp -jP
N, _e ] /8 JF1 I¥2
A, (r, £) 83 TTp-p"1 f ds %, Le +I e
+e 3/2 -3
B Py |
+2z o de o T () e it (46)

18



(47)

where,
Pp (B) = Blp-p’| + %y |z-2| (48)
P, (B) = Ble-p'| - nz(z+z') (49)
Pq (B) = Blg-g'l + %y z-nzz' , (50)
. ) . L2 . .
and the asymptotic relation V.~ -iBe, (go = TeoT is a unit

vector in the p-p’ direction) has been utilized.

The major asymptotic contributions to the B-integrals (k the
large parameter) come either from the vicinity of the respective
saddle-points (geometric optical contributions) or (within some
restrictive spatial regions) from the appropriate branch-points
(lateral waves). Situations under which lateral-wave contributiions
are expected to dominate the channel (see Introduction) are omitted
and will be reported separately. Their relative significance,
however, is discussed at the end of this Section.

a) The Saddle-Point Contributions

Consider the integral
o«

1= / as F(p) e JF(P) (51)

- CO

19




assuming the existence of a single first order saddle-point one

obtains
7 -iP(B) -iz ssn (P"(B,))
Icp s m f(BS) e (52)
where the saddle-point, BS is determined by the saddle-point
condition

P'(8g) = 0 (53)

and the prime denotes the derivative with respect to the argument.
One can readily apply the asymptotic form (52) to Eqs. (46=47).
The results are easily interpretable in geometric-optical terms
and could alternatively be derived via a direct use of geometric-

optical arguments. These are,

. ~kaly
A - g e
&
-jky(Ly + L)

( = .
ésg) - eA”(Li L) [Il (Bg) +z, 0, B Ty (BS)] Jo (55)

() e-j(kzLi + let) ao
ésp 4m Ly v da [zl (Bg) + Zo 2o B T (BS{} " dy

(56)

The length segments Liy Lo, and L, are shown in Figures (2, 3);
da and daO denote differential cross sections of the transmitted

ray tube at the observation point and at the interface, respectively:

2
da _ L, ky Ly ky cos”™ 8
@& - \1to © L+ ——— (57)
o i 1 i kl cos et




Az 18-6-13898]

L
OBSERVATION

POINT

Fig. 2. The geometric - optical reflected wave.

18- 6- 13899

Fig. 3. The geometric - optical transmitted wave.
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where the relationship

Bs = k2 sin ei = kl sin et
has been used, and from Eqs. (36,37)
. k1 cos ei - k2 cos et S 2 kl cos ei
E (Bs) - kl cos ei + k2 cos et’ E s kl cos ei + k2 cos et

(59)

k, cos 6. - k, cos 2 k, cos 6,
r. (8) = 2 i 1 £ T (B.) = 2 i
H S k2 cos ei -+ kl cos 8, H' s k2 cos ei 4 kl cos et
(60)

The geometric-optical electric-field is derived via Eq. (24).

Neglecting rapidly decaying field constituents one obtains the
incident electric field.
=jkgLs
ECD ~ g EE__E_:. T -

where

v~ 73V (Bg) = -iky 1y, 1,

the reflected electric-field,
-iky (L; + L.

(r) _ _:n e
ESP o *o TE7 (Li + Lr)

where

2\
T

Ve~ ijz (BS) = 'jk?_ oo




A "2 (BS)
T (Bg) =Ty (B L + Ty (Bg) 22, - —5——
s

x[I‘H (B,) + Ty (BS)] z p (65)

and finally the transmitted electric field,

-j (k,L,+k L
E(t) . . i ( 2711 t) ’aao L .T% A
Esp ks RN A Li da 1 - £0£0) I'(SS) ‘ 12

(66)
where
V~ =3Py (Bg) = =ik, E;, ZQ = p, sin 8_ +z_ cos 8, (67)
and
T (8) =T, (B,) L B
1
+ §; [Kl (Bg) Ty (Bg) = ny (By) To (Bsi] Z,8, (68)
Lys 2; and Es geometrically represent unit vectors along the
incident, reflected and refracted rays. The dyadics 1 - L ros

1 -£% and 1 - T.T , represent transverse-projection operatars
~ =00 ~ ~o-o’ J
with respect to the corresponding rays.

With the geometric-optical properties of the refracted
wave (66) available, the desired information concerning both the
incident wave and the dyadic Green's function is readily deduced.
For reasons of convenience, notational changes are introduced as

indicated in Figs. (4, 5). The geometric-optical Green's fundtion

23
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18- 00- T202(1)

Fig. 4. Incident wave.

18-00-7202(2)

Fig. 5. Green's function.
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and the incident wave (excited by an arbitrary dipole) are given by:

-3 (lel+k2L2) da (%)
. e o - .
G (E,El) A L ) (lt 201201) T19 (69)

= (kLyHoLy) 4, (1)
g (0) (rq) ~ -jw p_ £ g2 (I, = r . r.,)
= =1 o o 4 Ly da(1) ~t  =02-02
N ST (70)
where
[ (12) (12)
. T - ", T
_ |.(12) (12) *1 'H 2 “E
I1o Ty I + Tg gz *+ 5 zZ_p s
L s
(71)
- (21) 1)
T - %, T
_ |2 (21) _ "2 'H 1 “E
221 TH Lt + TE z = z p -
L o0 B B-BS
(72)
and
2 k2 .«
(12,21) _ 2,1 (12,21) _ 1.2 "B 1
TH = —2 3 TE = 2 7 (73)
np t %y ky *p +ky ny

The radius vectors r and r; denote the location of the source
(generating the incident wave) and the scattering point, respectively.
The ray-tube cross section ratios are now given by:

k

2
1,2) L k I cos“9
da( ) -~ 2,1 1,2 2,1 1,2 1.2
oy - (]_ + r—-‘—l 5 k—a—z 1> (l + 3 > (74)

i 2
da 1,2 2,1 cos 92’1

(o]

Further simplifying features which stem from the presumed

smallness of the angle 8§ = % - 6, are discussed below.




Specifically, the validity of the inequality

2

sin? s << 1 - 12 << 1 (75)

is assumed. Here, n = k2/kl denotes the index of refraction of
the half-space z< 0. (Typically, n = 1.05 and (75) becomes

8 << 0.3 radians = 179, often a reasonable restriction for ground

radars). Under the restriction (75) one may readily verify that

2 - -
cos”o, _1- IL? c032 8 1~ Tl2 - (76)
coézel sin2 ) sin2 5

consequently, the area-mappings (74) simplify to:

1) L k
da( 2 1
0 ~ 1 4+ —= = 1 77)
dao L1 E;

2 2
da @) . El EZ cos”e, - El k, y El EZ cos 9, -y
daom L, Kk cos791 L, k Ly ky cos 8§

where the last of the approximate forms in Eqs. (77,78) presumed
the largeness of L1 with respect to L2. More caution must be

exercised in approximating the phase function:

P = kl L, +k, L

1 T ko Iy (79)

The following geometrical identities hold:

‘R‘Rll = L; sin 8; + L, sin 8y 5 £ = L - 22, 01=ry-2ZyZ (80)
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z = L cos 8 (81)

-zy = L, cos 8, (82)
de k, cos 8

I | 1
de1 k2 cos 92

From Eq. (76) it follows that << 1, hence, for

large lgfgll (small &) the angle ®, stays virtually constant

approaching the critical angle of refraction:

k
sin 6, ~ k—; - % (83)
It follows that:
-z
1
L e
2 V1 - n-2 (84)

To determine L, we substitute Eq. (8l) into (80) resulting in

. = 1/2
IR‘£1| = (Ll + L, Ei) sin 8; = (Ll + L, Ei) 1 - (f%)z] 85)

upon expansion of the square root one obtains

2
2 k
1 [z 3 [z 1
le]. ~ k1|2-2_1‘ 1+ 5 (-q) + 3 (‘q)'*‘ ooo || S = L2 (86)
Neglegence of the fourth power contribution to the phase function
is justified subject to the constraint
z 4

kylp-pyl (L7 ) << 1 (87)

which is an acceptable assumption under the prevailing

4 -
circumstances. (Typically, at UHF: kllg-gll(fi? < 0 (10 3) .
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From Eqs. (85,87) it follows that

1 z 2 ’ 1 22
IE'Rll ~ (L + 7 L) |l-5 (EI> =L, -3 EI
2
1 z
taly t g LD 2
and presuming

Ly L (2 <« 1 89
57 ky Ly (EI) < (89)

(once again a reasonable assumption under typical conditions at

UHF :

1 2

k, L, ) <50 (10-2) one readily solves the resulting
T2 2 Ly
quadratic equation for Ll:
s 2
~ 1 _ _ 2 \[ 27
Ll vl (lﬂ Ell n) 1 +V1 + Lz > I~
DET£1| ";r]
I 2
2 z
(IP_:&l\ - T) 1+ 7 (90)

2 Dﬁfﬂl| - f%}

The square-root expansion in (90) brings about a constraint

already imposed by (87).
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We finally have

L 2 L
2 ,1 z 2
Ly = level -5 +3 “le-oy |- =
lp-gy | + =
2
1 Z
+ = 91
2 Tegg! o
2
1 2159,
The last form presumes the smallness of the term-fkl T—_——Ti
L83

a restriction equivalent to (89). The phase function is given by:

2
P~k [lp.-p_ll +3 h—fﬂ—l—r} -k V1 -7z (92)

The last result is simply interpretable as illustrated in Fig. 6.

Equation (79) may be rewritten as:

2 2 2 2
P=kl\/|g-_gl| +2% + Ky [Ll -\/I_g-_g_ll +z] + ky L, (93)

The approximation (92) amounts to replacing the bracketed term
by -L, sin ) (see Fig. 6) and to the subsequent expansion of
the square root, retaining the two leading terms. Equation (92)

follows directly.
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Fig. 6. Interpretation of the phase function.
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The polarization properties of the incident wave and the

Green's functions are determined by the operators (1 - 502502) * I
and (1 - 501501) P (see Eqs. (69-72)), respectively. These
operators simplify substantially in view of (75). One has,
. 2 2
(L-Eolzol) = 212 ={L - p p_sin el -2,z €OS 61 (Qoz +z 0 )
sin 6, cos 9 * T., = [1 - . ~ T(1 )
1 1] " R12 7|3 T 2olo| C R12 T lH LePoe,)
(12) -

o TE Z 2 z p_cot 62 9%)
where terms of order cos 6, = sin &~8 have been omitted. The
depolarization may also be neglected owing to the smallness of

cot 62 ~ an-l << 1
Similarly,
A-r,r,) * T, =|1- sinze -z 2z cosze -(pz_ +2z0p)
~  =02-02 ~21 ~ 280 2 =o—o 2" o%o T Zobo
sin 6, cos 68, + T (21) _
2 2 ~21 = Ty (Lt pp)

+ 1) 5 4 (95)
where once again the smallness of the parameters § and l-n2 was
presumed. With restriction (76) borne in mind, the following
simplified forms of the transmission coefficients results:

12 12
t{?) ~ 112 = (96)
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cos 91 2 %

1) _ 1 (21) =
T ~ T = : T 97)
H 2 E cos 8, ~ -1 L

~ 2
M

The substitution of Eqs. (77,78,92,96,97) into Eqs. (69,70),

results in the following simplified geometric-optical expressions:

2
21 - 2021 iy [l - gyl +F—2—
21’!'\/1']2-1 L% \E'.E]_\

G @ry) ~

- Vnz-l Zl] -G.L

2

2t - 2081 "I ik [lemgy |
ZWfEE:IjL%

E(O) (£1)~-ju)op,o

2
LIy . A Vn2-1 z ] -aL
2 1 2
\2721\
where a decay term exp (-aL2) has been written explicitly (not
as the imaginary part of k2), and Ly o are given by Eqs. (84,91).
(The last two terms in Eq. (91) may be totally ignored in the

amplitude factor of Eq. (99).)

For a horizontal dipole, we have
L - 2505) * Iy = 208, g = 2 Ty, = 8o Jy cOs @

(see Fig. 7)
The incident field may be further generalized if one cares

to account for the finite aperture of the antenna. Equation (99)
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may be rewritten as:

1 22 n
(o)(rl)~F(@) J JkllPEfﬁl\ +35 TE%EET-WFFti'ZJ -ango

‘r\ -
(101)
where F(p) is simply related to the incident field as follows:
F(9) = F(8,0)4_ (102)
. -jkiL
E® ~ Fe,p) &2 I Lo, (103}
From basic definition of the antenna gain (ignoring medium
effects) via,
4nL S(l)
g(6,0) = —po—E— = 2m/2 Jﬂ%ﬂ)—‘— (104)
t t
It follows from Eqs. (102, 103, 104) that
T
2 1 o
\F(CP)‘ %2_-” A/'e—o— Pt[g(e’@)]e=0 (105)

where Pt denotes the total power emitted from the antenna. It

should be recalled that the antenna's finite aperture not only

plays a role by controlling the incident radiation, but also by
receiving the backscattered signal. The necessary related

modifications are described in the next section.
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b. Ground Effects

The presence of the ground, so far totally ignored,
can be accounted for without difficulty. For the horizontally
polarized component the ground could, quite accurately, be
modeled as a perfectly reflecting surface. Furthermore, multiple
reflections between the two interfaces may, safely, be neglected
owing to the lossy character of the vegetation slab. A single
ground reflection of either the incident wave or the Green's
function (or both) is expected to constitute an adequate
description of the phenomenon. Geometric-optical contributions
to be dealt with are illustrated in Figs. (8a and 8b). The
ground reflected constituents may be written by inspection from
Eqs. (98,99, or 101) by a proper phase inversion (for
horizontal polarization) and by replacing -z, with 2h + zq.
We have, .

2(L-000,)  o-ilyg [\g-pl\ * ot

G (£’£ ) -
~IR =221 2m/n2-1'L2

a(2h + z7)
+nZ-1 (2n + zl)] - J%'—T—-r—zl' (106)

(Note: the z z element does not experience a phase reversal
but it plays no significant role in future calculations.)

Similarly,
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Fig. 8. Geometric - optical contributions.
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(o) 2z -jky [lp-py | + & —2—
£ )e-9 F(p) —=2 e IXL 1271 T 7
R @)~ Flo > l2-p, |
n -1 L]_
a(2h + z,)
+n21 (@2h + zl)] SR i (107)
N 1-m=2
c. Comparison with the Lateral Wave Contribution

Under certain conditions the geometric-optical field
(Eqs. (98,99)) does not represent an adequate description of the
incident radiation or the Green function. Specifically, as the
radiating source or the point of observation approach the
interface, i.e., as z* 0, the geometric-optical field vanishes
and clearly, it no longer constitutes the major filed contribution.
Whenever the transmitting and/or receiving antennas are situated
in the proximity of or below the (air-vegetation) interface, it
is a diffracted contribution, the lateral wave, which dominates.
While work has been done to account for such situations, its report
is deferred for the future. Under the conditions stated in (75)

the dipole-excited lateral wave is given approximately by:
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(o) o M
£, ~ S (108)
21k (-1 L/ 3/2
1 lo-p,l L i
where LL denotes the lateral path. Consequently, comparison with eq. (99)
yields,
(o)
|E( )|~ ] . 1 7>\ (109%)
IEO | klz./nZ_1 Zm/nz_l

Typically, for antennas situated several wavelengths above the vegetation
air interface, the lateral-wave may be safely neglected.

D. THE DISTORTED WAVE BORN APPROXIMATION. THE RECEIVED
CLUTTER POWER (MEAN AND VARIANCE)

The title "Distorted Wave Born'' generally refers to a class of single-
scattering approximations in which the propagation features of both the in-
cident wave (on the way to the scattering volume) as well as the scattered
wave (on its way to the receiver) are modified consistently with a suitably
defined background (in our case a lossy, uniform dielectric slab). In the
following analysis we refrain from generalizing any of the results beyond
restrictions applicable for the specific configuration. Several such generali-
zations however are within easy reach. From eq. (21) together with (98, 101)

one readily obtains:

"Similar observations were made by T. Tamir in an ECOM Memorandum
(Summer 1970) entitled, '""The Electromagnetic Field Radiated Above a
Forest by an Antenna Embedded in Vegetation''.
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wo LJ'0 “ 3
£ls(£’ t)=—2—'—;2 fd I‘IEQOF(CP) e(gl,t)

s 2az
l ZZ 1
-j2k [ p-p ) - ]
1 I_ 1 lp_ pll N4 2_ 1 Zl A/l B o (110)

where L, has been replaced by P in the amplitude term (see eq. 91 and
Fig. 7).

Let us focus our attention on the scattering contributions from a
volume AV.1 (Fig. 7) such that P, A%, is large compared to the transverse

correlation distance (but small enough to obey restrictions (113, 114). We

have,
2 2
Yo Ho ® 3
BE_. (r,t) ~ > d r 9, F@ elp; +r,.t)
T(n - 1) e
AV,
i
2 2 azl
———
i e -g-sn |4z o= - sl ——— | a1
IE-QI--9].| f\/l _ -n-
The Taylor expansion
1 2 2
b-pi-pylmpg-0oi By ta5 (o) - (o - 2 T+ -
o
p - p.
= =i
E'Bil—pov Eoi-—po (112)
together with the assumptions
2
P
1 max N
k1 T << 1, plmax— max 2d or poAcp.1€ (113)
, 2
klplmax(po) sl (114)
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result in,

w’ iy 2t -
o ~o -jk, p, -i2kyp
BEg(X.t) ~ z g ¢ L7e © F(%) ©oi
mT(n -1)p
Zc;yzl
3 2k Boi " Rl +j2ky V2l 2+ ———

AV

where it has been furthermore assumed that [ and F(¢) stay virtually con-
stant over the volume of integration (A Vi)'
Before proceeding with the analysis let us generalize eqs. (110 and 115)

to include the ground effects. We have (via eq. 20),

2 3 (o) (o)

Bt ro/d rpe(r, ) (G (r, rp)+ Gplr, r)))- (B (r)+ER"(x,)
s (116)

where 91' glR’ E(o) and E(OPI are given in eqs. (98, 101, 106 and 107).
Explicitly:

wzu 72 J_ 2

oo " : 21 2u
E (I‘,t)~ d3 in _ ['JZkl n-= -"———] (h+7' )
1s'= 2 Z r (p) e(r,,t)] 1l-e - 1
R TE T AT E T
s
REES PRPNTE S reve I C AT P B W
1 -7

The effects of the perfectly conducting ground are totally contained in the
bracketed term (to be denoted Y(z;)) its replacement by unity leads back to

eq. (110). Analogously to eq. (115) one now has,
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2 2 2

W oMz . z .
BE (5, ) —F— e 1 Tom ~I1Pe (g g
T(n -1)p
J_Z—_ 2 o z1
. p . . p . _ e
Pr e(p tr, t) y(z,) K1foi T Py F 2R Tz 4 e (118)
1 1 —1 1 Y1

AV.
1

It is important to point out an error introduced in writing eq. (116). The
scattering volume V_ is determined (longitudinally) by the radar's gating.

In eq. (116) we identify four distinct and readily interpretable terms, each
associated with a somewhat different range cell. The forms (116-118)|totally

ignore such differences.

Since the volume AV, has been selected consistently with the requirement
that poAcpi be large with respect to the correlation length, it follows that the

scattering volume AVi and AVj (j#1) are uncorrelated, hence

b3 2
<prE; - AESJ->=<‘AES'J >6ij (119)

where < > denotes ensemble averaging. We now compute the field's temporal

correlation from eq. (118)

4 2 4
3 W Wz
i _ o "o 2 3 3
<8 Eg(r 0 8E(r t1)> = ———g [F(e) ] fd rl/d rp vz )y (zp)
i AVi
2 a(zl+z2)
j2k) Poj (£ - Pp) +i2ky /2 ] (7)-22) 4+ —————
C(r,. £, 7 &*F180i" (2] — (120)
where,
C(_I;l, I, T) = <€(£1, t) e=‘<(£2, t+ 1) > (121)

is the space-time correlation of the presumedly stationary random process €.
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It is convenient to separate the vertical from the horizontal coordinates
in eq. (120) and transform to the center of mass system. This results in

4 4
w

z 2 2 .,
% 2
SAE_(r,t)0 E_ (1, t47)> = - |F(cp1)' d7 /dzz Y(z)) Y (z,)
o -h

(122)

P =5 (El + BZ) and ASi = podAcpi. In the transition from
eq. (120) to (122) it has been assumed that the linear dimensions of ASi (i.e.,
d, the range cell and p A, are large compared to the transverse correlation
length. It has been further assumed that the process ¢ (r, t) is statistically

homogeneous and isotropic in the transverse direction. The integration over

dZE) is evaluated trivially resulting in ASi, while integration dzlp\ (for large ASi)

is recognized as the Fourier transform of C with respect to 2 (i.e. the trans-

verse spectral density function) to be denoted by
"
& (n, 2,2

Consequently, eq. (122) reduces to

<E (r,t) - AE .(r,t+7)> =
—si— —si'—




Owing to the presumed transverse isotropy @becomes an exclusive function of
|£|, and as is clear from eq. (122) it is the value of% at n = |2k1£o.1|?= Zkl'
which is of interest.
The mean received power (<Pr>) can now be calculated. From eq. (105)

and the presumption of a matched antenna one has,

)\2 2

. € 2
(in_ N - LJ_O A
CP.™=g= lele, 8] <5>= 5 L aw [g(w;, )], <BE;| >|(125)

where <Si> denotes the mean Poynting vector at the receiving antenna; inte-

gration over the pattern yields

€ 2 u)4 dz 4
<P > = %J'g“ = = : Z 7 (2l = pt) ./gz(w’ e dcp]
r U LU (N m €

-1) Po o T
o o 200 (2, tz,)
, . NV ol { Galial
- A _ 2k "N -1 (2,-23) + ——— _
./.dzl-/-dz2 y(zl)v (ZZ) @(Zkl,zl,zz,rr_o)e 1 \/1 T-2 =
-h -h d

T/dwg(w)] o o

b4 N\
5 clzlv/-dz2 Y(Zl) Y (ZZ) d (Zkl, Z1 2y T = 0)
(ﬂ — h h
200 (2, +2,)
VA ¥i® =2
eJZkl N-1 (zy =25+ g— — (126)
vil-7

Equation (126) may be further simplified if one is willing to except the assump-
tions that the medium is statistically homogeneous in z (i.e., ) 1%(2k1‘,zl—zz, m),
that the corresponding correlation length is small compared to the foredt's

effective height (h) and that ground effects are negligible. Arguments analogous

to these used for the transverse domain lead to:
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Ll
4 2 inh __2ah -2oh
= 1-1 V2

i 1 -T - =
<Pr>a~s ; €2>\2 mz 5 p7 7ah e @(Zkl,Zkl n-1l,7=
o o - 127)
‘/I-T] 2 (
where,

+
] 2 VA
N el
? (2k,, 2k, ‘/_T]Z-l_ T=0) m /‘dz QJ2ky YTMT-1 2 @(Zkl’,z\' r=0),

-0

N
Z=27Z -2

1 72

It should be pointed out that the assumptions allowing the transition from eq.
(126) to eq. (127) may be seriously challenged. However, the ensuing sim-
plifications are substantial indeed.

Equation (127) indicates that the mean received power decreases as the
seventh power of the range. Experimental verification of this dependence
is demonstrated in Fig. 9 which is a plot of received clutter power as a
function of range at UHF for a uniform pine forest.

The scattered field given in eq. (117) or (118) constitutes (via the central
limit theorem) a normal process provided that Vs (or AVi), the scattering
volume, is dimensionally large in comparison with the correlation distance
characterizing e(r,t). It can be shown (see Appendix) that the processes
El = Re(AESi) and EZ = Im(AEsi) are normally distributed with equal variance

(to be denoted by 02 and are uncorrelated. From which it follows that the

E
field's amplitude (Ai) and phase are describable by Rayleigh and uniform

distributions, respectively. Consequently (see Appendix),

2
Var [A%] = < [A% - <A?>]° >=<a>?
1 1 1 1
or
_ 2 2
Var [P ]= <[P_ - <P >]° >=<P >
r r r r
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where <Pr>’ the mean power, is given in equations (126) or (127).
All information concerning the field's temporal correlation or its spectrum

is contained in the normalized function.

o o
b A
cgn =M faz, faz, viz) v'(2)8 @2k 70 250m)
-h -h

ejZkl \ -T[Z (21'22) 4 —20’— (z1 + 23)

(128)

where M is a normalization constant, conveniently selected in accord with the

condition C_(o) = 1.

E
E. THE CLUTTER SPECTRUM

This section is reserved to a further investigation of CE(T) as given by
eq. (128) and the associated spectral density under various circumstances to
be specified below.
The temporal fluctuations associated with the random process ¢ (r,t)
can be thought of as caused by the motion of distributed scatterers characterized
by a random velocity field V (r,t). Thus, assuming a conservative ensemble
of scatterers (that is, assume that no scattering centers disappear from the

collection) one concludes that the relationship

t4 7T
e(r,t+T) = e(r - fX (r,s) ds, t) (129)
£

is satisfied. It is further assumed that the processes ¢ (r) and V (r,t) are
statistically independent. This assumption is not totally baseless since the
fluctuations of ¢ are primarily a consequence of the spatial distribution of the

vegetation (and therefore virtually independent of wind conditions) while the
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nature of V depends greatly upon prevailing winds. As a result the averaging

over the processes ¢ and V can be carried sequentially. One has,

C(R, r,T) = <e(r,t) e(r+R,t+7)>=

t+7
<< e(rt) e(r+R - /zw_&» s)ds, ) > > y =

t+T
<C€(5--/'X(£+B_. s) ds)>v (130)
t

where the process ¢ was presumed statistically homogeneous and stationary.
Let @e denote the (spatial) spectral density corresponding to Ce' It follows

from eq. (130) that
T

CR r,7) = 13 d3x§€(h) o-in R <e+jnfds VK(£+5,S)>X (131)
(2m) ©

where Vn denotes the velocity component along » and the integration range
t< s<t+r was shifted to o<s< 7T in view of the presumed statistical stationarity
of the process X(E’ t). If the process V is also transversely homogenéous, the
term < >y in eq. (131) becomes independent of the transversely homogeneous the
ordinates—(but is generally a function of the vertical coordinate). Separating
the transverse integration from the longitudinal eq. (131) may be written in
the form:
. 1 2 -ju, - Lo g
C(R, 1, 7) = (ZT)z—fd n, € "= [—Zn—/dnz e Qe(ﬁt’ﬁz)

T

e ds VK(£+B_.,S)
<e >y (132)

47




Using the notation of eq. (123),

1 +°°2 -'n-A/\
C(R,r,7) = C® z,,2,, 1) = A%, e Bt RS 2,2, 1) (133)
== Jet 1’72 (211)2 t = 1’ 72
-0

hence, (the bracketed term in eq. (132) is presumed to be independent of 'pi)

T

+eo
A _ 1 -jnz/z\ jujds V,(r+R, s)
Q(ﬁt,zl,zz,'r) = 5= fd n, € @e(ﬁt, uz)<e < >V (134)
-0

Owing to the near grazing incidence of the wave we know that the major con-
tributions will come from ranges in which n, << l&tl (see for example eq.
(127) in which kz/ |Et| ~ “/1 ,nZ . Hence, u in the exponent of eq. (134) can

be replaced by "y and as a result one has,

.
" A Jnt fds V. (r+R, s)
(2102, TR (1,72) <e J " >X (135)

where

oo ~ N
PN | -jn, z N N A ting s P
¢, (1 2) = 5— fdnz e "E T e (uy nz)—fd PC.(2,72) e (136)
-0

The substitution of eq. (135) into eq. (128) (with ut:ZkI) yields

(o] (o]
) . / 2 A 2¢
) * 2k V1-M" 24 —=—— (2,+2,)
Cplm) = Mfdzlfdzz e S (2 (A 50ed) = S DS
-h -h

.
i2k, [ ds V, (r+R, s) (137)
(e 1!‘ nit = >V

or upon transforming with respect to 7:

48



+oo
¢ () =/d'r e JWT Cp(r) =

-0

? 0 % A J2k V1 T\Z 2+ 2 (z,+2.,)
"~ 1 -
M fdzl f dz2 y(zl)Y (ZZ) @e(Zkl,z) e / i 1"72
“h *h 1-1
t® T
< fdf e 0T + j2ky fds Vr(ztRos) (138)
-C0 o

Eqs. (137) and (138) still constitute rather complicated forms. Several options
are open for their further reduction of which two are discussed below.

1. First Option

The averaging process over V can be carried out explicitly under the

assumption that
T

p(E,7) = fds v (r, 5) (139)

o

is a multivariate Gaussian process. The Gaussian character of P cannot be
generally justified unless T is large compared to the correlation time ‘(TC) of
Vx’ For 'r>>'rc pn is Gaussian, owing to the central limit theorem, regardless
of the precise characterization of Vn' In the range 7 < Ter Py is Gaussian only

if VK is. We have

T T

. 2 2 2

<ced?iy Py (mam) g o -2k <py >y 2K fdsl ds, <Vy (r, s])Vu(r, §2)>y =
\Y o . _
.

2

o~ 4K fd’s‘ (t-2) Cy (r,%) (140)
0

where, S = $1-5, and CV(E,Q = <VK(_r_, sl)VK (r, sZ)>. The process X_has been
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presumed to be transversely homogeneous. Consequently, C,,is a function

A%

of z only. If we also assume that the vertical inhomogeneity affects pri-
marily the variance of the V fluctuations but not other correlation features

such as Ter it follows that

Cy(r, 8 = <Vi(z)> fV(Q) (141)

where fV(s) denotes the correlation coefficient of the velocity field. The sub-

stitution of eqgs. (140) and (141) into (138) yields,

(o] (o}
. N, 2a
- £ A, J2kyY1-M7 z4 ————____(zl+zz)
?o(w) = M fdzl /dzz Y(z))y (25) 8 (2K, 2) e U
-h -h
- T
. 2 2 A -

]d're'JhUT-‘}kl <V (2) >ojd9“'5) fvis) (142)

- 00

or alternatively,

o] / 2 A 2
B A 32k VL= 7Y =& ——(z) +2))
tplw) = Mfdzl ,/pdzzY(Zl)Y (25) #el2k), 2) &
-h -h

1 - n'z
- £t 2
+o 2 2 2 sin 2
/dT R Sl ST (s /d§ (%) a (143)
> (o]
where +o
1 Ao A -iES
dy(E) = —5— /ds f(s) e (144)

-0

represents the spectral-density of the velocity field. If we further assume

that <Vi > does not vary (or varies slowly) over the contributing range of z,
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one observes that the bracketed terms in eqs. (142) or (143) are independent
of zy and Z,- These terms, which may be taken out of the respective integrals,

completely determine the normalized field's spectrum:

.
+ o
. 2 2 A ~ A
/q;E(w) _ 10[ de o - JWT e-4k1 <V, >/ds (t-s) fy(s) =
o
-0
2 2 sin 2
M de e-Jw'r -4:k1 <V, > dg @ (i-;) _52_ (145)
-C0 4+
with M selected so that 21— f 1.
-0

A
The asymptotic behavior of @E(w) for large and small w (small and|large

T, respectively) can be readily determined. These asymptotic observations
are of special significance since they are independent of the detailed form of
£ N

V(s).

(2) The limit w = o (T >>~rc).
The major contributions to the ds integral in the exponential

of eq. (145) comes from the range Q< T hence

"|' [e+]
A A A A A .
/ds (1-5) £,(s) ~ I'Tlfds £(5) = | ] Te (146)
o] (o]
N
A -1 o= =
lim 3 (w) = M [dr 397 4k <V >rrl= w2 (147)
E W
w=—o -
it follows that
A - 2k2 <2 2.0 =1, 3.(0) = 2/ 148
M - 1 < n > TC E( ) - 1» @E( ) - UJI ( )
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and the defining identities

= [aff. (§) =1 8.(0 4
TC = S V(s) =m V( ) (l 9)
o
2 .2
w = 4k <V > r (150)

have been introduced.
Comment: The bound character of the vegetation's scattering centers
(i. e., the finite variance of their displacement in the limit 1 = =) implies
a DC return which is totally ignored in the above sequence.
(b) The limit w = o (7 <<"rc).

In the range 0 < s << Te the correlation function fv(s) stays virtually constant:

N
£,(5) m £,,(0) = 1 (151)
hence,
~ o ur 2k? <v2 s 22 B_(0) VO Oe _w \?
lim @E(UJ) =M fd'\' e-J i e- 1 “u T E ———Z-—C e- 2 LU]
W= - (152)

The transition curve connecting the asymptotic segments described by
eqs. (147) and (152) is complicated by its dependence on the detailed form
of fV(T ). fV(’T ), while a relatively simple characterization of the coupling
between the mechanical motion of the forest scatterers and the turbulent
wind is an unknown. Little reliable data exists which may allow its determina-
tion. It must be either assumed or derived on the basis of some simple (and
probably over simplified) models. For example, one may regard the wind-
forest interaction as that between a harmonic oscillator and an isotropic and

homogeneous turbulent wind (M. Labitt and R. Yates, private communication).
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Alternatively, one can assume that regardless of the driving (wind) forces
the resulting motion can be approximately viewed as locally harmonic over
the relevant time interval. This option is discussed in the second part of
this section. The form

T) f (1) (153)
where fd('r) and fo('r) denote decaying and periodic functions respectively, is
suggestive (although not rigorously defensible). As an example, selected for

its relative simplicity, one can take the form

bl

fV('r)=e- T cos QT (154)

which permits the explicit evaluation of the integral:

p 2
A AnOA o I'rl -|"r|/'r =
(t-78) f . (s) ds = - - cos B+e 0cos(B+Q|T|)
v 2 < T
2 14Q " 7 o
(155)
where 2
1-6 1’(2) -1 I-QZTE)
cos B = =7 7 o < B= cos -Tz—<ﬂ (156)
14Q° 7 1+4Q% 7
o o
20~
sin B = = (157)
1+Q2 'TZ
- sk
Te is defined in eq. (149) and is related to Q1 and to To via
"o
T = —=5 (158)
“ l+QZTc2)

The substitution of eq. (155) into eq. (145) with I\,/} given by eq. (148) results in:
¥Although v, as given by eq. (158) should not be strictly interpreted as a meas-
ure of the correlation time of the velocity field of eq. (154), it is conyenient

to preserve the definition given by eq. (149).
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N B 2 n =2 -juT
@E(w) = Zkl @E(O) < VK > Te qu' e
- e
4k2 {-/.2 I_TI. -l'r I/T =
e~k <V > 15Tl To =~ Cos B+ e ocos(B+Q|T|) (159)

One immediate conclusion stemming from eq. (159) is that even for the simple
choice (154) no closed form expression for %E(w) is available. The Fourier
transform (159) was evaluated on a computer and examples of these results
are shown in Fig. 10. The theoretical result given by the solid curve

(dTo =5, wyTo = 0. 5) is very similar to measured UHF clutter spectra with
moderate winds.

2. An Alternative Option

The forthcoming analysis starts once again with eq. (138). However,
instead of presuming the process V%(Lt) to be normal we now postulate a
locally harmonic temporal dependence:

Vv, (£t) = V(1) cos [Q (D)t + () ] (160)
where Vm(z_), Q(r) and o(r) are random functions of r but are time independent.
The relation (160) is not expected to constitute a valid description over pro-
longed periods. The resulting spectral predictions, therefore, are expected
to be inaccurate near DC. In this respect, the model to be pursued in this
section can be regarded as complementary to that leading to eq. (147). It

follows trivially that,
AL A . .
/’VK(I_,s)dsz pm(z) [sin Q1 + @) - singp] (161)

where V_ and p_ = V_ /Q represent local maxima of V_and the displacement,
m m m n

Vanishing of the field as 1= @ implies unbound scatterers. We are aware
that the scatterers are indeed bounded but here have chosen to disregard this
feature since the loss of a measure of the stationary backscatter (impulse at

w= 0) is not a major penalty.
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respectively, If we assume P Q0 and @ to be statistically independent (not
entirely unreasonable since Q and ¢ are expected to be essentially independ-
ent of wind conditions, while a strong wind dependence is anticipated for

pm), one obtains

T

+ o
Ip(w) E</ dr e 0T +32k1fds VK(ES)> B
o A%

+ e
. . -jwTt + j2k, p_(r) sin (Q T+ o)
CeI2K] Pry(E) smcpde e S 7 (162)

-

®
Q

Pm
where IE(w) is defined by the expression to its right, and{ ) pr'n

D6

indicates sequential averaging over the distributions of Py @ and Q (the

actual averaging sequence is arbitrary). The substitution of the expansion

. . te® .
ed2K] Py Sin(QT4e) > Jn (Zky p) 0 (7 o) (163)

n= -

into eq. (162) and carrying out the T - integration results in
©

L(w) = 2n (eTI%KL Pm SN @ 5 5 (g o) e 5(w-na)y (164)

n= = o)
cpm
Q

The averaging over ¢ is readily performed if we presume a uniform dis-

tribution within the interval - m <g<m:

-

-jek, p__sin ® + jng B 1_ -j2k; p_. sin® +jne _
{e 1 "m >cp = o deo e 1 "m = Jn(Zklpm)
-1

(165)
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Eq. (164) is reduced to

o 2
IE(w) =2m Z <Jn (Zkl pm) >pm <6(UJ- nQ)>Q =

n= -

2 =]
2m (Jo (Zk1 pm)> 6 (w)+2m Zl <J'nz(2klpm) >p <6(w—nQ)+6(w+nQ>ﬂ(166)
n=

Pm m

Let P(Q) denote the density function specifying the Q distribution (its general

properties are discussed below). The 2 averaging leads to

IE(uJ)=ZTr <J02(2klpm)>pm S(w) +

1,2
2’;2::1 n n B e P (L) P (- L) (167)

It can be immediately observed that IE(u)) is symmetric about w=o0, regardless
of the precise nature of P(Q).

The task of averaging over P is more difficult. However, before turn-
ing to it we discuss some of the properties of eq. (167) which are relatively
insensitive to the term <Jf (Zk1 pm)> Py °

P(Q) is not known. However, since it essentially describes the distribu-
tion of resonance frequencies (positive by definition) of the ensemble of forest
constituents it must vanish in the limits 0 = » and 0 < o. It must contain
at least one maximal value; for simplicity let us assume that P(Q2) possesses
a single maximum (say at Q = QO).

The physical interpretation of eq. (167) is straightforward. It contains

two distinct parts. The first (in our case proportional to 8 (w)) reprgsents
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that part of the received power which did not undergo spectral modifications.
Its spectral content is identical to that of the transmitted signal, although
it experiences a power reduction (represented by the coefficient <J§(2k1pm)>)
as the power conversion process into other spectral constituents (represented
by the second term in eq. (167))becomes more efficient. The efficiency of
this conversion process depends primarily on the (random) parameter klom'
Under no wind conditions(klpm = 0) all the power is contained in the first
(DC) term. The second term vanishes. As k1 P increases (with the rising
magnitude of wind velocity), the DC term decreases in magnitude, the second
term increases, consistently with the anticipated conservation of energy.
The singular character, of the DC term, stems directly from the presumed
monochromatic nature of the transmitted signal. Eq. (167) stays valid if
the actual, distributed spectrum of the transmitted signal replaces the § -
function, provided that it is sharply peaked (on the scale of Qo).

The spectral-density @E(w) can be obtained now by the substitution of
eq.(167) into eq. (138). However, because of the complexity of the result
we presently assume Py tO be statistically homogeneous in all directions.
Consequently, IE(w) is independent of z, and z, and represents by itself the
desired spectral density.

We now turn to the estimate of the coefficients <an (Zklpm)>p in
the limits of weak (klpm <<1) and strong (klpm > > 1) winds. -

(a) The limiting case kl P <<1].
The Bessel functions may be replaced by the term in the corre-

sponding power series expansion:
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Z2n
<(k,p_) >
<7% 2k ) >  w lm _Pm
n 1"m’ " p 2
m {(n)

The series is a rapidly convergent one and for

2 1 4
> —
<(k1pm) p - 8 <(klpm) -

m

it is properly represented by its first term:

IE(w) ~ I<E°)(w) + 2m<(k, pm)2 >prn [Pw) + P(-w)] (170)

(o)
E

In eq. (167), 11(3°

where I represents IE(LU) measured under no wind conditions (pm £ 0).

)(w) is identified as 216 (w).
The presumption of validity of the above model indicates the feasibility
of the experimental determination of P(w) from the measurement of IE(u))

under weak wind conditions. From eq. (170) one has

P(w) ~C (1) - 12 (@)]U () (171)

@®
where C is selected consistently with the requirement: C/[IE(w) = I}(Ejo)(w)]dwﬂ.
)

The experimental determination of P(w) via eq. (171) is significant owing to
the anticipated insensitivity of P(w) to varying wind conditions. The deter-
mined P(w) may be utilized in eq. (167) for relatively arbitrary winds.

(b) The limiting case klprn >>1. An exact evaluation of

2
< Jn (Zklpm)> .

m
It will be found advantageous to represent the Bessel functions in eq, (167)

by their integral representation. We have,




_ 1 (1) (2) 2 _
<J (2kyp ) =g [(Hn (2kyp )+ H ™" (2k, pm)] >p =
m m
1 _(1)? (2)° (1) (2)
vy <Hn (Zk1 pm) + Hn (Zk1 pm) + 2 Hr1 (2k1 pm) Hn (Zkl pm)>pm (172)
where the Hankel function is defined via
()
2 _ 1 -j2k, p__ sin @ + jn®
Hn (Zk1 pm) = o /e 1"m dep (173)
cl
2

and the paths C. are illustrated in Fig. 11. For simplicity we assume P

1

2 1/2
to be normally distributed with a mean p__ and a variance 0 = <(p_ -p )2> .
m p m ‘m

If we further define the parameters:

1/2 2k, p
- 2 2 .
L=l 58+ @ o2)?]  sine= —- 2, o<a <y (174)
we find,
(4
2 + "LQ 13 )
<H ©  (2k;p_) > /dcplfdcp IR(®) +@2) -LQ®), ) ()75
2
and
(1) (2) _ 1 n(o,+®2) - LQ(y,, ®5)
<H_ "' (ko) H ™ (2kp_ ) > = = dep, fdcpz e 1 1’ P2
c, G, (176)
where
Q(cpl,cpz) = j sin ¢ (sin ® + sin cpz) + cos « (sincpl +sincp2)2 (177)

Eqgs. (175) and (176) are now evaluated asymptotically (with L taken to be
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the large parameter) via the method of steepest descent. The saddle points

D)5 and ®, defined by the equations

IQ (¥ 4 ©p) o dQ (). ¥,) .
a cpls a cpzs
are readily found to be situated at either +1( on C, ) or at - 1(along C.).
Y 2 2 3 1
Eq. (175) yields the saddle-point contribution.
1,2 jn(e +@_ )
) e ls 2s =L 1
< Hf (Zklpm) >p - ZLTT > 3 73 e Qe g0 ©25) +0 (__3 )
m 3°Q 370 L
2 . 2
3%, 9%,
CQlzc‘)ls
7%
Fjnm- L (4 cos o F 2j sin o)
A SL E — 1O (=) (179)
L + j sin ¢ - 4 cos « L3
where the (%) corresponds to (é). Similarly,
(1) (2) 21 1
<H_ '@k e )H (2k p_) >pm ~ T O (?—) (180)
Hence, from eq. (172)
2 il 1 1
< J (2k,p_)> ~ - : +
" 1'm™ o, 1 LU [sin2 ot 16 coszoz]l/2

-41, cos «
(&

cos (2L sin o-nT + B):l ; B=tan“1 [ % tan o ] (181)

A substantial simplification occurs if

4L, cos o = 8k, o_. >> 1 (182)
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The last term may simply be omitted owing to the exponential decay resulting

in
< 3% 2k ) > el 183
n { 1 Pm p._ =~ 2k. B ( )
m 1 "'m
which is independent of n. Hence, in the limit k1 Op >> 1 the normalized
spectrum (167) now reduces to
nz . 1 w w
Igw) = q—5— {6+ 2 Z [P(T)+P (-] (184)
1 "'m n=1

The asymptotic expansions (179) (180) presumed not only the largeness|/of L
with respect to unity but also with respect to n. In the case where the series
(167) does not converge at a sufficiently rapid rate the results (179) (180) must
be reconsidered. The asymptotic analysis must allow for large values of n.
The saddle-point condition and the corresponding contributions are modified

as indicated next., Let,

6 = jn (cpl + cpz) - L[j sin &« (sin cpl + sin cpz) + cos a(sincp1+ sincpz)z]

(185)
hence,
3 A
RO jn-L[jsin & cos ¢, +2 cos o (sing, + sinwy,) cos ¢, ] (186)
3 ¥, 1 1 2 1
> 2 2
and
2 A
3 Q _ .. : 2 . 2 . .
— 7 = -L[-jsina 51ncp1+2 cos o (cos @, - sin @, - sing, smcpl)] (187)
3 ¢ 2 2 2
2
The saddle-point conditions are defined by
N
28 | . 28 _ 0 (188)
cpl qDls, q)Zs BCPZ Cpls, qJZS
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We specifically look for solutions of eqs. (188) subject to the constraint

cplS = 'szs (189)

which selects the unique combination of P4 and P, giving rise to contributions
which are not exponentially small. Such a solution indeed exists and is given

(via eq. (186)) by

jn - jL sin o cos cpl =0 (190)
S
2
or
~ n : ol n 2
O Py = Teing c SN, TE T l-(gmpg) (19D
2 2

The substitution of eq. (191) into (187) results in,

2 /—T 2
3 Q --L[$jsina 1- —2 +Zcosa2n—:,(192)

op, Neein s L sin"«
2 _
P1s T P2
and
2 2 2 4
8(22 8? =L sin a(l- = >+4cosaf =
3 acp2 L sin"« L sin «
Prs T P2
4
2.2 2 4 (%
4k1 P, -0 +n (- ) (193)
m
Therefore,
<72 (2 )> il (194)
n 1 °m p. = 0n \4
/ 2 -2 4( p)
4k~ p " -n 4n [——
1 "m D
m
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and substitution into eq. (167) results in

2 & P(2)+P(-2)
In(w) ~ T 5(w) + 2m° 3 = = (195)
k, p n=1 2-2 2 4f %\4
1 "m n,/4k” p " -n® 4n” [
1 "m B

An exact evaluation of <Jn (Zk1 pm)> is possible for a presumed

P
m
Rayleigh distributed variable Py One has

co
2 2
<T, (2 p b, f do_ Plo_) J° (2K p )
-0
© 5 C
2 MR
] 2 - 2 A2 -4k p (196)
= 1
N /dpm Prmdn (Zkl Pm) € 26 2 L (4k1 pm) © m
0 m
m o
where 3 denotes the value of p_ at the peak of P(p_ ).
m m m

Hence, via eq. (167)

2n 2 @ 2N 2
1

- 2, -4k '
U Pm ga2n ¥ L1 (akd Pmip(L)+ p(-¥))

2A 2
€ lpm)e
n=1

Ig(w)=2m I (4k B

(197)
which reduces to the results given in eqs. (170) and (184) in the respective
asymptotic limits.

The clutter spectrum given by eq. (197) again indicates a DC component
at w = o plus continuous AC spectrum with the appropriate interchange between
A

these components to conserve energy as the factor 4kl prnz is varied. IE(u,\)

as given by eq. (197) is normalized for unit total clutter power. Hence,

+oo

. Y R
PT—PDC+PAC’ 2 /IE(u)dw~1 (198)

-0

The DC clutter power is
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2
_4k /\

pc - 1, Bk O I "m (199)

Hence, the AC clutter power is given by

2 A2 -4k, p
= = =1 - 1
P C PT pDC 1 I (4kl o )e m (200)

Note that this is true, independent of the specific form of the density function
of self-resonant frequencies P(Q). Figure 12 is a plot of the ratio of AC clutter
power to DC clutter power as a function of the parameter {jm/)\. For large
displacements, this ratio is proportional to f)\m/)\.

Figure 13 depicts a measured clutter spectrum at UHF (A = 0.69 m) under
low wind conditions. All of the measured spectra were characterized by a
resonant peak at approximately 0.4 Hz. The linear slope (db vs. log fre-
quency) of the observed low wind spectra above this peak suggests a power
law representation for P(Q) of the form

a @/a )P

PQ) = 3 (201)
l1+b (Q/QO)

(see eq. (171)). A good fit to the tail of the low wind spectrum was obtained
with parameters chosen such that q - pa~ 5.7. Alternative choices for P(Q),
such as a Rayleigh distribution or the Maxwell distribution included in Fig.
10, can not accurately produce the observed low wind clutter spectra.

The power law distribution which matched the low wind UHF spectra was
then used in eq. (197) to predict clutter spectra at both UHF and L-band
carrier frequencies for higher wind conditions. These results are illustrated
by Fig. 14. The experimental data at the two frequencies was obtained simul-

taneously from a common range cell., It is seen that the power law distribution
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with a deflection parameter of ’p\m = 3.7 cm which quite accurately matches the
observed L-band spectrum also predicts reasonably well the observed UHF
spectrum.

The Maxwell distribution of P(Q), which was seen to be a poor choice under
low wind conditions, yields much more reasonable results with stronger winds.
This suggests that the higher wind spectra are less sensitive to the distribution
of self-resonant frequencies of the scatterers.

It should be observed that the distribution of P characterized by the para-
meter em may depend upon the frequency of the incident radiation. As the fre-
quency increases, smaller-scale scattering centers start to effectively partici-
pate in the scattering process. It is anticipated that these smaller constituents
will move with larger amplitudes and thus thend to increase /p\m The trend is
reversed as the frequency decreases. While the qualitative observation is

simple, no satisfactory quantitative procedure has been established.
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APPENDIX
The objective of this Appendix is to prove the validity of the relatjon:

Var P_= < [P -<P>]2=<P>2 (A1)
r r r r

under the constraints of single-scatter theory and the presumed largeness
(compared to the correlation length) of the scattering volume.
Let

E=Re[AESi],E=Im[AES.] (A2)

1 2 i

The largeness of AVi in eq. (118) assures (via the central limit theorem) the
normal character of AEsi (which is therefore completely defined by its two-
point correlations). Upon forming the expression <A Esi < A Esi > [via eq.

(118)), transforming the resulting double integral (say over T and 12) into

1

the center of mass (R =% (El + 12)) and relative (g: r.o - 12) coordinate

1

systems and further separating the horizontal coordinates from the vertical,

one obtains:

(-U4LLZZZ Z,Z zz+z'2 2
. ' . _o "o jky —=—-j2kj(po+p ) F (e,
<A Esi (r,t) - A E @ ter)> = >——> 7§ © 1 2 o' "o i

m (M -1) e

[o]
/d3’r* C(®, 1) de Y(z)) Y(z,) Jli2ky Viin? | 20 ](z1423)

-2
A Vi -h \/1 -1
/dz 5 eIk Poi- P (A3)
AS.1
It is the bracketed term in eq. (A3) which is of special interest, since
2 - j4k) poi - P 2
. / d” p e’ 1 Zoi = (2m)” 6 (4k, p .) (A4)
11rnASi G e ASi 1 =oi
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Hence, the largeness of 1_\.S.1 is measured on the scale of the wavelength of the
incident radiation (rather than the correlation distance characterizing ¢ (r, t).

It follows that,

’ —
<AESI (.E.' t) N AESi (_1_: ’ t+T)> =0 (AS)

<E (r,t) - E (r tim")> = < B, (r,t) + E, (', t47)> (A6)

<E (r,t) - E, (rf t+1)>= -< E/(r], t+1) - E, (r,t)> (A7)
Although one can continue with the treatment of the two-point statistics,

we restrict ourselves to the discussion of the one point statistics relevant to

the proof of eq. (Al). Withr =r’ and 1 = 0 in egs. (6, 7) it follows that:

2

2 2
<E1>_ E <El-

Hence, the joint distribution is given by

1

2m oé

P(E, E,) =

l’
Or in terms of the amplitude and phase, with

E
12 + EZZ]I/Z, Q = tan'1 SR

A= [E —

one obtains




For the Rayleigh distribution (All) it follows:

<A4> =8 04

2
<A™> = 2 E

2
Op»

Hence (with S denoting the Poynting vector),

€
Var S = <[S - <S>]2> :% -ﬁ <[A2-<A2>]2>=
L‘O
1 © 4 2.2, " 4 2
——o[<A>-<A> :—OC = <S>
4 Mo TN E

where eq. (Al2) was utilized. Eq. (Al) results.
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