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contact discontinuities, gradient discontinuities) by treating them 

explicitly.  Points inside regions of continuous flow are treated by a 

finite difference scheme of second order accuracy.  Theoretical and 

practical arguments to support such an approach are given.  The technique 

allows the computational time to be reduced to a minimum.  The accuracy 

of the results as well as the generality of the program are shown by many 

applications to one-dimensional and quasi-one-dimensional problems. 

This research was supported by the Advanced Research Projects Agency 
of the Department of Defense and was monitored by the U.S. Army Research 
Office-Durham, Box CM, Duke Station, North Carolina 27706, under 
Contract No. DAHCO4-69-C-0077. 

Professor, Dept. of Aerospace Engineering and Applied Mechanics. 

■ 



TABLE OF CONTENTS 

Section 

I   Repetita Juvant 

II   A March-On Technique Emphasizing the Role of 

Discontinuities 

III   Shocks, Contact Discontinuities and Gradient 

Discontinuities 

IV   Extinction of Discontinuities 

V   Interaction of Discontinuities 

VI   Generation of Discontinuities 

VII   Treatment of Continuous Regions 

VIII   Initial Conditions, Boundary Conditions and 

Distribution of Mesh Points 

IX   Examples and Discussion 

A. Cylindrical Ducts With Moving Pistons 

B. Flow in Ducts of Variable Cross-section 

C. Propagation of Numerical Errors and Test for 

Steadiness 

D. Engine Surge Simulation and Related Effects 

E. Instability of a Shock in the Convergent Section 

of a Supersonic Inlet 

X   References 

Page 

1 

10 

14 

15 

18 

20 

23 

25 

25 

31 

33 

37 

40 

45 

ii 



LIST OF ILLUSTRATIONS 

Figure Page 

1 Comparison Between Solutions Obtained by Characteristic 

and Mesh Codes (From Ref. 4) 4 

2 Explicit Shock vs. Shock-Capturing Results 8 

3 Shock Reflections and Interactions 16 

4 Shock-Contact Discontinuity Interactions 17 

5 Computation of the Flow Produced by a Piston Suddenly 

Set into Motion, According to Ref. 9 21 

6 Flow Produced by Two Pistons Moving Against Each Other 

in a Cylindrical Duct - First Computation 26 

7 Flow Produced by Two Pistons Moving Against Each Other 

in a Cylindrical Duct - Improved Computation 27 

8 Flow Produced by Two Pistons Moving Against Each Other 

in a Cylindrical Duct (Left Piston Started Impulsively)    30 

9 Formation of a Shock in a Laval Nozzle - Motion Started 

From Rest by Removing a Diaphragm at the Exit Section     32 

10 Transition From Steady Flow to Rest in a Laval Nozzle     34 

11 Propagation of an Error in the Computation of Fig. 10     35 

12 Response of a Stable Shock to a Pressure Pulse at the 

Exit of a Nozzle 36 

13-14 Response of an Unstable Shock to a Pressure Pulse at 

the Exit of a Nozzle 39 

15    Response of an Unstable Shock to a Compression Followed 

by an Expansion in the Main Stream 41 

in 

.. . 



 ;  .■,..„„ H, ■■■■ 

LIST OF ILLUSTRATIONS (Contd.) 

Figure Page 

16 Response of an Unstable Shock to an Expansion Followed 

by a Compression in the Main Stream 42 

17 Response of a Stable Shock to a Coupression Followed 

by an Expansion in the Main Stream 44 

18 Response of a Stable Shock to an Expansion Followed 

by a Compression in the Main Stream 44 

iv 



1.  REPETITA JUVANT 

One-dimensional flows, in the present paper, are unsteady flows 

which depend on one space variable only. Therefore, unsteady flows 

whose properties are uniform along planes, cylinders or spheres, as well 

as flow in ducts of variable cross-section, treated within the framework 

of the well-known quasi-one-dimensional approximation, ail belong to that 

category. Despite their crudity, one-dimensional concepts find useful 

applications in a large number of problems, such as shock-tube analysis, 

intake and exhaust unsteady behavior, preliminary wind-tunnel design, 

explosions, stellar evolution, vehicle-in-tube performances, etc.  In 

addition, one-dimensional concepts can be used, by analogy, in steady, 

supersonic flows depending on two space variables (that is, two-dimen- 

sional or axially symmetric).  From the viewpoint of research, in gas 

dynamics as well as in numerical analysis, one-dimensional problems pro- 

vide basic examples in the simplest possible way, clear-cut ideas and 

accuracy tests. 

Has a problem with so many positive features and so rich in practical 

applications been formulated in a general, exhaustive way? Is a computer 

program available, easy to use, general, safe, accurate and fast? 

Judging by the existing literature and the requests from the industry, 

the answer seems to be on the negative. 

The reason is that one-dimensional problems are not simple at all. 

As a consequence of the nonlinearity of the governing equations, discon- 

tinuities in the physical parameters and their derivatives appear, most 

disturbingly in the form of shock waves and interfaces (contact discon- 

tinuities) . Such discontinuities interact with each other, generating 
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more discontinuities, and reflect on boundaries.  In general, flows which 

start with a continuous distribution of parameters, quickly develop dis- 

continuities. A cross-section of the flow at a constant time appears as 

a complicated distribution of discontinuities, separating diminutive 

regions of continuous flow. 

To make the point bluntly: Rather than as a continuous distribution 

of parameters, occasionally interrupted by discontinuities, a one-dimen- 

sional flow can be conceived as a pattern of discontinuities, separating 

regions of almost uniform flow. Bearing this in mind, a computer program 

should emphasize the handling of discortinuities and their interactions, 

rather than the calculation of continuous regions. 

The trend in the last two decades has been in the opposite direction. 

It is, by now, so deeply rooted that few words to explain how the shift 

began may hopefully help to redirect our efforts onto what I believe is 

the right track. The first attempts to calculate one-dimensional flows 

were based on the method of characteristics, a convenient technique for 

hand computations and graphical analysis as long as the flows are contin- 

uous, homoentropic and strictly one-dimensional.  In the presence of dis- 

continuities, the method of characteristics has to be modified. The 

latter can be used in each region of continuous flow, with the additional 

complication of a generally variable entropy; the discontinuities must be 

treated by different techniques. Hand computations become prohibitively 

cumbersome; interpreting the method in a computer program is a formidable 

exercise in logic.  Not surprisingly, scientists interested in fluid 

mechanics shied away from such problems, whose solution seldom contributes 

to deepening one's physical knowledge. On the other hand, skilled 



programmers who may enjoy a challenge in logic cannot undertake the task 

without a gas dynamicist's guidance.  In 1950, von Neumann and Richtmyer 

came along with a brilliant idea , which seemed to sweep out all logical 

difficulties by a single stroke, making gas dynamical computations an 

effortless routine, to be stolidly performed by the high-speed computer, 

over and over again, invariably, at all the points to be evaluated.  In 

the scientific community, such a technique soon became known as "brute 

force", the derogatory tinge being intentional.  The industry, however, 

welcomed it as a simple way of obtaining results, with a minimal contri- 

bution of specialized manpower, and of replacing expensive and delicate 

experiments by inexpensive and safe computations.  The optimistic term, 

"electronic wind tunnel", was coined for the high-speed computer working 

on a gas dynamical problem. 

It turned out that the computations were neither safe nor inexpensive. 

One-dimensional problems clearly show why the method fails.  To eliminate 

discontinuities, one has to smear them out by introducing an artificial 

viscosity into the finite-difference equations.  If the number of mesh 

points is too small, the artificial viscosity is too high. Thus, dis- 

continuities diffuse over too wide a region. When more than one discon- 

tinuity exist, their broadened counterparts tend to overlap and the inter- 

mediate region is completely defaced. A possible remedy consists of 

increasing the number of mesh points. The points must be evenly distrib- 

uted all over the region to be computed since (according to the "brute 

force" approach) one does not know where the discontinuities are going to 

be at any given timer and the distance between mesh points has to be made 

really small. Computations which may claim to be safe (that is, accurate) 
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are catastrophically expensive^»3< 

Presiure 
tkk) 

Distance —> 

FIG. 1.  COMPARISON BETWEEN SOUJTIONS OBTAINED BY 

CHARACTERISTIC AND MESH CODES (PROM REP. 4) 

A couple of examples will help make the point clear: 

1)  See Pig. 6 of Ref. 4 (reproduced here as Pig. 1), where the 

dotted line plots the results of a brute force method.  To quote the 

authors of Ref. 4:  "This calculation used 470 points and took three times 

as long as the characteristic calculation (15 minutes instead of 5 ).  it 

will be seen that there is a larger uncertainty in the shock positions 

and strengths.  Smoother profiles can be obtained by using different 

artificial viscosities, but at the expense of further shock broadening and 

The computer used in the test is not mentioned. 



a corresponding increase in uncertainty."  I agree; I would like to 

anticipate, though, that by using the method explained in the present 

paper a maximum of 35 points could give accurate results, without certain 

complications inherent in the method of characteristics.  The reduction in 

computational time would thus be by a factor of one hundred or more. 

2)  Ref. 5, instead, is a typical application of brute force methods 

with no imaginative criticism.  After stating that "the availability of 

larger, faster computing machines now allows the complete governing non- 

linear equations to be solved by conceptually simple and more generally 

applicable explicit finite difference methods," the author proceeds to 

apply the obsolete Lax scheme, notorious for its low degree of accuracy. 

The ratio of (CDC 6600) computer time to real time is, according to Ref. 5, 

about 6000 for relatively simple problems (constant area duct, a single 

shock), and should be multiplied by 4 for more complicated problems.  By 

the method of the present paper, the example which requires 200 mesh points 

in Ref. 5 could be analyzed with about 20 points, thus reducing the compu- 

tational time by a factor of 100. The ratio of computer time to real 

time would then be only 60, and the accuracy would be improved as well. 

Note that such a ratio is still unacceptable for many practical applica- 

tions.  However, a machine ten times as faster as the CDC 6600 would be 

sufficient to make the computational time acceptable, and this is within 

our immediate reach. It should also be noted that, for problems compli- 

cated by the presence of many discontinuities, the total number of points 

remains substantially unchanged, if the method of the present paper is 

used, whereas it is multiplied by a sizeable factor (to be squared to eval- 

uate the increase in computational time) if the method of Ref. 5 is used. 
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Along the same line of thought, we find in the more recent litera- 

ture methods which seem capable of a greater accuracy than Lax's scheme, 

claiming not to use artificial viscosity but, nevertheless, to be able to 

find and handle discontinuities without explicit provisions.  One of such 

methods has been authoritatively supported in connection with other prob- 

g 
lems of a similar nature . The technique has been labeled "shock 

capturing" for its purported ability to build up sharp transitions, 

roughly equivalent to shocks, on about three mesh points.  In problems as 

complicated as the ones discussed in the present paper where, as we will 

see, regions described by only three points between discontinuities exist, 

one may wonder how the two limiting discontinuities would appear. 

We are back again to a need for more points! However, regardless of 

the number of points, the method seems to be inconsistent because, if 

viscosity is completely eliminated, the equations of motion are not prop- 

erly used in the transition substituting for the discontinuity (see Ref. 2, 

pages 19 and 54).  In the same Ref. 2, page 50, I have mentioned McCormack's 

scheme as a fairly good second order method, and elsewhere I have repeatedly 

pointed out some of its practical coding advantages in complicated, multi- 

dimensional problems.  I cannot share, though, the optimism of the authors 

of Ref. 6 in saying that McCormack's scheme is a "shock capturing" one, 

more than other schemes and within acceptable time limitations. 

To submit my theoretical arguments of Ref. 2, page 54 and Lomax and 

Kutler's opposite statements to a practical test, we may resume the cal- 

culation which in Ref. 2 was halted soon before the appearance of an 

imbedded shock.  According to the theoretical analysis of Ref. 7, page 38, 

the shock should form at t=.844, x=.8415.  Results obtained by using 



McCormack's scheme, with the original equations either in conservation 

fOE» or not, and AX equal to .05, .025, .0125, .00625 show no differences 

from each other as long as t does not exceed .8. 

If t increases beyond .8, the results obtained when McCormack's 

scheme is applied to the non-conservative form of the equations oscillate 

in the region where the shock should appear.  The oscillating pattern 

worsens by refining the mesh, a feature which makes any attempt to better 

accuracy hopeless. 

Better results, on the high pressure side of the shock, are obtained 

if the equations are recast in conservation form.  The low pressure side, 

however, does not improve.  Fig. 2 shows the velocity distribution at 

t=.901, as computed by the McCormack scheme with the equations in con- 

servation form, with Ax=.001667 (360 points), and with Ax=.013333 (45 

points), together with the velocity distribution at the same time, com- 

puted by the method of the present paper, using a total of 20 points (AX 

equals .03 before the formation of the shock and it maintains a value of 

the same order of magnitude after the shock is formed). The shock loca- 

tion, properly found by the present technique with 20 points, is detected 

by the "shock capturing" scheme if 360 points are used. The low pressure 

side distribution is misrepresented even with 360 points (note that in 

this problem the velocity in front of the shock is small but positive, as 

the exact solution and our results show).  One can anticipate some embar- 

rassment, should another shock, proceeding from right to left, impinge on 

the former. 

Anyway, the ratio of computational time between the 360 point case 

and the 20 point case is 329 {-TT- X      -  , the second fraction being the 
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 McCORMACK   SCHEME,   360 POINTS 

-Q- McCORMACK   SCHEME,    45  POINTS 
PRESENT TECHNIQUE,    20 POINTS 

FIG.   2.     EXPLICIT SHOCK VS.   SHOCK-CAPTURING RESULTS 
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ratio of time steps to reach t=.901). With such a ratio, assuming that 

the present technique can handle a problem at a ratio of computational 

time to real time equal to 40, the same ratio for the shock-capturing 

technique becomes 13160, twice as larger as the one mentioned in Pef. 5. 

II.  A MARCH-ON TECHNIQUE EMPHASIZING THE ROLE OF DISCONTINUITIES 

The present paper introduces a computational technique wn^.h Lakes 

full advantage of explicit treatment of discontinuities. Although the 

current version of the code uses the concept of characteristics occa- 

sionally, its general logic is not based on the method of characteristics, 

as in Ref. 4. The belief that only if the method of characteristics is 

used, discontinuities can be treated explicitly is unjustified and only 

attributable to the historical, parallel development of the method of 

characteristics and finite-difference schemes as outlined above.  The 

physical problem is sufficiently complicated per se, not to ask for the 

unnecessary logical complications brought in by the method of character- 

istics. Moreover, it must be noted that the latter does not offer any 

advantage as far as accuracy and computational speed are concerned. 

The additional complications mentioned above proceed from the in- 

trinsic irregularity of a characteristic network.  In addition to making 

plotting very cumbersome, the characteristic pattern can be so different 

in different regions of the (x,t) plane that, in the course of computing, 

uninteresting regions or regions where the computation may fail for lack 

of accuracy are reached when the region of interest has not been fully 

explored y3t.  Finally, if the computation proceeds building up a right- 

running characteristic, say, a left-running shock can be evaluated without 

9 
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excessive additional labor? a right-running shock,however, carnot be 

evaluated without first determining a sufficiently wide, shockless region 

across which the shock has to be laid, thus canceling the portion of the 

computed region on its high pressure side.  Logical difficulties arise 

and grow bigger and bigger as th» discontinuities intPiact with each 

other.  In addition, time is lost in computing parts which are succes- 

sively erased.  Finally, since the latter have no physical meaning, out- 

of-range rumberscan be produced and the computation halted. 

None of the above difficulties exists if one proceeds from a given 

time to a successive time, advancing by the same amount At at all points. 

This is easily and accurately done by using a suitable finite-difference 

scheme at all points where the physical parameters are continuous and 

differentiable, and their first derivatives are continuous. 

However, according to the spirit of the present technique, T will 

postpone the discussion of the finite-difference scheme and discuss first 

the physical features of discontinuities and their interaction. 

III.  SHOCKS, CONTACT DISCONTINUITIES AND GRADIENT DISCONTINUITIES 

Consider the flow described by three physical parameters, the 

particle velocity, u, the logarithm of pressure, P, and the entropy, S. 

A shock is a locus of discontinuities for u, P and S. It travels at 

a speed, W, which, relatively to the moving particles, is always greater 

than the speed of sound on the low pressure side.  Seven equations are 

needed to determine the values of u, P and S, on either side of the shock, 

plus W. 

10 



A contact discontinuity is a locus of discontinuities for S alone. 

It travels with the particles, that is, at a speed equal to u.  Therefore, 

four equations are needed to determine u, P, and the two values of S at 

either side of the discontinuity. 

A gradient discontinuity is a locus of discontinuities for the first 

derivatives of u, P and S. It travels as a characteristic. At a point 

located on a gradient discontinuity there are no more unknowns than at an 

ordinary point. However, one cannot replace a derivative by a finite 

difference involving points at both sides of the line. 

If each discontinuity is considered as a boundary point between two 

regions of continuous flow, we may count such a point twice, once as 

being the last point in the region at the left and again as being the 

first point in the region at the right. 

Suppose the discontinuity is a shock.  Since the flow in the low 

pressure region, relative to the shock, is supersonic, the flow values 

at time t are necessary and sufficient to determine the shock point on 

the same side at t+Lt,  provided that its location is known.  Both (u+a) 

and (u-a) characteristics, indeed, reach the shock from the low pressure 

side, and so does the particle path. Any three independent equations 

(such as the two compatibility equations along characteristics and the 

equation expressing the constancy of S along a particle path, or Euler's 

equations in their original form) provide the values of P, u, and S at 

the shock point on the low pressure side.  From the high pressure side 

only one characteristic reaches the shock.  The compatibility equation 

written for that characteristic, and the three Rankine-Hugoniot conditions 

across the shock are the necessary and sufficient equations to determine 

11 

    



the values of P, u, and S at the shock point on the high pressure side, 

plus the shock velocity, W. 

This basic idea can be applied in many different ways, with different 

degrees of accuracy and sophistication.  Not all schemes fit equally well 

into the general logic of a program. The present code (December 1970), 

which was written with a well-separated treatment of every single item 

for a clearer understanding, would not easily accept the procedure sug- 

gested in Ref. 8 (the seven equations, plus an equation defining the 

shock path, are solved simultaneously by a two-level scheme which provides 

an overall second order accuracy). The procedure of the present code is 

conceptually simpler; however, the accuracy is only of the first order 

and some iterations are required. 

The computation proceeds as follows.  First, the location of the 

shock, x , is obtained at time t+At by integrating the equation: 
s 

ds 

if-" 
with the first-order approximation: 

x (t+At)=x (t)+W(t)At 
s       s 

Then the low pressure region is identified; the two characteristic and 

the particle path are traced back from x (t+At) into the low-pressure 
s 

region. Their locations at time t are found and values of P, u, and S 

are obtained by linear interpolations on the values at mesh points at 

time t. The compatibility equations are applied to find the shock values 

at time t+At on the low pressure side.  Finally, the Rankine-Hugoniot 

conditions and the compatibility equation along the characteristic on the 

12 
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high pressure side are solved by a trial-and-error procedure. 

By so doing,   the shock computation depends only on values at inter- 

ior points known at time t.     It  is  thus explicit,   that  is,   uncoupled  from 

any other computation and  it can be performed in an   independent  subroutine. 

In the same  spirit,   the contact discontinuity can be evaluated as 

follows.     First,   the location x    of the discontinuity at  time t+At is c 

determined by integrating the particle path equation: 

dx c 

with the first-order approximation: 

x (t+At)=x (t)+u(t)At 
c      c 

Two characteristics reach point x    from either side of it.    Their two 
c 

compatibility equations are solved simultaneously, considering that P and 

u are the same on both sides of the discontinuity. The values of S on 

either side are carried over from t to t+At, unchanged. 

Once more, it can be observed that a more accurate, two-level scheme 

could be used; but, again, the present procedure makes the computation 

explicit and it is better suited for the code in its present form. 

Finally, for the gradient discontinuities two cases must be distin- 

guished. If the discontinuity propagates an expansion, the path of a 

gradient discontinuity is defined by 

dx 

-d?= U ±a 

This equation, once the proper choice of the sign is made, can be 

13 
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integrated by a first order approximation as the others for x and x 

above.  The values of P, u, and S at both sides of the discontinuity 

must be computed by using information only from the side from which the 

particles arrive.  In fact, of the two characteristics, one is the dis- 

continuity itself and the other carries information to x from one side 

and carries information away from x on the other side; similarly, the 

entropy maintains at x the value which it has before the particle reaches 

x .  On these grounds, it is easy to work out a routine for an explicit 

treatment of x • 
9 

If the discontinuity propagates a compression, a shock will eventually 

form.  Therefore, it is advisable to treat the discontinuity as a shock 

of zero strength. 

IV.  EXTINCTION OF DISCONTINUITIES 

In an inviscid flow, discontinuities seldom disappear spontaneously. 

A shock may be extinguished, for example, by letting it reach a wall 

capable of absorbing its full impact at the right time, a condition hard 

to satisfy in a numerical computation. A contact discontinuity can never 

be eliminated, in principle. 

Although the program is capable of handling a great number of dis- 

continuities, there is no reason for carrying them along and letting them 

multiply ad infinitum, unless their role is significant.  Provisions are 

taken in the program to eliminate shock waves whose pressure ratio is 

below a certain tolerance, contact discontinuities whose temperature ratio 

is below a certain tolerance, and gradient discontinuities where the 

difference between the values of dP/dx on either side is below a certain 

14 
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tolerance.  Tolerances can be prescribed by the user according to his 

- 
needs. 

In any case, once a discontinuity is eliminated, the two points 

from either side of it are merged into a single point and all mesh points 

are redistributed uniformly across the new region.  Physical values at 

the new mesh points are linearly interpolated from the data available 

immediately prior to the merging. 

V.  INTERACTION OF DISCONTINUITIES 

It is well-known that the way discontinuities interact with each 

other depends on local properties of the flow in the vicinity of the point 

where such discontinuities meet.  Consequently, a general analysis of 

interactions can be made and has actually been made in the forties.  Its 

results are now available in textbooks at the graduate level and I do not 

consider necessary to repeat them here. A computational code may take 

care of the interactions by: 

1. Determining that an interaction should occur within the step 

to be taken, and 

2. Performing a local study of the flow field, in which the minute 

regions between discontinuities are assumed to be regions of uniform flow. 

The first problem is easily solved since the present code keeps 

track of the size of the regions between discontinuities and of the 

slopes of the discontinuities. 

15 
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FIG. 3.  SHOCK REFLECTIONS AND INTERACTIONS 

Figure 3 shows the interactions involving impinging shocks only, 

considered by the code.  Cases a and b are reflections of shocks on rigid, 

moving walls.  The values at D are assumed equal to the values at C. The 

slope AB of the reflected shock is, by trial and error, obtained to 

satisfy the Rankine-Hugoniot conditions across the shock at D, under the 

assumption that behind the shock the velocity of the particles equals 

the velocity of the wall.  Note that, after reflection, the number of 

regions of continuous flow is still the same as before reflection. 

Case c represents the coalescence of two shocks of the same nature. 

In this case the code simply assumes that the two shocks merge. Region 2 

between them is eliminated, and the computation proceeds by determining 

the location and slope of a shock separating region 1 from region 3, as 

outlined in Section III.  Any expansion wave produced in the interaction 

is sufficiently weak to be computed by the code for continuous regions 

without additional sophistication.  The contact discontinuity which should 
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emerge from the merger point is considered negligible. 

In case d, two shocks of opposite nature impinge upon each other, 

are refracted and a contact discontinuity is generated.  Again, the values 

at D and F are assumed equal to the values at C and E, respectively.  The 

slopes of the refracted shocks and of the contact discontinuity, as well 

as the (uniform) values of the flow field parameters in regions 2 and 3 

behind the merger point are obtained by trial and error; the Rankine- 

Hugoniot conditions across both refracted shocks and the conditions of 

equal P and u in regions 2 and 3 are used.  Note that in this case, after 

reflection, the number of regions of continuous flow is increased by one. 

t 

At 

©   \®^ (D 

FIG. 4.  SHOCK-CONTACT DISCONTINUITY INTERACTIONS 

A contact discontinuity cannot reach a rigid wall.  It can interact 

with a shock in two ways, represented in Fig. 4.  The different pattern 

is a consequence of the ratio of densities across the contact discon- 

tinuity before it crosses the shock.  Pattern (a) (refracted shock, 

refracted contact discontinuity and a reflected shock) occurs if the 
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density in region 1 is greater than the density in region 2.  In the 

opposite instance, pattern (b) occurs (no reflected shock).  The handling 

of such cases follows the outline for shock interaction very closely. 

VI.  GENERATION OF DISCONTINUITIES 

In the present code, which does not consider layers of different 

gases, contact discontinuities can only be generated by shock interaction, 

as outlined in Section IV.  Shocks are generated by abrupt changes in the 

speed of a piston, or by coalescence of characteristics.  In the majority 

of problems, the time and place where coalescence occurs are not directly 

related to typical geometrical features of the duct or, if moving pistons 

exist, to their accelerations. A method to find the birthplace of an 

imbedded shock by analyzing the shape of the pressure distribution has 

been outlined in Ref. 7; it is applied in the present code and, in all 

numerical experiments performed so far, has proved to be efficient. 

If the piston velocity changes abruptly at time t, producing a 

sudden compression, a shock originates at the piston itself at time t. 

In this case, a new region of continuous flow behind the shock must be 

generated. The procedure is easily established by introducing a ficti- 

tious shock of zero strength impinging on the piston at time t and con- 

sidering the new shock as a reflection of the former one (case a or b of 

Fig. 3). 

Finally, the piston acceleration may change abruptly at time t, pro- 

ducing a compression. In this case, the flow velocity remains continuous 

until a shock forms by coalescence of characteristics. The derivatives 
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of velocity and pressure, though, are discontinuous along the character- 

istic issuing from the piston at time t; in other words, the shock will 

eventually form along a gradient discontinuity.  One may use the technique 

mentioned above to find imbedded shocks in this case. However, unless 

the characteristic itself is considered as a boundary between two regions, 

the calculation may become affected by gross inaccuracies long before the 

shock has a chance to be detected.  It is much better, thus, to locate 

the point of discontinuous acceleration in the piston and to consider a 

shock issuing from that point, by proceeding as explained above for the 

case of discontinuous piston velocity.  Since the velocity is not discon- 

tinuous, the shock will automatically begin with zero strength and proceed 

for awhile along a characteristic. The advantage in so doing is that the 

characteristic will be singled out from its inception as a boundary be- 

tween two continuous regions, and the computation along the characteristic 

will have all the features of a shock computation. When coalescence 

occurs, the yet infinitely weak shock will be able to pick up strength 

and the neighboring points will always be computed without carrying finite 

differences across discontinuities of any type. An example of the 

improvement in accuracy obtained by fitting a shock at a point of discon- 

tinuous acceleration will be given in Section IX. 

It should be noted that proper identification of the starting point 

of a shock is imperative to obtain accurate results in the adjoining 

regions of continuous flow.  If the shock is fitted too far from the 

place where it would actually originate, it will not fulfill its mission; 

another shock will tend to form in the right place, with the consequent 

loss of accuracy exposed in Section I. An example of this kind of 
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inaccuracy is given in Ref. 9, whose Figs. 27 and 28 are reproduced here 

in Fig. 5. Figure 28 shows (in heavy lines) a piston path and an assumed 

shock path, whereas the actual shock should be the light line issuing 

from x=3.0948, t=1.5.  Figure 27 shows successive pressure distributions 

in the region between the piston and the assumed shock.  Eventually, (at 

t=2.23) the real shock overtakes the assumed shock and the accuracy 

improves. However, the transient is poorly described (note all the dis- 

turbing oscillations which a well-fitted shock would eliminate).  Note 

also that the number of mesh points (not mentioned in Ref. 9) seems to be 

quite large, whereas the method of the present paper handles the same 

problem with only three points between piston and shock. 

If the shock were fitted too close to the origin of compression (the 

piston), the shock could not function properly as a relieving mechanism 

for the pressure surge, and again, the pressure distribution would become 

accordion-pleated until the shock had a chance to move into its right 

location. All these inaccuracies become very important and, quite often, 

catastrophic in problems involving multiple shocks and their interactions. 

VII.  TREATMENT OF CONTINUOUS REGIONS 

Having thus described briefly how the most relevant features of one- 

dimensional flows can be treated, it remains to say how the computation 

may be performed in regions of continuous flow. I have pointed out in 

Ref. 2 that a second-order accurate scheme for integrating Euler's equa- 

tions is a reasonably good choice, and I have e>pressed my belief that 

the most popular schemes are almost equivalent, as far as accuracy is 
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concerned.  The present code, written in its original form h.  couple of 

years ago, uses the scheme No. 6 of Ref. 2, page 42.  Such a scheme has 

the advantage of being symmetrical; in a problem where two pistons move 

symmetrically at both ends of a duct, the results inside are symmetrical 

as well. MacCormack's scheme (No. Tof Ref. 2,   page 42) would not provide 

such a symmetry, except for few of the first significant figures. The 

latter, however, has some advantages in coding simplicity and, when 

properly ccmbined with schemes to treat discontinuities, can provide 

some reduction in computational time. Therefore, a new version of the 

code will be provided eventually, with a faster working logic, exploiting 

the positive features of MacCormack's scheme. 

The equations of motion are written for the case of a duct of vari- 

able cross-section in the form: 

P +uP +YU +Yua = 0 

u +uu + 7P =0 
t   X    X 

S+uS = 0 
t  x 

where P is the logarithm of pressure, u the velocity, 7 is the ratio of 

pressure to density and S is the entropy. All these quantities are made 

nondimensional as explained in Ref. 2, page 22 or in a similar manner 

(for inlet problems) by assuming p . and p f 
as the values of pressure 

and density at the entrance section of the duct. The quantity a is the 

logarithmic derivative cf the cross-sectional area with respect to x. In 

each region of continuous flow, the equations are normalized by assuming 

new variables x and T, 
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c-b 

T = t 

where b and c are the left and right boundary of the region, respectively. 

The finite-difference scheme is then applied to the equations in the 

(X,T) space. 

VIII.  INITIAL CONDITIONS, BOUNDARY CONDITIONS 

AND DISTRIBUTION OF MESH POINTS 

Everyone who has ever written a computational code knows how diffi- 

cult it is to make it flexible and general.  Regardless of the care taken 

in the planning stage to give the code some generality, soon a request 

for application will show features of the geometry, boundary conditions 

and/or initial conditions which had been overlooked.  One of the advan- 

tages of the present approach proceeds from its segmentary structure. 

The basic routines (shock detection, shock fitting, contact discontinuity 

fitting, gradient discontinuity fitting, reflections and interaction of 

discontinuities, treatment of continuous regions) are independent from 

one another and can be used with no changes, regardless of the number of 

discontinuities and of the nature of initial and boundary conditions. 

Nevertheless, I disclaim any attempt to generality in the present stage 

of evolution of the code. Originated two years ago as a computational 

tool for designing a shock-tube device known as the Slingshot  , the 

code was limited to a constant area duct, bounded by two moving pistons; 

the code included provisions for detection of imbedded shock, shock 
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fitting, reflection and interaction (without contact discontinuities). 

In its present form, the code can handle all the features described in 

the preceding sections.  As far as the boundaries are concerned, any 

combination of the following conditions can be handled: 

a) a moving piston, 

b) an arbitrary boundary (either fixed or moving with a prescribed 

law) in a region of invariable flow, 

c) an infinite capacity containing gas at rest, 

d) a prescribed supersonic flow, 

e) an infinite cavity in which the gas issues as a jet, 

f) an interface with an engine, whose characteristics are to be 

prescribed by an additional program. 

The initial conditions, which were limited to a gas at rest in the 

original version of the code, may now be: 

a) gas at rest, 

b) steady flow in a duct of variable cross-section, with or without 

a normal shock, obtained automatically by prescribing the exit pressure. 

Once the boundary and initial conditions have been chosen by reading 

in three code integers, and supplementing the duct geometry and the law 

of motion of the external boundaries, it remains to choose the namber of 

mesh points in the initial configurations.  The choice is dictated by the 

duct geometry and the initial distribution of parameters.  If the gas is 

initially at rest, the duct has a constant area and the limiting pistons 

move to produce compressions, the code will immediately split the initial 

region into three parts, separated by shocks, so that the initial region 

will still contain gas at rest until the two shocks interact with each 
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other.  In this case, the number of initial points may be limited to 

three.  If the cross-section has a variable area, one needs a certain 

resolution near the throat.  A minimum of 30 points should be provided 

and some increase may be necessary if the time-dependent computation 

near the throat experiments difficulties. 

Once the initial choice of mesh points has been made, no further 

intervention is necessary.  Every time a new region is creatad, it starts 

with the minimum reqvirement of three points. As the width of the region 

increases, the number of mesh points is automatically increased to main- 

tain an adequate resolution. Conversely, if the width of a region de- 

creases, the number of mesh points is reduced until the minimum of three 

is eventually reached (an attempt to further reduce the number of mesh 

points results in detecting a reflection or an interaction, as explained 

in Section V). 

IX.  EXAMPLES AND DISCUSSION 

The following examples intend to show the capabilities of the code 

in its present version and also to illustrate some of the points made in 

the preceding sections. 

A.  Cylindrical Ducts With Moving Pistons 

Let us begin with the case of a cylindrical duct, bounded by two 

moving pistons, with the gas initially at rest. 

In Run No. 2, whose results are shown in Fig. 6, the motion of the 

left piston is defined by: 

xb = 1 - cos TTt/2   t < 2 

x^ = 2 t > 2 
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The motion of the right piston is defined by: 

x = 3+*j cos TTt/2 t < 2 
c 

x = 2.5 t > 2 
c 

A single region is assumed initially, in which 49 points are computed 

(including the boundary points). No provisions are made to define ficti- 

tious shocks issuing from the pistons at t=0.  Since the acceleration of 

both pistons is different from zero at t=0, we must expect two gradient 

discontinuities to propagate along characteristics issuing from x=0, t=0 

and x=3.5, t=0.  Both discontinuities evolve into shocks.  According to 

Eq. (39) of Ref. 7, the shock produced by the left piston should begin 

at t=.4, x=.4732, the shock produced by the right piston should begin at 

t=.8, x=2.5536.  As pointed out in the preceding section, some inaccura- 

cies are bound to appear before the shocks are formed; the shocks may not 

be detected at the right places and the errors generated in the initial 

phase of the computation will disturb the results in general.  These 

effects are evident in Fig. 6. The heavy solid lines are the piston and 

shock trajectories; contact discontinuities are represented by heavy 

broken lines; the lighter lines are lines of constant velocity.  The two 

circles indicate the theoretical origins of the two initial shocks. It 

is clear that neither one of the shocks is detected properly and that 

oscillations tend to appear. The shocks not being detected properly, 

their path is slightly incorrect (the right one is displaced to the right 

by about .05), their intersection does not occur at the right place and 

the following pattern is incorrect.  Nevertheless, the pattern is quali- 

tatively significant, showing shock interactions and reflections at 
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infinitum.  Note the disappearance of the contact discontinuity as soon 

as the density jump across it becomes insignificant.  The most important 

conclusion to be drawn from this computation is the waste of 49 mesh 

points to produce an imperfect result. 

The same case is recomputed as Run No. 3, shown in Fig. 7. Now the 

gradient discontinuities are explicitly taken into account as dividers 

between regions, so that from the very beginning the computational field 

is split into three regions.  The initial number of mesh points is now 

only 3.  No oscillations appear, the coalescence of characteristics 

(represented by constant velocity lines in the original simple waves) 

occurs properly, and the shocks start gathering strength (and, conse- 

quently, bending their paths) at the theoretically predicted points.  For 

this run, the tolerance on temperature ratio across a contact discon- 

tinuity was taken so small that no contact discontinuity is eliminated. 

In Run No. 6, the motion of the left piston is defined by 

x. = 2t (t<.5) 
b 

xb = - .25+t(3-t)        (.5<t<1.5) 

xb = 2 (t>1.5) 

and the motion of the right piston is defined by 

x = 2.5 + cos TTt/2 (t<l) 

x = 2.5+(rr/2) (2.5-4t+1.5ta)    (l<t<4/3) 

x = 2.23833 (t>4/3) 

The gas is again initially at rest in a cylindrical duct. In this case, 

the left piston starts moving impulsively. A shock, binding two regions 

of uniform flow, originates at t=0, x=0 and moves at a constant speed 
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until it is overcome by the first expansion due to the braking of the 

left piston. The computed results are shown in Fig. 8, where only piston 

paths, shocks and contact discontinuities are plotted, for greater clarity. 

B.  Flow in Ducts of Variable Cross-section 

The next experiment (Run No. 5) is made on a Laval nozzle, connect- 

ing an infinite capacity with an ambient where the pressure is .7 the 

stagnation pressure. The flow starts from a state of rest, as if a dia- 

phragm were suddenly removed at the exit section.  The geometry of the 

nozzle is defined by 

A = x/2 + 1/x      (0 < x < 3) 

The results (isobars) are plotted in Fig. 9.  It can be seen, from the 

figure, how a shock builds up in the divergent section of the nozzle and 

develops until it reaches a steady condition.  The values at t=35 (not 

shown in the graph) are accurately representing a steady state. 

Suppose now that the steady state, corresponding to the same Laval 

nozzle and the same pressure ratio, is the initial state and the pressure 

in the exit chamber is quickly raised to the stagnation value.  Obviously, 

the final state should be a state of rest throughout the nozzle. The 

results of the computation for this case are shown in Fig. 10.  In Fig.10, 

(Run No. 9, isobars plot) it can be seen how the pressure rise at the 

exit is propagated upstream through the subsonic portion of the flow, 

until it pushes the shock into the supersonic region. At about t=9.5, 

the shock has reached the vicinity of the mouth of the nozzle, and its 

strength has decreased so much that the shock is automatically eliminated 

by the program. An expanded region is left in the central portion of the 
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FIG, 9.  FORMATION OP A SHOCK IN A LAVAL NOZZLE - MOTION STARTED 

FROM REST BY REMOVING A DIAPHRAGM AT THE EXIT SECTION 
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nozzle, but the pressure slowly rises to its asymptotical stagnation 

value. 

C.  Propagation of Numerical Errors and Test for Steadiness 

Fig. 11 is presented here to demonstrate how a study of isobar plots 

helps in finding programming mistakes.  The figure refers to the same 

case described by Fig. 10.  It is clear, though, that at the very begin- 

ning of the computation a disturbance originates at the entrance of the 

nozzle and propagates downstream. Note how a numerical disturbance prop- 

agates as a physical one.  The disturbance seems to persist indefinitely; 

indeed, if it had existed at t=0 only, the isobars in the supersonic 

region should quickly come back to their original, steady state locations 

since they are not affected by the disturbance at the exit section until 

the shock reaches them.  This is obviously not the case in the figure; 

all isobars settle down at a location displaced to the right of the initial 

one. The rise in pressure at the entrance mouth is also unrealistic. 

The error is rather small, though. Note that the initial perturbation 

passes through the shock but the shock itself is practically unaffected. 

All these facts pinpoint a mistake in the boundary conditions at the 

infinite capacity (x=0). Upon inspection of the program, it was found 

that the Mach number of the gas at rest had not been defined, and a value 

of .05, used for other purposes, had been forgotten where the exact value 

of 0 should have been stored. Fig. 10 is the result of the computation 

after correcting the mistake. 

In connection with the problem of consistency of values computed 

according to the quasi-one-dimensional steady state with values obtained 

by applying the unsteady code to a set of steady initial and boundary 
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FIG. 12.  RESPONSE OF A STABLE SHOCK TO A PRESSURE 

PULSE AT THE EXIT OF A NOZZLE 

36 



mmmmx' m-tf^-ww-t  -■..■•<.■■•■•• -(,*-    -"  ' 

conditions, a number of runs were made.  One, for example, consists of 

starting from the same initial conditions as in Run No. 9, but letting 

the exit pressure unchanged.  The pertinent isobar figure is not shown. 

It consists of a set of straight lines, parallel to the t-axis, which 

proves the perfect steadiness of the computation, despite the non-uniform 

uniformity of values along the nozzle and the variations in cross-sectional 

area (the run was executed for several hundred time steps with no changes 

in the outputs). 

A test of this kind should be conducted, prior to computing an 

unsteady case for a variable area nozzle, in order to establish what is 

it 
the optimum number of mesh points to use. If the mesh points are too 

many, one wastes computational time; but if they are too few, the resolu- 

tion may be affected.  In the latter case, initial steady results would 

not remain steady under steady boundary conditions.  This is particularly 

important in the vicinity of a throat, where changes in curvature of the 

walls could make the time-dependent evaluation very delicate. 

D. Engine Surge Simulation and Related Effects 

An engine inlet is represented by a duct whose cross-sectional area 

is defined by 

A = 1 + Mx-2)2 (0 < x < 4) 

The Mach Number of the flow at the entry section is equal to 4, and the 

ratio, p , between exit pressure and entry pressure is 30. Two 

All runs described under (B) have been made using 30 intervals along 
the Laval nozzle. 
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different steady states are possible, one with a shock in the divergent 

portion of the duct (at x=3.0948), which is a stable configuration, and 

another with a shock in the convergent portion of the duct (at x=.9052)f 

which is an unstable configuration. 

Starting from the stable configuration, the pressure at the exit 

section is let to vary according to the law 

Pex = P°x(l + h  sin t) (0 < t 

(run No. 15). 

At t=2, the exit pressure resumes its original valüdKp" . The 
^ä ex 

ensuing flow is shown in Fig. 12 (isobar plot) where onljl^he portion 

of the duct affected by the perturbation is shown. The shock is 

initially pushed toward the throat, but then sucked back by the rapid 

expansion. The interesting feature of this case is the smooth way in 

which the sudden jump in pressure at t=2 is negotiated by the 

computational technique, despite the presence of discontinuities in the 

first derivatives. It must be noted, however, that 20 nodes had to be 

used behind the shock to achieve this smooth result. With fewer nodos 

the transition produces an oscillating pattern which does not damp out. 

Another interesting feature is a slight oscillation, appearing at t=4,5 

in the supersonic region. This is a purely numerical inaccuracy 

produced by an automatic change in the number of nodal points. Note 

how the numerical error is rapidly transmitted into and eliminated by 

the subsonic region. 

Several other conputations refer to the f-aae in which the initial 

steady state describes the unstable configuration. First,  the exit 

pressure variations defined by 

pex = Pex (1+JSsin 2t)     (0 < t < TT/2) 

is used (Run No. 8, Fig. 13, velocity plot). The initial pressure rise 
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RESPONSE OF AN UNSTABLE SHOCK TO A PRESSURE 

PULSE AT THE EXIT OF A NOZZLE 
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coalesces into a shock, which quickly overcomes the main shock, pushing it 

out of the duct.  The following expansion does not catch up with the shock. 

In a second problem (Rur. No. 25, Fig. 14, velocity plot) the exit 

pressure law is 

p = p0 (1+.15 sin 3t)      (0<t<TT/3) 
ex  ex 

that is, a weaker perturbation, occurring in a shorter time.  The com- 

pression waves do not coalesce into a shock but, again, the expansion is 

* 
unable to recall the main shock into the duct. 

E.  Instability of a Shock in the Convergent Section of a Supersonic Inlet 

The last figures present the numerical description of the response of 

a shock to a perturbation in the impinging supersonic flow in the inlet 

** 
defined in D.  The free stream pressure is defined by 

P = ± .15 sin 3t (0<t<TT/3) 

P = 0 {t>TT/3) 

j. 15 describes the flow corresponding to an increase in pressure. 

From the figure we see that the initial compression is propagated through 

the supersonic portion of the duct; the shock is pushed downstream, and 

the compression moves into the subsonic flow until it reaches the infinite 

capacity at the right end.  There, it is reflected back as an expansion. 

This evolution, occurring in a time equal to about TT/6, is followed by an 

expansion which, at the right end of the duct, reflects back as a com- 

pression. The latter acquires strength during its upstream motion until 

* 
Both runs No. 8 and No. 25 have been made with a total of 30 points 
over the entire region. 

These runs have been made with 30 mesh points over the entire duct. 
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FIG. 15.  RESPONSE OF AN UNSTABLE SHOCK TO A COMPRESSION 

FOLLOWED BY AN EXPANSION IN THE MAIN STREAM 
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FIG. 16.  RESPONSE OF AN UNSTABLE SHOCK TO AN EXPANSION 

FOLLOWED BY A COMPRESSION IN THE MAIN STREAM 
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it coalesces into a shock. However, ths main shock cannot be switched 

back to its original position.  Indeed, the upstream supersonic flow is 

quickly reestablished into a practically steady state.  The shock, thus, 

occurs at a lower Mach number (made even lower by the motion of the shock 

in the direction of the flow) and keeps losing strength until it reaches 

the throat.  From then on, the shock gathers strength again and eventually 

it locks in the stable configuration mentioned in D.  Between t=3.5 and 

t=6.5, we note a certain deterioration in the computation behind the main 

shock.  This is only due to lack of resolution; the number of mesh points 

is indeed too small (about a dozen) behind the secondary shock.  However, 

strong compressions are absorbed by several   extra shocks, and the 

pattern is quickly restored to normality.  The figure givt..?, thus, a good 

example of the usage of shocks to represent strong compressions without 

creating instabilities (a purely numerical device which is much safer and 

economical, and less dissipative, than artificial viscosity). 

Fig. 16 (Run No. 42, isobars plot) describes the opposite case of a 

decrease in pressure in the free stream. The initial expansion makes the 

shock move upstream. When the supersonic flow recovers its steadiness, 

the shock occurs at a higher Mach number, that is, with greater strength, 

and it cannot be recalled back. 

The last two figures. Figs. 17 and 18 (Run Nos. 43 and 44, isobars 

plots), confirm the stability of the shock in the divergent section of the 

duct; the first under a compressi   followed by an expansion, the second 

in the opposite case.  Compare the two figures to note how faster the 

compression propagates with respect to the expansion.  Compare Fig. 15 

and Fig. 17, Fig. 16 and Fig. 18 to note how the initial pattern, which 
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FIG. 17.  RESPONSE OF A STABLE SHOCK TO A COMPRESSION 

FOLLOWED BY AN EXPANSION IN THE MAIN STREAM 

0 

FIG 18.  RESPONSE OF A STABLE SHOCK TO AN EXPANSION 

FOLLOWED BY A COMPRESSION IN THE MAIN STREAM 
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describes a compression (expansion) in the throat region in a subsonic 

flow, is the opposite of the pattern which describes a similar evolution 

in a supersonic flow. 
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NOTE; 

The present paper is an attempt to illustrate the philosophy and 

the basic ideas of a computational program. No important detail has 

been omitted. However, a minute daacription of all intricacies and sub- 

tleties of the code would make the paper three or four times as longer. 

The authoj. belisv«« that too many details would confuse the issues for 

a reader interested in the nature of the approach, and would be required 

only by a restricted number of readers. The author will be glad to pro- 

vide additional explanations to anyone who so desires. 
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