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SUMMARY

A design study has been conducted by the Lockheed-California Company on ad-
vanced anti-torque concepts intended to replace tail rotors on conventional
single—main-rotor/tail—rotor helicopters. The principal design objectives
were to reduce hazard to pround personnel and to reduce vulnerability of
helicopters to terrain-contact damage. Secondary objectives were reduced
vulnerability to small-arms fire and improvements in dynamic, reliability,
maintainability and noise characteristics. Two systems were selected from
a broad literature search and subsequent design studies. The first concept
is based on a main-rotor-driven axial flow fan internally mounted in the
aft fuselage delivering air under pressure to a variable geometry louvered
exit for anti-torque and/or forward-flight propulsion thrust. The second
concept employs a main-rotor-driven ducted fan installed in a central pylon
supporting a twin-fin empennage.

Results of preliminary design studies applying these ccncepts to an existing
Lockheed Model 286 helicopter are presented in this report, including per-
formance and weight data.

Improvements over the research vehicle that could result from applying

these concepts to a totally new vehicle, using current state-of-the-art
design technology, are also discussed.
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1. INTRODUCTION

Continued efforts have been made since early in the history of rotary-wing
aircraft to develop a satisfactory substitute for the conventional tail
rotor of single-rotor helicopters. In the early stages of development,
when power plant technology allowed but the slimmest margin of power for
hovering flight, the main motivation was the saving of the 8% or 10% of
total power required to drive the tail rotor. This percent of power and
corregponding loss of 1ift capacity was of the same order of magnitude as
the payload. The urgent desire to save this power penalty led to develop-
ment of several alternatives which, in turn, had their own peculiar draw-
backs. With the advent of turbine engines, the critical power situation
improved. However, as helicopters became fully operational in combat oper-
ations, other tail rotor problems became the source of serious concern.

One was the alarming number of fatalities occurring during unloading of
troops from closely grouped helicopters under combat conditions through
inadvertent walking into whirling tail rotors. The other was the in-
creasing attrition of rotary-wing aircraft due to tail rotor loss or damage
sustained when striking terrain obstacles when operating in unprepared
areas. These problems led to a renewed decire to replace tail rotors, even
at some cost in performance. The helicopter industry was invited to bid on
a study aimed at the solution of these problems, resulting in the proposed
concepts presented in this report.

The ground rules for this study defined five design objectives in the fol-
lowing order of priority:

1. Reduced hazard tc ground personnel
2. Reduced vulnerability to ground-contact damage
3. Reduced vulnerability to small-arms fire

4. Reduced susceptibility to high-speed forward flight flapping
instabilities

5. Improved reliability, maintainability, noise, erosion, and foreign
object damage characteristics

In view of the large number of tail-rotor-type lielicopters in the Army
aviation inventory, an underlying objective was that the selected tail
rotor substitute should be of a nature that could be adapted to existing
helicopters by a retrofit modification program at reasonable cost. This,
of course, ruled out any approach that required a significant change to
the 1ift or propulsion system.

A secondary objective was to compile an organized source of information and
a comprehensive listing and description of anti-torque devices that have
been studied, proposed, or invented.
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In carrying out the study, the results of which are presented in the foi-
lowing sections of this report, the work was broken down into the following
distinct tasks:

1. Literature search.

2. Tabulation, analysis, and evaluation of concepts, and selection
of optimum concept(s).

3. Design studies of selected concept(s) as applied to the Model 286
helicopter.

4. Brief study of gains obtainable by applying the selected concept
to a totally new optimized vehicle.

R P s O P S . . . »




2. SURVEY QOF POTENTTAL CONCEPTS

A literature search was made to provide the maximum possible background
from which to identify or formulate candidate concepts that could supply
anti-torque forces and eliminate the problems that are now associated with
tail rotors, without seriously degrading performance, reliability, mainte-
nance, and other desirable features of the tail rotor.
Initially, the search was directed at anti-torque devices for conventional
single-rotor shaft-driven helicopters. As the task progressed, the search
was broadened to include a wide variety of schemes for producing forces or
moments. Altogether, 97 concepts were ildentified as potential candidates.
It became evident during the search that many concepts had similar basic
characteristics which permitted grouping them intu the following cate-
gories:

e Conventional tail rotors

e Ducted fans

¢ Nozzles

e TImmersed aerodynamic surfaces

e Horizontal-axis rotary-wing airfoils

® Future concepts

A brief discussion of each category is given here. More detailed descrip-
tions of concepts uncovered in the search are given in the appendix.

CONVENTIONAL TATIL ROTOR

The conventional tail rotor was used as a baseline for comparison with
other concepts. In general, it is mounted at the aft end of the fuselage
structure and exerts thrust 90 degrees to the centerline of the fuselage,
it is mounted on one side of the fuselage completely exposed, and it 1is
shaft driven from the main-rotor gearbox.

Related to the tail rotor are varlous propeller arrangements found in the
literature search; for example, a 90-degree rotatable pusher propeller
that can be used for both thrust and anti-torque. An auxiliary propeller
mounted on one wing tip was suggested for anti-torgque control, but since
this offers no improvement in safety over a conventional tail rotor, and
is applicable only to winged helicopter designs, it was not studied.
Examples of other similar concepts that were discarded for similar reasons
are:

b




1. Twin tail rotors, opposed and inclined 45 degreces.

2. Twin rotors mounted on each wing tip with their centerlines of
rotation oriented fore and aft.

Various versions of the taill rotor and propeller concept are included in
the literature search summary in the appendix.

DUCTED FANS

This anti-torque device is usually submerged within the vertical tail or

the tail cone and is shaft driven off the main rotor to permit operation

during engine-out, autorotation conditions. Essentially the same drive

train used for conventional tail rotors is used. Collective pitch of the

fan blades is provided to modulate thrust. Thrust requirement is traded

off with disc loading, drag, efficiency, and weight to obtain an optimum {
size fan for a particular vehicle.

Use of a direct supply of hot gas from the engine to serve as a turbo-fan
driving medium was ruled unacceptable in gathering concepts from the 1lit-
eratire because of inability to operate during engine-out conditions.

Small fan designs have been incorporated in test vehicles as anti-torque
devices with considerable success. A production version of this applica-
tion is on the Sud Aviation SA 341 "Gazelle." Known as the "Fenestron,"
this shrouded tail rotor, or ducted fan, operates at 5774 rpm, has 13
blades and has a fan diameter of 696 mm (27-13/32 in.). The shroud im-
proves the efficiency, but the small diameter degrades propulsion effi-
ciency, compared to a conventional (exposed) rotor, by about 3.3 percent
of total engine power or 12 HP. This relative inefficiency applies to the
hover condition only. In forward flight, the vertical fin (with twist and
camber ) provides most of the anti~-torque force.

Lightly loaded large-diameter ducted fans with restrained tips are con-
sidered as possible extensions of those concepts found in the literature.
Propulsion efficiency can be improved, but aerodynamic drag would be pe-
nalized due to relatively large frontal areas. These characteristics must
be traded off for a particular design. A compromise design in the form of
an intermediate disc loading fan could be the optimum for many vehicles. #

All fans improve the forward flight performance relative to an exposed
rotor due to the reduction in vehicle drag when the fin provides the anti-
torque force in forward flight.

Several ducted fan concepts are included in the literature search summary
in the appendix.
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NOZZLES

Several types of nozzle devices suitable for anti-torque application were
identified in the search. The nozzle can be single and rotatable, or two
opposed nozzles may be used. Modulation of thrust can be accomplished by
adjusting the throat or by varying the upstream plenum pressure. Plenum
pressure can be supplied by a compressor driven by the main rotor. Another
source of power identified showed main engine high-pressure exhaust gases
routed directly to the nozzle. However, this concept is not attractive due

to low thermodynamic efficiency and lack of operating capability duvring
engine-out conditions.

A unique nozzle arrangement found in the search suggests an array of aspira-

tors ejecting high-pressure air which induces a secondary flow of outside air
through concentric nozzles.

Several nozzle type devices are included in the literature search summary in
the appendix.

IMMERSED AERODYNAMIC SURFACES

Aerodynamic surfaces have often been considered for providing anti-torque
forces by acting as airfoils immersed in the weke of an airflow generator
such as the helicopter main rotor or pusher propeller. They fall in two
general categories: those primary systems which can be designed to produce
the entire anti-torgue moment; and those auxiliary systems which generate
forces to supplement other anti-torque devices.

A basic concept for an anti-torque device which is best applied as a supple-
mentary system is a fixed airfoil in tne main rotor downwesh, oriented to
generate thrust in the direction to produce main rotor anti-torque. By

making this surface movable, a modulating anti-torque and lateral control
system is accomplished.

Auxiliary systems using two or more surfaces below the main rotor have been
proposed. However, as a rule these systems were unwieldly, impractical
arrangements. One example was an array of aerodynamic surfaces positioned
around the aircraft; in such an arrangement, visibility is inhibited, drag

is increased, controls are complicated, and the system is ineffective in
autorotation.

A fuselage completely contoured for anti-torque was suggested, but was also
considered impractical: internal space is penalized, and the system is in-
cffective during engine-out and autorotation conditions.

Surfaces used in conjunction with a thrusting device have been configured
into primary anti-torque systems. In the case of a compound vehicle, for

example, the pusher propeller can move air over a rudder positioned immed-
igtely aft of the propeller.
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A more unusual approach makes use of the Magnus effect tc obtain a net side
force. This can be done with a rotating aft fuselage shell, or with a sta-
tionary aft fuselsge shell which has tangential slots to eject high-pressure

air. 1In either case, a vortex flow component is generated to create a net
force in the lateral direction.

Many concepts in this category are also included in the literature search
summary in the appendix.

HORIZONTAL-AXTS ROTARY-WING ATRFOILS

A distinct general type of anti-uvorque system employs airfoils rotating about
a horizontal axis parallel to the spanwise direction in paddle-wheel fashion,
and often referred to as a "cyclo-gyro". The axis of rotation is generally
in the fore-and-aft direction, and cyclic pitch controls the direction and
magnitude of the anti-torque force. This type is generally penalized by
complex design and high drag.

FUTURE CONCEPTS

A number of advanced concepts were examined that are outside the present
state-of-the-art. They are included for completeness in covering the full
spectrum of anti-torque concepts. Furthermore, consideration cf highly
advanced concepts, which must be preceded by fundamental research, is con-
sistent with the philosophy that basically new concepts must be developed
to enable vertical 1lift technology to progress dramatically. An example

of such philosophy is recorded in the U. S. Army Advanced Materiel Concepts
Agency's Ad Hoc Report 6, "Aerial Very Heavy Lift Concepts for the 1990
Army", which states (in part) "---electromagnetic forces were mentioned as
a possibility. It was generally agreed that, today, such devices --- serve
only as interesting demonstration devices. However, by the 1990 time period,

advances in technology may make them more attractive for practical application'.

In line with this reasoning, concepts of "far out" mechanisms (not neces-
sarily mechanical in a hardware sense), conceivably capable of generating
substantial forces or torques, are included here. Development of these
systems would yield the possibility of major breakthroughs in force-generating
systems, not only for anti-torque purposes, but also for lift and propulsion.

When studied in deteil, the concepts presented in this category may show an
apparent conflict with time-honored conservation laws, as well as the action-
reaction principle. This, however, should not be particularly disturbing
since, for example, nuclear physics has shown that absolute conservation of
mass and absolute conservation of energy are not longer inviolate laws.
Likewise, the action-reaction assumption expressed in Newton's third law,
although generally valid for two infinitesimal, infinitely rigid particles,
admittedly does not hold for magnetic interations between moving charges
(see Figure 77, and page 139 of Ref. 6-2). In the manner that purely
"mechanistic" theories are not directly applicable in the realm of
subatomic micro-phenomena of the Quantum Theory nor in the large-scale

AA'AL
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macro-phenomena of the Theory of Relativity, it is not inconceivable that
important exceptions to the traditional laws of physics may exist in the vast
middle ground of engineering between subatomic and intergalactic dimensions,
with practical applications of unmeasured possibilities. Possible examples
of this type of concept, described in some detail in the appendix, and the
subject of private experimental research by the author over a period of
years, include:

Electromagnetic rotation
Acoustic radiation pressure
Three-dimensional vortex

Compound precession of multiple gyroscopes
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3. CONCEPT SELECTION

The screening of concepts during the literature search eliminated a few
concepts which were considered either nonapplicable or clearly impractical.
All the remaining candidates were then classified into one of 17 types
characterized by special arrangements of “he 6 categories in the preceding
section. These 17 types were in turn grouped into three major classifica-
tions: Present State-of-the-Art, Advanced Technology and Existing

Tail Rotors. The Present State-of-the-Art systems were further grouped
into primary systems and auxiliary systems. This general grouping is sum-
marized in Table I. The 17 types were then subjected to a scoring process
by use of a scoring matrix in which each type was graded on a number of
desired characteristics from which a total weighted score was obtained for
each type. The conventional tail rotor was included to provide a baseline
for comparison purposes. Scoring matrices are shown in Table II.

The scores shown in the matrices are results of detailed evaluations. They
are based on grading of desirable characteristics shown as the column
headings. Since the primary design objective was to eliminate the hazard
to ground personnel and the susceptibility to terrain contact damage,
weighived scores reflect an emphasis on these requirements. For instance,
ground personnel safety has a maximum possible "weighted" score of 15,
whereas the maximum score possible for minimum hover power is only 2. Each
characteristic of each concept is given a grade expressed in percent. The
weighted score points awarded for each characteristic are obtained as the
product of the grade (& 100) times the maximum possible score points for
that item.

Two broad areas of weighting scores were defined: economy and effective-
ness. Evaluating economy leads to one subtotal and evaluating effective-
ness leads to another. This arrangement is useful to identify concepts
that might require high development cost. but could have favorable func-
tional effectiveness once developed. Such concept might be a good candi-
date for further research. On the other hand, a concept reflecting low
development cost and low effectiveness might not merit further develop-
ment effort. Obviously, a high score in both categories indicates a good
choice to pursue.

An examination of the total scores on the evaluation matrices reflects the
relative merits of all concepts. It was concluded that further development
should he recommended for the following concepts:

e A main-rotor-driven axial compressor feeding a variable-geometry
nozzle generating anti-torque and/br forward propulsion thrust

e A main-rotor-dr! -en ducted fan of moderate disc loading, buried in
a central vertical fin.
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TABLE I, GENERAL ANTI-TORQUE CONCEPT CATEGORIES SELECTED FROM

LITERATURE SEARCH FOR COMPARATIVE EVALUATION

1.
2.
3.

|

| 1.
| 5

ITI. Future

L,

I. Present State-of-the Art

a. Primary Systems

Fan-in-Fin (compact size)
Fan-in-Fin (intermediate disc loading)

Fan-in-Fin (lightly loaded with restrained tips and
minimum shroud)

Laterally displaced propulsion devices (fan or propellers)
Tail-mounted swiveling fan (or propeller)

Compressor-fed laterally oriented controllable nozzles, with
optional forward propulsion

Lateral jets augmented by secondary-flow ejector rings

Compressor-powered jet exiting from slot nozzle along
controllable trailing edge of vertical fin

Horizontal-Axis Rotating-Wing Aerodynamic Systems
Moveble airfoils (vanes) in wake of forward thrusting device

b. Awiliary Systems

Airfoil surfaces in main rotor downwash

Forced circulation around tail boom by tangential jets
(or surface rotation) interacting with main rotor downwash

Technology

Force or moment generated electromagnetically utilizing
room-temp superconductivity

Acoustic radiation pressure in & resonant closed-loop
standing-wave gystem

Low pressure area induced on a surface by 3-dimensional
vortex

Compound precession of multiple gyroscopes

III. Existing Tail Rotors (Ref. Baseline)
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REPRESENTATIVE CONCEPTS
FROM LITERATURE SEARCH

A. PRESENT STATE OF THE ART

-

=z

9.

1o0.

1

PRIMARY SYSTEMS

Fan-in-Fin (Compact Size)

Intermediate Disc Loading
Fan-in-Fin

Lightly Loaded Fan-in-Fin With
Restrained Tips and Min. Shroud

Laterally Displaced Propulsion
Devices, Fans (or propellers)

Tail-Mounted Swiveling Fan
(or propeller)

Compressor-Feeding Laterally
Oriented Controllable Nozzles,
with Optional Forward Propulsion

Primary Jet as in (6) Above Aug-
mented by Multiple Ejector Rings

Compressor-Powered Jet Exiting
From Slot Nozzle Along Controll-
able Trailing Edge of Vertical Fin

Horiz. Axis Rotating Wing Aero
Systems

Movable Airfoils in Wake ~f Forward
Thrugt Device
AUXILIARY SYSTEMS

Airfoil Surfaces in Main
Rotor Downwash

Forced Circulation Around Tail
Boom by Tangetial Jets (or Sur-
face Rotation) Interacting with
Main Rotor Downwash

MAXIMUM SCORE POINTS

EFFECTIVENESS

TABLE 1

PRINCIPAL DESIGN OB

67 170 50 25 67 67 50 175 75 100 31 80 70 70
93 90 38 50 67 67 75 50 75 100 | 36 73 60 6O
60 70 38 7% 33 50 75 S0 7% 50 29 67 50 5C
53 60 3l 25 33 33 25 50 100 100 oh k7 50 5S¢
80 8o 28 50 33 100 75 50 100 100 | 34i| 53 60 60
100 100 62 75 50 100 75 50 100 100 Lk 67 50 50
100 90 50 75 33 33 75 75 100 100 | 33 33 ko ko
100 90 S50 50 S0 17 S0 75 75 100 | 37 | 67 L0 4
100 80 50 75 S0 33 50 100 100 100 | 38 53 Lo LG
80 50 38 75 33 33 50 50 100 100 | 30 33 Lo g
{
100 80 63 100 17 17 100 100 50 100 | 39 7 10 1<J
100 100 88 75 67 67 50 100 100 100 | ks 13 20 20
15 10 8 N 3 3 2 2 2 1 15 10 14
Effectiveness Subtotal 50 Economy i
TOM
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TABLE 11,

ANTI-TORQUE CONCEPT EVALUATION

PRINCIPAL DESIGN OBJECTIVE:

IMPROVED SAFETY IN MILITARY OPERATIONS

ECONOMY

30 o) 50 60 70 8o 90 100

5 75 10 31 8o 70 70 T0 60| 36 | 67 3 _, ] j ] Same as SUD Fen
50 75 100 36 75 60 60 60 80| 33| 69 2 | L 1| Bng
50 75 50 29 67 50 50 50 Lo | 27 | 56 8 ]
50 100 100 | 2k 47 50 50 50 Lo | 24 | u8 10 One device must
50 100 100 | 344 | 53 60 60 60 Lo| 28 624 =)
50 100 100 | Lk 67 50 50 50 80| 29| 73 1 1
75 100 100 39 33 Lo L4 30 80| 20| 59 7 Reversing d.rec
75 75 100 | 37 67 4 Lo 50 60| 26 | 63 L High jet ve..oci
100 100 100 38 53 4o Lo 50 Lo | 23| 61 6
50 100 100 30 33 4o 4o 50 Lo | 20 ( 50 9

w0 100 50 100 | 39 7 10 10 50 hLo| 10| kg 2
100 100 100 L5 13 20 20 50 Lo 13 | 58 1

— -y

2 2 1 15 10 10 1.0 5

tiveness Subtotal 50 Economy Subtotal 50

¢ 100 % :
TOTAL SCORE ‘ , : T .
EFFECTIVENESS ECONOMY
Ty




RY OPERATIONS

NOTES: 1, Numbers in the body of the matrix
reflect degree of merit expressed

in percent,
2. Numbers in the subtotal and total
// columns are the sums of the in-

dividual products of ihe percentage
. numbers and the respective maximum
F.,‘ score points.

3. Yr Selected Candidates

REMARKS
] Same as SUD Fenestron
T 17|
1
One device must reverse direction in transition,
)
] b
Reversing direction is a problem
High jet velocity and forward flight drag are problems.
===
I | |
EFFECTIVENESS ECONOMY zﬂ
(W
j1 Ao //




B.

C.

REPRESENTATIVE CONCEPTS
FROM LITERATURE SEARCH

FUTURE TECHNOLOGY

l.

Force or Moment Generated Electro-
magnetically Utilizing Room-Temp
Superconductivity.

Acoustic Radiation Pressures in a
Resonant Closed-Ioop Standing Wave
System.

Low Pressure Area Induced on One
Side of Vertical Tail by Controlled
Three-Dimensional Vortex.

Compound Precession of Multiple
Gyroscopes.

EXISTING TAIL ROTOR (Ref. Baseline)

MAXIMUM SCORE POINTS

Preceding page blank

EFFECTIVENESS

100 100 88 100 68 100 100 100 100 100
100 100 38 75 33 100 100 50 100 100
7 10 25 50 67 33 100 50 25 50

15 10 8 L 3 3 2 2 2 1

Effectiveness Subtota%g*
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LE II. CONTINUED
LI NOTES: 1. Numbers in the bod
reflect degree of
in percent.
2, Numbers in the sul
columns are the s
dividuel products
numbers and the rg
score points.
4o 50 60 70 80 90 100 H
30 80 | 10 | 50 L ‘
' 1
50 80 | 12 | 57 2 —]
B0 80 | 15 | 63 1 _l
0 60 | 16 | 57 2 —]
0 ko | 43|56 | 3 q ]
{
!
[0 5 =
ttotal 50 ’1
SCORE 100 ' S |
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NOTES: 1,

Numbers in the body of the matrix
reflect degree of merit expressed
in percent.

Numbers in the subtotal and totall
columng are the sums of the in-
dividual products of the percentage
numbers and the respective maximum
score points.

REMARKS
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The first offers several advantages over the exposed tail rotor. Rotating
machinery is completely protected from terrain contact and in no way en-
dangers ground personnel. The noise level is predicted below that of the
baseline system. The shorter drive shaft and the elimination of the right-
angle gearbox simplify the drive systems. Optional supplementary anti-torgue
force by forced circulation is availeble at negligible cost.

The second is a refinement or optimization of the ducted fan concept now
employed in the SUD 341. The moderate disc loading regime can be shown
to maximize performance while not incurring significant weight or drag
penalties. The power drive from the main rotor gearbox insures anti-
torque operation during engine-out or autorotation conditions. Hazard to
ground personnel and susceptibility to terrain-contact damage are minimum.

A cambered fin can be designed to supply most of the anti-torque force re-
quired in forward flight.
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4, PRELIMINARY DESIGN STUDIES

INTRODUCTION

The preliminary design work was conducted as a nearly parallel effort to the
concept selection discussed in the preceding section. It was found that
although initial preliminary design was guided by the concept selection
processes, results of the design investigations not only aided in the concept
selection but actually reversed the relative standing of the two leading
candidates.

As a consequence, it was decided to select two concepts for detailed study.
These two designs, along with the result of brief studies on other concepts
that were studied in making the final selection, are discussed below.

BASIC. VEHICLE

The preliminary design was based on the premise that the selected concept(s)
would be applied to an existing conventional tail-rotor-type helicopter.
Furthermore, the application would follow a retrofit modificaticn approach
rather than a completely new design. The Lockheed Model 286 was selected as’
the basic vehicle. A general arrangement is shown in Figure 1, and the
internal details are shown in Figure 2. It is conventional in design except
for the nonarticulated rigid rotor and associated control system. It is a

/ derivative of the XH-51A helicopter that was designed as a research vehicle.
The 286, although FAA certificated was designed principally as a demonstrator.
Since it was not intended for production, economic constraints prevented the
incorporation of some design refinements and minimum-weight detail design.

l With a design gross weight of 4700 pounds and a 550 SHP turbine engine, the
weight empty of 3000 pounds yields a rather high weight-empty fraction. The
disc loading of 4.9 psf is somewhat low by current practice. Flying qualities,
however, are excellent, and structural integrity has been amply demonstrated.
It is therefore considered to be an ideal vehicle for a research program on
the anti-torque concepts under consideration.

INTERNAL FAN CONCEPT

The general arrangement of this concept as applied to an existing Lockheed
Model 286 is shown in Figure 3. The internal arrangement is shown in the
inboard profile drawing, Figure 4. This concept was derived from other
cuncepts often referred to as '"tail cone fan" or "lateral jets fed by rotor-
driven compressor'. Those concepts were penalized by high jet velocities,
high drag in forward flight due to blunt aft end, high noise level, and
excessive power requirement-z. A study showed, however, that by applying
compound-~helicopter technology to this concept, substantial advantages

could be obtained, principally those resulting from auxiliary forward flight

Preceding page blank e

(|

e oa




< TOm O CABIN mLOO

N
AN

f—— s¢98 __.1
@ ~3 953.¢6

GHT. -1 4IN.

Figure 1.

MAOES FOLOLD

32 AT -22G W,

-

reg d

g wroe wue
[

General Arrangement - Model 286.

Preceding page blank 19

~S.
S
#2 Fr- 5.0 1N

é3.0/n.

ELE ‘3




== GFT-27SIN Grrv o4, 7

= l”" —
ra.
oo
-

C AT -1.881N.

B —— R N

—t

M ——

l

IS AT-.18 1M L4,

L L.

KAOEI FOLOLD
I AT 226 1N,
ISET /0.3 /M.

/O, duas
{ are arn.)\_

3re /Qrrs P

42 Fr. 50 14

VR

/ ~s.

/ e
I
| I S ]
SIATIC BROUNO tine
393
€30y I
“3 ~3, ~3.
o 2 78
P

OEL 7.9/,

60 &0

SCAlLE=»INCHES




(]

h

r
__——/
SECTION AN

Hro O/ TANK

TRANSMISSION COMPARTMENT —

FONARD HINGED DOOR XUV 0L TAME
\- Al
A\

I ~

] =

ENSINE TAILPIPE

ENGINE ASPIRS

. -

INSTRUMENT PANEL PT68-9 EHGINE (.

~ -
~ D
/ S8 |
COUETTIVE CONTROL /
LEVER A —
gl o !
| EYELIC CONTROL STICK
T.‘ -
DIRECTIOMAL CONTROL PEOALS
AVIONICS £ FUNCTION SYSTEMS on BB

CONSOLE

Wiz

srreves

Figure

Preceding page blank

2. 1Inboard Profile - Mode 286.

21




w2 O/l TANK
ENGINE EXHAUST COMPARTMENT

TRANSMISSION COMPARTMENT —

INDUCTION PLENUM € ACCESSORY COMPARTMENT |

[ poar YMSN OIl TANE —

\ \‘

BLONER INLET DUCT

ON COOLER BLONER

OlL COOLER

— -

- 3 — COOLER AIR OUTLET DUCT |
\- STARTER GENERATOR |
ENSINE TAILPIPE i
ENGINE AR INLET ‘oa FILER § DIP STEK
ENGINE ASPIRATOR T , :
\ oL COOLER
PT68-9 ENGINE (PPATT £ WHITNEY
STARTER GENERATOR
Za
7 PN
FIRE SHIELD ‘\ X
S
ONY Oit PUMP A 3 .
™ ' Al aecvcn &uir .
4V10M1C5\ p
\
= HYLRAULIC PUMP
i i ap
TR0L STICK pd
5 /=773 =772 FUEL
i - FUEL TAMK FILLER EFCT/ON D.p .
|
t
AL PEOALS
SECTION GG )
//—

INTERMEDIATE 65ARBOX

IE
1 )] . (0 /_ TITANIUA FIRENALL G
pial S Dy ‘ ANTI COLLISION LIGAT

‘.-.J TAIL BUMPER £ HAND 6°1P
( ~OR 6ROUND Epwwm




- ' bl
COMPARTMENT
S TI0M PLENUN € ACCESSORY COMPARTMENT
- BLONER INLET DUCT
}/ - QI COOLER BIONER
0L COOLER
|
]
!
'| -p——vea
b "— COOLEAR AIR QUTLET DUCT |
bheTER GENEPATOR |
ENGINE AR ILET l ‘aa FILER § DIP STICK
| | BLOWER INLET DUCT
L \ OlL COOLER \
: STARTER CRNERATOR —~ DRIVE SHAET ACCESS OOOR
| l
— = TAIL ROTOR DAIVE SKAFT
REAR ENGINE MOUNT
i ELECTRICAL [~ 74
PUEL STRAUNER . ge
- a®a
. N e ® L4
COMMON DRAIN MJ—I'
1 FUEL PUMP RO
rion 1) 'y
TAILROTOR GEAR 80X h
INTERMEDIATE GFARBOX
TITANIUM FIREWAL
/— t (2=
7" _— ANTI CoLusIon LIGAT :
= v
] ~ r—| 5 , O 1 20 0 4 S0 6 T & %0 KO L
_— e — -
—i
/_ SCALE - INCHES
= P TAIL BUMPER £ HAND 619
, ¢ FOR SROUND MANCLUING *
b d
4
1 | ,
LY
r &




MAIN ROTOR , :
DIAMETER 35. FT-0. IN,
CHORD 13.5 IN.
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AREA 16.3 SQ.FT.
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ARE A 18.8 SQ.FT. \

\ MODEL 286 ROTOR

T.FT 3.0IN.
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Figure 3. General Arrangement - Internal Fan Concept.
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propulsion. The variable-geometry dual-purpose exit shown in Figure 5 per-
mitted the use of a large cross section in the aft fuselage without an ap-
preciable drag penalty. Actually, a drag reduction resulted from a more
level flight attitude with auxiliary forward flight propulsion. This large
duct cross section and exit area also reduced duct losses and efflux veloc-
ity. Anti-torque power was thus reduced below that required by a 30-inch
fan-in-fin. The internal installation of the fan reduces hazards to personnel
to nearly zero and minimizes vulnerability to terrain-contact damage. For-
ward location of the fan results in maximum drive system simplicity with
attendant gains in maintainability and reliability.

The system operates as follows: vanes are normally in the open forward-flight
position and fan blades are at minimum pitch. 1n hovering flight, right.-

or left-rudder pedal displacement initiates a closing of the left or right
set of vanes, respectively, and a proportional increase in fan blade angle.
Keeping the fan blades at low pitch during small rudder pedal displacements
prevents a large power drain from the main rotor system during critical
power-off autorotation descents. As forward flight increases, the pilot
selects the amount of forward flight propulsion thrust by increasing the

fan blade pitch independently of rudder pedal displacement. Automatically
and simultaneously, the degree of rotation of both sets of nozzle vanes is
varied inversely proportional to forward thrust demand. This yields a smooth
and continuous variation of yaw control power during transition from hover
to forward flight with auxiliary propulsion.* Three optional fan designs

are contemplated. The most econdémical choice would be an off-the-shelf fan
from a SUD 341 helicopter. Figures 6 and 7 show two other fan designs sized
to the requirement of this study. A third choice would be a fan furnished
by Dowty Rotol who now have a variable-pitch fan design under test.

Special attention was paid to directional stability characteristics. The
raduced stability experienced by many helicopters at low angles of sideslip
has been identified as being caused by the fin and tail rotor being in a

low energy turbulent wake behind the main rotor hub and pylon, rather than
by a tail rotor load reversal. The twin fins shown in Figures 3 and 4 would
be clear of this region of poor air.low, and would have the further advan-
tage of maintaining good stability at high angles of attack in steep auto-
rotation descents.

An inherent advantage of this configuration i1s the space available for a
generous length of diffuser downstream of the compressor (fan). 1In the
fan-in-fin configuration, the duct length is limited by frontal area and
drag considerations, precluding any possibility of energy recovery through
a diffusing tail pipe. The fan-in-fin diameter is therefore chosen to
favor minimum induced power, compromising the optimum detail design of the
fan itself. On the other hand, for the internal fan arrangement, since the
momentum energy is governed by the exit area rather than fan diameter, the
optimum (smallest, lightest) fan can be selected. This also permits con-
sideration of a high-pressure-ratio supersonic fan as currently employed
in modern turbofan engines. It further permits the use of varlous sizes
of off-the-shelf fans with minimum performance penalty. An additional

* It is recognized that design of the control system must be preceded by a
thorough analysis of control sequencing for the fan pitch and deflector
vane angles to eliminate nonlinearities and dead-band.
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Advanced Variable-Pitch Internal Fan.
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Figure 8. General Arrangement - 30-Inch Fan-in-Fin Concept.
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Figure 10.. 30-Inch Fan-in-Fin Installation.
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advantage of this concept is the feortunate matching of the airflow through
tlhe bellmouth inlet, and the heat rejection of the <ngine and transmissions.
This suggests the use of a skin radiator to provide engine and transmission
0il cooling without the need for a blower, an oil cooler, and associated
ducting. The weight and power of the cooling blower is saved, and the heat
transfer radiator is obtained at minimum weight.

A comparison of this concept, & conventional tail rotor design and the
fan-in-fin concept was made based on the same gross weight and installed
power margin. The engine power and propulsion system weights were increased
over those of the tajil rotor design es required by the new concepts. Weights
were based on new designs rather than modifications. Results of the analysis
show a 4.2% increase in power required to hover for the internal fan and a
5% increuse for the fan-in-fin, with corresponding increases in propulsion
weight and weight empty. However, weight-empty fractions are only slightly
increased for both concepts over the conventional teil rotor. Specific range
is substantially increased for the internal fan over the conventional tail
rotor (4%) and is increased half as much (2%) for the fan-in-fin. As a
result, the internal fan payload-range variation surpasses the conventional
tail rotor for ranges greater than 140 miles. For the fan-in-fin, the curves
cross at a range of 180 miles. (See Figure 34).

FAN-IN-FIN CONCEPT (30-INCH DIA)

Rating just below the internal fun concept, the fan-in-fin design presentecd
herein is derived from and is very similar to the "Fenestron" of the French
SUD 341. An application of this concept to the Model 286 is shown in Figures
8 and 9. The objectives of reduced hazard to ground personnel and ground-
contact damage are substantially met, although not to the same degree as the
internal fan. Nose and foreign object damage susceptibility are also some-
what less favorable than those of the internal fan. From a reliability and
maintainability point of view, the more complex system of the fan-in-fin
with two additionsl gearboxes is somewhat less attractive than the variable-
geometry nozzle of the internal fan. (The belt drive shown for the internal
fan is not inherent to the design and is only applicable to a retrofit
modification.) The raised position of the fan as compared to the SUD 341,
requiring an additional intermediate gearbox, provides additional clearance
for a larger diameter, lower-disc-loading fan with improved efficiency and
reduced power requirements. The fan design could be an off-the-shelf article
or a special design as discussed in the internal fan section. One configur-
ation of the gearbox and fan pitch control is stiown in Figures 10 and 11.

The weight of the fan-in-fin concept is quite comparable to the internal fan,
but as mentioned previously, is somewhal less efficient powerwise due to the
relatively short duct length limited by frontal area and drag considerations.
As in the case of the internal fan, twin fins are provided for adequate
directional stability at low angles of yaw and at high angles of attack in
steep autorotational descents.
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SUPPLEMENTARY STUDIES

In addition to the studies of the two selected concepts, other configurations
were studied prior to, during, and after the final selections. These
supplementary studies aided in making the tentative and final selections,

and in checking the validity of the final selection. The degree of complete-
ness of these studies varied considerably. A brief discussion of each follows.

Internal Fan with Forced Circulation

A substantial side force can be produced on a cylindrical body by inducing

a circulation component to transverse airflow. Although limited to powered
hovering or low-speed flight, a useful auxiliary anti-torque force augmentation
can be obtained at minimum cost in power and complexity by inducing a forced
flow ~irculation around the fuselage under the maximum velocity region of the
main rotor downwash. An excellent application of this concept is with the
internal fan configuration previously described. The configuration lends
itself ideally to this augmentation, since the required source of compressed
air and a relatively large cylindrical shape in the way of maximum rotor down-
wash are already available. A configuration showing the combination of

these two concepts is illustrated in Figure 12. The forced circulation is
obtained by blowing tangential air jets fed by the plenum duct between the

fan and nozzle. These slots are normally closed, and open only under maximum
control requirements when the increased pressure in the duct opens the spring-
loaded slot lips. This prevents a power drain under critical power-off
autorotation when control requirements are less severe. A further gain
obtained by the forced circulation is the reduction or reversal of download

on the aft fuselage due to rotor downwash. This results from the combination
of two effects. First, the slots energize the boundary layer and tend to
prevent flow separation in the lower surface of the fuselage. This reduces
the high download (drag) characteristics of flow normal to a blunt unfaired
cylindrical shape. The possibility of a net lift results from the inclination
of the downwash produced by slipstream rotation. This inclination, correspond-
ing to the helix angle of the slipstream, inclines the side force upward as
shown in Figure 12, cross section F-F, giving a 1ift component.

28-Inch Fan-in-Fin

The 28 inch fan-in-fin anti-torque concept shown in Figures 13, 14, and 15

is a variation of the fan-in-fin configuration discussed previously. It
follows closely the general arrangement of the SUD 341, except for the

addition of twin vertical fins to provide adequate low-angle directional
stability. Space limitations imposed by the straight-through drive shaft

tend to limit the fan diameter and increase the disc loading. This is
compensated by a 8ain in reliability and maintainability through the elimina-
tion of the intermediate gemrbox. Hazards to ground personnel and vulnerability
to terrain-contact damage, however, are not as favorable as with the 30-inch
fan-in-fin configuration.
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28-Inch Fan-in-Fin with Flettner Rotor

Figure 16 shows a variation of the 28~inch fan-in-fin. A supplementary
source of anti-torque force has been added by the incorporation of a
Flettner (Magnus effect) rotor around the tail boom. Although a substantial
force is obtainable, the complexity and weight penalties make this feature
of questionable merit.

28-Inch Fan-in-Fin with Forced Circulation

Figure 17 shows another variation of the 28-inch fan-in-fin, with forced
circulation slots along the tail boom for anti-torque augmentation. This
system proved far more attractive that the Flettner system, and in combina-
tion with the larger aft fuselage of the internal fan configuration, it
showed. sufficient merit to qualify as an optional feature of the selected
concept.

L8-Inch Shrouded Fan

In order to cover a range of disc loadings for ducted fans, the 48-inch
shrouded fan shown in Figure 18 was studied. The diameter selected is
equivalent to the 6.5 ft diameter of the Model 286 tail rotor from the
momentum energy point of view. The minimum shroud provides a nominal solu-
tion to the ground personnel and terrain contact problems. Flapping insta-
bilities at high forward speeds are prevented by restraining the blade tips
by means of runners attached to the blade tips operating in a channel within
the shroud inner surface. Metal-to-metal contact between the runners and
the guide channel is prevented by means of a film of air as in air bearings
that utilize the air-cushion bearing principle. This large-fan approach
was discarded in view of tlhe marginal compliance with the design objectives
and serious technical problem areas anticipated with the tip restraint
mechanism.

Flettner Rotor as Primary System

Figure 19 shows the results of a brief study to determine the characteris-
tics of a system employing a Flettner rotor of sufficient size to develop
the total required anti-torque moment for hovering plus the maneuverability
increment. It was found to have excessive weight, complexity, and drag.
Furthermore, with single rotation, control response vanishes and then re-
verses during transition from powered flight to autorotational descent.
However, a related system, namely the forced circulation concept described
previously, is an acceptable method of anti-torque augmentation in powered
hovering flight.
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Figure 16. 28-Inch Fan-in-Fin With Flettner Rotor Augmentation.
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5. WETGHT DATA

This section presents weight data for the selected concepts as applied to
a Lockheed Model 286 helicopter. Data are presented in the form of tabu-
lated side-by-side comparisons of the various configurations and the basic
Model 286.

Table II1 summarizes the component weights for five aircraft:

e The existing Model 286, which has a conventional tail rotor
and thus becomes the basis for comparison of the proposed new
concepts.

e Two variations of the baseline aircraft, denoted "modified 286."
These two columns of weight show, when compared to the baseline
figures in the first column, the weight changes estimated for
modifying the existing test aircraft to incorporate the
fan-in-fin and the internal fan concepts.

e Two additional versions of aircraft using the same two new anti-
torque concepts. In these cases, the aircraft are similar
to the modified configurations, except that instead of
merely adapting new hardware to the existing Model 286
aircraft, these weights are estimated on the basis that
totally new aircraft would be designed to apply the concepts
in an optimum manner without the compromises required in a
retrofit modification program. In order to maintain continuity
and correlation with Model 286 weight data, the weights for
the totally new aircraft do not incorporate the benefits of
advanced state-of-the-art design, and, furthermore, retain
the weight penalties inherent in the design philosophy of
the Model 286 which was designed as a company-funded demonstrator
for FAA certification with maximum structural integrity and
minimum design, tooling, and development cost.

The table shows reductions in gross weights for the "modified" configura-
tions. The reductions are a result of the manner selected for making the
comparison such that the cost (in terms of payload reduction) of imple-
menting design changes to accept the new anti-torque devices becomes evi-
dent. It was assumed that the existing installed engine power of the base-
line vehicle remains unchanged, and, therefore, increased power demands to
operate the new anti-torque device(s) influence the hover capability of the
aircraft, in terms of reduced gross weight. On the other hand, the "New
Design" configurations are based on the same gross weight as the Model 286,
namely 4700 pounds. The increased power required for the new anti-torque
devices is reflected principally in higher propulsion system weight., These
weights were used for payload-range comparisons.
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The influence of adding the new anti-torque system(s) to the aircraft is
shown in detail for every component listed in the table. Those components
whose weights are not influenced by the changes remain constant across the
various colums. The estimated amounts of changes, or additions or dele-
tions of weight components, can also be identified by comparing across the
various columns. All changes pertain to the addition of either of the two
new anti-torque systems.
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TABIE III, WEIGHT COMPARISON SUMMARY
Model
286 Modified 286 New Design
Tail Fan-In- Internal Fan-In- Internal
Rotor Fin Fan Fin Fan
Main Rotor 726 726 726 726 726
Tail Rotor/Fan-in-Fin 29 15 15
Internal Fan Installation 97 86
Stabilizer 15 17 17 17 17
z Fin 43 50 36 50 31
. Fuselage 496 4o6 528 496 522
i Landing Gear 1h1 141 141 141 1h1
Flight Controls 327 336 336 336 336
Propulsion 455 455 455 478 L7y
Main Gearbox and Lub. System 335 335 335 335 335
Intermediate Gearbox 20 20 20
Aft Gearbox 35 26 26
Shaft; Engine to Main Gearbox 8 8 8 8 8
Shaft; Main Gearbox to Tail 42 Ls 4s
Y Shaft; Main Gearbox to Fan 20 20
! Pulleys and Belt 16
\ Instruments 58 60 60 60 60
Hydraulics 38 4o 40 4o 4o
' l Electrical, Comm., Furn., etc. 230 230 230 230 230
v Q EMPTY WEIGHT 2998 3000 30&5 3023 3026
‘ Pilot 170 170 170 170 170
Trapped Fuel and Oil 19 19 19 19 19
Engine 01l 18 18 18 18 18
OPERATING WEIGHT 3205 3207 3252 3230 3233
Payload 275 733 728 950 ol7
ZERO FUEL WEIGHT 4180 3940 3980 4180 4180
Full Fuel 520 520 520 520 520
L GROSS WEIGHT 4700  Lh60 4500 4700 4700

All values are in pounds.
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6. PERFORMANCE DATA

BASIC YAW REQUIREMENTS

Since the Lockheed Model 286 has been FAA certificated, its flying and ground
handling yaw control is satisfactory. The lateral yawing thrusts required by
Specification MIL-H-8501A were met Ly the existing tail rotor and will be met
by the selected new yaw control devices. The lateral yawing thrust required
is that necessary to balance the main rotor torque plus that necessary for
side-wind trim plus an additional amount for yaw control. The applicable
paragraphs of MIL-H-8501A are 3.3.5 and 3.3.6.

Paragraph 3.3.5 specifies:

"Directional control power shall be such that when the helicopter is hover-
ing in still air at the maximum overload gross weight or at rated takeoff
povwer, a rapid 1.0-inch step displacement from trim of the directional con-
trol shall produce a yaw displacement at the end of 1.0 second which is at
least

110

31/ W + 1000

degrees. When maximum availgble displacement from trim of the directional
control is rapidly applied at the conditions specified above, the yaw angu-
lar displacement at the end of 1.0 second shall be at least

330

3‘/ W + 1000

degrees. In both equations, W represents the maximum overload gross
weight of the helicopter in pounds.”

In analyses made to examine capability to meet these requirements, the
"maximum overload gross weight" is made L4700 pounds, the maximum gross
weight for which the Model 286 was FAA certificated. Control linkage de-
tails are assumed to be such that full pedal thrust is adequate and 1.0-
inch pedal thrust will generate at least one-third as much thrust as
required.

Paragraph 3.3.6 of MIL-H-8501A specifies:

"It shall be possible to execute a complete turn in each direction while
hovering over a given spot at the maximum overload gross weight or at take-
off power (in and out of ground effect), in a wind of at least 35 knots.
To insure adequate margin of control during these maneuvers, sufficient
control shall remain at the most critical azimuth angle relative to the

Preceding page blank
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wind, in order that, when starting at zerc yawing velccity at this angle,
the rapid applicaticn of full directional contrel in the critical direc-
tion results in a correspeonding yaw displacement of at least

110

3, /W ¥ 1000

degrees in the first second, where W represents the maximum overload

gross weight of the helicopter in pounds."

The same gross weight of 4700 pounds that is used in the prior section will

also be used here.

DIMENSIONS

Pertinent dimensions of the aircraft used in the analysis are as fcllows:

Fan-in-Fin

Internal Fan {

Tail Rotor

Diameter, ft 6.5
Number of Blades 2
Chord (constant), in. 7.80
Solidity( :; ) .1273
€ Main Rotor to 21.79

€ Yaw Device, ft
Fin Area, sq ft 11.2
Tip Speed, ft/sec 713

YAW THRUST FOR MAIN ROTOR COUNTER-TCRQUE

Model 286 Hovering Performance

The hovering performance of the Lockheed Model 286 is presented in Figure 20
(a reproduction of Figure 21 of Lockheed Report LR 19906%).

OGE hovering is added to the figure.

*

W. P. Groth, F. P, Lentine, and R. E. Sadowski, MODEL 286 FAA CERTIFICATION

REPORT, Lockheed Report LR 19906, July 1966.
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Figure 21 is constructed from Figure 20. From Figure 21, the engine SHP at
4700 pounds gross weight, OGE, is shown to Le 515.

Model 286 Installation and Accessory Losses

The installation and accessory losses are presented in Figure 22 (a repro-
duction of Figure 80 of Lockheed Report LR 19906.)* From this figure, an
expression used to determine power losses at sea level, in standard air, is

SHP = 37.0 + .0158 (SHP

Losses * SHPTR -300)

MR

=32.2 + .0158 (SHPMR + SHPTR)

Using engine SHP of 515 as noted above,

515 = 32.2 + 1.0158 (SHPMR + SHPTR)

SHPMR + SHPTR = 475.3

from which the installation and accessory losses are

515 ~ 475.3 = 39.7 SHP

Tail Rotor Thrust for Main Rotor Counter-~Torque

The calculations summarized in Table IV show a tail rotor thrust of 299
pounds.

YAW CONTROL THRUST

The yaw displacement at the end of 1.0 second, as required by MIL-H-8501A,
Paragraph 3.3.5 (see specification quote, page 67), is

g = =222 - 330 18,48 aeg

3 [s700  17.86

The lateral yawing thrust required to yaw the helicopter the specified
amount in 1 second is

rl
o
1l
oy
ct I[\J
n &

*
W. P. Groth, F. P. lentine, and R. E. Sadowski, MODEL 286 FAA CERTIFICATION
REPORT, Lockheed Report LR 19906, July 1966.
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Figure 22. Installation and Accessory Losses.
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Therefore, for the Lockheed Model 286, which has a yaw inertia (less main
rotor) of 3330 slug-ft2,

2 (18.48/57.29)

l.O2

2l.79 Typ =3330 x

TTR =99 1b

SIDE-WIND YAW THRUST

From the quoted paragraphs of MIL-H-850LA, the lateral thrust requirement
to provide for yaw control in a 35-knot side wind is

110 _

The concurrent lateral thrust required to overcome a 35-knot side wind
during hover is shown in Table V to be 53 1lb. Thus,the total lateral
thrust required is

33 +53 =86 1b

This requirement is less than calculated in the preceding paragraph and
therefore will not prevail.

MAXIMUM YAW THRUST

The yaw thrust required is the sum of the yaw thrusts calculated to counter
the main rotor torque plus that to provide yaw control,

TTR =299 + 99 = 398 1b

The internal fan and the fan-in-fin concepts will each be required to gene-
rate this 398 pounds of lateral thrust at sea level in standard air.

YAW DEVICE POWER REQUTRED

Required power is determined for flight at sea level at standard tempera-
ture. The required yaw thrust determined in the preceding paragraph is
398 pounds. The helicopter total power required, as shown in a preceding
paragraph, is 515 SHP; the installation plus accessory losses have heen

shown to be 39.7 SHP, so that SHPMR + SH_'PTR is 475.3 SHP.

Tail Rotor Power Required

The tail rotor power required to hover at 4700 pounds gross weight at sea
level in standard air was shown to be 34.8 SHP (Table IV). This is 6.8% of

the total SHP and 7.9% of SHPyp -
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TABLE IV.

TAIL ROTOR ANTI-TORQUE THRUST

Sea Level, Standard Air

Gross Weight = 4700 1b

Hovering
Trial Trial Final
#1 #2 Result (g)
1. SHPTR/(SHPMR + SHPTR) 10% ' A 7.32%
2. SHPTR 47.53 32.37 3k.8
3. SHP 427.8 L2 .0 440.5
L. Qg Tt-1b (a) 6336 6546 6524
Jo M 5 (4)/21.79 1b 290.8 300.4 299.2
6. Cp= (2)/&009& (b) .00725 .00749 .00746
7. ¢ = fﬁ; (c) 113 426 o5
3@
b (4) L0102 .0106 .0105
v = (51577 (e) 1842 1903 1897
10. v h2.9 43.6 43,5
11. SHP, = 1.10 )Sé;g) 2hk.9 26.2 26.1
12. SHP, = 825 & (f) 8.4 8.7 8.7
13. SHPp, = (11) + (12) 33.3 34.9 34.8
NOTES
(a) 550 SHP\p = Qr Q =Qp o B = . _%;95 = 37.143 Qp
(b) (m Re);) (Q R)2 = 33.18 x .002377 x 7132 = Loo9k
(c) T = 6 Cr = 56.9 ¢,
943 x 1273
(d) Yigure 23
@ #-3 R o7
(£) SHP = &p 0 (m R Q R)3
4400
= 5 ,002377 x .1273 x 33.18 x 7133
4400
= 8 %
(g) For (2) = (13) by plotting (2) vs (13)
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TABLE V.

TATIL ROTOR TRUST TO TRIM

LOCKHEED MODEL 286 IN 35-KNOT SIDE WIND

(1)

(2) (3)

(%)

(5)

(6)

(7)

Segment Lateral C D Drag Yawing Yawing Lateral
Projected at Moment Moment  Thrust
35 kn  Arm (M)x(5) Required
Area (ft) (ft) (ft-1b) (1b)
(sq )
I 39.7 4o 65.5 -4.0 -262
IT 38.5 1o 63.5 4.5 25
111 8.8 4o 1.5 1k.2 206
v 2.6 1.00 10.7 18.9 202
v 9.1 1.00 36.5 20.8 760
TOTAL 21.79 1151 53
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The thrust/horsepower of the tail rotor is 299/34.8 = 8.4 1b/SHP.

When the control load of 99 pounds is added, the tail rotor induced SHP in-
creases from 26.1 to 40.0 and the profile SHP increases from 8.7 to 1k4.9.
The total tail rotor SHP increases from 34.8 to 54.9 and the thrust/horse-
power decreases from 8.4 tc 7.3. The helicopter total SHP (main rotor,
tail rotor and losses) increases from 515 to 535.

While it is not a MIL-H-8501A requirement, it is possible to operate at the
full power of the engine simply by increasing the rate of climb, Since only
15 SHP (550 less 535) additional are available, and the ¢, 1is only .566%
when hovering and generating the 99 pounds control load, it is clear that
the e, of .82 (Figure 23) will not be exceeded.

Fan-in-Fin Power Required

The solidity of the fan permits the blade sections to operate at a cy near
maximum c, /c (minimum power for a fixed fan thrust) when the fan gen-
erates the yaw thrust required to balance the main rotor torque,299
pounds. On occasions when the fan will also generate the control force of

99 pounds, the ©p, must be higher but will still be less than cy

From Figure 24, maximum cy /cd occurs at 5.2 degrees angle of attack. From

Figure 22, at this angle of attack,
Cl = .657
ey = .0118

The fan-in-fin ¥, was preliminarily considered to be at these values when
generating the 299 pounds of main rotor counter-torque thrust.

Since T, =6C ' (B3 - X,S) o : by fixing T, and C, o and, hence, the

blade cherd™ can be ~ determined. In fixing C., for the fan, note

that tne shroud »f the fan-in-fin generates 4O percent ag much thrust as the
fan. Thereore, the fan thrust is

TFan = ,299 = 214 1b
1.1%0

*(,425 from Table IV) x %% = 566
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TAIL ROTOR AND FENESTRON

Figure 23.

ANGLE OF ATTACK

Airfoil Section Aerodynamic Characteristics.
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FROM FIG 23
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Figure 2L, Airfoil Section ¢ /cd, 1
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and

214 /4,909 43.6

Co = .002377 x 713° = 1204 - - 0361
%
! (B3 - X03)0
675 = 63x .o36§
(.99° - .37°) ¢
.2166
9= 620 - 377
be = .285 x m x 1.25 = 1.375 £t

1

16.50 in.
If b = 11 then ¢ =1.50 in.

At the maximum thrust of 398 pounds, the 612 is .675(398/299) = .897. Tuis

is less than the cy nax of 1.065 shown in Figure 23 and therefore will be
satisfactory.

However, recognizing operational problems of yaw control that have been
experienced with tail rotors designed by these elemental considerations, the

blade chord is arbitrarily increased from 1.50 to 2.00 inches. Power re- ,
quired and fuel consumed will be based on eleven blades of 2.00 inch chord.

o 11(efai2)
O =31M16 x 1.25 166

For a fan-in-fin generating static thrust, test data indicate that the
shroud generates 40 percent as much thrust as the fan. Let the induced
velocity be v at the fan and nv at the shroud exit, as shown in Figure 25.
Since n = 2 for an unshrouded propeller (shroud thrust = 0) ana n = 1

for a "full" shroud where the shroud thrust equals the fan thrust, the
value of n for the fan-in-fin lies between 1 and 2.

The power required to accelerate the fan-in-fin slipstream is

nv. nv.
550 SHP =T Fan = 1.40 T Fan
F&F, . F&F —5— Fan —%—
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Figure 25. Fan-in-Fin Induced Flow.

This same power 1s also, allowing a 5 percent power loss due to nonuniformity
of slipstream velocity,

520 SHPF&F. - TFan vFan
ind
Equating,
nv.
1.40 T Fan _ 1 o517 v
Fan 2 : Fan Fan
n = 2,10/1.40 =1.50

Having stipulated that the shroud (fin) generated 40 percent as much thrust

as the fan, it follows that n = 1.50, and that the exit slipstream has an

area two-thirds (i.e., 1.0/1.5) as large as the fan. Although the shroud

is shown as a constant-area cylinder, the slipstream experiences the two-thirds
reduction in the cross-sectional area. Thus, the slipstream exit area equals

(2/3) x 4.909 = 3.273 sq ft.

The significance of this exit area is that it is less than the exit area of
the louvered exit of the internal fan. The internal fan thus has less in-
duced powe: for the same lateral yawing thrust.

2
2 = Ap Fan

S (1.50 vFan) =1.50 Ap Vv

V.
Fan
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For the 299 pounds of main rotor counter-torque yaw thrust,
> 299/4.909 61.0
V Fan ~ 1.50 x .002377 ~ .003566 ~ ++O0
Voan " 130.4 ft/sec
550 SHP o o =1.05 x 299 x 1.50 x 130.4/2 = 30800 ft-1b/sec
ind
SHPpep = 56.1
ind

Fan-in-fin Profile SHP

6 x 0361
p = (.99 - .373) x .uee = YT

so, from Figure 23,

6 = .0LOO

I

: o100 +902377 x 466 x 4,909 x 7133

SHP
F/ prof Lhoo

CHP 4.5
F/Fprof

Fan-in-Fin Total SHP

SHP

SHP + SHP
F/F F&Fina F/Fprot

SHP. /F

P 56.1 + 4.5 = 60.6

Helicopter Total SHP

SH

P| sseg = 32:2 + .0158 (SHP

VR + SHPT

)

So, for the fan-in-fin, with SHP o = 4h0.5 from Table IV,

= 32.2 + ,0058 (4k0.5 + 60.6)
=32.2 +7.9 = ho.1

SHPtctal = 4ho.5 + 40.1 + 60.6 = 541

losses
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Percentages

The fan-in-fin SHP is thus 11.2 percent of the total SHP, which is L.t per-

cent more than the tail rotor. It is 13.7 percent of the SHPMR, which is 3
5.8 percent more than the tail rotor.

Thrust Horsepower

' The thrust/horsepower of the fan-in-fin is 299/60.6 = 4.9 1b/SHP.

With Control Load Added

increases from 56.1 to 86.0 and the profile SHP increases from 4.5 to 5.3.
Thus, the total fan-in-fin SHF increases from 60.6 to 91.3 and the thrust/
horsepower decreases from 4.9 to L.4. The total fan-in-fin SHP increases
from 541 to 573. This is 22 SHP more than the 5-minute rating of the engine.

When the control load of 99 pounds is added, the fan-in-fin induced SHP «

Internal Fan Power Required {

This system uses the fan-in-fin fan, relocated to produce the internsl-fan
configuration. The louvered exit area (20 ir.. high and 30 in. long) is 4.16 +
square feet. ‘

1

The power expended in this system is assumed to be composed of:

‘ l o Induced power in an airstream which has a final cross sectional ‘
area equal to that of the louvered exit. / l
|

{
| -f o The profile power of the fan-in~fin fan.
0 An additional 10 percent to account for inlet, duct, slipstream
rotation and turning vane losses. '
[
Internal-Fan Induced SHP :
= |
Louver Thrust ALouv PV Louv
- 2 )
299 =  L.16 x .002377 x v - !
2
VLouv = 30300 : 1
I VI ouv = 173.6 ft/sec
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- 2
550 SHP, = 1/2 (A ) X v -

pV
Louv Louv
ind

I

1/2 (4.26 x .002377 x 173.8°)

SHP L7.2

I

ind

Internal -Fan Profile SHP

Same as fan-in-fin = 4.5 SHP

Internal -Fan Duct and Turning Vane Loss

SHP = ,10 (47.2 + 4.5) = 5.2 SHP
duct

Internal-Fan Total SHP

SHP + SHP + SHP
407 IFina Fprof TF duct

SHP

b7.2 + 4.5 + 5.2 = 56.9

Helicopter Total SHP

HP, o coq =32.2 4 .0L58 (SHPMR + SHPTR)
=32.2 + .0L58 (4k0.5 + 56.9)
=32.2 +7.9 =39.9

SHPp .1 = M40.5 +39.9 + 56.9 = 537

Percentages

The internal fan SHP is thus 10.6 percent of the total SHP, which is 3.8
percent more than the tail rotor and 0.6 percent less than the fan-in-fin.

It is 12.9 percent of the SHPMR, which is 5.0 percent more than the tail

rotor and 0.8 percent less than the fan-in-fin.

Thrust /Hor sepower

The thrust/horsePOWer of the internal fan is 299/56.9 = 5.3 lb/SHP.
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With Control lLoad Added

When the control load of 99 pounds is aa!2d, the internal fan induced SIP
increases from 47.2 to 72.3, the profile power increases frum 4.5 to 5.3,
and the duct loss increases from 5.2 to 7.8. Thus, the total internal fan
SHP increases from 56.9 to 85.4 and the thrust/horsepower decreases from
5.3 to 4.7. The total internal fan SHP increases from 537 to 566. This
is 16 SHP more than the 5-minute rating of the engine.

FORWARD FLIGHT POWER REQUIRED AND AVAILABLE

A digitial program was used to compute the SHPMR, TTR and TFin'

Credibility of the results is established by matching two Model 286 flight
test speed-power polars as shown in Figure 26. From a run of this program
at a gross weight of L4700 pounds, at sea level, at standard temperature

air, SHPMR’ DHPTR’ TTR’ and TFin were determined. SHPMR 1s presented 1n

in Figure 28, and SHP,_  in Figure 29.

Iigure 27, TTR and T TR

Fin
The area of the Model 286 helicopter fin is 11.7 square feet. At the gross

weight of 4700 pounds, when flying at sea level in standard temperature air
at 140 knots true airspeed, the fin supplies all the main rotor counter-torque

force (TCT). The fin is then acting at a 1lift coefficient of .467 to generate
364 pounds of lateral yawing force (Figure 27). Since this 1lift coefficient
will remain the same at all speeds, the lateral fin force (TFin) is 364

(\//1&0)2 and T T = T.

TR 18 CT F'in.

When the tail rotor is replaced by the internal fan or the fan-in-fin, the

yaw stabilizing effect of the tail rotor must be replaced by additional fin
area (from 11.7 to 15.9 square. feet). However, if the 1ift coefficient of this
larger fin is reduced proportionately, as considered here, then the fin force
remains the same as with the smaller fin, at all airspeeds. These lateral
torces are presented in Figure 2T.

The difference in speed-power polars between the Model 286 with the tail rotor,
internal fan or fan-in-fin is composed of two parts: the difference in the
power required to generate this TTR force, and the difference in the parasite

power due to the difference in equivalent flat plate area resulting from the
trim change associated with using the internal fan for a propulsive unit.

The final result of adjustments to power required is presented in Figure 30

The power available has been increased for the internal fan and the fan-in-fin
by 22 SHP and 26 SHP respectively. These are the increments required to main-
tain the same vertical flight performance at 4700 pounds gross weight, at sea

level, in standard air.
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COUNTER-TORQUE THRUST ~ LB
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LOCKHEED MODEL 286
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S.L. STD. CONDITIONS
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i —d i ] | |
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Figure 27. Maln Rotor SHP and Anti-Torque Thrust vs. TAS.
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THRUST ~ LB
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S.L. STD. CONDITIONS
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FAN-IN-FIN

(TrR OR T)eORTeep)

] - | | l

20 40 60 80 100 120 149
TRUE AIRSPEED ~ KN
Figure 28. Anti-torque Thrust vs. TAS.
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SHAFT HORSEPOWER
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LOCKHEED MODEL 286

S.L. STD CONDITIONS
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Figure 29, Tail Rotor SHP vs. TAS.
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ENGINE SHP
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Figure 30. Engine SHP vs. TAS.
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MAXIMUM TRUE ATRSPEED

As can be seen from Figure 30,

Configuration Maximum True Airspeed, Knots
Tail Rotor 138

Tnternal Fan 146

Fan-in-Fin 1hh

FUEL FLOW ..ND SPECIFIC RANGE

I'icure 31 shows fuel flow for the Model 286. With this information as a
basis, and noting Figure 30, Figure 32 was constructed to precent fuel
flow and specific range for each of the three configurations selected for
this study.

PAYLOAD-RANGH

A payload versus range estimate is presented based on a mission consisting
of:

1. Two minutes warm-up and takeoff (WUTO) at maximum continuous
power; fuel flow = 330 pounds/hour; WUTO fuel = 11 pounds

2. Cruise at 120 knots
3. Reserve fuel = 10% »f total fuel

The helicopter weight datrn uvsed were:

Internal
Tail Rotor Fan Fan-in-Fin
1. Weight Empty, (1b) 2998 3026 3023
2. Pilot 170 170 170
3. Trapped Fuel & 0il 19 19 19
t. Engine 0il 18 18 18
5. Operating Weight Empty 3205 3233 3230
6. Gross Weight 4700 4700 4700
Useable Fuel + Payload 1495 1467 1470

(6) - (5)

Calculations are shown in Table VI, and results are plotted in Figure 33
Figure 34 presents the payload differences between the curves of Figure 33
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SPECIFIC RANGE~N Ml /LB

FUEL FLOW ~ 100 LB/HR

GROSS WT = 4700 LB
TAIL ROTOR

5 FAN-IN-FIN
INTERNAL FAN
SPECIFIC
RANGE
4 -
3
FUEL FLOW
2.r
TAIL ROTOR
FAN-IN=FIN
INTERNAL FAN
1=
ol 1 1 1 | | ] ]
0 20 40 60 80 100 120 140

TRUE AIRSPEED ~ KN

Figure 32. S8Specific Range and Fuel Flow vs. TAS.
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HOVERING GROSS WEIGHT VS. ALTITUDE

Hovering takeoff power is presented in Figure 35 (a reproduction of Figure 32
of Lockheed Report LR 19906*). Using these data and Figure 21, the following
tabulation shows the data calculated for Figure 36. Since all configurations
were assumed to have an installed SHP increment equal to the extra hovering
SHP required for the yawing device, these two figures represent the hovering
ceiling data for all three configurations.

W/o W W/o W
Altitude 0= SHP IGE  IGE  OGE OGE

(£t) Plpo (1) sHp/o (2) (1)  (2) (1v)
S.L. 1.000 550 550 5830 5880 L4980 L4980

1000 971 550 556 600 5850 5100  L950
2000 .93 537 569 0070 5720 S1ko L850
4000 .888 51k 579 6160 5h60 5220  L630
6000 836 Lol 587 6220 5200 5275  hhio
8000 .786 463 589 50 4920

10000 .739 L3kL 588 6240  LA10

(1) Figure 35, Standard Day
(2) Figure 21

Lockheed Model 286 Static Directional Stability

The existing fusealge without the vertical stabilizer was analyzed per the
empirical method of the "USAF Stability and Control DATCOM" (page 5.2.3.1-1).
The result of the_analysis shows *tnat the fuselage has an unstable contri-
pution of -505 ft3/rad to 9 (1/a)/oy . The existing vertical stabilizer
has an area of 11.7 sq ft and a stable contribution of 625 ft3/rad to

3 (N/a)/ow . The existing tail rotor was analyzed using the charts of
NASA-TN 2309. At 140 knots, the tail rotor has a stable contribution of

227 ft3/rad to 3 (N/q)/dy .

Thus, when the stabilizing effect of the tail xcuor is removed, as in the

internal fan and the fan-in-fin configurations, an additional fin area of

4.2 sq ft is provided in the aircraft configurations using either internal
fan or the fan-in-fin.

p.3

W. P. Groth, F. P. Lentine, and R. E. Sadowski, MODEL 286 FAA CERTIFICATION
REPORT, Lockineed Report LR 19906, July 1966.
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TABIE VI. PAYLOAD VERSUS RANGE CAILCULATIONS
Tail
Rotor Internal Fan Fan-in~Fin
1. Gr wt b 700 L700 1700 4700 L700 700
2. Oper. W.E. b 3205 3205 3233 3233 3230 3230
3. Fayload 1b 0 993 (a) 0 993 0 993
4. Total Fuel =
(1)-(2)-(3? 1b 1495 502 1467 bk 170 b7
5. WUTO 1b 11 11 11 11 11 11
6. Res. = .10x(4) 1b 150 50 7 L7 147 48
7. Cruise uel =
(h)-(5)-(6) b 1334 Lh1 1309 L16 1312 418
8. Start Cruise -
(1)-(5) b LE89  L68y L689 U689 L6B9  L68Y
9. IEnd Cruise =
(2)+(3)+(6) b 3355  h2h8 3380 ko7 3377 Lkem
10. Avg. Gr W4t =
[ (8)+(9)]/2 1b ho22  LL68 Lo3s L4481  L033  LkBo
11. TFuel Flow @
4700 1b
Gr Wt (b) 1b/hr 310 310 288 288 296 296
12. Tuel Flow @
(10)  (c) lo/hr 296 305 277 283 283 292
13. Hours = (7)/(12) L.50 1.4k L.72 1.47  L.6h 1.43
1t. Range =
120x(13) n 540 173 568 176 557 172
(a) U4 passengers (680 1b) + Baggage (313 1b)
(b) Figure 31 at 120 knots
(c¢) (11)x(fuel flow @ 128 kn ? (10)/fuel flow @ 128 kn @ 4700 1b)
| See Figure 30
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PAYLOAD = G.W. LESS PILOT, TRAPPED FUEL & OIL
ENG. OIL, EMPTY WT

N ~——TAIL ROTOR
FAN=IN=FIN
INTERNAL FAN

PAYLOAD =4 PASS (680 LB)
PLUS 313 BAGGAGE

TAIL ROTOR
FAN=IN-FIN
INTERNAL FAN

1 l l

100 200 300 400 500

RANGE ~ N, MI,

Figure 33, Payload vs. Range.
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Figure 34 . APayload vs. Range
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MODEL 286
INSTALLED TAKEOFF POWER
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Figure 35. Engine SHP vs. Temperature and Altitude.
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ALTITUDE ~ 1000 FT

10

— ALL THREE VERSIONS
\ STD AIR TEMPERATURE
VERSION MIL SHP RATING
| TAIL ROTOR 550
INTERNAL FAN 572
FAN-IN-FIN 576
—
IGE
OGE
] d ] | ] I
44 46 48 50 52 54 56 58 60

GROSS WEIGHT ~ 100, LB

Figure 36. Hover Ceiling vs. Gross Weight.

98




The foregoing discussion is mainly applicable to large angles of yaw in
nearly level flight attitudes. As in most tail-rotor helicopters, mar-

ginal. directional stability exists in the Model 286 at small angles of yaw and
high nose-up attitudes (autorotation descents). This deficiency is remedied
in the proposed configurations by distributing the fin area between two fins
located in regions of high-energy, relatively undisturbed flow.
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7. OPTIMUM=DESIGN NEW VEHICLE

The preliminary designs presented in Section I were of necessity compromised
in order Lo qualily as retrofit modifications of an existing Model #8860 heli-
copter. Numcrous design improvements could be made if the scleciecd concepts
were applied to a totally new design., Two stages of improvement can be con-
sidered. The first would climinate those features that penalivzed the design
because a retrofit was contemplated. The second stapge of improvement would
result from application of the latest state of the art rotary-wing technology
along with the refinement in design over the Mcdel 286 that wac desipgned, not
as a fully developed opecrational production helicopter, but as a minimum-cost
rescarch aircraflt and demonstrator.

Considering the internal fan configuration, the first-phase improvement
would include:

1. Elimination of the belt drive for the fan by use of a direct shaft
drive from a power takeoff at the lower end of the main rotor
transmission.

2. Redesign of the aft fuselage cross section to a more optimum shape
to resist internal pressure, by increasiig the space available

between the lowest rotor blade position and the ground.

3. Increase of the nose length in order to improve the weight and
balance, and optimize the length of the aft fuseiage.

4. Selection of an optimum fan design taking full advantage of the
generous length of diffuser available.

5. Incorporation of forced circulation slots with optimum load
sharing between forced circulation and nozzle thrust.

6. Provision of a fan and drive system capable of accepting full engine
power, permitting cruise in nearly full autorotation of the main
rotor and full engine power on the auxiliary propulsion system,

The second-phase improvement would include:

1. Optimum disc loading considerably higher than the present 4.9
pounds per square foot.

2. Reduced power loading consistent with the increased disc loading
and advanced turbine engine technology.

3. Optimum structural design for minimum weight, including use of new
material technology, and advanced fabrication methods.

4. Improved aerodynamic design for minimum drag in forward flight.

Preceding page blank '




The improved forward-flight performance resultirg; {rcm szveral of the im-
provements in both improvement phases would accentuate the advantage of the
internal fan concept, since its margin of advantage over the other concepts
increases with increased cruise speed. The conceptual sketch shown in Figure

37 illustrates these refinements and the optimum application of the selected
anti-torque system.
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APPENDIX
LITERATURE SEARCH RESULTS

The anti-torque devices found in the literature search were grouped into
the categories listed previously in the "Survey of Potential Concepts",
Section 2. Brief descriptions of many representative concepts are included
in this appendix, grouped as follows:

dLc

2.

Da
6.

Conventional tail rotors

Ducted fans

Nozzles

Immersed aerodynamic surfaces
Horizontal-axis rotary-wing airfoils

Future concepts

In general, each item discussed in this appendix summarizes an item of
literature and references that item. A list of the references cited here¢in
is given in the Literature Cited section.
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1. CONVENTIONAL TAIL ROTORS

"Tail. Rotor Design', References 1-1 and 1-2

From the power-requirement point of view, the low disc loading tail rotor is
by far the most efficient approach to torquc compensation and directional
control for a single-rotor helicopter. However, experience on a wide vari-
ety of helicopters has showr that it is far from a simple task to develop a
tail rotor installation tha" has completely acceptable control, stability
and structural characteristics.

A tail rotor is often thought of, incorrectly, as a propeller or a small
main rotor. Unlike a propeller, the tail rotor must produce thrust with
the free air coming from all directions. Unlike a main rotor, a tail rotor
is not trimmed for wind or flight velocities. It operates in an extremely
adverse environment and must produce both positive and negative thrust.

These papers consider the aspects of good tail rotor design in two parts.
Part I, "Aerodynamics," defines principal tail rotor design criteria. The
various related aerodynamic items and parameters are discussed. Part II,

"Structural Dynamics,' considers the dynamics of stiff in-plane tail rotor
designs.

The tail rotor should be designed for one of the following conditions:
1. The aircraft's critical hovering attitude and temperature

2. The engine critical attitude

The first step in the design is to establish the maximum required thrust
and the conditions under which it must be produced. Experience shows that
the maximum conditions usually occur during hover and low-speed yaw.

Stall due to precession is most likely to occur whenever there is a combina-
tion of high tail rotor thrust and high yaw rate. Precessional stall can

be delayed by increasing the airfoil Cj max, the blade Lock number or the
tail rotor tip speed.

Based on review of flight data on Bell helicopters it has been found that
oscillatory structural loading of the tail rotor is not significant at
frequencies greater than 150 Hz. It is believed that the 150 Hz frequency
is an acceptable frequency upper limit for tail rotors of conventional
design and construction for medium-sized helicopters.

Tail rotor loads are significantly affected by the shaft mounting stiffness.
Pitch-flap coupling has been identified as the cause of tail wagging. Neg-
ative 63 appears to be the best solution for this condition, since it
increases the damping of the tail boom modes.
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"Control Means for Rotating Wing Aircraft", Reference 1-3

This invention develops anti-torque from two anti-torque rotors mounted at
the end of the body at an inclination of about 45° from the vertical so

that their axis of rotation forms an upright V. By the application of equal
or differential rotor pitch,this arrangement provides vertical 1lift in
addition to pitching and yawing moments.

This concept compounds the existing taill rotor complexity without relieving
any of its inherent problems.

A “ketch from the patent is shown in Figure 38.

"Convertiplane", Reference 1-U4

An invention is shown which uses ar anti-torque rotor which is permitted
to rotate 90° about a vertical axis passing through the tail rotor gearbox
until it assumes the position of a pusher propeller; although this invention

appears workable, it does not change the manner of operation of the present
anti-torque rotor.

The invention is illustrated in Figure 39.

111




T T T T g—— -

Figure 38.

Control Means for Rotating Wing Aircraft,
Pat. No. 2,225,002.
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Figure 39.

Convertiplane, Pat. No. 3,155,341,
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2. DUCTED FANS

"Fenestron', Reference 2-1

The shrouded tail rotor developed by the Societe Nationale Industrielle
Aerospatiale for the SA.341 "Gazelle" eliminates most disadvantages of the
conventional tail rotor of shaft-driven helicopters. Protected by the

tail fin, in which it is enclosed, there is no risk of the tail rotor touch-
ing the ground during approach landing; impact with any object becomes
practically impossible.

Total aircraft power required in hovering is 3-4% higher than for a conven-
tional tail rotor, but less power is needed in forward flight. A cambered
airfoil tail fin relieves the tail rotor transmission system of anti-torque
load in forward flight. This feature enables the aircraft to return to
base, should the fan drive become inoperative.

Considering the low values of alternating stresses in the blades and control
components, this system is particularly attractive for high-speed rotary-
wing aircraft.

Several variations of the Fenestron concept are shown in Figures L0, L1,

42 and U43.

"Gazelle", Reference 2-2

This reference give additional information on the vehicle in which the fan
discussed above is employed. The ducted fan tail rotor, colloquially
called "Fenestron", is a feature of the "Gazelle". The fan is described
as a multibladed rotor, hinged in pitch only, rotating within a shroud in
the vertical fin. The advantages of a shrouded tail rotor are:

Technical:

o Short cantilever blades not as subject to instability as
conventional flap hinged tail rotor

o Blades work at low stress levels

o Rear transmission system not loaded most of time, except in
hover

o Tail pylon and intermediate gearbox not required
Operational:
o Safety for ground personnel and from terrain-contact damage
o Ability to return to base in a forward flight mode in case of

tail rotor transmission rupture instead of need for an immedi-
ate autorotation landing
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Figure 40. Ducted Fan-in-Fin,Compact Size.
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Swiveling Ducted Fan (Tail Mounted).

Figure 43,
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o Low vulnerability 1

o Low maintenance. The power drawn by the rotor in forward
flipht cruise (maximum percent of time) is very low, thus
extending mean time between overhaul. Low fatigue stresses
lead to an infinite service life. No lubrication is required.

"Ducted Propeller Study'", Reference 2-5

Various aspects of ducted propeller theory and design are considered. These
include the 1lift of a moderately inclined ducted propeller, possibilities
for increasing the static thrust, blade design, and flow field analysis of
interference with adjoining wings or bodies.

The inclined duct theory is shown to be in agreement with test data from
different sources.

velocities for designs which accelerate the inflow in accordance with spec-
ified pressure changes inside the duct. For such flows, blade designs

are shown by means of solidity pitch distribution, jet velocity and tip
speed.

Digital computer studies are recommended to evaluate favorable and unfavor- .
able interference flow arrangements between ducted systems and surrounding f
surfaces. The fan-in-wing flow field with a jet of finite size is one of

many cases which can be handled.

Large ratios of static thrust to horsepower are predicted at low jet {

"Comparative Performance Charts for Ducted Propellers', Reference 2-7

In hovering flight, the ducted propell~» is shown to have superior figure
of merit to that of an open propelle It is shown that the ideal figure
of merit for a ducted propeller is roached as the ratio of the maximum
duct diameter to propeller diameter .s increased, and if proper attention
is given to inlet shape and propeller configuration.

In axial flow, it is shown that the propulsive efficiency is a function of
duct diffuser angle and advance ratic. The diffused duct. gave approximately
17% better efficiency than the nondiffused duct and surpassed that of tie {
open propeller in the low-speed regime. It is as good as the open propeller

up to an advance ratio of approximately O.4 to 0.6, ater which the open

propeller appears to have superior efficiency.

It appears that the wake diameter of & two-dimensional ducted propeller 4
increasas with increasing duct diffuser angle and decreaseg in size as the
duct chord to propeller diameter ratio decreases. However, due to uncer-
tainties in water tests which were conducted, the results are not conclusive.
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"Determination of Design Parameters for Optimum Heavily Loaded Ducted Fans",
Reference 2-3

Like the free propeller in axial flight, a single-rotation ducted fan of
high induced efficiency is characterized by an ultimate wake vortex system
shed from the blade trailing edge whose apparent motion is that of rigid
helical surfaces. In addition, however, concentric with this irner sheet
there is a cylindrical surface of helical vortex filaments shed from the
duct trailing edge. For a theoretically zero hub diameter, and neglecting
compressibility, viscosity., and tip clearance, a mathematical model of the
constant-diameter vortex wake is developed and the compatibility relation-
ships to be satisfied are presented. Using the Biot-Savart equation, the
vortex strength distribution in the wake is determined by numerical methods
and is then rotated to the blade bound vortex strength.

The integrations required to generate the velocity component contributions
of a helical vortex filament have been programmed on a digital computer.
Initial calculations were made for the limiting case of a single turn of
the helix at zero helix pitch angle for comparison with ring vortex analysis +
results. The comparison was satisfactory, and the calculations were then
extended to obtain the velocity contributions of a full helical vortex
filament which is the basic element of the vortex system to be considered.
\ Provision was made for an internal determination of the angular interval 1
iy of numerical integration required for a specified degree of accuracy and
r for the permissible truncation of the infinite length of the filament. /

"Three-Dimensional Theory of Ducted Propellers', Reference 2-6

A three-dimensional theory was developed for the ducted propeller with a |
finite number of blades in uniform motion through an inviscid, incompress-

ible fluid at zero incidence. Within the approximations of a lightly loaded

propeller and thin airfoil theory, the following generalizations were ob-

tained:

o The effect of shroud camber appears only in the steady shroud load.

o The steady pressure difference across the shroud is identical to
that of a similar ring wing of different camber.

o At high advance ratio, the resultant shroud loading is equal to the \
load on the isolated shroud plus the loading on an equivalent
asymmetric ring wing.

o The steady pressure distribution on the shroud corresponds to the 4
total loading on a similar configuration with infinite blade number
but the same radial disc loading.

o The steady part of the flow field of any propeller with finite blade
number corresponds to a generalized actuator disc solution with
the same radial disc loading.
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"Theoretical Investigation of Ducted Propeller Aerodynamics", Reference 2-k

It is shown that the propeller duct serves only one useful purpose: to
reduce the propeller diameter. It appears that all other effects are un-
favorable.

The ducted fan experiments reviewed cover a wide variety of characteristics.

For example, area loadings of these machines extend from 4 to 150 psf.
Operational conditions vary from nearly static to operation at high forward
speeds.

Some general principles become apparent. Gains in efficiency over the free
propeller cannot be obtained by a shrouded propeller or fan. This is true
for configurations designed for static operation as well as for forward
flight. The shrouded propeller can, however, produce higher static thrust
than a frec propeller of the same diameter and can do this efficiently if
correctly designed for operation in a shroud.

The ducted configuration also offers the opportunity to add stators. These
are important for very highly loaded systems; and it appears that in this
area of extremely high loadings, a case for the ducted fan can be made.

The ducted fan configuration could be a natural solution if the necessity
exists to adapt a design to special constructive requirements, such as to
store the fan during hi;n -speed flight.

It is evident that the ducted fan system is justified more from construc-
tive requirements than from fluid mechanic gains.

"Convertiplane", Reference 2-8

An invention is described which uses a combination of tilt-wing-mounted
propellers, tail-mounted vertical thrust ducted fan and tail-mounted
horizontal thrust ducted fan in addition to standard aircraft controls of
rudder, aileron, and elevator to control and maneuver the vehicle.

The primary yaw control is obtained from the joint use of the vehicle's
rudder and horizontal thrust ducted fan. Figure 4L illustrates the concept.

"Helicopter Steering and Propelling Device', Reference 2-9

A helicopter is descrived in which the forward thrust capability is supple-

mented by a pusher propeller located on the aft end of the vertical stabilizer.

In addition,a ducied fan installed within the vertical stabilizer functions
as the yaw control device for the vehicle. The invention relates in part
to the mechanical gearing and shafting of the shrouded tail rotor and pro-
peller. The concept is illustrated in Figure 45.
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Figure L.

Convertiplane, Pat. No. 2,926,967,
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Figure U5.

Helicopter Steering and Propelling Device,
Pat. No. 3,506,219.
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"Improvements in or Relating to Helicopters', Reference 2-10

A helicopter is descrihed in which a tail rotor, which operates off a drive
shaft attached to the main rotor gear train, is internally mounted in the
aft fuselage. The rotor drives air across the aft fuselage through con-
trollable louvers located »>n both sides of the fuselage adjacent to the
rotor. This causes a thrust acting about the helicopter c.g. and counter
rotating relative to the main rotor torque. A gyro "hunting" type system
is employed to throttle main rotor power when the torque is at the limit
of the tail rotor capacity. The concept is illustrated in Figure L46.

"Helicopters With Counterrotating Propeller", Reference 2-11

The configuration covered by this patent develops 1lift with a high-speed
counterrotating ducted propeller, and lift plus directional control with
a low-speed rotor mounted coaxially and above the ducted propeller. The
ducted propeller can be fixed pitch. The low-speed rotor is controlled in
pitch collectively and cyclically as in conventional helicopters. Figure
47 illustrates the concept.

"Helicopter", Reference 2-12

An invention is shown which includes a ducted fan mounted within the aft
fuselage in a transverse position. The duct openings are provided with
louvers which can be closed for forward flight to produce a smooth exterior
surface.

The anti-torque effect required in normal forward flight is provided by an
aerodynamically contoured vertical stabilizer to produce anti-torque aero-
dynamic forces.

The anti-torque features of this inventior as described above are practica-
ble; however, the location of the anti-torque fan could be improved to re-
duce power required to drive this system. The concept is illustrated in
Figure 46 (same as discussed above relative to Reference 2-10).

"long-Range Convertible Helicopter", Reference 2-13

This patent covers a vehicle configuration that can be converted on the
ground into either a helicopter or a fixed-wing aircraft. The main rotor,
in the helicopter mode, doubles as a fixed wing in the airplane mode. This
patent ccvers the yaw control, which comprises a shaft-driven ducted fan
inside the vertical tail. Movable vanes cover or expose the tail rotor in
accordance with the requirements of its operational mode as helicoEter or
airplane. The tail conversion procedure is illustrated in Figure 48.
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Figure 46.

Helicopter, British Pat. No. 606,420

-

and U.S. Patent No. 2,369,652,
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Figure 47. Helicopter With Counterrotating Propeller,
Pat. Wo. 2,996,269.
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Figure L8.

Tlonge-Range Convertible Helicopter,
pat. No. 3,116,036.
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3, l0ZZLES

"kjectors, or the Ejector Wing, Applied to V/STOL Aircraft', Reference 3-1

Ejectors currently under study and development by the Bertin Company are
described in the reference and some experimental results are shown. Thrust
augmentation ratios as high as 2.3, with diffusion of the mixed air, have
been n~chieved using multistage, concentric, annular ejectors. An ejector
configuration capable of simultaneously augmenting and deflecting the thrust
of a jet engine downward for VTOL is discussed, as is a proposed jet flap
scheme wherein the jet flap effects would be greatly augmented during STOL
by an ejector device at the wing trailing edge.

The technology of ejectors using multiple diverging sheets of primary air
is in its infancy. The projects described were based on results already
achieved but which fall short of theoretical predictions and will undoubt-
edly be improved with further research and development.

Presently, ejector 1lif%t systems offer three significant advantages relative
to auxiliary lift engines:

1. They achieve lower fuel consumption in both hover and cruise.
2. Noise is reduced by greater than 10 db in hovering flight.

3. They reduce the destructive effects of jets on the ground as a
result of relatively low downwash velocity.

"Contribution Au Development Des Tromps Et Ejecteurs", Reference 3-2

A theoretical treatment of the Bertin ejector is shown, completely written
in French. It discusc : in further detail the ejectors discussed in
Ref'erence 3-1.

"Helicopter with Jet Reaction for Counteracting Torque', Reference 3-3

A patent is described for an internal blower, located in the fuselage, which
is turbine driven by main engine exhaust gases and drives engine cooling air
exhaust and main engine exhaust gases to nozzles in the tail.

The invention claims maximum use of waste energy to obtain a higi energy gas
and air supply to the nozzles. However, from a heat balance standpoint, it
appears that a good part of the engine exhaust energy will be in the down-
stream mixture of cooling air and turbine exhaust to counteract rotor torque.
Figure 49, illustretes the concept.

"Helicopter with Anti-Torque Tail Jet', Reference 3-4

An invention is shown which uses a tail jet to counteract rotor torque.
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The energy for the jet is supplied by air ejector pumps mounted on the engine
and using engine exhaust. An alternate arrangement has an air source produced
by a power blower located in the engine compartment. Auxiliary air intakes
are provided on the exterior surface of the fuselage in positions to permit
the air to be drawn into the air duct.

The engine jet air pumps would contribute a relatively small percentage of the
total mass air/gas flow required. The large blower version improves this

condition. Figure 50 illustrates the concept.

"Helicopter with Anti-Torque Reaction Jet", Reference 3-5

The invention is shown which uses a direction-adjustable reaction jet to
counteract main rotor torque. This jet 1s energized through an air/gas duct
which connects the jet nozzle and the air/gas blower. The blower uses the
engine exhaust gases plus ambient air. Figure 51 illustrates this concept.

"Torque-Compensation Apparatus for Helicopters," Reference 3-6

An invention 1s reported which provides an auxiliary two-nozzle system to be
used as a redundant back-up for the tail rotor system. It uses a tank of
pressurized gas as an energy source with solenoid valve actuation. It also
implies a dubious alternate energy source from a turbine engine exhaus%.
Figure 52 illustrates this concept.

"Air Coupling System for Helicopters", Reference 3-7

A scheme is reported which employs a large centrally located powered fan in the
fuselage. By a system of large ducts in the fuselage, the fan drivi's a turbine
that drives the main rotor and provides an air source for a tail jet anti-torque
ccntrol. Since the turbine turns at main rotor rpm, the low tip speed would
result in very low t'rbine efficiency. Figure 53 illustrates this concept.

"Improvements to Rotary-Wing Aircraft", Reference 3-8

A scheme is reported which directs exhaust gas from the main turbine engine

to a tail nozzle system that has a rearward directed nozzle and a laterally
directed nozzle. Internal adjustable vanes can direct the gas wholly through
one nozzle or the other or in varying proportions through both outlets simul-
taneously. An external airspeed sensing device reduces the anti-torque action
with increasing forward speed. Figure 54 illustrates this concept.

n

"Yaw and Thrust Control," Reference 3-9

Ax axial-flow compressor supplies high pressure air to an aft fuzelage plenum
duct. Air is jet released from both sides of the aft fusslage to outside
atmosphere through a modulating nozzle system providing instant response by
simultaneously reducing thrust on one side and increasing it on
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Figure 50. Helicopter With Anti-Torque Tail Jet,
Pat. No. 2,518,697.
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Figure 51.

Helicopter With Anti-Torque Reaction
Jet, Pat. No. 2,486,272.
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Figure 52.

ol L~

.

Torque-Compensation Apparatus for Helicopters,
Pat. No. 3,199,302,
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818,358.

-Wing Aircraft, British Pat. No.

CAL LY

Improvements in Rotary

Figure 5Sk.
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the other side. The compressor is shaft driven from the main rotor gear-
box. Figure 55 illustrates this concept.

"Aircraft Yaw Control', Reference 3-10

A compressor supplies high prassure air to an aft fuselage plenum. Air is

jet released to atmosphere through a rotatable nozzle. The nozzle position
is controlled by the gyroscopic forces of the turbine compressor through a

linkage assembly. The compressor is shaft driven from the main gearbax

and draws in main rotor downwash air. Iigure 56 illustrates this concept.

concept.

"Exhaust Operated Torgque Reactor for Helicopters", Reference 3-11

In this concept, an anti-torque force is obtained by lateral deflection of
the turbine engine exhaust. Without unduly penalizing the main engine
power, the anti-torque force would be inadequate. TFigure 57 shows this
concept.,

"Automatic Control System for Rotating Wing Aircraft', Reference 3-12

Included in this patent is a device for counteracting rotor torque by eject-
ing a mass flow of air out the aft end of the fuselage through a series of
adjustable louvers. The air flow is produced by a large internally installed
propeller powered by the rotor engine. Figure 58 illustrates this concept.

"Reaction Jet Torque Compensation for Helicopters", Reference 3-13

This invention incorporates an air or gas jet whose discharge is directed !
from the tail of the fuselage in the proper direction to compensate for the

torque reaction. This jet is directed through the tunnel-shaped fuselage

so that the fan generating the air jet is closely adjacent to the power

plant and, in addition to furnishing the air jet, also serves as a means

of drawing cooling air over the engine. Figure 59 illustrates this concept.

"Yaw Control System', Reference 3-1k

This patent discloses & yaw control concept based on a deflected exhaust

gas jet. The system is envisioned for a helicopter powered by a turbine
engine. The exhaust nozzle of the engine is swivel mounted to direct the
gases onto a deflector bucket, and this produces yaw moments for directional
control, For high-sgpeed flight, the deflector buckets are opened and the
jet gases provide additional thrust in forwerd flight. Conventional control
surfaces are used for high-speed directional control, This concept is shown
in Figure 60.
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Figure 55. Continued
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Figure 55. Continued.




Figure 56. Aircraft Yaw Control, Pat. No. 3,015,460.
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Continued

Figure 56.
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Figure 57. Exhaust Operated Torque Reactor for Helicopters,
Pat, No. 2,991,962,
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Figure S58.

Automatic Control System for Rotating-Wing Aircraft,
Pat, Nc. 2,731,215,
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Figure 60. Improvements in Rotary-Wing Aircraft, British Patent No. 829,183
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4. TMMERSED AERODYNAMIC SURFACES

"Deflected Slipstream Anti-torgue System,” Reference Lh-1

A system in which a force for anti-torque is produced by deflecting the
slipstream of an aft-mounted propeller was studied by Lockheed and a proto-
type was built and tested. Results of the tests showed that even with the
best configuration that could te developed during an extensive wind tunnel
proziram, the power necessary to produce the required anti-torque force wes
app.roximately 4O percent greater than if the force had been produced by a
tail rotor.

It was also found that the ability to produce an anti-torque force during

simulated rearward flight was drastically reduced. At a rearward speed of
0 knots, the system becomes totally ineffective.

"Torque Control for Helicopters," Reference L-2

This concept is proposed to provide a torque compensating rotor which will
not be hazardous to those in its immediate vicinity. It is constriicted and
operates as a Flettner rotor, immersed in the main rctor downwash.

A Flettner rotor uses the principle of the Magnus eilect. According to
the Magnus principle, a cylindrical body rotating in a stream of air will
create a higher pressure on one side where the surface of the body rotates
against the direction of movement of the air, and a lower pressure diamet~
rically opposed to the high-pressure side. This Magnus effect produces a
force tending to move the rotating cylinder crosswise to the moving stream
of air.

By varying the speed of rotation of the cylinder, the value of the force
oroduced can likewise be varied. Rotors of this type can develop lift co-
efficients as high as 10, However, the induced drag can be quite high.

Furthermore, the rotating end plates shown in the referenced patent to mini-

mize end losses could present a serious mechanical problem and a possible

personnel hazard. Calculations indicate that the size of the rotor to produce

the total required force would be excessive. Rotation reversal would be
required for change in force direction, ¢nd no control is available for
power-off autorotation. TFigure 61 shows the concept.

"Yelicopter Anti-torque Device,'" Reference 4-3

This invention provides a helicopter anti-torque mechanism that uses a
secondary flow of air to create a cirecunlation abont an aft section of the

fuselage. The downwash “rum the main rotor induces an aerodynamic side force

which opposes the Lorgue reaction of the main rotor.

146

-G |




ACTIVE FORCE

—
i
- —

#—-—-——-—

Figure 61. Torque Control for Heli~opters, Pat. No. 2,452,355,
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Further, this invention uses the exhaust flow from the power plant to drive
the main rotor and, by controlling this flow, to vary the anti-torgque forces
produced by the mechanism of this invention.

It is felt that this device, in its present state, would not produce suf-
ficient thrust to compensate for the torque produced by the main rotor. It
may be considered advantageous to use this invention in conjunction with
another directional control system. TFigure 62 illustrates this concept.

"Helicopter," Reference u4-4

This patent uses a propeller to generate an air blast over the empen-
nage to control the vehicle in azimuth, pitch, and roll. Tue rudder control
would be used to negate the torque generated by th= main rotor.

This concept requires considereable power to counter the main rotor torque.

It is adversely affected by side or tail winds. Tigure 63 illustrates this
concept.

"Helicopter," Reference 4-5

This invention incorporates a high-rotational-speed rotor to minimize torque
to drive the rotor. This torque is reacted by shaping the fuselage to con=-
form with effective "angles of attack" to the rotor downwash. A sufficient
countertorgue may be aerodynamically imposed on it without the aid of other
anti-torque devices.

This concept comprouiises an optimum rotor design in favor of low torque.
It also compromises the fuselage shape for aerodynamic torque requirements.
Figure 64 illustrates this concept.

"Anti-Torque Means for Helicopters," Reference L-6

The anti-torque device incorporated in this invention consists of a vertical
cambered rudder-type surface. This airfoil is placed in the exit of an air
duct which is located within the fuselage. An air blower supplies air to
the duct; the air exits flowing around the airfoil, thus generating a lift/
force acting in an anti-torque direction.

This is a relatively inefficient method of transmitting and converting energy
into a usable force. Figure 65 illustrates this concept.

"Rotary-Wing Aircraft Tail Assembly and Controls," Reference 4-7

A large tail ring structure concentric with fore and aft axis of the fuselage
houses a propeller that drives air over a rudder which is integral with the
tail ring. The tail ring is actually the evmpennage structure and as such also
contains horizontal stabilizer surfaces. The propeller is driven by shaft
power. Figure 66 illustrates this concept.
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Figure 63, Helicopter, Pat. No. 3,029,048.
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Figure 64, Helicopter, Pat. No. 2,338,935,

151




"TS2EEN‘e "ON *9ed €sa93dOOTTSH JOF Sueey onbio3-~TIUY 69 oanSid

152

S -




Figure 66. Rotary Wing Aircraft Tail Assembly and Controls,
Pat. No. 3,138,349,
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Figure 66.Continued .
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Figure 67, Slipstream Deflector Assembly for Aircraft,
pat. No. 3,222,012,
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Continued

Figure 67,
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"Slipstream Deflector Assembly for Aircraft', Reference 4-8

This invention provides a mechanism to rotate an entire tail ring assembly
similar to that described in Patent No. 3,138,349 (Figure 66) but differing
from that patent by the use of multiple vanes instead of single surfaces.
This provides a greater range of control for the tall ring device. TFigure
67 illustrates this concept.

"Compound Helicopter with Shrouded Tail Propeller', Reference 4-9

This invention applies the tail rail ring for directional and anti-torque
control as it does in Patent No. 3,133,349 (Figure 66) for a compound heli-
copter. It differs from Figure 67 in the use of single vertical and horizon-
tal surfaces in lieu of cascades. Figure 68 illustrates this concept.

"Directional Control Assembly", Reference 4-10

This invention improves the assembly to facilitate maintenance characteris-
tics of the concept shown in Figure 69.

"Helicopter Steering Surface Control', Reference 4-11

This invention related to helicopters of the type in which vanes located in
the slipstream of a gondola-sustaining rotor are adjustable to intercept the
slipstream at different angles, thcreby imparting horizontal forces to the
gondola and allowing directional control of the helicopter while it is in
flight.

In order to offset the torque imparted to the gondola by the rotor, four
generally rectangular blades extend horizontally outward through the walls
of the gondola at equidistantly spaced points about its girth. The angle
of interception of the blades with the rotor slipstream may be adjusted to
offset changes in rotor torque.

Arranged outwardly of and in laterally spaced relation to the rectangular
blades are rectangular vanes that provide directional control for the heli-
copter when in hovering flight. Control in forward flight is questionable
and nonexistent in autorotation. Figure 70 illustrates this concept.

"Aircraft", Reference 4-12
This invention includes an arrangement of anti-torque surfaces or airfoils

located in the slipstream of the rotor to counteract the torque reaction
incident to the transmission of power from the fuselage to the rotor.

This is not considered a practicable concept. Figure 71 illustrates this
concept.
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Figure 68.

Compound Helicopter With Shrouded Tail Propeller,
Pat, No. 3,241,791,
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Figure 69. Directional Control Assembly, Pat. No. 3,260,482.
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Figure 69. Continued.




Figure 70, Helicopter Steering Surface Control, Pat. No. 2,&37,32&.
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Reference '+-13

"Helicopter with Automatic Anti-torque Vone,'

This invention balances the torgue of the miin rotor by n blowing airscrew
with axis substantially parallel with the longitwdinal axis of the aircraft
and adapted to blow air on to the vertical and horizontal tail :irfeils that
control the aircraft in pitch and yaw.

According to the invention, the amount of deflection of flaps on the verti-
cal tail necessary for balancing the reaction torque about the vertical axis
of the rotor i1s controlled automatically. Figure 72 illustrates this con-
cept.

"lelicopter Anti-torque Mechanism,'" Reference L-1k

The purpose of this invention is to counteract the rotor torque of a com-
pound type helicopter by mounting Valves/vanes in the wing and aft fuselage
directly in the slipstream of the rotor. The vanes are permanently fixed
in the iaterior envelope of the vehicle; the valves can be opened to form
an integral inclined surface with the vanes, thus creating a horizontal
component force from the slipstream. The valves when closed are flush with
the exterior surfaces of the vehicle.

Although this system could be satisfactory in powered hovering flight, it

would become inef{fective for directional control at low or zero speed auto-
rotation. The concept is shown in Figure 73.

"Aircraft Rotor Drive Means," Refersnce 4-15

A concentric rotating drum is suggested to force high-pressure air in a
manner to drive the main rotor. An adjustable vane in the downwash of the
main rotor compensates for rotor torque. The concept shown is oversimpli-
fied; it is doubtful that efficiencies attainable would make this scheme
attractive. The anti-torque detail is a duplicate of other extending vane
concepts which are positioned in the rotor downwash.

The main concept is addressed to total vehicle design. An illustration is
shown in Figure Th.
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Figure 72. Helicopter With Automatic Anti-torque Vane,
Patent No. 2,547,255,







Figure 74 .
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Aircraft Rotor Driving Means , Pat. No. 2,969,937 .
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5. HORIZONTAL-AXIS ROTARY-WING ATRFOILS

"Lifting Horizontal-Axis Rotating-Wing Aeronautical Systems', Reference 5-1

A comprehensive review of lifting devices in which an airfoil rotates about
a horizontal axis (parallel to the spanwise direction) was made by the
Aerophysics Company for USAAMRDL, This general group included paddle-
wheel- type rotors capable of generating a force in a static ambient air,
plus devices, such as Flettner rotors, in which a rotating device gener-
ates a force by interacting with air moving relative to it. Those of the
latter type were classified previously under "Immersed Aerodynamic Sur-
faces" 1in the preceding section of this appendix.

"Helicopter with Paddle-Wheel-Type Tail Rotor', Reference 5-2

The "paddle-wheel rotor'" consists of a number of airfoils arranged
parallel to the rotation axis, and equally spaced therefrom and from one
another. These airfoils are pivotally supported in wheel frames mounted
on the axle member, and by means of appropriate linkages are compelled to
oscillate about the spanwise axis.

This concept produces a thrust at right angles to the rotary axis in a
direction depending on the phasing of the oscillations and with a magni-
tude dependent on the rpm of its main axle. Figure 75 illustrates this
concept.

"Flapping Drive Rotor', Reference 5-3

The referenced memo discusses the feasibility of a forced-flapping-feather-
ing-drive rotor as a means of obtaining a torque-free rotor. A mathemati-

cal analysis is presented considering three different blade forms. Expressions
for total power requirements in the hovering condition are also derived.

The advantage of the flapping drive is the elimination of an anti-torque
device, resulting in:

1. A compact helicopter design . #
2. Low drag at high speed.
The disadvantages are: ﬂ

1. Heavier rotor blades capable of withstanding the high bending
stresses.
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2. Additional losses because of the mechanical transmission
of the flapping power from the engine to the blade.

This concept is not strictly within the scope of this study. It is listed
for completeness, its interesting characteristics, and the essential
rotating motions of the blades about the spanwise axis.
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6. FUTURE CONCEPTS

"Electromagnetic Rotation", Reference 6-1

This scheme is unusual in that a pure moment is generated without requiring

a mechanical reaction. This is accomplished by the interaction of a radial
electric current and an axial electromagnetic field. The field is generated
by a coll coaxial with a central electrode. The concept is shown in Figure

76, and analyzed in Reference 6-1, The radial current flows through an
electrolyte between a central electrode and a conducting cylindrical container.
Radial haffles are integrally connected to the container to transmit the
anti-torque moment. Use of materials with superconductive properties at room
temperature could make this concept quite attractive. Figure 77 illustrates
the inapplicability of Newton's third law to moving charges, as discussed in
Reference 6-2. 1Illustrating the order of magnitude of pressures and forces
obtainable through electromagnetic technology are the design pressures of 250
psi or 36,000 pounds per square foot obtainable in elect..omagnetic pumps under
development for use with liquid metals in space and nuclear power plants, as ‘
reported in Ref=rence 0-3.

"Acoustic Radiation Pressure'., Reference 6-L

Reflection of an acoustic sinusoidal t+ pressure variation from a solid re-

flector produces a steady posiﬁﬁve force (radiation pressure) on the

reflector, as shown in Figure 78. Very high pressures could be obtained

by the use of a resonant closed-loop system employing a liquid/air interface

as one of the reflecting surfaces. A conceptual schematic of this system i
is shown in Figure 79. !

"Controlled Three-Dimensional Vortex'", Reference 6-5 !

This cystem utilizes a controlled vortex to induce a low-pressure area on
one side of the vertical fin. The axis of the vortex is perpendicular to
the fin surface and is generated by peripheral jets.

The principle is based on meteorological low-pressure phenomena such as those
associated with tornadoes. Figure 20 illustrates the phenomenon.

A broad preliminary investigation reported in Reference 6-5 was conducted

to determine if it is feasible to create static 1ift in air wit.a small- 1
scale cyclonic vortex motion. A survey of the literature and 4 variety of L
experiments with simple equipment were conducted. On the basis of this
work, the following conclusions and results were obtained:

1. Cyclonic vortices were formed between paired suction druins with
counterrotating circular flow around them. +

2. It should be possible to derive some 1lift from an arrangement
like the preceding one, but magnitudes were not determined.
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ELECTROMAGNETIC INTERACTION FORCES
BETWEEN MOVING CHARGES

MOVING CHARGES

5 MAGNETIC FIELDS o

%\> (CT=

Av
/
REF 6-2:

Figure 77.

F.W, CONSTANT,
“THEORETICAL PHYSICS,"
PAGE 139

Electromagnetic Interactions Between Moving Charges.
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Figure 80. Static Lift by Vortex Motion.
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3. 1t did not appear feasible to induce a cyclonic vortex in =ir

over a single drain which was unenclosed (i.e., completely open
to the atmosphere).

L. The possibility that half-riag vortices may be created by means of
intermittent jets was explored.

5. The passage of the ends of a half-ring vortex across a surface
might induce a pressure differential on that surface.

"Gyroscopic Compound Precession"

Experimental evidence supports the theory that a steady torque about = :
stationary axis of a gyroscope can be generatel by compounding a nose-up

pitching velocity with an outward rolling velocity. A multi-gyro package
can be conctructed utilizing this principle for anti-torque purposes. It
would be self-contained, internally mounted and would need no interaction
with the surrouuding atmosphere. Figure 81 shows a schematic view of this
concept. A single gyroscope is shown four clarity. Theory of this concept
is related to that of a rising symmetrical top, given in Reference 6-6.
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STEADY TORQUE (T=FR) ABOUT FIXED AXIS
BY COMPOUND GYRO PRECESSION
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Figure 81. Steady Moment from Gyroscopic Compound Precession.

177




