
ARPA ORDER NO.: 189-1

CO

00

fit
R-563-ARPA

August 1971

The ISPL Language Specifications
R. M. Balzer

D D C
ntfaSEDDJE

itSEUITE
D

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA 90406

teprodund by
NATIONAL TECHNICAL
INFORMATION SERVICE

SpringfMd, V». 22»!

^

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

s~*i«s*»(HPs.!,wse»ssw(« mmmrfmiwif
HMMHMtn

DOCUMENT CONTROL DATA

I. ORIGINATING ACTIVITY

The Rand Corporation

la. REPORT SECURITY ClASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE

THE ISPL IÄNGÜACE SPECIFICATIONS

4. AUTHOR(S) (latt nom«. finl name, initial)

Balzer, R. M.

5. REPORT DATE

August 1971

6o. TOTAl NO. OF PAGES

49

6b. NO. OF REFS.

7. CONTRACT OR GRANT NO.

DAHC15 67 C 0141
ORIGINATORS REPOJT NO.

R-563-ARPA

9o. AVAIIABIIITY/UMITATION NOTICES

DDC~A

9b. SPONSORING AGENCY

tövanoed Research Projects Agency

10. ABSTRACT 11. KEY WORDS

AThe syntax and semantics of the Incremental
System Programming Language, designed for
use on its own computer, the ISPL machine
(described in R-562). Together the lan-
guage and the machine provide a complete
programming laboratory environment. The
syntax used to describe ISPL is APAREL
(described in SM-5611), which is similar
to BNF but allows Imbedded alternatives.
ISPL is incrementally compiled, resembles
PL/I, and allows hierarchical systems to
be built by providing capabilities for
scheduling core and central processing
unit resources, interrupt handling, and
Interprocess communication. Ports, the
new interprocess communication facility
(described in R-605), enables communication
between a program and the files, terminals,
physical devices, and monitor programs.
Extensive debugging facilities include
dynamic record verification of all pointers.
The language specifically includes the
facilities needed by the control program,
and the machine provides many of the fa-
cilities normally implemented in software.
The file system is described in R-603.

Computer Programming Languages
File Structure and Management
ISPL

■ ■

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand
orofARPA.

aswre— - i^-

9m

ARPA ORDER NO.: 189-1

R-563-ARPA

August 1971

The ISPL Language Specifications
R. M. Balzer

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

This report describes the Incremental System Programming Language

(ISPL), which was designed, together with the ISPL machine, to provide

a programming laboratory at Rand. ISPL Is an Incrementally compiled

system programming language containing facilities for scheduling, re-

source allocation, and interrupt handling. The report should be read

with its companion paper, R-562-ARPA, The ISPL Machine: Prinoiplea

of Operation, for a clear picture of the ISPL system. However, both

reports should be treated as specification documents only, as the sys-

tem has not yet been Implemented.

Work on ISPL was sponsored by the Department of Defense's Ad-

vanced Research Projects Agency (ARPA) as an Integral part of both

Rand's and the client's overall program to explore current, computer

technology. The present report should be of interest to those con-

cerned with computer languages and system design.

'^mmmmwmmvf^t

-v-

SUMMARY

The design of the ISPL language has been integrated with the

design of the machine on which it runs. Together, the machine and

the language comprise a complete system for producing a programming

laboratory. Facilities Incorporated into the language allow hier-

archical systems to be built by providing capabilities for scheduling

core and central processing unit resources, handling interrupts, and

interprocess communication. Ports, the interprocess communication

facility, enable communication between a program and files, terminals,

physical devices, and monitor programs. The language is incrementally

compiled and includes extensive debugging capabilities, such as dy-

namic record verification of all pointers.

.

-vll-

ACKNOWLEDGMENTS

Many of the Ideas contained herein arose during the ISPL study

group meetings. As such, It Is Impossible to Individually credit each

Idea, but my thanks to the members: Richard Blsbey, Rod Fredrlckson,

Bill Josephs, Larry Lewis, and Tom Wall.

My special thanks to Bill, who started the project with me and

helped crystallize many of the notions upon which the ISPL machine

and language are based.

WMWMPWMm«!)^^ i

-Ix-

CONTENTS

PREFACE ill

SUMMARY v

ACKNOWLEDGMENTS vll

Section
I. INTRODUCTION 1

II. ISPL SYNTAX 2
Identifiers 2
Expressions 2
Labels 2
Statements 3
Data Organization and Storage Classes 3
Declarations A

III. RECORDS AND PRIMITIVE DATA-TYPES 6
Records 6
Integer 7
Character 8
Pointer 9
Dis crete-Valued Variable 12
Range 13
Descriptors 14
List Structures 16
Stations , 18
Semaphore 18
Ports 20
Dynamic Storage Management 20

IV. STATEMENTS 22
PROCEDURE 22
DO 22
IF and ELSE 23
END 24
OUT 25
ENDOF 25
CALL 25
Assignment 26
Synchronization 27
CONNECT 27
DISCONNECT 28
SEND 29
RECEIVE 29
REQUEST 30
Dynamic Storage Allocation 30

: ,

-x-

AUTO
MAKE
PUSH and PULL
STEP
Station Assignment ..
INITIATE
TERMINATE
Process Suspension ..
RESUME
Initialization
PAUSE
DISPATCH
Real Core Allocation

REFERENCES

31
31
32
32
33
33
35
35
36
36
36
37
37

39

• UP mmmm.

-i-

I. INTRODUCTION

This report describes the syntax and semantics of the Incremental

System Programming Language (ISFL). The language was designed with

the machine on which It runs. The ISPL machine Is defined In a com-

panion report, R-562-ARPA, The ISPL Maahine: Prinoiplee of Operation

[1]. Both reports should be read together for a clear picture of the

total ISPL system, which was designed to provide a programming labora-

tory at Rand. However, both reports should be treated as specifica-

tion documents only, as the system has not yet been Implemented.

The syntax used to describe ISPL Is APAREL [2], which Is similar

to BNF [3] except that imbedded alternatives are allowed (separated

by '|' signs) and the ARBNO function represents one or more occurrences

of Its first argument separated by Its second argument.

The report Is divided Into two main sections. The first describes

all the data types and the legal operations upon them. The second pre-

sents each statement In the language and describes Its semantics.

^-^■^■■■■■■■■—■■iJiMiaaiii imuunMiifc-M

-2-

II. ISPL SYNTAX

IDENTIFIERS

Identifiers are composed of upper- and/or lower-case letters,

digits, and the three special characters •_' (underscore), '//• (number

sign), and 'Q* (at symbol). Identifiers must start with a letter or

special character; they may not contain any imbedded blanks; and they

must be between 1 and 32 characters long.

Format:

[identifier: -digit arbno(letter|special_character|digit,")]

[letter: A|B|C...Y|z|a|b|c...y|z]

[special_character: _|/il|@l

[digit: 0|l|2...8|9]

EXPRESSIONS

Expressions, as defined in PL/I, are scalar expressions [4]. They

are composed of identifiers and operators. During expression evalua-

tion, argument-passing, and assignment, only the following conversions

are implicitly done by ISPL:

Integer (4) ♦-»■ Integer (2) ■*-*' Integer (1)

Character ■♦-♦■ character varying

[operators: '+' | •-• | '*• | V |'+• | '^ | •-►, |' | i' I '«-T I 'l^' | W 1

'-t | V« | .<t I «V | •<•) «JS» | •-,-• | •-*• | «-^ |mod]

LABELS

Two kinds of names can be attached to a statement: statement

names and statement labels. A statement name is used to match levels

(the beginning and ending of compound statements). If a statement

name occurs with a level-ending statement, all unended levels up to

and including the named level are ended. Statement labels are used

as an operand in a RESUME statement (from within an ON-UNIT). State-

ment names (except those used to begin a procedure level) may be

ff%wwswwM|WJwii ^mmmtKmKmamimmmm^''^t»mmmmmwm^^^^^

-3-

reused as often as desired. Statement labels must be unique within a

compilation (defined below).

Format:

[statement_name: identifier ':']

[statement_label: '('Identifier1):']

STATEMENTS

Statements are sequences of keywords and expressions. There are

three kinds of statements: (1) simple statements, (2) level-beginning

statements, and (3) level-ending statements. Although statements are

Independent of line- or card-Image boundaries, statements extending

across such boundaries must have a CNTL character at the end of every

line that Is not the end of the statement. This Is done so that the

text editor knows where statements end without having to do a complete

parse of the Input. Statements may end with a semicolon. After a

semicolon, all text on a line Is a comment.

Format:

[Statement:

<8tatement_label\ simple__statement \ /

! / \ /' •' /coinment\

tatement_nameS /level_beglnnlng_statement\/ \| /
/ \|level_endlng_statement fl ^ l(i

DATA ORGANIZATION AND STORAGE CLASSES

ISPL provides two storage classes: STATIC, which Is allocated at

compile time for the entire life of the program; and BASED, which Is

explicitly CREATED and DESTROYED by the user. The elements of STATIC

storage are either the primitive data-types of ISPL (I.e., INTEGER,

CHARACTER string, SEMAPHORES, PORTS, etc.), or arrays of these data

types. However, the elements of BASED storage are aggregates of the

primitive data-types called RECORDS. A record's components may be any

of the primitive data-types, or arrays of these data types. They are

individually named and need not all be of the same primitive data-type.

,

-4-

The declared name of the record is called its RECORDJTYPE and is used

to Identify explicitly created Instances of this type of record. Since

the user may explicitly create several instances of a RECORDJTYPE, a

method exists to access each instance.

A POINTER is an ISPL primitive data-type that references specific

instances of RECORDJTYPES. Each time an Instance of a RECORDJTYPE is

created, a pointer is set to reference it. The syntax for this pointer-

referencing is:

pointer_variable ■♦ record_component

The pointer references a specific instance of a record__type and the

named component within that instance is accessed. The pointer refer-

encing a desired instance may itself be a component of an instance of

a record_type and so must be pointer-referenced:

pointer_varlable1 •*■ pointer_variable2 ■*■ record_component

Such pointer-referencing can be extended to any number of levels. One

instance of each RECORDJTYPE is called CURRENT and is the Instance

referenced If explicit pointer referencing is not used. In syntactic

descriptions throughout this report, the data name will have ^specif-

ication* appended to it whenever a data access can be either pointer-

referenced or not. Thus, a PORT that might be polnterjreferenced

appears in syntactic descriptions as:

port_speclfication

DECLARATIONS

All data items must be declared before being used, either explicitly

in a declaration statement or implicitly by their contextual usage.

Format:

(declare__statement: DECLARE arbno (itemjleclaration,1,')]

[itemjdeclaration: recordjname <array_Jbound8 RECORD|PARAMETER>|

variablejiame arrayjbounds primitive_date_type

scope INITIAL'('initial_value')' | >

-5-

[array_bounds: ' ('arbno(number<':'number^,',')') ' |]

[Scope: EXTERNAL|GLOBAL|INTERNAL|]

Each of the primltlve_data_types Is described In Sec. III.

Within a declare statement, all the itemjleclarations that are

prlmltlve_data_types and that occur after either a RECORD or a PARAMETER

list are components of that RECORD or PARAMETER list and may not have

a scope specified. All other ltem_declaratlons for primltive_data_types

are elements of STATIC storage and may have a scope specified. GLOBAL

defines a variable that is referenced by the same name as an EXTERNAL

variable in some other compilation. All such EXTERNAL references are

to the same, single, GLOBAL definition. INTERNAL means it is neither

GLOBAL nor EXTERNAL and is the default if scope is not explicitly

specified.

If an initial value is specified, when the variable is allocated,

it is assigned the specified value. If no initial value is specified,

the value UNINITIALIZED is assigned upon allocation; if this value is

used within a program, an UNINITIALIZEDJDATA program-error occurs.

' V ■

-6-

III. RECORDS AND PRIMITIVE DATA-TYPES

Each of the data objects in ISPL Is described below. The descrip-

tion Includes the declaration syntax and semantics, the allowed opera-

tions on the data type, and any associated pseudo-variables or built-in

functions. Pseudo-variable descriptions begin with "specifies," and

built-in-function descriptions begin with "returns."

RECORDS

Declaration Syntax and Semantics

Syntax:

variable<R£CORD | PARAMETER:»', • subelement_list

where subelement__li8t is a sequence of any of the other declarations

syntaxs given in this section. This sequence is ended either by the

appearance of another record specification or the end of the declara-

tion statement.

Semantics;

The variable name is declared to be a record and all the declara-

tions in the subeleinent_list are the elements that compose the record.

The amount of storage required for a record is the sum total of all the

storage required for each record element, plus whatever extra storage

is required for the proper alignments. If another declaration occurs

for the same record, it is assumed that the 8ubelement_list is appended

to the end of the already specified data.

The different types of records have the following interpretation:

o Record: Allocated and freed only through AUTO, CREATE, and

DESTROY commands. Current instance of record is maintained by

ISPL.

o Parameter: Used to specify the formal parameters to a procedure.

It is never allocated or freed, but current instance is main-

tained and updated by ISPL-procedure entry and exit routines.

Since arguments are passed by reference, each use of a parameter

■■ ■ HIBi

■ f -

-7-

causes an Indirect access through the current parameter list.

Using the parameter-list name, the parameters in a parameter

list can also be accessed as a one-dimensional array. By use

of the built-in array function, HIGH_BOUND, the number of param-

eters passed can be tested dynamically. Because each of the

parameters is actually a descriptor for the passed arguments,

any of the descriptor (see p. 15) built-in functions and pseudo-

variables, such as TYPE, can be used.

Operations

Records can be compared for equality and assigned a value, which

can be accessed. In each case, the operations are performed element by

element for the entire length of the record; no conversions are performed.

Pseudo-Variables and Built-in Functions

length(record-name)—Returns the length of the record in bytes.

INTEGER

Declaration Syntax and Semantics

Syntax:

variable INTEGER ^C «cl^lA:*')' |>

Semantioa:

Integers can be one, two, or four bytes long. If no length is

specified, two bytes are assumed. One-byte integers are always posi-

tive and consist only of a magnitude. They can be aligned on any byte.

Two- and four-byte integers have a sign and magnitude and are, respec-

tively, halfword and fullword aligned.

Operations

The arithmetic operators of •+', '-', '*', •/', and arithmetic

comparisons are legal and have their normal meaning. The value of

Integer variables can be accessed and assigned.

-- _., *-- ■■,■ ■■... -.^ ■':■'<. '■,.„...r,Vl-i,;,:r. :■,:;■ -;>■

-8-

Pseudo-Variables and Built-in Functions

None.

CHARACTER

Declaration Syntax and Semantics

Syntax:

variable CHARACTER '(' number ')' <VARYING |>

Semantias:

Character strings can be either fixed or varying. Both types al-

ways occupy the same (during an allocation) fixed amount of storage.

Varying strings occupy a varying portion of the same, fixed, maximum

amount of storage.

Operations

Concatenation (' 11*) can ^e used to add one string to the end of

another. The operators orCJ1), andCd'), and excluslve-orCS*) can

be used to do the blt-by-blt operation on the longer length of the two

strings (the shorter string Is extended with zero bits).

String comparison also uses the longest length of the two strings

(the shorter Is extended with blanks). The Individual characters are

compared on the basis of the collating sequence of the machine.

String assignment to variable-length strings will set the length

of the variable string to that of the assigned string value.

If the length of the new value is too large for either a fixed-

length string or a variable-length string. It Is assigned left-Justi-

fied and the excess Is truncated.

Assignment of a shorter string to a fixed-length string left-just-

ifies the value and pads It on the right with blanks.

Pseudo-Variables and Built-in Functions

Substr(string,I,J)—Specifies a descrlpcor for the 1th through

(I+j-l)£/i characters of the named string.

-9-

Index(stringl,8tring2,I,not_found_expre8sion)—Returns the posi-

tion of the first instance of string2 within stringl starting at posi-

tion I of stringl. If string2 does not occur at or after position I,

then the not_found_expression is evaluated and returned as the value

of the function. If not specified, its default value is zero. This

expression may be a statement that transfers control (out or end of

statement) to a higher level (before a value is returned).

length(character_string_8pecification)—Returns the current length

in bytes of the character string.

POINTER

Declaration Syntax and Semantics

Syntax:

variable POINTER

Semantics;

The named variable is declared to be of type pointer. It is full-

word aligned and occupies a fullword. The value of a pointer references

an address and is composed of four parts: a segment number, an offset

within that segment, a read/write capability, and a record_type. To

calculate the address referenced, the segment number is used as an

index to a segment table associated with the process being executed.

The entry in the segment table specifies the base address of the seg-

ment and its length. If the offset specified is larger than this length,

the reference is Illegal. The offset is added to the base to complete

the address calculation. The segment-table entry may indicate that the

specified segment Is not presently in core, in which case ISPL suspends

the process until the desired segment is available in core.

Each process has Its own segment table. It and all its descendent

tasks that are not themselves processes share the same segment table.

The read/write capability Is a discrete value from the read_write_

capability range consisting of the values read_only, read, readjwrite,

and modal. These values are given in decreasing order of restrictive-

ness; therefore, in following a pointer chain or path, the resulting

mmmmmm' juiwwfwiwy

-10-

read/wrlte capability Is the more restrictive of the accessing capa-

bility and the accessed capability, as for example, in the pointer

chain

Pl(modal)->P2(read_write)->P3(read_only)->

P4(read__write)->J

In this example, the values in parentheses indicate the read/write

capability of the pointers. Some implicit pointer is used to access

PI, and we assume its capability is modal. P2 is also accessed with

modal capability, P3 with the more restrictive read_wrlte capability,

P4 with the most restrictive read_only, and J with this same read_only

capability even though PA has read_write capability. Thus, protection

can be assured by starting with, or encountering, the proper capabil-

ities in a pointer chain or path.

There is one exception to these precedence relationships: when a

read capability encounters a read_write capability, it becomes a read_

write capability Thus, local read(only) protection can be given that,

via an appropriate pointer, leads to a read_write capability. This is

important for system blocks that must be protected but that lead to

writable blocks in a user's space.

To allow processes to restrict the read/write capability, the RE-

STRICT function (see p. 12) returns a pointer with the specified, more

restrictive read/write capability and with all other components the same.

To allow for finer protection, new segments can be created over-

laying existing ones and a restricted capability pointer created (via

RESTRICT) for that segment. All further references through the pointer,

or through pointers created from that pointer, can only be to data

within the newly created segment. These will have a read/write capa-

bility at least as restrictive as the original pointer.

The record_type field of a pointer contains an indication of the

prototype name of which the record pointed to is an Instance. This is

not an indication of the data type of the element being referenced but

of the record_type of the record being pointed to. Each declared

record is assigned a unique value from the range "record_type"; this

value is used to distinguish the record_type of the record instance

-11-

belng pointed to. The record_type component Is used at run time to

dynamically check the validity of the pointer reference. Whenever a

pointer is used to access a piece of data, the record_type component

of the pointer is compared with the record_type of the object speci-

fied in the source statement (if the object is a member of a record,

the record_type of this record is used). If the record_types do not

agree, a pointer_reference error occurs. If the record_type of a

pointer is "undefined," no record_type checking occurs. However, use

of such a pointer sets its record_type to the record_type of the object

specified in the source statement.

Operations

Pointers can be compared against each other for equality and in-

equality (this only compares the address portion of the pointers).

Their values can be accessed and assigned. Arithmetic operations can

be performed on their offsets through the OFFSET pseudo-variable. Such

arithmetic operations affect only the offset portion of the pointer

value and also set the record_type component of the pointer to "unde-

fined." Although arithmetic manipulation of pointer offset is allowed.

It should be strongly discouraged since it disables ISPL's built-in

pointer debugging capabilities. (Note that the protection mechanisms

in the system are unaffected by such offset manipulations.) A con-

scious attempt has been made to make such offset manipulations un-

necessary by Including the following capabilities:

o Next and previous operations on arrays (moving through con-
tiguously stored tables).

o Substr (manipulation part of a string).

o Move_blts (machine-representation defined type-conversions).

Pseudo-Variables and Built-in Functions

NULL—Returns a pointer to an invalid address. An attempt to

reference the object pointed to by a pointer with NULL as its value

causes a NULL_ACCESS program error.

SEGMENT_NUMBER (pointer)—Returns as an Integer the segment_number

portion of the specified pointer.

;*-■ .-, (■ (..,..,,.:..■...■■.

-12-

SEGMENTJLENGTH (pointer)—Returns as an Integer the length of the

segment referenced In the specified pointer.

OFFSET (pointer)—Specifies as an Integer the offset component of

the specified pointer.

CAPABILITY (pointer)—Returns the read_wrlte_capabillty value for

the specified pointer.

RECORDJTYPE (pointer)—Specifies the record_type of the specified

pointer.

NEW_SEGMENT (pointer, length)—Returns a pointer to the newly

created segment. The segment starts at the address referenced by the

specified pointer and extends the specified amount. If the length

specified Is large enough to extend out of the segment specified by

the pointer, a new segment will not be created and a null pointer will

be returned. The read/write capability of the returned pointer will

be the same as the read/write capability of the specified pointer. If

no pointer or a null pointer Is specified, the new segment does not

overlay any existing segment but is a separate entity.

RESTRICT (pointer, capability)—Returns a pointer with the same

components as the specified pointer except for the read/write capability,

which is the more restrictive of the pointer capability and the speci-

fied capability. The specified capability must be a value from the

read_wrlte_capabillty range.

DISCRETE-VALUED VARIABLE

Declaration Syntax and Semantics

Syntax:

variable range_name

Semantioe:

Discrete variables occupy one byte and are byte-aligned. They

can take on any of the symbolic values declared to be in the named

range.

 ■■ mwiBMWi—üitipi }t"7,W!^il^^^))^^^mm^!'^■ mmm^

-13-

Operatlona

Discrete variables can only be assigned or compared with other

discrete variables declared to have the same range. Greater than and

less than apply to the order In which the values of the range were

specified. In a do-case statement, the ordinal position of the value

of the discrete variable within Its range Is used as the value of the

selector function.

Pseudo-Variables and Built-in Functions

<nextIprevious>(varlable,end__of__range_exp)—Returns the <next|

prevlou8> value from the range of the discrete-valued variable. If

the <next|prevlous> value does not exist, the end_of_range expression

Is returned as the value of the function. If not specified, Its value

Is UNDEFINED. The expression may be a statement (OUT or ENDOF) that

transfers control to some higher level.

RANGE

Declaration Syntax and Semantics

Syntax:

variable RANGE '(' range^value^lst')'

where range_value_ll8t Is an arbitrary list of values (separated by

commas) declared to be in the named range.

Semantioe:

Each range is considered to be a unique data type and other vari-

ables can be declared to be of this type.

The values in a range are ordered by their declared position.

This ordering can be used in discrete-variable comparison and do-case

statements.

Every range has UNDEFINED as its lowest value. Discrete variables

can be set and tested for this value. If a do-case statement is executed

with an UNDEFINED value, the last (out_of_bounds) statement-group Is

selected.

-14-

As with records, new elements can be added to the end of a range

at any time through a declaration statement specifying the range name

and the new elements.

Operations

None.

Pseudo-Variables and Built-in Functions

<next|prevlous> (dlscrete_varlable,end_of_range_exp)—Returns the

<next|previous> value In tht. range of the discrete variable from the

current value of the discrete variable. If the <next|prevlous> value

does not 2xlst, the end_of_range_expression is evaluated and returned

as the value of the function. If not specified, its default value is

UNDEFINED. The end_of_range_expresslon may be a statement that trans-

fers control (OUT or ENDOF statement) to some higher level (before a

value is returned).

DESCRIPTORS

Declaration Syntax and Semantics

Syntax:

variable DESCRIPTOR < *(' < type | >

< V < length | > < V data_address | > | > ')• (>

or

variable ARRAY DESCRIPTOR '(' number ')•

Semantics:

The value of the variable will be a descriptor for some data value.

The descriptor consists of the type, length, and data address of the

value being described.

For array descriptors, the number specifies the number of dimen-

sions in the array described.

■

-15-

If the type, length, and/or data address are specified, the de-

scriptor can only be used for data of the declared attributes. In

these cases, ISPL can generate much more efficient code for the use

of the descriptor, especially if the type is specified. Such type-

specified descriptors become a type of indirect reference.

Operations

The values described by the descriptor can be accessed and assigned

through the descriptor and can involve any of the operators, pseudo-

variables, and built-in functions appropriate for that type of data.

Elements of the array described by an array descriptor are

accessed by preceding the desired element by:

array_descriptor (subscript_list) -►

Whenever the value of the descriptor itself is desired, rather

than the data it describes, the descriptor_value pseudo-variable must

be used.

Descriptor values can only be (1) assigned to other descriptors,

(2) passed as arguments, and (3) compared to other descriptor values

for equality and Inequality.

Pseudo-Variables and Built-in Functions

Descriptor_value (descriptor)—Specifies the value of the descrip-

tor rather than the data the descriptor describes. This pseudo-variable

is used whenever the descrlptor_value itself is to be manipulated.

Type (descriptor)—Specifies the data type being described. It is

a discrete value in the record_type range that is built up by ISPL from

the declared data types. The standard data types, such as integer,

character, varying, pointer, etc., are included in this range, as are

such user-defined types as declared ranges and records.

Length (descriptor)—Specifies the length as an integer of the data

item being described.

Data_address (descriptor)—Specifies the address as a pointer of

the data item being described.

-16-

Descriptor (pointer, current_length, max_length)—If maximum

length is unspecified, it is set to current length. This function

returns a descriptor composed of the arguments of the function.

Array_descriptor (pointer, length, low_bound; high_bound 1,

low_bound 2, highjbound 2, ..., low bound M, high bound M)—Returns

an array descriptor composed of the arguments of the function.

LIST STRUCTURES

Declaration Syntax and Semantics

Syntax:

Variable /primitive_data_type\ /^\ .(,domain specification.).
\record_name / ^^ / '

/WITH ^, (, arbno(gtation_naine ,',•)•)'/ STATIONS

Semantias:

The variable is declared as the Indicated type of list structure.

The type of all the elements of a list structure is the same and is

the primitive data-type or record_name specified. STACKS are list

structures in which elements are added (PUSHED) and removed (PULLED)

from the same position (STATION), called the TOP. QUEUES are list

structures in which elements are added at one STATION, called the

BOTTOM, and removed from another STATION, called the TOP. RINGS are

list structures in which elements can be added or removed BEFORE or

AFTER any STATION in the RING. The elements of STACKS and QUEUES are

linked from the TOP toward the other end, whereas the elements of

RINGS are linked in a circle in both the FORWARD and BACKWARD direc-

tions. All the elements of a list structure are obtained and returned

to a pool of elements, called a DOMAIN. The DOMAIN used for each list

structure is specified in its declaration. In addition to the fixed

named stations, list structures may have as many additional movable

(via STEP command) stations as desired. These arc specified either

-17-

by number (and accessed as an array) or by name. If not specified,

STACKS and QUEUES have one movable station and RINGS have two.

Operations

STACKS, QUEUES, and RINGS can only be operated on by the PUSH

and PULL operators. Their movable stations can be operated on by the

STEP operator and can be assigned to other stations within the same

list structure. Both fixed and movable stations can be compared with

each other for equality and inequality.

The stations within a list structure can also be used to access

the element or components of the element referenced by that station,

i.e., a station can be used as a "pointer." The syntax is

list_structure_speclflcation

,(, /number \ ,, A
\station_name/ \

J " ' /
element_or_component_name

If a particular station is not specified, the first movable station is

used.

Exa. pies: Given the declarations:

DECLARE SI INTEGER STACK (Domaln_l) WITH (movable_l,

movable_2) STATIONS,

Ql Rl QUEUE (DomalnJ.) WITH 2 STATIONS,

Rl RECORD, P POINTER, I INTEGER (A);

Then the following examples are legal:

Sl(movable_2) -> INTEGER

Ql (1) •*■ I same as Ql -► I

Ql (BOTTOM) •+ P ■> I

Pseudo-Variables and Built-in Functions

None.

■ .

-18-

STATIONS

Declaration Syntax and Semantics

Syntax:

variable <RING |> STATION

Semantics:

The declared station is a movable station. Ring stations can

only be used to reference elements of a RING structure, and nonring

stations can only be used to reference elements of STACK or QUEUE

structures. However, STACK or QUEUE structures do not necessarily

have to reference elements from a particular list structure or even

from the same DOMAIN.

Operations

Same as movable stations described in list structure, above.

Pseudo-Variables and Built-in Functions

None.

SEMAPHORE

Declaration Syntax and Semantics

Syntax:

. . . /SYNCHR0N0US\ CI?MA1JuriDC variable (i / SEMAPHORE

'('assignable^tem (\QUEUE/ ' ('domainjspecification') y ')'
//STACK \

where the STACK and QUEUE declarations are defined as above, and assign-

able^ tem is either any primitive data-type to which the assignment

operator can be applied or a RECORD of such items.

-19-

Semantias:

Semaphores are the basic mechanism for synchronizing processes,

tasks, and exclusive-execution blocks (EEBs). The V operation makes

the semaphore available and the F operation makes It unavailable.

If It Is already unavailable, the P operation causes the Issuer to

wait until the semaphore has been made available, and then makes It

unavailable. Scheduling, swapping. Ports, and Interrupts are all
t

based on semaphores.

The variable Is declared to be a semaphore. If It Is a SYNCHRO-

NOUS semaphore, then, when an unsuccessful P operation Is done on It,

the running EEB Is considered to have exited and any lower-priority

dlspatchable EEBs In the running task are dispatched. If the sema-

phore Is not SYNCHRONOUS, then an unsuccessful P Is not treated as an

exit and lower-priority dlspatchable EEBs are not dispatched until

such an exit occurs [1].

The semaphore can have data associated with It so that a success-

ful P also returns a piece of data, such as a track number, a comple-

tion code, or a pointer to a parameter_ll8t (see p. 20). A V operation

on such a semaphore must supply the data to be returned on a P. This

data must be stored; three methods are available: STACKS and QUEUES,

to provide, respectively, last-In flrst-out (LIFO) and flrst-ln first-

out (FIFO) buffering, and unbuffered, where only one data Item can be

held without a data overflow.

Operations

Only the P and V operations can be performed on semaphores. The

data format of these operations must be used with data semaphores.

Pseudo-Variables and Built-in Functions

None.

+
See Ref. 1, Sec. V for a fuller explanation.

-20-

PORTS

Declaration Syntax and Semantics

Syntax:

, ,. / SYNCHRONOUS\ „.__, variable (i) PORT

(,C \QUEUE) ,(,domaln_8peclflcation'))'\

where STACK and QUEUE declarations are defined as above.

Semantics:

Ports are a program's method of communicating with the outside

world—files, terminals, and Ports In other programs. Any number of

arguments can be passed or received through a Port. Although Ports

are a primitive data-type, they are composed of a pointer (which

references the other Port of the Interconnected pair) and a data sema-

phore, where the data Is a pointer to the argument_llst passed across

the Port. The data semaphore can be SYNCHRONOUS or not, and can be

buffered (either stacked or queued) or unbuffered.

Operations

Ports can be CONNECTED with files, terminals, or other Ports—and

can be DISCONNECTED from them. Arguments can be SENT and RECEIVED over

a Port and information can be REQUESTED.

Pseudo-Variables and Built-in Functions

None.

DYNAMIC STORAGE MANAGEMENT

Declaration Syntax and Semantics

-21-

Syntax:

variable (t^tS) '('number') ' \ DOMAIN/

Semantics:

An AREA Is a contiguous block of free storage from which RECORDS

are CREATED and to which they are returned when DESTROYED. A DOMAIN

is a contiguous block of free storage from which elements for list

structures are taken for PUSHING and to which they are returned when

FULLED. A DOMAIN is divided into equal-size blocks of free space,

which are used for the elements of the list structures obtained from

the DOMAIN. This size is the maximum size of any element obtained from

the DOMAIN.

For both AREAS and DOMAINS, the number specified is the length of

the AREA or DOMAIN, in bytes.

Operations

Records can be CREATED from and returned to (DESTROYED) an AREA.

List-structure elements can be FULLED from or FUSHED to a DOMAIN. Both

AREAS and DOMAINS can be INITIALIZED, which makes all space within them

available.

Pseudo-Variables and Built-in Functions

None.

i

•^w^^^fÄ?!

-22-

IV. STATEMENTS

PROCEDURE

Syntax:

PROCEDURE <'(• Parameter list name^'X /,,,function attribute\ i " " Ai " /
Semantics:

The PROCEDURE statement indicates that all statements within the

level started by the PROCEDURE statement are to be treated as a sub-

routine, invokable only through a CALL statement (or a function ref-

erence) ; this subroutine returns to the point of invocation upon

termination. The PROCEDURE statement must have a unique (within the

compilation) STATEMENT_NAME attached to it. It is invoked by specify-

ing this STATEMENT_NAME.

The first of the two optional specifications in the PROCEDURE

statement is the parameter specification, which specifies the name of

the formal parameter list to be used for the procedure. The second

option, if present, specifies the attributes of the value returned as

the result of the function. The function attributes have the same

format as declaration statements, except that storage class, scope,

and initial attributes are not specified. The value returned may be

any ISPL elementary data-type except semaphore. Port, area, or domain.

Upon entry to a procedure, the context is preserved and upon exit

it is restored. This context consists of:

o Entry point of procedure

o Return point from procedure

o Reference to current records upon entry to the procedure.

DO

Syntax:

/CASE expression \
DO ^CONTINUOUSLY)

\tterative_specification /

-23-

SemantioB:

The DO statement specifies iteration or selection of the state-

ments within the level started by the DO.

There are three types of DO statements:

1. DO CASE: The value of the expression is used to select one

statement group from the sequence of statement groups that

lexicographically follow the DO CASE statement. This group

is executed and, upon completion, control passes to the end

of the entire DO CASE level. A DO CASE level can only be

ended by an END statement, which specifies the label asso-

ciated with the DO CASE statement or the label of a level in

which the DO CASE statement is contained. Therefore, for

consistency, DO CASE statements must be labeled.

Each statement group is explicitly ended by an END state-

ment and the next statement group begins with the next statement.

The first statement group is number one. If the value, of

the expression is less than one or greater than the number of

statement groups within the DO CASE level, the last statement

group is executed.

2. DO CONTINUOUSLY: This statement is the basic iterative loop-

ing mechanism in the language and specifies (1) that the group

of statements in the level begun by the DO statement are to be

executed, and (2) that upon each completion of this level, the

group of statements should be re-executed. Presumably, there

is some mechanism within the level that will halt this iter-

ative execution (see p. 25).

3. ITERATIVE DO: This statement has the same syntax and seman-

tics as the PL/I iterative DO statement.

IF AND ELSE

Syntax:

IF expression THEN

and

ELSE

• ■

-24-

Semantiaa:

The IF statement starts a level, called the THEN level, which Is

explicitly ended by either an ELSE or an END statement. The ELSE state-

ment, if present, starts the ELSE level, which is explicitly ended by

an END statement. If the ELSE statement is labeled, it ends all lexi-

cographically preceding levels that have not been ended, up to ind in-

cluding the labeled level, which must be a THEN level.

The expression is evaluated and, if true, the THEN level is exe-

cuted and the ELSE level, if present, is skipped. If the expression

is false, th-> THEN level is skipped and the ELSE level, if present, is

executed.

END

Syntax:

END

Semantics;

The END statement ends one or more levels (started by PROCEDURE,

DO, or IF-THEN-ELSE statements). If it is unlabeled, it ends the lexi-

cographically closest preceding level that has not already been ended.

If a label is specified, all such unended levels are ended up to and

including the level with the specified label.

The action taken upon execution of an END statement depends upon

the type of level it ends. These actions are

1. PROCEDURE: Return to caller from procedure and restore caller's

context.

2. DO: The end of a DO CASE statement is a no-op. The end of a DO

CONTINUOUSLY or an ITERATIVE DO is a loop back to the beginning

of the level within the DO. In the case of an ITERATIVE DO,

it also increments and tests the control variable against the

limit.

3. IF: The end of an IF statement is treated as a no-op.

> ■: ,.J/i

^—gg—gggff^.^.,.;,,:,,-:,, :r-fr^0t!tyi,-.

-25-

OUT

Syntax:

OUT <label | >

Semxntios:

The OUT statement transfers control out of the current level; that

Is, control continues with the statement Immediately following the END

statement for the level being exited. An exception is a procedure

statement, for which control continues with the statement following the

Invocation of the procedure rather than with the statement following

the end of the procedure.

If a label is specified, then the OUT statement applies to that

level rather than to the current one. The specified level must be a

dynamic ancestor of the OUT statement.

ENDOF

Syntax:

ENDOF < label | >

SemantioB:

ENDOF behaves exactly as does OUT, except that the END statement

at the end of the specified level is executed. Thus, ENDOF applied to

a DO CONTINUOUSLY or an ITERATIVE DO causes looping.

CALL

Syntax:

nATT t(.fc t /,(,arbno(expression,l,,),),\ CALL statement_name (f Y » t * * \

SemantioB:

The CALL statement Invokes the procedure specified by the statement

name, passing any arguments specified. The arguments are all passed by

reference (expression arguments are passed by a reference to a temporary

variable containing the value of the expression).

■

.- .

-"■

-26-

After the named procedure has returned, execution continues with

the statement following the call.

ASSIGNMENT

Syntax:

Varlable_speclflcatlon *■ expression

Semantias:

Note the use of the left arrow (-*■) as the assignment operator.

The value of the expression Is assigned to the variable specified.

As noted In Sec. II, the only conversions Implicitly done by ISPL are

Integer (4) •*-*■ Integer (2) •*-*■ Integer (1)

character "*-♦' character varying

In ISPL, only the following Items can have a value ASSIGNED to

them:

o Integer,

o Character,

o Character varying,

o Pointer,

o Discrete-valued variables,

o Descriptors,

o Array descriptors,

o Stations,

o Ring stations,

o Records composed only of the above items.

The following items cannot have a value ASSIGNED to them;

o Range,

o Stack,

o Queue,

o Ring,

o Semaphore,

o Port,

-27-

o Area,

o Domain,

o Records with at least one Item from this list.

SYNCHRONIZATION

and

Syntax:

/IF\/P \ u ,cJ kJ /' 'variable speclflcatlon\/THEN\
(I >(WAIT) semaphore_speclflcatlon (I -y /\| /

\ SIGNAL/ semaPllore_aPecification \ f XP /

Semantias:

The P and V operators are Dljkstra's synchronization operators,

which operate uninterrupted [5]. V Increments the semaphore by one

and P waits until the semaphore Is positive and then decrements It by

one. V thus corresponds to releasing a semaphore and P corresponds to

obtaining one. Enclosing a P operation by the keywords IF and THEN

causes the P operation to be performed only If It will not cause a wait.

For the purposes of the enclosing IF statement, performing the P opera-

tion makes the 'If expression* TRUE and causes the THEN level to be

executed. Skipping the P operation makes the 'If expression* FALSE and

causes the THEN level to be skipped and the ELSE level, If present, to

be executed.

Data semaphores not only provide synchronization, but also attach

a piece of data to the semaphore released or obtained. In the V opera-

tion, this data Is supplied as the value of the specified expression;

in the P operation, the data Is assigned to the variable specified.

CONNECT

Syntax:

CONNECT port_type WITH port_type

\

-28-

where the syntax of port_type Is

(portjspedflcatlon
TERMINAL terminal
FILE file

atlon \
iinal_id \
i_naine /

Semantioa.

A message path is established between the specified Forts. Data

can then be passed in either direction along this path. The system

automatically schedules these interconnected processes on the basis of

availability of the resources required by the processes (including

data coming in through a path or sent out through a path having been

processed).

Forts can be terminals (logical devices through the IBM 1800),

files, or named Forts in a process1 program.

In ISFL, the interconnection of Forts provides a very general form

of co-routines. The co-routines can be multiply connected and are data-

directed; that is, rather than having explicit co-routine control com-

mands, the availability of any required data along a path is used to

coordinate and synchronize the co-routines.

The Fort facility is also the method by which programs can be con-

nected with terminals and/or files. As such, it is a form of Job control

and can be specified either (1) externally to, or (2) within a process.

A Fort is a primitive data-type composed of a pointer and a data

semaphore. The CONNECT command merely sets the two pointers to ref-

erence each other.

DISCONNECT

Syntax:

DISCONNECT portjspecification

SemmtioB:

The message path associated with the named Fort is broken (i.e.,

the pointers in the two interconnected Forts are set to NULL). If

the Fort is not connected, a run-time error results.

,;

-29-

SEND

Syntax:

SEND /^0(eXpre88l0n',',)N THROUGH port_specificatlon

Semantics:

Since the sending of a message Is really a form of co-routine

linkage, the method of passing the message will be the same as passing

arguments to a subroutine. Namely, the number and format of arguments

are established as a convention between the Ports being connected; argu-

ments are passed by reference.

The SEND operation Is equivalent to a V operation on the remote

Port's (the one the specified Port Is connected to) data semaphore,

passing the pointer to the argument list as data.

A run-time error results If a message Is sent through an uncon-

nected Port.

The DUMP option produces a complete symbolic dump of all variables

In the process and Its descendent processes. This Includes all In-

stances of based records, semaphores. Ports, etc. Also Included In

the DUMP Is a symbolic display of the Invocation chains and context of

each of the processes.

During the DUMP, all processes are suspended.

RECEIVE

Syntax:

<THEN\

Semantioe:

This statement causes a sent message to be received through the

named Port. If none Is available, the receiver waits until one Is.

Enclosing a RECEIVE operation by the keywords IF and THEN causes the

RECEIVE operation to be performed only If It will not cause a wait.

-30-

For the purposes of the enclosing IF statement, performing the RECEIVE

operation makes the 'If expression1 TRUE and causes the THEN level to

be executed. Skipping the RECEIVE operation makes the 'If expression'

FALSE and causes the THEN level to be skipped and the ELSE level. If

present, to be executed.

Since, as explained In the send command, a message consists of an

arbitrary number of arguments, the receiver of a message must have a

mechanism for manipulating each message. As with subroutine calls, a

formal parameter list Is used to associate actual arguments with formal

parameters on a positional basis.

The receive command Is equivalent to a P on the specified Port's

data semaphore, assigning the received pointer as the current Instance

of the named parameter list.

REQUEST

Syntax:

REQUEST arbno(expresslon,',') AS parameter_llst_name THROUGH

port_speclflcatlon

Semantiaa:

The specified arguments are sent through the specified Port and

the message sent back Is received In the named parameter_llst. It Is

assumed that the program on the other end of the Port uses the sent

arguments to select or specify the message returned.

DYNAMIC STORAGE ALLOCATION

Syntax:
/IN area_speclflcatlon\

CREATE recordjspeclficatlon (AS A SEGMENT > <i
and

DESTROY recordjspeclficatlon

Semantics:

The CREATE statement creates an Instance of the record specified.

In addition. If a pointer chain was used In the record specification.

'■'^^fW^^S^f^M^S'PI?'^^^''''' ->-••■ ■■-■-:■'"■■ .»'■'.•■ ' ■ ' ' .' ■ '■ •- ,v

-31-

then the rightmost pointer in the chain Is set to reference the new

Instance. Otherwise, the new Instance is made CURRENT.

If AS A SEGMENT is specified, then the created record is placed

in a new segment just large enough for it. Otherwise, the record is

created within the specified AREA or within a system-defined AREA if

none is specified.

In a DESTROY statement, the record specified is destroyed and the

pointer used to reference it, either explicitly in the pointer chain

of the record specification or the CURRENT pointer for the record, is

set to NULL. If the record destroyed was created AS A SEGMENT, the

segment is destroyed.

AUTO

Syntax:

AUTO arbno(record_name,',')

Semantiaa:

New instances of the named records are CREATED and made CURRENT.

Upon exit from the level in which the AUTO statement was issued, the

Instances are DESTROYED and the Instances that were CURRENT before

the AUTO statement are again made CURRENT.

MAKE

Syntax:

/record_specification CURRENT
MAKE

/record_speciflcation CURRENT \

Vproces8_yarlable_specification \INACTIVE//

Semantics:

The ACTIVE and INACTIVE options allow the monitor of a NEW pro-

cess (1) to RETRIEVE all core allocated to a process and temporarily

remove the process from the system, and (2) to restore it from an in-

active status [1].

The CURRENT option makes the specified instance the CURRENT one

for that record_type.

..■»>•«.■>

-32-

PUSH AND PULL

Syntax:

/<Jr) "• tJLtem\ ^|
fAND\ /PUSH llst_ltem\

where llstjLtem Is

/8tack_or_queue_8tructure_8pecification
(/BEFORE\ /ring structure speciflcatlon\ '(• /exPre88lon \
\\AFTER/ \rint_statlon_sFecification / \8tation_name/

SemantioB:

Either half of this operation can be omitted (the AND connective

is used only when both halves are present). If either half Is omitted,

the omitted half's operation Is performed on the FREE_ELEMENT_STACK In

the domain. The PULL or POP operation removes an element from the

specified list structure. For stacks and queues, the element Is speci-

fied by the TOP station. For rings, it must be explicitly specified

as the element either BEFORE or AFTER a particular station. If the

element Is PULLED from the FREE_ELEMENT_STACK, It Is Initialized as

specified by the element's declaration. The Indicated or Implied sta-

tion is updated to reference the next element or link (for rings) in

the list structure. If any other stations in the stack, queue, or ring

reference the PULLED one, they are set to NULL. The PUSH operation adds

the PULLED element to the specified list structure. For stacks, it is

added BEFORE the TOP station; for queues, it is added after the BOTTOM

station; and for rings, it is added, as explicitly specified, as the

element either BEFORE or AFTER a particular station. In each case, the

implied or explicit station is updated to reference the PUSHED element.

STEP

Syntax:

c-ntm ** J* /FORWARD \ STEP statlon_item ^BACKWAIU)/

■"■■■ ■ ■ ■ ' ■ ■• ■ • ..! , .

-33-

where station item Is

/s tack_or_queue_or_ring_structure_specification
Vstation_specificatlon

Semantioe:

If no station Is specified, the first movable station Is used.

The Indicated station Is updated to reference the next element In the

specified list structure In the Indicated direction (FORWARD Is Implied

If neither Is specified). Only rings may be stepped BACKWARD. If an

attempt Is made to STEP beyond the end of a stack or queue, the sta-

tion references NULL.

STATION ASSIGNMENT

Syntax:

statlon__ltem ♦• statlon_ltem

where statlonjttem Is defined above.

Semantioa:

The statlon_ltem specified on the left of the assignment arrow is

set equal to the statlon_ltem on the right. If the station specified

on the left is part of a list structure (i.e., not an independently

declared station), the station on the right must be a station in the

same list structure. On the right hand side, TOP may be specified as

the station_name for either STACKS or QUEUES, and BOTTOM may be spec-

ified as the station_name for QUEUES.

INITIATE

Syntax:

INITIATE statement name <T
/EXCLUSIVE \

arbno(expression,',')') '^ <, ' , 'INDEPENDENT/
,'NEW /

/','AS process_variable\ /'.'PRIORITY expression\ /'.'ENABLEX

■

-3A-

Semantios:

The INITIATE statement Invokes the named procedure and passes

parameters to It just as a call statement does. However, control

also logically proceeds with the statement following the INITIATE

statement, without waiting for the initiated procedure to return.

Thus, INITIATE produces a control "fork" or parallel path in the pro-

cess. The optional priority expression specifies the relative pri-

ority to be assigned to the initiated procedure.

The initiated procedure starts a separate control path, or fork.

This fork can have three separate relationships with the one that

Issued the. command. First, the initiated procedure can be an INDE-

PENDENT asynchronous fork sharing the addressing space with the

Initiator. Synchronization of the two forks is accomplished through

P and V operations on semaphores. In conflict situations where both

forks are able to run, the assigned priorities are used to establish

precedence. This corresponds to what most systems call multitasking

or multiprogramming and is the default If one of ehe other two options

Is not specified. This case corresponds to creating an INDEPENDENT

EXECUTION BLOCK (IEB) in the ISPL machine [1], and is called a TASK.

The second relationship Is established by the EXCLUSIVE option.

The initiated procedure represents a separate flow of control but can-

not logically be running at the same time as the Initiating control

flow. The two are mutually exclusive and once one starts to run the

other is not given control when the first waits for an asynchronous

event (semaphore). They are scheduled on a priority basis, as are

independent forks, but a lower-priority exclusive unit is given con-

trol only when the higher-priority one has issued a P (wait) operation

on a SYNCHRONOUS semaphore. This case corresponds to EEBs in the ISPL

machine and is used to implement ON-UNITS and synchronous co-routines

synchronized by semaphores and/or Ports. For an EEB to act as an

ON-UNIT, it must P the desired semaphore, which causes it to be sus-

pended until the Interrupt occurs.

The third relationship is established by the NEW option. This

creates a completely separate asynchronous process with its own sep-

arate address space. The process that issued the command must act as

-35-

the monitor for the initiated process, scheduling and DISPATCHING it,

allocating core to it, and handling its segment faults and monitor re-

quests. This option is used by the MAJOR MONITOR to create separate

processes for each user.

In each case, the end of the fork created is caused when the

initiated procedure returns.

TERMINATE

Syntax:

TERMINATE process_variable

Semantics:

The flow path (whether NEW, EXCLUSIVE, or INDEPENDENT) refer-

enced by the process variable is removed from the system, as are all

its descendent flow paths.

PROCESS SUSPENSION

Syntax:

/ENABLE ■Xi
fprocess_variable \

\ DISABLE/\EXCLUSIVESWITCHING / \ / \INDEPENDENT SWITCHING/

Semantics:

If a process variable is specified, the referenced EEB or IEB,

and all its descendent lEBs, are ENABLED or DISABLED. A DISABLED

block cannot be executed, whether or not it is ready to run and no

matter what its priority. ENABLING a block makes it eligible for

execution when it is ready to run and has a high enough priority.

DISABLING EXCLUSIVE SWITCHING prevents any EEBs within the issu-

ing IEB from interrupting the current EEB until EXCLUSIVE SWITCHING

is again ENABLED. DISABLING INDEPENDENT SWITCHING prevents any lEBs

See Ref. 1 for a fuller description of monitor responsibilities
and capabilities.

-36-

wlthln the Issuing process from Interrupting the current IEB until

INDEPENDENT SWITCHING Is again ENABLED.1"

RESUME

Syntax:

RESUME AT statement_label

Semantioe:

The EEB interrupted by t-.he running EEB Is resumed at the speci-

fied statement_Iabel when It Is next dispatched. The specified state-

ment_label must be In an active level In that EEB, I.e., the level In

which the statement_label occurs must be reachable from the point of

interruption via an OUT statement. Note that this statement does not

end the execution of the Interrupt block, but only affects where the

Interrupted block will be resumed.

INITIALIZATION

Syntax:

/domaln_8pacification \
INITIALIZE f area_speclflcatlon \

\record_8peclficatlon /

Semantioe:

When variables are allocated, they are Initialized either as

specified In the declaration of the variable or as the UNINITIALIZED

value If Initialization has not been specified. The Initialize state-

ment records allow areas and domains to be reinitialized as desired.

PAUSE

Syntax:

PAUSE

See Ref. 1 for a fuller explanation.

.■■:,v,,;:;.:■:;■■.■> -.■./■-v.- v- •;.■■■■ \\:.-'^ ,-'-,^^^^V

-37-

Semantioa:

The process issuing the PAUSE Is suspended (DISABLED) and the

user at a terminal, who is the dynamic ancestor of the process, Is

informed of the pause. The process can be restarted via the ENABLE

command.

This facility is Included in ISPL to allow users to plant "break-

points" in their programs as an aid to on-line debugging.

DISPATCH^

Syntax:

DISPATCH process_variable_specification

Semantics ;

Execution of the specified NEW process, which must have been INIT-

IATED by the issuing process, is resumed. Execution of the dispatcher

is suspended until the dispatched process becomes undispatchable or an

interrupt occurs for the dispatcher. DISPATCH is used by a monitor to

allocate execution to its subprocesses.

REAL CORE ALLOCATION

Syntax:

GIVE segment_nuni)er TO process_yariable_specification AS

segment_nunb er

and

RETRIEVE segmentjiumber

Semantios :

The real core corresponding to the specified segment is GIVEN to the

specified sübprocess as the specified segment in his addressing space; it

is GIVEN by the issuer (who must be the monitor of the subprocess) . The

DISPATCH and REAL CORE ALLOCATION are used by monitors to allo-
cate execution and core to their subprocesses. They correspond directly
to IS PL-machine primitive operations. See Ref. 1 for a fuller discussion.

" *- ■

-38-

contents of the subprocess* segment are automatically restored from

secondary storage by the ISPL machine. The given segment is marked

so that the real core can be RETRIEVED from the subprocess merely by

specifying the given segment number. If the contents of the subpro-

cess' segment have been modified since they were given, the RETRIEVE

operation causes the ISPL machine to automatically save the new con-

tents on secondary storage for use the next time the segment is given.

GIVE and RETRIEVE are used by a monitor to allocate real core Jflkits

subprocessets.

^»mmimmmmmmm ■■■-■■j:,,-■.■:. .. :■.'"■, ..-,■■.■■■.■-:.■■■ ■ 'SWS««?W»!ä^ewy■;,

-39-

REFERENCES

1.

2.

3.

Balzer, R. M., The ISPL Machine: Prinoiplea of Operation, The Rand
Corporation, R-562-ARPA, August 1971

Balzer, R. M., and D. J. Farber, "APAREL—A Parse-Request Language,"
Commnioatione of the ACM, Vol. 12, No. 11, November 1969, pp.
624-631.

Backus, J. W., "The Syntax and Semantics of the Proposed Interna-
tional Algebraic Language of the Zurich ACM-GAMM Conference,"
Proa. Intl. Conf. on Information Prooeaairtg, UNESCO, 1959, pp.
125-132.

IBM Syetem/3eOt PL/1 Reference Manual, IBM Corporation, Form C23-
8201, Poughkeepsie, N.Y., 1968.

Dijkstra, Edsger W., "The Structure of the 'THE' - Multiprogramming
System," Coimunioatione of the ACM, Vol. 11, No. 5, May 1968,
pp. 341-346.

