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A novel procedure for realizing certain driving-point impedances without the
use of transformers ig discussed, The circuits obtained imply an LC-lattice two-

port, and they are smaller, lighter, and have considerably fewer elements than
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Impedance Circuits Imbedding

1. INTRODUCTION

an LC-Lattice Two-Pori

In 1963, Fusachika Miyata {1963) showed that a positive real driving~point
function F(s) = N(s)/D(s), where D(s) is of the degree 5 and N{s) of the degree 4,

cculd be realized by the circuit shown in Figure 1.

This is possible, provided that

N(s) and D(s) satisfy some conditions beyond the mere necessity of wnaking up a
positive real function. The circuit shown needs only a few elements and contains

no transformers.

This paper originates from Miyata's, but it's aspect iz quite different. We
realized that the heart of Miyata's circuit was the iattice structure that is box-

framed in Figure 1. This lattice structure de-
rives from a driving-point impedance

F(s) » N(g)/D(s) that must satisfy certain condi-
tions, Augmenting the lattice two-port by some
elements allowed us to design similar circuits for
a family of driving-point functions F(8) in which
Miyata's circuit is one member. The design
procedure outlined in our discussion is extremely
simple and uses straightforward formulas.

{Received for publication 19 May 1971,
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Figure 1. Miyata Circuit
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2. A CODE NOTATION FOR POSITIVE REAL FUNCTIONS

A positive real function F(s) is the quotient of a numerator polynomial N{s)
and a denominator polynomial D(s):

=1
Iﬂls"‘ N T A Ns N

N(s
() = 58 - : (1)
D(s v v~1 .

3 +Dv-ls + ... +D18+D0

The necessary and sufficient conditions for F(s) to be yositive real {(pr) were
established by Otto Brune (1930). They are: The zerows of N(g) and D(s) cannot be
located in the right half of the complex s-plane. Any zeros on the imaginary jw
axis must be simple and have positive residues. The real component of the com~
plex function F(jw) must be Re F(jw) nonnegative for all tw.
It can easily be shown that if F(s) is pr the following statements must hold:
(1) The coefficients of N(s) and of D(8) must be positive.
(2) The degrees u and v in Eq. (1) are either equzl or lu - v! =1,
(3a) With the exception of No and Do. none of the coefficienis up to N“ and
1", is misaing; either N0 or Do may be missing, but not both, since we assume
that N(g) and D(s) have no common factor.
(3b) All coefficients with an evern subindex in the numerater and all coefficients
with an odd subindex in the denominator, or vice versa, may be missing.
Without causing any limitations we shall agree that:
{1) The polynomial D(s) is always assumed to be a normalized polynomial by
the fact that Dv =1,
(2) The polynomial N(s) is not assumed to be normalized if v = u £ 1. Thus
N  is a positive coefficient of any magnitude, including 1 of course. But when
v =n, and neither N, nor D, are zero, N{g) is also considered to be normalized
and we express the function 88 KF(s) with K a positive constant.
{3) We express the degrees of both polynomials by v and v £ 1.
in a paper that the author presented at the Third Hawaii international Con-
ference on System Sciences 1970 (Haase, 1970a), it was shown that conveniently

coded noiations can be used to express & pr function by a capital letter. a numerical

subindex, and eventually the exponent -1. The letter P is uzed for functions where
N(s) and D(s) are of the same degree, and the letter Q is used when the degrees
differ by one. In this paper we deal only with P and Q functions. The eubindex is
either an even or an odd integer and is related to the degrees of the polynomials.
The code notations for the functions of interest are listed in Table 1,

ko
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Table 1. Impedances F(s) = N(s)/D(s) Expressed by Function Codes

Code | Degree of Special Relation
Code | (Ns) | D(s) | Zero Coefficients| of Coefficients
P7 ‘; 4 None NO > Do' N4 = 1

-1 . -
P,, 4 4 None NO < Da, N4 1
P10 5 5 D, = 0

-1 -
P10 5 5 N0 =0
QIO 5 4 None
Q;; 4 5 None
Ql 1 6 5 NO =0

-1
Q 5 6 D.=0

11 [ 0

3. THE BIQUARTIC DRIVING-POINT FUNCTIONS OF TYPES P, AND l",,'1
Consgider the fun2tion
4 3 2
< s +NM " +R s”"+Ns+N
F(s) » N} 3 2 - (2)

Ti(s) gt +D383 + D232 + Dls + DO )

This function is of the type P, if NO > Do. or NO/D'O > 1. It is of the type P,}' 1y,
inversely, N, <D, or Ry/D, < 1. We have added a bar over the capital letters in
order to enhance the fact that not only D(s) but also N(s) is a normalized poly-
nomial, and the whole function is normalized by the fact that F (o) = 1. No matter
what other relations exist between the positive coefficients No, cves Ng, N4=1 and
Bgs «+es Dgs Dy = 1, it is evident that F(0) = Re F(j0) = Ry/Dg and Fw) =

Re F(jw) = 1. Since, due to the positive realness of F(s), Re F{jw) must be 2 C
for all positive and negative w, the curve representing ¥(jw) over the abscissa
scaled in 2= wz can never tresgpaas the Q-axis between 220 and Q= +w, In our
discussions we are especially interested in the case waere the curve Re F{ju)vs 9
has a minimum appearing at 90 and a magnitude Re F(jw 0), where

2

Qg *w,y . (3)

¥
-
o
£
2
b
his




£
$
o
5
e

o

MR

>

REAL Ttz

S o
~ 5

sl

4

20 .?‘ \:.‘7)‘ Pk

Soviza

RN e T S NI

hiawr i,

TR

UL M AL

R TorS

e -

F T ]

RorBy
A
I
8
Soo
ofi— 10, —i/a0 0~ B, 1 =80
Figure 2, Resl Component of F(jw) Figure 3. Rfial Component F(ju )

vs §i of a Pp* -type Function

v L2=wl of a Pnp-type Function

This case is shown in Figure 2 by curve (A), assuming that F(s) is of the type
P,. Likewise, Figure 3 shows the situation for a P,; type function. Let the

miniitnum be of the magnitude r, Then evidently the function

F(s) - r = (1 - ry LN(B) - rD@]/01 - ) “
D(s)

is still pr. This function is represented by curve (B) in Figures 2 and 3. ‘The
minimum is now located on the abscissa at 90. A function with the minimum of
Re F(ju) on the abscissa is referred to in the lit¢ rature as a "Minimum Resistance
Function'. Note that by extracting the factor (1-v} in Eq. (3) the numerator in the
fraction becomes a normalized polynomial. It has the same degree as D (s). It is
necessary to extract the factor, since we agreed to agsume thatina P7 or P; 1

function the numerator is a normalized polynomizl, In the next Section we discuss

the minimum function of types P, and P,; 1,

3.1 The Minimum Functions of Types B, and P7' 1 4nd Their Brune Realization

A recent paper of mine (Haase, 1970b) was extensively devoted to the
computational technique of the design of driving-
point impedances according to Brune (1970).
Applying this technique to a minimum function
of the type P, (or P;l, it does not maiter)
has the result shown in Figure 4. The real-
ized circuit consists of a Brune gection in
T form, terminated with an impedance z'F'(s),
where z' 15 & positive constant and P'(g) is a

Figure 4. Brune Section

-1
function of the type P,(or P."), The latter
ype Pjlor Py') € fatte Terminated with an Impe-
function is biquadratic, the quotient of two dance Function

7P
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normalized quadratic poiynomials. There is of course no resistance at the input,
since F (8) is assumed to be a minimum function (fur such a resistance we used
the letter symbol k in a previous paper (Haase, 1970b); in the present paper we
used a different letter in order to save k for another purpose {in Eq. (4) we used
the letter r).

The T of the Brune section in Figure 5 consists of the inductive impedances
ug and w 8 and a shunt branch with the impedance vs + x/ 5. Between the
constants v, v, and w the equation

o
pecsl

R

At}

& Yu+1fv+i/w=0 (5)
must hold. This is the case when
[\ ‘
B u=-w/n=vn-1), (6)
i
F with v and n positive constants. The shunt branch has the impedance
4
".'; 33' 82 + Qo
. B ve + x/8 x v —— (7)
S B 8 .
o
}: 1?: .
I when we define
s
b K
3 T ®)
3 é 0 v
1 Note that aince x and v are positive constants,
i st + Q, = 0 is.identical with 5 = tjw, . (9)
1l
b In Haase (1970b) we defined
L& !
; N(jwo) =R +i%5y {10)
and
D@wg) = Ry + §RSp » (11)

and we devised a computational routine that yields the real constants RN' SN' RD‘
and Spy from the coefficients of N(s) and D(s) respectively., We also showed that




] Ry + ju.S Rw - j0.S
Re Fju,) = N ?01‘\1, b " %°p

g R+ ju,Sy Ry - jugSy

- e (12)
3 - D

‘;L RD + QOSD

Since F(s) is a minimum function, the right side in Eq. 12 must be zero,

that is,
4
Evaluated at jwo, it is physically necesgsary that
R ~ RpS
] w s m Fuy « DR_TED a4)
> RD + QOSD
;
We found further that with

RngD- Qosd-Rn/u (15)
‘ : and
- . 8y = Ry - Sp/u (16)
4 N
E i the constant n in £q. 6) is
(3
3 (Rp/Sp - B, /S,)Sp
: +
g / g 0) 8
-
b with
% u
§ Vel (18)
following from Eq. (6). The constantz' is

CHATS

z' = l/nze. (19)

e

Vi,
(3

O PP
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In Eqs. (15) and (16), Rn' Sn, Rd' and Sd are the second-order evaluation
coefficients obtained when the first-order evaluation coefficients, RN' SN’ RD'
and SD have been computed and the routine computatxon is repeated and applied to
the remuinder polynomials le)/(s + Qo) and '15(3)/(5 +Q ) Thus, the constants
n, v, %, and 2' can be obtained by the straight-forward formulas of Egs. (17),

(18), (19), and (8).

The next step we have to perform is the realization of the terminating driving-

point function z'F'(s). This is discussed below.

3.2 The Realization of the Driving-Point Function 2'F(s)!

As has already beer mentioned, F'(s) is a biquadratic function of type Pgor
;l . Generally, Re F'(s) may have a minimum zata certam location on the
f1-axis, For the subclass of functions of types P, and P , it would not have
such 4 minimum. But let us first deviate for a moment from our subject and
congi:ler the realization of a minimum function P3 (or Pgl), and let us suppose
that the minimum is at QO again. Such a function would be

Fls) = —— 0 (20)
8" +D s+D

with
N,D, = (VN - Vb )% . 1)

It would have the realization shown in Figure 5. The constants n and v would be
positive, the terminating constant, realized by a resistor, would be

z= 1/n2 =Ny/Dy - (22)

Egs. (5) and (6) would hold.

T4

o ’ O

igure 5. Resistively Ter- Figure 6. Resistively Terminated
rl:‘ziga:ted Brune Sectign Brune Section with Negative Mutual
Inductance and Turn Ratio
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Congider now the very similar circuit shown in Figure 6. Here we assume
that the inductance v is negative. Eq. (5) postulates that one of the three in-
ductances u, v, and w is negative. Previously we assumed that either u or w was
negative (depending on the magnitude of the positive constant n). Why shouldn't v
be the negative inductance? We recognize immediately that if v is negative, then
n must also be negative to satisfy Eq. (6). Introducing

vE-V (232_)
and
n=-i, (23b)
2 2 —
F(s) = & +x(+ 1) +x/vn. (24)

sxs /vn + xn/v
A comparison with Eq. (20) then shows that
N,D, > (VN - VD2 , (25)
which proves that F(s) is not a minimum function.

Let us now consider the shunt branch in the circuit in Figure 6. It has the
impedance

2
-V8 + x[s = - 9-—;—-‘-2—0- R (26)

and its ''resonance frequency" is
s=+y =u, (27)
whereas for the circuit in Figure 6
8= jwo . (28)
It was Brune's idea to recognize that an inductance star built by the inductances

u, v, and w is equivalent to a perfectly coupled transformer having the turn ratio
n and the mutual inductance v. Thus, the circuit in Figure 5 is equivalent to the
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circuit shown in Figure 7. We obtain the picture of a circuit implying 2 negative
inductance v and a negative turn ratio n simply by interchanging the transformer

terminals on one side, as it is shown in Figure 8 where the circuit is equivalent
to that in Figure 6.

g

Fls)~ 2=1/n2

X
T°
Figure 7 . Circuit Equivalent Figure 8. Circuit Equivalent
to that in Figure 5 to that in Figure 6

Let us now go back to cur problem of realizing a driving-point impedance of
the type P7 (or P.;l). We are interested in a special clags of functions F(g) of this
type: We want the driving-point impedance F{s) to be realizable as shown in
Figure 9, a tandem of two Brune sections with a resistive termination.

The function
F(s) of Eq. (2) would have the termination

z=R,/D, . (29)

In the first section of Figure 9, n, and v, are positive; x, is also positive and

Q4" xl/v1 . (36)

In the second section, Vo and n, are negative., The constant Xy is positive and

4= -x2/v2 . (31)
It is evident that F(s) as presented in Eq. (2) cannot have coefficients of R(s)

and D(s) at random. A certain relationship between these coefficients is necessary,

which will be the subject of our discussicne in Section 4. The realization of F(s)

is special, insofar as there is no resistance between the two Brune sections and

2, obtained in Eqs. (30) and (31) is the same. There is, we may say, "a very

special" function F(s) that, in addition to the aforementioned properties of its
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realization, also has the property that -nyn, = 1. If this is the case, then the
circuit in Figure 9 is equivalent to the circuit in Figure 10; the two Brune sectiona
together then become equivalent to a lattice two-port consisting of two inductances
v, and v, and two capacitances 1/x_ and 1/x,. The tandem-lattice equivalence will

-1
be discussed in Section 5.

| | :
| f
| | | .
Fis)—1 ' | Qz=1/lony)
y ! X
| 3 | s '
ot T l T° |
~ T
} Section 1 i Section2 |
| v positive | vpnegative |
| n, " I ng " |
| * l ¢ l T
l [ | - :—-
v Ve |

Figure 9. Tandem of Two Brune Sections Realizing a
Driving-Point Function of the Type P7 or P, "1

7
A
a1 |1 )
WS |
1 Figure 10. Lattice Equivalent to
Flo)— “;v‘ z the Circuit in Figure 9
[ —
X}

4. THE REALIZATION OF THE SPECIAL P; TYPE FUNCTION F(s)

Assume that a driving-point impedance function is expressed in the form of
Eq. (2) and should be-realized as shown in Figure 9. From physically investigating
the circuit in this figure, let us now find the relation between the coefficients of
N(s) and D{s}.
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First assume thats = jwo. Then the ghunt impedance of the {irst Brune
section becomes zero, since x1/v1 = QO = woz. Since there is no resistance at
the input,
RpRy + 2 .SnS
Re Fijuy) = -ND__OND _,
e 0 Rrelig sy?
D oD
accecding to Eq. (12) .
As explained by Haase (1970b),
2
Ry = Qo - Qq'NZ + No (32)
2
Ry * 90 - Qoﬁ2+1'50 (33)
S = 2N, + N, (34)
Sp = ‘Qona -H'.‘:1 . (35)
Therefore,
4 2
RNRD + QOSHSD =L, + no [No + Do + N2D2 - N3D1 - ‘N,lbal + NO'DO
3 - ‘
+ 9, [Nsba - N2 DZ] {36)
+ Qoiﬂlbl - NZDO - NODZ] =0.
We are also able to cascade the circuit in Figure 9 in such a way that Brune
3ection 2 is to the left of section 1. Assume we have done this, and we now let
8 =, Let us denote
* *
Nwg) = Ry + wodn 37
* ¥
D(wo) * Ry t+ “’OSD o {(38)
Since the evaiuation prograra computes the constants R%. S% R R%, and Sg by
feeding in -Qo instead of + ©2 o a8 discussed by Haase (1970b), we may formally
nge the script
F(wo) = Re F(wo) + Im F(wo) . 130
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although .aterpreting "Re" as "real component" and "Im" as "imaginary component”
does not make much sense at the moment. Thus

* * * * * S
Flo.) = RN + Uoin; . RN + UOSN . R_I)_— wobg
v} R* ¥ R* +uw S* R* S*
D+ WsSEH D" “o"D D " Yo°n
% x % * * K
. R-NR!—.; - QOSﬁSI—) + wol R_Dsﬁ - RITISI:)_) ‘ 40)

Ry’ - Spy
Therefore

* X * _x
RpRe - Q SuS
ReF(uy) = NoD osg D

52- QOSB must be = 0 . (41)
Since
Ry = 9y + QN + R, (42)
Rg = @,% + 24D, + D, (43)
Sg= N, +§, 4)
Sp = 940, + D, . 45)
we obtain

x_ * * % 4 2 .
RyRg - QS5S5 = 04" + 9, [Ny + By + N,D, - NI, - N, D] + Rb,

- 2,°(R;D; - N, - By (46)
- 9,®8,D, - N,B,-R;Dy} =0.

The condition that Re F(jw) and Re F(ug} are both zero is satisfied when

¢, =N,D, - N,D, - B,B, =0 (47)

and

¢ =NDy ~ R, =D, =0 18)
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and when Qo is a duplex root of the quartic equation
4 2
QT+ Q (N2D2 + No + DO - Nabl - N1D3) + NODO =0, 49)

Therefore, the left side of Eq. (49) must be identical with

@+epi@-ap* =0 -20 2+t (50)
By comparigon

Qg =+4 \/E;B; . (51)
But then,

cy ¥ N2D2 - N3YD1 - N1D3 + (No + Do +2 NODO) =0 (52)

with either the + or the - sign.

Note that in Eqs. (47), (48), and (52) the letters N can be interchanged with
the letters D. Therefore, when these zero identities hold for F(s), they also hold
for 1/F(s).

We are now able to state:

A function F(s) presented in Eq. (2) is a special function of either the type
P, or the type P;l s if its coefficients Ni and Di satisfy Eqs. (47), (48), and (52).
Here iz a numerical example:

Assume coefficients listed in the following tabie:

i K, D,

0] 0.3 217/9
1] 5.12)21/y
2| 2.48 | 108/9
3] 2.56 52/9
41 1,001} 1

By Eq. {47) ¢y = 0. 0000003
By Eq. (48) c, = 0.0000000
By Eq. (51) 5= 1.0

By Eq. (52) C2 = -0, 0060003 (with + sign in Eq. (52)).
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Later we shall also need the result
-ny0, =VDy/N,

for which we obfain in this example n.n, = -2 % .

It can easily be shown that n, is the ratio “1/“'1 in the first and n, is the ratio
u2/w2 in the second Brune section in Figure 9. Since n; >0andn, <0, the
minug sign in Eq. (53)-becomes evident,

If we a‘m to the design of the circuit in Figure 9, it is necessary that we
start with a special function. Therefore, consider the content of the following
Section as a test.

4.1 Test Routine T

The purpose of the following routine computation is to test whether or nota
given function is a special one, and to compute §2 0 and the product nyn, {that
must be negative).

Given: the coefficients Ni andDi.O sig3s, N4 =z D4 =1

(1) Compute ¢, Eq. (47)
(2) Compute ¢, Eq. (52)
(3) Compute c, Eq, (48)
(4) Compute @, Eq. (51)
(5) Compute nn, Eq. (53).

4.2 Realization of the Circuit in Figure 9

We could design our circuit by applying twice the Brune procedure to the
function F(s) known by its coefficients and proved to be a special function. This,
however, would be inefficient. Instead let us synthesize the function F(s),
starting from the circuit.

First of all, since the shunt impedance of the first Brune section in Figure 9
is

. 2
v.8 +x1/s = v (s + Qo)/s .

1
and the shunt impedance of the second section is
v,8 +X,/8 = -v -9 ) s
2 2 2 Qs

we can (xpress v, and X in terms of v, and Xq» using & positive constant kl'
Then

VNS Y

A

S ES b A A st . 400, i~ S
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vy = =v, [k, (54)

Xy = x1/k1 . {55)

For convenience, we have redrawn the circuit, and present it with ‘hese notations
in Figure 11,

| |
i |
: ! l
—! | ! 2
Fls) l | 5 | gz- 1/(n,n,)
T *s |
A T
| Section1 | Section2 ;
I n, positive : n, negative
| no " | no " l
Figure 11. Tandem of Two Brune Secticns Realizing a
Driving-Point Function of the Type P, or P,-1
Analyzing the circuit yields the following results:
B iy
" nn, (56)
0 nn,
R, = -x,m,-122 0, + 2 x.(n,-1)2 =L
1 7™M o2 ¥ *o*1'Mp k
x,9
= '_l'lqg [nl(nz-l)2 - klnz(nl-l)z] (57)
Q Q (n,-1)2
0 0 1
N,=-—2+ =02 gk
2 n, nl 01 n] 0,

0 . 2q (58)
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2 i
x,n,“n,~1)
sl "2 -1)2
N3 e k1 +x1(n1 1)
2
x,[n,2(,-1)2 + k. (n -1) ]
s LS Uy . 1™ 59)
1
2
DO = -Qo nn, {60)
Q k. Q
= 0 10 0
D, =- - = - (k +1) (61)
1 vlnlnz vlnln2 vlnln2 1
_ nlno(n2-1)2
D2 = "Qon2+ 90“1 +—-E-l—
Q0 2
= rl- nl(nz-l) +k1{n1-n2) (62)
k n,n, -k
Dy = - =~ 45 =~ . (63)
vln1 n, 171 vln1 n,

Equations (56) and (60) show that Eqs. (51) and (53) are true., In Egs. (56) to (63)
we know the coefficients on the left side and we know the product n,n, and QO on
the right side. It would be tremendously complicated to solve this system of
eauations, since it is non-linear. Thus, we have fo look for another way, but we
can easily check our results with the system of these equations.

In Section 3.1 we presented the formulas of Egqs. (14) to (18) by which the
constants vy and n, can be determined. We are only intermediately interested in
the value of u, = vl(nl-l). The constant Xy is

X, ® VIQO . (64)

Similarly to Eq. (14),

. RS- Tash | S [Rp/Sh - Ry/sh

u = =53 ¥ T T K r %2, 52 (6v)
Ry - 2,5y Sp; (R~ /Sp - 2]
But by k, = Xg/%qy
n,-1 (=1’ - uln +1)
k,=n, —— - L ., (66)

*
n1-1 (n1+1)u -u(nl-l)

e AL AEBARA et A it Aot 4 N e e Y kAL Dt

P O NP PN A L e T
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All constants in the circuit Figure 11 are now known., We refer to this design
procedure as the "Realization Procedure Rl" and present it in compact form below.

4.3 Realization Procedure R)

Prerequisit:

The "Test Procedure T (Section 4. 1) showed that c,=c,=c4=0 and, therefore,
that the F(s) under investigation is a special function, The procedure also
presented Q2 0 and the product n,n,:

(1) Compute the evaluation coefficients RN, Sg. Rpy SD' RH’ Sﬁ-, RH’ and
Sa- for the N(s) and D(s) evaluated with - Qo (see Chapter 3 in ilrase (1970b) for
computational routine)

(2) Compute the evaluatiun coefficients R;. SE, R*D' and SE for the N(s)
and D(s) evaluated with +Qo

(3) Compute uy according to Eq. (15)
(4 Compute n, according to Eq. (17)
(5) Compute v, according to Eq. (18)
(6) Compute x, according to Eq. (64)
(1) Compute k; according to Eq. (66) .

4.4 Numerical Examples

Included in most of the main sections of this paper are numerical examples in
which we show the application of the theory discussed in this Section. The examples
are treated only ingofar as the content of the Section deals with the matter. All
examples were computed on the desk-top computer Programma 101 of the
Olivetti Underwood Corporation. The pertinent programs are available on request
from the author.

The numecerical values used in the examples are chosen to show the numerical
procedure rather than to represent technically reasonable circuits. For this reason
the reader should not be concerned when the sizes of the circuit elements obtained
are in some instances awkward.

Example 4. 4.1

Let a function F(s) have the coefficients that are listed in Storages 164 A and B
of the following program that computes the test values €4 Cg, and Cgs the value
QO' and the product n,n,. The computational program of Cerds 164 A and B
assumes that in Eq. (52) the + sign holds. Since all three test values are almost
zero, F(s) can be considered as a "special function, "
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Coefficients 'ﬁi Coefficients -N.i

s L= 0| 0°T066666 a0 ST = O] 0-T06E666 99

°o¥ 112023520000 D¢ Sw 11203520000 D9

g: 2| 191333333 e 8. 2} 141333333 @0

SH  3[34:0800000 E¢ 28 3[34:0800000 E9

“w o 4] 1.0000000 fo 41 10000000 F

Coefficients '51 Coefficients D

I =0 3°6400000 30 T~0) 3°8400000 d¢

Eg 1] 0+2539682 D¢ g8 1] 0c2539682 Do

Y~ 207266571428 ¢ o™ 2| 7+6571428 €0

§§ 3] 002579365 €9 §§ 3102579365 Eo

"o 41140000000 F0 wo 4] 140000000 Fo

¥ v

] v

c; ==0°0000003 A0 cy = =0+0000003 A0

eg= 000000011 Ao Cp = 245599977 A9

ey ==00000002 A0 €3 = =0+0000002 AQ

Qo= 027999998 A¢ Qg™ 047999998 Ao

nny ==6+0000018 Ad nny = = 60000018 Ao
Test with + sign in Test with - sign in

Eq. (52) Eq. (52)

Test Procedure T Applied to F(s) in Example 4.4.1

We have also devised a program that holds with the - sign in Eq. (52). Testing
the function with this program on Cards 165 A and B yields the same values for ¢ 1
and Cg» but here cy = -2.5599977 due to the wrong polarity of the sign in Eq. (52).

Since we have shown that a Type P7 function F(s) (N(s) and D{s) of degree 4
each, N < DO) is a special function, we can continue with the realization procedure
R1 For this purpose we have stored the coefficients of N(s) and D(s) on Evaluation
Cards 171 AA and 171 BB. The evaluation program yields evaluation coefficients
Ry Spp R, S, and Rp,, Sp Rd' S when N(s) and D(s) are evaluated for -2, =-0.8,
and Pva.luation coefficients RN SNand RD‘ Sthen N{(s) and Dis) are evaluated for
+ 90 = 0,8. The evaluation coefficients have been printed out on the following tapes
for the reader's convenience. The contiruation of the program following the

Suios

A gt
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Coefficients ﬁi 4 = QB BT
§ 10| 0rT06Ese6 e0 0 RS
§= 1{203526000 E¢ y
. 2| 11333333 ¢9 . v
5’35 3340800000 £ Ry = 106533332 e0
4] 140000200 e Sx= 476160900 E9
_ RS
Coefficients Di v
m 1=0| 3°6400000 €6 v
g s 1| 042539682 EO RE = 1046057142 e
3: 2| 7+6571328 f9 s;- 64603174 €0
gk 3] 002579365 F9
2 4 1+0000000 o0 ¥
v
Y
-QO- a0ef§ b Y
RS Y
v ¥
v v
Ry = -0:1600000 o nny =-46+0000018 cf
Sy = =6+9120000 E0 v
Ry = -024666667 9 ny = 290000009 ©9
Sy = 340800000 Fo n, ==30000007 B9
RS
v vy 491999997 co
. v x; = 3¢3599997 J¢
Rp=-16457142 0
Sp= 0+0476100 E0 ky = 70000004 A0
Rp = 6+0571428 fo *
Sp= 042579365 FO

Example 4.4. 1. Realization Procedure R1

svaluations computes the ratios 2y and By, the inductance vy the inverse capacitance
3 of the first shunt section, and the factor kl' These valueg determine the circuit
in Figure 11 where the terminating resistance is z = ﬁol 1'50 =1/ (nlnz)2 = 1/36.

Example 4.4.2

In this example we interchange the polynomials M(s) and D(g) with the poly-
nomials of example 4.4. 1. In the test procedure this exchange has the effect that
the product nyn, becomes inverse. All other results are unchanged.




S0 R i T

TR R o R

Y

o, e
R e

T

A

st

S Y

e e o oy

H
2

R

A

SR A G TR T b e TS

20

Coefficients N, Coefficients Ny
T=0] 3:6400000 d0 £ 1 =0[ 3+8400000 0
g3 1| 0°2539682 09 83 1| 0.2539682 D¢
e 2 | 796571428 e % 2] 7¢6571428 ¢
s 31 002579365 EO 58 3| 002579365 EO
“wo 4] 1+0000000 f0 4] 1+0000000 F0
Coefficients Dy Coefficients Dy
m Lw0 | 001066666 90 o 1= 0] 0°1066666 02
€3 1 [20+3520000 0 g9 1{20+3529900 09
85 2| 141333333 9 @ 2 141333333 0
5’;% 3 {34+0800000 EO gu 31340800000 €0
© 4| 1.0000000 F0 @S 4l 1.0000000 9
v v
v v
¢ " -0¢0000003 A¢ cy = «0e0000003 2%
cag = 040000011 RO cy ™ ~205599977 A®
€3 ™ ~0+0000002 A0 ey =000000002 A
g~ 047999998 A® Q = 047999998 A
nng = «01666664 A0 nyn, = ~01666668 A%
Teat with 4 sign in Test with - sign in

Eq. (52) Eq. (52)

Test Procedure T Applied to F(s) in Example 4.4.2

As the tape representing the realization procedure Rl shows, the evaluation
coefficients for evaluating N(s) are exchanged with the coefficients for evaluating
D(s) in example 4.4.1 and vice versa. The result iz evident. There is, however,
no simple relation of the previous results to the Ve Xp0 and kl obtained in the

present example.

The circuit realizing the driving-point impedance F(s) in example 4.4.2 (type
Py, Ny > DO‘ N{s) and D(s) both of degree 4) is the same as pictured in Figure 11.

The terminating resistance is z = NOIDO =1/ (nlnz)2 = 36.

35, 8,

o

e
RS Is wes

oA T
o

R

o

.

SNEL e

AR s

Ty

o

<

[ETRIR2. E NPUT- 7 T

ANt Aty o e

X ow o

[T

ARBLN BB b SOV A AP P AW Sr s T

P




i g T,

"y

N s 2
R
&

N

APl

PR Ton S

T

R

e

e
4

)

Sareos

T

i
bl
4
2
»

s
R
3

T

X

33 izt s ey

oy

R R o et R S

Coefficients ﬁt

1=0| 38499000 9
gg 1| 002539682 €0
o™ 2| 7.65714828 79
§§ 31 0+2579365 F9
®» o 41 140000000 e

Coefficients 31

mi=0| 001066666 €)
g 1203520900 Fo
@0 2| 141333333 ¢
gH 31340800000 FO
«“ o 4] 140000000 e
-Qo. «)e8 O

S

v

v

PNE 196457142 e

Sy = €<0476190 E¢

R, = 6006571428 ¢

Sy = 0+2579365 F9

RS
]
¥

Rp= =0+1600009 e

Sp -6+7120000 F0

Ry = -0¢4666667 F0

S¢g= 34+0800900 Fo

wn
*2Z ok
"

Kp =
s* =

nyRg =

® <
—
an

+Qo=0'a

106057142
046031721

196533332
4761606000

~0°1666664

1¢4999999
-0+33333238

5952378
04761902

1¢523808¢

Exarnple 4.4.2. Realization Procedure Rl

5. THE CIRCUIT EQUIVALENCE FOR A “VERY SPECIAL FUNCTION F(s)"
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A very special function F(s) of the type P, or P,;i has the tandem realization

shown in Figure 12. Compared with the circuit in Figure 11, the ratios are:

By

= -1/n.

(67)

(68)




! ' !
) | -vs/k |
?(s)-? ! x |3z

ks |
ot | ! T |

} Section II Section 2 }

1 =N i n,= =/n |

00- x/v

Figure 12. Brune Tandem of a "Very Special
Function F(s)"
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Figure 13. Lattice
Equivalent Circuit to
Figure 12

We will now show that the two sequential Brune sections are identicai with the

lattice section in Figure 13. If this is so, then both circuits have the same driving-

point function and the same termination. Two-poris are equivalent when they have

the same chain matrix.

The chain matrix derives from the primary-secondary two-port equations

A B
E =P (gl-Li(g),
C D
I1 = E2(f) -1, (i‘-) .

In the familiar matrix notation

(69)

(70)

(1)

we introduce a common denominator E. Then each of the symbols A,B,C,D, and

E represents a polynomizal in the matrix

A B

(72)

For the sake of briefness, we also refer to the matrix in Eq. (72) as the ABCD

madtrix.
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The constants in the circuit of Figure 12 are:

First Section Second Section
v, n v/k, -1/n

uy = -nw, = vin-1) u, = w2/n = v(n+1)/nk
X, =vR, =x x, = x/k .

With these constants, the matrix elements are:

First Section Second Section
A =g’n+Q (13) A, =8/n+Q
1 0 2 0
B = svﬂo(n-l)zin (74) B, = svfze(nﬂ)z/nk
C,=s/v (75) C, = ks/v
D, =g’/n+Q (76) M, =82n+
1 0 2 T
2 . 2
E1=QO+B (717) EZ’-QO 8

The matrix of the circuit in Figure 12 is obtained as the product

|
B, “A B, A, B, Ap B
12 I

Therefore, the elements of the product matrix are:

Q
4,2 %002 2 2
ap=st+s? 0 [(n+1)+k(n 1)]+rzo

v
Bp = s(e? + QO/n) 'k—Q [(n-b-l)2 + k(n-l)z]

1+k
vn

Cps® 8(s® + ngQ )

Q -
pp=st+s® 2 [ +xwlen] 5 0 ?

23

(18)

(79)

(80)

81)

(82)

(83)

(84)

(85)

(86)

(87)
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1553 24
g Ep=0,0 -6, (88)
L The lattice in Figure 13 has the impedances VaBs VB, xa/s. and xb/a in its
; branches. The elements of the ABCD matrix of the lattice are:
‘: X X, X X
Apvst+a [Gﬁ * v_b] v (89)
: }, b 8 ab
E
5 (v +v ix_x
. 2 a__bTab
3 By s [’ AT AA? ]"‘a %) (60) ¢
& a b’ a’b <
3 ¥
P X
: +% V. +v
- 5 2% b] a b ;
. C; =38 [s + (91) ‘
; L Vo TVl VY ;
b S
: 4, 2[% "b] >*b 5
D, »8 +s[—-+— + 22 (92) 3
3 L Vao bl YaYp :
‘ XaXb 4 3
A E, « 2D g%, (93) 3
r . L va'b
E -
1 The circuits in Figures 12 and 13 are supposed to be equivalent. Therefore, #
' “ Ap=A;, Bp=B;, .... Thecomparison of the elements in Eqs. (84) to (68) and .?g
'- i (89) to (42) yields the following set of equations that has the constants of the circuit -
’ S in Figure 12 on the left side and the impedance constants of the lattice on the right N
- 3 side: '3
g ;
. X E
‘ o2 -—-v“:: (84) '
; '{ X a 3
N
i x, +x
SO & b ;
- n, » ~———= (95) 2
{ 0 Ya + b \
3 .1 4+ k - va + vb ‘96) ?.
, va va.vb .
3 ¥
E X
4 Q v.x_ +v %
4 0|2 2l Ya%a T Vb’ :
{ ‘A e [(n +1) + k{n-1) ] = —vv. {87) £
ab 4
A A
|

£ 4D AP PSS e N

S0 e RS

L)

RAR
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v
= [(n+1)2 + k(n-l)z] xx, %, (98)

+
Vp*a Ve*b

VaVp

Q
e [0 + ko) ] = (99)

Our next problem is to express each of the unknowns v_, Vi, X, . and Xy in
terms of the known constants. TFor this purpose we introduce two terms, P and Q,
where each again can be expressed either in terms of the unknowns or in terms of
the constants:

/v V.
Ps= -;-"- [(mt-l)2 + k(n-l)z] = (xa + xb) x:.{: (100)

4. X
1+k *a b
Q= " . (101)
4vﬂo 4xaxb

By introducing the third term,

1
Kryl -, (102}
Faf,
We obtain
Pn K
Va = 2 {1 - K) 1- (1-K)(n + P/ZV) (103)
. -En K
PQU
ya = 3 - (l - K) (105)
PQ

x, =5~ (1K) {106)
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Although they are not imporiant, we present below the reverse formulas:

X X
b
Q, =+ |2 (107)
0 vavb
1 Xa + *p
ne — .22 (108)
.Qo va + vb

\[v X +\/v |2
k= (109)

vab - 4]V, axb

. {1+k%) \’vavaaxb (110)

xa.+xb

v

Note that when in Eqs. (88) to (93) the subindexes a and b are interchanged, the
formulas do not change; however, when subscripts a and b are interchanged in v,
and Vb only, or in X, and Xy, only, then AL and DL become exchanged whereas By,
and C; remain unchanged. This means that the lattice two-port is turned by
180 deg (input ar output are interchanged) and is thus equivalent to the tandem in
which Section 2 is followed by Section 1. Therefore,it would be completely
unimportant if in realizing a special function F(s) we first designed the T-section
with the negative constants n and v.
So far we did not further discuss the "very special function F(s)", but in
Section 6 we will show how such a function can be derived from a special function.
We refer to the design of the lattice network as "Reali. :tion Procedure R,",
and present compact instructions below.

5.1 Realization Procedure )i
Given: The constants n, v, x, and k of the circuit in Figure 12.

(1) Compute P according to Eq. (100)
(2) Compute Q according to Eq. (101)
{3) Compute X according to Eq. (102)
(4) Compute Yo and Y according to Eqs. (103) and {104)
(5) Compute %, and x, according to Egs. (105) and {106).
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5.2 Numerical Examples

Presented below are four numerical examples. In each example the constants
n, k, v, and x are known. With the Programma 101, constanis Var Vi ¥ao and Xy
of the circuit shown in Figure 13 (which is equivalent to the circuit in Figure 12)
are computed, We also pregent the intermediate results of P and K that are not
printed by the program.

3§ n= 122307690 490 gE n= 008125003 d9
oan™ k= 121666663 DO ouwm k=B8000955910 DO
§'§jv-6-8249999 o0 Ra v 4e2328149 00
WO x=5¢4699998 E0 NO< x= 343862516 E9
v ¥
P=29+4750009 b P= 03224201 00
K= 07566499 &9 K- 005936792 8¢
v v
va =19+0830544 b0 vy = 0:0482836 b0
v, = 4°8653741 B9 vy = 03485408 B89
Xg = 208690976 €9 xg = 60524023 <9
x, =20+7109023 €9 x, = 002055336 Co
Example 5.2.1 Example 5.2.2
L]
o
1Yy
3
g: ne= 007464789 40 g.ﬁ n= 123396226 00
o< k 195238088 D¢ cam k= 3121435267 Do
S@ v 005952378 ¢ Sha v 2403898237 20
B oxx (04261902 E9 WU x = 1905118586 E¢
v v
P> 142297374 b0 P= 71000002 ¢
K~ 0.4825428 B?¢ K= 027564499 BY
v v
Ve ® 104459391 b9 va = 193712¢15 b3
vy " 0-2004454 8¢ vy, = 3:9287389 B¢
Xy = 002545345 c¢ Xg ™ 046911142 ¢
X, = 027292550 ¢ x, = 4°9888857 0

Example 5.2.3 Example 5.2.4
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6. THE VERY SPECIAL DRIVING-POINT IMPEDANCE CIRCUIT

The circuit pictured in Figure 12 has the very special driving-point impedance
F(s), since the ratio n, of the second section is the negative inverse of the ratio
of the first section. At firat glance, this class of circuits looks very limited.
Howcver, we shall show in the following sections that a circuit realizing the very
special function can be obtained under certain circumstances from the more general
special ciass of special functions by transposing a capacitance or an inductance
from the circuit input to its output. By this transposition both ratios uy and u, are
changed, and when the transposed element hag the correct magnitude the two
ratios beconie negative inverse. The element to be transposed can be either a
series or a shunt element. In Tables 5 and 6 of a previous paper, Haase (1970b)
presented the formulas for computing the change of constants n, v, x, and z to
constants n‘, v, x', and z', after the transposition.

6.1 The Transposition of a Series Capacitance

Consider the circuit in Figure 14, part (@), The first section in this circuit is
determined by constants Vi Xq and n, > 0, and the second section by constants
Vos Xg» and ry < 0; all constants in the first section are positive, but with ny
negative in the second section, vy must also be negative, Due to the normalization
of the special function F(s), the termination resistance must be z = NO/D0 =
1/ (nlnz)z. The circuit has the geries impedance xO/B at itg input. This impedance
consists of a capacitance 1/x0. The driving-point impedance of the circuit
implements ¥(s), it is not F(s) itself. Since F(g) = N(s)/D(s), with N(s) and D(s)
normalized quartic polynomials, the driving-point impeda e

+4

n; >0 n; <0

Figure 14, Stepwise Tranuposition of a Series Capacitance X9
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N(s) sD(s) + xoN(s)
D) sD(s)

xO/s + is of the type P, .

Transposing the capacitance over the first section, we obtain the circuit shown
in part (b) of Figure 14. According to the formulas in Table 6 {upper part) of
Haase (1970b), we find that the coustants n;, v,, and x; change to

xl )
n! =n, —— (111
1 1 x1+x0 ’

*o
1 = ——
vy v1(1+x1) . (112)
and
*0
t = — .
3 x1(1+x1) . {113)
Note that
(114)

]
xl/v1 = x'llv1 =Q,.

The transposed inverse capacitance that now appears beiween the two sections

becomes

(115)

" xO
x0=x0(1+§—1-).

The transposition also influences constants vy and Xy of the second section and the
termination. In part (b) of Figure 14

2
vl =y [E] {116)
2 21 ¢ '
n
1
2
x! = x [i!-] (117
2 2] ! ’
L.q
and

n
z..”[_'l] ) (118)
™
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The ratic n, as wellas -Q = %, /v, = x'é/v; remain unchanged,

We now transpose the inverse capacitance i/xg over the second section, thus
obtaining the circuit in part (¢) of Figure 14. According to the same formulas as
applied before, the constants ng, vY, and x:,_' and the termination z" change to

n! = &—— (115)
2 14+A°
' "
vy =V, {1 + A), (120)
t = " L
x2 x2(1 +4), (121)
and
-2
n.n
2 = z[ ! ,2] : (122)
nyR,

In Eqs. (119). (120), and (121),

xll n| 2
0 1
Az — |—~= R (123)
x2 [nl]

Note also that
1 1
Xo[Vy = Xo[Vy = =Xy [V, = <R . (124)

The trangposed inverse capacitance becomes

«'
0

=xy (1+A). (125)
Equations {114) and (124) suggest the introduction of the positive constants
k, = xl/x2 = -v1/v2 (126)

and

k= x'l/:.;,' = -v;./v'2 ’ (1217)
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Then, by Eqs. (126) to (129),

1+n,n

12
¥ * K *1
causes
l’)ln2 = '1 »

xvvno,

and

zi =1,
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(128}

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

Equation (130) presents the magnitude of the capacitance that is necessary to
obtain the implied very special function F(s), for which n'ln; = n(-1/n) = -1, Since
by definition the product n,n, is negative, the transposed capacitance according to
Eq. (132) has the same polarity as Xge Since both have to be positive, it is neces-

sary that, according to the numerator in Eq. (130),

"n102>1.

{138)
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Equation (138) is a necessary condition for transposing a series capacitance from
the input of a circuit to its output. There is, however, no restriction imposed on
the other constants.

We said that the driving-point impedance of the circuit in Figure 14 ig of the
type P10' In order to be able to transpose the impedance xo/s with its magnitude
given by Eq. (130), xo/s must be subtracted from the tetal impedance xt/s available
in a certain driving-point impedance of the type PlO‘ This is a second necessary
condition. We have compiled the formulas for the transposition of a series
capacitance in Table 2.

Table 2. Formulas for the Transposition of a Series Capacitance 1/x0

Necessary Condition: —mnp>t = Ry/B, <1

>

xo/8 xy/3

o—i— Fis) 1 Fuw
Type P Vi o %y 2= “0,60 v,x =1

Ol

ki
1 n>0 , m<0
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6.2 Tho Trunsposition of a Shunt Ind::ctance (see also Figure 16;

Next suppose that we transpose a shunt inductance v ingtead of a series
capacitance 1/x0 over the two sections. To do this we have to use the formulas
presented in Table 5 (lower part) of Haase (1970b). The transposzition procedure

is very similar to that described in Section 6. 1, and we can immediately go to the
results presented in Table 3.

Table 3. Formulas for the Transposition of a Shunt Inductance Vo

Necessary Condition: —nyny<1 = No/bp >1

=
" | Fis) 1 Fu
Type Py — vo$ v ;‘ 2=Ry0, v l:l B 2'=1
1
0,20 , n; <0 n

v =t n(ng=1)° = kyndn, -1)°
kl 1+ n‘nz

o ™ = vomyNy

niing=17 +x,in 17

a1 = kngdn =11

v m XL i 0e-1) - Kty 1) 7
oF Ly (a=1F + k,in = 1)ng+1)

. [ ny(ny=1)" = knolm - 1)* ]'
YR U ngtng=1T F kyln, =10, H1)

x = vQ,

PR
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The magnitude of the inductance ‘o be transposed according to this fable .8

2 2
. - 11_ ’ nl(nz-l) - klnz(nl-l) (139)
0 k1 1+ nlt'l2 ’

and the transposed inductance is
'
Vg ® - Vghyh, . {140)

Since v:.) must be positive, vy must be positive. The numerator in Eq. (139) is
certainly positive since n, is negative. The denominator is positive and with it
also Yo if

-nyn, <1. (141)

This is the necessary first condition for the transposition of a shunt inductance.
The second necessary condition is that the admittance s/vO be available at the
input for the transposition. Adding adraittance xa/v0 to admittance £(s)/N(s) yields
a driving-point function of the type Plo-l' Thus it is necessary that admittance
s/vt in such a function is at least equal to the admittance s/v0 to be transpos..,

6.3 The Transposition of a Series Inductance

Consider the circuit in Figure 15 where we twice transpose the series im-
pedance i from the input in part @): first over the first section, obtaining the

" >0 "n <o
{e)

Figure 15, Stepwise Transposition of a Series Inductance Vo
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circuit in part {b), and then over the second gection, obtaining the circuit in part
(c). We apply the formulas in Table 5 (lower part) of Haase (1970b) .
Transposing Vo3 over the first section yields the constants

' Yo
nl = nl + Vi- R {142)
1
VyEVEY, (143)
and
'
xl = xl » (144)

vh o= — . {145)

In contrast to the discussions in Section 6. 1, constants vy and Xy and the termina-
tion z remain unchanged.
Transposition of v'{') yields

' vf)
n, =n, +v—2- . (146)
v'z = -v/k = Vs (147}
x, =x/k=x {148)
2 2’

and, therefore,

k= k1 . (149)

Alsc, the termination z remains unchanged. The formulas for the series inductance
transposition are comrpiled in Table 4.
The inductance to be transposed and causing n;né = -1 is

1+ n,n,
V, ®v.n, ———ut (150)
0 11 k1 nln2
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Table 4. Formulas for the Transposition of a Series Inductance Vo

Necessary Condition: —n;n,<t = No/Bp >1

b e 4

Yob o
P o] Pl

Vi, X
Yypo 0,0—' ‘k‘ ! l"ﬂo/bo
P E— "t>° . |\z<0 [ fn

v =y
x =y

: =1Ann,)

and the transposed inductance is

"y

Yo
Therefore, the first necessary condition is

'“1"2 <1,

(151)

(152)
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and the gecond necessary condition is that the total inductzance vy available at the
input for the transposition ig at least Vo Adding impedance V8 to impedance
F(s) = N(s)/D(s) yields a driving-point impedance of the type Qg

0.4 The Transposition of a Shunt Capacitance (see also Figure 17)

To transpose a shunt capacitance over the circuit, we have to apply the frr-
mulas presented in Table 5 (upper part) of Haase (1970b). The computational pro-
cedure ig gimilar to that discussed in Sectivn 6.3, so we can go immediately to the
presentation of Table 5.

Table 5. Formulas for the Transposition of a Shunt Capacitance 1/ Xq

Type Q";-'

T

o]

Necessory Condition: -nyn,>1 = No/By <1
>
Fis) *4 4] T
- xp/s
v ; * /B, v : x o %x
n>0, n <0 n

%y

4
| |

b 3 »

~4

& nflng1Ft +xn, -1

Ky 1+,
2o

™0y
n2in, =) + K n, -1

ning=11 = kyngln, ~1)°

_ oarn tI2ra ~172
'571,-[1\ '] [nz—l

o [ma]’
M la~-l

v
l/(m ”z)t
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The inverse capacitance to be transposed is

nlz(n -1)2 +k (nl-l)2
X0 * "fc_l ) T+nn, (153)

and the transposed inverse capacitance is
Xy ® - e, (154)

The results in Eqs. (153) and (154) are positive if
-a.n, > 1. (155)

This is the first necessary condition. The second necegsary condition ig that the
available admittance 8/ x, at the input is at least xO/ 8. Adding the admittance
/ 8 to the admittance D(s)/N(s) yields a driving-point impedance of the type QIO

6.5 The Realization Procedures Ay, ..., Ay

In this Section we compile the instructions for obtaining constants n, v, x, k,
and z' of the tandem circuit, implying the very special function F(s) when constants
ny > 0, vy and Xy and n, <0, kl’ and z are known, Subgsequently, this circuit
will be transformed into the lattice circuit, according to the instructions presented
in Section 5, 1.

6.5.1 PROCEDURE A.1

Known: n, > o, n, < 0, Vs Xp» and k1 of a circuit realizing a special function F{s)
in which NO/BO <1,

Requested: The transposition of a series capacitance llxo.

Procedure: According to the formulas on Table 2, compute the constants Xg xb.
n, k, v, and x in sequence.

6.5.2 PROCEDURE A2

Known: n, > 0, n, < 0, Ve Xp0 and k1 of a circuit realizing a special function ¥(s)
in which No/ﬁ0 > 1.

Requested: Tho transposition of a shunt inductance Vor

Procedure; According to the formulas in Table 3, compute the consiants Vo v;.'.
n, k, v, and x in sequence.
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6.5.3 PROCEDURE Ag

Known: n, >0, n, <0, Vi Xy k1 of a circuil realizing a gpecial function F(g) in
which NO/DO >1.,

Requested: The transposition of a series inductance Vo

Procedure: According to the formulas in Table 4, compute the constants Vo v R
n, k, 7, and x in sequence.

6.5.4 PROCEDURE A4

Known; n, > 0, n, <0, Vs Xy k1 of a circuit realizing a special function F(s) in
which 1‘10/130 <1,

Requesied: The transposition of a shunt capacitance l/xo.

Procedure: According to the formulas in Table 5, compute the constants Xg Xh
n, k, v, and x in gequence,

Numerical Examples

Below are four numerical examples in which we assume that constants n, > 0,
L, < 0, Vi Xqe and k1 are known. They are the constani: obtained in example 4.4, 1
for exampleg 6.5.5.1 and 6. 5. 5.4, and those obtained in example 4. 4,2 for
examples 6. 5. 5.2 and 6. 5.5, 3 as listed below.

First we shzll answer the questions:

(1) Can a capacitance be transposed ¢

(2) Can an inductance be transposed ?
The affirmative answer listed in the table depends on whether -nyn, is greater or
smaller than 1.

Examples 6.5.5.1and 6.5.5.2 and
6.5.5.4 6.5.5.3

Transposed

Element Capacitance Inductance
ny 2. 0000001 0. 49999599
ny ~3. 0000007 -0, 3333328
-nyn, 6. 0000018 0. 1666664
vy 4, 1999997 0.5952378
X, 3. 3599867 0.4761902
kl 7.0000004 1.5238088
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™

Using vrograms designed for the Programma 101 computer, we apply:

Procedure A1 to the constanis of Example 6.5, 5. 1,
Procedure A2 to the constants of Example 6.5,5.2,
Precedure AS to the constants of Example 6.5, 5. 8,
Procedure A4 to the constants of Example 6. 5. 5. 4.

The procedures yield the conetants n, k, v, and x of Figure 12, and inverse

capacitance x, that is to be transposed as a series capacitance in example 6.5.5.1

and as a shunt capacitance in example 6.5.5.4. The x;)
capacitance. In example 6.5.5.2, Vo is the shunt inductance to be transposed, and

in example 6.5.5.3, Yo is the series inductance to be t~ansposed. vf' is the trans-

posed inductance.

is the transposed

ng~ 240090001 ¢¢ ;“1- 044999999 do

& n, = =3:0000007 DO d n, = -003333328 00
o 2 g 2

°0 vy = 4°1999997 9 67 vy ™ 05952378 ¢

$9 x, = 303590997 €e 88 % = 04761902 €0

a0 ky = 740000004 F9 88k~ 1+5238088 f¢

1 4

]
xg= 201000001 A0
xt')u 126000041 A9

= 142307690 b9
= 11666663 30

n

b3

v = 6%3249999 c¢
x = 5v1599998 C¢

Exsmple 6,5.5.1 Procedure A;
See Figure 14

ng = 004999999 d9 @
My = ~003333323 00 =
anz QR
ONwy= 005952378 ¢ o~
(] [0 ]
g‘gxl- 04761902 €90 soug
S8k = 1-5238088 f0 a3

See Figure 16

ny= 20000001
ny = =3¢0000007
vy = 401999997
= 343599947
k, = 720000004

vo* 004761895 A¢
vp ™ 000793647 A0
k= 008125063 b0

V

a= 80+0955910 84
v = §2328149 ¢
x = 3+3862516 C¢

Example 6,5.3.2 Procedure A,

LR
0¢
e
X
£

g

y
Vo= 01467136 Ao
vi= 0~32%2830 MO
n o= 074564789 b4
kK = 15238088 %90

v = (05952378 <¢
x = 04761902 Co

Example 6,5.5.3 Procedure Aj
See Figure 15

= 651599195
x' = 121354995

n o= 123394226
k = 311435247
v = 243398237
x = 195118586

See Figure 17

v
Ao
X

v
be
80
cd
Co

Example 6.5.5.4 Procedure 4,
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Figure 16, Stepwise Transposition of a Shunt Inductance Vo
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n>0 ny <0
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Figure 17. Stepwise Transposition of a Shunt Capacitance Xy
7. THE DECOMPOSITIONS OF THE IMPEDANCE FUNCTIONS OF THE TYPES
-1 -1
Fio * Pio- Q1o AND Qg
The Decomposition of F(s) of the Type Pio
The polynomials of F(s) are
5
_ i
N(s) = &h Nis (156)
and
) i
D(s) = ;21 Ds’, Dy = 1. (157)
=z
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F{g) can be decomposed as

F(s) = RF(s) + xt/s , (158)
where

= Ny/D,, (159)

K= N5 , {160)

t (161)

and F(s) ie a function of the type P,
The coefficients of F(s) are

N.,,-N D1+?

N, = —itd (162)
i Ns 1
and
D1 =Dy (163)

Wi{th the coeflicients of F(s} known, the coefficienis of F(s) and x, and K can be
computed. A ecircuit representation of the decomposition, to which we shall refer
as decomposition procedure Del, {s shown in Figure 18. In this circuit the factor K
is presented as an ideal transformer with the turn ratio ¢y K:1. This transformer
will not appear in the realization. !t has the meaning that all impedances on its
right side must be multiplied by K when the transformer is omitted.

x, /s ~Kpo/s

Fis)— “ﬂﬁﬂ = f éhﬁ_—’j Fls), No/Do<y

~type Functjon

Figure 18. Transpositionina P 10
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3
3 The Decomposition of F(g) of the Type Q10
&
; The polynomials of F(s) are
3 N(s) =) N (164)
4 i=0 :
X and
A 4
D(s) =E D;s', D, = 1. (165)
i=0
i
g F(8) can be decomposed asg
F(s) = KF{s) +v,5, (166)
where
b =
4 v, =Ng, (167)
1 =N, -
3 K =N, - ND,, (168)
and F(s) is a function of the type P, . (i69)
The coefficients of ¥(g) are
N. - N.D
! 4~ V53
and
Di = Di . (171)

The circuit re.resenting the decomposition, which we refer to as decomposition
procedure Le3, is shown in Figure 19.

vi$ vi8 -¥K Vol

\/ﬁr vos
\-———v——I - - -
Fla)— llg ilﬂs) = "’?f\" ;l‘{ ‘l Fls), No/ Do>1
]

o

Figure 19. Transposition in a Qlo—type Function
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The Decomposition of ¥(a) of the Type P;é

The polynomials of F(s) are

S
N = Y Nyt

i=1

and
5
. Z i p .
D(S) = Dis ’ D5 lo
i=0

F(8) can be decomposed as
F(s) = vts(BKF(s), with is equivalent to the script
1/F(s) = llv?s + 1/K¥(a) .

In Eq. (173),

v, = I\JI/D0 .

t

K= NS R
and ¥(s) is a function of the type P, .
The coefficients of F(s) are

N:E_ii_l.
i N5

and

D. = NiDiyy -
i N,

NivoPq

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

The circuit repregenting the decomposition, which we refer to ag decomposition

procedure De2, is shown in Figure 20.
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; Figure 20. Transposition in a Pm’l"type Function
:
The Decomposition of F(s) of the Type Qié
The polynomials of F(s) are
&
i
N(s) D\ Ns (180)
i=0
and
D(s) = E Disi, Dg=1. (181)
f*(s) can be decomposed as
F(s) = xt/s®K'F(s), which is equivalent to ‘he seript
1/F{s) = s/xt + 1/KF(s) {(182)
where
L ]
* =Ny, (183)
N 42
K= SN ¢ (184)
N4I'J4 N3
ard F(s) ic a function of the type P,;l . (185)
The coefficients of F(s) are
DD~ Niey (186)
i N4D4 - N3
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. b
B, = 5 (187)

The circuit for the decomposition, which we refer to as decomposition procedure
De4, is shown in Figure 21,

ST

Figure 21. Transposition in a Qm'l-type Function

=x/e

Y

Flay—~

i SR
e Godondk ol

In our attempted circuit realization, a part of impedance xt/ 8 in the decomposi-
tion Del and a part of impedance v,8 in decomposition Ded had to be trangposed over
the circuit in order to make F(s) a very special function. In decompositions De?
and Ded, a part of admittance 1/v,8 and admittance s/x,, respectfully, had to be
transposed for the same reason. These parts must be of such magnitude that the
remaining impedance or admittance, respectively, remains positive. Also, in
decompositions Del and De4, where the transposed impedance is of a capacitive
nature, function ¥(s) must be type P,; 1; in decompositions De2 and De3, where the
transposed impedance is of an inductive nature, function F{s) must be type P7.

We are able, according to our discussions in Section 6, to determine the
magnitude of the element to be transposed. The eiement iz xo/ s in decompositions
Del and De4 and it is Vos in decompositions De2 and De3. In general the element
has to be taken to the left side of the ideal transformer in Figures 18, 19, 20, and
21. Therefore, the remaining element is:

in decompositicn Del, xe/s = x/s - Kxo/s (188)
in decomposition De2, s/ve * s/vt - s/K’»’0 {189)
in decompositvin Ded, v 8 =v8 « Kv,s (190)
in decomposition ¢, ﬁx/xe = 5/x, = s/Kx0 . (191)

All differences have to be positive,
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7.1 Decomposition Procedures Del, .... Ded

The results of the foregoing are compiled in Table 6. The split of a function
F(s), known by the coefficients of N{s) and D(s) and being of the types PIO' Pul).
QIO' or Q, 10. into an inductive or capacitive component and a special function
F(s) multiplied with an impedance factor K is a routine procedure. We refer to
these procedure as Del,..., De4, depending on what type of the aforementicned
sequential functions is applied. Table 6 presents the formulas to compute the
magnitude of v,8 or xt/ 8, the positive impedance facior K, and the coefficients of
F(s). The table also presents the necessary condition for “n Ny, which can also be
expressed by the ratio NO/DO. In the last column of Table 6 is the magnitude of
the input element that is left when the element xO/s or v,s to be transposed is sub-
tracted from the available element xt/ 8 or v,s. Procedure Del is followed by
procedure Al’ De2 by Az. and so forth. In more detail the instructions of the
procedure are as follows:

7.1.1 DECOMPOSITION PROCEDURE Del APPLIED TO A FUNCTION
OF THE TYPE 1"‘1 0

Known: The coefficients No. cees N5 and Dl' ey DS‘ Make sure that D5 = 1.
If not, divide all cozfficients of N(g) and D(g) by Dg.

Compute: Xy K, R, j» and D according to formulas in Table 6, first row.

Test: The necessary condition 1‘10/'150 <1.

Continue with procedure Al' Section 6.5. 1.

Compute Xg T X, = Kx0 .

For Circuit Realization, see circuit in Figure 18,

Table 6, Decomposition Components

Pr——
Function impedonce Coefficients No ﬂ
Tyoe Decomposition UL B N B L Aty
“ -
Po {00t | ¥ 4kFmfumiel  kmw,  [EHERE o >3 | <1f3emn=Kno
_ N Nie N0y ~WypaD Ko
P {0e2 | v @xFi |v= 52 Ke= Ny —‘N-,-' s el Al Kl
- =i
Qo | 063 | o + KFi)juw= Ny | K= N,~H,0; ;‘::—m—gf 1] <l {>1 [wsw~Kyn
} # Nad | M- N, M Rarko
00 | 0od| T DkFfumne Ko ute | =R N >1 < ¥ en
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7.1.2 DECOMPOSITION PROCEDURE De2 APPLIED TO A FUNCTION OF
THE TYPE p-l
10

Known: The coefficients Nl‘ cess N5. and DO’ ooy D5. Be sure that D5 =1,
If not, divide all coefficients of N{s) and D(s) by Dyg.

Compute: v,, K, Ni' and ﬁi according to the formulas in Table 6, second row.
Tegt: The necessary condition 'ﬁO/DO <1

Continue with procedure A?, Section 6.5.2.

Compute v = Kv,_vo/ Kvy - v,) .

For Circuit Realization see Figure 20.

7.1.3 DECOMPOSITION PROCEDURE De3 APPLIED TO A FUNCTION OF
THE TYPE Q1 9

Known: The coefficients NO‘ veos N5’ and DO" cess D4. Be sure that D4 = 1.
If not, divide all coefficients of N(s) and D(s) by D 4

Compute: v v K Ni' and Di according to the formulas in the third row of Table 6.
Test: The iecessary condition Ny/Dy > 1.
Continue with procedure A3, Section 6.5. 3.

Compute: v_ = v, - Kvo .

e
For Circuit Realization see Figure 19.

7.1.4 DECOMPOSITION PROCEDURE De4 APPLIED 10O A FUNCTION OF
THE TYPE Q]

Known: The coefficients NO' cees N4, and DO' vees DS‘ Be sure that D5 =1,
1f not, divide all coefficients of N(s} and D(s} by D;.

Compute: x,, K, N{, and Bi according to the formulas in the fourth row of Table 6.
Test: The necessary condition NOIDO > L

Continue with procedur: & 4¢ Section 6.5.4.

Compute: x = thxol (Kixy = %)

For Circuit Realization see Figure 21,

7.2 Numerical Examples
Following are four numerical examples where the driving-point impedance
F(s) is given by the coefficients of N(s} and D(s). In these examples,

Example 7.2. 1 F(8) is of the Type PIO‘

Example 7.2.2 F(s) is of the Type Pnl,,

B R NV,




Rt AR L SO 3 il

3 5 Coefficients Ny Coefficients N,
2 1 =0[t4+8992000 d0 £ =0l 000000000 00
3 1 1°0920632 D¢ < 1| 3-8400000 0¢
: ad 215000617140 €0 @ . 2| 002539682 o0
3 O\ O:l_)‘
- 8: 3] 2¢1341249 E0¢ @l 3| 7.6571428 EO
2 T 413749600000 F0 g 4] ¢«2579365 F¢
. O sl 1~0000000 FO @ O 5| 120000000 FO
Ei‘ Coefficients Dy Goefficients Dy
?\ 1 =0 000000000 99¢ 0{20+7340000 ¢0
¢ % L8 1l 38400000 D¢ @ 1] 1+4780948 090
L 1. CR] 2| 0+2532682 €0 g3 2(61+7005211 e¢
o ’33 3| 7+6571428 EO 3: 3| 2-5261901 EO
kY 238 4] 02576365 FO 3. 4|39+4800000 F O
" S| 140000000 FO w o S| 19000000 FO
5 y
5 v v
e X = 3+8800000 FO W
° ] ve®  0+1851851 A9
?‘? K= 140000000 A
ég' Coet - Coefficients 31
G oefficients Ni
- f =0 001066659 b
f 1 =0 01066666 © ¢ 1/20+3519810 B¢
E? 11203520000 B¢ 2] 141333324 ¢
5 2] 11333333 ¢ 3340799976 CO
bj 31340800000 CO 4| 1000000990 89
4] 10000000 990
29 g
5
f COefficients‘ﬁ,“ K= 140000000 FO
} 1 =0l 3:8400000 50 Coefficlents'ﬁ
5 1] 02539682 B¢ i
E 2[ 706571428 ¢ £=0[328400000 b0
& 31 002579365 C¢ 1/ 0-2539682 B¢
- 4| 1+0c00000 990 21706571428 co
3loe2579365 Co
4110000000 09
Example 7,2.1 Example 7.2.2

CGircuit Figure 18 Circuit Figure 20




:

Ef-—nﬂ‘\ .

s
E
Sri
[y 50
Coefficlients Nt Coefficients Ni
1 =0 3+2640000 90 1=0| 0+1066666 99
1] 6+3225395 04 1} 203520000 D9
5§ 2] 2648605713 e g§ 2] 141333333 ¢
\ . 3l 13525793 €0 o 2] 34.0800000 EO
[ st 413449300000 F9 8% 4| 1-0000000 F0
3 wd sl 1s000000C Fo no 51 0e0000000 FO
k! Coefficients Dy Coefficients Di
E {=0| 0-1066666 90 1=0| 96000000 d¢
3 1/ 2043520000 D9 1| oe7415821 00
g & 2| 191333333 €9 2® 2] 39.4948570 e
p: ow 0w
3 o 31 34.0800000 EO 0" 3| 1.7781745 €9
.z §§ 41 140000000 F9¢ §'§ 4] 36458060000 0
5 «Q 51 00000000 FO n o 5 10000000 FO
¢
. v y
) v
E v = 140000000 B¢ Xy ™ 140060000 A0
| " f5icients N
3 K= 08500000 A0 Coefrlcients N,
_ 1=0] 328400000 b¢
: Coefficients Ni 1 022539662 89
i {=0] 308400000 o0 2| 7-6571428 €0
3 1| 0+2539681 89 31 0-2579364 Co
3 2] 746571427 <o 41 1.0000000 99
5’1 3] 002579364 Co
4) 1.0000000 a¢
3 K* 044000000 A0
;" Coefficients 31
" Coefficients 31
4 1 =0] 061066666 b0 1 =07 0+1066666 b9
1{20+3520000 80 1] 2043520000 RO
2| 121333333 <9 2] 11333333 ¢¢
# 3[34+0800000 C9 3134.0800000 Co
4] 100000000 a9 41 140000000 ¢
. Example 7,2.3 Exumple 7.2.4
b Circuit Figure 19 ?ircuit Figure 21
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%{ Example 7.2. 3 F(s) is of the Type Q10'
@.
& -
éf? Example 7.2.4 F(g) is of the Type Qlé’

In examples 7.2.1 and 7.2.4, we split F(s) into the capacitive function s/xt

and a function F(s) of the type P,{ or P;l . ln examples 7.% 2 and 7.2.3, we split
F(s} into the inductive function sv, and a function Ffs) ¢. .

t cype P7 or P;l . We
apply for this purpose:

ATy

Procedure Del to example 7.2.1,

Pr..cedure De2 to example 7.2.2,
Pr ¢ dure De3 to example 7.2.3 ,
Procedure Ded to exampie 7.2.4 .

Results of these procedures performed on the Programma 101 cci. puter a»e zhown
on the preceding programmmed tapes (pages 49 and 50).

8. THE DECOMPOSITIONS OF {¥PEDANCE FUNCTIONS OF THE TYPES 0“ AND Q.lll

In Q-type functions the polynomiale N{s) and D(s) differ by 1 in their degree.
If a function F(g) = N(s)/D(s) is of the type Q

11’
6
N(s) = ZNisi (192)
i=1
and
5 .
D(s) = Z Dis‘, Dy =1. (193)
i=0
If F(8) is of the type Q;l .
5
N = ) Ngs! (194)

i=0
and

5
i -
Dis) = }:Dis , Dg=1. (195)
i=1
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f F{s) is of the type Qil’

then F(0) = 0 and F(e3 = . (196)
If F(s) is of the type Q]i ,
then F(0) = cocand F(o = 0 . (197)

By Eqgs. (196) and (197), each of the functions can br: decomposed, either
according to the functions behavior at s = 0 or at s—a. For comparison, note
that functions of the types Q10 and Q-ul) can only be decomposed acciording to the
functions behavior at s — w0, and functione of the types Pio and P.zo can only be de-
composed according to the functiviis behavior at 8 = 0,

8.1 The Decompositions of a Function of the Type Qi}

Decomposing the function according to its behavior at s ~ wyields
Qjl =Py @x,/ Fis) = FHe)@x,/5 , (198)
11 10 xd 8 cr ] \ d ’

which can aiso be written as

1 i 8
F "FE "X

.

In Eq. (198),

Xg = N5 (19v)

and F'(s) is of the type Plo The ceeificients of F'(g) are
S (200)

and
NSDi - Nl-l

D. = .
i 1\15-N4

(201}

Decomposing the function according to its behavior at s = 0 yields

"1 "1 [ '?‘ ,
Q11 = Qo+ Xg/8 or Fls) =T {s) +xy/s . (202)
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In Eq. (202)

%y = Ng/D,

and F'(g) is of the type Q'l'é . The coefficients of F'(s) are

i

N, =N

i1~ *qPiay
and

1
Di - Di-H *
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(203)

(204)

(205}

In the future, we shall refer to denomposition according to Eq. (198) as decorposi-
tion procedure De5, and to decomposition according to Eq. (202) as decomposition

procedure De8.

8.2 The Decompositions of a Function of the Tvpe Q1]

Decomposing the function according to its behavior at § ~ o yields

= p-1 I
Q“-P10+vds or F(s)=F (s} +v

In Eq. (206):

vdzNG

and F'{s) is of the type Pié .

1
N =N, - NeD,
and

!
Di=Di°

T .compoging the function according to its behavior at s = 0 yields

Q= Qo Dvys or F(s) = Fiis)Dv

which can also be written as

1, .1 .. 1
F(s) F'(s) vys

dS.

The coefficients of F' (s) are

as

(206)

207}

(208)

(209)

(210)




Ir. Eq. (210),

vq = N,/Dy (211)

and F'(s} is of the type 9_10. The coefficients of F!(g) are

N; ctd N (212)
i vd-NB i+1
and
v,D. N...
D, = -4 ‘—?Tq——"ti (213)
Vd 6

We shall refer to decomposition according to Eq. (206) as decomposition procedure
De6, and to decomposition according to Eq. (210) as decomposition procedure De7.

We have presented the results of decompositions by the following circuit
reulizations:

Decomposition Ded realized in Figure 22
Decomposition De6 realized in Figure 23
Decomposition De7 realized in Figure 24
Decomposition De8 realized in Figure 25 .

When a function of the type Qll or Qll has been decomposed, the remainding
function F'{s) mus: be decompos=ad as the next step in the realization of the circuit.
For this we refer to Seciion 7. The type Q1 1 decomposition component in F(s}
is an inductive impedance v :s; the component in F'(s) then is also an inductive
impedance V8. Ifv 48 is a u2ries element, then v,8 is a shunt element and vice
versd. The same holds true for the type Q11 component in F(s), where xd/ 8 isa

o

i J €
Xg .
F g l 4 F(‘)
(., T ! | \')
Figure 22. Transposition of ¥ ure 23. Transposition of

Shunt Capacitance Se: ies (nductance

T P o ANy A4 i
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Xy
T
o—]
Fis) | ,[.,. Fis)
o :
| g >
Figure 24. Transposition of Figure 25. Transposition of

Shunt Inductance Series Capacitance

capacitive impedance and xt/s is also a capacitive impedance. If xd/s is a shunt
element, then xt/s is a series element and vice versa.

We have devised programs for use with the Olivetti Programma 101 computer,
and they are used in the following examples.

8.3 Numerical Examples

We now show four numerical examples: 8.3.1, 8.3.2, 8.3.3, and 8.3.4. In
examples 8.3. 1 and 3. 3.4, we realize an impedance function F{s) of the type Ql.ll‘
and in examples 8. 3.2 and 8. 3.3 we realize a function of the type Qll' Each of
these functions can be decomposed in two ways. The realization procedure is
carried outl completely. Some examples that were carried out in previous sections
will tie into these four examples.

Example 8. 3. 1

Let F(s) = N(s)/D(s) have the coefficients:

i Ni Di

0 | 20.2629120 0. 0000000
1 1.4852059 | 20. 1215000
2 | 68.0839310 1.4374599
3 2,9024125 | 60.4754282
4 | 51.6256000 | 2.4849205
5 1. 3600000 | 39. 3200000
6 1. 0000000

The function Fs) is of the type Qii It can be decomposed according to Eq. (198)

and decomposition prccedure De5 as:
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Coefficients N[

Store on
Card i70 A

v SN = O

25926291290
124852059
6840839319
29024125
516256001
13400900
63000000
00000000

e
£
fo
Fo
e
£)
£ 0
Fo

Coefficlents

by

Store on
Card 170 B

SN LNy~ D

00009009
701216000
104374599
6024754282
2+4849205
393209000
140060000
G+n000000

L]
£0
]
Fo
ed
Ed
fo
Fa

Coefficients Ni

£ =0 1448991996 ¢
i 140920631 EO

2 5000617127 2

3 2+1341267 F8

L

4 3749599990 e

5 0+99%9999 E¢

xd=

where

and

13600000

Fis) =L @ F'(s)
. ,

F(s) is of the type Qii

F'(s) is of the type P, .

v
24
v
L)

According = the tape record, X4
listed on the tape are those of example 7.2, 1 where we decomposed the function

according to Eq. (158) and decomposition procedure Del as:

where

and

*
F'{s) = + K¥F(s),
F'(s) is of the type F

F(a) is of the type P7-1 .

Exawple 8,3.1

= 1, 3600000.

Coefiicients D;

0+0000000 &9
3.8490000 E¢
02539681 9
7+6571427 FO

‘
Y
4 042579361 e
5 1+0000000 E

[V C I ]

The coefficients of N'(g) and D'¢s)
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In exampie 7.2. 1 we found that X, = 3.88 and the factor K = 1. The coeificients
of F(s) arc those of example 4.4. 1 where we proved that F*(s) is a special function
with QO = 0.8 and an, = -6.0.

The decomposition of F(s) in the present example is shown in Figure 26a;
Figure 26b includes the decomposition of F'(s). The ideal transformer can be
omitted since K = 1. Figure 26¢c shows the circuit with F(s) represented by the

duplex Brune two-port in which, according to example 4.4.1,

n, = 2, vy® 4. 1999997, k, =7,0000004,

1 1
ny = -3, x =3.3599997, ' =N, /D= 1/36.
x/s x/s
. 4
o— kg T
sxgs | |F Fis “ Fit = ==n/s | (Fi
£l xy/s |IFs) Fio) s Fs) %/s | |Fls)
o [, S— l o=
() (b)

%e/8=(x-%0/s *o/3

o1 »—l
vs -vs/k
&.’, = %¢/s =1
/ks

..rx./s Tx

{d)

-]

Figure 26. Circuit Expansion Example 8. 3. !
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Swee z' > 1, a capacitive nupedance can be transposed. ‘This transposit.on was

showa in example 8.5.5. 1. On the tape record of this example, we find the
constnts
n = 1,2307680, v = 6,8249999, Xg *® 2, 1000001,

]
1]

k = 1. 1666663, x = 5,4599998, xb 32.6000041.

it

By the trunsposition, the termination of 2' = 1/36 in Figure 26¢ changes to the
resistive termination 2 2 1 in the circuit in Figure 26d, according to the formuias
in Pable 2. Taking the impedance xols from the total impedance xt/s available at

the input leaves the inverse capacitance

at the input.
We are now able to transform the very special Brune tandem into a lattice

structure by applying procedure Rz. This has already been exercised in example

5.2.1 wheve we obtained the constants

v 19. 0830544, X, ® 2. 8695976,

a
z=1.
b 4.8653741, Xy = 20.7109023,

The final eircnit is shown in Figure 27. The turn ratio of the ideal transformer
on the left side of that figure is K = 1. We therefore obtain for the elements of the

v

circuit on the ride side the values

x/3 JRT %06 vy Xo/s Cs Ly Cs
o— X |—---fb;0'9';-—~——-§ o % *m\-——T—-l
U

Flg) =<*e/s _Jl r'=y % ==Ci N R
] |}
‘./‘ G2

o 1 o (1S
V3 L2

Figure 27, Final Steps in Realizing the Function in Example 8. 3.1
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(.
v

<
u

19. 0830544, C1 l/xa = 0,3485416, R = 1.0000000.

L, =v, = 4.8653741, C, = 1/x, = 0.0482837,

= 1/::d = 0.7352941,

Q
(/]
1

C4 = 1/%, = 0.5617977,

Cg = 1/xg = 0.0792650,.

We certainly would like to check our results. An easy way to perform such a
check is to evaluate F(1) = Nt1)/D(1) and to analyze the final circuit in the event
that s = 1. If both results agree, we have some assurance that they are correct.

We admit that this check makes no discrimination between the evaluations of i

ductances and resistances. But, as far as our experiences over many applica‘ions

go, this check, which can be very easily performed, has always been sufficient.

The terminating impedance of the circuit in the right part of Figure 27 is,
fors =1,

R,=z+1/Cg =1+ x;) = 13. 600004 1.

The driving-point impedance of the terminated lattice is

. (HLlCZ)(HLZCl)Rt + L1142(C1+C2) + (L1+Lz)
i CICZ(LI+L2) +{C 1+C2)Rt + (1+L1C1)(1+L2C

(214)
5)

for which in our present example we obtain Ri = 6.450b2530. The driving-point
impedance ot the circuit, therefore, is

i+ Ri_C4

F(1) = T, ¥C,FRCC, ~ 1. 1672702 .

Evaluating the coefficients of #(s) for s = 1 we obtain N(1) = 145.7200614,

D(1) = 124. 8394088, and F(1) = 1. 1672601, which is in agreement with the value
obtained from circuit analysis.
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Example 8.3,2
Assume that a driving-point function F(s) of the Type Q11 has the coefficients

i Ni Di

0 0.0000000 | 38.4000000
1] 35.7120000 2.6463286
2 2.4504189 96, 9234280
3 | 68.1035880 3.7126973
4 3.3394751 | 44.0806000
5 | 37.5864000 1. 0000000
6 0. 8300000

We decompose F(s) according to Eq. (206) and decomposition procedure Deb a8
F(s) = v s + F'(s),

where
F(s) is of the type Q,, and F!(s) is of the type Plél .

For the record of the procedure performed on the Programma 101 computer, see
tape record example 8.3.2, The constant v a® 0. 83. The decomposed circuit is
shown in Figure 28a. Next we decompose the impedance function F'(s) according to
Eq. (174) and decomposition procedure De2. Performed on the Programma 101, we

obtain:

v
v
Coefficients '.ii vg® 083000006 BO
¥
1=0 020000000 ¢9 ¥
1357120000 €0 Coefficients N}
< 21 244504189 f0 {1 =0] 00000000 0
g 3]88+1035880 Fo 1] 3.8400000 EO
o™ 4] 323394751 ¢ 2] 0+2539462 F0
§§ 5(37+5864000 E9 3] 796571428 19
0o 6) 0-8300000 £¢ 9
04000000 F9 W
4] 092579364 @
5] 10000000 €0

Goefficients Di
1 =0/38+4000000 29 Coefficients DiY
- ;92:;;:;:: f: 1=01384000000 ¢3
g 1] 2-6463286 €9
oS 3] 3:7126973 FO 2|v6e9234200 ¢
o 4{44+0800000 0 3| 307126973 Fo
) 5| 10000000 €¢ Y
000000000 79 414420800000 o0
00000000 FE 5| 199000000 EO

BN E
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W
Coefficients Ni V: = 01006000 240
£ =0] 040000000 ¢ -
£ »
< 1 348400009 0¢ Coefficlients Di
g 2] 042539662 e 1 =0] 01066666 50
@~ 3| 746571428 €0 1{20-3520000 8¢
SE 4| 002579364 0 2] 141333333 co
“O 5] 1.0000000 Fo 3/34+08006000 CO
4) 1.0000009 a0
W
Coefficients Di K= 140000000 F¢
1=0[38+4000000 d¢ (30e£fi<:ients§i
m 1| 2+6463286 00 B ETTTTITITRY)
8t 2 |96+9234280 e
= 3| 37126973 E0 1| 0-2539662 89
T 2] 7+6571428 ¢
g 4 14440800000 F O ;
@S | . 3] 0.2579364 Co
10000000 FO 4] 1.0000000 o0

Example 8,3.2

With F'(g) decomposed, the circuit is shown in Figure 28b. Since K = 1, the
ideal transformer with the turn ratio 1 can be omitted. The shunt inductance has
the magnitude v, = 0.1, and F(s) is a function of the type P, (No >'Do). The
coefficients of F(s) are those of example 4.4.2. Therefore, the circuit in
Figure 28c, in which F(s) is also decoraposed according to Brune, has the constants

ny = 0.4999999, vy = 0.5952378,

k, = 1.5238088 .

1

= -0.3333333, x, = 0.4761902,

iy 1

Over thig circuit we have to transpose a ghunt inductance of magnitude Vo
This transposition has been exercized in example 6. 5.5.2, where we found that
Vg = 0. 4761895 and VE! = 0,0793647. The circuit is pictured in Figure 28d after the
transposition, Taking the shunt inductance Vo from the shunt inductance v available
at the input leaves

/vy = 1/v - 1/vg = 10 - 2, 1000043 = 1/0. 1265823,

Thus the remair‘~= inductance ve =0 1265823 is positive.




vds vds

:
!

(o) (b

(&)

Figure 28, Circuit Expansion Example 8. 3.2

In example 6.5.5.2 we also found the constants
% = 0.8125003, v = 4,2328149,
n = 80,09855910, x = 3.3862516.

The transformation of the circuit into a lattice structure was exercigsed in
example 5.2.2 where we found the constants

vy S 0. 0482836, X, - 0. 0524023,

vy = 0. 3485408, X = 0.2055336.
The final circuit ig pictured in Figure 29, w.tere the transformer ratio in the
left side part of the figure is 1. The elements of the circuit in the right side part

of the figure are
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Figure 29. Final Steps in Rea.izing the Function in Example 8. 3.2

L, =y, = 0.0482835, C, = 1/xe * 19.0831318, R = 1. 0000000
L, = v, = 0.3485408, C, = l/xb = 4,8653845,

Lg = v, = 0. 8300000,

Ly = v, = 0.1265823,

L = v;) = 0.0793647.

Our results check as.

N(1) = 168. 0218820,
D(1) = 186.7624539,
F(1) = 0.8996555.

The termination of the lattice in the right-side part of Figure 29 is

L5

Rt = TTL—S' = 0.0735299.

By Eq. (214) we find Ri = 0, 1548846, Therefore, the driving-point impedance of
the circuit in Figure 29 is

F(1) = L3 + I.,4Ri/(L4 + Ri) = 0. 8996550,

which is in agreement with evaluation F(1).

Example 8.3.3

The function F(s) of type Qll that we discussed in example 8. 1.2 also allows
the decomposition

F{s) = vgs t F'(z}

where
F(s) is of type Qll and F'(g) is of type QIO'
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according to Eq. (207) an«: dezorposition De7. The decomposition performed on
the Programma 101 {s recorded on tape record example 8.3.3 The decomposed
circuit in Figure 30 has a shunt inductance of magnitude Vq = 0.93. The further
decomposition of tiie function F'(s) according to Eq. (166) and decomposition pro-
cedure Ded is recorded helow:

v

Coefficients Nj'_ v

1=0[332+1216000 a9 ve= 707190000 89

< 1| 22+7888950 09 W

§§ : “;:;2;::23 'E: K= 8614900000 A0
§'§ 4134945535200 Fo Coefficients N,

“ o 5 707190000 F¢ 1=0[ 3-8400000 b0

1] 0+2539661 89

3] 746571427 ¢

. 2] 0+2579364 Co

Coefficients D, 4] 140000000 90

al=0 01066666 ¢0 V
go 1| 2007520000 9% Coefficients D,

o 2 191333330 e

FR 3] 34+0800000 E 1 ~0] 01066666 b¢
a8 4| 1.0000000 F¢ 1]20+3520000 B9
00000000 FO 2] 141333330 co
3]34+0800000 C9¢

4] 140000000 a9

According to the circuit in Figure 30b, function F'(g) is decomposed into a
series inductance of magnitude vy * 7.719, an ideal transformer with the turn ratio
K:1 where K = 86,49, and impedance function F(s), with the coefficients lis.ed on
the tape. The function is of type P7 (No ﬁo) that allows the transposition of an in-
ductance. The Brune realization of F(g) ig that of example 8. 1.2. Therefore, the
circuit in Figure 30c has the constants

n, = 0. 4999999, vy 0.5952378 kl = 1.523. 88,

n, « -0.3333333,  x, = 0.4761902, z' = Ry/B, = 36.

The transposition of the geries inductance shown in the circuit in Figure 30 was
exercised in example A, 5.5. 3 where we found that

vy~ O 1467136, n = 0.7464789, v = 0,5952378,
va = 0, 8802830, k = 1.5238088, x = 0.4761902.
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PR

‘ Coefficients Ni ll,
: 1=20] 9:0030000 €0 vg= 09300000 89
1] 357120000 E¢ v
< 23 2+4508189 fo v
31 88410355890 9

g™ {ant '

g :: 4] 343394751 e Coefficx.r.lhsNi
3 5% 5[37-5864000 £o £ =5 77193600 F9
§ a3 6l 0+8300000 Fo 4349¢5535200 e

00003000 F "

3] 31:0571180 Fo
: 2{819+3633680 0
A 1| 2247886950 E0
1 Coefficients D 01332+7214000 'Y°
g £ =0[3824000000 e Y
4 w1 246463286 E9 Y
e §R  2|96-9234280 fo Coefficients D}
g g 3 317026973 10 1=4] 190000000
8% 4|44-0200000 ¢ g ’ ¢!
] @99 5| 190000000 Eo !
: 020000000 f9 3/34-0800000 Fo
1 0-0000000 F¢ 2) 11333330 o
1 102043520000 €9
ol 0.1066660 e

Example 8.3.3

In oxder to be able to combine the negative serieg impedance ~Vg8 with the
impedance vts available at the input, we have o take inductance Vg tO the left

side of the ideal transforimer. This means that we have to multiply with K. Thus
the {nductance

BT TP TRyod o B RS o7

4

Vo =V " Kvo =7,719 - 12,6892592 = -4, 9742592

¢ o

is left at the input. Since thig inductance is negative, our attempt to obtain the
4 anticipated realization has failed. But for tutorial reasons we will continue this
p example.
The transformation of the circuit into the lattice structure was exercised in

example 5.2, 3, with the present values of the circuit. In that example we obtained
the constants

v, = 1.4469361,  x_ - 0.2545345, v = 0.8802820

#

Yy ® 0. 2004454, Xy, = 0.7292550, z' = 36, 0000000,
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Figure 30. Circuit Expansion Example 8.3.3
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The final circuit is shown in Figure 31. In this example the ratio of the ideal
transformer is K = 86.49. The elements of the final circuit (right side in Figure 31)
are

= Kva = 125, 1457627, C l/Kxa = 0,0454242, R = 36K = 3113. 64

1

= Kv = 17.3365226, C 1/Kxb=o.0158545,

2
3 L3 = Y4 0. 93000000,

. I..4 = ve
t
E‘ 1.45 = KvO

We check our result, and the terminaiing impedance of the lattice is

-4.6892592,

1
)

76. 1358756,

R, = I..5 + R = 3389, 7756766,

t

Ko gt

According to Eq. (214), we obtain

i i Sy

Ri = 32. 5432262

as the drivinz~vpoint impedance of the lattice. The driving-point impedance of the
circuit in I'igu. @ 31 that was evaluated for s = 1 is:

‘ Lq(L, +R))
3 F(1) = 370 - = 0. 8096557,
3Lyt

which is in full agreement with the evaluation F(1) found in example 8. 1. 2.

This example has shown that a function of type Q“ can be decomposed
eventually by decomposition procedures De6 and De?7. If both procedures are
successful, wo equivalent realizations are obtained; otherwise, only cne of them
is successtul, or with bad luck none of them. The same is true for a function of
type Qu'1 .

PTETE ETIRY]

SRR

Example 8.3.4

S In this example we decompose the function discussed in example 8. 1. 1 accord-
ing to Eq. (199) and decomposition procedure Del as
*d
Flg) = o= + F'(s),
where

k) - -
} F(s) is of the type Q“ 1 and F'(s) is of the type QlO 1 .
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R IR AR & T TN TR AT

Coefficlients "!1 v

y

{=0 202629120 e xg® 1+060720229 8¢

< 1 124852059 E9 y

g o 2 g 10 f

R I ~
¢ - Coefficients Ni

ok 4 5146256000 29 T3 TS T AR
v O 5 123600000 EO )

040000000 fo o

0+0000000 FO 4

3 (126294596 FO

2| 0+4000407 F0

Coefficiente D1 1 71837900 €9

120 0+0000000 ¢9 0] 000376509 e0

1| 2041216000 €9 Y

o 2 144374599 £ Coefficients D;_

83 3| 60+4754282 Fo f=5] 1+6060000 EO

8 4 244849205 0 4139¢3200000 e

Ss 5| 3932060000 E¢ Y

@C 6] 10000000 Fo 31 24849205 Fo

0+0000000 Fo 2 16004754282 fo

1| 144374599 €0

01201216000 ¢

Example 8.3.4

The decomposition was performed on the Prcgramrma 101, arnd the tape record is
shown in example 8. 3.4. The resulting circuit (Figure 32a) conzists of a series
capacitance of magnitude 1/x q= 1/1.0070229 and the box representing the
impedance F’(s). The latter function is decompose2 as follows:

X
F'(s) = rahd KF(s),

where

F'(s) is of the type Qlo‘l and F(s) is of the type P,;l .

The circuit is shown in Figure 52b with function F'(s) decomposed. There is
a shunt capacitance of magnitude l/xt = 2, 8330449, wn ideal transformer with a
turn ratio of YK:1 where K = 0, 0673620 with a driving-point impedance ®(s) on its
secondavy side. With the present coefficients of F(s), its Brune realization was
exercised in example 4. 4.1 where we fourd the constants

ny = 2.00000C1, vy® 4. 1999997, 1:1 = 7, 0000004,

n, = -3. 0000007, %= 3.3599997, z' = 1/36.
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(d)

Figure 32. Circuit Expansion Example 8, 3.4

The realizing circuit is shown in Figure 32¢, A capacitance 1/ %o has to be
transposed over the circuit. The transposition was exercised in example 6.5. 5.4

where we found

X = 6. 81.9995, =n = 1,3396228, v = 24, 38982317,
xb = 1.1359995, k = 31, 1435267, x = 19.5118586.

As it is shown in Figure 32d, if we take the transposition capacitance to the
left side of the ideal transformer, the inverse capuacitance at the input will be
1/:«:e = l/xt —}I/Iis'xo = 2.8330449 - 2. 1779887 = 0,6550562. The remaining
capacitance iy pogitive in this example and, therefore, the final realization ig
equivalent to that obtained in example 8.3.1. The final circuit is ag shown in
Figure 33. With the present coefficients, the transformation into the lattice is as

exercised in example 5.2.4 where we obtained the constants
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Figure 33. Final Steps in Realizing the Function in Example 8. 3.4

v, * 1.3712615,  x, =0.6911142, Xy ® 1.1358995,
vy = 3.9287369,  x, = 4.9888857, z' = 0.0277777.

According to Figure 33, the final circuit has the elements

1

L, = Kv, = 0.2645477,  C, = 1/Kx = 2.9756475,
Cg=1/x, = 0.9930260,

Cyc= 1/xe = 0.6550562,
Cg = 1/Kx; = 13.0679494,

L1 o Kva = 0. 0923709, C,= I.Kxa = 21.4800622, R = Kz' = 0,0018711.

We check these results, and in example 8. 1. 1 find F{1) » 1. 16728601,
Analyzing the circuit in Figure 33 yields

R S
Ry~ 7% R, 00018253,

and by Eq. {214), R, = 0.1780277.
Therefcre, by circuit analysis,

R
\ i .
F(l) s — = 1,1672591 ,
TTRC,

whinh is In complete agreement with the evaluation of F(s).

9. THE KEALIZATION CF A DRIVING-POINT IMPEDANCE THAT DOES
NOT YIELD A VERY SPECIAL FUNCTION F(s)

In 2il exampleg discussed 30 far, the coefficients of the function F(s} to be
realized were chosen so that, first, a special function was feund for which the

e N i o
] I N VIS WP

b
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test values were €y =cy=cg=0; then, by element transposition this function
was changed to one that allowed the lattice ¢quivalence. This situation was neces-
sary for tutorial reasvn. In most practical cases, however, the function to be
realized will not yield the zero identity of the test vilues; this may be due to
truncation of the coefficients or to some other reasons. If the text values are not
zero, it may be possible that by changing the coefficients slightly we will obtain
a function for which the zero indentity of the test values holds. In doirg this no
additional elements are necessary. But we have to pay for the advantage of the
economical realization by some deviation of tne ‘unctions behavior. This will be
the objective of this Section.

Let us discues the technique of coefficient adjustment along with the following
example. Assume we have to realize a driving-point impedance F(s) that has the

coefficients
i Ni Di 3
04§ 0.182 ] 0.000
11 1.274 ] 0.837
2 ;2,811 ] 1.564
3 | 3.102 | 2.261
4 | 3.246 | 1,756
5 | 1.529 | 1.000

This function F(s) is of the type Floe

We decompose F{s) according to Procedure Del (Section 7. 1. 1).

v
v
Coefficlents Ni x, = 02174432 F4
1=06 [ 041820000 do .
1 | 12740000 0o
< = 165290000 Ao
go 2 | 2:8110000 et K 52900
o™ 3 | 3e1020000 €0 Coefficients N,
M . 3
24 : 3:;:8233 r: 1=0 [ 006108037 b9
1 |1+5169136 80
Coefficients D, 2 [ 147730515 ¢4
109807434 C0
1=0 | 0+0000000 g0 : 1.000;0;0 o
m 1 108370000 00
g8 2 | 1+5640000 e¢ Coefficients D
O i
o 3 [2+2610000 E0 -
8% 4 | 147560000 f9 =0 0°8370000 09
@8 5 | 1.0090000 Fy 105640950 89
2 [ 22610000 co
3 |1+7560000 %
4 |1+0000000 a0
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Thz decomposition yields the series impedance xt/s and a function ¥(s) that is of
the type P'?-l multiplied by the positive constant K = 1.529. The series impedance

ST

Flg)—e || " o)

L

Figure 34. Pw-type Function F(g}
and Implementation of the P,;l-type
Function F(s)

is a capacitor l/xt. The decomposed
function in shown in Figure 34.

To continue our attempted realization
procedure, it is necessary that F(s) be a
minimum function. For this purpose we
present the impedance diagram of this
function in Figure 35. The figure shows
that F(s) is not a minimum function. It
has a distance of about r =0.37 from the
ordinate, We determine the exact distance
by performing a regular Brune procedure
on F(s) (see Hasse, 1970b), and we find
that a constant r = Re F(jw)min = 0.3727543

can be subtracted from F(s). This would cause the curve shown in Figure 35 to
shift to the left and touch the ordinate. We expand

ooy o FAS) - r _ N(s} - rD(g)
Fs) =T “T-obl) °

Therefore,

F(s) = (1 - r)F(s) .

04i

{
170.9 Complex F-Plane

1/0.4
1703

I N T Y £

O

o

/0.8 /06 |/0'.4 /0.2 I/?

-

Figure 25, Driving-Point Impedance in the Complex F(s)~Plane
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The co=fficients of F{e) are Xy
!

J K ¢ U=k
. = o—{—
i N, D, -
Flg)— “ “ Fls)
0.47638117 0.837 :

0

1 1.4889315 1.564

2 1. 4926433 2.261

3 . 56 Figure 36. P;o-type Function F(s) with
2. 1143020 1.756 Minimum Reslistance r and Norraalizing

4 | 1.0000000 1. 000 Transformer Extracted

Figure 36 shows the circuit. The circuit-realizing F(s) consists of the series
registor r = 0. 3727543 followed by an ideal transformer with the turn rativ
\l(l-r):l. This transformer represents the factor by which F(s) has to be

multiplied.
Let us now test the function F(s) according to Section 4. 1.

With - sign in Eq. (52) With + sign in Eq. (52)
Coefficients -ﬁi Coefficlents -ﬁi
<i=0] 004263817 a9 < L =0| 0247¢3817 a9
g9 1] 1-4889315 DO £3 1] 1+48689315 09
a'* 2| 144926433 9 o™ 2] 14926433 €0
8% 3 2-1143020 E0 8% 3] 2:1143020 €0
w o 41 10000000 Fo w o 41 146000000 f o
Coefficients 51 Coefficients Bi
ai=0] 028370000 a9 o 12008370000 9¢
o0 1] 195640000 0¢ o < 1{ 15640000 N0

[oJAV.) [eJaVe]

o™ 21 222610000 0 . 2 202610000 9
§§ 3] 17560000 E9 X7 3] 17560000 €0
S8 4l 1.0000000 fo a3 4] 140000000 ¢
y v
v v
ey = 00022474 A9 cp ™ 000022474 A9
€, = =204959874 A €y = 00298198 A¢
€y = =0+0409290 A0 cq ™ =0+0802290 A0
, = 07946394 AY g 0°7946394 Ko
ngn, = =103255166 A® nn, = =143255166 A0
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The test values are not zero. The + sign ip Eq. (52) yields a smaller deviation of
the magnitude of ¢, from 0. For this reason let us assume "+' in that equation.

Let us glance back to Eqs. (47), (48), and (52j. Assume we would have
# = 0 and let us write the equations in the following form:

Cl =02 —03
§,D, - N,D, = N,D, 215)
N.D, - R.D +ND-(\/N—*\/3)2 (216)
173 272 371 7 0 0
-N, +N;D, =D, . (217)

if we assume that in these equations the Nl' Nz’ and N3 are the unknowns and all
other coefficients are known, then the system represents a systemn of three linear
equations that allows us to compute the unknowns. The solutions are:

)
_ NgD3®,D;-D,) + B, (5,D4-ByDy°20; YR, Do)

N : (218)
2 p)
BS(D1D2 - nons) - D1
N, +D
N, = —2-6 Z , (219)
3
R.D, +R.D
20 (220}
D,
We also could write the equations in the form
N1D1 - N0D2 = N2D0 (221)
N.D, - N,D, +R,D -(\[ﬁ'i\fﬁ')z
3Py - NpDg + R Dg = (NK, 0 (222)
- ‘1'52 + N3D3 = N2 (223)

where we assume that Dl, 152, and D3 are the unknowns.

Egs. (221), (222), and (223) have the solutions
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v, [
5. N,D,(®,N,-N )+ N, ® Ny-RoR, ¥ 2R, R ) o)
" 2
N,M,N, - NN,) - N,
D, + N
= .22
D, Ng , (225)
N.D, + N,D
D, =_0_1:___2_0 . (226)

If we had chosen the - sign in Eq. (52), then in Eqgs. (216) and (222) the + sign
marked by the arrow would have to be changed to "-'", and in Eqs. (218) and (224)
the - sign marked by the arrow would have to be changed to "+".

We will now gradually adjust the coefficients, but for this purpose coefficients
F ,and DO will not change. First we find for coefficients Dl‘ Dz, and Dg, by
Egs. (218), (219), and (220), coefficients N'l, Né, and N:; . Then we average

R, +N R, + R! N, +N!
no_ 1 1 w__2 2 N L3 3 .
NI = 2 ) N2 _—--—-—2 7Y ‘13 ,.———_——-2 X (227)

Then we find, by Eqs. (224), {225), and (22v), for coefficients Nl‘ Nz, and N3,
coefficients D!, 'Dé, and Dé and we average

Dl + D'l 1

=132+15'2 D
2 g 2 '

+
w_ 3
D3 = —5

Dv
" o_ 3
Dl— .

(228)

Next we perform the same procedures on the coefficients with doublz primes and

repeat until the coefficients ao not change any more. In our example we arrived,

after four repetitions, at the following adjusted coefficients:

i R, b;

6 | 0.4763817 | 0.8370000

1 | 1.4907697 | 1.5572695

2 1.4974132 | 2.2423101 » adjusted coefficients
3 1 2,1286690 | 1.7568364

4 { 1.0000000 | 1.06000000 J

The test procedure T chows the following resuit
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Coefficients -ﬁi 3 v
v
<i=0]004763817 d¢ €™ 040000001 A9
d g3 114907697 09¢ c,® 040000003 A0
S 3: 21124974132 ¢ ey = = 1°0000002 Ao
g 3121286690 €9
3 @wo 4110000000 f0 Qo= 007946394 A0
S . .
B Coefficlents D, \ gy ® 103255166 e
E @ tl=0/028370000 d0¢
£ 1[155722695 D¢
4 ™ 2 |2.2423101 e .
b §-§ 3 ]1+7568364 E0 adjusted coefficlients.ofF(s)
3 w O 411:0000000 Fo | Type P,

Next we realize F/s) accordiag to realization procedure R1 (see Section 4,

e

example 4.4. 1).

< Coefficients -ﬁi 1
v <lno | 0°4763817 e0 +9. % 007946394 ‘;°
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E @S 4 | 110000000 e Ry = 202977370 0
i g*¥ . 301822039 £
; Coefficients .51 N RS
3 10 [ 0-8370000 €0 :
t a1 | 105572695 E0 .

% °R 2| 2r2423101 fo0 RRG 342502797 €0
] 3 175683464 FO sy~ 295332909 E'O
&8 4 11000000006 eo j
F -, = - 007946394 b1 Y
& RS Y

v Y

,‘; ) W
3 = 00820700 @9 3
E: S, = =002007545 E9 nfy = =1+3255166 ¢!
23 N X 172

R, = =0°0918656 79 v
5 §,= 201286699 FO ng = 1+1477123 00
; Qs ng» -1°1549206 39
3 v

P v vy = 43359353 c9
2 Rp = -0:3133761 e x; = 304462996 09
: Sp= 001612131 E0

: Rg= 06530313 F0 ky= 1002657930 49
Sg = 175633464 FO |
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With the constauts presented in the framed fielc above, the circuit is now as shown
in Figure 37.

o—|
n% g

Figure 37, Pw-type Function Implying Brune Nuplex

vs

L]
T=

>0 <0

2
2= 1/{n;n,)

Since the function F(s) to be realizcd is of the type Plo’ we have to transpose a
series impedance xo/s over the circuit realizing F(s) in order to obtain the very
spceial function F(s) that has the equivalence of a lattice two-port. The following
is the result of Procedure A1 {sce Section 6, example 6,5. 1):

np e 1+1477123 90
Ry = =12164020¢ DO
Vy®  4°3369353 e
34362996 E)
ky = 1042857930 ¢
- See the circuit

Card 153 A
3
-
L]

Store on

v realization in
- hEY Q 0 .
x? 21389573 4 Figure 38
xo- D+13719921 AY
n= 1e1164212 0%
k= 77447137 89
v 44622475

X = 35458776 <90
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Figure 38. Plo-type Function with Brune Duplex Prepared for Capacitance
Transposition

The elements of the equivalent lattice two-port are obtained by Procedure R, (see

example 5.2. 1),

-]
[t}
=§ n= 1+1154812 49
O k= )e7447337 99
§-§ V= 444522475 e
oo =
X = 35153776 E9
v Q) See the sircuit
v realization in
y Figure 39

va = 1+4106371 »4
= 0+9542553 B9

Vb
X, = 005495615 c0
Xp = 105466916 €0

Xt
-
)

.

1

=
i
%o/t
Flo)— “ " i 2=
1t
xg/s
o 1 I~

Figure 39. Pjo-type Function with Lattice
Two-port After Transposition
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We now completely know the circuit shown in Figure 39. In this circuit we
will now dissclve two ideal transformers. The first one has the turn ratio
\/_K_= \/1. 529, the second one hag the turn ratio \/(1-r) = \/0. 6272457. Dis-
solving the transformers means that we push them out to the right side. There-

fore, we have to multiply resistance r, which is the only element that is passed by
the first transformer with K, All other impedance elements are passed by both
transformers and have, therefore, to be multiplied with K(1-r) = 0, 9590586,

The impedance xo/s that has been transposed over the circuit representing
¥(s) has to be induced with the ""-" sign. After the transformers are dissolved,
the impedance becomes -K(l-r)xo = -0, 9590586- 0, 0595789 = -0, 0955011, Com-
bining this capacitive impedance with impedance xt/s = 0.2174432/s, the
capacitive impedance

. 0.2174432 - 0.0955011
s

xe/s = 0.1219421/s

remains at the input. Since Xq is positive, the attempt of the realization was
successful from this point of view. The final circuit is shown in Figure 40 and .
its elements are listed in the following table,

Resistors Inductors
R1 = Kr = 0.5699413 Ll = K(l-r)va = 1.3528836
R, = K(1-r)-1 = 0. 9590586 L2 = K(l-r)vb = 0.9151867
Capacitors
C, = 1/K(1-r)x, = 1.8973114 = 1/0. 5270616
C,y = I/K(l-r)xb = 0.6741416 = 1/1,4833678
Cy= 1/xe = 8.2006132 = 1/0. 1219421
C, = 1/K(1-r)x, = 7.8996366 = 1/0. 1265881
The circuit realization in Figure 40 R, C, ca
needs two resistors, two inductors, and °—-’\’V\r—“"“ffm—"{
four capacitors, for a total of eight cir- i
) Fls)— = R,
cuit elements. {}c
By adjusting the coefficients, we L2 2 ]
o . o L
necessarily induced an error; Figure 41
shows how this change of the coefficients Figure 40. Final Circuit Realizing

affects the real and the imaginary Po-type Funciinn F(s)
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component of T(w). The solid curve refers to F(jw) with unchanged coefficients,
and the dashed curve refers to F(ju) with adjusted coefficients. There is only a
slight deviation around the abscissa 0 = w‘ =1,0.

Figut 42 shows the influence of the adjustment of the coefficients in ¥(s) on
the real and imaginary components of the total driving-point impedance F(jw),
plotted versus the square Q = wz. The same is pictured in Figure 43 in the com~
plex F-plane. As these figurcs show, there is only a slight change in the functions'
behavior around Q = 1. 9.

7] O IO
| g SN 1709
"o\ Complex F-Plone
08)¢
i/08
0.6)
. 1/07
0.4]
$ 1706
0.2} L 1/0.5
1/0.4
-
1703
702
-0.2j
-0.41J
-0 §)
-0.8j
o) LY 0.4 0.6 0.8 1.C 1108  1/06  1/0.4 102 170
-n e emtbecmecsdienm bl e e bl .- dmrv cmdmem = e vl e . -—
lO;t- |

Figure 43, Cceifficient Adjustment Affecting F(jw) Represented in the Complex
¥{s)-Plane
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10. THE CONVENTIONAL REALIZATION OF THE DRINING-POINT
IMPEDANCE DISCUSSED IN SECTION 9

In order to understand what was achieved by realizing the driving-point
impedance discussed in the preceding Section wherec we adjusted the coefficients,
let us now realize the impedance F(s) in the conventional way. For this purpose
we decompose F(s) as before by decomposition procedure Del. The results of the
decomposition

F(s) = x,/s + KF(s)
are shown in the following table where

X, = 0.2174432, and K = 1,529:

~ ~e

i Ni Di Ni Di

0.182 | 0.000 0.5108037 | 0.8370000
1.274 | U.3837 1.5169136 | 1.5640000
2. 811 1.564 1.7790516 | 2.2610000
3.102 | 2.261 1. 9807434 1.7560000
3.246 | 1.756 1.000:0000 | 1.0000000
1.529 | 1.000

s
W W N0 = O

N

The function F(8) has to be realized according to Brune (for instructions see
rflaagse (197Ch)). We obtain the circuit shown in Figure 44 where

A ;&?“:}4”

resistor r = 0, 3,27543, mutual inductance v = 2, 5861081,
turn ratio n = 1, 1483501, capacitor 1/x = 1/2.0695412 = 0.4831988,

SRR

-90 =z -0, 8002532, termination constant z = 0.4756516.
The coefficients of the nornialized function F'(s) are

. t '

i Ni I Di

0] 0.6835997  0.9108017

11 2.041689) 1. 5447889

2 1. 0000000 I 1. 0000000

The driving-peint fuaction F'(s) can be realized in two w..ys:
(a) By the ladder realization shown in Figure 45, where
r = 0.7505472, 1l = 0. 9686540,
0
ry= 0. 3359745, ey = 2.0440229 » 1=x1 .

ry = C. 2321402,
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Xy —_—
) ‘ﬁ(Il r v,

Yy

Fisl—~ Ll‘lf

Figure 44, First Step of Realizing
the Pyg-type Function F(3) in the
Conveéntional Brune Procedure

Figure 45, Ladder Real-
ization of F'(s)

Figure 46. Brune Real-
ization of F'(s) with
Negative Mutual Induct-
ance va

T

Figure 48. Final Circuit Implying One Perfectly
Coupled Transformer
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{b) It can be realized in Brune fashion with a perfectly coupled transformer
vith negative turu ratio and negative mutual inductance; as shown in Figure 46,

w.ere
r, = 0. 0145407, vy = -0. 5513037, n, =-L 1571209, X, = 0.4339463,
Qa = 0.7871276.

Combining the circuits in Figures 44 and 45 we obtzin the circuit in Figure 47.
Dissolving the two ideal transformers with turn ratics K:1 = 1.529 and z:1 =
0.4755516 yields the circuit in Figure 48, with the circuit elements listed as

follows:
Rl = Kr = 0,.5699413, M = Kv = 3.9541592,
R2 = zKro = 0.5458513, L1 = 'LKIl = 0.7044741,
R,; = zKrl = 0, 2443445, C1 = l/xt = 4,5989021,
R4 = zKr2 = 0.1710106, C, = 1/Kx = 6. 3150228,
C3 = l/sz1 = 2,8105373.

We check our results: F(1) = 1. 6370989,

Analyzing the circuit in Figure 48, we obtain

Ay
F(1) = R, D 1/CH+R, | DL, ) +R,+wl @ G+ 1/C,)+u+
4 3 3 1 2 f 2
+ R+ 1/c1 = 1, 6370983,
which is correct,

Omitting the brackets, parentheses, and curled parentheses, this expression, in
which

u = Kv{n-1), w = -u/n, and n = 1, 1483501,

can shortly be written as {see llaase (1970a)
F(1)=>(R4®1/c3) + R3®L1 + R, + w® (M + 1/c2) tu+R,+ 1/(:1.

Besides four resistors and three capacitors, the realization shown in Figure 48
needs one inductance and one perfectly coupled transformer with the mutual
inductance M and a turn ratio n = 1. 1483501,

By combining the circuits in Figures 46 and 47, we obtain the circuit in
Figure 49. Dissolving the two ideal transformers with turn ratios yK:1 and \ﬁ—i
yields the circuit in Figure 50, with the circuit elements listed as follows:
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Figure 49. Tandem Circuit limplying the Circuit in Figure 46

Qe

R, = Kr = €. 5699413, M, = Kv = 3.9541592, n, = 1.1483501,
= = 5 = = - = - p
R, = zKr, = 0.0105750, M, = zKv, = -0.4009473, n, = -1.1571209,
Ry = 2Kz, = 0.5352757, C, = 1/xt = 4,5989021,
C, = 1/Kx = 0.3160228,
Cg = 1/sza = 3, 1686019,

The driving-point impedance of the circuit in Figure 50 is
F(D> Ry + 2Kw )@ (M, + 1/C5) + 2Ky, + R, +Kw)® M, + 1/Cy) +
+ (Ku + Rl + I/CI) = 1. 6370984 (which is correct),

where

uy = v, (ny-1), W, -va/n2

€
"

u = v(nl-l), -v,/n1 .

The circuit realization in Figure 50

needs two perfectly coupled trans- My Mz.n,
formers besides three resistors and o_!: R R

three capacitors. It would be uneco- P l' 2 "

nomical to use becauge the ¢irzuit in Fls)— I ?Rs
Figure 48 needs only one perfectly Cr Cs
coupled transformer, Nevertheless, we T T

designed this circuit to show a com- e

parison with the circuit in Figure 37. Figure 50, Final Circuit to be Compared

This is the circuit wherc we have with the Circuit in Figure 52
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adjusted the cozfficients of T'(s). W e redraw that circuit to get a better picture,

The circuit in Figure 51 is the same as the one in Figure 37; its circuit elements
are as follows:

Rl = l/xt = 4,5689021, Ml = K(l-r‘)v1 = 4, 1593753,

2
H2 K(I-R)/(nin?)“ = 0.5458518, M, = -i\’ll/k1 = -0.4051684,

C, = 1/K(1-x-)xl = 0. 3025532,

) = b = 50 )--
(2 lel 3. 1082465

By adjusting the coefficients, we

M, .n, M.,n

. . R i e 2
comkbined resistors Rl and R2 of the cir- o—-l -

cuit in Figure 50 with resistor RI of the G R I é

circuit in Figure 51. In the circuit in ” || >
Figure 50 are the products M,C, = Fls)—~ ‘f ; R,
1/0. 8002532 and M,C, = -1/0.7871274. Cz TC%
These two different products are combined i

in the circuit of Figure 51 to Ml(‘2 =
= Figure 51. Final Circuit Implying
- = L4 r
MZCS 0.7946394. Two Perfectly Coupled Transformers
After inserting impedances (x, -xo)/s,
we obtained the circuit imglying the lattice

section. The main advantage of the final

circuit in Faigure 40 is that it contains no transformers. For this reason it cannot

with justice he compared to any of the circuits in Figures 48 or 50. However, it

is well known that the circuit in Figure 48 can be transformed into a Bott-Duffin

(1949) structure. A Bott-Duffin structure contains no transformer, but that ad-

vantage has to be paid for with a considerable number of additional circuit

ciements. The Bott-Duffin procedure is explained in many textbooks on passive

circuit synthesis. Since its performance is rather w:dious, llaase (1967)

developed a shortcut procedure. Using the instructions presented in that paper,

we will not transform the circuit shown in Figure 48 into the Boti~Duffin circuit
pictured in Figure 52,

The bi-order function F(s) to be converted by the Bott-Duffin procedure is
F(s) = [F(s) - 1/C s - R ]/0.9590568,

with C1 and Rl listed for Figure 48. These vlements reappear in the circuit in

Figure 52 as C6 and R7 respectively. The coefficients of the F(s) point function
to be converted by Bott-Duffin are
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t N; i"Si Ri Ra Rs Co L: Re La
- A ~ UG
: 0 |0.4763817 | 0,837 I é , Vo —]
: L . R Cs
; 1 ]1.4889315 | 1.564 ! AN |
3 2 | 1.4926433 ' 2.261 Ls Cs '
1 3 |2.1143020 { 1.756 — B Ls
: 4 | 1.0c00000 | 1.000 %}Cs T
‘ The regular Brune procedure R, Ce
{according to Haase (1970b) yields A MN—— Fls) ©
2 Brune T with the following
b constants; Figure 52, Conventional Bott~Duffin Circuit
i v =4.1220575, n = 1.1483504, @ =x/v =0.8002532, u = v(n-1) = 0. 6116424,
3 = -u/n = -0.5326269, x = 3.2994099, z = G.7583175.
4
i The terminating normalized function F'(s) has the coefficients:
# ,
3 ?
L
4 o | 0.6241664 | 0.9975290
- 1 1.6803576 1.8932118
E 2 l 1.0000000 | 1.0000000

o

We now follow the instructions presented by Haase (1967, page 40):
We compute the coefficients of the polynomial

PRSI N

3 G(s) = sD(s) - N(s)/u .

. pnsememy =

¥ These coefficients are listed in the table below.
%
i G, G(s)/(s-5,) a(s)
0 -0.7788565 | 0.4994915 0.6241664
> 1] ~3.5973170, 1.3447116 | 1.6803576
; 2 ~0.8763855 | 1.4244196 1. 0000000
s 3 -1, 1457616 | 1.6863576
4 4 0. 1210578 | 1. 0000000

5 1, 0000000

AP TR PR

N
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The polynomial G(s) has a real root 8, = 1. 5592998,

It also contains the factor

89

(32 + Q). The coefficients of G(s)/(s-sz) and of G(s)/(s-sz)(s2 +§2,5) = afs) are
alsn listed in the table above.
The constants determining the Bott-Duffin circuit are:

K= us, = 0. 9537338, which yields K2 = 0, 9036081,

and

ca 2/ ® -
k =8, /(s2 +24) = 0.7523715.

Next we have to compute the polynomials

Gis) = sii(s) - Kszﬁ(s). and g(s) = E(S)/(s-sz) .

They have the coefficients listed below:

i G(s) %) b(s)

0 -1. 2447503 | 0.7982756 0.9975290
1 ~-1,8495316 | 1.6980746 1.8932118
2 -1.8735302 | 2.2805185 1. 6000000
3 ~1.1188042 | 2.1864448

4 0.6271451 | 1.0000000

) 1. 0000000

The polynom.. »{e)is

b(s) = _E(S) - Kzsg(s)/kv ;
82 + Qo

its coefficients are listed in the table above.

The circuit with the driving-point impedance a(s)/b(s) is the same as shown
in Figure 45, but its elements are

]

ry = 0.6257125, 1 0,4969794,

1

r, = 0. 3742875, c1

r, = 0. 0605488,

£

14.4862453.

0.9590568, we can compute the elements of the final

By defining the constant H
Bott-Duffin circuit shown in Figure 52 as follows:
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; R, = Hrgk® = 0.5458501, L, = H1,K® = 04335478,
R, = Hr K? = 0. 3265156, L, = He, = 13.2931320,
E R, = Hr,K? = 0.0528207, L, = Hvk = 2. 9749900,
3 R, = H/r = 1.5327435, L, = K®H/kx = 0.3514228,
] Ry = H/r = 2.5623531, L, = Hu = 0. 5865998,
R, = H/r, = 15. 8394022, C, = ¢,/HK” = 16.5056999,
R, = 0.5699413, C, = 1,/H = 0.5181950,
Cy = 1/LgR, = 0.4200365,
Cy4 = 1/L, % = 3.5558438.
C4 = Lg/K?H? = 0.7011305,
Cg4 = 4.5989021,

Circuit analysis yields F(1) = 1. 6370967, which is in sufficient agreement with the
true result of F(1) = 1.6370989.

We are now in the positicn to compare economically the result of the con-
ventional Bott-Dufiin realization with the novel circuit realization implying a
lattice structure. The circuit in Figure 52 needs 18 circuit elements: 7 resistors,
% inductors, and 6 capacitors; the circuit in Figure 40 needs 8 circuit elements:

2 resistors, 2 inductors, and 4 capacitors.
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