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Abstract

A novel procedure for realizing certain driving-point impedances without the

use of transformers is discussed. The circuits obtained imply an LC -lattice two-

port, and they are smaller, lighter, and have considerably fewer elements than

do ,-onventional (Bott-Duffin) circuits.
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Impedance Circuits Imbedding
an LC-Lattice Two-Port

1. INTRODUCTION

In 1963, Fusachika Miyata (1963) showed that a positive real driving-point
function F(s) - N(s)/D(s), where D(s) is of the degree 5 and N(s) of the degree 4,

cculd be realized by the circuit shown in Figure 1. This is possible, provided that

N(s) and D(s) satisfy some conditions beyond the mere necessity of making up a
positive real function. The circuit shown needs only a few elements and contains
no transformers.

This paper originates from Miyata's, but it's aspect is quite different. We
realized that the heart of Miyata's circuit was the lattice structire that is box-

framed in Figure 1. This lattice structure de-
rives from a driving-point impedance -

F(s) v N(s)/D(s) that must satisfy certain condi-
tions. Augmenting the lattice two-port by some _

elements allowed us to design similar circuits for
a family of driving-point functions F(s) in which

Miyata's circuit is one member. The design
procedure outlined in our discussion is extremely
simple and uses straightforward formulas. Figure 1. Miyata Circuit

(Received for publication 19 May 1971
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2. A CODE NOTATION FOR POSITIVE REAL FUNCTIONS

A positive real function F(s) is the quotient of a numerator polynomial N(s)

and a denominator polynomial D(s):

F (s) N (1)D~s)Ds s1 + D s + + Ds + D1 0

The necessary and sufficient conditions for F(s) to be .)sitive real (pr) were
established by Otto Brune (1930). They are: The zeroat of N(s) and D(s) cannot be

located in the right half of the complex s-plane. Any zeros on the imaginary j w

axis must be simple and have positive residues. The real component of the com-

plex function FQw) must be Re FtJw) nonnegative for all +w.

It can easily be shown that if F(s) is pr the following statements must hold:

(I) The coefficients of N(s) and of D(s) must be positive.

(2) The degrees M and v in Eq. (1) are either equal or 1P - vi •1.

(3a) With the exception of N0 and D0 , none of the coefficients up to N and

T> is mizaing; either N0 or D O may be missing, but not both, since we assume

that N(s) and D(s) have no common factor.

(3b) All coefficients with an ever, subindex in the numerator and all coefficients

with an odd subindex in the denominator, or vice versa, may be missing.

Without causing any limitations we shall agree that:

(1) The polynomial D(s) is always assumed to be a normalized polynomial by

the fact that D 1.
(2) The polynomial N(s) is not assmned to be normalized if v pa 1. Thus

Np is a positive coefficient of any magnitude, including 1 of course. ]iut when

v - i, ;nd neither N0 nor D0 are zero, N(s) is also considered to be normalized

and we express the function as KF(s) with K a positive constant.

(3) We express the degrees of both polynomials by v and Y * 1.

In a paper that the author presented at the Third Hawaii international Con-

ference on System Sciences 1970 (Haase, 1970a), it was shown that conveniently

coded no'tations can be used to express a pr function by a capitai letter, a numerical

subindex, and eventually the exponent -1. The letter P is used for functions where

N(s) and D(s) are of the same degree, and the letter Q is used when the degrees

differ by one. In this paper we deal only with P and Q functions. The subindex is

either an even or an odd integer and is related to the degrees of the polynomials.

The code notations for the functions of interest are listed in Table 1.



Table 1. Impedances F(s) , N(s)/D(s) Expressed by Function Codes

Code De ree of Special ReL'tion
Code (Ns! D(s) Zero Coefficients of Coefficients

P7  4 4 None N0 >D 0, N4 x 1

P7 4 4 Noe TYPES NO D N4  1

Fs P) 0 5 + 5 Do + 0

P1 5 i5 N O

QlO 5 4 None

Q 1 4 5 None

Q1l 6 5 No a 0

3. THE BIQUARTIC DRIVING-POINT FUNCTIONS OF TYPES P7 AND P7 1

Consider the funtoon

F(s) - Ns) .a +  3Ss  2 14 +  s +4 (2)
U(s) 94s +73s 33+ 132s2 + Dis + DO )

Thi fucton s f te ypeP7if i0 > DO* or 170/IY0 > 1. ft is of the type P-1 if,

inversely, IT < D or NiD 0 < 1. We have added a bar over the capital letters in
order to enhance the fact that not only D(s) but also lq(s) is a normalized poly-

nomial, and the whole function is normalized by the fact that P (co) •1. No matter

what other relations exist between the positive coefficients 'No .... 1q3 Nq4-I and

50 , .... 0 D3 D4 w 1, it is evident that r(0) - Re T (Q0) a lq0/D0 and (o) •

Re r~jo) a 1. Since, due to the positive realness of r (s), Re Pow ) must be a

for all positive and negative w , the curve representing F(Q w) over the abscissa

scaled in Q z w2 can never tresspaas the 0 -axis between I] a 0 arvd Q = + ao. In our
discussions we are especially interested in the case where the curve Re 1(jw)vs .
has a minimum appearing at ft 0 and a magnitude Re F(jw0 ), where

00 X W0 2 . (3)
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A1

On'I-o 1 -I/n0 OA " 110 1 - " 11no

Figure 2. Resl Component of FQw) Figure 3. Ryal Component Fow)
vs L0l zw2 of a P7 -type Function vs V& of a Pj -type Function

This case is shown in Figure 2 by curve (A), assuming that F(s) is of the type
P7 . Likewise, Figure 3 shows the situation for a P7 1 type function. Let the

minhnum be of the magnitude r. Then evidently the function

F(s) - r a (1 - r)[ tN(s) - rD(s)]/( 1 - r)

Pn)r( ) 1(s) 4)

is still pr. This function is represented by curve (B) in Figures 2 and 3. The

minimum is now located on the abscissa at 170. A function with thE minimum of

Re Fow) on the abscissa is referred to in the lit( rature as a "Minimum Resistance

Function". Note that by extracting the factor (1-) in Eqo (3) the numerator in the

fraction becomes a normalized polynomial. It has the same degree as 15 (s). It is

necessary to extract the factor, since we agreed to assume that in a P7 or P7 1

function the numerator is a normalized polynomial. In the next Section we discuss
-1

the minimum function of types P7 and P 7

3.1 The Minimum Functions of Types P7 and P7"I and Their Brune Realization

A recent paper of mine (Haase, 1970b) was extensively devoted to the

computational technique of the design of driving-

point impedances according to Brune (1970).

Applying this technique to a minimum function

of the type P7 (or P7 , it does not matter) #8

has the result shown in Figure 4. The real- Fis'e.

ized circuit consists of a Brune section in

T form, terminated with an impedance z','(s), _ "

where z' ib z positive constant and PI(s) is a
function of the type P3(or Pl). The latter Figure 4. Brune Section

31  3 Terminated with an Impe-
function is biquadratic, the quotient of two dance Function
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normalized quadratic polynomials. There is of course no resistance at the input,

since P (s) is assumed to be a minimum function (for such a resistance we used

the letter symbol k in a previous paper (Haase, 1970b); in the present paper we

used a different letter in order to save k for another purpose (in Eq. (4) we used

the letter r).

The T of the Brune section in Figure 5 consists of the inductive impedances

us and w s and a shunt branch with the impedance vs + x / s. Between the

constants v, v, and w the equation

I/u + I/v + l/w = 0 (5)

must hold. This is the case when

u = -w/n = v(n-1) , (6)

with v and n positive constants. The shunt branch has the impedance

vsxsv 0 (7)Vs + X/s - V 0 7

when we define

r2 = 2Lv  (8)

Note that since x and v are positive constants,

s2 + P0 z 0 is.identical with s =jw 0 (9)

In Haase (1970b) we defined

NOW0) RN + J:QoS( (1o)

and

DO(jO) C RD5 + JJ0SO5  (11)

and we devised a computational routine that yields the real constants RN, SNo RD,

and SD from the coefficients of N(s) and D(s) respectively. We also showed that
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Rq + JCOSN RD  Jw 0 Sy
~~~~~~Re Po(w0 ) - J0 wS

R1+ Jw0 SD R1- JwOS D

R RRD + 0S~nS
RD' + (S122  )

Since F(s) is a minimum function, the right side in Eq. 12 must be zero,

that is,

PNRD + f0SNSf 0. (13)

Evaluated at JwO, it Is physically necessary that

RuSP - RN sD (14)

u P 0 )= 2 2

We found further that with

Rg x SD - 05  
- Rn/U (15)

and

Sg 3Rd- Sn/u (16)

the constant n in Eq. 6) is

(RD/SD - Rg/SK)SD
n - 1+ H (17)

g g + 0)Sg

with

V U (18)~n- 1

following from Eq. (6). The constant z' is

z' 1/n 2 .  (19)

4

7€
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In Eqs. (15) and (16), R n, Sn, R d, and Sd are the second-order evaluation

coefficients obtained when the first-order evaluation coefficients, RN, Slq, RD '

and SD have been computed and the routine computation is repeated and applied to

the remainder polynomials N(s)/(s 2 + r?0) and D(s)/(s 2 + 10). Thus, the constants

n, v, x, and z' can be obtained by the straight-forward formulas of Eqs. (17),

(18), (19), and (8).
The next step we have to perform is the realization of the terminating driving-

point function z1Ft(s). This is discussed below.

3.2 1'he iI*,ization of lIee [)riving-Point Function z'l:(s)'

As has already beer mentioned, F'(s) is a biquadratic function of type P 3 or
P31 , Generally, Re PI'(s) may have a minimum at a certain location on the

Q-axis. For the subclass of functions of types P7 and P; I, it would not have
such a minimum. But let us first deviate for a moment from our subject and

consfler the realization of a minimum function P 3 (or P.), and let us suppose

that the minimum is at fQ0 again. Such a function would be

s2 +NIs+N
F(s) 2 (20)s + DIS+D O

1 0

with

D ( o- D0)2 . (21)

It would have the *realization shown in Figure 5. The constants n and v would be

positive, the terminating constant, realized by a resistor, would be

z - l/n 2 _ N0/D . (22)

Eqs. (5) and (6) would hold.

Ie z "U/ n= i7 1,z %z/

Figure 5. Resistively Ter- Figure 6. Resistively Terminated
minated Brune Section Brune Section with Negative Mutual

Inductance and Turn Ratio
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Consider now the very similar circuit shown in Figure 6. Here we assume

that the inductance v is negative. Eq. (5) postulates that one of the three in-

ductances u, v, and w is negative. Previously we assumed that either u or w was

negative (depending on the magnitude of the positive constant n). Why shouldn't v

be the negative inductance ? We recognize immediately that if v is negative, then

n must also be negative to satisfy Eq. (6). Introducing

v -v (23a)

and

n - , (23b)

s 2 +x + 1)2 + x/ n. (24)
F (a) -s 2 x s/Vn + xF/V

A comparison with Eq. (20) then shows that

N D1 > (VN 0 _VD0
) 2 '  (25)

which proves that F(s) is not a minimum function.

Let us now consider the shunt branch in the circuit in Figure 6. It has the

impedance

2
-76 + x/s - - " (26)

and its "resonance frequency" is

s + 41o- " % (27)

whereas for the circuit in Figure 6

s a j0 (28)

It was Brune's idea to recognize that an inductance star built by the inductances

u, v, and w is equivalent to a perfectly coupled transformer having the turn ratio

n and the mutual inductance v. Thus, the circuit in Figure 5 is equivalent to the
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circuit shown in Figure 7. We obtain the picture of a circuit implying a negative
inductance v and a negative turn ratio n simply by interchanging the transformer
terminals on one side, as it is shown in Figure 8 where the circuit is equivalent

to that in Figure 6.

x IL

Figure 7. Circuit 1 quivalent Figure 8. Circuit Equivalent
to that in Figure 5 to that in Figure 6

Let us now go back to our problem of realizing a driving-point impedance of

the type P7 (or P7 l). We are interested in a special class of functions V'(s) of this
type: We want the driving-point impedance P(s) to be realizable as shown in

Figure 9, a tandem of two Brune sections with a resistive termination. The function
P(s) of Eq. (2) would have the termination

Zn U / 0 (. (29)

In the first section of Figure 9, n1 and v1 are positive; x1 is also positive and

fl o ,x 1 /v 1 . (30)

In the second section, v? and n2 are negative. The constant x is positive and

0 -x2/v 2 . (31)

It is evident that Pl(s) as presented in Eq. (2) cannot have coefficients of N(s)
and 15(s) at random. A certain relationship between these coefficients is necessary,

which will be the subject of our discussions in Section 4. The realization of r(s)

is special, insofar as there is no resistance between the two Brune sections and

Q 0 obtained in Eqs. (30) and (31) is the same. There is, we may say, "a very

special" function P(s) that, in addition to the aforementioned properties of its
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realization, also has the property that -nln 2  1. If this is the case, then the

circuit in Figure 9 is equivalent to the circuit in Figure 10; the two Brune sections

together then become equivalent to a lattice two-port consisting of two inductances

va and vb and two capacitances 1/xa and 1/xb . The tandem-lattice equivalence will

be discussed in Section 5.

in2
D n Section I I Te P orI v, positive Vt negraotive

i n Is

V.'2

Figure 9. Tandem of Two Brune Sections Realizing a
Driving-Point Function of the Type P7 or P71

Figure 10. Lattice Equivalent to
Z the Circuit in Figure 9

Vbs

4. TIlE REALIZATION OF THE SPECIAL P7 TYPE FUNCTION F(s)

Assume that a driving-point impedance function is expressed in the form of

Eq. (2) and should be-realized as shown in Figure 9. From physically investigating

the circuit in this figure, let us now find the relation between the coefficients of

N(s) and D(s).
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First assiume that s = jw0. Then the shunt Impedance of the first Brune

section becomek; zero, since x / 10 =0 Since there is no resistance at

the input,

acc(ding to Eq. (12) .
As explained by Haase (1970b).

Rjq _ C202 _-f n0 42 +T "0  (32)

RD _ n02 _ n0D2 + 150 (33)

S . -- 3N3 + N1  (34)

s15= -2oD 3 + . (35)

Therefore,

R RD + floSEqS D =-L64 + j202INo + D0 + N2D - 15D -rI~ +N

+ InO31N3D 3 - N2 - 121 (36)

+ 1 - 2 - NOD 21 =0.

We are also able to cascade the circuit in Figure 9 in such a way that Brune

aection 2 is to the left of section 1. Assume we have done this, and we now let

a X W0" Let us denote

0 ) R5 +0 S(

(%) AVID + ,sI5 (38)

Since the evaluation program computes the constants R!, St , R*, and S* by

feeding in -0 instead of + f00 as discussed by Haase (1970b), we may formally

i se the script

POOa) Re POO) + Im P(to0)
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although .aterpreting "Re" as "real component" and "Im" as "imaginary component"
does not make much sense at the moment. Thus

* * * *- *O**

RR - S oS 5 + w[ R-S- - RS= 0. , D (40)
R 2 

- S

Therefore

RIRD  - DzoS SI
ReF(w) = *must be = 0. (41)

Ry i' -2  n NO+So 2 - O

! Since

RRn 22  +_ n (42)

R

R O 2 0D2 +s b (43)

D 0 2 02

* = 1aN 3+ N (44)

3 1 %

*D = O03 + DI . (45)

Sinc

we obtain

RNR - 0 SRSD 0 + + O + N2f 2 -nol 1 -+l 3 ] +(42)

-! t' 3 3 - 12 + n2 ] (46)

D- 0 0 2D0 - O  0.

Thne condition that Re 1~(j O) and Re (wO) are both zero is satisfied when

c 1 +N11 1 - Ro 2 - l =0 (44)

and
c3 = 03 313 N2 -3 -2 =0 (48)

-9n 
q2 o -" '2

Th odto htRe-w0)adR 4.0)aebt eo sstsidwe
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and when 0 is a duplex root of the quartic equation

n4 + 2 (Nf2 +'N + D 3 .D - P D R (49)
2 2 0 0  3  1 1 f 3 . ONl O (49

Therefore, the left side of Eq. (49) must be identical with

2 2 4 2 4
42 -202 + Q0 (50)

By comparison

So = +4 .(51)

But then,

c2 -N2 D2 D R3D 1 R lD3 (N D 2 -0 -D0) 0 (52)

with either the + or the - sign.

Note that in Eqs. (47), (48), and (52) the letters N can be interchanged with

the letters D. Therefore, when these zero identities hold for P(s), they also hold

for i/F(s).
We are now able to state:

A function F(s) presented in Eq. (2) is a special function of either the type

P7 or the type P; 1 , if'its coefficients 1 and D i satisfy Eqs. (47), (48), and (52).

Here is a numerical example:

Assume coefficients listed in the following table:

I i

0 0.36 2 7/9

1 5.12 2 1/9

2 2.48 10 8/9

3 2.56 5 2/9

4 1.00 1

By Eq. (47) c 1  0.0000003

By Eq. (48) c 3 = 0.0000000
ByEq. (51) f0 1.0

By Eq. (52) C2 = -0. 0000003 (with + sign in Eq. (52)).
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Later we shall also need the result

-n n 2 = NF-D0/lq0

for which we obtain in this example n n2  -2
2 9

It can easily be shown that n1 is the ratio U 1/w 1 in the lirst and n2 is the ratio

u2/w 2 in the second Brune section in Figure 9. Since n1 > 0 and n2 <0, the
minuf. sign in Eq. (53)'becomes evident.

If we aun to the design of the circuit in Figure 9, it is necessary that we
start with a special function. Therefore, consider the content of the following
Section as a test.

4.1 Test Routine T

The purpose of the following routine computation is to test whether or not a

given function is a special one, and to compute S10 and the product n1 n2 (that

must be negative).

Given: the coefficients 1 and Di, 0 1 3, N4 =fl 4 =1

(1) Compute c 1 Eq. (47)

(2) Compute c2 Eq. (52)
(3) Compute c3 Eq. (48)
(4) Compute Q 0 Eq. (51)

(5) Compute n1 n2 Eq. (53).

4.2 Realization of theCircuit in Figure 9

We could design our circuit by applying twice the Brune procedure to the

function r(s) known by its coefficients and proved to be a special function. This,
however, would be inefficient. Instead let us synthesize the function P(s),

starting from the circuit.
First of all, since the shunt impedance of the first Brune section in Figure 9

is
2v1 s + x /s = V I(s + C0 )/s ,

and the shunt impedance of the second section is

V2S + x 2 /S X -v 2 (s2 - )/s ,

we can cxpress v2 and x" in terms of v1 and x,, using a positive constant k1 .

Then
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v v2  v Vl/k 1 (54)

x 2 Xl/k I  (55)

For convenience, we have redrawn the circuit, and present it with .hese notations
in Figure 11.

° - I

I XI/(- n, "2)

Section I Section 2 I
II I

I no positive n2 negative

noI o " I
Figure 11. Tandem of Two Brune Sections Realizing a
Driving-Point Function of the Type P7 or p 7 -

Analyzing the circuit yields the following results:

_ =-- 0 2  l(57)

f 0 0(n1-1) 2

N2  1 12 0 2 0k1 2

n 1 (n2 -n 1  kl(n C 1)2

2 nZ n 
(58)
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x n12 (n2  I)Y,

xn- (nkl1Y' + x 1 (n 1 -1)

xl[n1
2 (n2 -1) 2 + kl(nl-1) 2 ]

211
k (59)

n n (60)
0l001 2

01 1oVllDVnl2 Vnn (kl+l1) (61)

1 12 1 12 1
0(  

1 2

2
D _ - 0 n2 + f2 0n 1 + k

1

f 0~ nlo2.)
+ k (n-n2)  (62)

k 1 1 2 kl 1

3  2 .n 2 (63)
Vlln 2  V 1 v 1 22

Equations (56) and (60) show that Eqs. (51) and (53) are true. In Eqs. (56) to (63)

we know the coefficients on the left side and we know the product nln2 and Q on

4 the right side. It would be tremendously complicated to solve this system of

equations, since it is non-linear. Thus, we have to look for another way, but we

can easily check our results with the system of these equations.

In Section 3. 1 we presented the formulas of Eqs. (14) to (18) by which the

constants v 1 and n1 can be determined. We are only intermediately interested in

the value of u1 = v 1 (nl-1). The constant x is

x = (64)1 10*

Similarly to Eq. (14),

RDSN -N Ss [RD/S D *N/SN
u = = D J

. (6b)

But by k 1 = Xl/x 2

n 2 -1 (n-I)u* . u(n 1 +I)
n-1 (n 1+l)u - u(n 1-l,6

4
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All constants in the circuit Figure 11 are now known. We refer to this design

procedure as the "Realization Procedure R and present it in compact form below.

4.3 Realization Procedure RI

Prerequisit:

The "Test Procedure T" (Section 4. 1) showed that ci=.c2 =c3 =0 and, therefore,
that the P(s) under investigation is a special function. The procedure also
presented R2 and the product nln2 :

(1) Compute the evaluation coefficients RNq, Sr, Rfl, S13, R , S, Rj, and
Si for the N(s) and D(s) evaluated with - f20 (see Chapter 3 in i!nase (1970b) for
computational routine)

(2) Compute the evaluation coefficients RIq, SN, R3, and S15 for the N(s)

and D(s) evaluated with +Q 0

(3) Compute uI accord!ng to Eq. (15)

W(4 Compute nI according to Eq. (17)
(5) Compute vi according to Eq. (18)
(6) Compute x according to Eq. (64)
(7) Compute k according to Eq. (66)I 4.4 Numerical Examples

Included in most of the main sections of this paper are numerical examples in
which we show the application of the theory discussed in this Section. The examples

are treated only insofar as the content of the Section deals with the matter. All
examples were computed on the desk-top computer Programma 101 of the
Olivetti Underwood Corporation. The pertinent programs are available on request

from the author.
The numerical values used in the examples are chosen to show the numerical

procedure rather than to represent technically reasonable circuits. For this reason
the reader should not be concerned when the sizes of the circuit elements obtained

V are in some instances awkward.

Example 4.4.1

Let a function F(s) have the coefficients that are listed in Storages 164 A and B

of the following program that computes the test values c1 , c2 . and c, the value
R2OO and the product nln2 . The computatioml program of Crrds 164 A and B

assumes that in Eq. (52) the + sign holds. Since all three test values are almost

zero, Pf(s) can be considered as a "special function."

A
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Coefficients Ni Coefficients N1

1" 0 -10 6 6 66i6 1 0 011066666 dO
80 1 20.3520000 0 o,0 1 20-3520000 00

,0-4
2 1.1333333 e 0 2 1 1333333 0

S 3 34.0800000 EQ4 0a 3 340800000 E0

4 1.oooooon fo 4 1.U00000g F

Coefficients i Coefficients 3i

i-- 0 3o8400000 d0 1. a 0 308400000 do
0oI 1 0.53968 200 a 1 0 2539682 00

'.0 0 %02 7 6571428 1.0 2 765 7142 8 0

o$ 3 0.2579365 E, 0 3 0 257 g365 EO
Cl 4 1*0000000 f* 0Ca 0 4 1.ooooooo r

V V

eI -- 0"0000003 AO c1 - -00000003 AO

c 2 = 0.0000011 Ao c 2 "- 2.5599977 A 0
c3 --0.0000002 AO c3 

= -0.0000002 AO

S0 a 0.7999998 A@ S0 a 0*7999998 AO
nln2 -6"*0000018 A* nln2 - "6"0000018 AO

Test with + sign in Test with - sign in
Eq. (52) Eq. (52)

Test Procedure T Applied to '(s) in Example 4.4. 1

We have also devised a program that holds with the - sign in Eq. (52). Testing

the function with this program on Cards 165 A and B yields the same values for c

and ay but here c2 = -2. 5599977 due to the wrong polarity of the sign in Eq. (52).

we have shown that a Type P function *V(s) (N(s) and D(s) of degree 4

each, Nq <Th0 ) is a special function, we can continue with the realization procedure

R . For th:, purpose we have stored the coefficients of N(s) and D(N) on Evaluation

Cards 171 kA and 171 BB. The evaluation program yields evaluation coefficients

RNO S N R_, Sn and R DO S D, Rd S d when N(s) and D(s) are evaluated for -0 -0.8,

and evaluation coefficients RN, S*and R D .S*when N(s) and D(s) are evaluated for

f0 - 0. 8. The evaluation coefficients have been printed out on the following tapes

for the reader's convenience. The continuation of the program following the

!"I



19

Coefficients Ni 1 0.8 bI
0

0 01066666 *0 RS

0 el 1 20 3520000 EO V
2 1I 1333333 f V

0 W 34.0800000 FO * ,N 1.6533332 e 0
4120 4 1.00000 0 N- 47-6160000 EO

RS
Coefficients D V

i = 0 3.8400000 e0 V
1 0*2539682 E0 0R = 10.6057142 e0

0or-
2 7-6571428 f0 S* = 0'4603174 E0

0 M 3 0.2579365 FO
CA 0 4 1.00000nO a0 W

Y

_Q0 =-0.8 b t y
R S Y

V W
V

RN =01600000 *0 nln 2 =-6.0000018 cf
SN- -6.9120000 EO V
RN = -0.4666667 f0 nl - 2.0000001 bO

SN = 34.0800000 FO n2 -- 3.0000007 80
R S

V vI u 4.1999Q97 cO
V x1 = 3e3599997 Z0

RD -- 1 6457142 e0
SD= 0.4761o0 E0 k1 . 7.0000004 A0
RD = 6.0571428 f@ 0
SD = 0.2579365 FO

Example 4.4. 1. Realization Procedure R

.valuations computes the ratios n and n 2 , the inductance Vl, the inverse capacitance

X1 of the first shunt section, and the factor k1 . These values determine the circuit
in Figure 11 where the terminating resistance is z - N0 / 0 a 1/(nln2 ) = 1/36.

Example 4.4.2

In this example we interchange the polynomials N(s) and D(e) with the poly-

nomials of example 4.4. 1. In the test procedure this exchange has the effect that

the product nIn2 becomes inverse. All other results are unchanged.
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IICoefficients HiiCoefficients lij

1 0 3*8400000 d 0 1 0 3o8400000 d O
1 0.2539682 00 0 1 0#2539682 D0

2 7*6571428 * 2 7-6571428 *¢
0 $40 W 3 0"257 ,36S EO 3 0.2579365 EO

4 1.0000000 F 0 4 1.0000000 f0

__ _ CoeffciensCoefficients Di

O 0 a 1066666 dO i 0 0.1066666 d

1 20-3S20Oo oM 12 0o.352oOo0 Do0

2 1 133 3 3 2 1 -13 33 3 33 t 0
a W I 3 14.0800000 E 0 3134 0800000 EQ

4 1.00000G r 0flU 4 1o0000000 F

V V
V V

c 1 a -o00000003 AO c I - -0.0000003 AI

c 2 a 0.0000011 AO c 2  -?.55qq977 AQ

c 3  a -0.0000002 AO c3  . -0.0000002 AQ

a'O - 0-7999998 A @a 0 .7q99998 A 0

ln 2  -0.1666664 A@ n0n2  0.1666664 AI

Test with + sign in Test with - sign in
Eq. (52) Eq. (32)

Test Procedure T Applied to P(s) in Example 4.4.2

As the tape representing the realization procedure R shows, the evaluation

coefficients for evaluating N(s) are exchanged with the coefficients for evaluating

D(s) in example 4.4. 1 and vice versa. The result is evident. There is, however,

no simple relaion of the previous results to the v 1 , x 1 , and k obtained in the

present example.

The circuit realizing the driving-point impedance P(s) in example 4.4.2 (type

P V NO > D0 , N(s) and D(s) both of degree 4) is the same as pictured in Figure 11.

The terminating resistance is z i/(n 1 2) 36.
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Coefficients N, + = 0 * 8 b

I 0 3"6400000 e0 RS
1 0 2539682 FO V

0or-
' 2 7 6571428 f0 V

0 $' 3 0 2579365 F R*= 10.6057142 eO
(00 4 1000000 e0 sN= 0.460317 4 FI

R S

Coefficients DI V

i -0 0.1066666 e I
r," 1 20"3520 000 O RD = 1 6533332 e 0

2 1*1333333 F S*= 4/.6160000 E0
o W 3 34*0800000 F
(00 4 1.0000000 eQ 04

"Q0 * 3. 8 b1 Y

V Y

PN =  -1"6457142 e ;

SSN, 0. 047619 0 E nn 2 fi - 0.1666664 c t

Rn ' 6.0571428 f V

Sn 0 .7579365 F 0 nIi 3.499 q99q D
S n 2 = - 03333328 5

V

V v I = 0.5o52378 cI

RD . -3.160000) e 0 0.4 761q02 C)

SD = -6.9120000 FO
Rd = - -4666667 f0 k, = 1.523A088

Sd = 34.0800')00 FO

Example 4.4. 2. Realization Procedure R
I1

5. TIE CIRCUIT EQUIVALENCE FOR A "VEIY SPECIA\L FUNCTION F(s)"

A very special function F(s) of the type P 7 or P7 has the tandem realizaton

shown in Figure 12. Compared with the circuit in Figure 11, the ratios are:

n, = n (67)

n 2 a-l/n. (68)
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Section 1 Section 2
I n n I I2 -/

1,0 /Figure 13. Lattice
Equivalent Circuit to

Figure 12. Brune Tandem of a "Very Special Figure 12
Function P (s)"

We will now show that the two sequential Brune sections are identical with the

lattice section in Figure 13. If this is so, then both circuits have the same driving-
point function and the same termination. Two-ports are equivalent when they have

the same chain matrix.
The chain matrix derives from the primary-secondary two-port equations

F2 ( ) I ( B (69)

I1  E2 (C) ~2 1 (70)

In the familiar matrix notation

A B

C D

we introduce a common denominator E. Then each of the symbols A, B, C, D, and
E represents a polynomial in the matrix

Ks 1 (72)
C D

For the sake of briefness, we also refer to the matrix in Eq. (72) as the ABCD
matrix.
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The constants in the circuit of Figure 12 are:

First Section Second Section

v, n v/k, -I/n

u I •-nw I  v(n-1) u 2 = w2 /n = v(n+l)/nk

x. =v2 K =x x 2 = x/k1. 0

With these constants, the matrix elements are:

First Section Second Section

A, M s2n + "0 (73) A2 x s2/n + fl 0  (78)

BI a sv. 0(n- 1)2/n (74) B2 ' svQ 0(n+l) 2/nk (79)

C = s/v (75) C2 - ks/v (80)

D 1 0 2/n + "0 (76) D2 = s2n + PCO (81)

EI = n 0 + s 2  (77) E2 L 10 - $2  (82)

The matrix of the circuit in Figure 12 is obtained as the product

~ CT Dr I=~-(83)E T C D T T 2 C D I C 2 2  E T C T D T I

Therefore, the ele~nents of the product matrix are:

A 4 + 2 LO0 [(n 2 +1) + k(n-1) 2 ] + 2 (84)

BTX S(s2 + v/n) !-k (n + l )2 + k(n'l)2] (85)

C a s(s 2 +nf 0 ) 1 + k (86)T 0 vn

DT 4 + 2 0 [(n+1) 2 + k(n2+1)] + 102 (87)
T
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2 4 (88) 

The lattice in Figure 13 has the impedances vaS, Vbs, Xa/a, and Xb/S in its

branches. The elements of the ABCD matrix of the lattice are:

ALu 4  + + .x 89)LV V a V b ,,

B 2 (va + Vb)XaXb 4(
L + XaXb)VaV ( a+Xb) (90)

IS xa I xbvavb

CLs 2 + V+V+ ' Va V b (91)

4 2 xaD +]* (92)DL s! s2 va VbJ VaVb

•xaxj 84

E Xa~ .~4(93)
L VaVb

AT"The circuits in Figures 12 and 13 are supposed to be equivalent. Therefore, I
A T a A L # B T =B L , .... The comparison of the elements in Eqs. (84) to (88) and

(89) to (92) yields the following set of equations that has the constants of the circuit '1
in Figure 12 on the left side and the impedance constants of the lattice on the right 5

:side: 1

. ab (94)

Xa + Xb

nnO v+ 95

a b
1+ k Va + Vb
VnI Vaab

(no2+1) + k 3n (97)b~
-- L• VaVb 9
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k [(n1)2 + k(n-1)2 ) Xa+Xb (98)

0 [(n+ 1)2+ k(n2+1)] VbXa +VaXb (99)

Our next problem is to express each of the unknowns 'a' VbP Xa and xb in

terms of the known constants. For this purpose we introduce two terms, P and Q,

where each again can be expressed either in terms of the unknowns or in terms of

the constants:

P. j -[(n+l)2 +k(n-12] (a+ xb) Ixib (100)
k x + X

Q L+k 'a 4Xb (101)
4ivfl 4xax

By introducing the third term,

K 41 -1(102)%

We obtain

va - (K) 1 - (1-K)(n+P/2v) (103)

vb K (104)
b  (I+K) 1- (1+K)(n+P/2v)

a (- K) (105)

Pn0

Xb 2 + K) (106)
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Although they are not important, we present below the reverse formulas:

+f ab (107)0 NVV b

1 Xa + Xb (108)n 0 "Va + 'b108

Avxa + xb l

2 (109)

V 1k vavbx (110)
X a + Xb

Note that when in Eqs. (89) to (93) the subindexes a and b are interchanged, the

formulas do not change, however, when subscripts a and b are interchanged in va

and vb only, or in xa and xb only, then AL and DL become exchanged whereas BL

and CL remain unchanged. This means that the lattice two-port is turned by

180 deg (input ar " output are interchanged) and is thus equivalent to the tandem in

which Section 2 is followed by Section 1. Therefore, it would be completely

unimportant if In realizing a special function l'(s) we first designed the T-sectton

with the negative constants n and v.

So far we did not further discuss the "very special function P(s)", but in

Section 6 we will show how such a function can be derived from a special function.

We refer to the design of the lattice network as "Reali..tion Procedure R

and present compact instructions below.

5.1 Realization Procedure 142

Given: The constants n0 v, x, and k of the circuit in Figure 12.

(2) Compute P according to Eq. (100)

(2) Compute Q according to Eq. (101)

(3) Compute K anccording to Eq. (102)

(4) Compute Ya and vb according to Eqs. (103) and (104)

(5) Compute xa and xb according to Eqs. (105) and (106).

?a
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5.2 Numerical Examples

Presented below are four numerical examples. In each example the constants

n, k, v, and x are known. With the Programma 101, constants va , vb Xao and xb
of the circuit shown in Figure 13 (which is equivalent to the circuit in Figure 12)

are computed. We also present the intermediate results of P and K that are not
* printed by the program.

x~ 50599 8O 12
n-1*2307690 dO ;,r, nl - 0,8125003 do)

ka 1-1666663 DO k 80-0955910 DO
0 14 v - 6"8?249999 0 ooG wa v 4*2328149 a0

x - 5 4 5 9 9 9 9x8 E - 3*3862516 E*

~V

P -f29,4750009 b 0 P - 0*3224201 bO

K - 0*7566499 80 K- 0.5936792 80

V V
Va "19,0830544 bQ va , 0,0482836 bO

* 48653741 80 vb , 03485408 80

x. = 2.8690976 cO 0 4 .0524023 cO

xb -20,7109023 CO Xb O2055336 CO

Example 5.2. 1 Example 5. 2. 2

a n - 0*746 4 789 dO g n ,- 13396226 aO
,u k - 1*5238088 00 k - 31"1435267 O00
0%0 v a 0,5952378 *O o b s. v -' 2403898237 j 0

u x a 0 ,4 761902 EO 0n x - 19#5 118586 E 0

V V
P 1 -  1 2297374 b0 P - 7ol000002 b 0

.K- 0,4825428 80 ga , 0 7565499 B0

va  ' 1.4469391 bO 
1va U 1*3712615 b 0

vb " 0,2004454 80 Vb a 3-9287389 80

x - 0.2545345 CO Xa 0.6911142 c0
xb 0,7292550 r 0 xb 4*9888857 CO

Example 5.2.3 Example 5.2.4

/!
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6. THE VERY SPECIAL DRIVING-POINT IMPEDANCE CIRCUIT

The circuit pictured in Figure 12 has the very special driving-point impedance

P(s), since the ratio n2 of the second section is the negative inverse of the ratio

of the first section. At firat glance, this class of circuits looks very limited.

Howeer, we shall show in the following sections that a circuit realizing the very

special function can be obtained under certain circumstances from the more general

special slase of special functions by transposing a capacitance or an inductance

from the circuit input to its output. By this transposition both ratios u I and u2 are

changed, and when the transposed element has the correct magnitude the two

ratios beconle negative inverse. The element to be transposed can be either a

series or a shunt element. In Tables 5 and 6 of a previous paper, Haase (1970b)
presented the formulas for computing ihe change of constants n, v, x, and z to

constants n:, vt, x', and z', after the transposition.

6,1 The Transposition of a Series Capacitance

Consider the circuit in Figure 14, part (a). The first section in this circuit is

determined by constants v 1 , x 1 , and n 1 > 0, and the second section by constants

v2 , x2 , and r 2 < 0; all constants in the first section are positive, but with n2

negative in the second section, v 2 must also be negative. Due to the normalization
of the special function T(s), the termirotion resistance must be z S 0/730 Z

1/(n1 n2 ) . The circuit has the series impedance x 0 /s at its input. This impedance

consists of a capacitance I/x 0 . The driving-point impedance of the circuit

implements 7(s), it is not F(s) itself. Since '(s) - !(s)/ (s), with 14(s) and 13(s)

normalized quartic polynomials, the driving-point impeda ne

S>0 iz<O n, >0 nj<O

n--" >0=, a'

Figure 14. Stepwise Tran:psition of a Series Capacitance x 0
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n(s) sD(s) + xoN(s)
x 0 /s+--- = is of the type P1 .

Transposing the capacitance over the first section, we obtain the circuit shown

in part (b) of Figure 14. According to the formulas in Table 6 (upper part) of

Haase (1970b), we find that the constants ni, v 1 , and xI change to

nl , (n, )

x0

v Vl(1 + , (112)
1 1

and
x1 =X14 +x o (113)

x1

Note that

Xl 1 /V1 u O . (114)

The transposed inverse capacitance that now appears between the. two sections

becomes

x0 ' x (1+ ) . (115)

The transposition also influences constants v 2 and x2 of the second section and the

termination. In part (b) of Figure 14

VI2 - , (116)

1

X 2 - " (117)

and

n 2z"zj4J 18

LnS
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The ratic n2 as well as -fl 0  X x/ x2/v2 remain unchanged.

We now transpose the inverse capacitance 1/xI over the second section, thus

obtaining the circuit in part (c) of Figure 14. According to the same formulas as

applied before, the constants n", v , and x and the termination z" change to

n2 (2 2

x 1 ( + A ,111

and
22

a ' z "-2 *"122

In Eqs. (119). (120), and (121)(
!"; A= 2[nl 2 1]32

AuIQ 2J (1223)

! l

4, Note also that

x2/v 2 z xfv / -xl/vl .f- o  (124)

The transposed inverse capacitance becomes

x • x I(1 + A). (125)

Equations (114) and (124) suggest the introduction of the positive constants

k I Xl/x 2  -V1 /V2  (126)

and

kM x'/. -v,/v 2 , (127)

1 2-a-v2
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and we can write:

v x v 1  (128)

and

x = x 1 . (129)

Then, by Eqs. (126) to (129).

1+ nnx 0 = -x 1  kl+1 (130)

causes

n 2  -2 (131)

x0 -x 0 n 1n 2 , (132)

knI l (133)

k a -k 1 /nln2 , (134)

k- nn
V V k n 2  (135)

x vfl 0 , (136)

and

z' .1 (137)

Equation (130) presents the magnitude of the capacitance that is necessary to

obtain thc implied very special function P(s), for which nln 2 - n(- l/n) = - 1. Since

by definition the product nln2 is negative, the transposed capacitance according to

Eq. (132) has the same polarity as x0 . Since both have to be positive, it is neces-

sary that, according to the numerator in Eq. (130),

- nln2 > 1 . (138)

4
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Equation (138) is a necessary condition for transposing a series capacitance from

the input of a circuit to its output. There is, however, no restriction imposed on

the other constants.

We said that the driving-point impedance of the circuit in Figure 14 is of the

type P 10 . In order to be able to transpose the impedance x 0 /s with its magnitude
given by Eq. (130), x 0 /s must be subtracted from the total impedance xt/s available

in a certain driving-point impedance of the type P 10. This is a second necessary

condition. We have compiled the formulas for the transposition of a series

capacitance in Table 2.

Table 2. Formulas for the Transposition of a Series Capacitance 1/x 0

Necessary Condillon" -r nj>1 0 <I

%0/$ /

Type P10- V1-I z- NO/Do '1

nj >0 ,n2<O n

I+ Nnj.

k,+

"4 - o

kg+ I

k= - -L'

, kt- Itnlt

5--

kz +

x A
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6.2 The Transposition of a Shunt Ind:,etance (see also Figure 16,

Next suppose that we transpose a shunt inductance v0 instead of a series

capacitance 1/x O over the two sections. To do this we have to use the formulas

presented in Table 5 (lower part) of Haase (1970b). The transposition procedure

is very similar to that described in Section 6. 1, and we can immediately go to the

results presented in Table 3.

Table 3. Formulas for the Transposition of a Shunt Inductance v0

Necessary Condition: -nln 2 <l %/0 > I

-" Fis) F(s)

Type P 0  vo v ,zR V X ~ z MI
n>O M n2<O n

! r v0 - Vofljn,

tn(n 2-l) +k 1 N-t

k k,

71 N, t20 L" , + kj(n,-111n(+11
V -VI 0

' 1
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The magnitude of the inductance to be transposed according to this tablE .s

v I= n 1 (n2 -l 1 n 2(n-1) (139)Vo Ufi . 1 + nln2  19

and the transposed inductance is

v - vonln 2  
(140)

Since v 0 must be positive, v0 must be positive. The numerator in Eq. (139) is

certainly positive since n2 is negative. The denominator is positive and with it

also v 0 if

-nln2 < 1• (141)

This is the necessary first condition for the transposition of a shunt inductance.

The second necessary condition is that the admittance s/v 0 be available at the

input for the transposition. Adding admittance s/v 0 to admittance r,(s)/R(s) yields

a driving-point function of the type P 10 1 . Thus it is necessary that admittance

s/vt in such a function is at least equal to the admittance s/v 0 to be transpos...

6.3 The Transposition of a Series Inductance

Consider the circuit in Figure 15 where we twice transpose the series im-

pedance v 0 s from the input in part (a): first over the first section, obtaining the

/0

Vat %Ml V36

n,30p R,<O n > 0 %-<O

)(b)

Figure 15. Stepwise Transposition of a Series Inductance v0
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circuit in part (b), and then over the second section, obtaining the circuit in part

(c). We apply the formulas in Table 5 (lower part) of Haase (1970b)•

Transposing v0 s over the first section yields the constants
v 0

n' n +V, (142), I v 1

Vt
= V =v I  (143)

and
x I  = x I  ,( 1 4 4 )

and the transposed inductance becomes
t VO

vI = --0" (145)

In contrast to the discussions in Section 6. 1, constants v 2 and x2 and the termina-

tion z remain unchanged.

Transposition of v" yields

v0

n2 n 2 + (146)v 2
t

v 2 • -v/k3 =V2  (147)

I = x/k - x 2  (148)

and, therefore,

k - k.I  (149)

Also, the termination z remains unchanged. The formulas for the series inductance

transposition are con-piled in Table 4.

The inductance to be transposed and causing nln2 u- is

v0 •vln 1  1 kn 2  ° (150)
1 1 k1In2
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Table 4. Formulas for the Transposition of a Series Inductance v0

ctsary Conditiow: -nl,<1 U /O /

(~s

if., I-t v ,,Type - zN 0 /60  ka

n1>0 %<O

1 + nn2v ° hv1  - n f

na
n W ka. .y

k a k4

v Vs

V V

a -I/(nt nz~

and the transposed inductance is

Vo (151)

0 1 2

Therefo're, the first necessary conditio . s

-nIn 2 < 1, (152)

.4-
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and the second necessary condition is that the total inductance vt available at the

input for the transposition i at least v 0 . Adding impedance v0 s to impedance

(s) - lN(s)/D(s) yields a driving-point impedance of the type Q 10 ,

6.4 The Transposition of a Shunt Capacitance (see also Figure 17)

To transpose a shunt capacitance over the circuit, we have to apply the f'r-

mulas presented in Table 5 (upper part) or Haase (1970b). The computational pro-

cedure is similar to that discussed in Secti.n 6. 3, so we can go immediately to the
presentation of Table 5.

Table 5. Formulas for the Transposition of a Shunt Capacitance 1/x 0

Necessory Condition: -nijf2>1 2 Q/b, <I

V ~ ~ ' -zi~_

n +nyO - -

- , k~ ~~ nzrn+i n-1

- 1/(nt a)t
V .LI

n-
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The inverse capacitance to be transposed is

x I  n12 (n2-1)2 + kI(nl-1) 2  (153)x0 = '1' 1 + nlIn 2 (13

and the transposed inverse capacitance is

x
x0  - * (154)

The results in Eqs. (153) and (154) are positive if

-n 2 > I . (155)

This is the first necessary condition. The second necessary condition is that the

available admittance s/x t at the input is at least x0 /s. Adding the admittance

x 0,/s to the admittance D(s)/NR(s) yields a driving-point impedance of the type Q 1 0

6.5 The Realization Prcedures A1, .... A4

In this Section we compile the instructions for obtaining constants n, v, x, k,

and z' of the tai.dem circuit, implying the very special function V(s) when constants

n > 0, v 1 , and xnI and n 2 < 0, k 1, and z are known. Subsequently, this circuit

will be transformed into the lattice circuit, according to the instructions presented

in Section 5. 1.

6.5.1 PROCEDURE A 1

Known: n1 > 0, n2 < 0, vl0 x 1, and k 1 of a circuit realizing a special function P(s)

in which N 0/1 0 < 1.
Requested: The transposition of a series capacitance I/x 0 .

Procedure: According to the formulas on Table 2, compute the constants x 0, x0 0

n, k, v, and x in sequence.

6.5.2 PROCEDURE A2

Known: n I > 0, n 2 < 0, v I , x 1 s and k1 of a circuit realizing a special function 'P(s)

in which NO/5 0 > 1.

Requested: Tho transposition of a shunt inductance v 0.

Procedure: According to the formulas in Table 3, compute the constants v 0 , v).

n, k, v, and x in sequence.
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6.5.3 PROCEDURE A3

Known: nI > 0, n2 < 0, vIP xI, k1 of a circuit realizing a special function P'(e) in

which N0/D0 > 1
Requested: The transposition of a seiies inductance v0 .
Procedure: According to the formulas in Table 4, compute the constants v0 , v

n, k, 7, and x in sequence.

6.5.4 PROCEDURE A4

Known: nI > 0, n2 < 0, VIA xI, kI of a circuit realizing a special function F(s) in
which N 10/0 < 1.

Requested: The transposition of a shunt capacitance I/x 0 .

Procedure: According to the formulas in Table 5, compute the constants x0 , x0',
n, k, v, and x in oequence.

Numerical Examples

Below are four numerical examples in which we assume that constants n1 > 0.

r2 < 0, VIA X10 and k are known. They are the constant- nbtained in example 4. 4. 1

for examples 6. 5. 5. 1 and 6. 5. 5. 4, and those obtained in example 4.4.2 for

examples 6. 5. 5. 2 and 6. 5. 5. 3 as listed below.

First we shall answer the questions:

(1) Can a capacitance be transposed '

(2) Can an inductance be transposed ?

The affirmative answer listed in the table depends on whether -n 1 n 2 is greater or
smaller than 1.

Examples 6.5. 5.1 and 6.5.5.2 and
6.5.5.4 6.5.5.3

Transposed
Element Capacitance Inductance

n 2.0000001 0.4999999

n2  -3.0000007 -0. 3333328

-n 1 n2  6.0000018 0.1666664

V1  4. 1999997 0. 5952378

x 1 3.3599997 0.4761902

k 7.0000004 1.5238088

2I
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-I

Using urograms designed for the Programma 101 computer, we apply:

Procedure A to the constants of Example 6. 5. 5. 1,
Procedure A2 to the constants of Example 6.5.5.2
Procedure A2 to the constants of Example 6. 5. 5.3,

Procedure A3 to the constants of Example 6.5.5.3,

Procedure A4 to the constants of Example 6. 5. 5. 4.

The procedures yield the constants n, k, v, and x of Figure 12. and inverse

capacitance x0 that is to be transposed as a series capacitance in example 6. 5. 5. 1

and as a shunt capacitance in example 6.5.5.4. The x is the transposed

capacitance. In example 6. 5. 5.2, v 0 is the shunt inductance to be transposed, and

in example 6. 5.5. 3, v 0 is the series inductance to be -ansposed. v, is the trans- "
posed inductance. :

n1 a 2"0000001 d4 0 n1  0-4999999 d4

n n2 - 3*0000007 00 &n n2  -333332 8 00
0 I 2 - .33380

V - 4,199 997 *0 o v 0.5952378 *0

X, 3*3590997 E 0 x 0.4761902 EG

k W 7*0000004 f 0 k 1.5238088 '4

V N

x0  2,1000001 AO v0  M 0.4761895 AO

0 12.6000041 AO v )- 0.0793647 AO

n - 12307690 bO k 0,8125003 bO

1.1666663 90 V

A- 80.0955910 8.
V 6aZ249999 c 0 V 4@2328149 c¢
x 5 1599998 CO X 3#3962516 CO

Example 6.5.5.1 Procedure A, Example 6.5.5.2 Procedure A2
See Figure 14 See Figure 16 1

n1 w 0.4999999 dO O nI - 2.0000001 d4

n2M-0-3333328 00 n'n 3-00070
0 a -. 000007 0

v I  0.5952378 * o- vI - 4.1999997 .4
1xE - 04761902 E.1 - 3,3599997 EG

k I 1-5238088 fO k kc - 70000004 f

0.1467136 A xo 6*6159995 AG

v - 0-3902830 AG x - 1e1359995 AGD a 0,746,4789 bl. V ?

k a 1-5238088 SO n 1'3396226 bQ

0.5k - 31,1435267 80
0-4761902 CO v - 24,3398237 cO

x x 190511858 CO

Example 6.5.5.3 Procedure A3  Example 6.5.5.4 Procwdure. A4
See Figure 15 See Figure 17
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vat_ T<1 2,T- :$ T , r_

310 0 X ; > 12<

T* T

"t'>0 "a<0

Figure 16. Stepwise Transposition of a Shunt Inductance v 0

n~0

7. THE DECOMPOSITIONS OF THE IMPEDANCE FUNCTIONS OF TIlE TIYIPES
IPlj P.'Q0  AND Ojlo

The Decomposition of F(s) of thie Type P1 0

The polynomials of F(s) are

5

N(s): = = Nis i  (156)

~and

D~) Dlst, D 5 :=1 . (157)
> 1<

le
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F(s) can be decomposed as

F(s) - RF(s) + >t/s , (158) 4
where (11

x t N0 /D1 ,  (159)

K N5  (160)

and ' (s) is a function of the type P1

The coefficients of F(s) are

f i Ni~l 0 Noi+2= N5DI (162)

and

flD (163)D1 = i+1 •(63

With the coefficients of F(s) known, the coefficients of P(s) and xt and K can be
computed. A circuit representation of the decomposition, to which we shall refer
as decomposition procedure Del, is shown in Figure 18. In this circuit the factor K

Is presented as an ideal transformer with the turn ratio iK: 1. This transformer

'viIl not appear in the realization. it has the meaning that all impedances on its
right side must be multiplied by K when the transformer is omitted.

,Is xi/s -Kro/s %0/9

F(i)- gure o Fcto <

Figure 18. Transposition in a Pl0type Function
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-: The Decomposition of F(s) of the Type Q 1 0

The polynomials of F(s) are

5

N(s) = N si (164)

and

4

D(s) D is D4 1. (165)
i=0

F(s) can be decomposed as

F(s) = KP(s) + vts , (166)

where

v t =N 5  (167)

K = N4  N 5D3  (168)

and V'(s) is a function of the type P 7  (169)

The coefficients of P(s) are

.-i iI (170)I!=N4 .NsD3

and

D. D. . (171)

The circuit re' resenting the decomposition, which we refer to as decomposition

procedure De3, is shown in Figure 19.

V I VIS -Ky0  VOS

F(1) y Fun)tion

Figure 19. Transposition in a Qlo- type Function
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The Decomposition of F(s) of the Type P-10

The polynomials o( F(s) are

D(s) = Ds * D5  1. (173)

i=0

F(s) can be decomposed as

F(s) = vts Q)KP(s), with is equivalent to the script

1/F(s) Z 1/v s + 1/Kr(s) . (174)

In Eq. (173),

vt (N/D0  (175)

K =N 5 , (176)

and p(s) is a function of the type P 7 " (177)

The coefficients of P(s) are

N-15 18)

and

N N1 Di+1 Ni+2 Do
SN1  (179)

The circuit, representing the decomposition, which we refer to as decomposition

procedure De2, is shown in Figure 20. -'

II
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( t (. E v~ KvOs VOS (I). No/6o>1

C" -1-

Figure 20. Transposition in a P0" -type Function

-IThe Decomposition of F(s) of the Type Q10

The polynomials of F(s) are

4

N(s) i\ N s' (180)

i=0

and

5

D(s)= Disi, D5 = I . (181)

i=0

F(s) can be decomposed as

F(s) = xt/s(KF(s), which is equivalent to the script

1/F(s) s/xt + I/KP(s) (182)

where

xt N4 , (83)

N42

K N442.N (184)

and P(s) is a function of the type P71  (185)

The coefficients of P(s) are

=N5D Ni-1 (186)
i N4 D4 -N 3



46

and

N i
Dl N (187)

4

The circuit for the decomposition, which we refer to as decomposition procedure

De4, is shown in Figure 2 1.

I
I

- -1

Figure 2 1. Transposition in a Q10 " -type Function

In our attempted circuit realization, a part of impedance xt/s in the decomposi-

tion Del and a part of impedance vts in decomposition De3 had to be transposed over

the circuit in order to make r(s) a very special function. In decompositions De

and De4, a part of admittance 1/vts and admittance s/xt, respectfully, had to be

transposed for the same reason. These parts must be of such magnitude that the

remaining impedance or admittance, respectively, remains positive. Also, In

decompositions Del and De4, where the transposed impedance is of a capacitive

nature, function P(s) must be type P 7; in decompositions De2 and De3, where the

transposed impedance is of an inductive nature, function P(s) must be type P7.

We are able, according to our discussions in Section 6, to determine the

magnitude of the element to be transposed. The element is x 0 /s in decompositions

Del and De4 and it is v0 s in decompositions De2 and De3, In general the element

has to be taken to the left side of the ideal transformer in Figures 18, 19, 20, and A
21. Therefore, the remaining element is:

in decompositirn Del, Xe/S - xt/s - Kx 0 fs (188)

in decomposition De2, s/ve 2 s/V t - s/Kv0  (189)

in decomposit.--r De3, veS - vts - Kv 0 s (190)

in decoaposition L , s/x e  s/x t s/Kx0 • (191)

All differences have to be positive.

4



47

7.1 Decomposition Procedures Del, .... De4

The results of the foregoing are compiled in Table 6. The split of a function

F(s), known by the coefficients of N(s) and D(s) and being of the types P 10 , P 1

or Q 01, into an inductive or capacitive component and a special function

P(s) multiplied with an impedance factor K is a routine procedure. We refer to

these procedure as Del,..., De.4, depending on what type of the aforementioned

sequential functions is applied. Table 6 presents the formulas to compute the

magnitude of vts or xt/s, the positive impedance facLor K, and the coefficients of

P'(s). The table also presents the necessary condition for -n 1 n2 , which can also be

expressed by the ratio 30/1 0 . In the last column of Table 6 is the magnitude of

the input element that is left when the element x 0 /s or v0 s to be transposed is sub-

tracted from the available element xt/s or vs. Procedure Del is followed by
procedure A 1, De2 by A2 , and so forth. In more detail the instructions of the

procedure are as follows:

7. 1.1 DECOMPOSITION PROCEDURE Del APPLIED TO A FUNCTION
OF THE TYPE P1 0

Known: The coefficients NO' ... , N5 and D1 .... , D5 . Make sure that D5  1.
If not, divide all coafficients of N(s) and D(e) by D5 .

Compute: xt s K, 14i . and f5i according to formulas in Table 6, first row.

Test: The necessary condition N0 /15 0 < 1 .

Continue with procedure A 1 , Section 6. 5. 1.

Compute xe = x t - Kx 0 .

For Circuit Realization, see circuit in Figure 18.

Table 6. Decomposition Components

TV" Decamolt / don CVff0c1/t2NO N', - 41+N 2
pto Del '- + v F.) ,K-. Ns N_ Dim > < I xn.-.

Na' 002- V11~ K-a~ N3<1 > 1 14M

oo -R;,., .

Q0 D3 v,% + KF(s) A-Ns K- N4-NSD 3  4-lNA) i <1 > I

N4I Ns"- -sN 1 .N& >1 < K

QN04TK~saN
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7.1.2 DECOMPOSITION PROCEDURE De2 APPLIED TO A FUNCTION OF
THE TYPE p 1

10

Known: The coefficients N .... N5 , and D o, .... D5 . Be sure that D5 1.

If not, divide all coefficients of N(s) and D(s) by D5 .

Compute: vt, K, i, and 1i according to the formulas in Table 6, second row.

Test: The necessary condition N 0 /150 < 1

Continue with procedure A, Section 6. 5.2.

Compute v x Kvgio/(Kv0 - vt) .

For Circuit Realization see Figure 20.

7.1.3 DECOMPOSITION PROCEDURE De3 APPLIED TO A FUNCTION OF
THE TYPE Q O

Known: The coefficients N O, .... N 5 , and D O$ ... D4. Be sure that D4  1.
If not, divide all coefficients of N(s) and D(s) by D4 .

Compute: Vt, K, V i and 5 according to the formulas in the third row of Table 6.

Test: The riecessary condition N0/D0 > 1.

Continue with procedure A3 , Section 6.5.3.

Compute: ve =v - Kv 0 .

For Circuit Realization see Figure 19.

7.1.4 DECOMPOSITION PROCEDURE De4 APPLIED TO A FUNCTION OF

THE TYPE Qj

Known: The coefficients N O, ... , N4 , and D o, ... , D 5. Be sure that D 5 = 1.

If not, divide all coefficients of N(s) and D(s) by D 5.

Compute: xt0 K, 1q,, and 15i according to the formulas in the fourth row of Table 6.

Test: The necessary condition NO0/D0 > 1.

Continue with provedure A.4 , Section 6. 5.4.

Compute: x = Kxx 0 / (% 0 .. Xt).

For Circuit Realization see Figure 21.

7.2 Numerical Examples

Following are four numerical examples where the driving-point impedance

F(s) is given by the coefficients of N(s) and D(s). In these examples,

Example 7.2, 1 F(s) is of the Type P 10 0

Example 7.2.2 F(s) is of the Type Plj.
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Coefficients Ni  Co4fficiento N,

Jc" 0 14 8992000 d O 0 0 0. 0000000 d 0

1 1 0920632 00 44 1 3.8400000 00

S 2 0.0617140 *0 2 0-2539682 *0

31 2 13412 9 E 0, 3 2.265114 EO

433709600000 f 0 0 4 0-2579365 f0
1 0 5 1.0000000 FO

6" 1.0000000oo

Coefficients OD Coefficients Di

34 0 0 000000 O "-020.73A0000 d0

1 3 58400000 00 2 1 14780 94 O0

es 261.7005711 eFO

1% 2 0.25396.82 BO 0~ 0%

3 7.6571428 EO 30 23.5261901 EO

3 025935 O 10.5368 8

4 1.0000 4 394800000 f O4 0 025 79239635 fC
v, 5 1 .0000000 F 5 1.0000000 FO

v V

"4

' xt  " 3-880000(O FO t
4' v t  - 0.1851851 AO

SK 
=  1.0000000 AO

'" oeficintsNi Coefficients Di

1" 0 - 10 0 6106 6 59 b 0

1 i 0 0 -1066666 b 0 1120 #35 1 98 1u 80

12 0 -3520000 B0 2 1,1333324 c 0

! 21 1 -13 33 3 33 c 0 3 4-0799976 CO

3- 34 ,4 0800000 CO 411 .ooooo o d 0

4 1 .0000000 d 0

Coefficients 
.=oo

"'i - 0 3 .840g000 b 0
C oefficLent N i

S1 0.-2539682 B 0 -

/:2 7 -6571428 c 0 1 o 3 -8400000 0

31 0-2 5 7 93 65 C 0 1 0 .2539682 B80

S4 1 -0000000 d 0 2 7.-657 14 28 C 0
i! ,3,0.2579365 CO

-41 1 .00000oo d 0

'xapl E7apl27..2
Example~apl 7..7irutFiu20

C:ircuit Figure 18CiciFgue2
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Coefficients N1  Coefficients Ni

1 = 0 3.2640000 dO 1 0 0.1066666 dO

1 0C3225395 10 1 20.3520000 00

2 26.8605713 e0 n 2 1.1333333 *0
4 3 1 3525793 E 3 34.0800000 EO

4 4 34.9300000 ro 4 1.0000000 f0
1 ,0000000 FO 5 0.o000000 FO

Coefficients Di  Coefficients Di

= 0 0.1066666 dO 0 = 0 9-6000060 dQ

1 20.3520000 00 1 0.7415821 D0

91 N 2 1,1333333 a.0 m 2 39.4948570 *0

4J 3 34,0800000 E 0 3 1.7781745 EQ

0 4 1*0000000 f 0t 4 36 5800000 f0
4 1 CS 5J 1 3 . 0 0 0 0 0 F0

Q 5 0.0000000 FO (0 5. 1.000000 FO

~V
V

Vt - 1.0000000 80 Xt - 1.0000000 AO

w Coefficients N,
K . 0.8500000 AO

1- 0 3,8400000 b0

Coefficients Ni1 0253966 2 80

= 2 7 6571428 cO

1 0.2539681 00 3 0.2579364 CO

2 76571427 cO 4 1.0000000 dO

3 0.2579364 CO

4 1.0000000 dQ
K 0 0.4000000 A0

Coefficients Dj
Cfe DCoefficients 

b

i -0 0*1066666 bO 1- 0 0.1066666 bO

120.3520000 80 1 20.3520000 RO

2 1.1333333 c 2 1.1333333 c

3 34.0800000 CO 3 34.0800000 CO

4 1.0000000 d 4 1.0000000 dA

Example 7.2.3 Example 7.2.4

Circuit Figure 19 Circuit Figure 21
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Example 7.2. 3 F(s) is of the Type Q10 0

Example 7.2.4 F(s) is of the Type Q .

In examples 7. 2. 1 and 7.2.4, we split F(s) into the capacitive functior s/xt
and a function F(s) of the type P or P71. In examples 7.2. 2 and 7.2.3, we split7 *7 IF(s) into the inductive function svt and a function Fs) u- -o. cype P7 or P7. We

apply for this purpose:

Procedure Del to example 7.2. 1 ,

Pr.,cedure De2 to example 7.2.2 ,

Pr c dure De3 to example 7.2. 3

x Procedure De4 to example 7. 2. 4

Results of these procedures performed on the Programma 101 coi,.puter e"c ahown
on the preceding programmed tapes (pages 49 and 50).

8. THE DECOMPOSITIONS OF IMPEDANCE FUNCTIONS OF THE TYPES 911 AND Qj j

In Q-type functions the polynomialp N(s) and D(s) differ by 1 in their degree,

If a function F(s) N(s)/D(sp is of the type QWI,

6

N(s) = Nisl (192)

and

5
D(s) LDs, D 5  (193)

iso

i=0

If F(S) is of the type QI1.

N(s) = Nis 1  (194)

is0

and

6
D(s) iDisi D6 1 . (195)
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If F(s) is of the type Q

ther F(0) = 0 and F( oo. (196)

If F(s) is of the type Q| ,

then F(O) = ooand F(o4 0 • (197)

By Eqb. (190) and (19?), each of the functions can be decomposed, either

according to the functions behavior at s - 0 or at s-o4. For comparison, note

that functions o the types QI 0 and Q1 can only be decomposed according to the

functions behavior at s- co, and functiont of the types P1 0 and P 10 can only be de-

composed according to the functiviu behaior at a - 0.

8.1 The Decompositions of a Function of the Type Q-1
11

Decomposing the function according to its behavior at s - o yields

P0 OXd!S or F(s) u F'(s)®xd/S (198)

which can also be written as

3C .. _ + 2_

Fls) F'(s) xd

In Eq. (198),

xd =N 5  (199)

and F'(s) is of the type P 10 . The coefficients of F'(s) are
'C10'

N 5  N (200)

and

DI N5Di -1

D 1 5 1 N4 (201)

Decomposing the function according to its behavior at s = 0 yields

-1 (202)
+t 1 Xd/s or f"s) 18) + xdI5

VC
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in Eq. (202)

x d = N0 /Dl (203)

and F (s) is of the type Q-1 The coefficients of F'(s) are

Nl N +Ix + (204)

and

0,D =D1 . (2051

In the future, we shall refer to de-nomposition according to Eq. (198) as decornpoai-
tion procedure DO5, azrd to decomposition according to Eq. (202) as decomposition
procedure De8i.

8.2 The Decompositions of a Function of -he Ty'pe Qll

Decomposing the function according to its behavior at s c o yields

Q1 1 1Pj+ V s or F(s) =F'(s) + vds . (206)

e i fIn Eq. (206),

\1d =N (207)

and F' (a) is of the type P- A The coefficients of F'(s) are

N Di1 l (208)

and

D. D. (209)i i

n..compoaing the function accurdaig to its behavior at s 0 yields

Q1 01 0 vs or F(s) FI(s)®Dvds *(210)

'which can also be written as

FTs) '(S) + d~s
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In Eq. (210),

vd = N /D 0  (211)

and F (s) is cf the type Q10. The coefficient. of F'(s) are

v
N y N 1  (212)

and

DI = V N (213)

1 v d N 6

We shall refer to decomposition according to Eq. (206) as decomposition procedure

De6, and to decomposition according to Eq. (210) as decomposition procedure De7.
We have presented the results of decompositions by the following circuit

.realizations:

Decomposition De5 realized in Figure 22

Decomposition De6 realized in Figure 23
Decomposition De7 realized in Figure 24

Decomposition DeO realized in Figure 25

When a function of the type Q11 or Qj1 has been decomposed, the remainding

function F'(s) musl be decomposed as the next step in the realization of the circuit.

For this we refer to Seczion 7. The type Q11 decomposition component in F(s)

is an Inductive impedance v,.s; the component in F'(s) then is also an inductive

inpedsnce vts. If VdS is a z.ri-,ia element, then vts is a shunt element and vice
-1

versa. The same holds true for tWe type Q 1 1 component in F(s), where Xd/S is a

at

F~~s) F(s) Fs

IP o
Figure 22. Transposition of Y ;ure 23. Transposition of
Shunt Capacitance Set ies (nductance
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Fsi) F(s) F(s)

iO~~o I Q~o -'-

Figure 24. Transposition of Figure 25. Transposition of
Shunt Inductance Series Capacitance

capacitive impedance and xt/s is also a capacitive impedance. If xd/S is a shunt

element, then xIs is a series element and vice versa.

We have devised programs for use with the Olivetti Programma 101 computer.

and they are used in the following examples.

8.3 Numerical Examples

We now show four numerical examples: 8. 3. 1, 8. 3. 2, 8. 3. 3, and 8. 3. 4. In

examples 8.3. l and 3.3.4, we realize an impedance function F(s) of the type QI-1

and in examples 8. 3.2 and 8.3. 3 we realize a function of the type Q 11 " Each of

these functions can be decomposed in two ways. The realization procedure is

carried out completely. Some examples that were carried out in previous sections

will tie into these four examples.

Example 8. 3. 1

Let F(s) = N(s)/D(s) have the coefficients:

i N i  D i

0 20.2629120 0.0000000

1 1.4852059 20.1215000

2 68.0839310 1.4374599

3 2.9024125 60.4754282

4 51.6256000 2.4849205

5 1.3600000 39.3200000

6 1. 0000000

The function Fs) is of the type Q I. It can be decomposed according t3 Eq. (198)
and decomposition procedure De5 as:
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Coeff.cient6 NL  Coefficients 11

i = 0 2 0 2629120 el i = 0 14.8991996 e 0

1 1 48S2059 F 0 1.0920631 E0

= 2 68 03839310 f 0 2 50.0617127 f 0
0 r

• 3 2 902 125 Fl 3 2.1341267 Fl

$'4 516?56000 e

Co 5 1.3600000 E 0 4 37.9599990 eQ

0.0000000 fo 5 0"994,99 Q 9 E

0.0010000 FO

Coefficients Di Y

i = 0 0 0000000 e 0 Coefficients D'
1. ?0'1216000 E0 i
2 1.437450 qI £ = 0 0.0000000 e0

00

0r- 3 60.4754282 Fl 1 3.8400000 EO

4 2.4849205 e0 2 0.2539681 F0

0b M 5 39.320 00 n EQ 3 7.6571427 Fl

6 1.0ooooon0 F
00000000 Fl Y

V 4 0,257936 , eQ

Xd = 1e3600000 q 5 1.0000000 El

Exa--ple 8.3.1
x

F(s) = ' d- @VF(s)o
Fs

where
itF(s) is of the type Q- 1

1

and

F'(s) is of the type P 1 0

According x, the tape record, xd 1. 3600000. The coefficients of N'(s) and D's)

listed on the tape are those of example 7.2. 1 where we decomposed the function

according to Eq. (158) and decomposition procedure Del as:

xt
F'(s) =- - + KP(s),

where

F'(s) is of the type FIO

and

'(,%) is of the type P 7
1}7
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In example 7. 2. 1 we found that x t = 3. 88 and the factor K z 1. The coefficients

of P(s) are those of example 4. 4. 1 where we proved that PF(s) is a special function

with 0 = 0.8 and nn 2 = -6.0.
The decomposition of F(s) in the present example is shown in Figure 26a;

Figure 26b includes the decomposition of F(s). The ideal transformer can be

omitted since K = 1. Figure 26c shows the circuit with P(s) represented by the

duplex Brune two-port in which, according to example 4. 4. 1,

n 1 = 2, vI =4. 1999997, k1 = 7. 0000004,
n -3, x 1  3 3599997, Z' = 1/36

Xt/S, /iTS

'V .

F(S* x/ 'S F(s) =xII's F(S) V~S F(S)

(a) (b)

xt/$ nj >0 n2<0

II -v1s/k1  Z

F(s) Xd/S 105Fs x=/k/s
(C)

Fiue as E -vs/k 8

I , "! TXA

(d)

Figure 26. Circuit Expansion Example 8. 3.
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Since z' > 1, a capacitivc impedance can be transposed. This transposit. nwas

ho-ii in example 6. 5. 5. 1. On the tape record of this example, we find the
Cons:t:%lits

n = 1. 2307690, v = 6, S249999. x0 = 2. 1000001,

k = 1. 166663, x = 5.4599998, xo) a 12. 6000041.

By the transposi~ion, the tkrmination of z' = 1/36 in Figure 26c changes to the

resistive termination z z I in the circuit in Figure 26d, accoxding to the formulas

in l'able 2. Taking the impedance x 0 Is from the total impedance xt/s available at

the input leaves the inverse capacitance

x t % = 1. 78
t 0

at the input.

We are now able to transform the very special Brune tandem into a lattice

structure by applying procedure R 2. This has already beet, exercised in example

5.2. 1 where we obtained the conatants

va = 19.0830544, xa = 2.8690976,
Z~l.

V'b = 4. 865374 i, xb = 20.7109023,

The final circ,,it is shown in Figure 27. The turn ratio of the ideal transformer

on the left side of that figure is K 1. We therefore obtain for the elements of the

circuit on the ride side the values

KI13 / 'T.oS v.s lols C4 Li C5

FS) Xd/S , 1* R

VbS L2

Figure 27. Final Steps in Realizing the Function in Example 8. 3. 1

4

-£
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a 19. 0830544, C= == a= 0,3485416, R 1. 0000000.

t' 2 = 4.8653741, C2 = I/xb = 0.0482837,

C 3 = 1/xd 0.7352941,

C 4  1i/Xe 0.5617977,

C 5 
= 1/x = 0.0793650,.

We certainly would like to check our results. An easy way to perform such a

check is to evaluate F(1) = N(1)/D(1) and to analyze the final circuit in the event

that s = 1. If both results agree, we have some assurance that they are correct.
We admit that this check makes no discrimination between the evaluations of :.,

ductances and resistances. But, as far as our experiences over many applica ions

go, this check, which can be very easily performed, has always been sufficient.
The terminating impedance of the circuit in the right part of Figure 27 is,

fors= I

R z+ I/C 5 = 1 +x = 13. 6000041.5 0

The driving-point impedance of the terminated lattice is

R.=(1+L1C 2 )(I+L 2CI )Rt + L1 L 2 (C I+C 2 ) + (II+L, 2 )i _C (214)
i CIC 2 (LI+L2) + (CI+C2 )Rt + (1+LICM)(1+L 2 C 2 )

for which in our present example we obtain R i = 6. 45t35 30. The driving-point
impedance of the circuit, therefore, is

F(1) + + = 1. 1672702.C 3  C4  RiC 3C 4

Evaluating the coefficients of F(s) for s = I we obtain N(1) 1 i45.7200614,

D(l) = 124. 8394086, and F(l) = 1. 1672601, which is in agreement with the value

obtained from circuit analysis.
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Example 8.3.2

Assume that a driving-point function F(s) of the Type Q1 1 has the coefficients

i N iD.

0 0. 0000000 38. 4000000

1 35.7120000 2.6463286

2 2.4504189 96.9234280

3 88.1035880 3.7126973

4 3.3394751 44.080G00

5 31.5864000 1.0000000

6 0. 8300000

We decompose F(s) according to Eq. (206) and decomposition procedure De6 as

F(s) a VdS + F'(s),

where

F(s) is of the type Q11 and F'(s) is of the type 01

For the record of the procedure performed on the Programma 101 computer, see

tape record example 8. 3.2. The constant vd - 0. 83. The decomposed circuit is
shown in Figure 28a. Next we decompose the impedance function FI(s) according to

Eq. (174) and decomposition procedure De2. Performed on the Programma 101, we

obtain:

V
V

Coefficients i  Vd 0 8300000 BO

1 -=0 0,0000000 ,0 W
1 357120000 EO Coefficients
2 2,4504189 F4 * . o 0 o 00000000 0o

a 3 88.1035880 FO 1 3*840000l EO
4 3.3394751 10 0"253966? Fa U 5 37.5864000 EO 3 7.6571428 ro

6 0.8300000 -O U
O.O0000uO FO W

4 0.2570364 eQ

Coefficients Di 5 1•0000000 E 0

I = 0 38.4000000 0 Coeff/cient3 D
' 1 2.6463286 EQ _______12643280 EQ 1 0 38.4000000 *o

cl - 2 96 -9234280 f 01 2 6 3 86 Eo 3.Y126973 FO 1 2',6463286 EQ
3 3-716973FO2 V6.-9234280 f 6

' 4 44.0800000 eQ 623?0F
o4 4 4 o080030 E 0 3.7126973 FOYc r 5 1.0000000 "t y

0.0000000 fo 4 44.0800000 eQ

A'0000000 FO 5 1..000000 EO



61

W
Coefficients N 01000000 AO

1 0 0.0000000 dO
.< 1 3'8400000 00 ICoefficients

2 0.2539662 e 0 - 0 0.1066666 0

°' 3 7*6571428 EO 1 20-3520000 80

o 4 0"2579364 F0 2 1.1333333 cO
S 5 1 0000000 FO 3 34-.0hO0 000 CO

4 1-0000000 d0

Coefficients D K " 10000000 FO

i 0 38.4000000 dO Coefficients Ni

1 2.6463260 38400000
0% 2 96.9234280 a 0

1 0.2539662 803 4 os o 3 7126973 EO 2 7 6 4 8 c
,0 P 4 4.596 4 C 0J00

o 5 -.0000000 F 0 4 1.0000000 o o

Example 8.3.2

With F'(s) decomposed, the circuit is shown in Figure 28b. Since K = 1, the

ideal transformer with the turn ratio 1 can be omitted. The shunt inductance has

the magnitude vt = 0. 1, and P(s) is a function of the type P7 (170 >130). The

coefficients of P(s) are those of example 4.4.2. Therefore, the circuit in

Figure 28c, In which P(s) is also decomposed according to Brune, has the constants

n* I .0.4999999, v I  z 0.5952378, k1 = 1.5238088.

n2 = -0.3333333, x 1 X 0.4761902,

Over this circuit we have to transpose a shunt Inductance of magnitude v0 .
This transposition has been exercized in example 6. 5. 5.2, where we found that

V0 = 0. 4761895 and v = 0. 0793647. The circuit is pictured in Figui'e 28d after the0 0
transposition. Taking the shunt inductance v 0 from the shunt inductance vt available

at the input leaves

I/Ve = 1/vt - I/v 0  1 10 - 2. 1000043 - 1/0. 1265823.

Thus the remair-'- inductance ve = 0. 1265823 is positive.
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VdI Vd$

F~s) F5s) vts NOs

(o) b)

vdt n1>0 n2 <O

I©1/
F(s) t S-SA O5VdS ve t n>o t/

(d)

Figure 28. Circuit Expansion Example 8.3.2

In example 6. 5. 5.2 we also found the constants

3 0.8125003, v - 4.2328149,

n - 80.0955910, x - 3. 3862516.

The transformation of the circuit into a lattice structure was exercised in

example 5.2.2 where we found the constants

va = 0. 0482836, xa - 0. 0524023,

vb - 0. 3485406, xb = 0.2055336.

The final circuit is pictured in Figure 29, waere the transformer ratio in the

left side part of the figure is 1. The elements of the circuit in the right side part

of the figure are
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os L3  L,

ro- 1 L 1W 1

0-" 0 _7 1CC

v s 2, sLL 2

Vb% L2

Figure 29. Final Steps in Rea..izing the Function in Example 8.3.2

L 1 = N = 0.0482836, C = I/X" 19. 0831318, R = 1.0000000
1a

L = vb 0.3485408, C2  1/xb 4. 8653845,

L3  'd 0. 8300000,

L 4 = e  0. 1265823,

S5  vo' 0.0793647.

Our results check as.

N(1) = 168.0218820,
D(1) = 186. 7624539,
F(1) =. 8996555.

The termination of the lattice in the right-side part of Figure 29 is

Ht 1+1L5 =0.0735299.

By Eq. (214) we find R i = 0. 1548846. Therefore, the driving-point impedance of
the circuit in Figare 29 is

F(1) a L3 + L4Ri/(L4 - Ri) = 0. 8996550,

which is in agreement with evaluation F(1).

Example 9. 3. 3

The function F(s) of type Q1 1 that we discussed in example 8. 1.2 also allows

the decomposition

F(s) = VdS + F'lS)

where

F(s) is of type and F'(s) is o-, type Q
10

S.

'C'
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according to Eq. (207) an: de2omposition De. The decomposition performed on

the Programma 101 is recorde. on tape record example 8.3. 3 The decomposed

circuit in Figure 30 has a shunt inductance of magnitude vd = 0. 93. The further

decomposition of tWe function F'(s) according to Eq. (166) and decomposition pro-

cedure De3 is recorded below:

Coefficients N v

i = 0 332.1216000 dO vt = 7.7190000 80
.4 1 22"7888950 00 W

0 " 3 e K = 86 4900000 AO
e 3 31.-057!11M E o4 3 Coefficients Ni

o M 4 349.5535200 fo__
Cfl 5 77190000 F0 1 - 0 3.8400000 b0

1 0"2539661 90

3 7"6571427 cO

2 0"2579364 C0
Coefficients D 4 1.0000000 dO

± 0 0.1066666 0O ,

9: N 1 20.?520000 0 Coefficients 5
2 1.1333330 e0

o 5 3 34.0800000 EO i - 0 0.1066666 b ,
4 1.C00000f f0 1 20.3520000 BO

0.0000000 FO 2 1*1333330 c0

3 34.0800000 CO
4 1.0000000 d0

According to the circuit in Figure 30b, function FI(s) is decomposed into a

series inductance of magnitude v t 7 719, an ideal transformer with the turn ratio

K:I where K - 86.49, and impedance function F(s), with the coefficients lis.ed on

the tape. The function is of type P (N D0 ) that allows the transposition of an in-
ductance. The Brune realization of P{s) is that of example 8. 1. 2. Therefore, the

circuit in Figure 30c has the constants

n I 1 0.4999999, v I a 0. 5952378 k I = 1. 523, 88,

n 2  -0. 3333333, x I 2 0.4761902, z' w 10/1 0 s 36.

The transposition of the series inductance shown in the circuit in Figure 30 was

exercised in example 6. 5. 5. 3 where we found that

v 0  0. 1467136, n = 0.7464789, v = 0. 5952378,

v 0  0.8802830, k = 1.5238088, x = 0.4761902.

j
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Coefficients N1

S= 0 00030000 e 0 vd 0,9300000 40
1 35.7120000 EO V
2 2.4504189 0 V

r.<1 3 88.1t0 3 8 80 FO

0 r= Coefficirntc N!0, -4 4 3 -33 94 7 51 et t

0 5 37-5864000 Eo 1 5 7 719 00 0F
n i 6 0.8300000 f0 4 349 5535200 *0

0.0000000 FO W

3 31 0571180 F0
2 819"3633680 fO
1 22"78 88950 EO

Coefficients D 0 332.1216000 e 0
Y

i -0 38.4000000 e0 y
1 2 -6463286 EO Y

"3 C 2 96"-92 34 280 f 02 N Coefficients D'
t'. 3 3 7126973 FO 4
0 l 4 44"080000o 0 1 4 1#0000000 e0
m 5 5 1.0000000 E0 Y

0,0000000 fO 3 34.0800000 FO

0.0000000 FO 2 1.1333330 fO
1 20.3520000 EO
0 0.1066660 e0

Example 8.3.3

In order to be able to combine the negative seriee impedance -vo s with the

impedance vts available at the input, we .ave to take inductance -v0 to the left

side of the ideal transformer. This means that we have to multiply with K. Thus

the inductance

ve = v t - Kv 0 = 7.719 - 12.6892592 ,4.97cj2592

is left at the input. Since this inductance is negative, otir attempt to obtain the

anticipated realization has failed. But for tutorial reasons we will continue this

example.

The transformation of the circuit into the lattice structure was exercised in

example 5. 2. 3, with the present values of the circuit. In that example we obtained

the constants

a 1.4469391, x - 0.2545345, v0 = 0. 8802830
a
vb) 0 . 2004454, xb =0.7292550, z' 38. 0000000.
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(a) (b

vt% V/,Tj r: %> 0  n2<0

',c)j

F(s vds 1,1 Zz6

_i:/syI/ x/k~s

(C)

IIvs -vS/k
F(s) Vds ZI

(d)

Figure 30. Circuit Expansion Example 8. 3. 3

.,, -vos VoS vL L 4  .

V )s L3  
P

L a

F igure- 3 1. Final Steps in Realizing the Function in Example 8. 3. 3
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The final circuit is shown in Figure 31. In this example the ratio of the ideal

transformer is K = 86. 49. The elements of the final circuit (right side in Figure 31)

are

L1 = KVa = 125. 1457627, C 1  I/Kx = 0.0454242, R = 36K = 3113.64

L 2 = Kvb = 17. 3365226, C 2  l/Kx b = 0.0158545,

L 3 
= Vd =  0. 93000000,

L4 = v = -4.6892592,

L5 = Kv = 76. 1356766,

We check our result, and the terminaing impedance of the lattice is

Rt = L5 + R = 3389. 7756766.

According to Eq. (214), we obtain

1. = 32. 54322621

as the drivin -point impedance of the lattice. The driving-point impedance of the

circuit in l'ig-,. .. 31 that was evaluated for s = 1 is:

L3 (L4 +R.)

F(I) = L 3 +L 4 + R i = 0.8996557,

which is in full agreement with the evaluation F(1) found in example 8.1.2.

This example has shown that a function of type Q 11 can be decomposed

eventually by decomposition procedures De6 and De. If both procedures are

successful, two equivalent realizations are obtained; otherwi.se, only cne of them

is successful, or with bad luck none of them. The same is true for a function of
-1

type Q 1

Example 8.3.4

In this example we decompose the function discussed in example 8. 1. i accord-

ing to Eq. (199) and decomposition procedure De8 as

x d
F(s) + F'(s),

where

t I -1F(s) Is of the type Q 1 l and F' (s) is of the type QI0



68

Coefficiencs N i V

i -0 20.2629120 * Xd = 1.0070229 80
1 1"4852057 E0 W

0orI 2 6 80839310 f0
0 3 2 -9024 1 25 F 0

3 9 FO Coefficients N'
0 W 4 51',6256000 a0U i "4 0 *35 29 7 71 0O
v'- 5 1.3600000 E0

0"0000000 f *1o

0.0000000 FO
3 12,0294596 FO
2 0*4000407 f0

Coefficiente D1 7-1837900 E

o 0 00000000 * 0 0*0376509 a 0

1 20.1216000 E0 Y
S 2 1"4374599 fo Coefficients D,

0or 3 60.4754282 FO = 5 1$0900000 EQ
4 2.4849205 t0 4 39.3200000 a0

go 5 39.3200000 E0 yQ 6 1 0000000 f 0 3 2.4849205 F0
0.0000000 F0 2 60.4754282 f'

1 1*4374599 E0
0 20.1216000 .0

Exanple 8.3.4

The decomposition was performed on the Prcgrarrma 101, ard the tape record is

shown in example 8. 3.4. The resulting circuit (Figure 32a) consists of a series

capacitance of magnitude 1/xd 2 1/1. 0070229 and the box representing the

impedance Fe(s). The latter function is decomposed as follows:

xt
F'(s)- + K(s),

where
1 -1

F'(s) is of the type Q1 and() is of the type P1

The circuit is shown in Figure S2b with function F'(s) decomposed. There is

a shunt capacitance of magnitude 1/x t = 2. 8330449, .n ideal transformer with a

turn ratio of NTi where K - 0. 0673620 with a driving-point impedance P(s) on its

secondary side. With the present coefficients of P(s), its Brune realization was

exercised in example 4.4. 1 where we found the constants

n = 2.OOOOOCI, v 1 a 4. 1999997, k I a 7. 0000004,

n 2 = -3.0000007, x, a 3. 3599997, z' v 1/36.
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(C)

xe/S
Xd/S A n1-1In

C-H

Figure 32. Circuit Expansion Example 8. 3.4

The realizing circuit is shown in Figure 32e. A capacitance l/x0 has to be

transposed over the circuit. The transposition was exercised in example 6. 5.5. 4

where we found

x= 6. 8 L. 3995, n= 1.3396226, v =24.3898237,

0 =1. 1359995, k =31, 1435267, x =19.5118586.

As It is shown in Figure 32d, if we take the transposition capacitance to the

left side of the ideal transformer, the inverse capacitance at the input will be
1/Xe =1/x t -l/Cx 0 = 2.8330449 - 2. 1779887 • 0.6550562. The remaining

capacitance is. positive in this example and, therefore, the final realization i

equivalent to that obtained in example 8. 3. 1. The final circuit is as shown in

Figure 33. With the present coefficients, the transformation into the lattice is as
exercised In example 5.2.4 where we obtained the constants

II
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V,' C3  L
3-L

VbS

Figure 33. Final Steps in Realizing the Function in Example 8.3.4

V x 1. 3712615, xa = 0.6911142, x0  1.1359995,
a 0

Vb a 3. 9287369, Xb 4.9888857, Z' 0.0277777.

According to Figure 33, the final circuit has the elements

L, Kva - 0.0923?09, C 1 - 1. Kxa =21.4800622, R Kz' = 0.0018711.

L= Kvb = 0.2646477, C2 a /Kxb 2.9756475,

C3 1/x d = 0.9930260,

C4 = 1/xe v 0.6550562,

- 1/Kx 0 I 13.0679494,C5

We check these results, and in example 8. 1. 1 find F(1) -. 1672601.

Analyzing the circuit in Figure 33 yields

it IRC 0.0018253,

and by Eq. (214), R i 0. 1790277.

Tlherefore, by circuit analysis,

F (1) a I R •i3 1. 1672591 ,

whi'%h !s in complete agreement with the evaluation of F(s).

9. THE REALIZATION OF A DRIVING-POINT IMPEDANCE THAT DOES
NOT YIELD A VERY SPECIAL FUNCTION F(s)

In all examples discussed so far, the coefficients of the function F(s) to be

realized were chosen so that, first, a special function was found for which the



test values were c I c2 c 3  0; then, by e)ement transposition this function
was changed to one that allowed the lattice -equivalence. This situation was neces-

sary for tutorial reason. In most practical cases, however, the function to be

realized will not yield the zero identity of the test ve lues; this may be due to

truncation of the coefficients or to some other reasons. If the text values are not
zero, it may be possible that by changing the coefficients slightly we will obtain

a function for which the zero indentity of the test values holds. In doing this no

additional elements are necessary. But we have to pay for the advantage of the

economical realization "y some deviation of the '.unctions behavior. This will be

the objective of this Section.

Let us discues the technique of coefficient adjustment along with the following

example. Assume we have to realize a driving-point impedance F(s) that has the

coefficients

i N t  Di

0 0.182 0.000

1 1.274 0.837
2 2.811 1.564

3 3.102 2.261

4 3.246 1.756

5 1.529 1.000

This function F(s) is of the type PUY'

We decompose F(s) according to Procedure Del (Section 7. 1. 1).

V
V

Coefficients Ni  xt  0"2174432 rf

i -0 Os1820000 dO'<I 1.27000 Oi0Coe:11:f3pi1 2740000 D K 1.5290000 AO
0o 2 2s8110000 eO

4° 3 3"102 0 0 0 0  E 0 Coefficients Ni

0 $4 4 3.- 460000 fO
.5900 1 0 0 9610803 7 bo

5 1-5 90 00 FO1 1.5169136 90
Coefficients Di1 2 1 - 7 790515 cl

1 =0 0 "-0000000 d 0 3 1 981.7434 CO

M 0 8370000 00
9: 2 1.-5640000 @0(0%0v Coefficients Di
4-1 3 2.-2610000 EO J

1 -0 1 o 0"8370000 b 00o 1 4 1.-7560000 fO
82 5 1.-0000000 F 41 1-564

2 2.-2 610 0 0q

3 1-7560000 CO

4 1.0000000 d0
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ThT decomposition yields the series impedance xt/s and a function V(s) that is of

the type P7- multiplied by the positive constant K = 1. 529. The series impedance
is a capacitor 1/x t . The decomposed

function in shown in Figure 34.

To continue our attempted realization

. .procedure, it is necessary that F(s) be a

minimum function. For this purpose we

F(-- .(s) present the impedance diagram of this
function in Figure 35. The figure shows

that F(s) Is not a minimum function. It

ig .Po-type Function F(s) has a distance of about r = 0.37 from theFigure 34. P1-tp ucinFs

and Implementation of the P7 1-type ordinate. We determine the exact distance

Function V(s) by performing a regular Brune procedure
on F(s) (see Hasse, 1970b), and we find
that a constant r = Re FQW) . = 0.3727543

can be subtracted from F(s). This would cause the curve shown in Figure 35 to

shift to the left and touch the ordinate. We expand

F(s) - r .. N(s) - rD(s)= l- r (1- r)D(s)"

Therefore,

F(s) (I- r)(s) .

08i 1.0 1/9 9Complex F-Plone

1/0.8
0.611 09

04i
08 1/0.6

-. I 1L/0.5
0.2j

.7 01020  1/0.4

0 9 0.4 A 1 )1/03
0 02 04 06 05 10 1/0.8 1/06 1/0.4 1/0.2 1/0

Figure 35. Driving-Point Impedance in the Complex F(s)-Plane
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The coe fficients of F(s) are xI
-~T r /T--r

i N
- Fls)-- F'ls)

0 0.4763817 0.83?
1 1.4889315 1.564
2 1. 4926433 2. 261
32 1 433 1 Figure 36. P 10 -type Function F(s) with2.1143020 1. 756 Minimum Resistance r and Normalizing
4 1. 0000000 j 1. 000 Transformer Extracted

Figure 36 shows tbe circuit. The .ircuit-realizing F(s) consists of the series

resistor r = 0. 3727543 followed by an ideal transformer with the turn ratiu

r This transformer represents the factor by which F(s) has to be
multiplied.

Let us now test the function TF(s) according to Section 4. 1.

With - sign in Eq. (52) With + sign in Eq. (52)

Coefficients Ni Coefficf.ents N

1 I -0 0*4763817 d 0 0 -0 47C3817 aO
gao 1 1*4889315 00 r 1 1.488 9315 D

9 2 1 4926433 e0 2 1 49 26433 e0
0 $ 3 2 1143020 E 0 o4 3 2"1143020 E0

r 4 1 0 0ooooogo fo 4 1C000000 f 0

Coefficients Di

1 = 0 0,8370000 dO i 0 0*8370000 d0

su 1 1-5640000 0 C: 1 *5640000 1)0

2 2"2610000 e0 _ 2 2.610000 eO

0 $ 3 1.7560000 Eo 00$ 3 1 7560000 E0
,,O 4 1.0000000 fo c,(u 4 1.0oooooO o

V V
V V

C1 , 0 0022474 AO cI M 0*0022474 40

c2 - -24959874 AO c 2 = 0*0298198 40

c3 = -0 0409290 AO C3  -0.040299q AO

0= 0-7946394 AO SIo = 0.7946394 A0

, nn 2 = -13255166 AO nln 2 -13255166 A0
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The test values are not zero. The + sign in Eq. (52) yields a smaller deviation of

the magnitude of c.) from 0. For this reason let us assume "+" in that equation.

Let us glance back to Eqs. (47), (48), and (52). Assume we would have

cI = c2 = C3  0 and let us write the equations in the following form:

NID I - N 0  =N 0 D 2  (215)

I D 3  N2 D2 + N 3 D1  0 +fW* 0W) (216)

2 +  3D3 = D 2 (217)

if %%c assume that in these equations the NV N 22 and N 3 are the unknowns and all

other coefficients are known, then the system represents a system of three linear

equations that allows us to compute the unknowns. The solutions are:

N 03 (r2D3-1) + ' l(f 2D 3 -150T 3 2D 3  (218)
2 fl 3 (D 1 2 - D 0I 3 )n - 1  (218)

N 2 + D 2
N3 =- (219)

N 0 D2  + N2 T50 2 M
N-1 =Q~i!2 (220)

7D 1

We also could write the equations in the form

N IDI - N0 b 2  = N250 (221)

N3 f1 "N 2 D2 + NID3 = (4o + V VD) 2  (222)

D f2 + N 3D 3  = N 2 (223)

where we assume that 1, D 2, and D3 are the unknowns.

Eqs. (221), (222), and (223) have the solutions

3.



75

rD--2  3 0 2 3 - 1  1 1 9- 0 3  3  (224)
N3 ( 1N - N0 N3 ) -NI

D D2 + N 2
, ff-Y (225)

N oD 2 + N 2D 0
DI (226)

If we had chosen the - sign in Eq. (52), then in Eqs. (216) and (222) the + sign

marked by the arrow would have to be changed to "-", and in Eqs. (218) and (224)

the - sign marked by the arrow would have to be changed to "+".

We will now gradually adjust the coefficients, but for this purpose coefficients

I and D5 will not change. First we find for coefficients 1 D2, and D3, by) 0

Eqs. (218), (219), and (220), coefficients N 1 N2 and , Then we average1' 2'

N1 2 ' 2 2 N" N (227)

Then we find, by Eqs. (224), (225), and (220), for coefficients N N 2P ard N 3

coefficients 151,, 132, and D13 and we average

D D 1 + D- 23 13,, I5 D ii ,, DI= (228)
51 =  2 12 =  2 13 2

Next we perform the same procedures on the coefficients with double primes and

repeat until the coefficients oo not change any more. In our example we arrived,

after four repetitions, at the following adjusted coefficients:

15. -

0.4763817 0.8370000

1 1.4907697 1.5572695

2 1.4974132 2.2423101 adjusted coefficients

3 2,1286690 1.7568364

4 1.0000000 1.0000000

The test procedure T shows the following result

C-
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Coefficients C 01 V

V
0 0 0 47 6 381 7 d 0 1  -0, 0000001 A 0

go 1 1.4907697 0D c 2 = 0000003 AO

2 1"4974132 * 0 e 0 0000002 AO
0 4o 3 2"1286690 E 0

4o 1,0000000 f0 11O 0.7946394 A0
nn 2 - "13255166 .0

Coefficients 1 2

i = 0 0.8370000 d0
Co: 1 1,557269 5 O0

2 2 2423101 *0
17 3adjusted coefficients.of P(s)0 5 3 1 -7 568 3 64 E 0

4 1i0000000 fo TypeP 1

Next we realize P'(s) according to realization procedure R1 (see Section 4,

example 4.4. 1).

Coefficients Ri Z

L n0 0.4763817 e0 +no 07946394 b0
0 -4 1 1 4907697 E 0
or- V

2 1,4 74132 s0
'0 3 2.1286690 F 0

U 4 1,000000 0 RN - 2.2977370 e0
* 3.182293q EO

Coefficients D RS

~V
S 0 83700003250797 0

2 2 2 4 23 1 01 f0 R

0 3 1.7568364 F0 SD n

5 4 1-0000000 .0

- 0 - 07946394 b t Y
0 ~S Y

v y
V *4

RN% -0.0820700 e0

= -02007545 EQ nln2 --1.3255166 cl
Rn u -0.09 8656 '0 v

S = 2.1286690 F0 nl 181477123 0

q S n2  -151549206 10
V

V Vi  4-3369353 cO

RD -0.3133761 e0 Xl 3.4462 9 6 CO

SD ' 0.1612181 E 1

Rd 0.6530313 fo k 10.2657930 AO

Sd - 1 .7568364 F 0



77

With the constants presented in the framed field above, the circuit is now as shown

,)' in Figure 37.

S /K:T I

F(s)_ -k. z 1 n2

nl>O nl2< 0

Figure 37. P 1 0 -type Function Implying Brune Duplex

Since the function F(s) to be realizcd is of the type Pl 0 we have to transpose a
series impedance x0 /s over the circuit realizing F(s) in order to obtain the very

spccial function P(s) that has the equivalence of a lattice two-port. The following

is the result of Procedure A (see Section 6, example 6.5.1 ):

< nl 1,1477123 aO

9: n 2 '1 -15411206 00
,-.v1 ~ 4,336'i3S3 eO

7E X 3.4 62996 .'
U kl 10.26579340 ¢0

- -See the circuit
V realization in

x0 q ,-3995730 A Figure 38ix O'  0 -13 "1992 1 A

n 1,1154P12 01

S= 7,74471,17 5)

4 v ' 6 44622475 c
x =  3,5458776 CO

5--
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It -12 xO

F is)-- Z z I/(nn 2)

1 1l>O n2<O

Figure 38. P -type Function with Brune Duplex Prepared for Capacitance
Transposition

1 0

The elements of the equivalent lattice two-port are obtained by Procedure R 2 (see
example 5.2. 1).

,, n =  1 115i912 d0
o'' k = 7"74474R7 1)0

- V = 4.4622475 e 00 14

Wr, x = 3"5158776 E 0 See the circuit

V realization in

' Figure 39
va= 1-4106371 t0

= .5 42 5 53 81
V~b=

Xa = - 5495615 cO
Xb = 15466916 CO

Vb%

Figure 39. P10-type Function with Lattice
Two-port After Transposition
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~i. We now completely know the circuit shown in Figure 39. In this circuit we

will now dissolve two ideal transformers. The first one has the turn ratio

irK-= 1.5, the second one has the turn ratio l-r) = %O.6272457. Dis-

solving the transformers means that we push them out to the right side. There-

fore, we have to multiply resistance r, which is the only element that is passed by

the first transformer with K. All other impedance elements are passed by both

transformers and have, therefore, to be multiplied with K(l-r) = 0. 9590586.

The impedance x 0 /s that has been transposed over the circuit representing

p(s) has to be induced with the "-" sign. After the transformers ar,' dissolved,

the impedance becomes -K(l-r)x0 = -0. 9590586. 0. 0995789 = -0.0955011. Com-

bining this capacitive impedance with impedance xt/s = 0.2174432/s, the

capacitive impedance

xe/s =.0.2174432 - 0.0955011 -0. 1219421/s

remains at the input. Since xe is positive, the attempt of the realization was

successful from this point of view. The final circuit is shown in Figure 40 and.

its elements are listed in the following table.

Resistors Inductors

R 1 = Kr = 0.5699413 L 1 = K(l-r)va = 1.3528836

R = K(l-r) = 0. 9590586 L = K(l-r)vb 0.9151867

Capacitors

C I  I/K(l-r)xa 1.8973114 = 1/0.5270616

C 2  I/K(l-r)x = 0.6741416 = 1/1.4833678

C 3  I/xe = 8. 2006132 = 1/0. 1219421

C 4 = I/K(1-r)xo = 7. 8996366 1/0. 1265881

The circuit realization in Figure 40 R1 C3  C4

needs two resistors, two inductors, and A - -

four capacitors, for a total of eight cir- i R2

cuit elements. F IC2
By adjusting the coefficients, vie

necessarily induced an error; Figure 4 1

shows how this change of the coefficients F igure 40. Final Circuit Realizing

affects the real and the imaginary P 1 0 -type Func,-1)n F(s)
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0,8

04

0.2"

0 0.2 0.4 0.6 0.8 1.0 I/0. 1/0.6 /0.4 VO2 I/M

t

1.0 ......)-

0.8

0.6

0.4

0.2

0.2 .4 08 1.0 1/0.8 1/0.6 1/0.4

Figure 4 1. Coefficient Adjustment Affecting the Real and Imaginary Component
of F(jwo)
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1: 1/061 Ro F(jw.)
t/os /S

10 .......... .... .

08

06

0 4;

02t0i 02 04 06 04 6 1O a/O 1,46 V/04 V02 IM,

knF(1j f

061

041

o2l

0

"021

•041

-08,

-101
- 0o'4 0'6 ' 1i0 IlO IOS 1/0'4 1/0'2 Io

Figure 42. Coefficient Adjustment Affecting the Real and
Imaginary Component of F(jow)

Ag



82

C'Jmponent of F(w). The solid curve refers to ?-*jw) with unchanged coefficients,

and the dlashed curve refers to V ow) with adjusted coefficients. There is only a
slight deviation around the abscissa Q = = 1. 0.

Figut 42 shows the influence of the adjustment of the coefficients in P(s) on
the real and imaginary components of the total driving-point impedance Pojw),

2plotted versus the square 0 = . The same is pictured in Figure 43 in the com-
plex F-plane. As these figurL-. show, there is only a slight change in the functions'
behavior around Ql=1.0

I -- 0.. 1/0.9

Complex F-Plane

1/08

0.61

0.4)
0.8 1/0.6

0.2 1/0.5

1/0.4

I 1/0.3
0. ) I1/0.2

-0.2j I1/0.1

'- I 0.4 03

-0.4j06~ 02

* 01
-06)

02 0.4 0.6 0.8 IC 1/0.8 1/06 1/0.4 1/0.2 I/0
-0 L ---------

Figure 53. Cc-efficient Adjustment Affecting Pojw) Represented in the Complex
F(s)-Plane
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10. TIlE CONVENTIONAL IIEALIZATION OF TIlE I)l\ I\G-POINT
INIPEI)ANCE DISCUSSE) IN SECTION 9

In order to understand what was achieved by realizing the driving-point

XF impedance discussed in the preceding Section where we adjusted the coefficients,

let us now realize the impedance F(s) in the conventional way. For this purpose

we decompose F(s) as before by decomposition procedure Del. The results of the
decomposition

F(s) = xt/s + KF-(s)

are shown in the following table where

x= 0.2174432, and K 1.529:

i N. 1). N. I D
0 0. 182 0,000 0.6108037 0.8370000

1 1.274 u.837 1.5169136 1.5640000

2 2.811 1.564 1.7790515 2.2610000

3 3.102 2.261 1.9807434 1.7560000

4 3.246 1.756 1.00(0000 1.0000000

5 1.529 1.000

The function F(s) has to be realized according to Brune (for instructions see

Haase (1970b)). We obtain the circuit shown in Figure 44 where

resistor r = 0.3,27543, muttial inductance v = 2. 5861081,

L turn ratio n = 1. 1483501, capacitor 1/x a 1/2.0695412 - 0.4831988,

-0. 8002532, termination constant z = 0. 4756516.

The coefficients of the normalized function F'(s) are

i Ni  D

0 0.6835997 0. 9108017

1 2.0416891 1. 5447889

2 1.0000000 1 1.0000000

The driving-point function F'(s) can be realized in two W,.ys:

(a) By the ladder realization shown in Figure 45, where

r = 0.7505472, 11 = 0.9686540,

r = 0.3359745, CI = 2.0440229 =x 1 .

r 2 x 0.23E1402,

1
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X1
" r v,n

F s-t z F ' (s )
T

F'(s)- S-

Figure 44. First Step of Realizing Figure 45. Ladder Real-

the P 10 -type Function F(s) in the ization of F1(s)

Conventional Brune Procedure

rO Vo ,n o

UFigure 46. Brune Real-

(s ization of F'(s) with
(-Z Negative Mutual Induct-

.G ance va

-S

Xt

T.1

Figure 47. Tandem Circuit Implying the Circuit in Figure 45

M n

C RR2 R3

F(s) -" L -3_ R 4

• C- 2  
T

Figure 48. Final Circuit Implying One Perfectly
Coupled Transformer
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(b) It can be realized in Brune fashion with a perfectly coupled transformer

vith negative turn ratio and negative mutual inductance, as shown in Figure 46,

w.'ere

ra  0.0145407, v -0. 5513037, n -1. 1571209, xa = 0.4339463,

Q -0.7871276.a

Combining the circuits in Figures 44 and 45 we obtain the circuit in Figure 47.
Pissolving tile two ideal transformers with turn ratios K:I = 1.529 and z:l

0.4756516 yields the circuit in Figure 48, with the circuit elements listed as

follows:

R I = Kr = 0.5699413, M Kv = 3. 9541592,

R 2 = zKr0  0.5458513, L I = I 1 0.7044741,

R 3 = zKr I  0.2443445, C I/xt 4. 5989021,

R 4 = zKr 2 =0. 1710106, C 2 -- I/Kx --0.3)r)0228,

C 3 = I/zKx I  2. 8105373.
L 3 1 1

We check our results: FI) = 1.6370989.

Analyzing the circuit in Figure 48, we obtain

FM1 (= { 4 G I/C 3) + R'] @ L + R 9 + w & (M + 11C 2)) + u +

+ 131 + 1/C1I 1. 6370983,

which is correct.

Omitting the brackets, parentheses, and curled parentheses, this expression, in

which

u = Kv(n-1), w = -u/n, and n 1. 1483501,

can shortly be written as (see Iaase (1970a)

F(1) (R4 ® a/C 3 ) + R 3 (DL1 + H2 + w((M + 1/C 2 ) + u + R1 + 1/C 1.

Besides four resistors and three capacitors, the realization shown in Figure 48

needs one inductance and one perfectly coupled transformer with the mutual

inductance M and a turn ratio n = 1. 1483501.

By combining the circuits in Figures 46 and 47, we obtain the circuit in
Figure 49. Dissolving the two ideal transformers with turn ratios VK and V1-

yields the circuit in Figure 50, with the circuit elements listed as follows:

Ur
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/K I r vn r/,

F(S)- Z 0 '>

Figure 49. Tandem Circuit Implying the Circuit in Figure 46

R 1 = Kr = C, 5699413, MI = Kv = 3.9541592, n 1 = 1. 1483501,

R = zKr = 0.0105750, M = zKv = -0.4009473, n, = -1. 1571209,2 a 2 a ' 2
R 3 = zKz a = 0.5352757, C 1 = I/x t =4. 598902 1,

C 2 = l/Kx =0. 3160228,

C3 = l/zKxa = 3.z1686019.

The driving-point impedance of the circuit in Figure 50 is

F(1)*(R 3 + ZKwad)(D)(M 2 + 1/C 3 ) + (zKu a + R 2 + Kw)(e(M 1 + 1/C 2 ) +

+ p u + R + /C 1  1.6370984 (which is correct),

where
Va vn 2-1), a _ /n2

Ua  a a a 2V

u =v(nl-) w =-v/ 1 .

The circuit realization in Figure 50
needs two perfectly coupled trans- M,,n, M2 n 2

three capacitors. It would be uneco-
nomical to use because the circuit in Fs- [R3
Figure 48 needs only one perfectly "C
coupled transformer. Never theless, we ]

designed this circuit to show a corn- TC
parison with the circuit in Figure 37. Figure 50. Final Circuit to be Compared
This is the circuit wherc we have with the Circuit in Figure 52
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adjusted the coefficients of P(s). \ e redraw that circuit to get a better picture.
r The circuit in Figure 51 is the same as the one in Figure 37; its circuit elements

are as follows:

H= 4. 5S392'1 DOI K0 .
i 1 = l/xt  5r89021, 1  (.-r)v I  1593753,

= K(l-1)/(nn 2 )2  0.5-158518, \ l2 = -NI /k 1  -0.4051684,

C 1 = l/K(1-r)x1 =-0. :3025532,

C2 kC 1  3. 10594,5.

By adjusting the coefficients, we M ,n M ,n 2

Acombined resistors RH and R2 of the cir-

cuit in Figure 50 with resistor R1 of the CI R,

circuit in Figure 51. In the circuit in

Figure 50 are the products M 1C 2  (s)- R2
1/0. 8002532 and M2 C3 -1/0.7871274. 2

These two different products are combined T
in the circuit of Figure 51 to M1C2 F
-MC .7430.Figure 51. Final Circuit hmplying
-M2C3 = 0.7946394. Two Perfectly Coupled Transformer,

After inserting impedances (x0 - x 0 )/s,

wt obtained the circuit implying the lattice

section. The main advantage of the final

circuit in Figure 40 is that it contains no transformers. For this reason it cannot
with justice be compared to any of the circuits in Figures 48 or 50. However, it

is wel known that the circuit in Figure 48 can be transformed into a Bott-Duffin

(1949) structure. A Bott-Duffin structure contains no transformer, but that ad-

vantage has to be paid for with a considerable number of additional circuit

elements. The Bott-Duffin procedure is explained in many textbooks on pas.ive

circuit synthesis. Since its performance is rather tedious, Hlaase (1967)

developed a shortcut procedure. Using the instructions presented in that paper,

we will not transform the circuit shown in Figure 48 into the Bot,-Duffin circuit

pictured in Figure 52.
The bi-order function F(s) to be converted by the Bott-Duffin procedure is

V (s) (F(s) - I/CIS - R1 1/0.9590568,

with C 1 and R listed for Figure 48. These elements reappear in the circuit in

Figure 52 as C 6 and 17 respectively. The coefficients of the F(s) point function

to be converted by Bott-Duffin are
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i  Ni R, R2  R3  C2  L2  R6 L4

010.4763817 0.837 L C5 C1 1 1.4880315 j 1.564 R I

2 I 1.4926433 2.261

3 2.11430201 1.756 L
4 1.0000000 1.000

The regular Brune procedure R7  C6
(according to Haase (1970b) yields ()

a Brune T with the following

constants: Figure b2. Conventional Bott-Duffin Circuit

v = 4. 1229575, n 1. 1483504, S0 x/v 0.8002532, u = v(n-1) = 0.6116424,

w = -u/n =-0. 5326269, x = 3.2994099, z = G.7583175.

The terminating normalized function Ft(s) has the coefficients:

4 {D

0 0.6241664 0.997290

1 1.6803576 1.8932118
2 1. 0000000 1.0O000000

We now follow the instructions presented by Haase (1967, page 40):
We compute the coefficients of the polynomial

G(s) = sb(s) - R(s)/u.

These coefficients are listed in the table below.

i G. G(s)/(s-s 2 ) a(s)

0 -0.7788565 0.4994915 0.6241664
1 -J.5973170 1.3447116 1.6803576

2 -0.8763855 1.4244196 1.0000000

3 -1.1957616 1.6803576

4 0.1210578 1.0000000

5 1. 0000000
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The polynomial G(s) has a real root s 2 . 5592998. It also contains the factor
12 2(s + f0). The coefficients of G(s)/(s-s 2 ) and of G(s)/(s-s 2 )(s + Q 0 ) a(s) are

also listed in the table above.

The constants determining the Bott-Duffin circuit are:

K -us 2  0. 9537338, which yields K2 = 0,9096081,

and

k = s2/(s2 s + 0) 0.7523715.

Next we have to compute the polynomials

G(s) = sR(s) - Ks 2 D(s), and a(s) = G(s)/(s-s 2 )

They have the coefficients listed below:

i 2(s) i(s) b(s)

0 -1.2447503 0.7982756 0.9975290

1 -1.8495316 1.6980746 1.8932118

2 -1.8735302 2.2905185 1.0000000

3 -1.1188042 2.1864448

4 0.6271451 1.0000000

5 1.0000000

The polynom.. )(s) is

b(s) = - K2 sg(s)/kv
b() g(s 2 + Q0

its coefficients are listed in the table above.

The circuit with the driving-point impedance a(s)/b(s) is the same as shown

in Figure 45, but its elements are

r 0  0.6257125, 11 0,4969794,

r, 0. 3742875, c = 14.4862453.

r 2 = 0. 0605488,

By defining the constant H 0. 9590568, we can compute the elements of the final

Bott-Duffin circuit shown in Figure 52 as follows:
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Hr 0K2 = 0.5458501. L Hi 1K 0.4335478,01  = .5 5 5 ] 1 =II

R 2 = HrI K2 = 0.3265156, L 2 = Hc = 13.8931320,
12

R 3 = Hr2 K2 = 0.0528207, L.3 = Hvk = 2. 9749900,

R4 = H/r 0  1.5327435, L4 = K H/kx = 0.3514228,

R5 = H/r 1 = 2. 5623531, L5 = Hu = 0. 5865998,

R 6 = H/r 2 = 15.8394022, C 1 = Cl/HK2 = 16.6056999,

R7 - 0.5699413, C 2 = 11 /H = 0.5181960,

C 3 = 1/L 3 n 0 = 0.4200365,

C 4 = 1/L 41 0  3. 5558438,

C = L5 /K 2 H 2 = 0.7011306,

o_ _ _C 6 = 4.5989021.

Circuit analysis yields F(l) = 1. 6370967, which is in suffi,ient agreement with the

true result of F() = 1. 6370989.

We are now in the position to compare economically the result of the con-

ventional Bott-Dufin realization with the novel circuit realization implying a

lattice structure. The circuit in Figure 52 needs 18 circuit elements: 7 resistors,

5 inductors, and 6 capacitors; the circuit in Figure 40 needs 8 circuit elements:

2 resistors, 2 inductors, and 4 capacitors.
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