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ABSTRACT

The present study was undertaken in an effort to im-
prove numerical models for meso-scale and small-scale effects
which influence global weather and its modification. Two
major areas are being studied: the effects of mountain
ranges on energy and momentum transfer, and the transient
interaction of solar radiation with the earth's atmosphere.
It is hoped that the results of these studies will lead to
calculationally inexpensive prescriptions which can be in-
corporated into meso-scale and global-scale atmospheric cir-
culation codes.
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NOMENCLATURE for SECTIONS 2-4

ut

AXx

specific heat at constant pressure
drag force on the obstacle

: o0 . OuU _9v
fluid vorticity 53 - 5%

advective flux across a boundary
acceleration of gravity

dry adiabatic lapse rate = g/Cp

enthalpy

maximum value of the grid indice i
maximum value of the grid indice j
numerical grid indices -

temperature diffusion constant
viscous diffusion constant

latent heat of vaporization for water

cloud water content
rain water content
water production terms

pressure

3SR-795

compressibility stream function defined in

Eq. (3.14)
stream function
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total water content

water contained as cloud moisture and vapor

~gas constant for air

relative humidity
density
static stahility

entropy

. temperature

time

terminal velocity of water droplet in atmosphere

iu + kw = total velocity
total horizontal velocity
vertical velocity

horizontal Cartesian coordinate

vertical Cartesian coordinate

compressibility vorticity function

0w - L(ow)
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SUPERSCRIPTS

perturbation quantity
defined by Eq. (3.24)

time step index

SUBSCRIPTS

~diameter of water droplet

numerical grid indices

injitial spatial distribution (sometimes used
to indicate a ground level value)
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NOMENCLATURE for SECTION 5

density

pressure

temperature

vertical coordinate

frequency

wavelength

unit vector

spherical angular coordinates defining ol
cos®

specific intensity of radiation
radiation source function

volume extinction coefficient
volume absorption coefficient

a, corrected for stimulated emission
volume scattering coefficient
Planck function

scattering phase function

Planck's constant
Boltzmann's constant

scattering angle

coses
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NOMENCLATURE for SECTION 5, contd.

azimuthal average of Iv

azimuthal average of Pv
radiation energy density

a-component of radiation energy flux
aB-component of radiation pressure tensor

specific heat of air at constant pressure

frequency-integrated vertical flux

Rayleigh volume scattering coefficient
Mie volume scattering coefficient
Rayleigh phase function

Mie phase function

index of refraction of air at 760 mm Hg and 15°C

number density of air molecules

number density of air molecules at 760 mm Hg and

15°C

depolarization factor for Rayleigh scattering

Mie scattering functions

radius of (spherical) aerosol particle
complex indox of refraction

probability distribution of aerosol radii
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NOMENCLATURE for SECTION 5, contd.

number density of aerosols

extinction cross section of a spherical particle
scattering cross section of a spherical particle
absorption cross section of a spherical particle
solar intensity

directional-hemispherical reflectivity
bidirectional reflectivity

azimuthal average of o,

directional emissivity

ground (surface) temperature
solar-beam part of T;

diffuse part of T;

frequency-averaged f;

a(vi + vi+1) = center of frequency interval
WV3sV541)

B, B, P, evaluated at Ui

transmission function

scattering source

frequency-averaged scattering source

moments of P, .
g xi
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1. INTRODUCTION

The numerical prediction of the general circulation
of the atmosphere predates most of the other applications of
high-speed computers to physical problems. The codes which
exist at several major research centers have reached levels
of considerable sophistication. These codes are used to
solve time-dependent equations describing atmospheric motion
in a three-dimensional representation. Parametric descrip-
tions are included to take into account the effects of inso-
lation, turbulent transport, and .cisture. For the applica-
tion to short period forecasts (covering a time interval of
several days), the physical processes taken into account in
the codes are quite satisfactory, relying on the kinetic and
internal energy already in the atmosphere and depending less
on the utilization of the energy source from insolation.

For predictions over a longer period of time the pro-
cesses which transform the solar energy into motion of the
atmosphere are much more important. The many phenomena which
affect transfer of energy and moisture through the earth-
ocean-atmosphere system are incompletely described. Descrip-
tions of the ocean-air, air-land, and land-ocean interfaces,
and of the topographic boundary conditions are necessary for
a qualitatively correct predictive model.

1.1 OROGRAPHIC EFFECTS ON GLOBAL CLIMATE

Phenomena taking place on a scale smaller than the
resolution of global circulation codes can cause changes in
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climate. The tropospheric transport coefficients that are
required in the global atmospheric model may arise from at-
mospheric motions that occur in quite small regions (e.g.,
mountain lee waves). Transport is also effected by convec-
tive eddies such as cumulus and cumulo-nimbus convective
cells. These may be influenced by small geographic features
such as islands and by upper atmospheric phenomena such as
jet streams and waves. '

The simplest method of accounting for meso-scale phe-
nomena is to calculate parameters (such as eddy diffusivities)
according to some fit to experimental data, risking large
inaccuracies due to incomplete and inappropriate data. A
technique which can give more accuracy is to compute these
parameters by means of several meso-scale calculations per-
formed separately, or concurrently with the large scale cal-
culation. This permits a more complete description of rele-
vant physical processes to be built into the global model.

Present research at Systems, Science and Software (S*)
concerns the development of a meso-scale code capable of
¢ tudying these phenomena and in presenting calculational re-
sults which may be incorporated into global scale codes. The
basic code, as discussed in this report, is a two-dimensional
time-dependent code which makes use of the Boussinesq approx-
imation. The code is described in Section 2. Several test
calculations have been completed which show the transient
effects on the air flow over mountain ranges under various
atmospheric conditions. These results are described in
Sectiori 4. The momentum tranSpbrt from the atmosphere to the
earth is calculated for two cases and these results are also
discussed.

Modifications to the code, reported in Section 3,
include the effects of moisture, variable zoning ir: the
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vertical direction in order to better describe the atmospheric
conditions (i.e., inversion layers, etc.) and consideration of
the compressibility effects of the atmosphere. The results of
test calculations using these new codes will be reported in
the Zinal report of this contract.

1.2 RADIATIVE TRANSFER IN CLIMATOLOGY

To quantify the sources and sinks of energy in the
atmosphere due to solar and terrestrial radiation as a func-
tion of location, season, and time is a central problem in
predictive climatology. Radiation is the source which strong-
ly influences the level of response for all other parts of
the system. A number of parameters depend sensitively on the
solar radiation: humidity, cloudiness, extent of snow and
ice, etc.,, and, in turn, the amount of solar radiation heat-
ing the air and land depends on them,

Because of the intrinsic difficulty of the radiative
transfer calculation, very substantial approximations have
been made in the descriptions of radiative effects in all
atmospheric codes. Most calculations of atmospheric radiation
have been limited to approximations of long-wave cooling.

Only a few transient calculations have been performed and the
radiative response of the lower boundary of the atmosphere has
been very crudely approximated or ignored.

The development to date of a one-dimensional radiative
transfer code which will take into account the time-dependent
modifications in the thermal stratification of the atmosphere
is described in Section 5. A one-dimensional boundary layer
code which describes the basic hydrodynamics of the air flow
and which will be used to test the radiative transfer code is
also described. The radiative transfer code will be capable
of characterizing the transfer through an atmosphere described
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by temperature, pressure, humidity, CO2 concentration, 03 con-
centration, and concentrations of other trace constituents
including aerosols.

In summary, the two major areas under investigation
are (1) the effects of mountain ranges on energy and momentum
transfer, and (2) the transient interaction of solar radiation
with the earth's atmosphere. The development of numerical
models to study these phenomena is described in Sections 2,

3, and 5 of this report. A sixth section, describing addi-
tional objectives to be pursued in connection with these in-
vestigations is also included.
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2. OROGRAPHIC EFFECTS

The effects of mountain ranges on atmospheric trans-
port is being investigated using a two-dimensional numerical
code HAIFA (Hydrodynamics in an Almost Incompressible Flow
Approximation). This code calculates time-dependent dynamic
flow based on the Boussinesq approximation. The description
of the basic code is contained in this section. The modifi-
cations to this code to incorporate the effects of moisture
and compressibility are discussed in Section 3.

2.1 THE HAIFA EQUATIONS

The numerical investigation of mountain waves requires
that the effects of inertia and buoyancy be taken into account.
The two-dimensional time-dependent Boussinesq equations, devel-
oped herein, include these effects in the HAIFA computer code.
The buoyancy effects are due to adiabatic changes of tempera-
ture induced by perturbations of an initially thermally stra-
tified atmosphere. Deviations from constancy of the density
in other terms of the fluid equations, including the continuity
equation, are neglected, giving a set of equations which are
basically valid for an incompressible fluid. The use of the
Boussinesq equations for the investigation of mountain waves,
therefore, is appropriate in that the effects of buoyant sta-
bility is restricted by the incompressibility of the flow.
These equations, as used in HAIFA, are the vorticity equation
derived from the two-dimensional equatioiis of motion, the
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energy equation, and the continuity equation for an incom-
pressible fluid. An outline of the derivation of these
equations follows. (The symbols used in the equations are
defined in the Nomenclature list.)

In the Boussinesq approximation, the momentum equa-
tions in the horizontal (x) and the vertical (z) directions
are:

.- :_o ek ) (2.1)
d 1 9
a%.-agsg-g:g+v-(kvm : (2 2)

For the present, we have neglected the Coriolis terms in this
set of equations.

The incompressible continuity equation in two dimen-
sions is

Ju ow

K#:;.O 3 (2.3)

The vorticity equation used in the HAIFA code is derived using
Eqs. (2.1), (2.2), and (2.3). Kq. (2;1) is differentiated with
respect to z and Eq. (2.3) with respect to x . Consistent
with the Boussinesq approximation, the variation of Po with
height is assumed negligible. Subtracting one from the other
renoves the pressure terms. If one also treats the diffusion
coefficient kv as a constant, the resulting expression is:

d-(n) = + ek (2.9)



3SR-795

where n is defined as the vorticity component perpendicular

to the x-z plane, Mathematically,

e U _ oW
n ﬁ H .

It is forther possible to modify Eq. (2.4) consistent with the
Boussinesq approximations. The variables p, T and p may
be written as functions of their static values plus a perturba-

tion contribution as follows:
p(x,z,t) - po(z) + p'(X,Z,t) »
T(x,z,t) = T (2) + T'(x,2,t) ,

p(x,2,t) = p,(2) + p'(x,2,t) .

The buoyancy term

can then be written as

1 23p'
oo 5
o
However, for the Boussinesq approximation to be valid, the
density variation p' must depend mainly on temperature,

i.e., the variation of density due to t"» dynamical pressure
is assumed negligible (see Appendix A). Therefore,

(2.5)
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p! = (g-q') T' = - T:'T' . (2.6)

Substituting Eq. (2.6) into Eq. (2.4) and using Eq. (2.3) to
allow the result to be written in conservative form, the
vorticity equation is

FEM + glun) ¢ gz0m) = - =5 e kT (2.7)

Eq. (2.7) is the first of three equations to be solved
in the HAIFA code. The second equation results from the con-
tinuity equation and the definition of vorticity. Defining a
stream function ¢ such that u = 3y/3z and w = -3y/3x, the
continuity equation is automatically satisfied. Further, the
stream function is related to the vorticity through a Poisson
equation of the form

Viy = n (2.8)
The final equation necessary tc complete the descrip-

tion of mountain waves is the energy equation. This equation
expresses the first law of thermodynamics

g%-'l-%g%* ktv*h

for an adiabatic system. For a perfect gas with constant
specific heat and using the hydrostatic approximation in the
dp/dt term, this equation may be expressed by

S - ve e kT, (2.9)
P



q

{

3SR-795

Substituting Eq. (2.5) into Eq. (2.9), the resulting energy
equation is

OT' |, 3 111y + D (wT') = ow o2 2y
W— ﬁu ) ﬁ-(WT)s Wsz—"’ r "’ktVT . (2.10)

Eqs. (2.7), (2.8) and (2.10) constitute the fluid flow
equations integrated in the HAIFA code.

2.2 NUMERICAL APPROXIMATION OF HAIFA EQUATIONS

Eqs. (2.7), (2.8) and (2.10) are written in finite
difference form and integrated numerically. The integration
is accomplished by updating the equations in time for each
variable based on the values at the previous time step or an
intermediate time located between two successive time steps.
Each of these steps will be discussed in turn in this report.
These descriptions include the definition of the grid used und
the location of each variable listed in the equations, the
evaluation of the advection terms in the vorticity and energy
equations, the solution for the stream function from the
Poisson eq. (2.8), and a discussion of the boundary conditions
used in the numerical integration.

2.2.1 Finite Difference Scheme

The basic scheme used to numerically integrate the
HAIFA equations is shown in Figure 2.1. The finite difference
grid used in HAIFA is shown in Figure 2,2. The locations of
the major variables with respect to the grid cells are defined
in the figure.

PR T
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Initial values of temperature,
vorticity, and velocities are
specified. These will be Step 1.
available at time tR for the start
of each succeeding time step.

New values of temperature

and vorticity are obtained Step 2
accounting for the advection P <.
terms in Eqs. (2.7) and (2.10) only.

Temperature anglvorticity are up-
dated to time t"" by accounting for
buoyancy and friction terms using Step 3.
the intermediate values of T § n
obtained in Step 2.

The Poisson equation is solved
for ¢ wusing values of n at Step 4.
n+l
t .

.Yelocities are updated using ¢
values from Step 4, Initial data for
a new cycle are now available for
edit or further calculation be-
ginning at Step 2.

Step S,

Figure 2.1 — HAIFA Scheme Used in Numerical Integration
of Eqs. (2.7), (2.8), and (2.10).

10
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Vi,j+2
§41 Yi,j+1 | T | Yie1,5+1 T
4t |
: vy I Vie1,;
vlJ
¢—-AX—Pp
j-1
i-1 i i+l

Figure 7.2 — HAIFA Finite Difference Grid.

The stream functions arec located at the grid points, the vor-

ticities and temperatures are cell centered and velocities are
centered on a grid line located btetween stream line values.

In this way, the velocities defined in finite difference form

are:

Ve osaq = Yo
= oY _ Yi,j+l ij

(2.12)

ij X AX

11
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2.2.2 The Advection Scheme

The advection of temperature and vorticity in HAIFA
is calculated using either the second or fourth order scheme
of Crowley.(l) The selection of the second or fourth order
scheme is optional and is determined by the trade-off between
accuracy and computing time. The schemes chosen are written
in conservation form and are based on forward time differences
and centered space differences. Test calculations performed
by Crowley indicated that for the same order of accuracy, the
conservation form produced more accurate solutions than the
advection form.

In the conservation form, the time derivative and ad-
vection terms of the vorticity or temperature equation may be
written as

%%+gs((itl+g_z(ltl.s , (2.13)

where ¢ is either T or n and S is the source term.

In two dimensions a splitting technique is used; the
calculational scheme calls for solving a one-dimensional equa-
tion twice, i.e., the net flux of vorticity or temperature is
solved for in the horizontal, the quantity solved for in the
zone being updated due to this flux and the procedure is then

‘repeated in the vertical direction using the partially updated

values. The equation for the flux across the boundary j
written in finite difference form (second order accurate) is

a. a.?
Fj = %% Il(OJ + °j-1) < 'ZJ—(¢j = ‘j'l) (2014)

h . = u, At/4Ax .
where aJ uJ /

12
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“he net change in the variable ¢ in the cell ij due to ad-
vection in the horizontal is then

n+l

R R - TR (2.15)

|
The corresponding fourth order scheme for the flux

across the boundary j 1is
A a
ik ﬁ{Tg’[*"’j RTRVUER ORI
a.?
- ]*‘[37(0j ° Oj-l) - (¢j+1 T ’j_z)]
a,?
- ﬁ‘[(.j 1 oj-l) = (0j+1 < °j°2)]

o‘ ;
v [0y - ey - Gy - o,_zz]} . (2.16)

The numerical stability of these equations is discussed in
Section 2.3 of this report. The accuracy, as discussed by
Crowley, is found by expanding the quantities in Taylor series,
both in time and in space. The result gives the solution of
the variable ¢ at the new time accurate to order At?

in time. The time derivative of the finite difference form

of the differential equation is.thus accurate to order At

in time. The second order scheme, Eq. (2.14), has a trun-
cation of order A4x’ and the fourth order scheme, Eq. (2.16),
is accurate to 4x® in space.

13
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2.2.3 Update of Other Terms in the Vorticity and Energy
Equations
The vorticity equation has two additional terms besides
the advective terms. In general, central differences are used
in the numerical scheme. The buoyancy term

R

o)

is expressed as

T - T
- & i’l\’jux i-1,4 o (@an
%

The diffusion term k 9'n is expressed as

4
ko f0g 301 = 2055 ¢ 0y 50 )

i (ni¢l’j - 2nij + ni,l.j)(%%r) . (2.18)

The energy equation is handled in a similar manner.
The diffusion term ktV’T is expressed as in Eq. (2.18)
with n replaced by T . The remaining term in the energy
equation

aTo
'Ws;'—*r

is calculated using centered quantities. The term in
brackets is calculated analytically from input data and the

14
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velocity is expressed .s an averaged quantity

w +w
v = .EJJ:%____Li ,

2.2.4 Solution of the Poisson Difference Equation by Finite
Fourier Transform

The solution of the Poisson equation by means of
Fourier transform results in a direct (or exact) solution of
the difference equations and their boundary values. In the
current version of the subroutine there are some limitations
on the generality of the solution; the spatial interval Ax
must be constant (see Section 3.3 for variable Az). The solu-
tion must be periodic in the x-direction and prescribed values
of the stream function are to be maintained on the top and
bottom boundaries of the rectangular region. How the hound-
ary is modified from the rectangular shape is discussed in
the following section, -

A second order finite difference approximation to the
Poisson equation 92y = n is obtained by replacing the second
derivative operator by a centered second difference operator.

2 2 = ”
2T 34T I ny S Lk, eeen d (2.19)
(ax)* (az2)? ) j=2, ..., 0.1,
where
% Vij " Vie1,5 - 45t Vi
and

83 Vij = ¥i,je1 " iyt ¥y 5

15
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Boundary conditions are imposed as follows:

At the bottom of the mesh,

¥i,1 "9 ’

At the top of the mesh,

i 5" By : i=1,2,...,1

The cyclic boundary conditions in the horizontal are,

*O,j » *I,j and "l,j = *I*l,j 5 j=2, ..., J-1.,

We introduce an orthonormal base set of functions having
cyclic properties on the index i:

Wi ® /2]T cos 3%51 , I is even
Wi 1.k = YT sin gk : i=1,2, ..., 1.
¥i1® 1//T ,

vi 172 " 1//T cos i ,

These are the finite Fourier functions which have the properties,

I
_2 ik Yig © Ske

i=]1

16
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and the analogous cyclic boundary conditions are valid in the

horizontal. They also have the property that they are
eigenfunctions of the central second difference operator

2 - 212
6x Yik = Ak Yik

where Ak = 2 sin nk/I ., These functions are complete func-
tions on the interval i = 1,2, ,,., 1 . Consequently,
an arbitrary function fi on this space can be represented

I

£y = Z 8y Yik

k=1

where

ak'zfi"ik 5

i=]

We are now ready to consider Eq. (2.19) from the point

of view of Fourier transformation. The vorticity and stream
function are represented as Fourier series as follows:

1 P I
njj ® z byj Wik »  Where by, - 2 Nij ik
k=1 j=1

I I
wij . Z akj wik » Vhe!‘e ‘kj - iE Wij wik .
s]

17

(2.20)
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Substituting into Eq. (2.19) we obtain
I 2 2
o (ax)? (az)?/ j
Multiplying by Wig and summing over i gives
A2 82 =2, ..., J-1
Iy P A 8 = by Pt ’ (2.21)
(ax)*  (az)? i=1,2, ..., 1.
The values of 31,2 and 23,1 required by Eq. (2.21) are
obtained from the boundary values
I
31." - Zai Wig and
i=]
I (2.22)
‘J,z'zai Yig
i=1

In Eq. (2.21) the value of the wave number, L, appears
only parametrically. For each value of £ there is a tri-
diagonal equation having fixed values at the end points of the
j-interval.

We summarize the procedure for obtaining the direct
solution of the Poisson equation, Eq. (2.19), by Fourier trans-
form:
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(1) The vorticity and the top and bottom boundary
values of the stream function are subjected to Fourier trans-
formation to obtain

I
bjy ® 2 Njj Yik

(2) The Fourier components of the stream function are

obtained by solving the tridiagonal system of equations, Eq.
(2.21), for ajz.

(3) The stream function itself is obtained by Fourier
synthesis

I

¥ij ~ E 359 Wig

2=1

The quantity I must be even. In order to take maxi-
mum advantage of the efficiency of the Fast Fourier Transform,
the quantity [ should also be a power of 2,
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2.2.5 The FFT Solution of the Poisson Equation Having Non-
Rectangular Boundaries

In order to represent a mountain within the computa-
tional grid it is necessary to depart from rectangular bound-
aries. A modification of the solution algorithm using the FFT
is necessary to take account of the specified values of y on
the mountain contour. The procedure for carrying out this
modification of the direct soiution of Poisson's equation on
an irregular region has been described by Buzbee, et.al.(z)

We consider the case in which there are p internal
grid points on which the potential is to be specified. These
points ccastitute the adjacent mesh points lying along the
boundary of the mountain which will be assigned the same value
of potential (usually zero) as the lower boundary. The first
step is to precalculate the stream function contribution at
each of the p points of unit vorticity located at each of
the points. The solution is then obtained ., solving Poisson's
equation twice for each cycle. First, Poisson's equation is
solved with arbitrary vorticity on the boundary points. The
difference between the obtained and desired values of the
stream function at e. th of the p ypoints is used to obtain
the corresponding vorticity increments through application of
the precalculated matrix. A second solution of Poisson's
equation using the incremented vorticity field gives the final
value of the stream function within the calculational region.

2.2.6 Description of Poisson Solver Routines

This section describes the subroutines currently used
in the HAIFA code to solve the Poisson cquation in x-z geometry.
The method of solution employs a Fourier transform in the
x-direction, solving the resultant set of one-dimensional dif-
ference equations (one for each wave number) by Gaussian
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elimination in the z-direction and performing the inverse
x-direction Fourier transform to obtain the solution._ The
Cooley-Tukey Fast Fourier Transform (FFT) technique

is employed (subroutine COOTUK) with some pre- and post-
processing of the data for efficient utilization of the al-
gorithm. In the current version the dependent variable (the
stream function ¢ in the HAIFA context) is assumed to have
cyclic boundary conditions in the x-direction and fixed values
at che top and bottom of the grid.

At the beginning of each new calculation, there are
references to subroutines which are used only once in each
problem. These are called SETUP and OBSET.

SETUP -- This entry references an internal subroutine SET,
whose function is to define certain index parameters and re-
quired data arrays that are used throughout the calculation
by the Poisson solver.

OESET -- This subroutine is called only when internal boundary

conditions are to be applied. Suppose there are p internal
points required to have stream function values w:, w:, cos ¢;-
This subroutine computes a p X p matrix C which has the fol-
lowing property:

a unit vorticity is placed in the posi-
tion of internal boundary point j. The value
of the independent variable (vorticity) is
assumed to be zero at every other point. The
Poisson equation solver XYPOIS (see discus-
sion below) is called and returns the influ-
ence of that particular unit vorticity on all
the other internal boundary points. These
influences are put into row j of matrix C.
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This procedure is continued until all p in-
ternal boundary influences have been computed.
Finally, subroutine OBSET forms and stores

the inverse matrix C~!,

The controlling subroutine for the Poisson equation
solution is named LAPLAC (for the Laplacian symbol V2).
This routine is responsible for the solution to both standard
boundary condition cases and problems which include internal
boundaries.

Each cycle, subroutine LAPLAC averages the cell-
centered HAIFA vorticities to provide node-centered vortici-
ties. Then the Poisson equation solver XYPOIS is called to
provide the updated values of the stream function., In the
case of internal boundaries, one more step is performed in
subroutine LAPLAC. Upon the first return from solving the
Poisson equation, each internal boundary has a value w;,
i=l, ... ,p which in general is not the required value w;.
A ector Ay of the differences w; - w; is formed. Then,
using the inverse matrix C™! formed in subroutine OBSET, one
may compute the required modifications Aq; to the values of
the independent variable at each of the p internal boundary
points from

Ay Aq

o 1 o1
ci{- ) -

Ay, Aq,,

The independent variable is so modified, and the XYPOIS
package is called once again. The solution returned now con-
tains the correct values for the internal boundary points as
well as the other grid points, It remains to discuss the sub-
routine XYPOIS,
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XYPOIS -- This entry is used every calculational cycle to
carry out the solution of Poisson's equation. It contains
as an argument the values of the inhomogeneous term (here,
vorticity) in the interior (nodal) points of the grid, and
the fixed values of the dependent variable (here, the
stream function) at the top and bottom of the grid. XYPOIS
references four internal subrcutines:

(1) FFANL (fast Fourier analyzer), which is respon-
sible for carrying out the x-direction transform of vorticity
into Fourier components. It processes two rows at a time,
so an uncoupling of the row components is required upon re-
turn from the FFT routine COOTUK,;

(2) GAUSS, which is responsible for solving the re-
sulting z-direction tridiagonal equations for the transform
of the dependent variable (see Section 3.3.1);

(3) FFSYN (fast Fourier synthesizer), which is the
inverse of FFANL, is responsible for restoring the Fourier
components to the new values of the independent variable by
another call to subroutine COOTUK. These values, represeunt-
ing the solution to the Poisson equation, are returned to
the calling routine (subroutine LAPLAC) in the array contain-
ing the original argument list; and

(4) COOTUK, which carries out the Cooley-Tukey fast
Fourier transform.

2,3 STABILITY ANALYSIS

A numerical stability analysis of the advection terms
in the vorticity and temperature equations has been completed
by other researchers. Among them, Crowley(1’4) did a complete
analysis for the scheme presently being used in the HAIFA
code. The results obtained by Crowley indicate that both his
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second and fourth order scheme are stable for all wave num-
bers if

ult

x| <1

Further, the fourth order conservation scheme being used in
HAIFA is stable for (uAt/Ax) < 1.S.

As indicated by Crowley, the schemes both result in
amplitude dz:ping and phase lag. For long wavelength dis-
turbances the damping and phase errors are appreciably smaller
for the fourth order scheme than for the second order. Com-
parison tests with a typical mountain wave problem indicated,
however, that the differences between fourth and second order
solutions are not large. Most of our calculations have been
performed with the second order scheme. The criterion
built into the HAIFA code is more stringent than any of those
noted above, i.e.,

ult
Ax

< 0.8 .,

A stability criterion also has been estabiished for
the diffusion terms, however, in all problems calculated for
this research, the diffusion coefficients are set to zero and
thus these terms play no part in the solution,

One unstable region was found using the above cri-
teria in computing the uniform velocity problem discussed in
Section 4.3. The details of the iustability and the new
criteria developed for that problenm are also given in that
section.
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2.4 BOUNDARY CONDITIONS

The initial value problem solved using the HAIFA code
requires initial temperature, verticity and stream function
distributions. This is accomplished by prescribing a value
of the stream function which is constant in the horizontal
direction and which gives the desired horizontal velocity
distribution as a function of the vertical coordinate. The
vertical velocity component is set to zero. The vorticity
at each point in the grid is calculated analytically using
the definition

= ou . v .
n = 3>, since 3= is everywhere zero.

The temperature distribution is specified as being horizontal-
ly stratified with a lapse rate which may vary with altitude.
It is also possible to simulate inversions,

At the beginning of the calculation, with the flow
already established, an obstacle is placed in the stream by
setting the lower surface streamline to coincide with the
mountain surface, A rigid lid (constant streamline) is im-
posed on the upper boundary of the problem. Figure 2.3 indi-
cates these boundary conditions in graphical form.

The boundary condition imposed at the sides of the
grid assumes the flow to be cyclic, i.e., the stream function
at each vertical grid line j on the left side of the grid
is set equal to the corresponding stream function at the
right side of the grid. Mathematically, this can be ex-
pressed as wlj = wn+1,j . A graphical explanation of this
boundary condition is also given in Figure 2.3.
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Figure 2,3 — Schematic of HAIFA Boundary Conditions.
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One further boundary condition is necessary to obtain
the transient solution. The vorticity equation requires that
the temperature gradient in the x-direction be specified at
the cell center bounded by the obstacle. This requires a
value for the temperature perturbation on the obstacle
boundary. The assumption is made that the air immediately
next to the mountain has risen from the bottom of the grid.
The temperature of the air alongside the mountain is thus
given by

T. = To -~ Te2

where

T, = the temperature along the vertical
wmountain boundaries

T_ = the temperature at ground level

I = the dry adiabatic lapse rate

z = the distance above ground 1level.

Since the initial temperature profile (Ti) is given as
an analytic function of z, the temperature perturbation along
the mountain is

Tﬂ'] b2 TO - r.z - Ti .

Referring to the example ot a two-cell thick mountain in the
figure below, 3T'/3x at the cell centers adjacent to the
obstacle are calculated as
T! « T!
i i-1
BT{ Té -

oX Ax
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At cycle zero (time equal to zero), these boundary con-
ditions are then used to determine the new distribution of
streamlines within the calculational grid. This comp’etes the
required information to start the computation.

2.5 HAIFA CODE DESCRIPTION

A flow chart giving the calculational sequence of the
HAIFA code is displayed in Figure 2,4, A description of how
problems are generated and the major subroutines within the
code is presented below.
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Figure 2.4 - Flow Diagram of HAIFA Code.
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2.5.1 Initiating A Calculation

There are two methods for initiating a calculation:
generating a new problem, and restarting a partially completed
calculation from a data tape. These are controlled by sub-
routine INPUT.

Generating a New Problem -- Subroutine INPUT reads all
input data and sets up several constants which will be used
in the calculation. The initial streamline distribution is
computed from a series of input parameters, MT , DT1 , DT2 ,
DT3 , DT4 , and ZETA such that

MT (MT+1)

v(z) = DT1 + DT2+2"" + DT3-z

+ DT4+exp(-ZETA+z) .

These parameters define the horizontal velocity distribu-
tion

u(z) = %% « MT-DT2-2MT-1) 4 (MT+1).DT3.MT

- DT4-ZETA-exp(-ZETA-+2)

The initial vorticities are found from differentiating the
above expression with respect to z , i.e., n = 3u/9z since
wv/9x 1is everywhere zero at time equal zero.

The initial temperature distribution is set in a
similar fashion using the input parameters KT , AT1 , AT2 ,
AT3 , AT4 , and ALPHA.

KT (KT+1)

T(z) = AT1 + AT2.2"" + AT3.:z
+ AT4+exp(-ALPHA-z) .

30



3SR-795

Internal Boundaries — The input variable NOBS defines
the number of internal points which are to have fixed stream-
function values. A series of data cards specifying the grid
points and the associated ¢ values are read if NOBS >~ 0 .

Such internal boundary points are used to define grid
obstacles, which are outlined by a series of connected points.
Typically, the fixed value of { assigned to the obstacle
points is the lower boundary streamfunction value. The re-
quested initialization of the streamfunction, vorticities, and
velocities in the case of internal boundaries is handled by
subroutine OBSET.

Restarting A Calculation — The option %o restart a
calculation is keyed by the input parameter RESTRT. If it
is non-zero in value, the data tape is scanned in subroutine
RTAPE until the cycle requested by input parameter ISTART is
found. The values of the necessary calculational variables
of the requested cycle are then read, and the computation is

continued.

2.5.2 Major Subroutines in the Main HAIFA Calculational Loop

UPDATE -- UPDATE is used to solve the conservative equations
for vorticity and temperature. Crowley's second order or
fourth order scheme is called from this subroutine to calculate
the advection terms. This scheme is described in Section 2.2.2
of this report.

LAPLAC -- The Pcisson equation relating the stream function

and the vorticity is solved using this subroutine as the con-

trolling program. The details of the Poisson solver are given
in Section 2.2.4.
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VELOC -- The updated stream function values are differenced
in z-space to provide the horizontal velocity field u , and
in x-space to provide the vertical velocitv field v.

PRTTST -- This subroutine defines the type of output required
in each cycle, viz, plots, large edits, and/or data dumps on
tape are available options with this program.

TIMSTP -- The TIMSTP subroutine calculates a time step to

be used in the calculation limited by the numerical stability
criterion. The stability criterion is outlined in Section 2.3.
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3. MODIFICATIONS TO HAIFA

The HAIFA equations described in the preceeding sec-
tions are limited in that the formulation has been simplified
both from the mathematical and physical points of view. In
Section 3 we discuss several investigations to generalize both
the mathematical and physical aspects of the code. The three
programs described below are currently being tested and are
approaching operational status. Additional features are to be
incorporated in the latter part of the contract; they are dis-
cussed in Section 6.

3.1 COMPRESSIBILITY

3.1.1 Derivation of the Differential Equations

The use of HAIFA for the investigation of mountain
waves is appropriate in that the effects of buoyant stability
and dynamics are taken into account, but its applicability is
restricted by the incompressibility of the flow. In particu-
lar, if the height of the mountain range is comparable with
the atmospheric scale height there will be effects induced by
the expansion experienced by an air packet in being lifted over
the mountain,

The effects of :compressibility are to be determined
through the use of a new code developed with which problems in-
cluding this effect may be run and the results compared with
HAIFA calculations. Several objectives were sought in arriving
at a method of accomplishing this task. They are discussed
below.
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(1) Sound waves should be excluded from the numerical
solutions in order to permit efficient calculations having time
intervals comparable with material displacement through a space
interval.

(2) Compressibility effects should be retained.

(3) The scheme should be formulated in physical vari-
ables to facilitate addition of new physical effects (such as
Coriolis force or water vapor). '

(4) Conservative difference equations should be sought.

(5) The scheme should retain a mathematical form simi-
lar to HAIFA to make programming and check-out as speedy as
possible,

The “anelastic" equations of Ogura(S) meet some of the above
criteria and will be compared further below. However, the
anelastic equations do not allow an arbitrary atmospheric
stratification, do not include the change in density due to
temperature perturbations and are formulated in problem-
dependent variables. These limitations.can be avoided, as
indicated below,

The equations for inviscid fluid flow on a non-
rotating earth (additional terms will be discussed later) are
written in conservative form as follows:

P YL L, (3.1)
N !
R
Jow , Joww , Jovw , Zew , 2. g . (3.4)
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% = %1 and the energy equation can be
dT _ _1
a—t' ‘pr t . (3'5)

nviscid non-rotating motion of a perfect

tions of motion given by Eqs. (3.1)

der the equations in two spatial dimen-
and down-wind directions, assuming that
ce of any quantity on the y-direction,

Q

L (3.6)

22“ + gQU¥ + ggwu + %% =0 , (3.7)
dpw , Jpuw | Bpw” , Bp . g, (3.8)
g% = a%; %% , P = pRT . (3.9)

We consider
an initially steady
u(z,t=0), T0
initial conditions p

u
0

are related to each
tion,

the problem in which the mountain perturbs
=0,
P, = P(z,t=0), the normal

state of the atmosphere,
T(z,t=0),
reviously discussed.

w
o

These initial values
other through the static atmosphere equa-
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ap gp 9 Inp
55" 8, " "R OT  3p—— - - (3.10)

(o] o

The transient solution is obtained by solving the
equations of motion starting with the initial values and im-
posing boundary values on the motion. In order to eliminate
sound waves from the transient solution it is sufficient to
set %% = 0 in Eq. (3.6). The resulting equation,

dpu Ipw _
L.+ 22 o , (3.11)

is in suitable divergence-free form for the introduction of

a solinoidal function. Since Eq. (3.11) is no longer suffi-
cient to determine how the density changes, it is necessary

to introduce an additional equation based on an approximation,
We assume that the density can be determined at every position
from the perfect gas equation of state in which the pressure
takes the value associated with the static atmosphere, Py »
through the relation

P=RT ° (3.12)

The temperature equation can be written in terms of
the deviation T' of the temperature from its static value
(T = T° + TY) .

In addition, the temperature equation can be reformu-
lated so that the advection term assumes a conservative form.
Expanding the left-hand term of Eq. (3.9)
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dT _ a7 st . a1+ 9T,
at " 3¢ Y Uyx t Wz * Vgz ’

multiplying by p and adding Eq. (3.6 multiplied by T' ,
we obtain

dT
3pT! 9pT'u 9pT'w o_1 d
3t ' Ix * 3z M D) E; H% ’

Assuming the pressure to have its static value in the right-
hand term of Eq. (3.9),

d dpo dpo
il Iz T TWeP,

the energy equation becomes

aT
3pT! 'y, 3pT |
o i R (3.13)

where we have assumed

from Eq. (3.12).

The "anelastic' equations of Ogura and Phillips also
take account of compressibility effects in the atmosphere and
it is of interest to compare the above devclopment with them.
The anelastic equations are bacs:d on several assumptions:
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(1) The potential temperature is almost con-
stant; deviations from constancy are
small.

(2) The density appearing in Eq. (3.11) is
that associated with a neutrally strati-
fied atmosphere.

(3) The potential temperature appearing in
the momentum equations is that of the
neutral atmosphere, i.e., it is constant.
This assumption corresponds to using a
neutral atmosphere density in the ad-
vection terms of Eqs. (3.7) and (3.8).

The treatments of the buoyancy term of the momentum equations
and the energy equations are the same in the two schemes.
Consequently, the proposed scheme is more general in two
principal respects; the initial stratification of the atmos-
phere can be arbitrarily specified, and the effect of temp-
erature changes in the atmosphere are reflected in all of the
density terms.

The system of compressibility equations, Eqs. (3.7},
(3.8), (3.11), and (3.13), have a form similar to the
Boussinesq equations, and can be solved in a similar manner.
From Eq. (3.11) a stream-function-like quantity ¢ can be
introduced:

pu = g%- , pW = - %% . (3.14)

In terms of a vorticity-like function ¢ ,

(-3

9
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yielding the same Poisson equation as for the Boussinesq
approximation,

2 2
;=g?$+37$ . (3.16)

The prognostic equation for ¢ 1is obtained by cross differ-
entiating Eqs. (3.7) and (3.8) and subtracting.

14 d d d [d¢ du d¢ Ju
3t * ax(Ue) * 5z(ve) ’~§Y(§% 3% 52 s'z')

9 9¢ oW ¢ aw) _ 3dp _ _ p 9T!
’H(F%\H’zﬁ)‘gﬁ'% R L P

(3.127)

Eq. (3.17) replaces the vorticity equation of the
Boussinesq equations, differing principally in having the
additional terms containing the derivations of ¢, u and w.

3.1.2 Method of Numerical Solution

The system of compressibility equations is seen to be
very similar to the HAIFA equations, and in fact only nominal
modifications to the HAIFA code were required to produce a
compressible low-speed flow code.

Generating Initial Conditions — As with HAIFA, the
values of uo(Z) and To(z) are specified by input to the
code. In addition, the initial surface pressure Po(z=0)
must be specified. The remaining initial pressures are found
using the relation of Eq. (3.10),

. Z
P_(2) = P_(2=0) exp - &f T—(‘szz

0 (0]
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The initial density profile then follows from

P (2)
po(2) = RT Tzy

0
The stream-function-like quantity ¢ is formed by integrating

$ =0, (2) u (2)

and the vorticity-like quantity ¢ 1is initialized from the
non-zero term of Eq. (3.15),

[ = Jpu
0z

(as in HAIFA, there is no x-dependence of any quantity initially).

Modification of Advection Scheme — The quantities to

be advected in the system of compressibility equations are
t, Eq. (3.17), and (pT'), Eq. (3.13). Since the equation of
continuity is in the form

Jpu + dPW _ 0
X 3z ’

Crowley's second order scheme for advection was modified to
use {(pu) and (pw) as pseudo-velocities.

This code is now complete and problems will be run in
the next six months in order to compare with HAIFA results,
In addition, a problem will be calculated using a completely
compressible code,
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3.2 MOISTURE

3.2.1 Derivation of Equations

In this section the effects of moisture on the equa-
tions for Boussinesq fluid flow are discussed. Frequently,
atmospheric water in the form of water vapor, cloud water,
and precipitation will have important effects on tne charac-
teristics of gravity waves caused by mountains. Lee waves
are frequently accompanied by clouds which can be expected to
modify the stability of the air through the presence of the
latent heat of condensation which the cloud water adds to
the air. In addition, there are effects discussed by
Orville(6’7) of up-slope winds due to high-level heating
and evaporation, but these are not of primary interest in
our investigation. Consequently, the terms resulting in
changes of stability of the air in which clouds are forming
are of primary interest,

Radiative heating and cooling of the air has not been
taken into account in this discussion, even though the bound-
ary condition on moisture is affected by it, Boundary layer
effects at present are largely omitted from HAIFA but are
considered in Appendix E. It will be beneficial to incorpo-
rate them, together with radiative terms, at a later stage of
the code development work.

The HAIFA equations are to be modified to include the
effects of moisture by incorporating the following major
changes:

(1) the momentum equation is modified by

’ including the effects of moisture in
the buoyancy term,

(2) the equation of state for air is
changed to include moisture,
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the energy equation is modified to in-
clude energy changes equivalent to the
latent heat of water being given to or
taken from the air,

a new equation is added to account for
the conservation of moisture in the air
excluding rain water, and

a conservation equation is included
which expresses the rainwater content
in the atmosphere including sources and
sinks at the boundaries.

An outline of the derivation of the equations is given below.

The momentum equations and the eqdation of state for

a system with moisture are

These equations have been derived by Orville, and
Ogura and Phillips among others. The energy equation is
now derived from the first law of thermodynamics in order

du 1 23
i -

o)

P = PRT(1 + Er) .

to redefine some terms used previously, i.e.,

Tds = dh - %2 .
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For an adiabatic system, this can be written as

dh _ 1dp_ L(3P , .op , .9p)
dt  p dt p(at M TR T (3.22)

In the Boussinesq approximation, the first two pressure terms
in brackets are zero and the third term is equivalent to
-wgp (assuming the hydrostatic approximation),

. owg . (3.23)

The enthalpy changes will include energy changes due
to both advection of the temperature and latent heat being
released or absorbed as the moisture in the air changes phase,
The energy equation can thus be expressed as

oT oT aT _ _wg _ _
Tt’“ﬁ?“"ﬁ' C—: wl
where
~ Lr
T=T+r.
P

Expressing the temperature as T = To + T' where To is

a mean value which is constant and T' represents all vari-
ations of the temperature from this space averaged quantity,
i.e.,

Ter +T e =T +1 | (3.24)
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Eq. (3.23) becomes

1"
%%_ + u%;: + wgzn = -wl .

A diffusion term may be included in the above equation as

+ktV’T" where kt is a constant coefficient.

The vorticity equation, derived from the momentum
and continuity equations, is

3 LWl W3l g1 e+t T(e/e,)

9L 9L
c,® 3

X 3; 9X .

+Lg
Py

Making the Boussinesq approximation and the further restric-
tion that To/(To + T') 1, the equation is

n , ,on, .20 . _ a7
3t T Ysx * Y3z %; 1+ Lo * zr) 09X

oL oL
L or c r
*%;c;(l*‘c”r)ﬁ*gsx—*.sx—

Eqs. (3.25) and (3.27) and the Poisson equation relating the

stream function and the vorticity replace Eqs. (2.7) and
(2.10) in the basic HAIFA scheme.

The equation of water vapor conservation is obtained
by deriving equations of total water conservation and rain
water conservation and tzking the difference between them.
The total water conservation equation may be obtained by
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equating the sum of the time derivative of the total water
plus the diffusion of the water carried as cloud water and
moisture to zero. Mathematically, this is expressed as

T(pQ) = -Ve (rrV) - V‘("”cv)

[ 5 X-¥)

- v p/(V-VD)R.E dD
+ kv? p(r+e.) . (3.28)

The integral term on the right side of the equation repre-
sents rain water advection and fallout as a function of
droplet diameter. Several authors including Orville, Kess-
ler,(s) Srivastava,(g) and Armason, et.al.(lo) have derived
expressions for water drorlet formation and precipitation in
the atmosphere. At this stage in the development of HAIFA
with moisture, we have elected to program the conservation
equations a:s derived by Orville with one or two exceptions
noted below and will modify these equations as we derive or
discuver better prescriptions for each of the terms.

The final equation for total water conservation may

be expressed as

Q . _yy. t L4 Xp2
5% = VVQ R gt Vet pV p(2 *r)
9L
1l 3p 1 dp %
+ zrvt + > b + zrvt 5 5 Vt % - (3.29)
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The last two terms on the right side of Eq. (3.29) are ignored
by Orville. At the present stage of our analysis, the magni-
tude of these terms with respect to others in the equation are
is unknown; further study will be made to justify retaining
them.

The final equation required to complete our analysis
expresses conservation of rain water in the atmosphere.
The change of the rain water with respect to time is equal to
the advection and fallout of the droplets plus a source term
which expresses the conversion of cloud water into rainwater,
the growth of rain drops through coalescence, and the evapo-
ration of rain falling through unsatuiated air. The production
terms also have been derived by the authors already noted. The
most satisfying expression seems to be that derived by Orville
or Arnason. For consistency, our original equations for the
production term will be equivalent to those arrived at by Or-
vilte. Modifications will be made where we obtain an im-
proved description of the processes being undergone by the
water, The equation may be expressed as

rog e tleae e MVeae
ot T 9X P 9X r 92 P z
L L L Y
T T T T
“Vx Vi T Vesr cVews C P §oc)

This equation, Eq. (3.30), includes variations of o, Lr, and

Vt with respect to tne horizontal direction. Orville has ig-
nored these, but for completeness and until we can substantiate
that they are negligible, they will be carried in our studies.

The production ternm, P. , is described in detail in Appendix B.
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The equation for conservation of water vapor is found
by subtracting Eq. (3.30) from Eq. (3.29). The result is

§-9+V-v-k v*-zav‘-p (3.31)
t q QVq r 9x r ° ’

Eqs. (2.8), (3.25), (3.27), (3.29), and (3.31) constitute
the complete set of equations to be solved in HAIFA with
moisture.

3.2.2 Difference Equations

The difference equations used in HAIFA with moisture
are formed in an identical manner as those in the basic HAIFA.
All moisture terms are cell centered quantities. The time
differences are taken in the forward direction, the advection
terms are treated by Crowley's schemes and all other terms are
centered in space through appropriate averaging. Since this
version of HAIFA is not thoroughly checked out at the time of
tliis report, the finite difference equations will not be pre-
sented here. A complete listing of these equations will be a
part of the annual report under this contract.

o d) VARIABLE ZONING IN VERTICAL DIRECTION

The modifications to the basic HAIFA code that will
enable it to operate with a mesh of variable spacing in the
vertical direction are examined in this section. This modi-
fication affords the ability to resolve more finely certain
areas without excessively slowing the computation by re-
quiring fine zoning throughout the g:id. Modifications to
two routines of the code are necessary. They are the Poisson
equation solver, and the vertical advection subroutine. Each
modification is discussed below.
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3.3.1 The Poisson Solver

The use of the Fast Fourier Transform in the horizontal
x-direction imposes the limitation that the spatial interval,
Ax , be constant. In the vertical direction, however, the
solution of the Poisson equation is obtained by Gaussian elim-
ination and is not limited to a constant spatial interval.

The Gaussian elimination subroutine of POISPK solves
a system of difference equations approximating

.%;¥ ay=Q . (3.32)

The solution of thise equations is briefly outlined below:

The finite difference form of Eq. (3.32)
may be written as a tridiagonal system

Aj ¥i41 *B; ¥; *C vy, =D (3.33)
Letting
Vi = Ej ¥547 * G5 (3.34)
which implies
Vi-1 = By ¥ * 65 o (3.35)

and substituting into the tridiagonal sys-
tem, the coefficients E; and Gi may be
expressed as
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A

E. = -
i R rGE,

G

e Sl s O
i B+ E,

The finite difference form of Eq. (3.32)
for constant vertical zoning is

wi...l - [2 + G(AZ)’]wi + wi_l
(az)?

Q; -

and the coefficients Ai 5 Bi , C. , and
Di are thus equivalent to

Ay = 1/(82)

By = -a - 2/(Az)*
¢; = 1/(az)*

D; = 4

Using these coefficients, Ei and Gi can
be calculated and thus the y; may be

solved for recursively.

With variable zoning the finite difference form of
Eq. (3.32) becomes
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Yieg ~ V3 V3 " Vi
Az, Az,
i R L T (3.40)
Azi + Azi_1
7

where the location of y and Az are shown below,

The coefficients A, , B, , C. , and Di are now equivalent
to

Ai = 1/( zi(Azi + Azi_l)/Z)

By =-2/(Bz; Bz ) - @

(3.41)

C. = 1/(Az.;

i j-1 (825 *+ 8z; 4)/2)

Dy = ¢4

The values of Ei and Gi are computed using the above
coefficients and wi is computed in the same manner as indi-
cated above by Eq. (3.35).
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3.3.2 Vertical Advection

The advection schemes discussed previously are valid

for uniform zones only. The equivalent scheme for variable
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size zones is derived below for the Crowley second order
scheme. It has been incorporated into a version of HAIFA

which is currentliy being tested.

be considered at a later date.

The fourth order scheme will

The one-dimensional advection equation in conservation

form may be written for flow in the z-direction as follows:

where ¢ is a variable representing the quantity to be ad-

g%+%?(v¢) =0 ,

(3.42)

vected. Only the one-dimensional equation need be considered

due to the splitting technique used in HAIFA,

In finite difference form, Eq. (3.42) is

J

¢r.1*1 =

n
%

J

3 v SOTPIRNCORN

The term A(vé) . requires the flux across the boundary of

the j cell (see figure below).
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4. TEST PROBLEMS

Several problems have been calculated using the basic
HAIFA code. The results of each are presented in this sec-
tion and comparisons with other results are made where pos-
sible. An edit routine to determine the momentum flux
(wave drag associated with gravity waves) was written and
is described in deta11 in Appendix C. Y R

“w v i

Table I summarizes the 1n1t1a1 cond1t1ons used for
each problem. The boundary conditions in each case were £
those described in Section 2.4 of this report. The grid -{%
size consisted of 35 vertical cells by 64 horizontal cells, :

| i |

The atmospheric and horizontal velocity conditions

4.1 SINGLE WAVE

to produce a single gravity wave were arrived at using tke
results presented on two-dimensional mountain lee waves by
Palm and Foldvik.(ll) They had established that if the
quantity

S _123% .
u? ~ u 9zZ

where S 1is the stability of the atmosphere, has a value
at the ground level which is at least 2.5 times as large as
the minimum value (usually located 7-10 km above the ground),
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the wave motion in the lower troposphere depends only on the
wind profile and the stability. This condition is almost
always satisfied when mountain waves occur. A diagram giv-
ing the expected wave lengths of lee waves under various
stability and wind profiles was presented. In particular,
regions of one and two waves were indicated. Using this
diagram, a single wave of approximately 16 km in length was
predicted for a lapse rate equal to one-hr1f the dry adiabatic
value (see Figure 4.3), and the exponential velocity profile
shown in Figure 4.1.

The numerical results calculated using HAIFA are
shown in Figures 4.4 through 4.7 as streamlines and vertical
velocity contours at several times up to 1-1/4 hours. The
measured wave length from Figure 4.5 or 4.7 is approximately
15 km. As can be observed from the results, only one wave
did form during the time the problem was run. The cyclic
boundary condition prevented any further computation due to
disturbances created by the obstacle in the flow stream
being introduced into the main flow upstream of the mountain.
Some interference with the upper boundary positioned at
10.9 km may also be seen at the latest times.

The momentum edits u'v' (see Appendix C) located
one cell or 312.5 meters above the mountain top are shown
in Figures 4.8 and 4.9 for various lengths used in obtaining
the horizontal averages. The qualitative result obtained
from these figures indicates a decrease in the edited quan-
tity as the length used in the averaging length is increased,
i.e., a lower amount of drag is created by the mountain. One
exception appears, however; this can be noted as a cross over
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Figure 4.8 — Single Wave Problem Momentum Flux Edits.
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of two of the curves occurring at approximately 3400 to 4000
seconds on either of the figures. The same phenomenon occurs
when the averaging length is reduced by discounting zones
from in front of the obstacle as well as the rear. While

it is not clear what the averaging length should be in these
cases or the intrepretaticn of these results, it is clear
that the magnitude of the edited quantity is only equal to
the drag on the mountain if the inlet and outlet values of

p and pu? are identical. Since this is the case only

when the total numerical grid length is used as the averaging
length, due to the cyclic boundary conditions, a value for
the drag on the mountain can only be estimated from the
uppermost curve of Figure 4.8. The value of the drag
reached at 4,445 seconds was approximately equal to 10 dynes/
cm?. This value agrees qualitatively with measured values

of the momentum flux reported by D. K. Lilly(lz) for mea-
surements at Boulder, Colorado.

One other important feature of the momentum {lux
edit is the oscillatory character of the values with time.
This is thought to be related to the formation of the in-
dividual vertical velocity cells, i.e., as a new positive
or negative cell is formed, the effect seems to be to in-
crease or decrease the horizontal average of the vertical
flux of horizontal momentum. This cyclic character is
perhaps more clearly seen in the edits of the two wave
problem discussed later.

Figure 4.10 shows the momentum edit as a function
of height at a time of 4,445 seconds. The value goes to
zero very quickly above the mountain. This indicates the
solution is not yet approaching a steady state value since
the drag for a steady problem would be constant with height.
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4.2 TWO WAVE PROBLEM

The conditions for the two wave problem closely match
those of a problem described by Wurtele and Foldvik.(ls)
These authors computed numerically the transient formation of
a mountain lee wave. One wave of length 10 to 15 km was
formed using conditions similar to those described for the
two wave problem in Table I. Using the same type of analysis
as described previously for the sinéle wave problem, the Palm
and Foldvik results indicated a wave of approximately 9.2 km
wavelength as well as a second wave of approximately 25 km
wavelength should be present., Private communication with
Wurtele indicated that the longer wave was not noticed in
their calculation. These data were incorporated into HAIFA
and run to a time of 5,474 seconds. The results of this
numerical calculation are presented in Figure 4.11 through
4.14, The streamlines shown in Figure 4.12 at a time of
5,474 seconds display the presence of two waves. The shorter
wave appears just above and behind the obstacle and agrees
with theory in that the wave length is approximately 12 km in
length. A second wave appears behind the obstacle at a
height of 7 to 8 km with a wavelength of approximately 22 km.
The sms 1 discrepancies between predicted and calculated
wavele: gths are probably the result of the linear theory
used in producing the diagram of Palm and Foldvik. The
presence of the second wave is also strongly evident in the
bending over of the vertical velocity fields. The interaction
of the two waves is seen by the presence of small vertical
velocity regions whose direction is opposite of the velocity
cell completely surrounding it.,

The figures showing the growth of the vertical veloc-
ity cells may be compared to the results of Wurtele and Fold-
vik. The Figure 4.15 was taken from their paper and indicates
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is Te 5 )

Figure 4.15 ~ The field of vertical velocity as cal-
culated by Wurtele and Foldvik. The
lowest panel represents the total
streamline field.
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a large negative vertical velocity cell over the obstacle for
all time. The positive cell just downstream of the obstacle
is moving toward the upstream side of the obstacle with time
but does not ever dominate the flow over the obstacle. Our
calculations indicate a negative cell over the obstacle for
times to 5,300 seconds. Shortly after that time, the large
positive cell at the rear of the obstacle combines with the
small positive cell forward of the obstacle. A small nega-
tive cell still remains over the obstacle itself, but there
is no longer a dominate negative or downwind flow over the
obstacle. These differences are not well understood. The
phenomena may be due to differences in initial or boundary
conditions as none of these were completely indicated in the
Wurtele and Foldvik paper. The additional time of the com-
putation or the presence of the second wave may also be
responsible for this phenomena. The length of the obstacle,
which was not specified in the previous study, was found in
HAIFA calculations to have a definite influence on the pat-
tern of vertical velocities over the obstacle. The tempera-
ture distribution, which was specified as equal to one-half
the dry adiabatic, may also vary a small amount., Any of
these parameters may have caused the small differences seen
in our calculation and that reported by Wurtele and Foldvik.
The similarities, particularly of the vertical velocity cells
at times less than 5,000 seconds, certainly indicate good
qualitative agreement.

The momentum edit of the two wave problem, shown in
Figure 4.16, indicates a much more cyclic nature than of the
single wave problem. Each half cycle appears to have some
correspondence to the complete formation of a vertical cell
although the interaction of the two waves present makes the
intrepretation of the data difficult.
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4.3 UNIFORM VELOCITY

A problem using a velocity distribution uniform with
height and equal to 10 m/sec perturbed by a one kilometer high
mountain was completed. The lapse rate was set equal to one-
half the dry adiabatic. Figures 4.17 tarough 4.20 show the
resulting streamlines and vertical velocity cells formed under
these conditions Wurtele and Foldvik have also investi-
gated this problem, the results of which are shown in
Figures 4.21 through 4.23. A comparison of their streamlines
with our results show a continuous spectrum of waves is ex-
cited in both calculations, which when added together produce
growing numbers of upwind-tilting troughs and crests ex-
tending to great heights. The figures showing the verti-
cal velocity cells at the forward and rear of the obstacle
show these upwind-tilting troughs and crests even more dis-
tinctly. Lyra(14) theoretically showed these same results
using a linear analysis. His steady state analytical result
for the streamlines and the vertical velocity field are
shown in Figures 4.24 and 4.25. While there are certainly
similarities in the results of Lyra, Wurtele and Foldvik, and
the S’ calculation, there are also some significant differ-
ences. The four total streamline fields computed by Wurtele
and shown in Figures 4.21 and 4.22 show a large amplitude
wave just above the lee slope. The vertical velocity in this
region is more than five times the upstream wind and the
total horizontal velocity is negative at some grid points.
This feature is not present in the linear theory and did not
appear in the S’ computations. We are continuing to investi-
gate these differences.

One of the most significant items found in calculating
this problem was a numerical instability associated with the
flow when the normal stability criteria for the advective
terms of the equations was used. An initial computation
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Figure 4.23 — Field of vertical motion computed under
upwind conditions for successive times
from Uniform velocity problem.
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Figure 4.24 — Streamlines from the linear theory
(after Lyra).

R,

Figured4.25 - Field of vertical velocity when
U = constant with height (after
Lyra). Isopleths for w > 0 only,
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using this time step control produced a series of large wave
length high amplitude waves which propagated throughout the
flow very quickly. The problem was recalculated by putting
an upper limit on the time step which was based on the phase
speed of the largest of these waves, i.e., a wave with a

50 km wavelength. This limited the time step to less than
14 seconds per cycle assuming the overall criteria to be that
the 50 km wave would not completely traverse a grid cell in
one cycle. The actual limiting time step used in the recal-
culation was 12.0 seconds. The resulting wave pattern is
the one shown and previously discussed in this section.

This new stability criteria, which had not been previously
used, was not required in earlier problems due to either

(1) the damping of the disturbances caused by the wind shear
or (2) the high velocities in the single wave problem con-
trolling the time step to an acceptable value. Later prob-
lems, the tropopause and inversion layers, exhibi‘ed this
same instability.

4.4 INVERSION LAYER 1

The determination of the effect of ar inversion layer
in the atmosphere was calculated using the basic HAIFA -:ode,.
The inversion layer was described as a positive 4°C tempera-
ture change over a 1,5 km height as shown in Figure 4.26.
The other initial conditions are described in Table I. The
results, shown in Figures 4.27 through 4.30, indicate a
small effect in the vertical velocity cells at heights cor-
responding to the inversion heights. The cells appear to be
broader at a S km height than those secen in the two wave
case for example. There also appear to be displacements in
the vertical cells at this position. However, these may be
due more to the change in the lapse rates at this position
than the presence of the 4°C temperature increase.
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Figure 4.26 — Temperature Distribution used in Inver-
sion Layer Problem,
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Figure 4,28 — Streamlines from Inversion Layer
Problem (page 2).
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Because of the coarse zoning at the inversion layer,
the definition of the flow is poor. This problem will be
recalculated using the variable zoning code and the results
will be reported in the final report of the contract.

4.5 TROPOPAUSE PROBLEM

The test calculation representing a tropopause prob-
lem consisted of initial conditions as described in Table I.
The calculated streamlines and vertical velocity contours
are shown in Figures 4.31 through 4.34, The most noticeable
charact:ristic of the resulting solution is the tilting of
the vertical velocity cells toward the upwind direction.
The streamline pattern for this problem did indicate, but
not clearly, this same phenomena of the upwind tilting of
the gravity wave peaks.
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S. RADIATION IN THE EARTH'S ATMOSPHERE

The radiative transfer problem in the Earth's atmos-
phere reduces to the solution of the seemingly simple equa-
tion

dl,
r. (3 = JV - Kv IV (S.l)

which states that radiant intensity, in traversing the element
of length ds , will be augmented by sources in the amount

Jy ds and diminished by extinction in the amount vavds .

In general, Iv , the radiant intensity, and Jv , the source
function, depend on both a spatial coordinate T and an angular
coordinate (direction) f at the point T , &4s well as upon
the frequency v . The time dependence of these quantities is
ignored because the radiative state of the atmosphere is
established, for all practical purposes, instantaneously. «
is the extinction coefficient, which describes the relative
depletion in the intensity of the beam, dlv/Iv , upon tra-
versing the element of distance ds. K, is in general the
sum of an absorption part and a scattering part. Iy describes
the additions made to the beam intensity along ds by thermal
or non-thermal emiscsion and by scattering. In the case where

v

the source consists only of thermal emission, Jv does not

depend on lv and Eq. {5.1) can be solved explicitly for I,:
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3
Iv(s,ﬁ) = Iv(so,ﬁ) exp[- ] xv(s') ds']
3

o

s 3
. [ Jv(s",ﬁ) exp[-[ xv(s') ds' | ds"
s s"

o

where S corresponds to some boundary at which Iv is pre

(5.2)

sumed known. However, even in the case where I depends on
I Eq. (5.2) is a perfectly valid alternate formulation of

v 14

the radiative transfer equation. Eq. (5.1) will be called the

differential form, and Eq. (5.2), the integral form, of the
transfer equation.

The consideration will be limited to plane geometry,
which is justified in view of the small depth of the Earth's
atmosphere in comparison to its radius (when the sun is near

the horizon the plane-parallel atmosphere approximation fails).

The geometry is illustrated in Figure 5.1(a). The vertical

coordinate is denoted by z , and the angular cooriinates de-

fining the direction % at z are denoted by 6 znd ¢ .
As is customary, the variable uy = cos®é is employed rather

than 0 itself., From Figure 5.1(b), it is clear that in these

coordinates the element of distance ds is related to d:

so that Eq. (5.1) becomes

alv

% il VL VIR
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- M

dz

(b)

Figure 5.1 — Coordinate system for radiation probles.

where Iv ™ Iv(z,u,o) and K, ® x“(z) . If we make the
assumption of local thermodynamic equilibrium (LTE), which

is valid below about 70 km in the atmosphere, then the source
term Jv may be replaced by a more explicit expression,

leading to the transfer equation

ol
ugg = al(B, - 1)) ¢ sv[%fpv(z,ﬁ,ﬁ') 1,(z,8) da* - xv] (5.4)

where a, is the volume absorption coefficient a, corrected

for stimulated emission

al = av(l . e““’/“) : (s.5)

B, 1is the scattering coefficient, Bv is the Planck function

. 2hv?/c?
B (T) = : (5.6)
v eV -1 '

and P, is the phase function, defined so that
Pv(z,ﬁ,ﬁ') %g

97



3SR-79S

is the probability that a photon entering a volume element
around z from direction f®' will be scattered into the
cone dt of directions around #. Since avsorption is ex-
plicitly represented in Eq. (5.4), the above probabilities
must sum to one

fpv(z,a,ﬁ) 4 . (5.7)
4x

rather than to some number less than one as woull be the case
if absorption were tacitly included in the scattering terms.

Because a volume element in the atmosphere has no pre-
ferred direction with respect to scattering (due, say, to a
permanent dipole moment), the scattering probability function
P, depends only on the angle 0, between i and ' . If

M, = COSOS

S

this means that P, = Pv(z,us) . Mg is expressed in terms of
known angles 6 , 6' , ¢ , ¢' as follows:

g = f-f

(sin6 cos¢, sind sin¢, cosH)

+ (sin6' cos¢', sind' sin¢', coso')
= sind sind'(cos¢ cos¢' + sin¢ siné')

+ co0s8 cosé'

= uu' + /1 - 31 - u'? cos (¢-4')

Let us integrate Pv over all azimuthal directions ¢ ;
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2n 2x
o(Zoug)de f P (z,unt + AT A0 cos(e-4"))ds
o)

o\"\

2u-¢'

- f Pv(z,uu' + f1-p? /1-u'? cos;)d;
-.'
WA | 0 2w
- [J ’f ] ] ]pv(z.vv' + /1-u?
0 -¢' 2v-¢'

s J1-p'? cosS)d;

The second and third integrals cancel one another, because of
the periodicity of cos¢ , leaving

3 |
o f Py(2,u,)d¢

o

P (z,u,u')

] |
%—1-'- f Pv(z,uu' + J1-p? N1-p"2 cos¢)d0 . (5.8)

o)

The important point to note here is that F; does not depend

on ¢!

Using Eq. (5.8), one may integrate Eq. (5.4) over azimuth
¢ and so deal only with the azimuthally-averaged intensity T;
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9l
v —
3z * GG(BV B Iv)

1
+ B, %.‘/‘.1 fv(z,u,u')'l_v(z,u')du' - Tv

where

r3
T,(z,) = %;/ 1,(z,u,0)d0 .
o

In problems such as the solar aureole, the location of the
neutral points in the sunlit sky, etc., it is clearly neces-
sary to retain the ¢-dependence of the intensity; for the

(5.9)

computation of some important angular moments of the intensity,

however, and in particular for the computation of vertical
radiative fluxes and hence heating rates, T; contains all
the necessary information.

No more than the first three angular moments of the
intensity will be considered in what follows. They are, in
the customary notation,

1 ‘ 2 =
NORE N ENCRULLER- I NCROLY

Fy v(2) = fnu Iv(z,ﬁ)dn

Pag,v(2) = %f"a Ry 1,(z,8)dn
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where

Q. = /1-u? cos¢ , Q, = V/1-pu? sin¢ , Q. =y .

X y

E , F, and P may be interpreted physically as the density
of radiant energy, flux of radiant energy, and radiation pres-
sure tensor, respectively. Two moments of special interest

are the vertical flux Fz and the =zz-component of pressure

Pzz E

F,(2) =fu 1,(z,8)dn

1 _
= 2% / I (z,u)dy
-1 v

(5.11)

1
P (2) = 3 fuzlv(z,ﬁ)dn

1
B e 2_
< eI (z,u)duy

where for conveience the coordinate subscripts have been
omitted, The other components of the flux, F, and F_,
might be of interest for some applications, such as the heat-
ing of inclined slopes, but their calculation would require
retaining the ¢-dependence of Iv , @8s would the calculation

of any of the other pressure components,
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In general, radiation energies and pressures within

the atmosphere are completely negligible compared tc material

energies and pressures, whereas radiative fluxes are compar-
able to other energy fluxes in the atmosphere (latent heat,
sensible heat, etc.); the reason for this is that the rela-
tively small amounts of radiant energy travel at the speed of
light, while the speed of material energy propagation is
essentially limited by the sound speed.

The definitions of radiation energy and flux given
above are made plausible by looking at the result of inte-
grating Eq. (5.9) over all u (remembering the normalization
£q. (5.7) of Pv):

dFv
az— = 06(4173\’ = CE\’) . (5'12)

The terms on the right-hand side are source and sink terms to
the radiation energy field; if they cancel, then Eq. (5.12),
with the above interpretation of Fv’ becomes the usual ex-
pression for steady-state radiative energy conservation. If
they do not cancel, then clearly more energy is entering an
infinitesimal horizontal layer than is leaving it, or vice
versa, and the deposited or withdrawn energy will result in

a net heating or cooling of that layer. The expression for

the heating rate is, in fact, taking the origin of z-coordinates
at the surface of the Earth

oc. 9L . _dF (5.13)

where
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- .

F(z) = f F, (2)dv (5.14)
o

p(z) = density ot air at 2

C_ = specific heat of air at constant
pressure .

Eq. (5.13) is simply a restatement of the first law of thermo-
dynamics, which is, in the usual notation,

dq = de + p dv
= C. dT + pRT d(l)
v o

- . RT
Cv dT 5 dp

for an ideal gas., Since any atmospheric process at a given
level =z will for all practical purposes take place at con-
stant pressure,

dp = 0 = R(p dT + T dp)
then the first law can be written

R
dq = C, dT - 3(-p dT)

= (Cv + R) dT = Cp dT .

Dividing by dt , and noting that the heating rate due to

d pt , leads to Eq. (5.13)

(the factor .p converts heating per unit mass to heating

radiation g; corresponds to

per unit volume, in agreement with the definition of F).
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To obtain the radiative heating rates in Eq. (5.13)
is the primary goal of our calculation. To arrive at these
numbers, Eq. (5.9) (or its corresponding integral form) must
be solved for the T;'s » which must be integrated ac-
cording to Eq. (5.11) to obtain the Fv‘s , and finally the
Pv's must be integrated in accordance with Eq. (5.14) to
obtain the F's . The mechanics of solving Eq. (5.9) will
be elaborated upon in the remainder of this section.

The solution of Eq. (5.9) can be separated into sev-
eral sub-tasks, which are:

(1) specification of the phenomenological
parameters entering the equation;

(2) specification of boundary conditions;
and

(3) discretization of the independent vari-
ables u , z , v for numerical solution,

These three sub-tasks are discussed in turn in Sections 5.1
through 5.3.

5.1 PARAMETER CPECIFICATION

The parameters required in Eq. (5.9) are the absorp-
tion coefficient a; , the scattering coefficient Bv , and
the ¢-averaged phase function Pv . a; and Bv are known
to have both a temperature (T) and pressure (p) dependence,
so that the temperature and pressure structure of the atmos-
phere constitutes required input data (perhaps from a GCM).
Other pertinent input data, required for the computation of
By and 5; » are the aerosol and cloud structure of the
atmosphere; more specifically, the number density of aerosol

particles (including cloud droplets) as a function of both
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height and particle radius, and the frequency dependent index
of refraction of all aerosol constituents. For the computa-
tion of optical path lengths, the mixing ratios of the non-
uniformily mixed gases HZO and 03 as a functicn of height
are also required.

Needless to say, the specification of atmospheric
structure in such detail is beyond the capabilities of either
experiment (soundings) or theory (GCM's) at the present time.
However, experimentation with the detailed model being devel-
oped should point the way toward simpler specifications of
structure which are nevertheless sufficient for computing
heating rates. At the same time, one may expect an improve-
ment in vertical resolution and aerosol prediction capability
in the GCM's and more accurate experimental data, particularly
with regard to aerosols, in the near future. Hopefully, this
will lead to a felicitous convergence of the radiation model's
need for atmospheric structure data and the ability of theoury
and/or experimental to furnish it.

The absorption coefficient a, will not be discussed
in detail here. Absorption in the atmosphere takes place in
large part in vibration-rotation bands of HZO’ COZ’ 03 and
other minor constituents; each band contains thousands of
spectral lines, resulting in an extremely rapid variation of
a, with frequency. Voluminous compilations of a, exist,
but it is impossible, for reasons of computer storage and
economy, to discretize T; in frequency space finely enough
to follow the variations of a, s spectral intervals must in-
stead be taken which contain many lines. Hence, this whole
discussion falls more naturally into the province of Section
5.3, where discretization in v-space is discussed.

The Rayleigh scattering coefficient By R and phase
’

function Pp (independent of v) are discussed by Penndorf.(ls)
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He gives the index of refraction ng of air at p = 760 mm Hg ,
T = 15°C , and water vapor pressure f (in mm Hg) as

-6 . 1 -1
(n, - 1) x 10 64.328 + 29498.1(146 r,)
1 -1
. 255.4(41 ; F)
, (0.0624 ]

0.00068 f
A2 -

where A is the vacuum wavelength in microns. The Rayleigh
volume scattering coefficient is then

2 '/
gns (ng =~ 1)° [6 + 3o,

= 5.15
By,R = 3 oY 5§ To_ (5.15)
. . (16) . _
and the Rayleigh phase function is
3(1+p,) -,
PROMS) = 7z (1 * o6 Vs (5.16)
where g = coses = cosine of scattering angle
Ns = number density of air molecules at
760 mm Hg and 15°C = 2.54743 x 10!° cm™?
I depolarization factor
N = number density of air molecules at p and

T of interest.

The factor involving P, expresses the effect of the optically
anisotropic molecules upon the scattering, and its value has
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been calculated and measured by a number of investigators

since the effect was first discovered (see Penndorf, Table II).
Penndorf chooses G 0.035 , which we shall use in our work.
The number density N may be evaluated from the perfect gars
law as

e b

where k is Boltzmann's constant, T is in °K, and p is
in compatible units.

The scattering from aerosols in the atmosphere (in-
cluding clouds) may be treated by the Mie theory. This in-
volves a certain degree of approximation, in that the Mie
theory assumes spherical particles and natural atmospheric
aerosols may not be spherical (although water droplets, the
most important aerosols, are indeed spherical provided they
do not have an appreciable fall velocity). Also, the complex
indices of refraction

m=n -1in (5.17)

of the aerosols, which are required by the Mie theor,, are in
many cases not well-known, especially in the infrared.
Nevertheless, Mie theory, despite its well-known mathematical
and computational complexities, is the only reasonable approach
to aerosol scattering currently available,

If a is the radius of a single spherical particle,
having index of refraction m relative to the surrounding
medium, then the scattering pattern of that particle for light
of wavelength A can be described in terms of the following

two functions:(16)
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Ricatti-Bessel functions, and are defined in terms of the more

familiar spherical Bessel function

108

S jn » Yp » €tC. by

18)

.19)

20)

21)

22)

24)

25)



JSR-795§

Vo (2) = 2j (2)

Xp(2) = -zy (2)
ta(z) = vy ¢ ix, = B ()

For unpolarized incident light, the distribution of
scattered intensity from the spherical particle is propor-
tional to il + i2 . An unpolarized incident beam is also
tacitly assumed in the form (5.16) of the Rayleigh scatter-
ing pattern. The full polarization-dependent treatment of
radiative transfer, in which the intensity is replaced by a
four-component vector and all the phase functions are re-
placed by 4 x 4 phase matrices, involves a great deal more
computing than the present method for a relatively small im-
provement in accuracy(17) (the largest reported errors in I
from neglecting polarization are about 10 percent, with more
typical values being 1-5 percent). Therefore, the present
model will be constructed assuming every Mie scattering event
produces only unpolarized light, of intensity proportional to
il+iz

The extinction, scattering, and absorption cross-
sections for the spherical particle may be computed to be

2

>

o

5]

}E: (2n+1) Re(a_+b_)

n=1

ext 2

A2
Osca = 7w :E: (2n+1)(|an|2 * lbnlz)
=1

=

abs ext sca
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Presuming that the atmospheric aerosol at a given

height contains a number density N of spherical particles,

aer
with a probability distribution n(a) of radii such that

n(a)da = fraction of particles with
radii in (a,a+da)

and

3 max
n(a)da = 1
Ja .

min

then it can be shown that the volume scattering and absorption
coefficients for this aerosol are

a

- max
Bv,M Naer./: osca(a) n(a)da (5.26)

min

and

qnax

av,M = Naer./: oabs(a) n(a)da (5.27)
min

respectively. The phase function will be

/a“‘a" (i, + i) n(a)da

min

a
4max

dﬂ/ (il + iz) n(a)da
qmin

pv,M = 47
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where the integral over df = dusd¢s is an integral over all

scattering angles; its appearance in the denominator guaran-

tees the proper normalization of P, m to 4n . From the ex-
’

pression for o_ in terms of i and i ,
sca 1 2

a1 .
%ca = Im -1 [lx("s) * 1z("s)]d"s

and from Eq. (5.26), the phase function may be written

A%N a
Pl = et [P [0 )] n@de L 529)

"Bv’M min

PR and P, M may be combined as follows to yield the complete
14
phase function for scattering:

p - 2v,R 'R * ByM Pyom

\Y Bv

(5.29)

where

By = By.p * By y (5.30)

is the total volume scattering coefficient,

Details as to the actual computation of il , i2 >
Bv,M , and pv,M are omitted here for brevity. The Mie pro-
gram has been coded and debugged using existing tables of Mie
functions, and every effort has been expended to keep its cost
minimal, in view of the fact that it is only one swmall part of
the radiation program. An elaboration of the numerical tech-

niques used will be furnished in the final report.
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5.2 BOUNDARY CONDITIONS

As is clear from, for example, Figure 1.1 of GOOdY.(ls)

the spectrum of solar radiation and the spectrum of terrestrial
radiation overlap hardly at all. Therefore, we will speak of
the atmospheric radiation problem as two separate problems, and
discuss the boundary conditions for each problem separately.

5.2.1 Solar Spectrum

The following data completely specify the boundary
conditions for the solar radiation problem:

® solar zenith angle

e solar constant (flux of solar energy at the
top of the atmosphere)

® solar spectral energy distribution

® albedo or reflection coefficient at the sur-
face of the Earth.

The solar zenith angle at any particular location on
the Earth's surface is a function of the day of the year and
the time of day. Since time zones are so irregular as to be
virctually meaningless, all times will be taken as Greenwich
mean times. Then the solar zenith angle esune[0°,90°] will
be computed from the four variables latitude, longitude,
calendar date, and G—eenwich mean time. Leap years will be
accounted for. By having the capability to specify the solar
zenith angle in this fashion, comparisons can be made betweer
the model's predictions and experimental data gathered at any

time in the past.

The solar constant is still, surprisingly, a subject
of debate. The best values of both the solar constant and the
solar spectral energy cdistribution seem to be those of
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Thekaekara and his collaborators(lg) which will be used in the
present code. The solar constant will be adjusted according
to calendar date because of the vaiying Earth-sun distance,
which can alter the solar constant *3% percent from its mean
value. Taking the origin of vertical coordinates 2z = 0

at the surface of the Earth, the solar boundary condition

can be expressed mathematically as

I,(z5u,4) =S, 6(& - & )

for
“1<u<0 0<¢<2n

where z, is the vertical coordinate of the "top" of the
atmosphere and Sv is the solar intensity at frequency vy .

In terms of the azimuthally-averaged intensity, this is

- S
T, (2go0) = 77 8(n - ug) 1cugo

where

Meun = “€98 Ogun

The sun is, of course, not a §-function but has a finite
angular width, of about %°. A more realistic boundary condi-
tion was used in the heating rate equation for no scattering
to estimate the erreor of using the §-function. The conclusion
was that the absolute error produced in the heating rate is
always inconsequential (whereas the relative error in the
heating rate could become substantial near sunrise or sunset,
w2 0)
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The albedo of a surface is the ratio of the outgoing
to the incoming flux. Since intensities, not fluxes, are
being calculated, the specification of the albedo alone is
not sufficient. The distribution of the outgoing or reflected
intensity in angle is also required. The assumption is often
made that the Earth's surface is a '"Lambert reflector,' mean-
ing that the reflected intensity is isotropic and unpolarized
regardless of the angular distribution and polarization of the
incident radiation. Rough, irregular surfaces approximate
Lambert reflectors. If the incident flux, computed from the
incident intensities, is Fv,inc , and the albedo (which may
be frequency-dependent) is Av , then for a Lambert or diffuse
reflector

1 _ -
Fv,ref = 27 JC ulv(o,u)du = nlv(o,u) = Avva,incl .

Thus, the reflected intensities T;(O,u) , U <pu<l, are

specified in terms of the albedo A, and an integral F of

v,inc
the incident intensities:

0
./:1 ul, (0,u)du

Measurements of albedo indicate a more complicated
situation than that described above. On cloudless days,
the albedo seems to be fairly constant for solar zenith angles

f;(O,u) = 2A,

8sun < 60° , and to increase rather markedly as esun increases
from 60° to 90°. In particular, this phenomenon is observed

for the ocean and for desert and semi-desert areas.(zo) There-
fore, let us define a directional albedo, or directional-

hemispherical reflectivity, Av(") , which is the reflected
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flux divided by (and due to) an incident flux trom the direc-
tion (0,¢). (8€[0°,90°] is the angle to the surface normal.)
Then if the incident intensity from direction % is
Iv(O,u,¢) », 1 < pw <0, the incident flux will be

lul 1,(0,u,¢) do
which will cause a reflected flux

A,Clul) [u] I,(0,u,0) da .

Summing over all incident directions leads to the total re-
flected flux

2n 0
Fv,ref N j; d¢ [1 du Iul Av(IuI) Iv(opup¢)

0 -
= 2 [1 lul A Clul) I,C0,u) du .

For a diffuse reflector, this implies a reflected intensity
of

— 0 -
1,00,u) = 2 [1 lul A, Clul) T,(0,u) du ,

(5.31;
0 <u<l

Clearly, the directional albedo Av(u) contains no
information as to the angular distribution of the reflected
radiation. Such information is furnished in complete detail

by the bidirectional reflectivity p ,(21) which is equal to
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the reflected intensity Iv ref(6,¢,6r,¢r) at angles er ,
’
. ¢r , due to an incident intensity Iv inc(6,¢) at angles
1]
6 , ¢ , divided by the flux of that incident intensity:

nl (6,4,6_,¢_)
v,ref* *"?"r’'r
pv(e’¢’er’¢r) D | (6,¢) cosb dQ °

v,inc

The various angles are defined in Figure 5.2, If the reflec-
ting surface is isotropic, as the Earth's surface largely is,
Py will depend only on the differencc ¢ -~ ¢
Py = pv(e,er,¢-¢r) . Since 1
with respect to I

T ’

v,ref is of differential order

inc (except in the case of specular reflec-
’
tion), the df in the denominator keeps oy from being of
differential order. The factor m 1is introduced so that, if
the reflection is diffuse (Iv,ref

reduces to the directional albedo Av defined above.

independent of er, ¢r), Py

Figure 5,2 — Geometry of reflection,

The total reflected intensity at angles 6_ , ¢ is

found by summing I over all possible angles 6 , ¢

of incidence;

v,ref
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Iv,ref(er’¢r) = :E: Iv,ref(°’¢’9r’¢r)

incident
angles

1 2n n/2
= ?/o. d¢jo d9 sind pv(e,er)¢-¢r)

. Iv,inc(e’¢) cos@ .

Phrasing this in our usual notation,

1 2n ' 0 '
2 - ' ! ) -
1,(0,u,0) = & ]; d¢ /:1 dutfut] o, Clu'],u,9'-9)

. Iv(o,u',¢') for 0<u<l . (5.32)

Because p, must be periodic in its third argument,
py(u,u',042m) = p (u,u",9)

the azimuthally-averaged bidirectional reflectivity

— 1 2T
pv = T 0 pv(“’“"‘b“b') d¢
can be reduced to

— 1 Zn A A
pylH,u') = ﬁ./(; py(H,u',9) do
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which is independent of ¢' . This result makes it possible
to azimuthally average Eq. (5.32) to yield

- 0 _ -
T,(0,u) = 2 [ dut u] ByClutlw Ty00un

(5.33)
0<pu<1l .,

This is the most general reflective boundary condition.

For water surfaces, which cover about three-fourths of
the Earth, computations of p, are possible in terms of the
Fresnel formulas for reflection, the index of refraction
m=n -1i n, of water, and a statistical distribution of
surface slopes (as a function of wind speed). The work of
Chowczz) is exemplary in this rzgard, although he ignores the
imaginary part n, of the index of refraction in the IR and
uses a frequency-averaged value of n in his computations.
He also uses the simplest analytical approximation to Cox and
Munk's(23) experimentally-determined sea-slope distributions.
We have replaced these approximations with more accurate ones
and computed tables of 3: for use in Eq. (5.33). The tabu-

lation is somaswhat simplified by the reciprocity relation for
(21)

P

v

pv(e’er’d"d’r) pv(er’e’¢r'¢)

which implies

py(u,ut) = b (u' )

It should be noted that only surface reflection 1is

accounted for in the above computation of Py - Backscattering
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from turbidity (primarily micro-organisms) beneath the surface
is not accounted for, although measurements in the Russian
literature indicate that this effect is only important at low

(24)

solar elevations.

The situation vis-4-vis reflectivity data for land
surfaces is much worse than for the sea surface (cf. Kondrat‘yev,
Ref. 24). In general, only albedos are available, and often
not even as a function of frequency. Therefore, the code will
have several options. All options will use Eq. (5.33); how-
ever, if only directional albedos Av(") are available, dif-
fuse reflection will be assumed so that Eq. (5.33) reduces to
Eq. (5.31). If only albedos Av are available, it will be
presumed that Av(”) = A, independent of p . And, if only
frequency-averaged albedos A are available, the code will
take A, A Thus, as improved albedo data become available,
they need only be entered into the appropriate tables and

certain option flags re-set.

At this point it is convenient to introduce an additive
splitting of the downward-directed intensity:

T, = olar . TdEE g <o (5.34)
Tzolar is the solar beam intensity, and Tglff is the '"diffuse"

intensity produced by scattering and reflection (thermal emis-
sion being practically negligible in the solar spectrum). The
reason for introducing this splitting is that the solar part

of the intensity is essentially a §-function in angle and so

exceedingly difficult to represent numerically. The remaining
part of the intensity, Tslff
a function of angle and so will not require nearly as fine an

, 1s usually smoothly behaved as

angular mesh for its representation as the original intensity
T; would have.
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The solar beam intensity can be found from the trans-
port equation in which only extinction processes are included:

aizolar e (z)Tsolar -1 <uc<o
u-;———z v v ’ S S
where Ky = as + B, . Imposing the boundary condition
=3o0lar sv |
I, (2goM) = 77 8(u-ug,n) ’ -1 <ugo

leads to the solution

S 2
o187 o 2 g(ueug,,) em[% ];° x,(z') dZ'] ,

"1_<_l.l<_0 .

Introducing the splitting (5.34), with the above solution for

T3°13r , into the full iransport equation, (5.9), one finds

JTdifs e
v i
W3z = aj(B, - I,

0 _ .
+ 8,3 [1 Py(z,u,m) TOHE (2,um) aw
(5.35)

1 .
1 p— — p—
tx j; P (z,u,u') I,(z,u') du' - Islff

B.S z
+ YV F (z,u,u.) exp|L [ox(z')dz'
dn v+7?2" ' sun usun z v

for -1 < y <0, and
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3T _
3z~ “6(3v B Iv)
0 _
+ Bv[%- f_l P (z,u,u') T:,“ff (z,u') du'

. | (5.36)
+ %‘j; -P-v(Zpupu') T\’ (z,u") du'“ - T\’]

B.S z
vy 1 0
* T Pu(zamugyn) exP[usun_/; ky(2') dz']

for 0 <u <1.

The boundary condition on Tgiff at the top of the

atmosphere is now simply a homogeneous one,

Tgiff (z,,0) = 0 , -l<u<o . (5.37)
The reflective boundary condition at the surface, Eq. (5.33),
becomes

- 0 _ L
I,00,1) = 2_[ ut ] By lut 1) ToHEE co,u) anr

Sv - _ 1 Zo - .
M lusunI pv(“’lusunl) €XPl 4 0 ky(z') dz

sun

0 <uc<l . (5.38)
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The extra terms in Eqs. (5.35) and (5.36) are interpretable
physically as scattering sources due to the solar beam; the
extra term in Eq. (5.38) is attributable to reflection of the
solar beam,

A final boundary quantity, one of paramount interest,
is the solar radiative flux into the ground, which determines
the heating. It is

1 _
F,(0) = 2n [1 uI,(0,u) du

r0 . 1
- 27 } . ufglff (0,u) du + an uI,(0,u) du (5.39)
= 0

z
* Yeun Sv exp 1 [ ° Kv(z') dz'] .
Hsun Jo

When this is integrated over frequency and added to the total
terrestrial radiative flux out of the ground, the resultant
flux determines a boundary condition for a ground heating
calculation. If the flux is entirely absorbed within the
first millimeter or so, as is the case for most land sur-
faces, then it determines a surface heat source; if it pene-
trates, as in the oceans and ice, a distributed heat source
is determined. A code which solves the heat condition equa-
tion with prescribed sources has been developed at S® during
this contract period, and will be coupled to the radiation
code for studies of the dynamic interaction of the radiation
field and the surface. It seems likely that the development
of this coupled radiation-surface code will be only partially
completed by the end of the present contract period, and will
require further work in the follow-on period.
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5.2.2 Terrestrial Radiation Spectrum

The relevant data required to specify the terrestrial
radiation boundary condition are:

o the surface temperature, Tg

o the surface emissivity €, possibly as a
function of the angle (to the surface normal)
0 of emission.

The surface temperature T_ is presumed either given
as .an input variable or calculated by the ground heating code
discussed in Section 5.2.1.

The directional emissivity is defined as the ratio
of the thermally emitted intensity Iv(e,¢) in a particular
direction to the black body intensity:

I,(0,4)

ev_(e,¢) = B_(TT . (5.40)

Vg

We shall only consider isotropic surfaces, so that the depend-
ence on azimuthal angle ¢ disappears, €, = ev(e) or ¢, = ev(u) 5
If the emitted intensity Iv is independent of 6 , e, Te-
duces to the more familiar hemispherical emissivity (ratio of
emitted flux to black body flux ﬂBv(Tg) ). The hemispherical
and directional emissivities have been measured for many

(25) The angular behavior of €y is similar

for all electrical non-conductors (in particular, the Earth's

kinds of surfaces.

surface); it is nearly constant and close tc one for © between
0° and 60°, then it falls off to zero as 6 increases from 60°
to 90°. This effect has never, to the author's knowledge,

been included in an atmospheric IR radiation model. Since the
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IR radiation is ncarly isotropic. (except in the 8-12 u window
region), substantial portions of it approach the ground at
angles of 60° to 90°, and much more of this radiation is re-
flected than a constant €y model would indicate. The present
model will incorporate a typical angular derendence e(u) for
non-conductor emissivities and use

e,u) = e{? e(u) (5.41)

where eso) is the hemispherical emissivity for the surface
in question.

The directional-hemispherical reflectivity Av(") ,
the bidirectional reflectivity pv(u,ur,¢-or) , and its azi-
muthal average BQ(H’“r) were defined in Section 5.2.1.. They
are related as follows:

1 2n 1
A,(0) = & jg dp, JE du. w. o, (Hou,0-6.)
1 -—
= 2 }E TR TN TS 10 (5.42)

Kirchoff's Law allows us to relate Av and €, »

A,(v) + e (n) =1 (5.43)

which holds without restrictions.(ZI) Hence, if the reflec-

tion is diffuse so that Eq. (5.31) applies for the reflected
radiation, the surface boundary condition may be formulated
entirely in terms of ev(u) ,
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- 0
NCREENORNCREN T
: [1 - e\,(lu'l)] 'I-\,(O.u') dp' ,

0<wsl . (5.44)

The first (emission) term comes from the definition (5.40) of
emissivity.

Only for water surfaces is the function EQ obtain-
able in the IR. It is theoretically calculable as discussed
in Section 5.2.1. From it we may obtain Av(u) , and hence
€,,(u) , according to Egs. (5.42) and (5.43). For such sur-
faces, we will replace the second term in Eq. (5.44) by the
exact result Eq. (5.33), eliminating the assumption of diffuse
reflection,

The boundary condition on the terrestrial radiation
at the top ¢f the atmosphere is homogeneous:

T (z,m) =0 , -1 <pu<o . (5.45)
5.3 DISCRETIZATION OF THE TRANSPORT EQUATION FOR NUMERICAL
SOLUTION

The intensity f; is a function of the three inde-
pendent variables v , z , and w . The discretization of each
of these variables in turn is discussed in Sections 5.3.1
through 5.3.3. The actual numerical solution of the transport

equation is treated in Section 5.3.4.

5.3.1 v-Discretization

In the regions of the spectrum in which line absorp-
tion is important (which includes most of the terrestrial
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radiation spectrum except for the 8-12p "window'" region and
the solar spectrum below 0.3y and above 1p) the absorption
coefficient a, varies extremely rapidly with frequency.
So, therefore, will the intensity, making it infeasible to
solve for T; at a set of discrete v's because of the
large number of v's that would need to be taken.

Instead, we shall solve for the frequency-averaged
intensities:

. 1 Viel =
I, (z,u) m ];i I,(z,u) dv

over an appropriately small number of frequency intervals
(vi,vi+1). Because of this, the integro-differential form
(5.9) of the transport equation is unsuitable. (It is not
known how to approximate the integral

v
iel
.[; a! T; dv ,

i
in which both a, and T; are violently oscillating, in

terms of Ii') We musi use the integral form (see Eq. (5.2) )

z
T;(z,u) = T;(O,u) exp[- % jg Kv(z') le]

(5.46)

1 z 1 z
= u - = t ' u
+ m j; Jv(z »H) exp[ T jC" Kv(z ) dz ] dz

for p > 0 , and
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-— — z
T, = Ty exp |- [k, dz']
o)

m
o

for u < 0 . The source function is
A
J,(z,u) = al(z) B (T(z)) + S (z,n)
where

A B (Z)
5,(z,m) = f P,z Ty(z,0") dut

for the terrestrial spectrum, and

" B (Z) 0
5y(z,1) = =5 [fl P, (z,uu') T9HE (2,00

1 _ -
*/o P (z,u,u') I (z,u') du'

S " z

vV R . 1 (o)

2B (20,0, ,) exp: f € (') dz'}
2 2 sun [ 2 V)

for the solar spectrum. (For the solar spectrum, T; should
also be replaced by fglff in Eq. (5.47) .) Applying the fre-

quency averaging operator
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V.
v, = v, f Mgy
i+l 1 v,
(5.46) ,
I,(z,u) = I;(0,0) T;(u,0,z) I; (v,0,2)
z 3Ti(u,z",2)
) AR NCICONENN RO R az"

Z A .
" %j; S, (2"0) 5; (n,2%,2) Ty (w,2",2) da"

where by definition,

z
Ei (u,zl,z2 ) £ exp[- %f 2 Bi(z) dz]

Z,

=

U z
=1 i+l 1 L
Ti(u,zl,zz)..vi+1 v, jz exp[ JE av(z)dz] dv

and

S;(z,u) =

B, (2)
A=

i 1

1
jrl P;(z,u,u') I;(z,u') du’
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for the terrestrial spectrum, while

~ B.(Z) 0 .
S = L | [ pyunn) 1 @t a

1
N AR NCHWUR AT
0

i
*ar Pz ) Ty Oigyni2or2) TilHgyns24,2)

v

for the solar spectrum. Si is taken as the frequency-

averaged solar flux

(5.52)

since this is the form in which solar spectral data is always

presented. The quantities B, , B, i

ing quantities B8, , B, , P, evaluated at the mid-point

of the frequency interval,
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vi = B0v; * Vi)

The Ti of Eq. (5.50) are called transmission functions.

An important approximation has had to be made in de-
riving Eq. (5.48), aside from the relatively trivial one of
approximating the slowly varying (in frequency) functions B, »
By and Pv by their values at the mid-pgint. It is the
commuting of the frequency-average with Iv(O,u) , and with
T;(z,u') in the scattering term, and the replacement of these
quantities by Ii(O,u) and Ii(z,u') . In view of boundary
conditions such as Eq. (5.44), the boundary intensities
T;(O.u) may be rapidly varying functions of v (unless ¢, = 1)
Similarly, in the presence of substantial line absorption,
T,(z,u') will vary rapidly with v . This hurdle has re-
sulted in two divergent bodies of independent research in
atmospheric radiation; one school neglects scattering (e.g.,
Kyle, Ref.26 ), the other neglects absorption (e.g., Sekera,
Ref. 27). The primary thrust of the first school is the
accurete calculation ¢f the transmission functions Ti . Once

N
these are known, and Si =0 , 21 = 1 , the numerical

integration of Eq. (5.48) is almost trivial. The second school
concerns itself with techniques for solving the integral
equation (5.48) when Ti =1, Bi = 0 (in which case the com-
!ptation of the frequency average with Iv(o,u) and

Iv(z,u') is a valid approximation). To the author's know-
ledge, no one in all the vast literature on atmospheric radia-
tion has considered simultaneously line absorption and scatter-
ing.

The reason for this apparent lacuna is that, over
large portions of the solar and terrestrial spectrums, either
scattering or line absorption is dominant. They might only
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by comparable in magnitude in the near infrared region (1-5u)
where there are some weak H,0 bands, and in parts of the 8-12u
window region. Therefore, the error that we make in dcing the
frequency-average of the scattering term in Eq. (5.46) will
tend to be large in only a small fraction of the frequency
intervals; presumably these errors will have little impact

on the frequency-integrated flux of Eq. (5.14).

A potentially serious approximation is the replace-
ment of f;(o,u) by Ii(O,u) , particularly in the strong IR
absorption bands. If, in Eq. (5.44), the emissivity
indeed falls to zero over a span of angles of 30" or so, then
the second term in that equation is not negligible, Since
the incident intensities Tv(O,u') in that term will be
rapidly varying functions of v , so will the reflected in-
tensities, and hence Y;(O,u) itself, A mitigating circum-
stance in favor of the approximation is that, in the strong
IR bands, the surface boundary condition will become unim-
portant after about the first kilometer or two; that is, the
transmission function Ti(u,o,z) multiplying Ii(o,u) be-
comes negligibly small for 2z > 1-2 km. Nevertheless, one
would hope to do the boundary layer correctly. Therefore,
ways to skirt this difficulty are actively being sought.

One possible avenue of approach is to revert to the
integro-differential form (5.9) and attempt to deal with the
integral

V.
1 ./'101 ;
—e a' I dv
\)101 - Vi vi \Y \Y

(the frequency-averages of the other terms are trivial).
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Defining

V.
i+l -

a. I dv
’/\:. v v

- _ i
a., = (5.53)
i V. _
f i+l Iv dv
v

i

the integral may be approximated

. -hv. /kT
1 vl"‘l T - i =
ZW/\: a\')lvdv (l-e )“ili

;i is a function of both 2z and u , in general. It also
depends on the intensity, of course, which is the source of

the difficulty. Nevertheless, by calculating Ei for vari-
ous typical intensity fields in the atmosphere (obtained by
detailed calculations) regularities might emerge which would
allow us to pick a universal Ei(u,z) . If this were possible,
it would not only alleviate the difficulties discussed above
but would actually be simpler to tabulate than T, which

depends on three arguments.

The computation of the transmission functions Ti hns
a long history. The earliest attempts were based on band
models, in which simple analytical representations of line
strengths, positions, and shapes were assumed. As accurate
line-by-1line absorption data has become available,(zs) both
from theory and experiment, transmission function computations
have incorporated it. Such detailed line-by-line transmission
function computations are incredibly expensive in terms of
computer time. Considering that sometimes integration steps

as small as 0.001 cm™! must be taken(zg), and that the region
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of significant absorption extends from 10,000 cm™! (1lu) to
250 cm™! (40u), with only a few gaps, the magnitude of the
problem becomes apparent. As an example, Kyle(zg) used 15
minutes of CDC 6600 time to compute transmission functions
between a single pair of atmospheric levels z, and z, for
a single value of u , and for the wavelength interval

1.7p - 20p. Multiply this by the number of angles Nu and
by the number of pairs of levels HNZ(NZ-I). and the computing
time to obtain a complete set of transmission functions be-
comes truly formidable (for 6 angles and 15 levels it would
be 157% hours). Fortunately, transmission functions are not
tefribly sensitive to the temperature profile*, and so could
be tabulated once and for all for various standard profiles
(tropical, mid-latitude, polar, for summer and winter, for
example). This would restrict us, however, to always using
the same pressure levels and angles, which could be a large
disadvantage.

In view of the expense, in terms of both human and
computer time, of generating transmission functions from
scratch, we have decided to take advantage of the scheme of
McClatchey, et.al.,(so) for generating these functio.s.

It falls into the category of an empirical fit to known data,
and is the most sophisticated in a long line of such empirical
fits.(sl)(sz) McClatchey has used detailed line-by-line
absorption data to compute transmission functions for 20 cm”
intervals, then has fit them with empirical functions f(k)
such that

1

k k k
™M) (u,z ,2) = £{0) (Awf;’) :

L]
Kyle, private communication.
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The superscript k refers to molecular species; there are
separate f's for the uniformly mixed absorbers (COZ, NZO’
CH4, co, 02, NZ), for water vapor, and for ozone. The single

argument Awff) is an attempt to sum up the information con-
tained in MaZ s and z, into a single "effective absorber
amount" along the slant path in question. It is calculated
according to empirical prescriptions which best fit the real
data; the variable mixing ratios of HZO and 03 are taken

into consideration in these prescriptions. The total trans-
mission function is the product of the individual ones

Tz = P (D) 6P (an(D) £ (D)

which is an approximation also, but an excellent one according
to several authors.(ss)(34) The functions f(k) are tabulated
in a subroutine called LOWTRAN which we have obtained from
McClatchey and implemented on our computer.

While McClatchey's transmission functions will be
used, it would be desirable in the longer range to develop a
code which could generate its own transmission functions di-
rectly from the raw absorption data. Among the advantages
of this are:

(1) frequency intervals Av could be chosen
as desired.

(2) improvements in the raw absorption data
could be readily incorporated; and

(3) the approximation of an "effective absorber

amount' could be replaced by a more accurate

- one (the Curtis-Godson approximation(ss) for
example).
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We have already had discussions with both Kyle and McClatchey
about the possibility of obtaining their absorption data and
transmission function generators. They have both mentioned
the high cost in terms of computer time to generate trans-
mission functions from scratch, but in the interests of a
definitive radiation calculation we believe these costs

would be justified. However, for the present time we have
deferred these discussions in order to pursue other aspects
of the code development.

$.3.2 yu-Discretization

The angular variable u appears both as a parameter
and as a variable of integration in the transport equation
(5.9) or Eqs. (5.46) and (5.47). Because measurements and
theoretical computations all indicate that the terrestrial
radiation intensity and the diffuse part of the solar inten-

sity (Igiff) are fairly smooth functions of angle, these
intensities may be represented by their values at a rela-
tively few angles wu, , i=1, ..., Nu . In order to do the

flux integrals, Eq. (5.11), the intensity will be assumed to
vary in a piecewise-linear fashion (I = 1(0) + ul(l)) between
the points M, at which it is calculated. To ensure consis-
tency, the scattering source integrals

~ ~ 1
Si(zj.uk) E Sijk - _[1 Pi(zj.uk.u') Ii(zj’"') du'

will be done under the same assumption,

N -1

u
& : Mnel . 0 (1 .
Sk 2 M R Gpmenaf%) e w1 )

n=1 n

Nu-l

0 (0) (1) (1)
) Z [qi(j‘)(.n Iioj’n * qijk,n Ii’j’n]
n=1
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(a)

where the moments q of the phase function are defined as

H +
n

(0)

fore the calculation of the intensities begins. It is perhaps

The moments q , q(l) are to be computed and stored be-
worth noting that Pi will have to be computed over a finer

angular mesh than . in order to ensure accuracy in the

i
numerical integrations leading to q(o) , q(l) .

An exception to the statement that Igiff varies
smoothly in angle occurs when there is substantial aerosol
scattering. Aerosol scattering notoriously produces a strong
forward peak in the scattered intensity. This forward peak

is almost as troublesome numerically as the solar beam it-
self (which we eliminated by the splitting of Eq. (5.34) ) be-
cause it necessitates a dense mesh of angles around the solar

angle Meun ° Therefore, we shall use a method, tested by

Hansen,(36) in which the radiation scattered into a narrow
forward cone, say t2° about the forward direction, is re-
garded as unscattered. Mathematically, this amounts to
truncating the forward peak from the phase function Pv(z,us)
and decreasing the scattering coefficient By accordingly.
For dust and haze, which are optically thin, this seems like
a reasonable procedure; in clouds, on the other hand, there
might be a cumulative error after many scatterings which is
not small. Hansen shows this not to be the case, however,
and so the method is fully viable for all types of aerosols.

5.3.3 z-Discretization

Pressure coordinates pj will be substituted for
elevations zj in the mocel by making the hydrostatic
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assumption,
dp = -pg dz .

This will facilitate comparison with the GCM's and agrees
with general meteorological practice,

There is no discretization of the pressure coordinate
which is ideal in all regions of the spectrum. The fundamen-
tal criterion for vertical zoning is that the source function
J.. may not change substantially from zone to zone. If it

v
did, interpolations necessary to do the J,6 integrals in

Eqs. (5.46) and (5.47) would be too‘inaccu¥ate. In the
infrared, this means that 'Bv(T) (and therefore T) and the
transmission function Ti may not change substantially be-
tween any two zone centers. Since 6°/km is a typical lapse
rate, zones should probably not exceed 2 km in width. Kyle,
in h’s IR mode1(26), used 15 2-km levels surmounted by a
sixteenth level from 30 km to the top of the atmosphere. 1In
most of the solar spect}um, on the other hand, a much coarser
vertical resolution could be tolerated, since, except within
aerosol layers, the scattering source varies considerably

less rapidly with height than Bv(T) -

" nese considerations suggest that a dynamic assign-
ment of zoning structure would be highly desirable, based on
an examination both of the source function and the spectral
interval involved. In the case of the scattering source
function, which involves the intensity, we would examine
the scattering coefficient By " and phase function 3; in-
stead. In absorption-dominated spectral intervals, we will
zone so that the relative change in temperature T and trans-
mission function Ti from zone to zone will be bounded. In
scattering-dominated spectral intervals, we will zone so that

the relative changes in By and E; (at selected pairs of
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angles u , u') are similarly bounded. In spectral intervals
where absorption is comparable to scattering, both T , Ti
and Bv , Pv will be required to be bounded in their zone-to-
zone variations.

Aerosol layers, particularly clouds, will be much
better resolved by such a zoning scheme than they would be by
problem-independent schemes (e.g., fixed 2-km levels). By the
same token, zones will not be wasted in regions across which

very little is happening to the radiation field.

The problem with such a dynamic zoning scheme is that
the fluxes Fi in different frequency intervals i will not
be calculated at the same levels. By the very nature of the
dynamic zoning scheme, however, the individual fluxes Fi(zk)
will not vary greatly between z. and Z:41 b therefore, a
polynomial interpolation scheme (a parabolic fit, for example)
can furnish Fi(z) at any intermediate level between 1z, and
zj+1 . Hence, the various fluxes Fi(zk) can be reduced to
common levels Qk prior to summation over frequency,

F(z,) = ZFi(Qk) .
k

This dynamic zoning scheme is compatible with
McClatchey's transmission function method discussed in Sec-
tion 5.3.1. It would also be compatible with exact trans-
mission functions, precomputed for specific levels z§0)
for such functions would vary smoothly enough with level
that they could be interpolated to the levels of interest.

»

5,3.4 Numerical Solution

The basic method for the numerical solution of the
transport equation will be discrete ordinates with scattering
iteration,
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The discrete ordinates method was first proposed by
Chandrasekhar.(37) It involves fixing the angle, u = My
in the integral form (5.46) and (5.47) of the transport equa-
ticn and integrating from one boundary to the other in dis-
crete steps Az . The method is simply ray-tracing, account-
ing for sources and sinks along the ray trajectory (and,
incidentally, ignoring the slight bending of the ray due to
refraction).

The Planck function Bv(T(z)) in Eqs. (5.46) and

(5.47) is tc bec interpolated linearly in z-space between
points z;, at which it is known, for purposes of doing the
z-integrations in (5.46) and (5.47) numerically. This en-
sures that the diffusion limit of radiative transport will
be recovered. To see this, suppose there is no scattering,
that K, = &) is independent of 2z , and that we¢ are suffi-
ciently many optical mean free paths from the boundary that

the boundary term in Eq. (5.46) is negligible. Then

«Z

— al
Iv(z,u) = % jL “6 Bv(T(z")) exp[~ EX (z-z")] dz"

A partial integration leads to

f;(z,u) = Bv(T(z)) - Bv(T(O)) exp[— %aéz]

z 3B

\Y 1 " "
- . T exp[- ﬁos(z-z )]dz .

We neglect the second term on the right-hand side because

the optical path from the boundary a&z is assumed large.
In the third term, if Bv is linear in 2" , then an/az"
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is constant, and
= - u v
Iv(z,u) Bv(T(z)) —: 3z -

This is the diffusion approximation.

The scattering iteration process can best be ex-
plained by writing Eq. (5.46) schematically as

I, = 1,

+ L(Iv) .

Into Io we have lumped all the known terms (the ones not
involving T;). L 1is a double integral operator operating
on T; and L(T;) is the scattering source term. The iter-
ation we shall use to solve this equation is simply

T‘(,“fl) - 1, + L(T{M)

where the initial iterate is

+(0
o -,

(37) Furthermore,

This process is known to always converge.
when there is a significant amount of absorption the con-
vergence is rapid. On the other hand, if absorption is
negligible, as for visible radiation in a water cloud, and
there are many mean free paths'of scattering, convergence is
painfully slow. This can, to some extent, be circumvented
by initializing the intensity in the scattering-thick region
not from Io , but from one of the two famous analytic approxi-
mations which are attached to the names of Eddington and
Schwarzschild, respectively.(ss) A variant of this technique

has, in fact, been successfully applied at 52.(39)
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The radiative transfer code will be included in a
realistic boundary layer code that has been developed under
this contract. This boundary layer code is described in Ap-
pendix E. The coupled code will provide an opportunity to
evaluate radiative effects in comparison to ordinary thermo-
dynamic effects (latent heat transfer, etc.) in the atmos-

phere.
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6. FUTURE STUDIES

This section of the report will attempt to outline
further code development, modifications, and application of
these codes to test problems which will be attempted during
thes next six months of this research contract,

6.1 HAIFA CODE DEVELOPMENT AND APPLICATIONS

Investigations now in progress will be completed.
These include:

(1) Further test and modification of the ver-
sion of HAIFA incorporating compressibility,

(2) Further test of the version of HAIFA in-
corporating moisture effects,

(3) Further modification of the Poisson solver
to include non-cyclic inlet and outlet
boundary conditions.

Several modifications to the HAIFA codes will be made
in order to study phenomena which are not yet understood com-
pletely. Among the major code developments will be:

(1) the addition of a turbulence scheme to
the basic HAIFA code, and

(2) the addition of Coriolis terms to
determine their importance in mountain
wave problems on the meso-scale.
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It is also desirable to take account of effects in three

spatial dimensions. It will not be possible, however, to
develop a code and carry out such calculations under the

current contract, the scope and magnitude of the problem

will be investigated for future consideration.

Additional calculations to be performed during the
remaining period of the current contract include:

(1) Investigation of the effect of mountain
shape on lee waves, and

(2) Calculation of a protlem using a fully
compressible code for comparison with
a standard problem calculated with HAIFA,

These results and those from previously calculated cases will
be analyzed more quantitatively to characterize the momentum
and energy transports., As a part of this analysis, the
perturbed pressure field will be calculated through solution
of the governing Poisson equation.

The final two months of the contract period will be
spent in analyzing and attempting to parameterize the results
of the many calculations in such a2 manner as to be useful in
the global circulation model calculations.
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APPENDIX A
DERIVATION OF BOUSSINESQ EQUATIONS

The conservation equations governing macroscepic fluid
motion are frequently simplified for problems of thermal con-
vection by introducing certain approximations which are at-
tributed to Boussinesq. These approximations can best be
summarized by

(1) fluctuations in density which appear
with the advent of motion result prin-
cipally from thermal {(as opposed to
pressure) effects, and

(2) in the conservation equations of mass
and momentum, density variations may
be neglected except when they are
coupled to the gravitational accelera-
tion in the buoyancy force,

These approximations are examined in the derivation of equa-
tions presented below,

The general equations of mass and momentum conserva-
tion are

g% = -pV-V (A.

Al
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p§¥ = -9p+ VP - pgk . (A.2)

-
For purposes of this derivation the viscous stress tensor P
will be dropped from the equations. The equation of state

will be assumed to be of the form
p = p(p,T) - . (A.3)

The basic approximation to be made may be examined by the fol-
lowing procedure:

(1) Let £ represent any one of the state variables.
It will be expressed in the following form

n
]

fo(Z) + f'(x,z,t) (A.4)

where

fm = space average of f

fo(Z) = variation of f in the absence
of motion
f'(x,z,t) = fluctuations in f resulting

from fluid motions.
(2) If a scale height is introduced as

H(f) = — 3z (A.S5)
m

the basic approximation is that the fluid be confined to a
layer whose thickness, d , is much less than that of the
scale height (d << H) .,
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In particular, Eq. (A.5) implies that d/H(p) << 1. On inte-
grating this latter condition over the layer, one concludes
that

Apo
— = e << 1 , (A.6)
n

where Apo is the maximum variation of P, across the layer.

It is also required in non-linear investigations to
make the additional restriction that the motion induced fluc-
tuations do not exceed, in order of magnitude, the static
variation, i.e.,

t
.‘;L <0(e) . (A.7)

Condition A.7 must be verified a posteriori from solutions
of the problem. In the absence of motion and introducing
Eq. (A.4), the vertical component of Eq. (A.2) is

%P,
5z~ T8Pp " 8Py - (A.8)

Introducing the hydrostatic relation into Eq. (A.2), we have

~

p %z- + V'V.\?) = -vp' = gp' k ) (Aog)

We may introduce Eqs. (A.4) and (A.6) into the continuity
Eq. (A.1) to obtain

VeV = (gT = V-v)(e—— + L) + 0(e?) . (A.10)
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Hence to order ¢ , Eqs. (A.9) and (A.10) may be written

3'\7 VeUv = - 1_. LI p| k
3T + veVv 5 Vp gEKQ k (A.11)

VeV = 0 (A.12)

In Eq. (A.11) we have retained thg term ge(p'/Apo) ﬁ even
though it contains € as a factor. This procedure is
necessary if we are to study convection problems in the
Boussinesq approximation, and the following justification may

be made: The quantity %%- measures the characteiistic
acceleration of the fluid. Now the system is driven by
fluctuations of the density field, and hence we must insist
that the characteristic acceleration be of order (gep'/Apo) .
This, in turn, forces the conclusion that the acceleration

of gravity is always much greater than the characteristic
acceleration, i,e.,

A4
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APPENDIX B
WATER PRODUCTION TERM

The water productior term consists of three physical
phenomena which can add to, subtract from, or change the state
of the water in the atmosphere, Thus the production term P.
is written as the sum of (1) the evaporation of rainwater out-
side of the cloud, B(r-rs] ; (2) the conversion of cloud
water to rainwater; and (3) the accretion of cloud water by
rainwater, Sa ;

S B(r-rsl + Sc + Sa (b.1)
where B is the evaporation parameter and is
assumed constant,
Sc is a linear functior of the cloud
water content; and
Sa is a variable dependent on both the
cloud water content and tlie rainwater
content,

The expressions for S_ and S taken from Orville(7) are:

c a B
-3 0,95
Sa = 4,6 x 10 zc(zr) . (B.3)
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Orville has run test problems using ranges of the constant
a from 1074 1 t0 2 x 1073 sec™! ana values of ., from
0 to 5 x 10 " gm gm'l .

Variations of these parameters and their values will
also be studied as part of the research on determining the
moisture effecis on mountain lee waves and/or the drag force

on the air flow.

sec
4
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APPENDIX C
EDIT QUANTITIES

The momentum flux (wave drag) associated with gravity
waves is fundamentally different from other known momentum
transport processes like surface frictional drag inasmuch as
it may act across deep atmospheric layers. Sawyer(CI)
pears to be the first to have pointed out that in stratified
flow the pressure is systematically higher on the upstream
side, resulting in a drag force on the obstacle, and a cor-
responding drag of opposite sign on the air stream.

For steady flow over an obstacle, Vergeine‘(cz)

shows that the equation. for horizontal momentum, Eq. (2.1)
may be integrated over a slab between the mountain and a fixed
height H to give a drag on the mountain equivalent to

L H x=L
D(drag) = - / (;:>uw)z.IH dx - f (p + pu?) dz (c.1)
-L o

bstacle x= -L
height

where L and -L indicate lengths upstream and downstream

from the obstacle. If (p + pu?) is the same for upstream
. L4 .

and downstream (L - =) , the momentum flux J{m puw dx is

constant as a function of z and equal to the drag. In the

linearized case, the drag may be transformed by using the

linearized cquation for horizontal momentum into
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-;(z) f u'w' dx = -pof u(',wc', dx (C.2)

where the o0 subscripts indicates values taken at the surface
of the mountain.

The problem we are concerned with in the research is
the calculation of a drag for the air flow over a mountain
where the numerical calculations are not capable of being run
to steady state values. The quantities presently being edited
from the results of the numerical calculations are

L
ZLI u'w' dx or u'w!
-L

where 2L is the distance of the horizontal grid. The quanti-
ties u'w' have been obtained by two different methods.
Initially, an averaging method was used, i.e., u' was found
from

ut' = ("i,j + ui*l,j)/z -u (C.3)
where
1
- 1 ,
u = TZ (Ui, ¢ Yi41,5072 -
i=1

v' was found as (vi j * vy j*1)/2 . In this manner,
? ?
the cell-centered velocities were found and then

c2
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L
2% J’ u'v' dx

L

was calculated by averaging the product of the two perturba-
tions velocities over the horizontal grid length.

The second method of finding the drag consisted of
editing Crowley's second order scheme to find the vertical
flux of horizontal momentum. Crowley's scheme for the momen-
tum flux is written in finite difference form is

1 ' At
zvi,j’l [(ui,j¢1 M ui,j)' Az vi,j*l (ui,j*l - ui,j)] c (C.4)

By averaging this quantity over the horizontal grid the result
is just equal to the product of the horizontal and vertical
perturbation quantities. This follows by noting that

1 1
1 1 ' ' o . ' '
SIVWITWES DIUNECRES ARG
1 1

A comparison of these two methods shows essentially
identical results.

The results as described above for the problems com-
pleted to date are given in Section 4 of this report. In order
to attempt to understand these results, various lengths of the

horizontal average were used in obtaining values of u'w'

These results are also discussed in Section 4.
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APPENDIX D
HAIFA CODE LISTING

A listing of the HAIFA code which is presently oper-
ating on the UNIVAC 1108 at Systems, Science and Software (S')
is included in this appendix. The advection scheme is second
order only in this version of the code. Working versions at
S? allow either second order or fourth order schemes.
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APPENDIX E

A COMPUTER CODE FOR THE ONE-DIMENSIONAL
BOUNDARY LAYER

E.l INTRODUCTION

| The radiative transfer task of the Climatology con-
tract calls for the development of an accurate numerical
scheme and application cf it to the thermodynamics of the
atmosphere and soils, Ultimately, this scheme is to be used
to perform calibration calculations of the radiative sub-
routines of General Circulation Models of the Earth's Climate,

In order to develop a realistic radiative transfer
code system it is also necessary to take account of effects
which strongly influence the thermodynamic state of the at-
mosphere. By virtue of its strong influence on long wave
radiation it is important to take account of water vapor and
cloud moisture in the atmosphere. In addition, the state of
the lower atmosphere is strongly influenced by turbulent trans-
fer. Consequently, we have formulated and are testing a 1-D
computer code to evaluate changes in the atmosphere resulting
from the effects of radiative transfer, Coriolis force, turbu-
lent momentum, heat and moisture transfer, and subsidence.

ERe FORMULATION

The formulation depends only on the vertical coordi-
nate and corresponds to an atmosphere in which all properties
are horizontally homogeneous, The atmosphere is described by

;
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I . the eastward horizontal velocity component u , the northward 1
-. velocity component v , the temperature T , and the relative
Lg| humidity q , each of which moy depend on the vertical coordi-
} . nate z . The atmosphere is assumed to be instantaneously

in hydrostatic equilibrium but changes in temperature result
in a vertical subsidence velocity w . Pressure gradients
in the horizontal directions are also taken into account but
they are assumed to depend only on z .,

The 1-D description of the atmosphere and the hydro-
static approximation permit the use of a Lagrangian formula-
tion in which the atmospheric pressure is a convenient measure

| — of the mass of the atmosphere above the mass element in ques- j
: tion. The altitude above the surface 2z and the pressure p
i are related by
) \
. P
z = -1 o dp , (E.1)
. g8 ), °

where the density p is to be determined from the equation
of state, and p, is the atmospheric pressure corresponding
to the surfacz z = 0 ,

The equation for the transient boundary layer have

been treated by many authors, e.g., Estoque,(El) Pandolfo,
(E3)

(E2)

and Sasamori.
i dependent variable, rather than potential temperature, because

We choose to employ the temperature as

temperature is more closely related to the radiative properties
which form the most important aspect of this investigation.

B¢ Using the pressure independent variable the equations are:

=
§
0




e B B

¢

m—cny _l‘ Smny

st e b SRt b i A e R i i pii i s i i b & i

€kt b s S id

3SR-795

‘a’% -~ f(v-vp) ¢ z’p%—l; (Kup% .

%‘% =-£(u-u) + z’o%; (Kvpg%) ,
(E.2)

fm (5 - v« sl (kpef) - eelypt

%% - z’pg—i (qu%%) :

Quantities appearing in Eq. (E.2) are given by:

[P

QUANTITY SYMBOL EQUATION REMARKS
density P = ET determined by equation
of state
vertical w = %% Lagrangian derivative
velocity of altitude
Coriolis f = 2 Qsin¢ ¢ is latitude; @ is
parameter angular velocity of
Earth
Geostrophic u z - %— %2 y is north-south distance
wind g p oy
1 3 . .
vg L/ 5 3% X is east-west distance
Adiabatic g is gravitational con-

lapse rate

Radiation
flux

Turbulent
diffusivity

stant; C_ is specific heat
of air P at constant
pressure :

to be determined in radia-
tive subroutine

to be determined in
k-subroutine

E3
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The indicated time derivatives in Eq. (E.2) are to be formed

at constant pressure; consequently, they are Lagrangian deri-
vatives in that they evaluate changes associated with a par-

ticular air mass element. 7The advection term associated with
vertical motion is included in these terms.

E.3 EDDY DIFFUSIVITY

The coefficients of turbulent transfer which appear
in Eq. (E.2) has been developed through a combination of
theoretical considerations and empirical observations, A
number of expressions for these quantities are availuble
representing different weightings of the data and greater or
lesser sophistication in incorporating theoretical considera-
ticns,

Several of the investigatorc assume that the four eddy
coefficients are equal in the two momentum equations and the
temperature and relative humidity equation, Such is the case
in the work of Sasamori(Es) who uses the eddy diffusion coeffi-
cients developed by Yamamoto aad Shimanuki.(54) The same
assumption is made by Estoque, et.al.(El) who attribute their
expression to Blackadar.(gs) In our current work we use the
prescriptions of Pandolfo(Ez) who has modifiesd the Monin-
Obukhov formulae as presented by Kitaigorodsky.(EG) Pandolfo
takes account of differences between the coefficients for
momentum exchanges and those of heat and moisture. He also
imposes limitations on the magnitude of the coefficients cor-
responding to the case of extreme stability.

The expressions for the exchange coefficients are;

Inversion Conditions (Ri > 0)

K, = K, = Kp = K = k2(2+2)? %‘H (1+aRi)? (E.3)

E4
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Lapse Forced-Convection Conditions (-0.048 < Ri < 0)

K, = K, = k’(z+zo)=|§g| (1-aRi)? (E.4)

- = - -2
Kp = K = K, (1-0R1)

T

bapse Free-Convection Conditions (Ri < -0.048)

. 2| g(2T b
Kp = Ky = h(2+Z,) ?(FE + r)l (E.5)
v v |31-172 1-1/6
(- K = K32 [mi]e
where
k = 0.4
0"‘3.0

c - s(33 (o)

(0.4)2 (%)3/2

%[g-’z-" ¢ T + 0.61T gi}]/lg—‘z’ ‘

-2
[ ]

Ri

The above values of K are to be restricted in range
in order to avoid unrealistic conditions. According to. Pandolfo,
the K-values should lie within the following ranges:

4 7

10% < k < 107 cn?/sec if z > 100m

2 7

10 cn?/sec if z < 100m

| A

K <10

= ot o e s
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Computed values falling outside of the above range are replaced
by the adjacent bounding values.

Clearly, these exchange coefficients are incapable of
taking into account such effects as penetrative convection and
advection of turbulence, being formulated on the assumption of
steady state conditions. We hope to be ahle to take account
of these effects in the future. The influence of penetrative
convection has been estimated by Deardorff(87) and Estoque.cﬁs)
Dynamic effects of turbulence have been treated in varying
degrees of rigor by Pritchett and Gawain,(ag)
an§ by Donaldson.(all)

(E10)

Harlow, et,al,,

E.4 DIFFERENCE EQUATIONS

The Eq. (E.2) are solved as a set of coupled difference
equations in time and space. The difference formulation must
satisfy requirements of accuracy, staﬁility, and computational
efficiency. Several considerations affecting accuracy, stability
and efficiency ure discussed below.

Large shear of the horizontal wind in the lower portion
of the atmospheric boundary layer results in rapid transport
by turbulence and correspondingly large transient adjustments
in response to perturbations of the boundary layer. In order
to take account of this turbulent transport in a computationally
efficient way we have formulated the equations implicitly; the
result is an unconditionally stable numerical integration
scheme which permits the time interval to be chosen in accord
with accuracy considerations. The alternative explicit formu-
lation imposes the requirement that the time interval satisfy
the inequality

At < %K(E%)z .
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In the lower boundary layer, the time interval permitted by
the ubove expression will be very small; the diffusivity K
is large and the desired pressure interval Ap will be small.
The implicit formulation which we have selected (discussed
below) requires some additional calculations to solve the

sets of simultaneous linear equations., However, the result

is a system of equations which are stable for very large time
intervals. Time intervals are determined almost entirely by
considerations of accuracy. )

The changes in the wind, temperature and relative
humidity are concentrated predominantly in the lower layers
of the boundary layer. From the standpoint of the accuracy
and efficiency of the numerical integration it is very de-
sirable to introduce more zones in the region of rapid change
near the ground than higher in the atmosphere where much
smaller changes occur. In order to achieve spatially vari-
able resolution with accuracy it is necessary to consider
carefully the difference formulation. In the following
scheme the difference equations retain second order accuracy
in regions of variable spatial intervals. The resulting
system of equations is capable of representing the atmosphere
accurately through the use of a finely resolved layer in the
lower boundary layer and increasingly coarse resolution in
the higher atmosphere.

We now consider the difference equations correspond-
ing to Eqs. (E.2). The equations are to be solved for the
primary dependent variables, u , v , T , q on a discrete
mesh on both of the indpendent variables, pressure p and
time t . The resulting difference equations are to be
solved by marching the solutior forward by successive incre-
ments At of the time. In order to use a closed-form soiu-
tion of the implicit system, we linearize those terms of the
equations which depend on the advanced time.

E7
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We denote a discrete value of the time by superscript
n, i.e., tml = t" + at" . The atmospheric pressure is par-
titioned into intervals Ap; such that Pj-y * ap; = Piey °
The difference equations corresponding to Eqs. (E.2) are:

n+l n n+l n
u - u u - u
....i:._ri'. = t(v?+1 -V i) + 0‘1} (Kup)?¢'i e -

At & 8P4 * Api

n+¢l _  n+¢l

u u
- ke)},, ———1) , (E6)
fpy * 8py.
n+l n +1 n+l
Vit - v IR
-1;——77—1-- f(ug q © u?*l) + o? (Kvp)2+k el 4
’
n+l n+l
Vit - v
- ko)}, —2) @

n+l n n n , n
Ty =T r Fiey = Fioy o - c’11,(@ -
at" Ap. if T Zg\"T,iek " UT,i-4
1

LG L n+l _ potl
+ o
+ o} (ko) },, 2H—2 (Kpp)i.y — 11
. 8Pj41 * BP; 4p; * 8p;.)

E8
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q?*l ) q? n n M1 . ¢l
—-A—t'n— = Oi (qu)i*;i i+l i
8Pje1 * 8Py
n+l n+l
- n_q L Y
(qu)i-k i i-1 . (E.9)

&p; *+ 8Py,

In the above cquations we have defined

2. N
ol = 287p4
i Kpi ?

and the diffusion coefficients are to be evaluated from
Eqs. (E.3) through (E.S) using appropriate centered difference
representations of the dependent variables from cycle n»r.

The density is obtained from the equation of state as

follows:
n+l _ Py
pi T+l
RTi
where

Pi = ¥(Piyy * Piy) -

The altitude corresponding to the pressure also depends on
time by virtue of the hydrostatic readjustment of the vertical
column under the changing temperature:

E9
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I

el 1 Pk
i+ g n+l °
=i Pk

where I is the maximum value of i corresponding to the
zone adjacent to the ground.

The vertical velocity is obtained as a difference

n+l n
s T

A"

n+l
¥i

where
zi = l’(zi",’ + Zi_,’) .

Considering the above as a system of simultaneous equations

for the unknown quantities u?+1 5 v?+1 . T?*l , g2+1 , We
note that the equations are linear and are uncoupled in the
following way: The T-equation and q-equation are not coupled
to each other or to the u or v equations; the u and v equations
are coupled together through the Coriolis terms. Consequently,
the T and q equations can each be represented as a tri-
diagonal equation for a scalar quantity, The u and v equa-
tions, however, are conveniently represented together as a
tridiagonal system of equations for a vector quantity having

the two components u, and vy -

The scalar equations can be represented in the form

Aj ®541 * By#; + C5 959 =05 - (E.10)

E1l0
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For the T-equation,

and Y

Pj 8p;.1
F? - F? N
- i+l i-% _.n _ 1 - n
Dy = T bef——"" Wi - 7g iy - Froia)| * Ty
i
For the q-equation,
. oNtl
$; =g
and
n n
s o5 At(qu)i+%
i ]
Ap1+1 * Apl
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The vector equation can also be represented in the form of
Eq. (E.1) where

is a vector quantity and the coefficients are matrices having
the form

El2
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g,1
Di =
n
v; ¢ Atf ug’1
where
n n n n
ot - o5 At(Kup)i*B v . o5 At(Kvp)i*B
’ »
' 8p; *+ 8P4 8Pie1 * 2P;
n n n n
-9 At(Kup)i-a . 9 At(Kvp)i_B
U = 5 V = -
8p; * 8Pj.3 8p; * 8Pj.;

and I 1is the identity matrix.

All of these systems of equations can be solved
readily by Gaussian elimination. Taking advantage of the tri-
diagonal form of the equations, the solution algorithm re-
duces to evaluation of coefficients recursively in one forward
and one backward sweep through the mesh. The algorithm for
vector equations is discussed by Richtmyer and Morton.(Elz)

E.S BOUNDARY VALUES

The calculational region extends from the ground, where
the pressure has the assumed ground level hydrostatic value, to

E13



3SR-795

an arbitrary altitude having a specified pressure. Boundary
conditions are required at the top and bottom of the mesh to
close the system of equations. We have not investigated these
conditions carefully (they will be affected further by the
radiative treatment at the ground), but are using the follow-
ing set: At the ground level the velocity is zero, correspond-
ing to the viscous boundary condition, the temperature has a
specified value, and the relative humidity is given the satura-
tion value corresponding to the ground tehperature. At the

top of the mesh the velocity takes the geostrophic value and
temperature and humidity are specified.

El4
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