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SOME CHARACTERISTICS OF A PROPAGATING BRITTLE TENSILE CRACK
June 1970

The purposc of this nroject is to analyze dynamic stress
fields in gcologic media particularly those created hy fracture
or other source functions. Lack of rcalistic analytic
descriptions has led to the study of dynamic {racture in strained
elastic media,

A numerical techniquec was used to simulate the two-dimensional
dynamic characteristics of a propagating brittle tensile fracture,
This study has been directed toward an understanding of dynamics
fracture nhenomena. By imposing the condition on the calculation
that the principal stress difference ahcad of the fracture tip
must be greater than the stress difference at an angle to the
tip, a terminal velocity for a straight funning fracture of 0.39
of the dilatational wave speced was determined. An effect of a
brittle tensile fracture is the incrcasc in the parallel principal
stress just ahcad of the fracture tip. lisher fracture velocities
result in this parallel stress increasing faster than the
perpendicular stress. In other words the stress ficld in front
of the fracturc tip was found to become increasingly hvdrostatic
with higher fracture velocities. A nelvnomial function of the
strain cnergy increasc near the fracture tin with fracture length
and velocity was determined. The strain energy increases with
rracture length and decreases with fracturce velocity.

No equipment was developed or purchased during this renort
period,



SOME CHARACTERTISTICS OF A PROPAGATING

BRITTLE TENSILE CRACK

Merle E. Hanson and Allan R. Sanford

ABSTRACT

E A numerical technique was used to formulate the two-

1 dimensional equations of motion for an clastic continuunm,

A brittle tensile crack was simulated to form and
propagate in the continuum. The stress field in front of
b ~the fracture tip was found to become increasingly
hydrostatic with increasing fracturc velocity. A fracture
criterion in terms of the values of the pnrincipal stresses

near the fracture tip indicated a terminal velocity for

a straight running fracturc of apnroximatelv 0.39 of the
dilatational wave speed. Part of the elastic energy residine
initially ia the continuum accumulated at the fracture tip.

A quantitative fit of the eclastic encrgy as a function of
crack half-length and velocity showed that energy increases

with fracturc length and decrcases with fracturc velocity.



INTRODUCTION

This paper discusses some of the dynamic characteristics
of a bilateral brittle tensile fracture in an elastic
continuum, The tensile crack was numericallv simulated to
form and vropagate in an elastic media having|two-dimensional

!
planc strain characteristics. A uniform uniaxial tensile
strcss.field was imposed on the elastic continuum for all t.
The technique of calculation was to use a two-dimensional
Lagrangian finite difference formulation of the elastic
'equations of motion. TIn this study, scveral fracture
velocities were simulated. 1In addition, a failure criteria
was applied that resulted in a calculated terminal velocity
similar to that given by Dulaney and Brace (1960) and Wells
and Post (19057).

The strain energy in the eclastic medium in the vicinity
of the fracture was affected by the nronagating fracture.
The energy was (1) converted to kinetic energy, (2) taken
up by the crecation of the fracture surfaces, and (3)
accumulated at the fracture tip. A function relating the
fracturc'velocity, encrgy at the fracture tip, and fracture
length was obtained. FErergy increases with an increase in

fracture length and a decrecase in fracture velocity.



INTRODUCTION, Continued -2-

! ~ Other investigators have studied the dynamic behavior

i . of a brittle tensile crack. TFor examnle, Yoffe (1951)

analyzed a constant length fracture movipg with constant
velocity through a brittle elastic material. Her solution
showed that for large fracture velocities the stress on a
radius about the «crack tip was maximum at some angle

to the fracture axis. Thus, at some critical fracture
velocity the crack would either branch or curve. .However,
the solution is physically unappealing because the length
.of a natural tensile fracture is not constant. Craggs
(1960) analyzed a two-dimensional brittle fracture
extending unilaterally in an infinite elastic medium.

He concluded that the force required to maintain a steady rate
of extension of the crack decreases as the crack

velocity incrcases. Baker (1962) analyzed the case for a
semi-infinite crack extending at constant velocity in a
stretched elastic body. Baker contends that thec stress

field at the fracture tip is independent of fracture length.



FORMULATION OF THE PROBLiM
AND
NUMERICAL TECHNIQUE OF SOLUTTON

The boundary conditions and fracture simulation were
similar to those described by Hanson and Sanford (1970).
Fracture velocities were specified with the crack velocity
starting and remaining at a constant value until the
calculation was terminated. The fracture yelocities specified
in the calculations were O.ICI, O.ZCI, O.SCI, 0'39C1’
'.45Cl, and .SCl where Cl is the dilatational wave speced in
plane strain.

The calculational grid size was chosen so that reflections
from boundaries would not reach the areas of interest in the
grid, The initial stress field in the elastic media was
uniaxial tension of magnitude 10° dynes/cm?., Because of
the symmetry of a bilateral tensile fracture, the problem
could be solved by carrying out calculations in one quadrant
only. In the calculation, the energy required to create
the fracture surface was taken as approximately 5 X 10°8
ergs/cm? which is in agreement with the values given by
Dulaney and Brace (1960).

The oneration of the numerical Lagrangian two-
dimensional computer code and the formation of cracks was
identical as described by Hanson and Sanford (1970). A
complete discussion of the difference forms used is given in
Petschek and Hanson (1968). A tensor damping form was

included in these calculations to reduce the numerically



* Formulation of the Problem and Numérical
Technique of Solution, Continuecd -4-

created high frequency oscillations resulting from the
crack opening in a discretized mass network. The damning
tensor is obtained from the time rate of change of the
strain tensor,

The forms of damping used include both linear damping

and quadratic damping. The quadratic damping is defined by

L 2
= 2
Ay K, (éyy) ] (1)
i : 2
and Qyy K, (Exy) .
b . . The linear form of the damping used is
Uxx = Kz éxx’
= . . 2
Uyy K, Eyy . (2)
% and qu 2 K2 éxy’
where
2 n+1/2
| Cq Py A
K =
1 vt 1/2
n + 1/2' (3)
a CL s A

~
n

2 vyt 1/2

Cq’ “CL arc constants,

a is the P-wave speed,

bo is the initial density,
€53 is the strain and
n+1/2 n+ 1/2

A /,v /



Formulation of the Problem and Numerical
Technique of Solution, Continued -5-

are the arca and volume of the Lagrangian zone defined as
the average between the n and n + 1 time steps. Application
of the damping is accomplished by simply adding similar
terms of the dumping and stress tensors bcforﬁ application
to the momentum cquations, Iﬁ addition encrg; conscrvation
is assured in the calculation if the sum is also avplied

in the energy equation.

The propertics of these damping forms has been worked
_out by Petschek (1970). 1If the effect of heating is ignored,
a one-dimensional form of the elastic wave equation, with
linear and quadratic damping is

———

320 = E 2%u + C' 3% 3u + ('
= q
atZ p

o)
~

N
e
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@ o
<
@
<
@
ct

where E is Young's modules and p is density, and CL and Ca
arc the cocfficients of the linear and quadratic damping.
Multiplication of this equatinon by 23u/ 3t, and integration
by parts over the length of the rod with the boundary

conditions 3u/dy = 0 leads to

) au +1 B ou? _ -C"jr qu 42
3T J[ [ (=5 ) 7 5 (5;9 } dy = L (g;g{*) dy

-C _3%u 3

The left side of the preceding cquation is the time derivative

(5)

of the energy of the system. If the amplitude of the
oscillation is A, the frequency w, and the length L, then

the integral is A?w’L except for a constant. The term



*Formulation of the Problem and Numerical
Technique of Solution, Continued -~

d2u/3ydt is proportional to Aw?/V, where V is the wave spced.

Hence the equation can be written as

9 2,2 = _On 2, 4 2 et A3 6 3
T A“w°L CL Acw*L/V . Cq Aw L/V‘ (6)
wherc CE and Ca are new constants. The cquation is finally

- Cc" (1)2 c" whAZ .
L
st § . e )
2V? . 2V3.

If the sccond term on the right is ignored, the linear
"damping gives exponcential decay. The quadratic damping

gives

1 — 1 2R Rl t .
& = W + Lq c (8)
0
or A ~ 1/t an effective damping proportional to the
amplitude. In addition the damping increases rapidly
with frequency.
In the above discussion, the oscillations are
assumed small, The damping is used primarily to reduce

the numerically created oscillations resulting from the

‘technique used to simulate the moving fracturc.
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CHTARACTERISTICS OF THE STRESS FIELD

The initial uniaxial stress ficld of the medium is
modified by the introduction of a moving fracture
particularly in the vicinity of the crack tip. An effect
of a dynamically propagating tensile crack is the creation
just ahecad of the fracture fip of tensile stress parallel
to the fracture axis. As the fracture length increases
this tensile stress as well as that perpendicular to
the fracture axis increases. However, with increasing
fracture velocity, the parallel stress incrcases faster
than the perpendicular stress. In other words, there is
a tendency toward a Hydrostatic condition. For exampnle,
Figurce 1 shows that the ratio 0,/0, incrcases slower
for a fracturec velocity of 0.2C; than for higher fracture
velocities (o, is the principal stress parallel to the
crack and o,1is the principal perpendicular stress). This
ratio is sensitive to damping in the calculation.

For this analysis the scaling was chosen so that
the Lagrangian zone was one centimeter square., Because
the computational technique inmplies that the stresses
are an average over the Lagrangian zone, interprectiations
of the stresses closer than a half zone to the
singularity at thc'crack tip are not possible., Therefore,
the stresses can only be compared a half zone ahead of

the crack tip.



Characteristics of the Stress TField, Continued -8-

Possible confirmation of a dilated region in front
of the crack tip comes from experiments of Wells and Post
(1957). They experienced difficulty with a region near
the tip of the crack in photoclastic experiments. For a
tensile crack propagating in the photoelastic material,
they reported that a distortion resulting in & surface
dimple in the region near the tip of the crack caused
extinction of light in this region. The dimpling effect
is the result of the buildup of the parallel stress
tending to a morec hydrostatic field in the region.

Figure 2 is a plot of the principal axis of stress
(tensile) over the region about the right crack tip. If
branch fractures are to form they should be oriented
perpendicular to thesec principhl stresses. A branch
fracture which originates in the region ahead of the
fracture tip will tend toward the original fracture axis.
A branch fracture which originates just behind the fracture
tip will tend to diverge from the original fracture axis.
Figure 2 is in agrecement with the experimental results
of Manogg (1966).

Figures 3 and 4 depict the rotation of the principal
axes of stress as a moving fracture tip passes bencath the
point. Again Manogg (1966) shows comparable results from
an experiment. Examination of these figures shows that

the amoynt and rate of rotation of the principal axis



Characteristics of the Stress Tield, Continued -9.

increases with fracturce length., In addition, the rotation
ratec and magnitude increase with fracture velocity. 1In
the times considered on thesc plots, the principal axis
angle is negative at the start. The negative angle
results from the flow of material toward the fracture tip.
The rotation indicates the changing shear stﬂess in the
region,

Figure 5 is a contour plot of 2T = g,- 0; where 02
and ¢1 arc the principal stresses and T is the maximnum
shear stress. Notice that the principal lobe is at an
angle greater than 45° to the fracture axis. On the other
hand, there is a minimum lobe directly in front of the
fracture tip. The minimum lobe indicates a decrease
in distortion due to increasing hydrostatic tension in
the region. The distortional pattern increases with
fracture length, The relaxation zone bechind the fracture
tip expands at P-wave velocity. Contours of constant
dilatation arc shown on Figurc 6. The maximum is directly
in front of fhe fracture tip and the minimnm occurs at

the crack face in the expansion region hchind the tip.

)
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TERMINAL VELOCITY OF A STRATGHT RUNNING FRACTURE

The terminal velocity of a sfraight running fracture
is defined as the maximum velocity at which a crack will
expand without branching. If the terminal velocity of a
straight running fracture is a function of the dynamic
stress field at the tip of the fracture, then it should be
possible to establish a criterion for a straight running
fracture in terms of the principal values of stresses at
the fracture tip. Let the princinal stress differecuce
1/2 zone ahcad of the crack tip be defined as (02 - ol)a
and 1 zone this point (02 - ol)b. A mcasure of the
relative elongation between the principal axis is
(c2 - E1)° For a HNookean material, the strain difference
differs from the stress difference by only a constant,

(o2 - ol) = Zu(e2 - el), and therecfore the strain ellinse
has the same shape as the stress cllipse.

Figure 7 shows the ratio of the stress difference
at b to the stress difference at a, (o2 - ol)b/(o2 - Ul)a,
for the fracture velocities O.ZCl, 0.301, 0.39Cl, 0.4SC1,
and O.SC1 as a function of crack half length. For the
fracture velocities less than or equal to 0'39C1’ the
ratio is less than onc. However, at the velocity 0.4561,
the ratio exceeds this valuc after the crack has run a
short distance. Hence the eccentricity of the strain

¢llipsc becones greater at b than a for velocities larger
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Terminal Velocity of a Straight .
Running ¥racture, Continued -11-

than 0'39C1’ The terminal velocity 0.39Cl is obtained by
applying the criteria that the stress difference had to
be greater at a than it was at b. In equation form the
criteria chosen was
(o2 - 01)8 > G (02 - U,)b
and \ ‘ (9)
(o2 - 0,)a > 1P
where H is @& constant, taken at 1.2 and P is the magnitude
of the initial uniaxial stress. The resulting calculation
predicts a terminal velocity of 0.39C‘, as a maximum,
Lower velocities, down to about 0.37C1, can he nredicted
by using other time steps for the calculation. The
terminal velocities vredicted bracket the velocity of
O.SSCl given in Wells and Post (1957). Variation of
the paramncter G over a range of 1.1 to 1.3 did not

effect the terminal velocity,
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STRAIN ENERGIES

Examination of Figures 8, 9, and 10 shows that
strain energy at the fracture tip increascs in a non-
lincar manner with fracturc length. The strain cnergy
depicted on these plots is the strain energy in excess
of the initial strain ecnergy. In ecquation form, the
energy discussed is

e o= g™ o o) (10)
a a a
wvhere Eén) can be the dilatational, distortional or
the total strain energy at time t and E&o) is the initial
valuc of the clastic cnergies. The elastic cnergics
are integrated over a region where their value is greater
than the initial value at that time. The intecration is
performed numerically in a region near the crack tin,
Hence the magnitude of the energy shown on the nlots is
energy in excess of the initial over the region determined
to have excess strain cnergy.

The integrations were performed only over the regions
where the elastic encergies were larger than their initial
values because these are the areas which can affect the
propagating fracture. For cxamnle, if the total elastic
encergy decrcased, the fracture could he expected to slow
up or stop. On the other hand, excessive concentration
of encrgy off the fracturc axis could be expected to

result in a branch or change in direction of the fracture.



Strain Inergics, Continucd . ' -13-

Because only the energies larger than the initial encrgies
were included in the integration, the sum of the dilatational
and distortional parts docs not nccessarily have to equal
the total clastic cnergy.

Figures 11, 12, and 13 show an cxampnle of the
regions which have dilatational, distortional or total
strain cnergies in excess of the initial values.

Figure 11 depicts the region where the dilatational strain
energy increases ahead of the crack tip. Except for a
narrow band directly in front of the crack tip, both

the distortional and total strain energies decrcase in
this area. The plots shown are for a fracture velocity of
0.3C,. The velocity has heen non-dimensionalized for
these plots by forming the ratio ) = Vf/cl’ where Ve is
the fracture velocity and Cy is the comnressional wave
velocity. A similarity exists in the shape of the regions
vhere the distortional and total strain cnergies are
larger than the initial clastic cnergies near the crack
tip; however, the distortional region has a larger extent
with a narrower band at the tip.

The elastic ecnergies near the crack tip increasc with
fracture length and decrease with fracture velocity. However,
the decrecase in elastic cnergy with fracture velocity to
the velocity x = .39 does not result in a net decrecase of
clastic encrgy with crack length., Incrcasec in fracture

velocity rvesults in the dilatational energy decrecasing



Strain Energies, Continucd : -14-

slower than the total or distortional cnergy. In addition

to the increasc in the magnitude of total strain cnergy

in the near vicinity to the tip with crack length, the

size of the recgions having strain cnergics greater than

| the initial value increasec with crack lcngth.‘

E - A functional form to describe the change 'in cnergy
was obtaincd by vnerforming a two dimensional fit of
cnergy as a function of crack half length in centimeters
and non»dimcnsionai velocity A. The functions presented
arc not unique and arc shown to provide quantitative
relationships. The equations arc for perfectly elastic
materials with cnergy dissipation vesulting primarily

| - from the creation of the fracture surfaces. The fit
was performed for half crack lengths of 2 to 12 centimeters
and non-dimensional velocities, A, of 0.1 to 0.39. Cubic
polynomials were choscn with differences between the
fit and the calculated values of not morc than 15%.

The units on the energics are megabars-cm?, The cubic
terms are small on the dilatational cnergvy fit but
arc more significant on the total and distortional fits.

The polynomial eqnations are
4

E' =8 + B8 X+ B8 A+ B8 X2+ 8 x\ +8 A2+
o 1 2 3 [] 5 6
(11)

g x¥+ B x%2x + B xx2+ 3 A8
[N 8 9 10

?
wherce the cnergics E& arc defined in equation (10), and

the paramecters B are given in Table 1.



Strain Encrgies, Continued ' -1§-

Examination of Figure 10 shows that a fracture can
decrecase the rate of cenergy accumulation at the tip by
accelerating to a higher velocity. However, higher velocities
causc the stress field to hecome more hydrostatic.

The brittle dynamic fracture of these calculations
differs from a stable Griffith type.fracturc in that
energy in excess of that required to form the fracture
surface accumulates ncar the fracture tip. The physical
cffect of this exécss cnergy mav he to increcasc fracture
roughness. An increase of fracture roughness with
fracturce velocity has been reported by Cottercll (1965
and 1968), Craggs (1960) and Biemawski (1968). In addition,
if branching is to occur, then excess energy must be

available,



CONCLUSIONS

The simulation showed that a tensile stress parallel
to the fracture axis is created in front of the moving
crack tip. Becausc this tensile stress increases with
crack length and/or velocity, the stress at the tip tends
to become morc hydrostatic as crack length and/or velocity
is increased.

A terminal velocity for a straight running fracture
of O.39Cl was obtained from the calculation. The fracture
criterion used was that the nrincipal stress difference
be greater in front of the crack tin than at an angle to
the fracturc axis.

The elastic encrgy at the fracture tip was found to
in;reasc with increase in fracture length or decrecase in
fracturc velocity., The result that the cencrgy and hence
the crack extension force continually increase with crack
length is borne out by Cotterell (1964). The region
occupied by a dilatational ecncrgy in eicess of the initial

.
value was a lobe directly in front of the propagating
fracture tip. The lobes of highest distortional stress
vere at an angle of greater than 45° to the projected
axis of the fracture’. The high distortional stress lobes
extend forward from the fracture tip. A lobe having a
distortional stress less than the initial value extends in

front of the fracturc tip.
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FIGURE CAPTTONS

Figure 1

The ratio of the nrincipal stresses 1/2 zone ahead of the
fracture tin as a function of crack half-length in centimeters
for several fracture velocities.

Figure 2

Orientations of the maximum nrincinle axis of stress for

part of the upper right hand quadrant, The fracture extent is
from Y =0, X = 0 to X = 11 centimeters with the fracture

tip shown by the arrow., The orientations are not shown on

the fracture axis but ave vertical., Fracture velocity was
0.3C,.
Fioure 3

Rotation of the »nrincipal axis of stress as the fracture

tip passes L zone beneath the point for crack half-lengths

of 4, 7, and 10 centimeters. The reference time is in
microseconds with the zero time chosen so that the point
observed relative to the crack tiv is identical for the three
cascs, Fractuve velocity is 0.3C1.
Figure 4

Comparison of the rotation of princinal axis for four
fracture velocities. Crack half-length was 5 centimeters.
The reference time is in microseconds with the zero time
chosen so that the noint ohserved relative to the crack tip

is identical for the cases,

Figurec 5

Contour plot of the maximum principal stress difference.
Fracture velocity was 0.3C; and fracture half-length was 5
centimeters. X and Y coordinates are in centimetevs. The
minimum lobe is directly in front of the fracture tip and the



FIGURE CAPTIONS, Continued

._‘_'lo_
Figure 5, Continued

: b 0 0 q Q
maximum is at about 60 to the fracture tin. Increcasing

contour numbers indicate increcasing stress differcnce.

Figure 6

Contour plot of the dilatation. The fracturc half-length
was 5 centimeters and the fracture velocity was O.SCI. The
maximum lobe is in front of the fracturc tin.y Incrcasing

contour numbers indicate incrcasing dilatation.

Figure 7

The ratio of the pnrincipal stress difference 1/2 zone ahead

~and one zone above the fracture tip to the principal stress

difference 1/2 zone ahecad of the fracture tiv as a function

of fracturc half-lengths in centimeters for scveral fracture
velocities. Note the ratio becomes greater than one for

the velocity O.4SCl and higher velocities.

Figure 8

The surface of 5! as a function of fracturec

Dilatational
half length in centimeters and non-dimensional velocity

A= Vf/Cl'

Figure 9

The surface of B! as a function of fracture

Distortional
half length in centimeters and non-dimensional velocity,

A= Vf/ql.

Figure 10

The surface of [ as a function of fracturc half

Total
length in centimeters and non-dimensional velocity,

A= Vf/cl'



FIGURE CAPTIONS, Continued

Ficure 11

An example of the integration domain for E'ﬂilntationnl
for a fracture half-length of 5 centimeters and a fracture
velocity of 0.3C1. Both coordinates X and Y arc in
centimeters. The half fracture extends from X = 0, Y = 0
to a point above arvow depicting the fracture tip and

is shown by the solid line. The gradient of the function

deccreases to the right.

Figuvre 12

An example of the integration domain for E'Distartional
~for a fracture half length of 5§ centimeters and a fracture
velocity of 0.3C1. Both coordinates X and Y are in
centimeters. The half fracture extends from X = 0, Y = 0
to a point above the arvow depicting the tin and is shown
by the solid line. The function decrcascs away from the

tip and is small to the right.

Figure 13

An exanple of the integration domain for B for a

;'Total
fracture half length of 5 centimeters and a fracturce velocity
of 0.3C1. Both coordinates X and Y are in centimeters.,

The half fracture extends from X = 0, Y = 0 to a point

above the arrow depicting the tip and is shown by the

solid line. The gradient of the function decreases away

from the crack tip.



TABLE 1

— B

RECISERNCEE Y DILATATIONAL B D ISTORTTONAL E'roral
8, -.12868 x 10 % -.23871 X 10°% _.34752 X 10°%
8, .22578 X 10°% .70699 X 1074 .83393 X 1074
8, .25982 X 10”4 -.13256 X 1073 -.57486 X 1074
8, ;29405 X 10°° .40032 X 1077 .86935 X 1077
8, -.14130 X 1073 -.32245 X 1073 -.50537 X 1073
B, ,29591 X 107 11046 X 1072 14547 X 1072
8, -.77827 X 1078 -.22248 X 1076 - 17081 % 167°
8, -.63251 X 10°° .38887 X 1073 -.11101 X 1074
8, .22011 X 1073 .28028 X 10”3 67338 X 1073
8 -.71616 X 1073 -.13615 X 1072 -.25326 X 10”2
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