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ARTIFICIAL STIMULATION OP EARTHQUAKES 

Contract No. P44620-70-C-0055 

SOME CHARACTERISTICS OP A PROPAGATING BRITTLE TENSILE CRACK 

June 1970 

The purpose of this project is to analyze dynamic stress 

fields in geologic media particularly those created by fracture 

or other source functions.  Lack of realistic analytic 

descriptions has led to the study of dynamic fracture in strained 

elastic media. 

A numerical technique was used to simulate the two-dimensional 

dynamic characteristics of a propagating brittle tensile fracture. 

This study has been directed toward an understanding of dynamics 

fracture phenomenal  By imposing the condition on the calculation 

that the principal stress difference ahead of the fracture tip 

must be greater than the stress difference at an angle to the 

tip, a terminal velocity for a straight funning fracture of 0.39 

of the dilatational wave speed was determined.  An effect of a 

brittle tensile fracture is the increase in the parallel principal 

stress just ahead of the fracture tip,  Higher fracture velocities 

result in this parallel stress increasing faster than the 

perpendicular stress.  In other words the stress field in front 

of the fracture tip was found to become increasingly hydrostatic 

with higher fracture velocities.  A polynomial function of the 

strain energy increase near the fracture tip with fracture length 

and velocity was determined.  The strain energy increases with 

fracture length and decreases with fracture velocity. 

No equipment was developed or purchased during this report 

period. 



SOME CIIARACTERTISTICS OP A PROPAGATING 

BRITTLE TENSILE CRACK 

Merle E. Hanson and Allan R. Sanford 

ABSTRACT 

A numerical, technique was used to formulate the two- 

dimensional equations of motion for an elastic continuum. 

A brittle tensile crack was simulated to form and 

propagate in the continuum. The stress field in front of 

the fracture tip was found to become increasingly 

hydrostatic with increasinn fracture velocity.  A ^racturc 

criterion in terms of the values of the principal stresses 

near the fracture tip indicated a terminal velocity for 

a straight running fracture of apnroximatelv 0.59 of the 

dilatational wave speed.  Part of the elastic energy residing 

initially iu the continuum accumulated at the fracture tip. 

A quantitative fit of the elastic energy as a function of 

crack half-length and velocity showed that energy increases 

with fracture length and decreases with fracture velocity. 



INTRODUCTION 

This paper discusses some of the dynamic characteristics 

of a bilateral brittle tensile fracture in an elastic 

continuum.  The tensile crack was numerical.lv simulated to 

form and propagate in an elastic media having;two-dimensional 
j 

plnnc strain characteristics.  A uniform uniaxial tensile 

stress field was imposed on the elastic continuum for all t. 

The technique of calculation was to use a two-dimensional 

Lagrangiaa finite difference formulation of the elastic 

equations of motion.  In this study, several fracture 

velocities were simulated.  In addition, a failure criteria 

was applied that resulted in a calculated terminal velocity 

similar to that given by Dulaney and Brace (1960) and Wells 

and Post (IPS7). 

The strain energy in the elastic medium in the vicinity 

of tire fracture was affected bv the oronagating fracture. 
- 

The energy was (1) converted to kinetic energy, (2) taken 

up by the creation of the fracture surfaces, and (3) 

accumulated at the fracture tip.  A function relating the 

fracture velocity, energy at the ^racturc tip, and fracture 

length was obtained.  Energy increases with an increase in 

fracture length and a decrease in fracture velocity. 



INTRODUCTION, Continued -2- 

Other investigators have studied the dynamic behavior 

of a brittle tensile crack.  For examnle, Yoffe (1951) 

analyzed a constant length fracture moving with constant 

velocity through a brittle elastic material. Her solution 

showed that for large fracture velocities the stress on a 

radius about the crack tip was maximum at some angle 

to the fracture axis. Thus, at some critical fracture 

velocity the crack would either branch or curve. However, 

the solution is physically unappealing because the length 

of a natural tensile fracture is not constant.    Craggs 

(1960) analyzed a two-dimensional brittle fracture 

extending unilaterally in an infinite elastic medium. 

Me concluded that the force required to maintain a steady rate 

of extension of the crack decreases as the crack 

velocity increases.  Baker (1962) analyzed the case for a 

semi-infinite crack extending at constant velocity in a 

stretched elastic body.  Baker contends that the stress 

field at the fracture tip is independent of fracture length. 
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FORMULATIOM OF THE PROBLiiM 

AND 

NUMERICAL TGCHNIQUF, OF SOLUTION 

The boundary conditions and fracture simulation were 

similar to those described by Hanson and Sanford (1970). 

Fracture velocities were specified with the crack velocity 

starting and remaining at a constant value until the 

calculation was terminated.  The fracture velocities specified 

in the calculations were 0.1C ,  0.2C , 0.3C , 0.39C , 
i       i      i      i 

.45C , and .5C where C is the dilatational wave speed in 

plane strain. 

The calculational grid size was chosen so that reflections 

from boundaries would not reach the areas of interest in the 

grid.  The initial stress field in the elastic media was 

uniaxial tension of magnitude 109 dynes/cm2.  Because of 

the symmetry of a bilateral tensile fracture, the problem 

could be solved by carrying out calculations in one quadrant 

only.  In the calculation, the energy required to create 

the fracture surface was taken as approximately 5 X 106 

ergs/cm2 which is in agreement with the values given by 

Dulancy and Brace (1960) . 

The operation of the numerical Lagrangian two- 

dimensional computer code and the formation of cracks was 

identical as described by Hanson and Sanford (1970).  A 

complete discussion of the difference forms used is given in 

Petschok and Hanson (1968).  A tensor damping form was 

included in these calculations to reduce the numerically 



* Formulation of the Problem and Numerical 
Technique of Solution, Continued -4- 

created high frequency oscillations resulting from the 

crack opening in a discretized mass network. The damning 

tensor is obtained from the time rate of change of the 

strain tensor. 

The forms of damping used include both linear damping 

and quadratic damping.  The quadratic damping is defined by 

The linear form of the damping used is 

^xx = K
2 

fexx' 

q    =  K  fe  , (2) lyy    2 yy 

where 

and      q      K fe  , nxy =  2 xy' 

C 2  p  An + 1/2 

q   o 
Ki     = " n + 1/2 V 

C, P Z^17"2 (3) 
'L  po 

ir+ i/2 v 

C , aCT are constants, q   L 

a is the P-wave speed, 

p„ is the initial density, 

e-. is the strain and 

An + 1/2  vn + 1/2 



Formilation of   the Problem and Numerical 
Technique of Solution,  Continued 5- 

are the area and volume of the Lagrangitn zone defined as 

the average between the n and n + 1 time steps.  Application 

of the damping is accomplished by simply adding similar 

terms of the damping and stress tensors before application 

to the momentum equations.  In addition energy conservation 

is assured in the calculation if the sum is also applied 

in the energy equation. 

The properties of these damping forms has been worked 

out by Petschok (1970) .  If the effect of heating is ignored, 

a one-dimensional form of the elastic wave equation, with 

linear and quadratic damping is 

2  8u +  CL  3   ^3   9u ^z  (4) 92u 11 LLu 
P  ^,2 

CJ 3 
q  —  ( 

9y   ay 
) 

3tz y    ay2 ay1    at ay       3y       at 

where R  is Young's  modules  and p   is   density,   and Cl   and C' 

arc  the coefficients  of the  linear and quadratic damping. 

Multiplication  of  this  equation by     3u/  at,   and integration 

by parts  over  the  length of  the  rod with  the boundary 

conditions  3u/3y  =  0  leads  to 

/   fl   ,   3IK
2

        +   1 
t j [T *• IF        2 2     p     layJ 

- c'   /      a u 
^  =       LJ   C3y3T 

q j  C-3^aT 

0     dy 

(5) 

)     dy. 

The  left side  of  the  preceding  equation  is  the  time  derivative 

of  the  energy  of  the  system.     If  the  amplitude of  the 

oscillation  is  A,   the  frequency w,   and  the  length L,   then 

the  integral  is  A
2
ü)

2
IJ excent  for a constant.    The term 



Formulation of the Problem and Numerical 
Technique of vSolution, Continued -6- 

32u/8y3t is proportional to A(D
2
/V, where V is the wave speed. 

Hence the equation can be written as 

•A  A2w2L =  -C" A2^L/V2       -C" A3u6L/V3 (6) 
d t Jj ■     ^l 

\ 
where  Ci*     and C'1  are  new  constants.     The  equation  is  finally 

M    -       A    -    -9  (7) 
<Jt 2V2 2V3 

If the second term on the right is ignored, the linear 

damping gives exponential decay. The quadratic damping 

gives 

o     l 

or A ~ 1/t an effective damping proportional to the 

amplitude.  In addition the damping increases rapidly 

with frequency. 

In the above discussion, the oscillations are 

assumed small. The damping is used primarily to reduce 

the numerically created oscillations resulting from the 

technique used to simulate the moving fracture. 
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CHARACTERISTICS OP THE STRESS FIELD 

The initial uniaxial stress field of the medium is 

modified by the introduction of a movinfj fracture 

particularly in the vicinity of the crack tip. An effect 

of a dynamically propagating tensile crack is the creation 

just ahead of the fracture tip of tensile stress parallel 

to the fracture axis. As the fracture length increases 

this tensile stress as well as that perpendicular, to 

the fracture axis increases.  However, with increasing 

fracture velocity, the parallel stress increases faster 

than the perpendicular stress.  In other words, there is 

a tendency toward a hydrostatic condition.  For example. 

Figure 1 shows that the ratio ^J/OJ increases slower 

for a fracture velocity of 0.2Ci than for higher fracture 

velocities (ai is the principal stress parallel to the 

crack and o^is   the principal perpendicular stress).  This 

ratio is sensitive to damping in the calculation. 

For this analysis the scaling was chosen so that 

the Lagrangian zone was one centimeter square.  Because 

the computational technique implies that the stresses 

are an average over the Lagrangian zone, interpretations 

of the stresses closer than a half zone to the 

singularity at the crock  tip are not possible.  Therefore, 

the stresses can only be compared a half zone ahead of 

the crack tip. 



Characteristics of the Stress Field, Continued        -8- 

Possible confirmation of a dilated region in front 

of the crack tip comes from experiments of Wells and Post 

(1957).  They experienced difficulty with a region near 

the tip of the crack in photoelastic experiments.  For a 

tensile crack propagating in the photoelastic material, 

they reported that a distortion resulting in a surface 

dimple in the region near the tip of the crack caused 

extinction of light in this region. The dimpling effect 

is the result of the buildup of the parallel stress 

tending to a more hydrostatic field in the region. 

Figure 2 is a plot of the principal axis of stress 

(tensile) over the region about the right crack tip.  If 

branch fractures are to form they should be oriented 

perpendicular to these principal stresses.  A branch 

fracture which originates in the region ahead of the 

fracture tip will tend toward the original fracture axis. 

A branch fracture which originates just behind the fracture 

tip will tend to diverge from the original fracture axis. 

Figure 2 is in agreement with the experimental results 

of Manogg (1966). 

Figures 3 and 4 depict the rotation of the principal 

axes of stress as a moving fracture tip passes beneath the 

point.  Again Manogg (1966) shows comparable results from 

an experiment. Examination of these figures shows that 

th»' amoiyit and rate of rotation of the principal axis 



Characteristics of the Stress Field, Continued 

increases with fracture length.  In addition, the rotation 

rate and magnitude increase with fracture velocity.  In 

the times considered on these plots, the principal axis 

angle is negative at the start. The negative angle 

results from the flow of material toward the fracture tip. 

The rotation indicates the changing shear stress in the 

region. 

Figure 5 is a contour plot of 2T = az-  0\  where 02 

and ai are the principal stresses and T is the maximum 

shear stress.  Notice that the principal lobe is at an 

angle greater than 45° to the fracture axis. On the other 

hand, there is a minimum lobe directly in front of the 

fracture tip. The minimum lobe indicates a decrease 

in distortion due to increasing hydrostatic tension in 

the region.  The distortional pattern increases with 

fracture length. The relaxation zone behind the fracture 

tip expands at P-wave velocity.  Contours of constant 

dilatation are shown on Figure 6.  The maximum is directly 

in front of ihe  fracture tip and the minimum occurs at 

the crack face in the expansion region behind the tip. 



lo 

TERMINAL VELOCITY OF A STUM GUT RUNNING FRACTURE 

The terminal velocity of a straight running fracture 

is defined as the maximum velocity at which a crack will 

expand without branching.  If the terminal velocity of a 

straight running fracture is a function of thp dynamic 

stress field at the tip of the fracture, then it should be 

possible to establish a criterion for a straight running 

fracture in terms of the principal values of stresses at 

the fracture tip.  Let the principal stress difference 

1/2 zone ahead of the crack tin be defined as (a  - a ) 
2   i a 

and 1 zone this point fa -  o  )..       A measure of the r      2    ib 

relative elongation between the principal axis is 

(E  - e ).   For a Mookcan material, the strnin difference 
2    i 

differs from the stress dif(:eronce by only a constant, 

(o  - o ) = 2vi(e  - E ), and thereTore the strain ellipse 
2      1 2      1 

has the same shape as the stress ellipse. 

Figure 7 shows the ratio of the stress difference 

at b to the^stress difference at a, (o  - o )u/(o  - o )_, 

for the fracture velocities 0.2C , 0.3C , n.SPC , n.45C , 
i      i      i      i 

and 0.5C as a function of crack half length.  For the 
i 

fracture velocities less than or equal to n.39C , the 
i 

ratio is less than one. However, at the velocity 0.45C , 

the ratio exceeds this value after the crack has run I 

short distance.  Hence the eccentricity of the strain 

ellipse becomes greater at b than a for velocities larger 



Terminal Velocity of a  Straight 
Running Fracture, Continued -11- 

than 0.39C .  The ternlnal velocity 0,390  is obtained by 

applying the criteria that the stress difFerence had to 

be greater .it a than it was at b.  In equation form the 

criteria chosen was 

(a2 - öi)a >  G (a2 - o^ 

and ] (9) 

(o  - o )   > HP 
2    i a 

where II is a constant, taken at 1.2 and P is the magnitude 

of the initial uniaxial stress.  The resulting calculation 

predicts a terminal velocity o^ 0.39C , as a maximum. 
'i 

hower velocities, down to about 0.37C , can be predicted 

by using other time steps for the calculation.  The 

terminal velocities predicted bracket the velocity of 

0.18C given in '.Veils and Post (1957).  Variation of 

the parameter G  over a range of 1.1 to 1.3 did not 

of feet the terminal velocity. 
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STRAIN ENERGIES 

Hxamination of Figures 8, 9, and 10 shows that 

strain energy at the fracture tip increases in a non- 

linear manner with fracture length.  The strain energy 

depicted on these plots is the strain energy in excess 

of the initial strain energy.  In equation ^orm, the 

energy discussed is 

a 'a      "a Cio) 

where B* '  can be the dilatational. distortional or 
a ' 

the total strain oncrgv at time t and V.0'   is the initial a 

value of the elastic energies.  The elastic energies 

are integrated over a region where their value is greater 

than the initial value at that time.  The integration is 

performed numerically in a region near the crack tip. 

Hence the magnitude of the energy shown on the plots is 

energy in excess of the initial over the region determined 

to have excess strain energy. 

The integrations were performed only over the regions 

where the elastic energies were larger than their initial 

values because these are the areas which can affect the 

propagating fracture.  For examnle, if the total elastic 

energy decreased, the fracture could be expected to slow 

up or stop.  On the other hand, excessive concentration 

of energy off the fracture axis could be expected to 

result in a branch or change in direction of the fracture. 



Strain nucrjf'.ies, Continued -13- 

Because only the encx'ßies larger than the initial energies 

were included in the integration, the sum of the dilatational 

and distortionai parts does not necessarily have to equal 

the total elastic energy. 

Figures 11, 12, and 13 show an examnle of the 

regions which have dilatational, distortionai or total 

strain energies in excess of the initial values. 

Figure 11 depicts the region where the dilatational strain 

energy increases ahead of the crack tip.  Hxcept for a 

narrow hand directly in front of the crack tip, both 

the distortionai and total strain energies decrease in 

this area.  The plots shown are for a fracture velocity of 

0.3C!.  The velocity has been non-dimensionalized for 

these plots by forming the ratio  x ■ Vp/C,, where V^ is 

the fracture velocity and C,  is the comnressional wave 

velocity.  A similarity exists in the shape of the regions 

where the distortionai and total strain energies are 

larger than the initial elastic energies near the crack 

tip; howeveri the distortionai region has a larger extent 

with a narrower band at the tip. 

The eins tic energies near the crack tip increase with 

fracture length and decrease with fracture velocity.  However, 

the decrease in elastic energy with fracture velocity to 

the velocity x = •39 does not result in a net decrease of 

elastic energy with crack length.  Increase in fracture 

velocity results in the dilatational energy decreasing 



Strain Energies, Continued 14 

slower than the total or distortional energy.  In addition 

to the increase in the magnitude oT total strain energy 

in the near vicinity to the tip with crack lenyrth, the 

size of the regions having strain energies greater than 

the initial value increase with crack lengtu. 
I 

A functional form to descrihe the change in energy 

was obtained by nerforming a two dinensional fit of 

energy as a function of crack half length in centimeters 

and non-dimensional velocity \.     The functions presented 

are not unique and are shown to provide quantitative 

relationships.  The equations arc for perfoctly elastic 

materials with energy dissipation resulting primnrily 

from the creation of the fracture surfaces.  The fit 

was performed for half crack lengths of 2 to 12 centimeters 

and non-dimensional velocities, X, of 0.1 to 0.39.  Cubic 

polynomials were chosen with differences between the 

fit and the calculated values of not more than 15%. 

The units on the energies are megabars-cm3.  The cubic 

terms are small on the dilatational energy fit but 

are more significant on the total and distortional fits. 

The polynomial equations are 

Bi   =3   +   3x+ßX  +   ßx2   +   PxA   +   (3X2   + 
S     t    t       t       *l        5        6 

ß x3 + ß x2A + (3 xA2 + 3  X3 
17        e 9 10 

where the energies B' are defined in equation (10), and 

the parameters 3 are given in Table 1. 

01) 
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Hxamination of Figure 10 shows that a fracture can 

decrease the rate of energy accumulation at the tip by 

acceleratim^ to a higher velocity,  flowever, higher velocities 

cause the stress field to become more hydrostatic. 

The brittle dynamic fracture of these calculations 

differs from a stable Griffith type.fracture in that 

energy in excess of that required to form the fracture 

surface accumulates near the fracture tip.  The physical 

cffrtct of this excess energy may be to increase fracture 

roughness.  An increase of fracture roughness with 

fracture velocity has been reported by Cotterell (1965 

and 19C8), Craggs (1960) and Biemawski (1968).  In addition, 

if branching is to occur, then excess energy must be 

available. 



■■ 

CONCLUSIONS 

, i 

The simulation shewed that a tensile stress parallel 

to the fracture axis is created in front of the moving 

crack tip.  Because this tensile stress increases with 

crack length and/or velocity, the stress at the tip tends 

to become more hydrostatic as crack length and/or velocity 

is increased. 

A terminal velocity for a straight running fracture 

of 0.39C was obtained from the calculation.  The fracture 
i 

criterion used was that the principal stress difference 

be greater in front of the crack tin than at an angle to 

the fracture axis. 

The elastic energy at the fracture tip was found to 

increase with increase in fracture length or decrease in 

fracture velocity.  The result that the energy and hence 

the crack extension force continually increase with crack 

length is borne out by Cotterell (1964).  The region 

occupied by a dilatational energy in excess of the initial 

value was a lobe directly in front of the propagating 

fracture tip.  The lobes of highest distortional stress 

were at an angle of greater than 4 5 to the projected 

axis of the fracture'.  The high distortional stress lobes 

extend forward from the fracture tip.  A lobe having a 

distortional stress less than the initial value extends in 

front of the fracture tip. 
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FIGURE CAPTIONS 

Figiu'c 1 

The ratio of the principal stresses 1/2 zone ahead of the 

fracture tin ar> a function of crack half-length in centimeters 

for several fracture velocities. 

Figure 2 

Orientations of the maximum principle axis oF stress for 

part of the upper right hand quadrant.  The fracture extent is 

from Y = 0, X ~ 0 to X = 11 centimeters with the fracture 

tip shown hy the arrow.  The orientations are not shown on 

the fracture axis but ;ire vertical.  Fracture velocity was 

Figure 5 

Rotation of the principal axis of strass as the fracture 

tip passes 1 zone beneath the point, for crack half-lengths 

of 4| 7, and 10 centimeters.  The reference time is in 

microseconds with the zero time chosen so that the noint 

observed relative to the crack tip is identical for the three 

casts.  Fracture velocity is 0 . 3C.. 

Figure 4 

Comparison of the rotation of principal axis for four 

fracture velocities.  Crack half-length was 5 centimeters. 

The reference time is in microseconds with the zero time 

chosen so that the point observed relative to the crack tip 

is identical for the cases. 

Figure 5 

Contour plot of the maximum principal stress difference. 

Fracture velocity was 0.3C, and fracture half-length was 5 

centimeters.  X and Y coordinates are in centimeters.  The 

minimum lobe is directly in front of the fracture tip and the 
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Figure 5, Continued 

maxinnnn is at about 60  to the fracture tin.  Increasing 

contour numbers indicate incrcasinu stress difference. 

Figure 6 

Contour plot of the dilatation.  The fracture half-length 

was 5 centimeters and the fracture velocity was 0.3C,.  The 

maximum lobe is in front of the fracture ti.n.| Increasing 

contour numbers indicate increasing dilatation. 

Figure 7 

The ratio of the piincipal stress difference 1/2 zone ahead 

and one zone above the fracture tip to the principal stress 

difference 1/2 zone ahead of the fracture tin as a function 

of fracture half-lengths in centimeters for several fracture 

velocities.  Note the ratio becomes greater than one for 

the velocity 0.45C, and higher velocities. 

Figure 8 

The surface of F',,., . *,        , as a function of fracture Dilatational 
half length in centimeters and non-dimensional velocity 

A = Vf/C1.  . 

Figure 9 

The surface of F',,. .  ..   , as a function of fracture Distortional 
half length in centimeters and non-dimensional velocity, 

A = Vf/C1. 

Figure 10 

The surface of B*«, *. ■,   as a function of fracture half Total 
length in centimeters and non-dimensional velocity, 

x - vr/c1. 
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Figure 11 
y\n example of the integration domain ror r-',.., .   ^.       , 1 !)i l.'i tat.ional 
for a fracture half-length of 5 ccntipietcrs and a fracture 

velocity of 0(3€|,  Both coordinates X and Y are in 

centiüietcrs.  The half fracture extends from X = 0, Y = 0 

to a point above arrow depicting the fracture tip and 

is shown hy the solid line.  The gradient of the function 

decreases to the right« 

Figure 12 

An example of the integration domain for H1,,. .  ..  _, 1 ■ liistort tonal 
for a fracture half length of 5 centimeters and a fracture 

velocity of fl.K'.  Roth cooidinates X and Y are in 

centimeters.  Die half fracture extends from X = 0, Y = 0 

to a point above the arrow depict in« the tip and is shown 

by the solid line.  The function decreases away from the 

tip and is small to the right« 

Figure 13 

An example of the integration domain ror B*« . ! for a Total 
fracture  half  length  of  5  centimeters   and  a  fracture  velocity 

of 0.3C,.     Both  coordinates  X and Y are  in  centimeters. 

The half   fracture  extends  from X --   0,  Y -  0  to a point 

above  the  arrow depicting  the   tip and   Is  shown by   the 

solid   lino.     The  gradient of  the   function  decreases  away 

from the  crack  tip. 
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