
ESD/- W0L
ESD-TR-71-346

TRI Ca!i

Copy No / of 2_ _cys.

3

cr

A GUIDE TO THE POTENTIAL USE OF SIMSCRIPT

MTR-2115

P. R. Burleson

SEPTEMBER 1971

ESD RECORD COPY
RETURN TO

iiW). BtJilri/np 1210

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 5720
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

A 1)7 ^7

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

nneration, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

thp fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawinas, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

ESD-TR-71-346 MTR-2115

A GUIDE TO THE POTENTIAL USE OF SIMSCRIPT

P. R. Burleson

SEPTEMBER 1971

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanacom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 5720
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-71-C-0002

FOREWORD

This report presents the results of a study conducted by The MITRE
Corporation, Bedford, Mass. , under Contract No. F19(628)-71-C-0002,
MITRE Project 5720. ESD program monitor is Mr. William J. Letendre,
Technology Application Division, Directorate of Systems Design and
Development. Publication of this report does not constitute Air Force
approval of report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

CDMUND P. GAfNE~S, JR. , Colonel, USAF
\CK Director, Systems Design & Development

Deputy for Command and Management Systems

ii

ABSTRACT

This report (1) identifies the features which distinguish SIMSCRIPT
from general programming languages, permitting readers to judge for
themselves the benefits of using SIMSCRIPT in their own applications;
(2) outlines the language and implementation differences between the various
versions of SIMSCRIPT; (3) specifies the resource requirements and
relative advantages of implementing each version of SIMSCRIPT at
MITRE/ESD; and (4) investigates the desirability of using SIMSCRIPT at
ESD for analyzing problems related to computer performance.

iii

ACKNOWLEDGMENTS

The author would like to recognize the assistance given by
Miss J. C. DesRoches, J. H. Mclntosh, and J. P. Hogan, of The
MITRE Corporation, who reviewed this paper and contributed to both
its form and content.

IV

TABLE OF CONTENTS

SECTION IV

SECTION V

SECTION VI

REFERENCES

BIBLIOGRAPHY

INTRODUCTION

LIST OF TABLES

SECTION I

SECTION II SIMSCRIPT DEVELOPMENT

SECTION III SIMSCRIPT'S SIMULATION AIDS
DATA STRUCTURES
SYSTEM DYNAMICS

LANGUAGE DIFFERENCES BETWEEN SIMSCRIPT I
AND SIMSCRIPT II
DATA STRUCTURE DEFINITION
EXECUTION TIME FACILITIES
LANGUAGE ADVANTAGES OF SIMSCRIPT II

IMPLEMENTATION DIFFERENCES - SIMSCRIPT I,
I,5, li, II PLUS AND II.5
LANGUAGE PROVISIONS
NON-LANGUAGE FEATURES

CONCLUSIONS
CRITERIA FOR LANGUAGE SELECTION
VERSIONS OF SIMSCRIPT
SIMULATION OF COMPUTER SYSTEMS

Pafie

vi

1

3

6
6

10

13
13
14
16

20
20
2q

2H
28
29
30

12

34

LIST OF TABLES

Table Number Page

I Number of Error Diagnostics - SIMSCRIPT 1.5,
II, and II Plus 24

II SIMSCRIPT 1.5 and II Plus Performance Com-
parisons - Job Shop Simulation Model 26

VI

SECTION I

INTRODUCTION

"A programmer is greatly influenced by the language in which
he writes his programs; there is an overwhelming tendency to pre-
fer constructions which are simplest in that language..."^)

Increasing demands have been placed upon the Electronic Systems
Division of USAF to provide support to Air Force users in simulating
automatic data processing equipment (ADPE) systems performance. In
the past^ these demands were met with a technology base that included
one simulation package and considerable reliance upon commercially
contracted support for its use. One of the purposes of Project 5720
is to assist ESD in keeping abreast of technology in the ADPE simu-
lation area, and to help provide this technology as the needs dic-
tate.

(2)
A previous survey identified SIMSCRIPT, which is a computer

programming language oriented toward simulation, as a prime candidate
for use in ADPE simulation. This report examines SIMSCRIPT in more
detail, both as a general simulation tool useful to MITRE/ESD at
large, and for its usefulness in ADPE simulation. The particular
purposes of this report are:

(1) To identify the features which distinguish SIMSCRIPT from
general programming languages, permitting readers to judge for them-
selves the benefits of using SIMSCRIPT in their own applications.

(2) To outline the language and implementation differences
between the'various versions of SIMSCRIPT.

(3) To specify the resource requirements and relative
advantages of implementing each version of SIMSCRIPT at MITRE/ESD.

(4) To investigate the desirability of using SIMSCRIPT at ESD
for analyzing problems related to computer performance.

It is not possible to accomplish (1) and particularly (2) above
without discussing SIMSCRIPT features at the language level. Readers

unfamiliar with programming may find Sections III through V rather
incomprehensible for that reason. In any case, the SIMSCRIPT lan-
guage is extensive and powerful, and a full appreciation for its
capabilities cannot be acquired without making the effort to learn
detailed language provisions.

The remainder of this report is organized as follows: Section II
outlines the historical development of SIMSCRIPT, Section III presents
the language features which are oriented toward simulation, Section IV
contrasts the language design of SIMSCRIPT I with that of SIMSCRIPT II,
Section V covers differences between all language versions which result
from the implementation rather than the language specification, and
Section VI offers some generalizations from preceding sections together
with considerations of efficiency and economy to reach conclusions for
purposes (3) and (4) above.

SECTION II

SIMSCRIPT DEVELOPMENT

In 1963, Harry Markowitz, Bernard Hausner and Herbert Karr of
The RAND Corporation published SIMSCRIPT. A Simulation Programming
Language, which reported the design of a language specifically
oriented toward systems simulation. It was the culmination of about
three years effort on SIMSCRIPT, plus previous design experience
with SPS-1 (Simulation Programming System-1) at RAND and GEMS
(General Electric Manufacturing Simulator) by Markowitz at GE.
Markowitz acted as chairman of the design team and had ultimate
responsibility for the logical design of the system. Karr wrote
the original documentation. The language was implemented by Hausner
for the IBM 7040/7090, through translating SIMSCRIPT program state-
ments into FORTRAN and passing this text to the FORTRAN compiler.
This implementation of the language is now referred to as SIMSCRIPT I,
and has become relatively obsolete.

Markowitz and Karr left RAND some time after 1963 to set up
California Analysis Center, Inc. (CACI), a firm which markets a
version of SIMSCRIPT under the nomenclature 1.5 (read "eye" point
five). SIMSCRIPT 1.5 is substantially identical to its predecessor,
except that program statements are assembled directly into machine
code. SIMSCRIPT I programs will therefore compile and execute
under the SIMSCRIPT 1.5 system as long as they contain neither
FORTRAN inserts nor LOAD, RECORD, or RESTORE statements.1 SIMSCRIPT
I.5's language differences therefore consist primarily of increasing
the power of and relaxing restrictions for a subset of instructions.
SIMSCRIPT 1.5 has been implemented on: IBM 7040/44, 7090/94, and
360, NCR 200, CDC 3600/3800, CDC 6400/6500/6600, Philco 210/211/212,
UNIVAC 490/494/1107/1108, RCA Spectra 70/45 and above and GE 625/635.
With the exception of the GE compiler, which was done by Digitek, Inc.
rather than C.A.C.I., all 1.5 compilers are claimed to be completely
compatible. Users can therefore utilize old programs on new equip-
ment. Since SIMSCRIPT is most frequently used for simulation, and
simulation models are seldom applicable beyond the system they were
designed to replicate, this transferability advantage reduces to
one of minimizing phaseover problems for current simulation efforts.

Almost as soon as work on SIMSCRIPT I was completed, an effort
to produce an improved version of the language was initiated.

These statements reference I/O operations and were not considered
part of the SIMSCRIPT 1.5 language. They were, however, incorporated
into the SIMSCRIPT I language.

Markowitz again directed the design of the language and Hausner
worked on the implementation. The language was eventually produced
in 1968 by Philip Kiviat and Richard Villanueva and reported in a
RAND document.(3) SIMSCRIPT II represents a major departure from pre-
vious versions since it provides a truly general programming lan-
guage that can be used in a wide variety of applications. The
features of the language which are oriented toward simulation utilize
the same data structures and event mechanisms as previous SIMSCRIPT
versions, but the syntax and semantics utilized to specify these
constructs are significantly different. The nature and import of
these differences will be discussed in succeeding sections.

The RAND report already referenced, which was also issued in
book form by Prentice Hall,•' ts a very lucid exposition of a rather
difficult subject, a language that is both rich (flexible) and
powerful. Unlike the SIMSCRIPT I documentation, which consists of
a single 140 page volume organized in reference manual format, the
SIMSCRIPT II reports include the text already mentioned (380 pages),,^
which is designed as a teaching vehicle, a language reference manual,
listing instruction syntax, and an implementation manual'") which
identifies the interfaces between SIMSCRIPT and system hardware and
software.

The text is divided into five chapters which are identified as
"levels" of the language as follows:(3)

"Level 1: A simple teaching language designed to intro-
duce programming concepts to nonprogrammers.

Level 2: A language roughly comparable in power with
FORTRAN but departing greatly from it in
specific features.

Level 3: A language roughly comparable in power to
ALGOL or PL/I, but again with many specific
differences.

Level 4: That part of SIMSCRIPT II that contains the
entity - attribute - set features of SIMSCRIPT.
These features have been updated and augmented
to provide a more powerful list - processing
capability. This level also contains a number
of new data types and programming feacures.

Level 5: The simulation-oriented part of SIMSCRIPT II
containing statements for time advance, event-
processing, generation of statistical variates,
and accumulation and analysis of simulation-
generated data."

This division into levels is solely for expositional purposes and
corresponds to no real ordering or structure within the language it-
self.

The language was implemented at RAND for the IBM 360/65 under
version 15/16 of MVT. At the time of program submission to the
SHARE library (1969) there were "no known restrictions on using the
compiler under PCP or MFT II, and ... no known OS release dependen-
cies." * Unfortunately time and events proved otherwise, and an
attempt by Villanueva to resubmit the program to SHARE was refused,
since IBM no longer supports the library. Several installations ^
have gotten SIMSCRIPT II running under MVT but only recently (March 1971)
has RAND made available a working MFT version. A number of statements
defined for the language were not implemented in this version. Com-
pilation is achieved through translation to assembly language and use
of the IBM assembler.

In 1969, Kiviat and Villanueva left RAND to form Simulation
Associates (S/A) with Henry Kleine, Arnold Ockene, and later
Robert Parente. The company developed a faster version of SIMSCRIPT
II, that permits more statement types than the RAND implementation.
This latest version, called SIMSCRIPT II Plus, has been marketed by
S/A. Despite the technical excellence of the language and its
implementation,^ Simulation Associates ceased existence as a business
entity in March 1971. The assets of the company have been purchased
by C.A.C I., who have recently announced that they are offering
a slightly modified version of II Plus under the name SIMSCRIPT II.5.

The present status of the languages/implementations therefore
is: (1) the SIMSCRIPT I language and implementation are inseparable,
as both were reported together, (2) 1.5 uses the language design
of SIMSCRIPT I, with few modifications, (3) the language design
specifications for SIMSCRIPT II are reported in the RAND and Prentice-
Hall publications, and (4) neither the RAND implementation of
SIMSCRIPT II nor S/Ars II Plus nor C.A.C.I.'s II.5 have yet incor-
porated the full repertoire of statements defined for the language.
-

Apparently COSMIC will now accept new or revised programs. RAND is
considering the submission to SHARE of a revised version of SIMSCRIPT
II which will operate under MFT.

3
Yale, Princeton, Columbia, and others.

4
For example, although Yale had a working version of the free
SIMSCRIPT II, they eventually purchased S/A's implementation.

5

SECTION III

SIMSCRIPT'S SIMULATION AIDS

The intent of SIMSCRIPT's originators was that the special simu-
lation-oriented features of the language would provide the mechanisms
common to most simulation exercises, thus reducing programming time
and easing the modification of models. Since both versions I and II
of the language possess the same data structures and mechanisms for
modifying data structures (called "world view"), and since it is
precisely these features that distinguish SIMSCRIPT from general pur-
pose programming languages, a fairly brief identification of the
SIMSCRIPT world view is provided below.

DATA STRUCTURES

Every simulation model consists of two prime components:
(1) a description of the interrelationships between system elements
that define system state at a point in time, and (2) a specification
of the ways in which system state can change. In SIMSCRIPT, sys-
tem elements are called "entities." Entities are the significant
objects present in the system modeled. For example, the simulation
of a gas station would probably define as entities the various
pumps, attendants, and cars which interact to produce the behavior
of interest. The description of an entity is done through associat-
ing "attributes" with it, whose values define a particular configura-
tion or state of the entity. Entities may be "temporary" i.e. created
and/or destroyed during the simulation, or "permanent," meaning just
that. The distinction between permanent and temporary entities is
made primarily for the purpose of computational efficiency, since
the same static descriptors and change mechanisms can be applied to
them. Entities can be classified into sets, in which they can be
ranked on FIFO, LIFO, or attribute value bases.

The means of implementing these data structure constructs are
rather interesting. Definitional statements specify the data struc-
ture to the compiler, and core storage is reserved for entities on
a dynamic basis at execution time. Thus if gas pumps were permanent
entities, in the beginning of a SIMSCRIPT program, GAS.PUMP would be
defined as a class of permanent entities with specified attributes
(e.g. FLOW.RATE and a STATUS descriptor). This definition would set
up "pointers" called FLOW.RATE and STATUS which initially (i.e.
after the program is loaded into core) contain zero. During program
execution (usually during initialization) a value specifying the
number of gas pumps is read, a statement creating every gas pump

FIFO means first-in first-out, and LIFO last-in, first out.

(reserving storage) is executed, and values are assigned to attributes,
usually through reading data. After this is complete, the pointers
FLOW.RATE and STATUS point to lists in core where the attributes of
the gas pumps are stored. If the number of pumps was 3, the struc-
ture generated looks like:

FLOW.RATE

FLOW.RATE (1)

FLOW.RATE (2)

FLOW.RATE (3)

STATUS s
STATUS (1)

STATUS (2)

STATUS (3)

Once generated, the only way to free the core storage occupied by
permanent entities is to "destroy" all permanent entities of the
same type (e.g. all GAS.PUMPs). A global variable called GAS.PUMP
will be defined automatically by the system, and it contains an
integer identifying the particular GAS.PUMP referenced last.

Attendants would probably be modeled as permanent entities
also. Cars would be modeled as temporary entities, since they
enter the system (gas station), are serviced, and depart. Let CAR
have the attributes GAS.NEEDED, ARRIVAL.TIME and SERVICE.TIME, which
again are specified in the beginning of the program by a non-execut-
able definition. This definition results in a single pointer, a
global variable called CAR which initially contains a zero.

During the execution of the program, the statements "CREATE A
CAR CALLED I" followed by "CREATE A CAR CALLED J" produce the
following structure:

|~CAR~|

c I 1
GAS.NEEDED

ARRIVAL. TIME

SERVICE. TIME

^

GAS.NEEDED
0

ARRIVAL.TIME

SERVICE.TIME

The symbol I can be used to reference a pointer to the storage
reserved for the attributes of I. In order to avoid referencing of
temporary and permanent entities by name (e.g. I), global variables
are defined with the same name as the entity class. Thus "CREATE A
CAR" is acceptable, and equivalent to "CREATE A CAR CALLED CAR".
The global variable "CAR" always points to the most recently
referenced car, and is updated automatically when cars are filed
into or removed from sets. Therefore, reference to GAS.NEEDED(J)
is equivalent to GAS.NEEDED, as long as the pointer in the global
variable CAR is the same as the pointer in J. Temporary entities
can be destroyed one at a time, and their storage returned to free
storage.

Sets are logical groupings of entities, and can be used to
identify interrelationships such as queues. In the simple model
outlined here, each pump (assuming the layout warranted it) would
OWN (have) its own queue. Although the queue may typically have no
occupants, the data structure is set up so- that a potential queue
exists for each pump. The potential members of each queue are CAR's.
Defining every GAS.PUMP as owning a queue automatically provides
three extra attributes for every pump created, called F.QUEUE,
L.QUEUE and N.QUEUE. These are respectively; a pointer to the first
CAR in the queue, a pointer to the last CAR in the queue, and the
number of cars in the queue. Defining CAR as possibly belonging to
a queue automatically provides three extra attributes for each CAR
created, called P.QUEUE, S.QUEUE, and M.QUEUE. These are respectively;
a pointer to the car's predecessor in the queue, a pointer to its
successor in the queue, and a flag marking whether or not it is
(1) or is not (0) a member of the queue. These set ownership and
membership attributes are the mechanisms by which sets are defined.
They link owners and members together in structured lists, express-
ing all the information concerning sets which is maintained by the
system. For example, if the gas station has three GAS.PUMPs, num-
bered 1, 2, and 3, and the number of cars awaiting service at each
pump is 0, 1, and 3 respectively, then the data structure generated
will be as follows:

Pump 1

Pump 2

Pump 3

GAS.PUMP = 3

F.QUEUE L. QUEUE N.QUEUE FLOW.RATE

0 X

1 X

3 X

STATUS

,CAR, CAR

P.QUEUE 0 °J \j
N—t

S.QUEUE 0 %J 0

M.QUEUE 1 1 1 1

GAS.NEEDED X X X X

ARRIVAL.TIME X X X X

SERVICE.TIME X

.

X X X

/

For illustrative purposes, the global variables GAS.PUMP and
CAR are arbitrarily assumed to point to the last of each type of
entity defined above.

When servicing of a car is completed, the car next in line for
servicing can be accessed simply by "REMOVE THE FIRST CAR FROM QUEUE".
This statement removes the first car (CAR~) from the queue currently
identified by the implicit reference OUEUS(GAS.PUMP) and assigns
the pointer to this car to the global variable CAR. The references
GAS.NEEDED, GAS.NEEDED(CAR) and GAS.NEEDED(CAR2) are then equivalent,
and the first is usually preferred since it can be used to reference
the GAS.NEEDED by other cars when CAR points to them. It is therefore
short, unambiguous, and implicit.

9

SYSTEM DYNAMICS
•

Changes in state of a system are represented by altered numeri-
cal value(s) of one or more attributes of one or more entities of
the system. Thus the removal of CAR2 from the QUEUE before the
GAS.PUMP of the previous illustration results in the following data
structure:

GAS.PUMP = 3

F.QUEUE L.QUEUE N.QUEUE FLOW.RATE STATUS

Pump 1

Pump 2

Pump 3

P.QUEUE

S. QUEUE

M.QUEUE

GAS.NEEDED

ARRIVAL.TIME

SERVICE.TIME

Changes in system state, which are accomplished through program
statements that alter attributes, are typically in event routines
supplied by the programmer.

In SIMSCRIPT's world view, the basic unit of action is called
an activity. The two important aspects of activities are (1) that

10

they take time, and (2) that they (potentially) change the state of
the system. Most activities are bounded by two "events," a start
activity event and a stop activity event. Events take zero simulated
t ima and produce changes in data structures which reflect the
change in system state occurring at that instant of time. The pas-
sage of time which occurs during an activity is represented as a
time delay factor between start and stop events.

Continuing the previous example, when a CAR r s had its servic-
ing completed, it will leave the gas station. This action is
represented by the destruction of the particular temporary entity
which represents the car (some statistical gathering may be per-
formed first). The STATUS attributes of the GAS.PUMP and the
ATTENDANT servicing the car would be set to zero to indicate that
they are now idle. A test would then be made to see if the QUEUE
(GAS.PUMP) had any members. If so, conditions are established which
result in the initiation of servicing for the next car. This is done
by "scheduling" an event to accomplish these actions at the current
time. Typically, the event which starts an activity also schedules
the completion of the activity at some future point in time.

The occurrence of events in their proper temporal sequence is
accomplished by the SIMSCRIPT system. The mechanisms employed are
an artificial system clock and a timing routine. The changes in
system state represented by an event are accomplished by an event
routine which is called by and which returns to the timing routine.
The timing routine maintains a set of all events which are scheduled
to occur, and it calls event routines in their proper order, up-
dating the clock in between as required. Thus a SIMSCRIPT simulation
program usually contains a small main program consisting primarily
of initialization statements which, in addition to setting up data
structures, must schedule at least one event before a "START SIMU-
LATION" statement is executed. This statement transfers control to
the timing routine, which examines its set of scheduled events to
find the earliest, advances the system clock to that time, and
transfers to that event routine. If the timing routine runs out of
events, it returns control to the main program at the statement
following START SIMULATION.

This methodology is implemented through using the data struc-
tures defined earlier. "Event notices" are actually temporary
entities created every time an event is scheduled. Event notices
are filed in a timing set, which is a set organized by event type
and then by scheduled time of occurrence. If more than one event
can occur at the same instant of time, the programmer can specify a
priority ordering between different event types, as well as break
ties within event types (e.g. servicing of two cars is scheduled to

11

be completed at the same instant) by high or low values of any
attribute(s). Unless the programmer specifies otherwise, the system
destroys each event notice before passing control to the proper event
routine.

12

SECTION IV

LANGUAGE DIFFERENCES BETWEEN SIMSCRIPT I AND SIMSCRIPT II

As outlined in the previous section, there are essentially two
distinct SIMSCRIPT languages, I - 1.5 and II - II Plus. 1.5 and
II Plus are derivatives of their predecessors, constituting different
implementations rather than different languages. At present,
SIMSCRIPT I is relatively obsolete, and the present implementations
of neither II nor II Plus permit the full range of statements identi-
fied for the SIMSCRIPT II language. The most useful means of
defining the features, differences, and similarities between these
various versions of SIMSCRIPT is probably to contrast the languages
first, and then to characterize those aspects which derive from the
implementations. The latter subject is treated in the next section.
As outlined earlier, all versions of SIMSCRIPT provide the same
data structures and event mechanisms. The primary language differ-
ences result from the techniques by which these features are speci-
fied and from augmented general programming power provided by
II Plus.

DATA STRUCTURE DEFINITION

In SIMSCRIPT I, all data structures are specified on a defini-
tion form in a strict format which requires precise card column
spacings for the identification of temporary entities, permanent
entities, event notices, all attributes, and all set memberships.
Various entries on this form are left or right justified, according
to the data type. Variable names of any type are limited to five
alphanumeric characters. Another form is provided for initialization
of attribute values, and the meanings of the entries on this form
are difficult to decipher because the column spacings are exact and
its entries are almost exclusively numeric.

In contrast, SIMSCRIPT II accomplishes the same specification
of data structures through free form English-like statements. First,
variable names are not limited as to length, and may include periods,
so that a name like PART. NUMBER is valid for any data item. Data
structures are identified through a section of the program called a
PREAMBLE, which must precede all other sections. Statements in this
section are all definitional, i.e. non-executable, and serve to
identify variables which are "global" to a simulation program.
Global variables, like COMMON in FORTRAN, are accessible to all
routines present in a program (variables declared on the definition
form of SIMSCRIPT I are global also). Entities, attributes, and

13

sets are specified through EVERY statements, which signal the com-
piler that the entities named possess the structure defined. In
terms of the example of Section III, one cauld write:

PREAMBLE

TEMPORARY ENTITIES

EVERY CAR HAS A GAS.NEEDED, AN ARRIVAL.TIME, AND A SERVICE.TIME,
AND MAY BELONG TO A QUEUE

PERMANENT ENTITIES

EVERY GAS.PUMP HAS A FLOW.RATE AND A STATUS AND OWNS A QUEUE

EVERY ATTENDANT HAS A DELAY AND A STATUS

The name following EVERY (e.g. CAR) is identified as an entity of the
type specified previously (e.g. TEMPORARY). The attributes of
entities are denoted in a name list following HAS. Possible set
memberships are indicated following BELONG(S) TO, and set ownership(s)
of the name(s) following OWNS. The set ownership and membership
attributes are automatically generated for each entity created. Un-
like the mechanisms employed in SIMSCRIPT I, the above method of
data definition is highly readable, helping significantly to produce
self-documenting programs. The clarity of the structure of the model
provided in SIMSCRIPT II aids significantly when that structure is
to be altered, as is often the case in simulation studies. One
author(7) "experienced that about 75 percent of the debugging effort
(with SIMSCRIPT 1.5) is spent correcting Definition and Initializa-
tion Forms". The free-form English-like syntax of the SIMSCRIPT II
PREAMBLE which replaces these forms facilitates debugging through
making the relationships specified obvious even to the casual
reader. Some people at the Aerospace Corporation have used SIMSCRIPT
II PREAMBLE statements for designing systems and communicating the
designs, though never intending to simulate the systems thus described.

EXECUTION TIME FACILITIES

There are two execution-time aids to debugging in SIMSCRIPT II
which also warrant mention. A global variable called BETWEEN.V is
defined by the system. Its contents, which are initialized to zero,

14

are tested just before the timing routine transfers to any event
routine. If the programmer has altered BETWEEN.V, then the system
will transfer to the routine named. For example, the statement
LET BETWEEN.V = 'TRACE' sets the address of the routine TRACE in the
contents of BETWEEN.V. Before each event is executed, the programmer
can perform whatever diagnosis he desires or collect statistics
which reveal the dynamic properties of his model. The steps taken
at this point are determined by the programmer in the routine TRACE
(or any other named routine) which he writes.

The second powerful debugging aid is achieved through defining
variables as "monitored." A monitored variable has associated with
it both a storage location and a program. It therefore represents
a new data type, since it has the features of both a function and
a variable. To use the monitoring feature, one must explicitly
declare a variable as monitored in a DEFINE statement, e.g.,

(a) DEFINE X AS AN INTEGER VARIABLE MONITORED ON THE RIGHT

(b) DEFINE Y AS A REAL, 2-DIMENSIONAL ARRAY MONITORED ON
LEFT AND RIGHT

One must also define right and/or left handed functions designed to
perform the right and/or left monitoring.

Functions, e.g. SIN(A), are usually employed to compute a value
from one or more arguments, and can be treated in expressions as
though they were a variable, e.g., C**2-5*(SIN(A)**3+COS(B)). These
are "right-handed" functions which appear to the right of an equals
sign and are used to compute values. Left-handed functions, on the
other hand, receive values. In SIMSCRIPT, it is legal to say
LET FUNCTION.NAME (I) = A, but one must then define a LEFT ROUTINE
FUNCTION.NAME GIVEN I. This routine must include as its first
executable statement ENTER WITH X, which takes the value of A and
assigns it to X. From this point on, the routine can perform any
legal SIMSCRIPT operations. The utility of this construct becomes
apparent when it is used in monitoring variables.

Suppose a programmer suspects that some problems with his
program result from references to a particular array. He can then
specify, as in (b) above, that his array Y is monitored on both left
and right and provide routines defined that way. This is the only
change made to his program. However, he now has the ability to
check every retrieval from storage (get) through a right hand func-
tion

LET Z = Y(I,J)

15

and every assignment to storage (put) through a left hand function

LET Y(I,J) = 3*A**2.

Monitoring can be used for checking for valid subscripts, editing
data during reading, transformation of data for printing, etc. --
whatever purposes one might wish to achieve every time a storage
retrieval or assignment is made. The biggest benefit with this
feature is not that it can be done -- one can always insert a state-
ment before every put or get which transfers to a subroutine -- but
that it is done automatically, without cluttering up a program with
odd-looking statements. Thus if in debugging it becomes worthwhile
to monitor a variable, the additions to a program which accomplish
this are minimal and appear in a few well-delineated locations in a
program. When the bug has been discovered and eliminated, the
monitoring program statements to be removed can be located easily.
In contrast, providing for monitoring a variable through direct
coding requires much more work and introduces its own opportunities
for error through overlooking program locations that either require
a transfer when debugging or require the removal of a transfer when
debugging is completed.

LANGUAGE ADVANTAGES OF SIMSCRIPT II

Many of the improvements incorporated into SIMSCRIPT II represent
changes in more than syntax or semantics from its predecessor. A
partial survey of these new features is provided below.

1. Dynamic Storage Allocation.

All arrays are dimensioned at execute time in SIMSCRIPT
II. In SIMSCRIPT I this is true except for local arrays (i.e. arrays
which are not system variables, but declared in a subroutine), which
must be dimensioned as in FORTRAN.

2. Releasable Programs.

All routines (subroutines and functions) may be declared
as RELEASABLE. In large programs this feature permits discarding a
routine if it is no longer required so that its memory space can be
used for other purposes. The statements which initialize a simula-
tion model, for example, are performed only once in any run unless
the model is restarted. These steps, which often occupy a signifi-
cant amount of memory, can be isolated in an initialization routine
and RELEASED after they have been performed to provide extra memory
during simulation.

lb

3. Dynamic Program Relocation.

Dynamic program relocation, i.e. not only releasing
routines but later restoring them in memory in operable form, is
defined in SIMSCRIPT II through LOAD and SAVE statements. The pro-
vision of this facility greatly enlarges the effective memory capa-
city available for program storage.

4. Recursion.

All routines are recursive in SIMSCRIPT II, unless
declared otherwise. Hence the following routine, when called once
by a program, will return N factorial to that program.

ROUTINE FOR FACTORIAL (N)

IF N = 1, RETURN WITH 1

OTHERWISE RETURN WITH FACTORIAL (N-1)*N

END

5. Free-Field Programs.

SIMSCRIPT II statements may be punched in any card
columns, and more than one per card is permissible. The only rules
which limit the concept of a continuous program string are imposed
to simplify the punching of comments and to retain visual integrity
of variables, e.g. variable names cannot be split between cards.
These features permit indenting statements to produce a more readable
program and eliminate errors due to off-column punching. The only
word which cannot be used as the name for a variable or label in a
SIMSCRIPT II program is AND.

6. Input/Output

The input of data can proceed either under formatted
control or under a free-form specification by which blank characters
mark the separation between input fields. Thus it is possible to
say

READ X, Y, Z

without any FORMAT statement. Enough data cards will be read to
locate three values. A similar capability exists for output, e.g.

17

PRINT 1 LINE WITH X,Y,2 LIKE THIS

X = ****# * y = ** % = **

The free-form input capability listed above is the
mechanism which permits free-field SIMSCRIPT II programs, since the
compiler is written in SIMSCRIPT II. In contrast, SIMSCRIPT I I/O
is almost identical to FORTRAN, although a report generator (RPG)
capability is provided. SIMSCRIPT II offers no RPG facility, only
page-heading statements. Output is, however, simply and straight-
forwardly achieved.

7. Mode and Dimensionality Specification.

Unlike FORTRAN and SIMSCRIPT I, variables beginning
with I, J, K, L, M, and N may be real numbers or integers in
SIMSCRIPT II. The mode and dimensionality of all variables is set
implicitly if not declared explicitly. The compilation process
initiates with background conditions which specify variable mode as
real (rather than integer), and dimensionality as zero (rather than
1, or 2, or . . .). These background conditions are overridden by
explicit declaration (DEFINE IJK TO BE AN INTEGER, 1-DIMENSIONAL
ARRAY) and changed by specification (NORMALLY, MODE IS INTEGER,
DIMENSION IS 2).

8. User Access to System.

The programmer has complete access to attributes, con-
stants, entities, functions, routines, sets, and variables defined
by the SIMSCRIPT II system. Not all of these are accessible in
SIMSCRIPT I.

9. Storage References.

In SIMSCRIPT I, a different subroutine for storage
retrieval (get) and assignment (put) is generated for every global
variable. Hence there are many subroutines and calls to subroutines.
SIMSCRIPT II generates code that can make these references directly
through a PREAMBLE generated control section called PRMB.

10. Attribute Storage

For each group of eight words required to store
SIMSCRIPT I attributes a different block of core storage is utilized.
Hence storage referencing for entities with many attributes becomes
indirect and inefficient relative to SIMSCRIPT II.

18

11. Event Scheduling Priority.

SIMSCRIPT I has no provision for declaring priority of
occurrence between events. SIMSCRIPT II has the PRIORITY (different
event types) and BREAK TIES (by attribute(s) for the same event)
statements to accomplish this function. Priorities among different
event types are implicitly established in SIMSCRIPT I by the order
of event appearance on the Definition Form. Thus a PRIORITY is
provided by default; the fact that it is not explicitly declared
does not matter as long as the implicit ordering is correct. Signifi-
cant redesign of the Definition and Initialization Form entries may
be required to alter priorities, however.

12. OLD PREAMBLE Feature.

Prefacing PREAMBLE by OLD inhibits the production of
set filing and removing routines, the timing routine, and LIST
routines, and speeds the compilation process. A parallel capability
is available in SIMSCRIPT I, but on a card-by-card basis for each
definition card. This is useful when recompiling due to program
changes that do not affect global variables.

13. DEFINE Word TO MEAN Words.

This statement can be employed as a shorthand, e.g.

DEFINE LOCAL TO MEAN DEFINE I, J, K, L, M, and N

AS INTEGER VARIABLES

With this statement in the PREAMBLE of a program, the single word,
LOCAL, in each subroutine defines I, J, K, L, M, and N as integers.
No similar statement is provided in SIMSCRIPT I.

19

SECTION V

IMPLEMENTATION DIFFERENCES - SIMSCRIPT I, 1.5, II, II PLUS, AND II.5

The five versions of SIMSCRIPT can be contrasted in two ways:
through detailed variations in language provisions and by differences
in more global measures such as execution speed and coverage of
diagnostics. These subjects are treated below in the order mentioned.
The standards for language comparisons are the language specifications
for versions I and II discussed in the previous section.

LANGUAGE PROVISIONS

Although the language differences between SIMSCRIPT I and 1.5
are minor, the latter does provide for:(8)

1. Local variables in excess of five characters, e.g.
THETOTALINVENTORY.

2. Symbolic labels anywhere in columns 2-5. In SIMSCRIPT I
only right adjusted integers were valid.

3. Labeled blank statements so that labels can be made equiva-
lent.

4. Elimination of two problems arising from the FORTRAN integer
convention.

5. Several other alterations which facilitate input-output and
ease syntax restrictions.

The RAND implementation of SIMSCRIPT II is consistent with the
language texts issued by both RAND and Prentice-Hall, but a number
of the statement types specified in the design of the language are
missing. These statements yet to be implemented are outlined below.

1. CLOSE, ADVANCE, and BACKSPACE

These commands affect the positioning of data sets. The
end-of-file marker set by a CLOSE statement can also be accomplished

20

through REWIND. ADVANCE and BACKSPACE move the specified I/O device
forward or backward a specified number of files and can be accom-
plished through assembly code.

2. Column Repetition

This feature, provided in SIMSCRIPT I, permits large arrays
of data to be printed with the column indices (e.g. 1 to 50 on
page 1 and 51 to 100 on page 2) handled automatically.

3. LIST ATTRIBUTES OF EACH Entity

Several forms of this statement result in the listing, in a
predefined format, of one or more attributes of one or more entities.
It is useful in debugging, tracing dynamic properties, etc.

4. Automatic Entity Checking When Entity Destroyed

An execution error should be flagged when an entity is
destroyed that is still a member of a set. Since the RAND SIMSCRIPT
II system does not recognize this error, it could lead to errors
that are difficult to debug.

5. Left-Handed Functions

(Described previously.)

6. Monitored Variables and Attributes

(Described previously.)

7. All TEXT Features

A number of commands are specified which permit the defini-
tion, manipulation, input, output, and mode conversions of character
strings, none of which are presently available.

8. BREAK TIES

(Described previously.)

9. Event Arguments in SCHEDULE and EVENT Statements

The language specification permits the syntax which follows:
SCHEDULE AN event GIVEN expression list AT time expression. This
statement creates an event, sequentially assigns the attributes

21

listed in the expression list, and files the event in the events
set ordered by its time of occurrence (time expression). The inability
to assign attributes in a SCHEDULE statement requires only the
addition of an assignment statement. If a BREAK TIES ordering is
specified, however, three statements (CREATE, LET attributes =
values, and FILE) are required, since the SCHEDULE statement does
the filing automatically with attribute values all equal to zero.
Thus the BREAK TIES ordering can only be maintained by assigning
attribute values before filing in the events set.

10. BEFORE and AFTER

These statements, which appear in a program PREAMBLE, are
helpful in debugging. One can use them to direct the calling of
various debugging routines before or after the performance of certain
specified operations. Thus, BEFORE or AFTER CREATING or DESTROYING
an entity, SCHEDULING or CANCELING an event, or FILING in or REMOVING
from a set, a specified routine can be called. The arguments which
are transmitted to the operation being monitored (e.g. CREATE) are
automatically transmitted to the monitoring routine.

11. ACCUMULATE, TALLY, DUMMY, and RESET

ACCUMULATE and TALLY are statements which appear in the
PREAMBLE of a program which automatically generate a powerful
statistics-gathering capability for each of the variables mentioned
in the statement. One can write:

ACCUMULATE AVG.QUEUE AS THE MEAN AND MAX.QUEUE

AS THE MAXIMUM OF N.QUEUE

Every time N.QUEUE changes, the appropriate accumulations
are made so that the variables AVG.QUEUE and MAX.QUEUE respectively
contain the average number of members and the maximum number of mem-
bers in QUEUE. This facility permits operating (i.e. non-PREAMBLE)
portions of programs to be kept free of data collection and data
reduction statements. TALLY treats every observation value with
equal weight, e.g. the SUM of X =ZXi, while ACCUMULATE produces a
time-weighted sum, e.g. the SUM of X =Zxi4ti, where 4tt represents
the time duration of Xi. Thus the value of AVG.QUEUE above would
be the time average length of the QUEUE. DUMMY simply reduces the
storage allocation used for these purposes when possible. RESET
restores the statistical counters employed to zero.

22

12. RANDOM Variables

This provision permits the random sampling from an arbitrary
distribution defined by the programmer. This is accomplished through
storing a table containing a description of the cumulative distribu-
tion function. The concept and effect are equivalent to FUNCTION
blocks with random number seeds in GPSS. Variables may be defined as
step (discontinuous) or linear (continuous) functions, as in GPSS.

13. ORIGIN.R

This is a routine which permits the specification of time
in a calendar format (e.g. 3/24/71 09 45 represents 9:45 in the morn-
ing of March 24, 1971) through establishing a time origin against
which such calendar specifications can be matched.

SIMSCRIPT II Plus does not yet include the entire repertoire of
language statements defined for the SIMSCRIPT II language. The fol-
lowing statements, which have not been implemented, have been discussed
previously.

1. CLOSE, ADVANCE, BACKSPACE

2. Column Repetition

3. SAVE, LOAD

4. TEXT features

5. ACCUMULATE, TALLY, DUMMY, and RESET

6. ORIGIN.R routine

Simulation Associates had planned to implement some of these
statements this year, but C.A.C.I.'s time schedule nay be quite different

Several additions and alterations to the defined SIMSCRIPT II
language have been incorporated in II Plus. These are:

1. Routines no longer have to be declared as RELEASABLE. The
programmer can simply write RELEASE routine name.

2. The standard TRACE output routine called by the run-time
error monitor now calls a routine named SNAP.R. SNAP.R is present
as a null routine in the run-time library, i.e. as ROUTINE SNAP.R
RETURN END, but may be replaced by the user's own SNAP.R routine.
Hence, important data items can be printed whenever execution errors
are encountered.

23

In its announcement of SIMSCRIPT II.5, C.A.C.I. has thus far
identified only one significant change from II Plus, the provision
of double-precision floating-point arithmetic. Evidently, in some
simulation applications a loss of numeric significance has resulted
from the use of single-precision floating-point. This addition is
currently being implemented, and others are expected to follow.

NON-LANGUAGE FEATURES

Other important differences between the various versions of
SIMSCRIPT derive from features other than the language available to
the programmer. Among these are diagnostics for error correction,
typical core storage requirements, and speed in compilation and
execution.

1. Diagnostics

The two recent SIMSCRIPT implementations, II and II Plus,
provide a fairly extensive set of diagnostics during both compilation
and execution. In contrast, I.5's diagnostics are rather minimal,
as can be seen below.

Table I

Number of Error Diagnostics

SIMSCRIPT 1.5, II, and II Plus

SIMSCRIPT Number of Me ssages P rovided During
Version Compilation Execution

1.5 29 0

II 79 105

II Plus 86 107

Another feature of SIMSCRIPT II and II Plus is that the compiler
"corrects" as many errors as it can and ignores statements contain-
ing the remainder. Thus, when a significant number of programmer
syntax errors can be corrected appropriately, a run is not lost.
This correct or ignore feature is used to force the execution of

24

every program except those with syntax error(s) in the PREAMBLE
section that are likely to invalidate all subsequent routines. The
philosophy behind this is that valuable information is gained through
executing as far as possible. In contrast, I and 1.5 stop upon
encountering an error in the Initial Conditions Data Deck. It may
take several runs to discover all errors present in this deck.

2. Core Storage Requirements

Both II and II Plus normally require 150K bytes to compile
using a compiler overlay, 180K bytes without the overlay, and 52K
bytes to execute simulation models. Although comparable figures for
1,5 are not available, SIMSCRIPT I was implemented in a 32K word
machine (36 bits/word). Promotional material distributed by
Simulation Associates claims that II Plus generates smaller programs
making better use of available core than SIMSCRIPT I or 1.5.

3. Compilation and Execution Speed

There is little doubt that the II Plus implementation com-
piles programs faster than SIMSCRIPT II. The range of estimates
available suggest that II Plus compilation takes roughly half as
much time, due largely to the fact that the RAND version uses IBM's
assembler, and the II Plus version utilizes a subset of the IBM com-
piler written by Simulation Associates. Robert Parente suggests
that completing a large simulation study would cost three times as
much with the SHARE version as with II Plus. At present, rough
estimates for II Plus are compilation speed of 500-1000 cards per
minute (depending upon statement mix) and execution speed of about
one millisecond per statement. For comparison, GPSS executes about
1 block per millisecond. The clients of Simulation Associates have
expressed more concern with compilation speed than execution speed.

Simulation Associates distributed a performance comparison
between SIMSCRIPT 1.5 version 1.0 and SIMSCRIPT II Plus Release 2A.
Their data are displayed in Table II, which shows that II Plus is
somewhat more demanding of space and time during compilation than
1.5, but very much more efficient during assembly. The II Plus data
and Mr. Parente's estimate are inconsistent, but recent changes to
the compiler have improved its speed, so that the Table 2 figures
may be slightly out of date.

Formerly of Simulation Associates.

Given by Robert Parente.

25

Table II

SIMSCRIPT 1.5 and II Plus Performance Comparisons

Job Shop Simulation Model

(360/65 Timings)

Characteristic SIMSCRIPT 1.5 SIMSCRIPT II Plus

Source Statements

Data Cards

CPU Seconds

- Compilation

- Assembly

- Execution

- Total

CPU Milliseconds/Source Statement

- Compilation

- Assembly

- Execution

- Total

Core Required (Thousands of Bytes)

- Compilation

- Assembly

- Execution

^Figures are for initial compilation of entire program. Preceding
figure is for compilation of all programs using OLD PREAMBLE feature.

115 105

63 9

16.2 13.4 18.2*

14.4 2.5 3.6*

.6 .4

31.2 16.3 22.2*

140.9 127.6 173.3*

125.2 23.8 34.3*

5.2 3.8

271.3 155.2 211.4*

108 146

104 60

84 42

26

One reason why II Plus execution is faster than 1.5 stems
from its efficiency in dynamic storage allocation. With 1.5, garbage
collection was nearly continuous. II Plus keeps lists (actually
SIMSCRIPT sets) of identical segments of free core. For example,
the temporary entity CAR and the event notice ARRIVAL may each require
6 words of core. When one of these is destroyed or cancelled, its
former record (slot in core) is put into the set of all 6-word records
that have been returned to free storage and that are currently un-
used. When one of these 6-word records is created, the procedure is:

(1) Check the 6-word set to see if any available. If so, take
the first, if not,

(2) Go to the next larger list and try there. If unsuccessful,

(3) Use GET MAIN of 0/S 360. If unsuccessful,

\U) Try garbage collection until enough space is provided. If
impossible,

(5) Flag an error.

An extension of SIMSCRIPT II, called the Extendable Com-
puter System Simulator (ECSS) has been developed at RAND. It
permits simulations with a process orientation, and contains
SIMSCRIPT II as a language subset. Although it is still in a field
test status, when operational it could provide a powerful tool for
computer systems simulation. Thus its existence is a cogent argu-
ment in favor of SIMSCRIPT II or II.5 rather than 1.5.

27

SECTION VI

CONCLUSIONS

The data structures and event mechanisms provided in SIMSCRIPT,
together with the flexibility and power of the language, permit the
modeling of complex systems with both brevity and clarity. Reviews8
of simulation languages generally consider SIMSCRIPT to be one of
the most powerful of the simulation languages currently available.
This is only one of the criteria by which a language should be selec-
ted, however. Others are listed below.

CRITERIA FOR LANGUAGE SELECTION

The reasons cited for selecting one computer language instead
of another include:

(a

(b

(c

(d

(e

(f

(g

(fa

(i

(j

Programming concepts,

Usability,

Readability,

Training required,

Cost,

Flexibility,

Documentation,

Support,

Modeling concepts and

Transferability

SIMSCRIPT, particularly II Plus, provides extensive language level
advantages, well-designed programming concepts, modeling constructs
and programming flexibility that permit natural system descriptions
and highly readable, self-documenting programs, and reasonable sup-
port and documentation. On the negative side, when compared to more

8 See References 9-15.

28

structured languages like GPSS, SIMSCRIPT is more difficult to learn
and debug, and takes longer to code. If many replications of a par-
ticular simulation experiment are to be done for statistical validity,
and if many experiments are involved, then the more efficient code
generated by SIMSCRIPT will be preferable to the interpretive opera-
tion of GPSS. However, if the rapid production of a small number of
runs is emphasized, then GPSS should be used.

Although the reasons cited can and do influence language selec-
tion, the actual decision process on a case-by-case basis often
reduces to a consideration of (1) the programmer's capability and
(2) availability of the system at your installation. Language selec-
tion decisions therefore frequently produce non-optimal overall
results. Given a limited simulation task today, one would doubtless
select GPSS (if available at the installation and known to the pro-
grammer). Every time in the future that the same situation arises,
the decision would be the same; but if a "joint" decision considering
all of this work could be made, the language selected might well be
other than GPSS, i.e. an investment in language availability and
programmer knowledge might be warranted. There is no escape from
imperfect foresight, but one may as well make best-guess projections
of future requirements and incorporate these projections into the
decision-making process. A review of past and projected future
simulation efforts may prove worthwhile from this standpoint.

VERSIONS OF SIMSCRIPT

Three versions of SIMSCRIPT are presently candidates for utili-
zation: 1.5, II, and II Plus-II. 5. Although II is free, it is not
supported, is significantly slower than II Plus, and only recently
has become operative under MFT. An installation might economically
use SIMSCRIPT II for limited applications, or as a test to determine
programmer acceptance and utilization. Once utilization of SIMSCRIPT
II passes a certain threshold, however, it will be less expensive
to buy II Plus.

Although the present status of II Plus-II.5 is somewhat evolu-
tionary, it already offers many advantages over 1.5. Its only
disadvantage is cost, although cost comparisons are muddied by a
dissimilarity in quoted price terms. C.A.C.I. offers 1.5 on the
following bases: (a) two year lease for $12,400, including system
maintenance and updating, with subsequent years on a yearly basis
for $3,000, (b) perpetual usage for $15,000, including two years
of system maintenance and updating, with subsequent years for $1,500,
(c) one year lease for $7,200, including system maintenance and

29

updating, with a second year at $7,200 and the third and succeeding
years for $3,000. C.A.C.I, now offers II.5 for a flat $500/month,
although optional pricing arrangements may be offered in the future.
For a five year period, the minimum 1.5 cost would therefore be
$19,500, while II.5 would cost $30,000. If the simulation efforts
involved are large and time-consuming, the faster operation of II.5
may well result in its being the most economical. It also offers
the many programmer advantages detailed earlier. In the opinion of
John Maguire, who as Senior Vice President and Director of Technical
Operations for C.A.C.I. speaks as the vendor of both versions,
although 1.5 is presently used in far more installations than II or
II.5, and although II.5 is still in a state of flux as additional
statements are implemented and the compiler is speeded up, in five
years more people will be using II.5 than 1.5.

SIMULATION OF COMPUTER SYSTEMS

Developing a valid model of a computer system requires: (1)
expertise in the techniques of simulation, including knowledge of
both statistics and the computer simulation language employed, (2)
appreciation for the inner workings of system software and its points
of interaction with applications programs and service routines, (3)
knowledge of hardware architecture, interactions, and timings, and
(4) sufficient data concerning applications programs to generate
valid workload models. The effort required is large, and the talents
demanded diverse. The specification, design, coding, debugging,
statistics gathering and reduction, and finally the validation of
the simulation model cannot be accomplished in short periods of
time. For these reasons, simulation is a questionable tool for
evaluating vendor proposals tendered in a normal procurement cycle,
regardless of the language used.

Simulation can be employed, however, when the time and resources
are available, as is often the case during system design. Examples
of this are readily available - - the GPSS simulation of the Advanced
Airborne Command Post and many computer manufacturers' simulations
of hardware and/or operating systems. The utility of SIMSCRIPT to
ESD would appear to be in future design and feasibility studies in
which the time and resources are available and in the many sub-
sidiary problems which arise that do not require the modeling of a
complete computer system.

The decision to provide SIMSCRIPT as a simulation tool at MITRE/
ESD hinges primarily upon expectations concerning the size and
character of future simulation efforts. SIMSCRIPT requn/eo more
investment than many of its competitors (particularly CPSS) but is

;0

capable of producing better results. To do so requires a higher
level of programmer expertise, at least for simple models. The
coding of complex models in GPSS can become quite involved if the
language (block)constructs do not identify easily with system elements.

31

REFERENCES

1. Knuth, D. E., The Art of Computer Programming. Volume 1,
Addison-Wesley, Reading, Mass., 1968., p. x.

2. DesRoches, J. C., "Survey of Simulation Languages and Programs,"
The MITRE Corporation, ESD-TR-71-227 (MTR-2C40), January 1971.

3. Kiviat, P. J., R. Villanueva and H. M. Markowitz, The SIMSCRIPT
II Programming Language, The RAND Corporation, R-460-PR,
October 1968., p. v.

4. Kiviat, P. J., R. Villanueva, and H. M. Markowitz, The SIMSCRIPT
II Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1968.

5. Kiviat, P. J. and R. Villanueva, "The SIMSCRIPT II Programming
Language: Reference Manual," The RAND Corporation, RM-5776-PR,
October, 1968.

6. Kiviat, P. J., H. J. Shukiar, J. B. Urman, and R. Villanueva,
"The SIMSCRIPT II Programming Language: IBM 360 Implementation,"
The RAND Corporation, RM-5777-PR, 1969., p. 41.

7. Wyman, F. P., Simulation Modeling: A Guide to Using SIMSCRIPT,
John Wiley & Sons, Inc., New York, 1970., p. 202.

8. Consolidated Analysis Centers, Inc., "SIMSCRIPT 1.5," Santa Monica,
California, July 1967., p. 4-16.

9. Dahl, 0. J., "Discrete Event Simulation Languages," Lectures
Delivered at the NATO Summer School, Villard-de-Lans,
September 1966.

10. Krasnow, H. S., "Dynamic Representation in Discrete Interaction
Simulation Languages," Digital Simulation in Operational Research,
S. H. Hollingdale, Ed., Lectures Presented at the NATO Scientific
Affairs Conference, Hamburg, Germany, September 1965, p. 77-92.

11. Kiviat, P. J., "Digital Computer Simulation: Computer Program-
ming Languages," The RAND Corporation, RM-5883-PR, Santa Monica,
California, January 1969.

12. Krasnow, H. S. and R. A. Merikallio, "The Pact, Present., and
Future of Simulation Languages," Management Science,
November 1964, p. 236-267.

32

REFERENCES (Concluded)

13. Freeman, D. E., "Programming Languages Ease Digital Simulation,"
Control Engineering, November 1964, p. 103-106A.

14. Teichroew, D. and J. F. Lubin, "Computer Simulation - Discussion
of the Technique and Comparison of Languages," Simulation.
Volume 9, No. 4, October 1967, p. 181-190.

15. Tocher, K. D. "Review of Simulation Languages," Operations
Research Quarterly, Volume 16, No. 2, p. 189-218.

33

BIBLIOGRAPHY

Boehm, B. W., "Computer Systems Analysis Methodology: Studies in
Measuring, Evaluating, and Simulating Computer Systems," The
RAND Corporation, R-520-NASA, 1970.

Control Data Corporation, Control Data 6400/6500/6600 Computer
Systems SIMSCRIPT Reference Manual, Pub. No. 60178300,
Palo Alto, California, 1968.

Gainen, L., "Complex Business Problems? Try SIMSCRIPT, a Powerful
Simulation Language," Computer Decisions, April 1970, p. 52-56.

Geisler, M. A. and H. M Markowitz, "A Brief Review of SIMSCRIPT as
A Simulating Technique," The RAND Corporation, RM-3778-PR,
1963.

Gordon, G., Systems Simulation, Prentice Hall, Inc., Englewood
Cliffs, N. J., p. 239-275.

Karr, H. W., H. Kleine and H. M. Markowitz, "SIMSCRIPT 1.5,"
California Analysis Center, Inc., Santa Monica, California,
1966.

Kiviat, P. J. , "Development of Discrete Digital Simulation Languages,1

Simulation. February, 1967, p. 65-70.

Kiviat, P. J., "Introduction to the SIMSCRIPT II Programming
Language," Digest of the Second Conference on Applications of
Simulation, December 2-4, 1968, New York City.

Kiviat, P. J., "Simulation Programming Using SIMSCRIPT II," The
RAND Corporation, P-3861, 1968.

Kiviat, P. J., "The SIMSCRIPT II Programming Language," SHARE
Contributed Program Library Submission 360D-03.2.014, 1969.

Kosy, D. W., "Experience with the Extendable Computer System Simu-
lator," The RAND Corporation, R-560-NASA/PR, 1970.

Kosy, D. W., "Experience with the Extendable Computer System Simu-
lator," Third Conference on Applications of Simulation,
December 8-10, 1969, Los Angeles, p. 235-243.

34

BIBLIOGRAPHY (Concluded)

Kosy, D. W., "The Extendable Computer System Simulator Language
Specification Manual," The RAND Corporation, R-561.

Markowitz, H. M., B. Hausner, and H. W. Karr, SIMSCRIPT - A Simula-
tion Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, N. J., 1963.

Markowitz, H. M., "Simulating with SIMSCRIPT," Management Science,
Vol. XII, No. 10, June 1966, p. 396-409.

Neilsen, N. R., "ECSS: An Extendable Computer System Simulator,"
The RAND Corporation, RM-6132-NASA, 1970.

Neilsen, N. R., "ECSS: An Extendable Computer System Simulator,"
Third Conference on Applications of Simulation, December 8-10, 196 9,
Los Angeles, p. 114-129.

Neisius, W. V., E. D. Katz, and D. B. Townsend, "Technical Note for
SIMSCRIPT Users," Digest of the Second Conference on Applica-
tions of Simulation, December 2-4, 1968, SHARE/ACM/IEEE/SCi,
p. 45-47.

Simulation Associates, "Job Shop Simulation Model," undated release,
Los Angeles and White Plains.

Simulation Associates, Inc., "SIMSCRIPT II Plus User's Manual,"
Los Angeles and White Plains, 1970.

Southern Simulation Service, Inc., "SIMSCRIPT 1.5," undated memoran-
dum.

35

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security clatlitlcation of title, body of abetract and inditing annotation mutt be entered when the overall report le claeellled !L

l o»iOlN«TlNO AC Tl VI TY (Corporate author)

The MITRE Corporation
P.O. Box 208 Bedford, Massachusetts 01730

la. REPORT IICUKITY CLASSIFICATION

UNCLASSIFIED
26. OROUP

3 REPORT TITLE

A GUIDE TO THE POTENTIAL USE OF SIMSCRIPT

4 DESCRIPTIVE NOTES (Type of report and Indue!ve dates)

5 AUTWORIS) (Ftrmt name, middle initial, la at name)

Peter R. Burleson

8. RCPOK T DA TE

SEPTEMBER 1971
7a. TOTAL NO. OF PACES

41
7b. NO OF KEFS

15
»a. CONTRACT OP 5PANT NO

F19(628)-71-C-0002
6. PPOJEC T NO.

5720

M. ORIGINATOR'S REPORT NUMBER!*)

ESD-TR-71-346

9b. OTHER REPORT NOISI (Any other numbmr» thmt mmy b* mmmigned
thim report)

MTR-2115

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES UL-.SPONSORINOMILI TARY ACTIVJTY. ., „
Electronic Systems Division, Air Force
Systems Command, L. G. Hanscom Field,
Bedford, Massachusetts 01730

13 ABSTRAC T

This report (1) identifies the features which distinguish SIMSCRIPT
from general programming languages, permitting readers to judge for themselves
the benefits of using SIMSCRIPT in their own applications; (2) outlines the language
and implementation differences between the various versions of SIMSCRIPT; (3)
specifies the resource requirements and relative advantages of implementing each
version of SIMSCRIPT at MITRE/ESD; and (4) investigates the desirability of
using SIMSCRIPT at ESD for analyzing problems related to computer performance.

DD,FN°OR:.,1473
Security Classification

Security Clarification

KKV »O»DI
«OLI »T

COMPUTERIZED SIMULATION

COMPUTER PROGRAMMING

COMPUTERS

DIGITAL SIMULATION

SIMULATION

PROGRAMMING LANGUAGES

PROGRAMMING MANUALS

Security Clarification

