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PREFACE

A primary function of electronic reconnaigsance is to detect and
locate enemy radars and other electromagnetic emitters such as those in
communications networks. Knowledge of the location of radars in enemy
air defense systems is necessary for attacking the individual radar
sites and aasociated equipment such as surface-to-air missiles and for
developing effective aircraft penetration tactics. In the battlefield
area the location of enemy radars and communications emitters can be
used to locate individual ground units ac well as to provide important
inputs to the overall intelligence picture.

As an aid in comparing the selative effectiveness of alternative
airborne emitter location finding systems, a computer model was devel-
oped at The Rand Corpcration to simulate the capabilities of such sys-
tems againat postulated full-scale emitter environments. An important
output of the model is the accuracy with which each detected emitter is
located. This report provides the documentation for the methods used
in the model for determining emitter location accuracy.

This report should be of interest to individuals involved in ana-
lyzing and evaluating emitter location finding systems. It presents
general methods for determining location accuracy and provides a number
of analytic and numerical results which facilitate an understanding of
the effects of system component measuremeut errors and aircraft/emitter
geometry on overall system location accuracy. Although most of the
mathematical derivationc are included for completeness and to present
a unified treatment of the location accuracy problem, the reader who is
not interested in the mathematical development can make practical use
of the results and curves presented to make his own rapid determina-
tions of emitter location CEP.




3

it g i e T




ey ;-rﬁ:v;{:'!‘,;:;." e R R

YRR e e

SUMMARY

This report treats methods of locating electromaghetic emitters
from airborne electronic reconnasissance systems, using passive mea- '
surements on the electromagnetic waves of the emittsr, taken from
several different locations. The measurements used for location find-
ing may be either the direction of arrival at two or more locations
along the aircraft's flight path for single-aircraft DF (direction~
finding) syrtems, or the relative time of arrival of emitter pulses
at the different aircraft locations for three-aircraft TOA (time-~of-
arrival) systems.

Emitter location accuracy is a function of the accuracy of these
"i{ndirect'" measurements on the emitter location, the accuracy of the
aircraft location measurements, the accuracy of the bearing measuremant
base line (in the case of DF gystems), and the astimation procedure
used to combine the various measuremsnts. A general expression for a
lower bound to the covariance matrix of the unbiased estimates of the

. emitter location coordinates (and consequently the location CEP) is de-
. rived, using the Cramér-Rao inequalicy. The lower bound is independent

of the eatimation procedure used; however, it is shown (in an appendix)
that the covariance matrix of the ''generalized least squares" estimate
of the location coordinates approximates the lower bound. Thus, the
lower bound may be used as an intrinsic measure of the location accu-
racy possible under the given meagurement conditions.

Examples are presented illustrating the application of the Cramér-
Rao lower bound to the emitter location estimate CEP for both DF and

“TOA systems. Approximate analytic equations for the emitter CEP are

derived for both DF and TOA systems for the case where the aircraft
location errors are negligible so that the emitter location errors

are due solely to errors in the measurements on the emitter. For DF
systems, analytic results are also derived for the case where measure-
ments on the elevation angle from the aircraft to the emitter are taken
in addition to bearing measurements. For TOA systems, additional ana-
lytic results are presented for two different aircraft location schemes
in which aircraft location accurscy combines in a simple manner with

time-of-arrival accuracy in determining overall emitter location accuracy.
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In each instance where analytic results are obtained, data are pre-
sented in the form of graphs and simplified equations which enable the
user who 18 not concerned with the background mathematics to quickly
estimate emitter location CEPs for a number of cases of practical in~-
terest. For both DF éystems and TOA systems, the general procedure
using the Cramér-Rao lower bound to determine an approximate emitter
location CEP from the combined accuracies in the emitter measurements
and the aircraft location measurements is illustrated by sample cal-
culations.
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1. INTRODUCTION

The problem of locating an object on the surface of the earth by
the use of indivect meaguremeats has & long history. Surveyors and
navigators, for example, have always been concerned with location es-
timation. Analytical methods for the solution of such problems can
be traced back to Gauss and anlacc.(l) This report is concerned with
the analysis of the accuracy with which surface-based electromagnetic
enitters can be located by passive measurements on electromagnetic
waves from the emitter taken from single- and multiple-aircraft elec-~
tronic reconnaissance systems.

To locate an object on the surface of the earth in a given three-
dimensional coordinate aystem requires measurements on at least three
independent quantities functionally related to the thrue coordinate
valueg of the object. For locating electromagnetic emitters passively,
the measurements generally taken atre emitter altituds (from local topo-
graphic data) and either of the following:

o Direction of arrival of the electromagnetic waves at two or
more locations of a single aircraft
0 Time of arrival of emitter pulses at three aircraft locatioas

These measurements are then cozbined with the known (or estimated) lo-
catione from which they were taken, the functional relations among the
various locations and measured quantities, and assumptions about the
error distributions of the measurements, to arrive at an emitter loca-
tion estimate.

When the emitter measurements are taken from aircraft, the coor-

dinates of the aircraft locations as well as the emitter location must

r either be known or else they must also be estimated. For each unknown
aircraft location, measurements on 8 minimum of three additional quan-
tities functionally related to the aircraft location are required.

The Air Force's ASQ~96 and QRC-~334 systems are examples of two
bagically different emitter locaticn finding systems. The ASQ~96 is




} sysiem which wmakes direciion-
of-arrival (directional bearing) measurements on emitter pulses from
two or more locaticns along the aircraft's flight path. (1f desired,
the bearing measurement data may be combined with those of a second DF
aircraft via a data link in order to obtain near-instantaneous location
estimates.) The aircraft location and the bearing measurement base
line are provided by a Loran-inertial navigation system. In the QRC-334
system, time-of-arrival (TOA) measurements are made on emitter pulses
from three aircraft. The aircraft locations are determined from mea-
surements of the ranges between aircraft and to two ground stations by
DME (distance measuring equipment) systems, and aircraft altitudes from
altimeters,

In the "just-determined" case, in which there are exactly as many
functicnally independent quantities measured as there are coordinates
to estimate, the location estimation problem is simply one of determin-
ing the (generally) unique solution of the functional equations. How-
ever, when there are more measurements than quantities to estimate, the
"overdetermined" case, the question arises as to the proper method of
combining the various measurements to obtain the most accurate location
estimate. Solutions for this problem depend upon the choice of crite~
rion for the average "closeness" of an estimate as well as the probabil-
ity distributions of the measurement errors and the relations among the
measured quantities.

One standard measure of the "closeness" of a location estimation
procedure is the location CEP (circular error probable), the circle
around the true location within which 50 percent of such estimates would
lie. When the emitter coordinate estimates have a multivariate normal
distribution with mean values equal to the true coordinates, the loca-
tion CEP can be expressed as a function of the variances and covariances
of the location coordinate estimates. In Section II, a lower bound is
given for the location estimate covariance matrix for unbiased location
estimates. The lower bound is derived by use of the Cramér-Rao inequal-
ity under the assumption that the measurements have a multivariate nor-
mal distribution with mean values equal to the quantities measured.

In Appendix A 1t is shown that the covariance matrix for generalized
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least squares location estimates approximates that given by the lower
bound. In Sections LII and IV, emitter locacion CEPs are obtained for
DF systems and TOA systems using the location estimate covariance ma-

trices obtained from the Cramér-Rao lower bounds for the system con-
figuration examined.




I1. THE ANALYTIC BACKGROUND

In the most general form considered in this report, the emitter
location estimation problem is as follows. Measurements are made on
an unknown emitter location (xo, Yo zo) from N aircraft locations
(xl, Yy zl), LN (xN. Yy zN). A total of n measurements, including
the emitter measurements, are made on variables functionally related
to the p = 3(N + 1) location coordinates. The measurements may be
either "direct," i.e., measurements on the individual location coor-
dinates, or "indirect,'" i.e., related functionally to the location
coordinates. The p location coordinates may be considered to be func-
tionally independent parameters to be estimated and the n measured
variables to be dependent parameters. In general, to estimate the p
location coordinates requires at least p relevant measurements.

For a convenilent notation, let the vector+

®
B = (Bl' seey Bp)

= (X Vo0 20 *tte Xy Yy zu)*

be the parameter vector to be estimated, i.e., the location coordinates;
the vector

m= (ml. vee, mn>*

be the measurement vector on the parameter vector

®

M= gy veey W)

n

i.e., m is the measured value of y with error m ~ u; and

fi(u, B) =0 im], eoe, r

+All symbolic vectors in this regort are column vectors, so the
transpose of a vector v, denoted by v, is a row vector.




g

with vector form

F(u, B) = (£,(n, 8), *=+, £,(u, 8))" = 0 e)

be the functional relationships among the components of u and 8.

Although the ultimate goal is to obtain estimates of the emitter
location (xo. Yor zo),+ it i¢ convenient to consider the more general
problem of estimating all of the components of B. If there are direct
measurements on the aircraft coordinates, i.e., vy - Bj for some 1 and
J» then the corresponding Bj may be omitted from 8, if desired. When
the estimates of the aircraft locations are also of interest and there
are direct measurements on the aircraft locations, it may be advanta-
geous to consider the more general problem of estimating both u and 8.
This is done in the Appendices.

LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIHATES(Z)

One general estimation procedure is that of "ordinary least
squares," in which the estimates 1 and B are the values of y and B
which minimize the quadratic form

*
Q = (@-u) (m=-u)
subject to the constraints F{u, B) = 0.
When the measurements are random variables with mean vector u and
a known covariance matrix

I=E(m=-um- u)*

the "generalized least squares" estimates 1, 8 are the values of u and
8 which minimize the quadratic form ‘

Q= (m-w'rl@-w @),

+In the remainder of this report, we shall generally take z to be
the altitude coordinate and assume z, to be known with negligible error.

_ P
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subject to the constraints F(u, B8) = 0. Generalized least squares es~

timareas will usually be better estimates than ordinary least squares
estimates,
It will be assumed throughout this report that the measurement

vector m is a random vector with a multivariate normal distribution

with mean vector u and know'n+ covariance matrix I. The probability

density function of m is then
0@ = 2] Fem ™2 exp [ - 3 - ' M - W) &)

"Maximum likelihood" estimates of u and B are the values of y and
g which maximize ¢(m) subject to the constraints F(u, 8) = 0. From
the form of ¢(m), it is easy to see that maximizing ¢(m) 1is equivalent

to minimizing the quadratic form in the exponent of (3),
®_-
Q3-(m-u)21(m-u)

subject to the given constraints, F(u, £) = 0, Since Qq is identical
to Qz, maximum likelihood estimates are identical to generalized least
squares estimates when the measurement vector has a multivariate nor-
mal distribution., This will not be true in general for other proba-
bility distributions. Maximum likelihood estimates have the desirable
property that, under rather general conditions, they yield estimates
which have the smallest variance when large numbers of measurements
are taken. ‘

The determination of generalized least squares estimates of u and
B requires finding the minimum of the quadratic form, Eq. (2), subject
to (possibly) nonlinear constraints, F(u, 8) = 0. In general, this re-
quires numerical methods--one general procedure is described in Ap-
péndix A. Since the primary concern of this report is with emitter

location accuracy and not estimation procedures per se, most of the

+In practice, I is obtained from error analyses and independent

testing of the location finding system and its components; or from
hypothetical values when different proposed systems are being compared

in analytic studies.
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remainder of the discussion is concerned with the determination of lo-

cation accuracy.

IHE CRAMER-RAO INEQUALITY (¥

Maximum likelihood and ordinary and general least squares are par-
ticular procedures for obtaining estimates. Other estimation procedures
exist and od hoc estimates not based on any general procedure are used
in many problems. Various criteria are available for judging the "good-
ness' of an estimation procedure. These usually involve some measure
of average closeness of th: estimate to the quantity estimated. For
unbiased estimates, one commonly used measure of average closeness is
the variance of the eatimate. Under fairly general assumptions the
Cranér-Rao inequality described below provides a useful lower bound to
the covariance matrices of a large class of unbiased estimators. An
unbiased estimator whose covariance matrix is close to the lower bound
will then have an accuracy proximate to that of a "minimum variance
unbiased estimate." It is shown in Appendix A that the covariance ma-
trix of generalized least squares estimates is approximately equal to
the Cramér~Rao lower bound.

As applied to the estimation problem of this section, the Cramér-
Rao inequality takes the following form. Let the n x 1 measurement vec-
tor m have a multivariate normal distribution with mean vector u and a
positive definite covariance matrix I. Let F(u, B) = O beanr x 1
vector of constraints relating the n x 1 measurement parameter vector
M to the p x 1 estimation parameter vector B. Assume that F(u, 8) has
continuous partial derivatives., Suppose p € r < n, and define

Jaf
FN-%E-\a—ul\) 1=1, seey,r =1, ¢, n %)
3/
of
-.a—F-- —-j:- - [N} - e s
FB 58 (aﬁk) 1=1, s T k=1, s P (5)

where Fu and FB are evaluated at the true values of u and B.
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Let 26 be the covariance matrix of an arbitrary unbiased estimate

of 8. Then, assuming that the regularity conditions given in Appendix
B hold and that the rank of Fu is r and the rank of F8 is p, we have
from Appendix B,

Ital

= " Ao-ln =1
8 g = (lB(FuEFv) Fg) (6)

Equation (6) is the Cramér-Rao inequality+ for the covariance matrix
t of B, and £, is the Cramér-Rao lowar bound.

B

The inequality Za H] ZB means that the matrix ZE

negative definite. This implies, for example, that the variance of

of unbiased estimates
- 25 is non~-

any unbiased estimate of an individual component parameter of £ is
larger than the corresponding diagonal element of ZB. Also, 1f the
component estimates are approximately normally distributed, the small-
est volume with a specified probability content will be larger for a co-
variance matrix from za than from ZB.

Equation (6) can be written in alternative computational forms in
special cases. From Eq. (6),

* * -] =1
I, = (Fy(F,IF) IFB)

* *,-1, . =1
- (ar)* @ saF )Y ) )

where A is any nonsingular r x r matrix. Thus, for example, in the
"just-determined" case where r = p we may set A = FEl so that

$, = Ft

* 1 %
8 8 FuzFu(FB ) (8

Appendix B contains a proof of a more general version of the
Cramér-Rao equality in which unbiased estimates of both p and B are
considered.

++It: is shown in Appendix A that the covariance matrix of gener-
alized least squares estimates is approximatsly the Cramér-Rao lower
bound.,
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Equation (8) is equivalent to the classic "propagation of error" vari-
ance relationship given in many texts on applied analyefa  TIf = - 2

and Fu is nonsingular, we may set A = F;l in Eq. (7) to obtain

- -1 (-l -1, -1
Zg ((Fu Fg) L °F "Fg) (9
Equations (7), (8), and (9) may be evaluated directly in terms of
Fu and FB or in the following manner. Taking the total differential
of F(u, B) = 0, we obtain the set of simultaneous equations

F du + B d8 = 0 10)

: Any permissible linear operations on Eq. (10) to simplify it are equiva-
é lent to multiplying by a nonsingular matrix A so that

3 AFudu + AFBdB =0 (11)

Comparing the coefficients in Eq. (11) to the expressions in Eq. (7),
we gee that if Eq. (11) is written in an equivalent form

Bdy + Cdg8 = 0
% then
£ = (c* rs*y1gy! (12)

For example, if FB is nonsingular, and Eq. (10) is solved for d8 so
that

dg8 = Bdu

; ¢ then

) Ig = sz’ (13)
§
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Suppose that F(u, B) and T can be written (by reordering the pa-

ramaters if necessary) as

F(u, B) = (14)
Fz(oo uzv 0, Bz) .
21 0
I = (15)
0 22

(Many of the problems in Section IV satisfy Egs. (14) and (15) with Bl

the emitter coordinates and 62 the aircraft coordinates.) Then Eq.

(6) reduces to

; i " » -1
] F.. F F. I,F 0 F.. F
l 1 181 182 lul 1l lul 161 182
28 = *
e 0 0 P, I.F F
) 28, 20,72 20, 26,
3 " % a1 . -l -1
] Foalle oA
: 18,1 F1s, 18,1 718,
T, = (16)
b g™« -1 — x -1
i Lplsz‘l Ti8, 18,1 Fig, * anzAz F2s,
3
g

* *
where A, = Flullelul and A, = F2u282F2u2' Inverting Eq. (16) by the

rule for partitioned matricescz) yields (if F13 is nonsingular)

? 1

i

g -1 " -1 Kol

; g = FL[A 4 Fy (oo Ay Fp, ) F g IF

| o, " Tis, M1 " 1, 28,02 T2yt 18,18y
] A-lF )_1

t, = (F
By 28, 2 "28,
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so that
* -] l *-]1
I 2 F + F t F F (17)
Iy = " 28, (Fa, Iy 2 )y FZB y~L (18)
2 2 “Ha £ %y 2
J Equations (17) and (18) are thus equivalent to the intuitively

reasonable result that we may estimate B2 from the measurements on ¥y
alone and then estimate 81 fron the measurements on Hy and the estimate
of 82. However, this result is not true in general, For example, if
Bl is overdetermined (in which case Flﬁl is not a square matrix), then
_ the measurements on u, can contribute to improved estimates of £, and

3 a smaller covariance matrix than that of Eq. (18).

When n 2 ¢ > p (the so-called overdetermined case), it is some-
times useful to introducea r - p extra parameters into 8 (hy defining
Bp+1’ XTI Br equal to a subget of Mys **%s Wy for example) so that
the new FB is nonninzuf;r. This is particularly convenient if the
resultant matrix for FB Fu can be determined easily so that Eq. (8),
which involves no further matrix invereions, can be used. The new

' parameter vector is g = (Bl. e, BP. 6P+1' e, Br)* and the Cramér-
2 _ Rao lower bound for the covariance matrix for unbiased estimates of
\i (Bl. e, ep)* is the upper left-hand cornar of the new Ege

‘ ADDITIVITY OF INFORMATION MATRICES FOR INDEPENDENT MEASUREMENTS

g The matrix

* *, =1
¢ = FQ(FHEFU> FB (19)

in Eq. (6) is the "information" matrix for the measurement vector m

relative to the independent parameter vector B,
Suppose that m consists of two stochastically independent compo-

T e A

nant vectors oy and m, with mean vactors Hys uz. covariance matricee
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L,, I,, and independent constraint relations F,(u,, B) = O,
Fz(uz, 8) = 0. Then, for the combined measurement vector m,

21 0

=
0 Ez

- (P er)

F 0
lu1

Fu -
0 F

Zuz
Substituting in Eq. (19) and expanding,
(F i TS )" 1p
8 lul l lu1 28 2u2 2 2u2 28
= Ql + 02 (20)

so that for independent measurements and constraints, information ma-
trices are additive. Furthermore,

- ol o -1 ’
z [ (@1 + 02) {21)

- Y1z (22)

18~ Z1g(B1p * Igg) Iy
from Ref. 2, p. 29, where 218 and EZB are the matrices in the Cra-ir~
Rao iriequality estimates of B corresponding to the measurement vectors

m, and m,, respectively.

1
In the computer simulation deszribed in the Preface, Eq. (21) pro-
vides an efficlent means for accumulating location accuracy data on in-

dividua?l emitters when a number of independent measurements are taken
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during the course of the simulation. Only the distinct elements of

the information matrix for the emitter location accuracy nesd be saved
in the computer for each emitter. As additional measurements are made,
e.g., bearing measurements from a single aircraft, the information ma-
trix is updated by means of Eq, '(20). At the end of the simulation
run, the final information matrix for each emitter is inverted to ob-

tain ZB’ and then Eq. (24) of the next section is used to obtain the
location CEP. ‘

THE EMITTER LOCATION ERROR CEP

If the measurements have a multivariate normal distribution, with
mean equal to the measured quantity, the generalized least squares es-
timate of B will be approximately normally distributed with mean equal
to the true value of 8 and covariance matrix given by Eq. (6) under
rather general aasumptiﬁns (see Appendix A). We shall assume that the
location coordinate estimates are approximately normally distributed.

One measure of location accuracy is the gize of the minimum arcn'
having a specified probability of containing the estimate. From nor-
mal distribution theory, this is the area in an elliptical region
around the true 1oca£ion with area

- .3
21rax°cy°(l - 2% 1n (1 - P) (23)

where 02 and 02 are the variances of the coordinate estimates x ’ y ;
p 1s the correlation between the estimates; and P is the specified
probability. This measure of accuracy has disadvantages. If the var-
iances are quite dissimilar in magnitude or if the estimates are highly
correlated, the ellipse is quite elongated so that while the area may
be small, the error in one direction may be quite large.

As a seemingly fairer single measure of accuracy, the CEP cf the
location estimate is commonly used. The CEP can be found from stan-
dard tables, as a function of Uy » °y , and p.(a) When o = 0, so that
the coordinatie estimates are uncgrrelgted, an enpirical approximation
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with a maximum error of 1 percent is
CEP = 0.59(0s +0;) °S/°L = 0.5 (24a)
2
« [0.67 + 0.8(os/aL) ]°L °s/°L < 0.5 (24b)

where g is the smaller of u"o and ayo, and o, is the larger.

When p ¢ 0, the coordinate system may be rotated to obtain new
location coordinate estimates for which the correlation is zero, The
angle of rotation is

-1 2 2
a=4%tan |2p0_ @ 0 -0 (25)
* 7o /( *o yo)
and the resultant values of g and o: are
4 - W
2 2 2 2 ( 2| &
ta=4lol +6¢ -~ |lo, -0 + 4lpa_ o (26)
§ ) Yo ( % yo) % yo)
4
alz‘-'}c:+oz+ 9, - O 2+4poxo 2|3 (27)
° Yo o Yo o Yo
J )

A simple approximation to the CEP with a maximum error of 10 pex~
cent and which does not require evaluating Eqs. (25) through (27) is
obtained as follows: From Eqs. (26) and (27),

2.2 , 2
L Ox +oy
o [+

2
as+o

and, from Eqs. (24a) and (24b),

CEP = 0.83 (og + c:le)‘i 9, = Og (28)
2 2\#
= 0.67 (as + °L) o, > og (29)
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The arithmetic average of Eqs. (28) and (29),

[
o
~4
w
Q

~
+
Q
g
oy

approximates the true CEP to within 10 percent.

(30)

T T D U

Aty e L

e e e ias

L




e

I'}
i
3

-16~

III. LOCATION BY DIRECTION FINDING (DF)

Direction fiadiug iechniques for passive emitter location utilize
directional bearing measurements to the emitter from two or more loca-
tions along the reconnaissance aircraft's flight path. The emitter
location estimate is then taken to be some measure of the center of
the intersection points of the bearing lines (actually curves) formed
by the intersection of the bearing measurement planes and the earth's
surface.
is that for accurate locations the emitter must be turned on suffi-
clently long for two or more bearing measurements to be made some dis-
tance apart. One way to overcome this drawback is to take elevation
angle measurements as well as bearing measurements. However, as will
be shown, location estimates from a combination of a single bearing
measurement plus an elevation angle measurement are as accurate as two
well-spaced bearing measurements only when the ground range to the emit-
ter is of the same order as the aircraft altitude, and the relative ac-
curacy becomes progressively poorer as the ground range increases.

It will be shown that when an emitter remains on sufficiently long
for multiple bearing measurements to be made, the CEP decreases as the
inverse square root of the number of independent measurements taken.
However, i{f the measurement errors are correlated, which is likely when
the measurements are taken at short intervals, there is a limit to the
"equivalent' number of independent measurements that can be obtained
(see p. 32) and hence a lower limit to the CEP achievable by taking
multiple bearing measurements.

A BRIEF DISCUSSION OF THE M...SUREMENT ERRORS

A comprehensive error analysis for a proposed DF system would at-
tempt to account for all sources of error which contribute to the final
emitter location esﬁimate error, The sources of error depend upon the
detailed design characteristics of the system. A discussion of these
sources 1s beyond the scope of this report.
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The errors may be hroadly categorized as either aircraft naviga-
tion errors or bearing measurement arrora. The afreraft navigation
errors result in errors in the estimated aircraft location and the es~
timated direction of the base line from which the direction bearings
to the emitter are measured. The bearing measurement errors are com-
binations of errors in the sensor which measures the angle of arrival
of the electromagnetic wave and distortions in the electromagnetic
wave due to interactions with the aircraft structure, wave propagation
anomalies, etc. The latter errors may be functions of frequency, di-
rection of arrival, elevation angle, and aircraft attitude.

One simplistic categorization of the errors is given below. Fixed
errors are those which may be considered to be constant throughout a
flight, Random errors may be correlated from bearing measurement to

bearing measurement, but have mean zero.

I. Navigation Errors
a. Fixed navigation position error
b. Fixed navigation heading error
¢. Random navigation position error
d. Random nagvigation heading error

II. Bearing Measurement Errors
a. Fixed bearing error
b. Random bearing error

If the fixed errors can be assumed to be random errors which are
fixed for a given flight, then these errors may be treated as additive
to the random errors at any given bearing measurement and are common
to all, The net effect in this case is that a given error type, bear-
ing measurement errors, for example, can be treated as random corre-
lated errors.

Certain of the errors may be combined for error analysis purposes.
The fixed navigation position errors, Ia, will simply add to the emit-
ter location errors if they are constant in each coordinate. The fixed
navigation heading error, Ib, and the fixed bearing error, 1Ila, may be
added together as a single fixed bias. The random navigation heading
error, Ic, and the random bearing error, IIb, may be added together as
a single random bearing error.
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THE FUNCTIONAL EQUATIONS RELATING THE PARAMETERS

The coordinate system used for DF systems is generally some form
of earth surface coordinates and altitude. For accurate location es-
timation procedures, c&rrection for earth curvature must be made when
the surface coordinate system is approximated locally by a rectangular
coordinate system. However, since the earth central angle between air-
craft and emitter is quite small, the corrections are minor and may be

. considered equivalent to removing biases in the estimates. Thus, for

location error analysis purposes it is adequate to assume a local
rectangular coordinate system tangent to the earth's surface in the
vicinity of the aircraft and the emitter. Let x, y be rectangular co-
ordinates in the tangent plane and z be the altitude above that plane.
Denote the aircraft location by x, y, z and the emitter location by
X Yor 2, as indicated in the following sketch.

A/C _J. -----
(X,Y,2) o —s= Bearing base line
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Let 6 be the directional bearing to the emitter from the aircraft,
as projected onto the x-y plane. Since the aircraft and emitter are
not, in general, coaltitude, the actual measured bearing angle 1is in
a plane determined by the locations of the aircraft and the emitter
and the axis of the DF antenna system which we take to be the bearing
base line from which the directional bearings are measured (cf. the
preceding sketch)., With no loss in generality, assume (temporarily)
that the bearing base line is parallel to the x-y plane.

Let ¢ be the actual measured bearing angle. Then

co8 ¢ = (31a)
= TVITR]

where V 18 a vector along the bearing base line, R is the vector from
the aircraft to the emitter, and V'R is the vector dot product.

Let 1, j, and k be unit vectors in the directions of the orthog-
onal coordinate axes. Then

R = (x° -1+ (yo -y + (zo - z)k

and

VeR = (z, - 2)k) VR

- 31b
€08 © = WITR = (2, = K] ~ TV[TE= (2, = D¥| (31k)
since V 1s perpendicular to k. Thus, from Eqs. (3la) and (31b),
gos ¢ - |R _ (zo - Z)kl - '/pz—- .2 = co8 (32)
cos § |R| p o8 a

where p = |R|, a = z -z, and « 1s the elevation sngle from the emit-
ter to the aircraft. Equation (32) is valid for anv bearing base line
in the constant altitude plane.

st ki s A - A i s
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Now assume that the bearing base line is parallel to the x-axis.

We have

4
)
tan 8 = —S—0 (33)
cos ¢ = cos 6 cos a (34)
02 - g2 (x, - 02+ v, - 28
cos” a = 57— = 5 3 3 (35)
p (X, = )"+ (y, - ¥)" + (2 - 2)

Equations (33), (34), and (35) are the primary equations relating the
bearing angle ¢ and the elevation angle a to the aircraft and emitter

locations. _
The contribution of altitude errors to the total emitter location

error is generally quite small. This can be indicated as follows:
From Eqs. (34) and (35),

a2 ~1/2
cos 6 = com ¢ |1 - ]
P
2\ -3/2
=gin 640 = cos ¢ G- -’—2-> —-g— da
] P
-1

= cos 6 a(o2 - az) da

2

de = -cot @ ar “ da (36)

where rz " (92 - a2) - (x° - x)2 + (y - yo)z. From Eq. (33),

2 Yo =Y 1
sec 6d0 = ————— dx - —= dy
(xo - x)z o x, ~%x o
dgo =20 oty
r2 ] r2 o

1
= L (sin 6 dx - cos 6 dy)) (37)
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Substituting Eq. (37) in Eq. (36) and simplifying,

a
< da =sin 6 dy - tan © sin 0 dx (38)

The bearing angle 6 is generally limited to an included angle of 90
deg or less centered on the perpendicular to the aircraft flight path.

Taking @ = 45 deg ss a typical worst-case condition and setting dxo =0
and dyo = 0 in turn, we obtain, from Eq. (38), the first-order worst-
cagse effect of altitude errors, '

a
ly | = lax | = v2 | da] (39)

Thus, the first-order effect of altitude error is directly proportional
to a, the difference in aircraft and emitter altitudes, imversely pro-
porcional to r, the ground range between aircraft and emitter, and
directly proportional to da, the altitude difference measurement error.
Since altitude difference errors will generally be hundreds of feet or
less, the contribution of altitude errors to the total error will be
relatively small whenever the aircraft-to-emitter ground range is much
greater than the altitude of the aircraft.

Since the primary use of aircraft-to~emitter altitude difference
is in finding the projected angle 6 in the x-y plane from the measured
bearing angle 4, and since altitude measurement errors are generally
of secondary importance, the altitude coordinates will be suppressed
in the following development.

We shall next derive analytic results for the emitter location
CEP in t"i2 spncial case where arrors in the bearing measurements from
the aircraft to the emitter dominate the aircraft location errors.
Then the general procedure to be used when both bearing measurement
accuracy and aircraft location accuracy contribute substantially to

the emitter location CEP will be illustrated by some sample calcula-
tions.
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EMITTER LOCATION CEP FROM BEARING MEASUREMENT ERRORS ONLY

The emitter location CEP will depend, in general, upon the air-
craft location-error and bearing-measurement-error crovariance matrices
and the relative locations of the emitter and the aircraft when the
bearing measurements are made, In this subsection analytic results
will be obtained for the contribution of independent bearing measure-
ment errors to the emitter location CEP, assuming that the aircraft
locations are known with negligible error,

Let N independent bearing measurements 9?, LN 63 be taken on
the true bearing 91, ren, BN at locations (xl. yl), TN (xN, yN)
along the aircraft flight path. Let g be the common bearing measure-
ment standard deviation. Let the bearing measurements be taken rela-

tive to a bearing line parallel to the x—axis so that we have the
situation depicted below:

(x;, ¥q)

From Eq. (33), the functional relations between the true bear-
ings and the emitter location are

o, = tan l(y, = y/(xy = %) A w1, e, N (40)

so that, taking the total differential and simplifying,

dei - dxo -2 5 1 dy (41)

- é&(sin 6,dx - cos Oidyo) (42)
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i

2 2 2
where r, = (xo - xi) + (Yo - yi) .

N, *
Identifying 6 = (61. Tiey By with u and (xo, yo) with 8 in the
development of Section II, from Eq. (41), Fu is the identity matrix and

"(yo - yl)/ri (xo - %,)/x

(43)

w
§ e~
s0e

=(y, yN)/r§ (%, = %)/ry

so that, from Eq. (9), the Cramér-Rao lower bound for the covariance
matrix of any unblased estimate of § = (xo. yo)* is

M=y =1
L (EBE FB)

B
"=l 2
= (FgTp) Top
Iye - yi)zlr: -i(yo - ¥y (xg - xi)/r: -
o, - ot - e ntx, - % "
CENES T Ty AT O T
(44

Two Bearing Meagurements

Choosa the coordinate system sc that the x~axis is parallel to the
line segment joining the two sircraft positions and let

hy, =y =¥, =¥

Then, Eq. (44) can be writtea as

4 3 -1
E sin Bi ~i sin Bi cos Bi

-% sin°8, cos 6 T #1026, cows °
i 1905 i 1

(45)

e
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Since
a ¢! 2.-1 v -¢
r -I = (ab - ¢”) |- .] (46)
Lo ¥ e
the variances and covariance in EB are
cio - hzcgb-l(ninz 8, con® ey + sin 0, cos’ 8,) {47)
02 = h202D l(sin4 e, + ain4 8,) (48)
Yo 1 2
2.2 -1 3 3
oxoyo = h“o D (sin 31 cos el + gin e: cos 92) (49)
where D, after simplifying, is
D= ainz 8y sin2 9, ainz (62 - 61) (50)

Substituting Eqs. (47) through (49) into Eqs. (26a) and (26b), and
simplifying,

2 2 2 -1 2 2

oy = hopD [sin 8, + sin” 0,
+ (sin® By + sin’ 8, + 2 sin? 8, sin’ 6, cos 2(0, - 91;)%]
(51)
o2 = n%20 ™ [a1a? 0o, + stn® o,
- (sin® o, + sin’ 6, + 2 sin’ b, sin’ 6, cos 2(, - 61))%]

(52)

Figure 1 contains CEP isocontours as a function of 6 = 91 and

Af = e2 - 61 as obtained using Og anc 7, from Eqs. (51) and (52) in
Eqs. (24a) and (24b).
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Fig.1—=CEP isocontours for two bearing measurements
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From Eq. (30), the CEP may be approximated as

- ], 2 2
CEP = 0.75 |[of + oy (53)
o o

where from fige. (47) and (48),

a: + ai - hzag(sinz 8. + sin? ez)/(sm2 6. sin @

1 1 2 sinz(ez - 01))
o o

The minimum value of the approximate CEP, Eq. (53), is at el = 60 deg,

92 = 120 deg, where
min CEP = /E'hoe (op in radians) (54)

= 0.025 hog (oe in degrees) (55)

Multiple Bearing Measurements

When the aircraft is flying a straight path and a number of bear-
ing measurements are taken at nearly equally spaced intervals along the
flight path, a simple approximation to the location CEP can be derived.
For convenience in the derivation, assume a coordinate system as indi-
cated below:

_.I

T

@
-

[
2

where the aircraft is flying in the direction indicated, h is the per- ﬂ
pendicular distance from the emitter to the flight path, s is negative
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to the left, and el, 62, see, BN are the true directions from the air-
craft flight path to the emitter at locations 8., 8,, ***, 8, along
the tlight path. ) B
Identifying 8y with Xy = X, and h with Y = Y, in Eq. (44), and
defining L = 8y = 84, 46 = 6, - 6,, and {Iij} as the elements in the
"information" matrix on the right-hand side of Eq. (44), we have

o1, =1 0¥ w?+ .f)z

8
- N j'N n2/(h? + 89?2 de

1
. N 2. .2 -1 8,°N
* i [8h/(h” + 8%) + tan o]
8
1
N . oN
* 3in (3 8in 28 + & --E]e

1

* 9tn (& sin 26y - % sin 20, + 40)

8-5%5 (sin A9 cos (el + eN) + 49) (56) ;
5
Similarly, :
2 2 2 2,2
% 122 -3 sil(h + si)

s
= % / N 62/ n? + s2)2 4s
1

N P
* 3R ( -sin A6 cos (91 + SN) + A8) (57)
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2,2

-z hai/(h2 + ai)

Q
[
L}

8
= - % N hs/(h2 + 52)2 ds
%1
. 7':—]1 sin A0 sin (8, + 6,) (58)
From Eqs. (56) through (58) and Eq. (46) it follows that
2 oLy 48 — sin 46 cos (6 +0y)
% *F 3 2 % (59)
o (48)° - ein”® AG
2 2Lh A6 4+ sin 48 cos (el + GN) 2
% "N 7 ) % (60
Yo (48)° - sin“ 40
sin A0 sin (6, + 0.)
%y =7 2_NLL1 2 12 . °§ (61)
oo (A8)“ - sin” 28

The rotation to a coordinate system in which the estimates of the
emitter coordinates are independent is, from Eq. (25), through the
angle

- X,y
q-%tanl——o_-o_-.
02 - 02
*o Yo
-3 tan-l 2 sin A6 sin (91 + BN)
2 sin A6 cos (91 + 8

N
=% (0, + 6y
which shows that the direction of largest variation in the joint distri-

bution of estimated emitter coordinates is in the direction (e1 + eN)/Z
relative to the flight path,
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Substituting Eqs. (59) through (61) into Eq. (27) yields

2 2 2 .2 H
2 _ 2tk 2 A0 + [4 8in” A6 cos (91 + eN) + 4 sin” 46 s8in (e1 + BN)] 02
- (]

L N 2(A6 + sin AB) (A0 - sin A6)

[+]

2Lk 1 2
*"N 36 - sin 20 %0 (62)

Similarly, from Eq. (26),

2 2Lk 1 2
9% " "N 26 + sin 46 '8 (€3)

Since L = S8y~ 8 * h cot eN -~ h cot 61, we have

2(cot 0, -~ cot 8,) ] §
o = = - L o (64) ; 3
L /R A0 - sin AP 8 ! |
: 2(cot 6, - cot 6.) L] P
g, h_. N 1 o (65) : 3
R 46 + sin A8 8
L A6 + sin A9 4 é
og (Ae - sin Ae) (66) (.
Figure 2 ghows how the ratio OL/US in Eq. (66) varies as a func~ 3 ;
tion of the emitter included angle A6 = eN - 31. : 1
Figures 3a and 3b contain values of k = k(el, A8) obtained using i ]
1 Eqs. (64) and (65) in the CEP approximation, Eqs. (24a) and (24b), so /
that
ho
CEP = k —2
N

where O is measured in degrees. Figure 3 is accurate enough for most
purposes when N is greater than about 5 and the bearing measurements

are more or less uniformly distributed along the flight path.
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MINIMUM CEP FOR BEARING MEASURFEMENTS TAKEN AT A CONSTANT RATE

When bearing measurements are taken at equally spaced points along
the flight path, the CEP decreases as gach new measurement is taken.
However, the minimum value of the CEP is not zero. In practical terms,
the lower limit is reachad when the emitter passes beyond the line of
sight from the airborne platform., A general lower bound can be ob-
tained as follows. Since the CEP decreases as A6 increases, and og ap=
proaches 0, as A6 approaches its maximum of 7 radians, we may simply

evaluate Bq. (24a) at A® = v, We thus obtain

CEP = 0.59 V2Lh/N Zw"i o (Ge in radians)

¢

> 0.016 Yh/N' %

(0, in degrees)
8

vhere N’ is the baaring measursment density in messursments per unit
distance (in the same units as h).

CORRELATED BEARING MEASUREMENTS

When bearing measurements are taken on an euitter with only small
changes in the bearing angle between consecutive measurements, the bear-
The simplest type of
correlation structure to treat is that arising when the bearing measure-
ment errors form a stationary Markoff process. The increase in the
location estimate CEP due to correlation in the bearing measurement

ing measursment arrors may be highly correlated.

errors will be illustrated for this case.

Let the correlation between successive measurements be equal to
p. From the assumption that the bearing measurement errors form e
stationary Markoff process,

1 - 7
1 g ver " o ot e O
L= ? '.. E ug and "l —:izi:ji; '-‘. '.“‘..
e bt BETIO T
L -p 1

(67)
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Asgsuming a linear flight path, we haw:z, fiouw Eqs. (43) and (44),

-h/ri si/ri
F. = . . (68)
: -h}r2 }rz
n 'nn
- * -l (=1 (69)
zB (FBS FB)

where ri = h2 + si, and h and s, are defined as in the sketch on p. 26.

Substituting Eqs. (67) and (68) into Eq. (69), performing the indicated
matrix multiplications, and simplifying, we find that for large N,

" -1 2
Zg® (FBFB) oy (1 + p)/ (1 = o) (70)

Comparing Eq. (70) with Eq. (44), we see that Figs. 2 and 3 may be used
with 9 replaced by ae¢zl+p5721-p5 when the bearing measurement errors

form a stationary Markoff process with correlation between successive
measurements equal to p.

BEARING MEASUREMENTS PLUS ELEVATION ANGLE MEASUREMENTS

If an elevation angle measurement is made along with each bearing
measurement, an emitter location estimate can be made from measurements
taken from a single aircraft position, It is shown in the following
that when the elevation angle measurement accuracy is of the same order
as the bearing measurement accuracy, the combined bearing measurement
plus elevation angle measurement is roughly equivalent to two optimally
spaced bearing measurements when the aircraft-to-emitter ground range is
equal to the aircraft~to-emitter altitude difference. When the ground
range to the emitter is much larger than the aircraft altitude, eleva-
tion angle measurements must be much more accurate than bearing mea-
surements to provide equivalent emitter location accuracy. Thus, com-
bined bearing and angle measurements are most useful against emitters
that are close to the aircraft and when measurements can be made at
only a few positiong along the flight path (e.g., measurements on emit-
ters with very low power or intermittent operation).

el

TR
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Let a be the aircraft-to-emitter, altitude difference, r be the

alrcraft-to-emitter ground range, and o be the elevation angle from
the emitter to the aircraft. Then

a
- =
tan a T

2 e [¥ % Yy~
sec” ada = T ( r2 dxo + t2 dyo

since r2 = (x - x°)2 + (y - yo)z. Thus

: X - X, Y=Y, 4
- m——
o= gin o cos ) dx, + " Yo (71)
Prom Bq., (41),
y - o X - xo T
dg = - —g— dx, + —3 dy° (72)
r r

*
Identifying (6, a) with u and (xo. yo)* with £ in Section IX, we
have, from Eqs. (71) and (72),

| L
ty - y.) X - x -
° °
F;J'FB - -Li- (73
r x ~ xo) sin a cos a {y - yo)nin o cos a

8o that for independent angle meagurements, from Eqs. (9) and (73),

) a;Z 0

-1 - " -1

EB - <Fn FB) -2 Fu rﬁ
0 u“

-yl re-x)? - D&-x)y-y)

g
(74)

r
(= 1x - x)(y - ¥,)

(x = xo)z + ey - yo)z
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where ¢ = sin® o cos2 o cglo:.
Now chooge the coordinate system so that x = Xo and, therefore,
r2 = (y - yo)z. Then Eq. (74) can be written as

Thue, }

[e] -
X “e

Q
[ ]

rae/v’E

rou/un acos a

rz-i-a2

= a Y (76)
where Oy and o, are =2quivalent to the crossrange error and range
error st@ndard d@viations » respectively.

From Eq. (30), the approximate emitter location CEP from the bear-
ing measurement and elevation measurement ccmbination is then

- 2 2,4
CEP = 0.75 (axo + uyo)

3

2 ai
-2 an
“y

- r,s
0.75 roy |1 "’(a + r)

When g, = 0y = 0, Eq. (77) can be approximated as
r2
CEP ~ 0.75 rek T >> a (78)

«0.75/5r0 rw«a (79)

= 0.75 ao a>r (80)
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EMITTER LOCATION CEP CALCULATIONS FOR THE GENERAL CASF

Consider the following sketch depicting an emitter location (xo,
yo) and five locations (xl, yl), sory (xs, ys) along the aircraft
flight path:

(xon Yo)

AR O¢
(xlo Yl) (le YZ) cue (xsl Y5)

Assuming the bearing measurement base line is along the x-axis,
we have for an aircraft location (x, y)

tan § = (yo - y)/(x° - x)

sec? 0d0 = (x - 07 (dy, - dy) = (x, - ¥ 2y, - ¥)ex, - dx)
r?de = (x, = %)y, - dy) = (y, = ¥)(dx - dx)

2 - - K
r°do + (xo - x)dy - (y° - y)dx = (x° x)dy° (yo y)dxo

(81)
where r? - (x° - x)2 + (yo - y)z. Taking x = 0 and setting h =y - ¥,
(assuming a linear flight path), Eq. (81) may be written for each air-

craft location as

) .
hdxo + x dyo - -ridei + hdxi + xidyi i=1, y 3 (82)

i

Suppose that the aircraft location is egtimated by a navigation
1 system with independent errors in each coordinate with mean zero and

f{ common variance a% and that the bearing measurement plus navigation
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heading errors have mean zero and common variance 02. Setting

* *
g = (xo. yo) and p = (@

ve,
lower bornd for the rouariance matrdyw ~F

from Ec 3),

1° x1’ yl’

e
85, Xgs ys), the Cramér-Rao

bl o . . -~ A .
Hiviaosu CoLpudieEs UL D 18,

* * ool -1
Ty = (Fg (R IF)7'R,) | (83)

vhere, from Eq. (82), the 1th component of dF(u, B) 1s

2
-7,d6, + hdx, + xgdy, - hdx - x,dy_ (84)
8o that
1
) O
-r2 h x,
F =
H .
2
-r5 h x§J
Fh x1
-FB = :
h x5

Using equally spaced aircraft locations from el = 45 deg to 95 = 135

h =10 n mt,

Bearing measurement

standard deviation

Y
0 .2 W4 .6

Afrcraft location standard
deviation o (n mi)

o {ami)

1.0

deg, a computer program to evaluate
a general version of Eq. (83) pro-
duced the {llustrative results in
the sketch at the left for the
emitter lccation error CEP. The
sketch illustrates the relative
contribution to the emitter loca-
tion CEP from bearing measurement

errors and aircraft location errors.
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IV. LOCATION BY TIME OF ARRIVAL (TOA)

Time-of-arrival techniques for estimating emitter location use
the arrival time of an emitter pulse at twoc different aircraft as a
primary measurement. The difference in arrival time multiplied by the
pulse propagation velocity measures the difference in range between
the emitter and the two aircraft. Curves of constant range differ-
ences are approximately hyperbolae on the earth's surface, and the emit-
ter location is estimated as the intersection of two such curves. Con-
sequently, three or more aircraft must be used for an instantaneous
location "fix" on an emitter. Only two aircraft are required if two
or more range difference measurements can be made on the same emitter
over scme elapsed time interval.

Two hyperbolae can result in as many as four points of intersection.
When there are multiple intersection points, additional information is
required to eliminate the "ghost" intersections from the one represent-
ing the true emitter lncation. The additional information may be pro-
vided by TOA measurements from new aircraft locations, a crude direction-
of-arrival measurement, or knowledge of the generel location of the emit-
ter.

THE TOA HYPERBOLA

For illustrative wurposes, consider the two-dimensional flat-earth
approximation with the aircraft and emitter takem to be in the same
plane. Assume a coordinate system in which the two aircraft are one
unit apart on the x-axis, with the origin at the midpoint. Then the
range difference to a target at (x, y) is

d= [x+ 2+ v - (- 12+ ¥t (85)

For fixed d, Eq. (85) reduces to the branch of the hyperbola,

x2 2 2
"E""L""z"* d“<1 (86)
d 1-~4d
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which passes through the point y = 0, x = d/2 and whose values are
asymptotically equal to the lines through the origin with slopes

met 1/d? - ¥
The tangent to the hyperbola bisects the angle formed by the lines

from the emitter to the two aircraft locations. This can be shown as
follows:

Let P and p be two points on a given hyperbola. Then by the law
of cosines

di - rz + (d1 + x)z - Zr(d1 + x) cos o
so that
cos & = (d: - rz - (d1 + x)z)/2r(d1 + x)

Thus,

lim cos a = - lim %

P+p P+p

Similarly,

1im cosB--l:l.m’;‘_-

P->p P+p
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8o that

lim a = 1im 6
P+p P=+p

showing that the tangent to tha hyperbola bisects the angle formed by
the lines from the emitter to the two aircraft.

ERROR ANALYSIS EQUATIONS FOR THREE-AIRCRAFT TOA

For error analysis purposes and distances up to a few hundred
miles, it is generally adequate to assume a flat-earth coordinate
gystem consisting of a rectangular cocordinate system in a plane tan-
gent to the earth at a point in the vicinity of the emitter, with alti-
tude above the earth's surface as the third rectangular coordinate.

The errors in using such a coordinate system may be considered as
biases to be corrected by the location estimation procedure.

Lat the aircraft coordinates be (xi. Yy zi) i=1,2, 3 end the
emitter coordinates be (xo, Yo
location 1 to location j, and

, :o). Let rij be the distance from

§,, =1

13 =T

1o Jo (87)
be the difference between the distances from the ith and jth aircraft
locations to the emitter. Since 613 - 61k + ij. k¥1, J, any two of
612, 613. or 631 may be taken to be the TOA range difference parameters
(TOA time difference multiplied by the speed of propagation, about 1
£t /nanocsecond. )

The equations relating the emitter and aircraft locations are

rfj - (x, - x:,)2 + vy --yj)z + (2 - :»:j)2 (88)

Taking differentials of both sides of Eq. (88) gives

dryy = egq (dxg = dxy) + gy (dy, = dy)) + egy, (dzy - dzy)  (89)
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where

Coyx " (% - xj)/rij (90)
ey = Oy = YP/Ey (1)
Ci9z = (24 - 2)/x g (52)

are the direction cosines of the line joining location i to location j.
From Eqs. (87) and (89),

d8yy = dry, - dr, .

- clox)dx° +c, _dx

fox 17 Cqox%%y

= (e lox

+ (cioy - c1oy)dyo + cloydyl - c:Loydyi
*leggy = Cyopd2, ey m ey ds L 3 (93

Equations (89) and (93) provide the basic relationships for the
aﬁalyais of TOA emitter location accuracy. Equation (93) relates er-
rors in the range difference measurements to the errors in the loca-
tion coordinate vector B* - (xo. Yor Zor *+er Xgs Yao z3), whereas
Eq. (89) relates errors in range measurements between alrcraft to er-
rors in B*. Similar equations hold if ground-station-to-aircraft
range measurements are included.

In the following, we shall first obtain analytical results for
the emitter location CEP for cases in which certain of the measurement
error accuracles dominate the remainder. Then, sample calculations
will be presented illustrating the general procedure for obtaining the
emitter location CEP when both the aircraft location accuracies and
the aircraft-to-emitter TOA measurement accurhcie; are important.

.ot

a
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; EMITTER-TO-AIRCRAFT RANGE DIFFERENCE ERRORS ONLY

Suppose the three aircraft locations and the emitter altitude are
estimated with negligible error,

E Let
8 =812 ™ F15 ~ F2o (94)
8% 813 " T3 " T3o (95)
be measured with measurement error variances cf, cg and correlation

coefficient o.

Assume also that the aircraft and the emitter are in the same
geometric plane (or that the altitude differences are inconsequential).
Then Eq. (93) can be written as

dﬂl = (cos Y, = cos yl)dx° + (8in Y, - ain‘yl)dy° (96)

dé, = (cos v5 = cos v,)dx_ + (sin v, = sin v,)dy (97)

th alrcraft and

where \ is the angle betwa2en the line joining the 1
the emitter and the x-axis.

Now choose the x-axis to bisaect the angles between the lines
Jeoining two of the aircraft and the emitter as indicated in the sketch

below:

(32 th) |
(xl’yl) x-axis (x3’y3)
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Then, from Eqs. (96) and (97),

uél = {cos (o + B/2) ~ cos B/2]dx° + [8in (o + B/2) - sin 8/2]dy°

= =2 sin°+asin9-

3 5 dx_ + 2 sin -% cos 2—;-1 dy (98a)

s, = [cos ( - B/2) - cos B/2)dx  + [8in ( - B/2) - sin (B/Z)]dyo

B
= -2 sin 5 dy_ (98b)

Solving Eqs. (98a) and (98b) for «ixo and dyo,
dxou-%cscu+6

7 (csc % d61 + cac % cog & ; 8 déz) (99a)

8
dy, = - & csc 5 d6, (99b)

From Eqs. (99a) and (99b), after some reduction,

0’2‘0 + aso - i» cac2 2 ; g (ci t:sc::2 % + ag csc2 %
+ 2000, csc § ese % cos 9—'—‘2'—5-)
- +
= D 1(0% sin2 -g- + ag ninz %+ 2pc1102 sin % sin % cos 9—-2—-&)
(100)
vhere

D= si.n2 % s:l.u2 % s:ln2 2—;——8—-

= 3[sin a + sin 8 - sinla + 8))> (101)

o i s ot A ST ot s

ea L A Ees o e

Eop—e

PP IR

e A eSS
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Substituting half-angle formulas in Eq. (100) and simpiiiyiug yic

(l-cosu)u2 + (l-coss)u2 + po,0,(cosa + cosf - 1 — cos(atB))
1 2 172

2 N —

¢, +o = 2
x y (sine + sing - sin(a+B8))
(102)

From Eq. (96),
61 - rlo - r20 = tlovlo - t2°v2°

§, = Tio " F20 © t10V10 ~ t20Y20

e e

where tio is the propagation time and Vio the average propagation ve-
th aircraft.

locity (about 1 ft/nanosecond) from the emitter to the i
Assuming that the variances and covariances of the errors in tha mea-
surements of tiovio are equal with common variance c: and common cor=-

relation Pe (which is reasonable if either the velocity estimate errors ]
are negligible compared to the time-of-arrival errore or if the emitter 3
distances from each aircraft ara comparable), the covariance matrix of

} ! the measurement errors of 61 and 62 is

| o P00,y 2 1 , o
3

2
03,0, 9y
where 0§OA » (1~ 94)03 is the "effeactive'" range difference error vari-

ance.
Substituting Eq. (103) in Eq. (102) gives

2 2 3~ cos o~ cos 8 ~ cos (o + B) 2
gx + g ™ t——— 2 2°TOA
o Yo (sin o + 8in B + ein (a + B))
§ 3-cosn, ~cosn, - Cco8 N
b 1 2 3 2

(sin ui + sin N, + sin n3)2
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where ny = 0, ny + n, + Ny = 360 deg, and Nys Ngys N4 aTe the angles be-
tween the lines from the emitter to the aircraft, measured in a clock-
wise direction.

Equation (104) is a minimum when ng =Ny = ny" 120 deg, which im-
plies that the emitter location errors tend to be smallest near the
center of the aircraft triangle.

It may be noted that the emitter location CEP 1s proportional te
Iqps 804 independent of scale, i.e., Eq. (104) is a function only of
the angles between the aircraft and the emitter.

Figure 4 contains CEP isocontours as a function of o and 8 (a < 8),

the two smallest angles from Nys Nos &nd Nqe This figure is thus valid

for all aircraft triangles. Figures 5, 6, and 7 contain CEP isocon-

tours for three isosceles ailrcraft triangles, as obtained from a more

accurate CEP calculation than the approximation of Section II. The

figures are not valid for emitter locations near the extensions of

the aircraft triangle base legs, where certain assumptions made in

the analysis are not met. In fact, Eq. (104) implies an infinite

CEP along the base leg extensions--which 18 not true for the location

estimate that is the intersection of the range difference hyperbolae.
From the figures, at & given distance from the centroid of the iso-

sceles triangles, the CEP is a minimum on the perpendicular bisector of

the unit base leg. Along the perpendicular bisector, Ny "My = and

ny = 2r - n, so that Eq. (104) becomes

o & c2 - 3~ 2 cosn ~ cos 2n~202
y 2 TOA
0 © (2 sin n - sin 2n)

3 3)2
- k#+(mfﬂ@--3?4]a%A n<<l

s (6/n") o2,

« 96 a%,fm R>> 1

[T

IRTINDRTESAR WFSPLE ST

e e A L S
Lv o it A 2+ A o ka o et e LA
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Fig.5==CEP isocontours for 180=deg isosceles (line) triangle (TOA)
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\ CEP:K"['roA 4
6 \K=300

)

/

500

A/C

-1

Fig.6==CEP isocontours for 120~deg isosceles triangle (TOA)
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7 o
s \ K =300
CEP=K- o,
200
5
4 \
100 f K =300
\ /——'-\
3 \ / e \
50 200
k‘ 7\
2 /
25 _ 100
R :
10 50 .
]
J \
) 25 |
A/C &0
A/C
Vi |
0 1 2 3 4 5 6

Fig.7-—CEP isocontours for 60-deg isosceles (equilateral)
triangle (TOA)
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where R is the distance from the emitter to the unit base leg. Thus,

CEP = 0.75 V96 Rzo,r

0A

2
7R %roA R>1

n

A similar reduction for oi and ui for locations along the per-

pendicular bisector yields °
o =4 /6 R% R> 1
x TOA
o
ayo = /2 ROTOA R>1

and the correlation term, by symmetry, is zero. Considering the y-axis
to be "downrange" and the x-axis to be ''crossrange,"

9pr/%c = 4 /3R )
= 7R R> 1

so that the downrange errors are much larger than the crossrange. This
is also true for locations off the perpendicular bisector.

AIRCRAFT LOCATION ERRORS ONLY--I

Suppose that the aircraft locations are estimated from independent
navigation systems and that the TOA errors are negligible relative to
the aircraft location errors. Suppose that the aircraft and emitter
altitude estimate errors are also negligible. Assume that the aircraft
and emitter are in the same plane (or that the altitude differences are
inconsequential), Let the ailrcraft locations be (xi, yk) i=1,2,3
and the emitter location be (xo, yo). Suppose also that the aircraft
navigation system position errors are independent in each coordinate

with common variance 02.
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Since 612 and 613 are assumed known, from Eq. (93) with d612 -

{cos Y, = cos Yl)dxo + (s8in Y, - sin Yl)dyo
= cos vzdx2 - cos yldx1 + ain yzdy2 - sin -yldy1 (105a)
(cos y5 - cos v,)dx  + (sin vy, - #in Y, )dy,

= cos stx3 - cos ‘Yldx1 + 8in Y3dy3 - gin Yldy1 (105b)

*
Taking the measurement parameter vector as u = (xl, Yis %9 Yo» x3,
y3), from Eq. (105),

-cos vy -sin Yy co8 Y, 8in Yy 0 0

-cos v, -sin g 0 0 cos Yy 8in Yy

36 that, in Eq. (6),

* * 2
F LF F
WEFy = F R, @

-[2 l]az (106)
12

Comparing Eq. (106) with Eq. (103), and the left-~hand side of Eq.
(105) with the right-hand side of Eqs. (96) and (97), and using Eq.
(104), 1t follows that

3 -cosn, ~coen,~coan
02 + 62 - 1 2 3

X 3 202 (107)
o Yo (sin ny + ain Ny + sin n3)

Thus, Figs. 4 through 7 can be used for the CEP from only the aircraft
navigation errors by replacing %roA by o.
Also, assuming that the aircraft navigation system errors are

.wa."




-tc alrzrafe range difference errors, from

independent of the emiiie
Eq. (104),

3 ~cosn, - COB n, - CO8 1N
o + 02 - 1o 2 3 2(02 + U§OA) (108)

x y
o o (sin " + sin ", + ain “3)_

~
for the combined effects qﬁ the measurement errors. Thus, Figs. 4

through 7 may also be used for the comgined errors by replacing Sroa

2 2 %
by (¢~ + UTOA) . "

ATRCRAFT LOCATION ERRCRS ONLY--IT

As another eihmple in which analytic results can be obtainad, con-
sider a TOA system in which the aircraft locations are estimated from
DME measurements between aircraft and aircraft position measurements

i

-
RO

_from independent navigation systems. .
. Suppose that the TOA measurement errors, the aircraft and emitter

altitude measurements errors, and the DME errors are negligible rela~’
tive tc the aircraft position errors. Assume also that the aircraft
and emitter are in approximately the same plane and denote the alr-
craft positions by (xi, yi) i =1, 2, 3 and the emitter pogition by
(xo, yol. Suppose also that the alrcraft position errors are indepen-
dent in each coordinate and from aircraft to aircraft, and let the

oD 4 e

B st n i

fdsn

errors have common variance 02. .

For convenience, let the coordinate system have its origin at the
centroid of the aircraft triangle so that X, +xytx,® 0 andy, +y, +
¥y = 0. Let ¢1 be the angle between the x-axis and the line joining
(xi, yi) and (xo, yo) and ¢ the angle between the x-axis and the line
from the origin to (xo. yo). Then

[T S

Xy = X, = I, cos  + A@i) 1wl,2,3 (109a)

Yy = Vo =Ty sin (6 +84) 1=1,2,3 (109b)

R s e s a.
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where A¢i = ¢ - ¢1 is known.
From Eq. (109),

dxi - dxo - r,, sin (¢ - A¢1) d¢

=dx - (y, -y, d¢ i=1,2,3 (110a)
dyi = clyo + T,, 08 4 - A¢i) d¢

=dy, + (x;, - x) d¢ 1=1,2,3 (110b)

Setting the weasurement parameter vector u* - (xl, Xg» Xgs Yy Yoo
*
y3) and the estimation parameter vector § = (xo, Yo $), from Eqs. (110)
and (12),
-1 02

£, = o 1)

vwhere

[ | [=] o o
o‘d
1
<
w

o 0o ©o = = R!

Thus,

CC=]0 3 b




D, L BRSO e e s
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where

3
TS A TAREY
i=]

3
b-z(xi-xo>-3x°
i=]

I 2 2
- Z [ <xi - xO) + (Yi - }'o) ]
i=]

3
> af+yd +36d+vh
i=]

3r? + %)

!

. i
r? is the gverage squared range between the aircraft locations and the %
centrold, and R? is the squared range from the emitter to the centroid. ﬁ
Now choose the x-axis to pass through the emitter location so that %

Yo " 0. The error in the x-direction may then be considered to be the :

range error and the error in the v direction the crossrange error.
Then {
B }
1 0 0
*
CCcw=3{0 1 R /
0 R R#?
! and
2 0 o
c'ol-L1o wn? (112)
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Subatituting Eq. (112) in Eq. (111),

c:o = 02/3 (1132)
ai-(1+ﬁhﬁﬁm (113b)
Q

8o that

2 2 .3
CEP = 0.75 (axo + cyo).

~ 0.43 (2 + Ro/eD)E o (114)

When the aircraft triangle 1s equilateral with side .length &, the
distance from the aircraft to the cemtroid is #/Y3, so that 2 = 22/3
and Eq. (114) becomes

CEP = 0.43 (2 + 3R/ o

& 0,75 (R/R) ¢ R > 2

EMITTER LOCATION CEP CALCULATION FOR THE GENERAL CASE

In the preceding, we have derived analytic results for the emitter
location estimate CEP for the TOA systems for cases in which certain of
the measurement errors dominated the remainder. The following example
illustrates the general procedure for determining the emitter location

CEP which combines the contributions from all the measurement errors.
Suppose that the aircraft locations are determined by combining air-
craft altimeter measurements with DME rarige measurements hetween air-
craft and between the aircraft and two ground stations (as in one mode
of the Ailr Force's QRC-334 system). Suppose also that the emitter al-
titude is estimated separately by an independent measurement with known
standard deviacion. Denote the (known) ground station locations by

e € AT
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(xa. Yy 24) and (xs, Yg» zs). The parameter vector to be estimated
can then be taken as

T

*
& - (“O' Yor %o° Xqs Y10 zln le MY x3: Y3: 33)
\

and the measurement parameter vector as

L]
W (8150 8130 Type T oyge Tous Tose Taue Tase Tips Tpge Tog Zgo 230 Zps 23)
From Eq. (6), the Cramér-Rao lower bound is

S TS N |
ZB FB(Fut Fu) FB) (115)

where, from Eqs. (89) and (93), Fu = I, and FB 1s the matrix on p. 58.
Suppose that the gtandard deviaticp of the DME range measurements

is 10 £t, that of the TOA range differences is 20 ft with a correlation

of 1/2 (i.e., assuming independent time-of-arrival measurement errors

at the three air~raft), that of ‘the aircraft altitudes is 40 ft, and
that of the emitter altitude, 100 ft.

Assuming that all measurements
except TOA range differsnces are uncorralated, the non-zero elements

of the measurement covariance matrix I are 211 = 222 = 400, 212 = 221 -
200, &

1600.

33" rer "I 00 W 100485 4y = 10,000, Zyg 93 % Zygi14 " P15, "

The following figure illustrates the output of a computer program

which calculates EB from Bq. (115) and then the approximate CEP of the
emitter location estimate from Eqs. (26), (27), and (24):

- 9g¢1wg@pﬂgggnmimﬂwmwﬁ"mﬁw““"“f”;;uy'f9%?3“ﬂ"“

Numbers in a given column are approximate emitter location CEPs for

emitters at the points indicated hy the blocked number in the column
when:

Ground stations GS1 and GS2 only are used and

a. Aircraft-to~ni:craft’diatance measurements are omitted

b. All measurements are included

¢, There are TOA measurement errora only-~known aifcrnfc

locations

L R I
—
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=5 » T
~50=
Emitter CEP (ft)
2500~ i 157 222 499 1254 2927 .
210 152 210 457 1117 2562 b.
200~ 116) [z (79 [s82] [2272]) «.
1 303 258 326 664 1521 3301 d.
[ 625 560 835 1769 4044 8632 e,
150-
n ni
A/C
100~ Ne 4 Ne
504 o (o) (o} (o)
GS1 GS2 GS3 GS4
0 1 T | S B | \
0 50 100 150 200 250 300
n ni

Ground stations GS3 and GS4 only are used and

Ce

d.

[-3%

‘There are TOA measurement errors only--known aircraft

locations
All measurements are included
Alrcraft-to-aircraft distance measurements are omitted

As indicated in the figure above, the CEP depends on the relative lo-

cations of the
obtain for eac
congidered.

ground stations and the aircraft, so different results
h configuration of ground stations and aircraft triangle
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Appendix A

GENERALIZED LEAST SQUARES ESTIMATION

As described in Section 1I, the general astimation problem in lo-
cation finding involves a set of n-nluremanta me= (m s ", @ ) on the
observed parameter vector u = (ul, Tty My ) and a -et of funotional
relationships between u and the (po.sibly) unobserved parameter vector
B = (8, veey 8",

F(uy 8) = (£,00, 8), ==, £.(u, 8" = 0 (16)

F(u, B) may include relationships on y or 8 alone, i.e., certain of
the fi("’ B) may be independent of u or of 8. The general estimation
problem is to estimate u and B subject to the constraints, Eq. (116).

Generalized least squares sstimates of u and B are the values ﬁ
and é which minimize the quadratic form

Q= - W' i@ - ) (117)

subject to the constraints F(u, B) = O. In general, when F(u, 8) is
nonlinear, the determination of ; and B require numerical methods. One
widely used iterative procedure is an adaptation of Newton's method,
sometimes called the method of linearirzation.

Let u°. 8° be initial guesses of ﬁ and a. Approximating the
component of F(u, B8) by the first-order terms in the Taylor series

1th

\

expansion around u°. ﬁo.

o af, o
£.(u, 8) % £,0% 6% + ) auju_uo.a_ea(uj.-uj)
3=1
P oot
+3 8, - 8 (18

o1 klw=y®, g o= p®

S T T SO ORI
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Defining~r Fu as the r x n matrix

af
Fool 5 0 o
¥ Hyly = %, =8
and FB as the r x p matrix
F-?—f_j-'-‘
B\ %Blyay® g =g

Eq. (118) becomes, in matrix form,
P(u, 8) = F(u°, 8°) + F,(n - W°) + (8 - 8°) (119)

New approximations to u and E are obtained by first imposing the con-
straint equation F(u, B) = 0 on Eq. (119) to obtain

0=r@°, 8% + F (- %) + Fg (8 - 8%) (120)

and then minimizing the quadratic form, Eq. (117), subject to the im-
ear constraints of Eq. (120). The latter problem i1s a generalization
of the usual linear least aquares estimation problem. A quite general
solution 1s given in Ref. 4. When Fu and F

N a ]
approximations to u and B are

have full rank, the new

1, _ LI P * * -1 =1.% * -1 .
u n Fu(FuZFu) {1 FB(FB(FHEFH> FB) FB(FuZFu) ](Fum vo)

(121a)

+A more standard notation for F, and F; would be F (u°, Bo) and
Fe(u°. 8°), indicating the values of the arguments at which the func-
tions are evaluated. However, this is cumbersome. The values of u
and B at which 1-"u and FB are evaluated should be clear from the con-
text.

N |
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1 * LIS T U * -1 .
8 (Fg(F EF )T F )" F (F IF )™ (Fm = v) (121b)

vhere v_ = Fuuo + FBBO - F°, 3%).
Approximate covarisnce matrices and cross-covariance matrices of

ul and Bl are

* * -1 * * -1 =1 % ® =1
zul z—zrﬁ(ruzru) § FB(FB(FUZFu) FB) FB(FuZFu) ]Fuz

(122a)

* * -1, -1
231 (FB(FHZFu) FB) (122b)

- * *y=lp 4=l (122¢)
I,1g1 “u (FuZF u> g (Fg (F,IF)

1f the initial guesses u° and B° are close to ﬁ and E. minimizing
the quadratic form of Eq. (117) subject to the linear constraints of
Eq. (120) will be approximately equivalent to minimizing the quadratic
form subject to F(u, B) = 0. The result is a new approximation ul,
81 to ﬁ. ﬁ. The entire procedure may be iterated until convergence
of the sequence (ui, Bi) i3 indicated. Conditions under which the
sequence converges to ﬁ. 8 are contained in Ref. 5, for example.
Comparing Eq., (122) with Eq. (125) of Appendix B, we see that the
only difference is the value of (u, B) at which F and FB are evaluated.
When the covariance matrices of u and R are small so that u and B are
close to u and B with high probability, the approximate covariance and
cross-covariance matrices of Eq. (122) will be close to those of the

Cramér~Rao lower bound for unbiaged estimates of y and 8.

L b £ BRI A B st =1 o
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Appendix B

THE CRAMER-RAO INEQUALITY

Let p(X, 6) be the probability density function of a vector randoum

variable X with an unknown parameter vector 0 = (61,

- - 82 inp
Pyy 3, 2,

%19 = Elpyy)

The matrix

& = (013) i' j = 1' esuy k

is called the information matrix for p(X, 6).

ooy ek)*. Define

Theorem 1. The Cramér-Rao inequality for unbiased estimatore. '
Let sl(x). sz(X), cans °t(X) be t statistiocs suoh that

E[li(X)] - 81(61’ seny Bk)

i’ J - 1’ ey t

E[(.i - '1)(.1 - gj)] - vij
Suppose agilaej exiets and define the matrices
v - (vij) igj bl 1' LN ) t

A= (331/36J

+Reference 2, p. 265.

) i= 1. seey t j = 1. see y k
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If differentiation may be passed under the integration sign eo
that

28,

%, " %—faicx)pcx. 6)dx
3

- /‘.1(,9 X, 0) 4y
b

then
- *
V-A2A 20 (123)
, -%
1.8., the matriz V - A® A 1e nomnegative cle,f"wimite.ar
In Section II, the logarithm of the multivariate anormal density

function for the measurement vector m is (aside from a term independent
of u) proportional to

cdm-wrlim- (124)

vhere the n x 1 measurement paramster vector i is related to the p x 1
independent parameter vector f by the r x 1 vector of constraints

F(u, B) = 0

Let u°. g° satisfy F(uo, B°) = 0 and define

3F
l’1.4 8u|u-v°. 8= g° (x x n)
) 4 (rxp).
Fg aslu «1° g =g°

+The matrix ¢~ is any generalized inverse of ¢, i.e., any matrix
satisfying #¢™¢ = ¢. If @ is positive definite, ¢~ = ¢-1,

1
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o 0

Assuming that F has continuous partial derivatives at (v, B,
Fu has full rank r, FB has full rank p, n = r 2 p, and that the reqmire-
ments abuve for the Cramér-Rao inequality hold, we obtain the following

result.

Theorem 2. With the abave aeaumptzons, the dispersion matrix 2* ,8
of an unbiased egtimate u, B of 1%, B° satisfies the matriz znequalzty
(A » B means that A - B ig poaitive definite),

s Irg T L

v TuB B uB
"By Bu "B

where

* * =] (-1 % * -1
zu -7 - zr’ (F zr ) [ FB(FB(ruzru) FB) FB(ruzFu) 7 £ (125b)

7]
Iy = (r;(ruw:)'lrs)'l (125¢)
I --ZF: (Fuzr:)‘lre(r’;(ruzr:)‘lrs)‘l (1254)
Zg, = Ing (125e)

Proof.* Firgt, suppose that I is the identity. The total differ-
ential of F(p, 8) = 0 at u°, 8° is

Fudu + FBdB =0 (126)

Let the columns of the n x n -~ r matrix U and the columns of the
n x r matrix W be orthonormal, and let the columns of U span the null

+The proof given here uses properties of the pseudo~inverse of a
matrix. The paeudo-inverae of a matrix A 1is the uniquo trix A ant—
isfying (a) AATA = A, (b) Ataat « AF, (c) (AAD)* , (d) (Ata)*
ATA. The properties of the pseudo-inverse used here are contained 1n
Ref. 4, for example.
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space of Fu and the columns of W span the space orthogonal to the null

e n

AR Aaan o~
M WA 4 e

Define § and vy by the invertible transformation
uo= WS+ Uy + 4° (127)
and H(§,8) by
H(S, 8) = F(Ws + Uy + 1%, B) (128)

* % ®
where 6 = (B, -y ) . Then H(S, 8) has continuous partial derivatives,

* ok . & am*|*
H(O, 6,) = 0, where 8, (87 ,0) , and 38 [6=0, 6= 0, = Fuw is non-

singular. By the implicit function theorem,+ H(§, 8) = 0 has a unique
golution ¢ = h(8), i.e., H(h(8), 6) = 0, in a neighborhood of eo. Thus
6 1s a vector parameter indexing the normal probability density n(m, u)
in that neighborhood.

From Eq. (127),

R T

T P e

g o e
oo

du = Wdé + Udy (129)

o

Substituting Eq. (129) into Eq. (126), we obtain

i

Fu(WdG + Udy) + FBdS =0

5 st R R e R S N S

Qe P =Y.

Fqus + 0+ FBdB =0
so that, since ruw is nonsingular,

s = - (Fuw)-lFBdB (130)

fReference 6, p. 138.

T e v —— IR . R
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Substituting Eq. (130) in Eq. (129),
dy = - w(rum'lrsde + Udy

- - HW F F dB + Udy

uB
o+
= - rurads + Udy (131)
or, in matrix form,
o
dy = - (FMFB' u)de (132)

The information matrix ¢ is

- ([ ]
-z(ae[ ]) (133)

3 3 V'
where 33-- (%3;-...., EEii) + We have

-2, =@ - w'@-w
' 2
-t 5 a—(m-u) @ -

- (FFs 0 - ) (134)

from Eq. (132). Thus,

= e sy




A bt e s o

-§9=

!
i

» [2tnp]" .2 0 "ot
BT [ 36 ] "% ™ W FF, D

] (r:ra. u)*(P:FB. U)

S T
| o |
PR o\

A ¥
(FUFB) FNFB (Fu B) U
- *_4 *
L U FuFB uu
PR
FF)FPF 0

. ( ¥ B) we (135)

N 0 1

since U*U = I and

L * 4
i} Fu s U FH(FNFH>

N o
- [(rurp) ruU]

=0

S8ince the right~hand side of Eq. (135) is a constant, it is equal
to its expected value and therefore to ¢, It is easy to verify that

TN P
. |ErptaEt o

o w (136a)
0 1
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To apply the Cramér-Rao inequality to estimates of u and 8, set

[

Then, in Theorem 1,

*'r, .U
u B
- (136b)
I 0

(137)

where

Ho K
Zg = [(F Fo) F F.]

k4
= (FB(FuFu> Fg)

Performing the indicated matrix multiplicatioms in Eq. (137), we have

*
seta” =

+ TN
FFI (FF) + U FFl,
(138)

. ok
- ZB(FuFB) IB

*
where, from the definition of U, U w» I = F:?u (see Ref. 4).

PITORPPUPRT R




D S S R _ e e e e o ——

-71-

Substituting
e n x -1 sa AN
?u !‘u (Fqu) (135)

in Eq. (138), we obtain the result stated in the theorem when I is the
identity.

When % is an arbitrary positive definite matrix, there exists a
nonsingular matrix A such that

=" (140)

Equation (124) can then be written as

- 307 - A A - a7 (141)

Setting u = An, Eq. (126) becomes FuAdn + FBdB = 0. The previous . .
development for I as the identity can then be followed through Eq.
(135a) with n replacing y and FuA replacing Fu' To apply the Cramér-
Rao inequality to estimates of y and B, set

-1

-+
'A(FuA) Fﬂ =AU
Am
1 0

8o that

+ o * * & +

. A(F A) Tl (A(F A)'F,) + AUUA -A(F A)F L,

A0°A = : TR (142)
- SR AR Ig
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where,

3 A b oF
L, = ((FuA) Fg) (PuA)"'FB)

* e +
Fg 2 )7 (® AFY)

" I
(Fa(luAA Pu) FB)

* R - -
(F (x 7)) 1’3) 1 : (143)

AUU A

+ *
Al - (FuA) (FNA))A

* LGS *
AT - (FHA) (FuA(FuA) ) FuA)A

. R * 4+ *
A(I - A Fu(IuEFu) ?uA)A

* N -
I-IF (@0 lruz (144)

and

A A
A(PuA) A(FHA) (ruA(FuA) )

I w, -1
zru(ruzru) (145)

Substituting Eqs. (143), (144), and (145) into Eq. (142) and applying
the Cramér-Rac inequality gives the regult stated in the Theorem.
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