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PREFACE

A primary function of electronic reconnaissance is to detect and

locate enemy radars and other electromagnetic emitters such as those in

communications networks. Knowledge of the location of radars in eiiemy

air defense systems is necessary for attacking the individual radar

sites and associated equipment such as surface-to-air missiles and for

developing effective aircraft penetration tactics. In the battlefield

area the location of enemy radars and communications emitters can be

used to locate individual ground units ac well as to provide important

inputs to the overall intelligence picture.

As an aid in comparing the relative effectiveness of alternative

airborne emitter location finding systems, a computer model was devel-

oped at The Rand Corporation to simulate the capabilities of such sys-

tems against postulated full-scale emitter environments. An important

output of the model is the accuracy with which each detected emitter is

located. This report provides the documentation for the methods used

in the model for determining emitter location accuracy.

This report should be of interest to individuals involved in ana-

lyzing and evaluating emitter location finding systems. It presents

general methods for determining location accuracy and provides a number

of analytic and numerical results which facilitate an understanding of

the effects of system component measuremeat errors and aircraft/emitter

geometry on overall system location accuracy. Although most of the

mathematical derivation' are includAd for completeness and to present

a unified treatment of the location accuracy problem, the reader who is

not interested in the mathematical development can make practical use

of the results and curves presented to make his own rapid determina-

tions of emitter location CEP.
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This report treats methods of locating electromagnetic emitters
from airborne electronic reconnaissance systems, using passive me&-

surements on the electrooegnetic waves of the emitter, taken from

several different locations. The meaurements used for location find-
Sing may be either the direction of arrival at two or more locations i

• ~along the aircraft's flight path for single-aircraft DF (direction-!.

finding) syftems, or the relative time of arrival of emitter pulses

at the different aircraft locations for three-aircraft TOA (tlme-of-
arrival) systems,.i

Emitter location accuracy is a function of the accuracy of these

"indirect" measurements on the emitter location, the accuracy of the

aircraft location measurements, the accuracy of the bearing measurement

base line (in the case of DF system), and the estimation procedure

used to combine the various measurements. A general expression for a
lower bound to the covariance matrix of the unbiased estimates of the

•emitter location coordinates (and consequently the location CEP) is do-

•rived, using the Cramdr-Rao Inequality. The lover bound in independent

of the estimation procedure used; however, it is shown (in an appendix) ),that the covariance matrix of the "generalized least square&" estimate

of the location coordinates approximates the lover bound. Thus, the

lover bound may be used as an intrinsic measure of the location accu-

racy possible under the given measurement conditions.

Examples are presented illustrating the application of the Cramdr-

Rao lowet bound to the emitter location estimate CEP for both DF and

TOA systems. Approximate analytic equations for the emitter CEP are

derived for both DF and TOA systems for the case where the aircraft

location errors are negligible so that the emitter location errors

are due solely to errors in the measurements on the emitter. For DF

systems, analytic results are also derived for the case where measure-

ments on the elevation angle from the aircraft to the emitter are taken

in addition to bearing measurements. For TOA systems, additional ana-

lytic results are presented for two different aircraft location schemes

in which aircraft location accuracy combines in a simple manner with

time-of-arrival accuracy in determining overall emitter location accuracy.
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In each instance where analytic results are obtained, data are pre-

sented in the form of graphs and simplified equations which enable the

user who is not concerned with the background mathematics to quickly

estimate emitter location CEPs for a number of cases of practical in-

terest. For both DF systems and TOA systems, the general procedure

using the Craadr-Rao lower bound to determine an approximate emitter

location CEP from the combined accuracies in the emitter measurements

and the aircraft location measurements is illustrated by sample cal-

culations.
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1. INTRODUCTION

The problem of locating an object on the surface of the earth by

the use of indirect measuremeats has a long history. Surveyors and

navigators, for example, have always been conczrned with location es-

timation. Analytical methods for the solution of such problems can

be traced back to Gauss and Laplace.(1) This report is concerned with

the analysis of the accuracy with which surface-based electromagnetic

emitters can be located by passive measurements on electromagnetic

waves from the emitter taken from single- and multiple-aircraft elec-

tronic reconnaissance systems.

To locate an object on the surface of the earth in a given three-

dimensional coordinate system requires measurements on at least three

independent quantities functionally related to the three coordinate

values of the object. For locating electromagnetic emitters passively,

the measurements generally taken a&e emitter altitude (from local topo-

graphic data) and either of the following:

o Direction of arrival of the electromagnetic waves at two or

more locations of a single aircraft

o Time of arrival of emitter pulses at three aircraft locations

These measurements are then combined with the known (or estimated) lo-

cations from which they were taken, the functional relations among the

various locations and measured quantities, and assumptions about the

ercor distributions of the measurements, to arrive at an emitter loca-

tion estimate.

When the emitter measurements are taken from aircraft, the coor-

dinates of the aircraft locations as well as the emitter location must

either be known or else they must also be estimated. For each unknown

aircraft location, measurements on a minimum of three additional quan-

tities functionally related to the aircraft location are required.

The Air Force's ASQ-96 and QRC-334 systems are examples of two
basically different emitter location finding systems. The ASQ-96 is
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of-arrival (directional bearing) measurements on emitter pulses from
two or more locations along the aircraft's flight path. (If desired,
the bearing measurement data may be combined with those of a second DF
aircraft via a data link in order to obtain near-instantaneous location
estimates.) The aircraft location and the bearing measurement base

line are provided by a Loran-inertial navigation system. In the QRC-334
system, time-of-arrival (TOA) measurements are made on emitter pulses
from three aircraft. The aircraft locations are determined from mea-

surements of the ranges between aircraft and to two ground stations by
DME (distance measuring equipment) systems, and aircraft altitudes from

altimeters.

In the "Just-determined" case, in which there are exactly as many
functionally independent quantities measured as there are coordinates
to estimate, the location estimation problem is simply one of determin-
ing the (generally) unique solution of the functional equations. How-

ever, when there are more measurements than quantities to estimate, the
"overdetermined" case, the question arises as to the proper method of
combining the various measurements to obtain the most accurate location
estimate. Solutions for this problem depend upon the choice of crite-
rion for the average "closeness" of an estimate as well as the probabil-

ity distributions of the measurement errors and the relations among the

measured quantities.

One standard measure of the "closeness" of a location estimation

procedure is the location CEP (circular error probable), the circle

around the true location within which 50 percent of such estimates would
lie. When the emitter coordinate estimates have a multivariate normal

distribution with mean values equal to the true coordinates, the loca-

tion CEP can be expressed as a function of the variances and covariances
of the location coordinate estimates. In Section II, a lower bound is
given for the location estimate covariance matrix for unbiased location

estimates. The lower bound is derived by use of the Cram6r-Rao inequal-
ity under the assumption that the measurements have a multivariate nor-
mal distribution with mean values equal to the quantities measured.
In Appendix A it is shown that the covariance matrix for generalized
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least squares location estimates approximates that given by the lower

bound. In Sections III and IV, emitter locacion CEPs are obtained for

DF systems and TOA systems using the location estimate covariance ma-

trices obtained from the Crainr-Rao lower bounds for the system con-

figuration examined.

A1

ii

II
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II. THE ANALYTIC BACKGROUND

In the most general form considered in this report, the emitter 5
location estimation problem is as follows. Measurements are made on

an unknown emitter location (xo y, z ) from N aircraft locations
0 00

(xlb Y1 ' z 1)0 "" (xi' N N' ZN)" A total of n measurements, including

the emitter measurements, are made on variables functionally related

to the p - 3(N + 1) location coordinates. The measurements may be

either "direct," i.e., measurements on the individual location coor-

dinates, or "indirect," i.e., related functionally to the location

coordinates. The p location coordinates may be considered to be func-

tionally independent parameters to be estimated and the n measured

variables to be dependent parameters. In general, to estimate the p

location coordinates requires at least p relevant measurements.

For a convenient notation, let the vectort

0 = (B1, ... , p)*

= (Xop Yop zoo' x-o , YN' ZN)

be the parameter vector to be estimated, i.e., the location coordinates;

the vector

mM (m1 , see, mm)

be the measurement vector on the parameter vector

fil, ..., Vn)

i.e., m is the measured value of p with error m - u; and

f 8) - 0 i - 1, *.*, r

+All symbolic vectors in this resort are colunm vectors, so the
transpose of a vector v, denoted by v , is a row vector.
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with vector form

F(1, 8) - (fl(l, B), Of f r(, 6))* - 0 (1)

be the functional relationships among the components of V and 0.

Although the ultimate goal is to obtain estimates of the emitter

location (x 0 Y0,o Z ), it it convenient to consider the more general
0 0problem of estimating all of the componentu of B. If there are direct

measurements on the aircraft coordinates, i.e., pi BM for some i and

J, then the corresponding Oj may be omitted froc 0, if desired. When

the estimates of the aircraft locations are also of interest and there
are direct measurements on the aircraft locations, it may be advanta-

geous to consider the more general problem of estimating both p and 0.

This is done in the Appendices.

LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATES(2)

One general estimation procedure is that of "ordinary least
squares," in which the estimates p and B are the values of P and 8

which minimize the quadratic form

Q" (m - U)*(m - u)

subject to the constraints F(v, B) - 0.
When the measurements are random variables with mean vector v and

a known covariance matrix

Z- E(m - )(ma-

the "generalized least squares" estimates 0^, are the values of u and

B which minimize the quadratic form

Q2 m (m -.)*•-l(m-) (2)

tIn the remainder of this report, we shall generally take z to be

the altitude coordinate and assume z0 to be known with negligible error.
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subject to the constraints F(ii, B)=0. Generalized least squares es-

tl•arp will usually be better estimates than ordinary least squares

estimates.

It will be assumied throughout this report that the measurement

vector m is a random vector with a multivariate normal distribution

with mean vector P and known& covariance matrix E. The probability

density function of m is then

*14(m) -)-n/2 exp [ - •(m - )*E1 (m - i)] (3)

"Maximum likelihood" estimates of v and B are the values of v and

B which maximize *(m) subject to the constraints F(u, B) - 0. From

the form of *(m), it is easy to see that maximizing ý(m) is equivalent
to minimizing the quadratic form in the exponent of (3),

Q3 - P)*Z- l(M

subject to the given constraints, F(p, 0) - 0. Since Q3 is identical

to Q maximum likelihood estimates are identical to generalized least

squares estimates when tbe measurement vector has a multivariate nor-
mal distribution. This will not be true in general for other proba-
bility distributions. Maximum likelihood estimates have the desirable

property that, under rather general conditions, they yield estimates

which have the smallest variance when large numbers of measurements

are taken.

The determination of generalized least squares estimates of p and

B requires finding the minimum of the quadratic form, Eq. (2), subject
to (possibly) nonlinear constraints, F(u, B) - 0. In general, this re-
quires numerical methods--one general procedure is described in Ap-

pendix A. Since the primary concern of this report is with cwitter

location accuracy and not estimation procedures per se, most of the

t In practice, E is obtained from error analyses and independent
testing of the location finding system and its components; or from
hypothetical values when different proposed systems are being compared
in analytic studies.
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remainder of the discussion is concerned with the determination of lo-

cation accuracy.

-_ (2)

Maximum likelihood and ordinary and general least squares are par-

ticular procedures for obtaining estimates. Other estimation procedures

exist aud ad hoc estimates not based on any general procedure are used

in many problems. Various criteria are available for judging the "good-

ness" of an estimation procedure. These usually involve some measure

of average closeness of tbt estimate to the quantity estimated. For

unbiased estimates, one commonly used measure of average closeness is

the variance of the estimate. Under fairly general assumptions the

Cramdr-Rao inequality described below provides a useful lower bound to

the covariance matrices of a large class of unbiased estimators. An

unbiased estimator whose covariance matrix is close to the lower bound

will then have an accuracy proximate to that of a "minimum variance

unbiased estimate." It is shown in Appendix A that the covariance ma-

trix of generalized least squares estimates is approximately equal to

the Cramdr-Rao lower bound.

As applied to the estimation problem of this section, the Cramnr-

Rao inequality takes the following form. Let the n x 1 measurement vec-

tor m have a multivariate normal distribution with mean vector V and a

positive definite covariance matrix E. Let F(u, B) e 0 be an r x 1

vector of constraints relating the n x 1 measurement parameter vector

p to the p x 1 estimation parameter vector 0. Assume that F(p, B) has

continuous partial derivatives. Suppose p : r : n, and define

F- W = i 1., s.e, r j * 1, see, n (4)

F a i - 1, see, r k- a, -.a., p (5)
a To

where F and F are evaluated at the true values of p and B.
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Let Z^ be the covariAnce matrix of an arbitrary unbiased estimate

of 8. Then, assuming that the regularity conditions given in Appendix
B hold and that the rank of F is r and the rank of F is p, we have

from Appendix B,

E (^(FuEF) FB (6)

Equation (6) is the Cramdr-Rao inequalityt for the covariance matrix

of unbiased estimates÷÷ of 8, and E is the Cramdr-Rao lower bound.

The inequality Zi t to means that the matrix Ei - to is non-

negative definite. This implies, for example, that the variance of

any unbiased estimate of an individual component parameter of 0 is

larger than the corresponding diagonal element of E Also, if the

component estimates are approximately normally distributed, the small-

eat volume with a specified probability content will be larger for a co-

variance matrix from 5' than from "

Equation (6) can be written in alternative computational forms in

special cases. From Eq. (6),

- ((AA)*F) (AFUE(AF)*)AF 8)- (7)

where A is any nonsingular r x r matrix. Thus, for example, in the

"ust-determined" case where r - p we may set A -F1 so that

E F8 F ZF1 (F8  (8

t Appendix B contains a proof of a more general version of the

Cramdr-Rao equality in which unbiased estimates of both Viaoid 8 are

considered.
÷÷It is shown in Appendix A that the covariance matrix of gener-

alized least squares estimates is approximately the Cramdr-Rao lover
bound.
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Equation (8) is equivalent to the classic "propagation of error" vari-

ance relationship given in many texts on a£plIP{A ,nnly_. If -" --

and F is nonsingular, we may set A - F in Eq. (7) to obtain

E " 4 4- 1 P -1 P )-l (9 )

Equations (7). (8), and (9) may be evaluated directly in terms of
P and F or in the following manner. Taking the total differential

of F(p. B) 0 0, we obtain the set of simultaneous equations

FUdP + FPdo - 0 (10)

Any permissible linear operations on Eq. (10) to simplify it are equiva-

lent to multiplying by a nonsingular matrix A so that

AFPd + AFd- (11)

Comparing the coefficients in Eq. (11) to the expressions in Eq. (7),

we see that if Eq. (11) is written in an equivalent form

Bdu + CdB U 0

then

E (C*(BEB*l-:C)-- (12)

For example, if F8 is nonsingular, and Eq. (10) is solved for do so

that

do - Bdv1

then

EI B EE (13)
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Suppose that F(p, 8) and E can be written (by reordering the pa-

rameters if necessary) as

0, ~ 8)
L 12 (0, V2' 0, 2) ]4

(Many of the problems in Section IV satisfy Eqs. (14) and (15) with

the emitter coordinates and 82 the aircraft coordinates.) Then Eq.

(6) reduces to

10 E1 11~ [ 1 2

F 1- 1 F iLB JL28 F2• 1 2 F'2~ 22B

1 i, A 1E 10 12

-FaA71F j A71  * A7l 8  
(16

LB2  10 1B 1821 18 F2 82 22

where A1  F 1 F1  and A2 - F2•2 2 F2 2. Inverting Eq. (16) by the

rule for partitioned matrices(2) yields (if F 1  is nonsingular)

* F 1  A + 8 (2AF 1 * i
18 1 1 2 1 22 2 2)z p182]F 11

r * -1 -1
0 2 0A 2 F20)

82 2 2
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so that

E - * *- -1 E F F*l (17)
£•1 .0 1ý. I .... I ,I .• 01 0 1 1 2 02 182U181

E (F2 8 (F2  E9•2 22 F2 ) (18)
82 0 2 2V22 V2 22

Equations (17) and (18) are thus equivalent to the intuitively
reasonable result that we may estimate 82 from the measurements on P2
alone and then estimate 81 from the measurements on a1 and the estimate

of 82. However, this result is not true in general. For example, if

01 is overdetermined (in which case FIB1 is not a square matrix), then
the measurements on V1 can contribute to improved estimates of 82 and

a smaller covariance matrix than that of Eq. (18).

When n k r > p (the so-called overdetermined case), it is some-

times useful to introduce r - p extra parameters into 8 (by defining

p .r equal to a subset of u1 ", * n* for example) so that

the new F is nonsingular. This is particularly convenient if the
8 -1resultant matrix for F F can be determined easily so that Eq. (8),0~ 1

which involves no further matrix inversions, can be used. The new

parameter vector is B "", p, 8 and the Cramdr-
pparaete

Rao lower bound for the covariance matrix for unbiased estimates of

(010 o 0 )p is the upper left-hand corner of the new EV

ADDITIVITY OF INFORMATION MATRICES FOR INDEPENDENT MEASUREMENTS

The matrix

€ F (F E) F (19)

in Eq. (6) is the "information" matrix for the measurement vector m

relative to the independent parameter vector 8.

Suppose that m consists of two stochastically independent compo-

nent vectors m1 and m2 with mean vectors pl1 I2A covariance matrices



F-12- I

E,, E2. and independent constraint relations F,(611, B) - 0,

F2(132,8) - 0. Then, for the combined measurement vector m,

E[ 2

* * *1 * * -

F (F* F)
1 Fi1 22

Fu 0
" F+22I 1

' 10 F 2

Substituting in Eq. (19) and expanding,

0 F *(F11 r EF) F + F(F 2

M1. (20)

so that for independent measurements and constraints, information ma-

trices are additive. Furthermore,

£1 - ( + 2)-1 (21)

"E£ 1- E1i (E10 + E2 0)-lE1 0 (22)

from Ref. 2, p. 29, where Z 16 and E2S are the matrices in the Cra'-r-

Rao inequality estimates of B corresponding to the measurement vectors
m1 and m 2 , respectively.

In the computer simulation dest.ribed in the Preface, Eq. (21) pro-

vides an efficient means for accumulating location accuracy data on in-

dividual emitters when a number of independent measurements are taken



Ih
-13-

during the course of the simulation. Only the distinct elements of

the information matrix for the emitter location accuracy need be saved

in the computer for each emitter. As additional measurements are made,
e.g., bearing measurements from a single aircraft, the information ma-
trix is updated by means of Eq. '(20). At the end of the simulation

run, the final information matrix for each emitter is inverted to ob-

tain E, and then Eq. (24) of the next section is used to obtain the

location CEP.

THE E4ITTER LOCATION ERROR CEP

If the measurements have a multivariate normal distribution, with

mean equal to the measured quantity, the generalized least squares es-

timate of B will be approximately normally distributed with mean equal

to the true value of B and covariance matrix given by Eq. (6) under

rather general assumptions (see Appendix A). We shall assume that the

location coordinate estimates are approximately normally distributed.

One measure of location accuracy is the size of the minimum area

having a specified probability of containing the estimate. From nor-

meal distribution theory, this is the area in an elliptical region

around the true location with area

_2wa X0a o o(1 _ p2 in (1 - P) (23)

whr 2 ad2
*Xwhere a and a are the variances of the coordinate estimates xo, Yo;

P is the correlation between the estimates; and P is the specified

probability. This measure of accuracy has disadvantages. If the var-

iances are quite dissimilar in magnitude or if the estimates are highly

correlated, the ellipse is quite elongated so that while the area may

be small, the error in one direction may be quite large.

As a seemingly fairer single measure of accuracy, the CEP of the

location estimate is commonly used. The CEP can be found from stan-

dard tables, as a function of a , a , and P .(3) When p - 0, so that

the coordinate estimates are uncorrelated, an empirical approximation
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with a maximum error of 1 percent is

CEP a 0. 5 9 (os + oa) as/aL x 0.5 (24a)

( [0.67 + O.8(aS/OL)2]L a S/oL 4 0.5 (24b)

where a is the smaller of a% and o., and aL is the larger.

When p 0 0, the coordinate system may be rotated to obtain now

location coordinate estimates for which the correlation is zero. The

angle of rotation is

a tan- 42p a /~ 2 (25)[ ' o/\j-o Yo/

and the resultant values of a and a2 are

•2 0 2 + 22
as S X0 yo Xo 0 )2+4o aya(6

a 2  a 2a + 02+ a a )2 + 4 XY (26)
°L 2 0 Yo0

%2 Y o [ a 0 - (P aa ~ (27)

A simple approximation to the CEP with a maximum error of 10 per-

cent and which does not require evaluating Eqs. (25) through (27) is

obtained as follows: From Eqs. (26) and (27),

a2 + a2 02 + 02
S L x 0 Y

and, from Eqs. (24a) and (24b),

CEP 0. 83 a(S +~) aL L*a (28)

0. 6L+ a >> a (29)

F ~~~I L L S m i •t e-
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The arithmetic average of Eqs. (28) and (29).

CEP - 0.75(a + 2)i.

O.75(a2 + (30)

approximates the true CEP to vithin 10 percent.

m
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III. LOCATION BY DIRECTION FINDING (DF)

..... .iz-A"I.LLS LUcrniques ror passive emitter location utilize
directional bearing measurements to the emitter from two or more loca-

tions along the reconnaissance aircraft's flight path. The emitter

location estimate is then taken to be some measure of the center of

the intersection points of the bearing lines (actually curves) formed

by the intersection of the bearing measurement planes and the earth's

surface.

A drawback to location by direction finding from tsinzle aircraft

is that for accurate locations the emitter must be turned on suffi-

ciently long for two or more bearing measurements to be made some dia-

tance apart. One way to overcome this drawback is to take elevation

angle measurements as well as bearing measurements. However, as will

be shown, location estimates from a combination of a single bearing

measurement plus an elevation angle measurement are as accurate as two

well-spaced bearing measurements only when the ground range to the emit-

ter is of the same order as the aircraft altitude, and the relative ac-

curacy becomes progressively poorer as the ground range increases.

It will be shown that when an emitter remains on sufficiently long

for multiple bearing measurements to be made, the CEP decreases as the

inverse square root of the number of independent measurements taken.

However, if the measurement errors are correlated, which is likely when

the measurements are taken at short intervals, there is a limit to the
"equivalent" number of independent measurements that can be obtained

(see p. 32) and hence a lower limit to the CEP achievable by taking

multiple bearing measurements.

A BRIEF DISCUSSION OF THE M.,SUREKENT ERRORS

A comprehensive error analysis for a proposed DF system would at-
tempt to account for all sources of error which contribute to the final

emitter location estimate error. The sources of error depend upon the

detailed design characteristics of the system. A discussion of these

sources is beyond the scope of this report.
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The errors may be broadly categorized as either aircraft naviga-

tion errors or bearin2 measurement errtrn. Tho A4rraft- nat,4oan 4f,

errors result in errors in the estimated aircraft location and the es-

timated direction of the base line from which the direction bearings

to the emitter are measured. The bearing measurement errors are com-

binations of errors in the sensor which measures the angle of arrival

of the electromagnetic wave and distortions in the electromagnetic

wave due to interactions with the aircraft structure, wave propagation

anomalies, etc. The latter errors may be functions of frequency, di-

rection of arrival, elevation angle, and aircraft attitude.

One simplistic categorization of the errors is given below. Fixed

errors are those which may be considered to be constant throughout a

flight. Random errors may be correlated from bearing measurement to

bearing measurement, but have mean zero.

I. Navigation Errors

a. Fixed navigation position error

b. Fixed navigation heading error

c. Random navigation position error

d. Random navigation heading error

II. Bearing Measurement Errors

a. Fixed bearing error

b. Random bearing error

If the fixed errors can be assumed to be random errors which are

fixed for a given flight, then these errors may be treated as additive

to the random errors at any given bearing measurement and are common

to all. The net effect in this case is that a given error type, bear-

ing measurement errors, for example, can be treated as random corre-

lated errors.

Certain of the errors may be combined for error analysis purposes.

The fixed navigation position errors, Ia, will simply add to the emit-

ter location errors if they are constant in each coordinate. The fixed

navigation heading error, Ib, and the fixed bearing error, Ua, may be

added together as a single fixed bias. The random navigation heading

error, Ic, and the random bearing error, IIb, may be added together as

a single random bearing error.
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THE FUNCTIONAL EQUATIONS RELATING THE PARAMETERS

The coordinate system used for DF systems is generally some form

of earth surface coordinates and altitude. For accurate location es-

timation procedures, correction for earth curvature must be made when

the surface coordinate system is approximated locally by a rectangular

coordinate system. However, since the earth central angle between air-

craft and emitter is quite small, the corrections are minor and may be
nons iered~guivalent to removinj biases in the estimates. Thus, for

location error analysis purposes it is adequate to assume a local

rectangular coordinate system tangent to the earth's surface in the

vicinity of the aircraft and the emitter. Let x, y be rectangular co-

ordinates in the tangent plane and z be the altitude above that plane.

Denote the aircraft location by x, y, z and the emitter location by

X09 YO z 0 as indicated in the following sketch.

z

A/C

(xoy,z) - -- Bearing base line

a \

r Em 0itter(xOYoZo0)
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Let e be the directional bearing to the emitter from the aircraft.

as projected onto the x-y plane. Since the aircraft and emitter are

not, in general, coaltitude. the actual measured bearing angle is in

a plane determined by the locations of the aircraft and the emitter

and the axis of the DF antenna system which we take to be the bearing

base line from which the directional bearings are measured (cf. the

preceding sketch). With no loss in generality, assume (temporarily)

that the bearing base line is parallel to the x-y plane.
Let * be the actual measured bearing angle. Then

Cos V!R (31a)

where V is a vector along the bearing base line, R is the vector from

the aircraft to the emitter, and V.R is the vector dot product.

Let i, J, and k be unit vectors in the directions of the orthog-

onal coordinate axes. Then

R - (x - x)i + (yo " y)j + (zo - z)k

and

Vc(R - (z- )k) V.RCo- O (31b)
viv IR. (- 0 O)ki IVlIR- (zo - O)ki

since V is perpendicular to k. Thus, from Eqs. (31a) and (31b),

I - 4% z)kl
/ýL. VI - a cos Q (32)

Cos e IRI P

where p - RI, a ° - z, and a is the elevation angle from the emit-

ter to the aircraft. Equation (32) is valid for any bearing base line

in the constant altitude plane.

S| | | | |MEN
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Now assume that the bearing base line is parallel to the x-axis.

We have

tan e - YO - (33)K -- x
0

coso coo coso (34)

coa , -2 a (Xo -x)2 + (Yo "y) 2
2 2 2 ) 2

Cosa (x x) + (yo - y)2 + (z -Z)2

Equations (33), (34), and (35) are the primary equations relating the

bearing angle ý and the elevation angle Q to the aircraft and emitter

locations.

The contribution of altitude errors to the total emitter location

error is generally quite small. This can be indicated as follows:
From Eqs. (34) and (35),

2• a -1/2

cos e - coo 2

a 2 -3/2
-sin - coe -

2) da

2 2

M coo e a(P2 -a 2)- 1 da

dO -- cot ear- 2 da (36)

where r 2 (P - a) (x° - x)2 + (y - yo) 2. From Eq. (33),

2 yo Y 1
sec OdO dxo - x dy0(x -x) o

Yo y x0 - x
de - dx° - r dy

1 (sin 8 dx - cos e dy) (37)
r 0
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Substituting Eq. (37) in Eq. (36) and simplifying,

T da a sin 6 dy0 - tan 6 sin 9 dx0  (38)

The bearing angle 0 is generally limited to an included angle of 90

dog or less centered on the perpendicular to the aircraft flight path.

Taking 0 - 45 deg as a typical worst-case condition and setting dxo = 0

and dyo u 0 in turn, we obtain, from Eq. (38), the first-order worst-

case effect of altitude errors,

IdyoI -dx I- v2 I del (39)

Thus, the first-order effect of altitude error is diveotZy proportional

to a, the difference in aircraft and emitter altitudes, invereeZj pro-

portional to r, the ground range between aircraft and emitter, and

6dieotZyj proportional to da, the altitude difference measurement error.
Since altitude difference errors will generally be hundreds of feet or
less, the contribution of altitude errors to the total error will be

relatively small whenever the aircraft-to-emitter ground range is much

greater than the altitude of the aircraft.

Since the primary use of aircraft-to-emitter altitude difference

is in finding the projected angle 0 in the x-y plane from the measured

bearing angle 4, and since altitude measurement errors are generally

of secondary importance, the altitude coordinates will be suppressed

in the following development.

We shall next derive analytic results for the emitter location

CEP in t'ie ap.'cial case where errors in the bearing measurements from

the aircraft to the emitter dominate the aircraft location errors.

Then the general procedure to be used when both bearing measurement

accuracy and aircraft location accuracy contribute substantially to

the emitter location CEP will be illustrated by some sample calcula-

tions.
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EMITTER LOCATION CEP FROM BEARING MEASUREMENT ERRORS ONLY

The emitter location CEP will depend, in general, upon the air-

craft location-error and bearing-measurement-error rovariance matrices

and the relative locations of the emitter and the aircraft when the

bearing measurements are made. In this subsection analytic results

will be obtained for the contribution of independent bearing measure-

ment errors to the emitter location CEP, assuming that the aircraft

locations are known with negligible error.
m mbeteno

Let N independent bearing measurements 01, .. , S. be taken on

the true bearing e 1 , .- ' N at locations (x1, yl)l . (XN, yN)

along the aircraft flight path. Let a0 be the common bearing measure-

ment standard deviation. Let the bearing measurements be taken rela-

tive to a bearing line parallel to the x-axis so that we have the

situation depicted below:

0 0N

From Eq. (33), the functional relations between the true bear-

ings and the emitter location are

i " tanr1(yo - Yi)/(Xo - Xi) i - 1, . N (40)

so that, taking the total differential and simplifying,

YO - Y, x0 - xl i

dei 0 - dxo 2 i dy° (41)
ri i

-1 (sin e -dx coo Oidyo) (42)
rx 0 dI
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where dniynr• (xO - x)2 + (Yo." -yi)2• ••i

Identi 0 2 (el' - 6N) with p and (xo, y0 )* with in the

development of Section II, from Eq. (41), F is the identity matrix and

-(Y y)/r2 (xo x,)/r 2

so that, from Eq. (9), the Cramdr-Rao lower bound for the covariance

matrix of any unbiased estimate of s * (xo y) is0 0

S (F-F )-I 2

2 44-
± o Y r /rn -E(y 0oaeure(n z

i y

-E YO 1)(X0 -X 1)/r4 ~xo -Xi) 2/r 4

(44)
Two Bearing Measurements

Choose the coordinate system so that the x-axis is parallel to the

line segment joining the two .aircraft positions and let

h yo - yj , yo y2

Then, Eq. (44) can be written as

*in~l 4 a i ir #in 3 ai cooa 1 -1
~i j h 2 (45)

-E Bin 3 e cog 0 E$n2aCo 2

io
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Since

[a c1-1 (ab-c2)-1 [b -c1 (46)

Lc bJ L-C aJ

the variances and covariance in I are

2 h20D--1(sin2  l c°o2 e + sin2 coo2 0 2% (47)

02 . h 2 a 2D-1 (sin4 1 + sin4 ) (48)

Y O e (sn 1 i 2)

a - h2 a2D-1(sin 3 e1 cos 01 + sin3 ., cos 02) (49)

where D, after simplifying, is

D - sin2 81 sin2 02 sin 2 (022 -1) (50)

Substituting Eqs. (47) through (49) into Eqs. (26a) and (26b), and

simplifying,

22.-1 2 2
aL -h a 6D [sin e1 + sin 02

+ (sin4 81 + sin4 02 + 2 sin 2 8a sin 2  2 cos 2(62 - ;]

(51)

2 2 2-1 2 e 2
- h -[sin 1 + sin e2

- (sin4 01 + sin4 02 + 2 sin2 b sin2 02 co0 2(e2 - 1))i]

(52)

Figure 1 contains CEP isocontours as a function of 6 - 0I and

ae- 02 - 81 as obtained using aS anc: aL from Eqs. (51) and (52) in

Eqs. (24a) and (24b).
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2
ISO

180 "

CEP - * k (o"9 in degrees) L160I V-2

140 -"

120

100

I40

2: 0 0 .1

S0 20 40 60 80 100 120 140 160 180

01 (deg)

FIg.1--CEP isocontours for two bearing measurements

LI
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From Eq. (30), the CEP may be approximated as

CEP - 0.75 f2 + o2 (53)

where from Jiqs. (47) and (48),

2 0 02 (2

The minimum value of the approximate CEP, Eq. (53), is at 81 60 deg,

62 - 120 deg, where

min CEP - /-ho0  (oe in radians) (54)

- 0.025 hoe (ao in degrees) (55)

Multiple Bearing Measurements

When the aircraft is flying a straight path and a number of bear-
ing measurements are taken at nearly equally spaced intervals along the
flight path, a simple approximation to the location CEP can be derived.

For convenience in the derivation, assume a coordinate system as indi-

cated below:

e- 
e- N - - -

0N

where the aircraft is flying in the direction indicated, h is the per-

pendicular distance from the emitter to the flight path, s Is negative
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to the left, and 01 , a20 ".0 8N are the true directions from the air-
craft flight path to the emitter at locations S,, s,), *.., s9, along

tMe flight path.

Identifying si with x - x0 and h with y, - yo in Eq. (44), and
defining L - sN - sit AG - 8N - 81, and (Iij} as the elements in the

"information" matrix on the right-hand side of Eq. (44), we have

2 2 2 22
Z61 h /(h +a

N 2N 21 2 +22 ds
fI h/(h do)

" 2Lh[sh/(h2 + s2) + tan-I h] SN

N am 28N+.62Lh h

N
Y2h (j sin 2eN- j sin 281+ A+)

N"2-rL (sin Ae cos (81 + ON) + AG) (56)

Similarly,

2 2 E62h2 +2 2
6 e22in~/h+i

N jaN 82 /h2 +a22 dSg fs/a(ha +s da

s1

N
-Nm• ( -sin AG cos (e6 + eN) + aG) (57)

2Lh 1
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a 2 1 -Z hs /(h 2 + 2)2

- Ž1 N he/(h 2 + 62)2 do

N sin A2 sin (01 + (58)

From Eqs. (56) through (58) and Eq. (46) it follows that

S2Lh Ae - sin Ae cos (e1 + aN) 02 (59)

0 (Ae) 2 -_si 2 n a

a2  2Lh A6 + sin Ae Cos (e8 + aN) 22 2-h1 as2 (60)
YO N (Ae) 2 _ sin2 AO

2Lh sin AO sin (el + ON) 2 (61)
XoYo N (AG) 2 

- sin2 Ae 8

The rotation to a coordinate system in which the estimates of the

emitter coordinates are independent is, from Eq. (25), through the

angle

2a

m tan" 2 2
x0 - 0Xo yo

tan-' 2 sin Ae sin (81 + ON)

2 sin AO con (81 + ON)

St (O1 + )

which shows that the direction of largest variation in the joint distri-

bution of estimated emitter coordinates is in the direction (O8 + ON)/ 2

relative to the flight path.
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Substituting Eqs. (59) through (61) into Eq. (27) yields

02 = 2Lh 2 6 + [4 sin2 Ae cos 2 (01 + eN) + 4 sin2 & sin2(e1 + eN)]i 2
N 2(Ae + sin Ae)(Ae - sin AO) 00

2Lh 1 02 (62)
N Ae - sin Ae e

Similarly, from Eq. (26),

a2 2Lh 1 C2 (63)
s N 60 + sin AO 08

Since L sN - I h cot N - h cot e,, we have

2(o 0. cot00,e,
h ( Nox ;i 1eP1a (64)

L Ae- si Ae

as h (cot eN co ei.

iU N

SAe + siee (65) :

OLU Ae +sin AO), (66)
a5 1 e -usinAe;

Figure 2 shows how the ratio aL/Os in Eq. (66) varies as a func-

tion of the emitter included angle AO w 6N - 81.
Figures 3a and 3b contain values of k k(611 Ae) obtained using

Eqs. (64) and (65) in the CEP approximation, Eqs. (24a) and (24b), so

that

CEP - k hoe

where oe is measured in degrees. Figure 3 is accurate enough for most
purposes when N is greater than about 5 and the bearing measurements

are more or loes uniformly distributed along the flight path.
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1000
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'i- ,

I-\
T
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110 100 1000

Included angle, 9 N-O8 (deg)

Fig.2-Eccentricity of location error distribution as a function of
emitter included angle
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16O12

1 I \\*CE k (d-9 in degrees)
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S1009
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0 20 40 60 80 100 120 140 160 180
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Fig .3a-.CEP isocontours for multiple bearing measurements
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2.8 h-

2.4 O

2.0 CEP-1 N N -

(a0 1 n degrees)

S1.6

1.2k2-

0.8-

0.4 -

/ 1?

0 ,
0 20 40 60 80 100 120 140 160 180

81 (deg)

Fig.3b--CEP ilsocontours for multiple bearing measurements
(small Included angles)



-33-

MINIMUM CEP FOR BEARING MEASUItRE4ENTS TAKEN AT A CONSTANT RATE

When bearing measurements are taken at equally spaced points along

the flight path, the CEP decreases as each new measurement is taken.

However, the minimum value of the CEP is not zero. In practical terms,

the lower limit is reached when the smitter passes beyond the line of

might from the airborne platform. A general lower bound can be ob-

tained as follows. Since the CEP decreases an 66 increases, and oS ap-

proaches oL as A$ approaches its maximum of v radians , we may simply

evaluate Eq. (24a) at 40 - ff. We thus obtain

CEP t 0.59 YIEhN 2w"i ae (a in radians)

;t 0m016 A 7  a, (ae in degrees)

where V' is the bearing measurement density in measurements per unit

distance (in the sme units as h).

CORRELATED BEARING MEASUREMENTS

When bearing measurements are taken on an emitter with only small

changes in the bearing angle between consecutive measurements , the bear-

ing measurement errors may be highly correlated. The simplest type of

correlation structure to treat is that arising when the bearing measure-

ment errors form a stationary Narkoff process. The increase in the

location estimate CEP due to correlation in the bearing measurement

errors will be illustrated for this case.

Let the correlation between successive measurements be equal to

p. From the assumption that the bearing measurement errors form a

stationary Markoff process,

1 "1 -P _P 1

E 1..2

~ ~~j and (-~ 4:..
(n 67

(67)
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Assuming a linear fliaht patli: --_ h"-, f-u,, Eqs. ((4) and (44),

I (68)

S(FE-1 F )-1 (69)

wherr2  2 +2where r 2 h + s and h and s9 are defined as in the sketch on p. 26.

Substituting Eqs. (67) and (68) into Eq. (69), performing the indicated

matrix multiplications, and simplifying, we find that for large N,

8r (F P) (I 2 + p)/(l - 0) (70)

Comparing Eq. (70) with Eq. (44), we see that Figs. 2 and 3 may be used

with ae replaced by oa/V(l+p)/(l•p) when the bearing measurement errors
form a stationary Markoff process with correlation between successive

measurements equal to p.

BEARING MEASUREMENTS PLUS ELEVATION ANGLE MEASUREMENTS

If an elevation angle measurement is made along with each bearing

measurement, an emitter location estimate can be made from measurements

taken from a single aircraft position. It is shown in the following

that when the elevation angle measurement accuracy is of the same order

as the bearing measurement accuracy, the combined bearing measurement

plus elevation angle measurement is roughly equivalent to two optimally

spaced bearing measurements when the aircraft-to-emitter ground range is t

equal to the aircraft-to-emitter altitude difference. When the ground

range to the emitter is much larger than the aircraft altitude, eleva-

tion angle measurements must be much more accurate than bearing mea-

surements to provide equivalent emitter location accuracy, Thus, com-

bined bearing and angle measurements are most useful against emitters

that are close to the aircraft and when measurements can be made at

only a few positions along the flight path (e.g., measurements on emit-

ters with very low power or intermittent operation).
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Let a be the aircraft-to-emitter. altitude difference, r be the

aircraft-to-emitter ground range, and a be the elevation angle from

the emitter to the aircraft. Then

tan a ar

see2 ao /x X0dx +~ ) Od

2 2 0x)2 0

sincer (x x 0) + (y- yo)2. Thus

do -sin a coo. a. - dy-o + (71)

Prom Eq. (41),

y -

Identifying (e, a) with 4 and (xo, yo) with A in Section IX, we
have, from Eqs. (71) and (72), i]

,-(y - yo) X - xo 'a
Plr V F 0 `J (73)

-L(x - xo) sin a coo at (y - yo)Sin a con .a

so that for independent angle measurements, from Eqs. (9) and (73),

[o2

10 2- 2

2o ÷0- yo) (x - )x - x c(y - Yo 4

0 Y 0 0 -42
(a M)x- xo)(y - yo) (x -xo) 2+ C(y -YO2_ (4

---- MM
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where c - sin2 a cos 2  2 2= a~ a*/a

Now choose the coordinate system so that x - ' 0 and, therefore,

r 2 . (y -O y2. Then Eq. (74) can be written as

Thus, j r] )

aX ro 0
0

a° r a//a-
y0 a

- r /asin a Cos a

=2 + 2
+ a +a (76)

where a and a are squivalent to the crossrange error and range
error standard deviation., respectively.

From Eq.- (30), the approximate emitter location CEP from the bear-
ing measurement and elevation measurement combination is then

CEP - 0.75(cr2 + a2
xc ye

- 0.75 ral+ (L + 0 (7

When a.a e ( a, Eq. (77) can be approximated as

2
CEP a 0.75 - a r >> a (78)a

a 0.75 F5 ra r m a (79)

a 0.75 aa a >> r (80)
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EMITTER LOCATION CEP CALCULATIONS FOR THE GENERAL CARR

Consider the following sketch depicting an emitter location (x.,

I yo) and five locations (xI, Yd' ... , (x 5, y5 ) along the aircraft

flight path:

(xo. Y)

82 e5

(x1 , yl) (x2 0 Y2 ) (x5 , Y5 )

Assuming the bearing measurement base line is along the x-axis,

we have for an aircraft location (x, y)

tan e - (Yo - Y)/(xo " x)

sec 2 Ode- (x - x) (dY dy) - xo- x)2 - y)(dx- dx)

r 2 d8 - (x, - x)(dy° - dy) - (yo - y)(dxo - dx)

22

r do + (x x)dy (yo y)dx (x x)dy Y )dx

where r 2" NX " -X)2 + (Yo Y) )2. Taking xo 0 and setting h - yo - Yi

(assumingE a linear flight path), Eq. (81) may be written for each air-

craft location as

hdx° + x dy° 2 -rdo + hdxi + x dyi 1 1, 5*82

Suppose that the aircraft location is estimated by a navigation

system wit2 independent errors in each coordinate with mean zero and

coon and that the bearing measurement plus navigation
coo vraneo



-38-

heading errors have mean zero and common variance C . Setting
S (xo, yO) and p " (els X1 9 Y9 "...' 59 x5 t Y5 ), the Cramdr-Rao

lower botin d for tho Pr ninv4 ,- -. ot % :,f A -. ..• - .... i

from Er i),

E (F (Fz F )F (83)

where, from Eq. (82), the ith component of dF(p, 8) is

-ride + hdxi + xidyi hdx -xidy (84)

so that

2
1

2
-r2 h x2

F- 02
02

-r 5

-F -

h x5

Using equally spaced aircraft locations from e1 - 45 deg to 05 - 135
.8. deg, a computer program to evaluate

.6 h- 10 a general version of Eq. (83) pro-
duced the illustrative results inCEP

(a). 2 the sketch at the left for the

emitter location error CEP. The0. DearinS measurement sketch illustrates the relative
standard deviation -,contribution to the emitter loca-

0 .2 .4 .6 .8 1.0 tion CEP from bearing measurement

errors and aircraft location errors.
Aircraft location ft3ndard

deviation a (n mi)
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IV. LOCATION BY TIME OF ARRIVAL (TOA)

Time-of-arrival techniques for estimating emitter location use

the arrIval time of an emitter pulse at two different aircraft as a
primary measurement. The difference in arrival time multiplied by the

pulse propagation velocity measures the difference in range between

the emitter and the two aircraft. Curves of constant range differ-

ences are approximately hyperbolas on the earth's surface, and the emit-

ter location is estimated as the intersection of two such curves. Con-

sequently, three or more aircraft must be used for an instantaneous

location "fix" on an emitter. Only two aircraft are required if two
or more range difference measurements can be made on the same emitter

"over some elapsed time interval.

Two hyperbolae can result in as many as four points of intersection.

When there are multiple intersection points, additional information is

required to eliminate the "ghost" intersections from the one represent-

ing the true emitter lncation. The additional information may be pro-

vided by TOA measurements from new aircraft locations, a crude direction-

of-arrival measurement, or knowledge of the general location of the emit-

ter.

THE TOA HYPERBOLA

For illustrative purposes, consider the two.-dimeneional flat-earth

approximation with the aircraft and emitter taken to be in the same

plane. Assume a coordinate system in which the two aircraft are one

unit apart on the x-axis, with the origin at the midpoint. Then the

range difference to a target at (x, y) is

d [(x + )2 +y2] _ [(x j)2+y 2 ] (85)

For fixed d, Eq. (85) reduces to the branch of the hyperbola,

2 2d-2" • - 2 d 2 : 1 (86)

d
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which passes through the point y - 0, x - d/2 and whose values are

asymptotically equal to the lines through the origin with slopes

m-i (l/d2

The tangent to the hyperbola bisects the angle formed by the lines

from the emitter to the two aircraft locations. This can be shown as

follows:

Let P and p be two points on a given hyperbola. Then by the law

of cosines

d r2  r 2 + (d1 + x) - 2r(d1 + x) cos a

so that

co a a (d - r - (d 1 + x) 2)/2r(d1 + x)

Thus,

lim Cos a- lim x
P 4p P 4pr

Similarly,

lim Cos -- lm
p. p P p r
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so that

1iim a - 1im
P , p P-* P

showing that the tangent to the hyperbola bisects the angle formed by

the lines from the emitter to the two aircraft.

ERROR ANALYSIS EQUATIONS FOR THREE-AIRCRAFT TOA

For error analysis purposes and distances up to a few hundred

miles, it is generally adequate to assume a flat-earth coordinate

system consisting of a rectangular coordinate system in a plane tan-

gent to the earth at a point in the vicinity of the emitter, with alti-

tude above the earth's surface as the third rectangular coordinate.

The errors in using such a coordinate system may be considered as

biases to be corrected by the location estimation procedure.

Let the aircraft coordinates be (xis Yi, zi) 1 1. 2, 3 and the

emitter coordinates be (o0 Yo, Zo ). Let rij be the distance from

location i to location J, and

dij r~o -rjo. (87)

th thbe the difference between the distances from the i and j aircraft
locations to the emitter. Since 6ij - 6tk + 8, k 0 i, J, any two of

612, a13' or 631 may be taken to be the TOA range difference parameters

(TOA time difference multiplied by the speed of propagation, about 1

ft/nanosecond.)

The equations relating the emitter and aircraft locations are

r 2 (x - x )2 + ( - y) 2  (z - ) 2  (88)

Taking differentlals of both sides of Eq. (88) gives

drij " cijx(dxi - dx ) + Cjjy(dyt - dy ) + cijz(dzi - dz•) (89)
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where

Cijx - (xi - xj)/rj (90)

Cijy = (Yj - Yj)/rij (91)

SM (zi - zj)/rjj (92)

are the direction cosines of the line joining location i to location J.
From Eqs. (87) and (89),

d6ii " dro 0  dr o

= (CLox -c lox)dx 0 + cloxdx1 - cioxdx

"+ (Cioy - cloy )dy 0 + caloydy -1 Coydyi

"+ (Cioz - loz )dz 0 + C lozdz 1  Ciozdz i 1- 2,3 (93)

Equations (89) and (93) provide the basic relationships for the

analysis of TOA emitter location accuracy. Equation (93) relates er-
rors in the range difference measurements to the errors in the loca-

tion coordinate vector 8 - (xop YO zo' ... ' x3 P Y31 z3), whereas
Eq. (89) relates errors in range measurements between aircraft to er-

rors in 0 Similar equations hold if ground-station-to-aircraft

range measurements are included.
In the following, we shall first obtain analytical results for

the emitter location CEP for cases in which certain of the measurement
error accuracies dominate the remainder. Then, sample calculations

will be presented illustrating the general procedure for obtaining the

emitter location CEP when both the aircraft location accuracies and
the aircraft-to-emitter TOA measuremept accuracies are important.
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EMITTER-TO-AIRCRAFT RANGE DIFFERENCE ERRORS ONLY

Suppose the three aircraft locations and the emitter altitude are

estimated with negligible error.

Let

S- 62 - r - r (94)
1 12 lo, 2o

62 - 613 - r10 - r 3o (95)

be measured with measurement error variances a,, a2 and correlation

coefficient p.

Assume also that the aircraft and the emitter are in the same

geometric plane (or that the altitude differences are inconsequential).

Then Eq. (93) can be written as

d1 (cos y2 - coo y1 )dx° + (sin 2- sin y1)dY (96)

dM2 - (cos y3 - cos yl)dxo + (sin Y3 - sin yl)dyo (97)

where y. is the angle between the line joining the ih aircraft and

the emitter and the x-axis.

Now choose the x-axis to bisect the angles between the lines

joining two of the aircraft and the emitter as indicated in the sketch

below:

(x2Y2)

(xIyI) x-axis 3PY3

IL
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Then, from Eqs. (96) and (97),

J16 - [cos (a + 0/2) - cos 0/2]dx + [sin (a + 0/2) - sin 0/2]dyo
0. 0

-2 + + 2 sin a con ! dyo (98a)
2 2- o -- 2 2o- a-n-

d6 [coo ( - 0/2) - coo 0/2]dx + [sin ( - 8/2) - sin (0/2)Jdyo

-- 2 sin • dy° (98b)

Solving Eqs. (98a) and (98b) for dx and dy ,

dx - -asc E d6 + coe coo0 1 a d2
os 2 ( 2 1 2 2 2 9a

dyo a - *csc d62  (99b)

From Eqs. (99a) and (99b), after some reduction,

a 2 +a 2  2 a+8 (012 e 2 2ao Yo a Coeo CO e2 +a Coe2

x yU~8 2 1 2 22

+ 2pa 2 CCeC Co c os +o /

' ~where

D - 4 n .2 7.2 sin T c

- +[sin a + sin 8- sin(a + 0))2 (101)
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Substituting half-angle formulas in Eq. (100) and simpiiry1L1* yiCldS

2 2
(1-COsO)ca2 + (1-coss)oa + PCla2 (Cosa + Cos$ - 1 - cos(*+))02 + 2 2 1 ...... .

+ .2
0 2 (sina + sinO - sin(c+B)) 2

(102)

From Eq. (96),

1 w rlo - r 2o a t 1 0Vlo - t2oV2 o

2 = rlo - r2o 0 tlo - t2ov2o

where t i is the propagation time and vio the average propagation v*-

locity (about I ft/nanosecond) from the emitter to the ith aircraft.

Assuming that the variances and covariances of the errors in the me&-
2surements of tiovio are equal with common variance ad and common cor-

relation Pd (which is reasonable if either the velocity estimate errors

are negligible compared to the time-of-arrival errors or if the emitter

distances from each aircraft are comparable), the covariance matrix of

the measurement errors of 61 and 82 is

S: 2 2

where 2TO " (1 - 2d is the "effective" range difference error vari-

ance. 
0 O

Substituting Eq. (103) in Eq. (102) gives

S02 +•2 .3-€osct- oos•- cos (c +,•) 2aTXo Y a (sin ai+sin +uin (2 +8))2 OA

3-cos 1 -cos1• 2 "cos 3  2 0
(si + sin 2 + sin 3)2 2OTOA0

P 1 2| 2_S | | | || S | | S |
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where n, X 0, nI + , 2 + 13 - 360 deg, and 1i' •2' 13 are the angles be-

tween the lines from the emitter to the aircraft, measured in a clock-

wise direction.

Equation (104) is a minimum when nI - n2 3 n 120 deg, which im-

plies that the emitter location errors tend to be smallest near the
center of the aircraft triangle.

It may be noted that the emitter location CEP is proportional to

aTOA and independent of scale, i.e., Eq. (104) is a fuz.ction only of

the angles between the aircraft and the emitter.

Figure 4 contains CEP isocontours as a function of a and B (ac: S),

the two smallest angles from n,' "2' and ny3. This figure is thus valid

for all aircraft triangles. Figures 5, 6, and 7 contain CEP isocon-

tours for three isosceles aircraft triangles, as obtained from a more

accurate CEP calculation than the approximation of Section 11. The

figures are not valid for emitter locations near the extensions of

the aircraft triangle base legs, where certain assumptions made in
the analysis are not met. In fact, Eq. (104) implies an infinite

CEP along the base leg extensions--which is not true for the location

estimate that is the intersection of the range difference hyperbolae.

From the figures, at a given distance from the cantroid of the iso-

sceles triangles, the CEP is a minimum on the perpendicular bisector of

the unit base leg. Along the perpendicular bisector, 11 n , 2 n n and

1n3 - 2r - n, so that Eq. (104) becomes

a 2 + a2 3 -2 coojn-coo 2n 2a02
0 0 (2 sin n - sin2n)

(2n1 + (2n1)4± _rj2j 2 -C43 ~ 1O

(6/1n4) aT2
TOA

96 R sc TOA R > > 1
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e. 2 9• K

21293 622 4 0 6 302 241

7632 04 342

2 3 1012. 670

4

396 

153 

77

3

9 6K01 2 34 5

80 (dog)

160 2----

40 - .2

101K

40 
>

20 10 Nate. a and Pare the two smallest
20 angles from 'r17 j2, and '3

0 

1

0 20 40 60 80 100 120

a (dog)

Fig.4--CEP Isocontours for arbitrary TOA aircraft triangles
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7 A
II

CEP = K" '

6 K =300

5

4

2

1/

A/C A/ A 2 3 4

Fig.5-CEP isocontours for 180-deg isosceles (line) triangle (TOA)
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I CEP= KcrTOA -

[ ~6 - L b K = 300______

200

3

2

0 12 3 4

Fig.6--CEP Isocontours for 120-dog Isosceles triangle (TOA)
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7 r-

6 K =.300 CEP K TOA

200

4-
100 S1 DOK =300

3L
3200

2

50 .50

11

iiA/ 0 / .

0 1 2 3 4 5 6

Fig.7-CEP isocontours for 60-deg isosceles (equilateral)
triangle (TOA)
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where R is the distance from the emitter to the unit base leg. Thus,

SCE 0.75 A96 R2 aTOA

27 RaTOA R > 1

A similar reduction for a 2 and a2  for locations along the per-

pendicular bisector yields x YO

ax 4 iF6 R2 aTOA R >> 1 l

•Yo R TOA

/2 ~ Ra R >>1
y TOA
0

and the correlation term, by symmetry, is zero. Considering the y-axis

to be "downrange" and the x-axis to be "crossrange,"

.DR CR

~7R R>

so that the downrange errors are much larger than the crossrange. This

is also true for locations off the perpendicular bisector.

AIRCRAFT LOCATION ERRORS ONLY--I

Suppose that the aircraft locations are estimated from independent

navigation systems and that the TOA errors are negligible relative to

the aircraft location errors. Suppose that the aircraft and emitter

altitude estimate errors are also negligible. Assume that the aircraft

and emitter are in the same plane (or that the altitude differences are

inconsequential). Let the aircraft locations be (xi, y k = 1, 2, 3

and the emitter location be (x 0 , y 0 ). Suppose also that the aircraft

navigation system position errors are independent in each coordinate
2with coummon variance c
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Since 612 and d13 are assumed known, from Eq. (93) with d612
dd~ i - a l n cb t al.n

(COS Y2 - Cos Yl)dx 0 + ($Cn Y2 " sin Yl)dYo

coo y2 dx 2 - cor y1dx1 + sin y2 dY2 - sin yldy1  (1OSa)

(coo Y3 - cos Y1 )dx 0 + (sin Y2 - sin Yl)dYO

. cos Y3 dx 3 - Cos Yldx 1 + sin Y3 dY3 - sin yldyl (105b)

Taking the measurement parameter vector as u - (x1 1 yl, x2, Y2. x3,

Y3), from Eq. (105),

~-Cos Y1  -sin yj coo y2  sin Y2 0 0

L-coil Y -@in Y1 0 0 cos Y3 sin Y3

,o1 that, in Eq. (6),

Comparing Eq. (106) with Eq. (103), and the left-hand side of Eq.

(105) with the right-hand side of Eqs. (96) and (97), and using Eq.

(104), it follows that

2 +02 -3-cos n1 - coo n2 - coo n3 202 (107)
°Xo Y'o (sin rnI + si n2 + s~ n)

Thus, Figs. 4 through 7 can be used for the CEP from only the aircraft

navigation errors by replacing 0 TOA by o.

Also, assuming that the aircraft navigation system errors are
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independent ot the ew!LL=--tQ Z-rCraft A•ng difference errors, from

Eq. (104),

2 + a2 ,3 - cos n, coo .- coo n3 2(a 2 + 02) (108)
Xo0 YO (sin n, + sin n2 + sin n3)2

for the combined effects of the measurement errors. Thus, Figs. 4

through 7 may also be used for the combined errors by replacing aTOA
by (2 +2 0.
by ( + aTOA

AIRCRAFT LOCATION ERRORS ONLY--If

As another example in which analytic results can be obtain-d, con-

sider a TOA system in which the aircraft locations are estimated from

DHE measurements between aircraft and aircraft position measurements

from independent navigation systems.

Suppose that the TOA measurement errors, the aircraft and emitter

altitude measurements errors, and the DME errors are negligible role-'

tive to the aircraft position errors. Assume also that the aircraft

and emitter are in approximately the same plane and denote the air-

craft positions by (xi yi) i - 1, 2, 3 and the emitter position by

(xo, y ). Suppose also that the aircraft position errors are indepen-

dent in each coordinate and from aircraft to aircraft, and let the
2

errors have common variance a.

For convenience, let the coordinate system have its origin at the

centroid of the aircraft triangle so that x1 + x2 + x 3  0 and y +Y 2 +

Y3 - 0. Let ýi be the angle between the x-axis and the line joining

(xis yj) and (xo, yo) and 0 the angle between the x-axis and the line

from the origin to (xo, yo). Then

xi -x = rio cos (o + ) i+- 1, 2, 3 (109a)

Yt yo rio sin ( + Ao1 ) i 1, 2, 3 (109b)
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where Aoi - o is known.

From Eq. (109),

dxi - dxo - rio sin (0 - Ao ) do

"- dxo - (y - YO) do I a 1, 2, 3 (110a)

dyi - dy0 + rio cos ( 4-0A1 ) do

- dy0 + (xi - xo) do i - 1, 2, 3 (l1Ob)

Setting the measurement parameter vector V M (xl' x2, x 3 , Y1, 2

y3 ) and the estimation parameter vector 0* - (xo, y0, *), from Eq.. (110)

and (12),

- (c'c)"l 02 (111)

where

"I 0 yo-Yl

1 0
1 0 y-y 2

C 1 0 yo-Y3

0 1 x-x

0 1 X2-xo

0 1 x3-x

Thus,

C*C [- 3 b
b ccumI:~
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where

i-i
3

b 0 2 (xY- Xo) d 3x
0 0

i-i

i-1

"-; (x,+ ) +-3x +yx )
i-,

" 3r2 + R2) 2

r2is the me~.ag squared range between the aircraft locations and the

centroid, and R2is the squared range from the emitter to the centroid.

Now choose the x-axis to pass through the emitter location so that '

-o 0. The error in the x-direction may then be considered to be the '

range error and the error in the y direction the croasrange error. :

Then

CC3

C*Cm3[Q a R2+r 1

and

[2 21

(CC)- (1 R2+r 2  (112)

2r
SI th avrae suard rng bewee th arcrf oain n h
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Substituting Eq. (112) in Eq. (111),

2 22

a2 X o2/3 1•

a2I (1 + R2/r 2)o 2/3 (113b)Yo

so that

CEP 0. 75 (a2 +a
X0 Y

0.43 (2 + R2/r2)* a (114)

When the aircraft triangle is equilateral with side ,length e, the

distance from the aircraft to the centroid is X/IA, so that r 2 
* t 2 /3

and Eq. (114) becomes

CEP 0.43 (2 + 3(R/) 2)*

u 0.75 (RA/) a R >> A

EMITTER LOCATION CEP CALCULATION FOR THE GENERAL CASE

In the preceding, we have derived analytic results for the emitter

location estimate CEP for the TOA systems for cases in which certain of

the measurement errors dominated the remainder. The following example

illustrates the general procedure for determining the emitter location

CEP which combines the contributions from all the measurement errors.

Suppose that the aircraft locations are determined by combining air-

craft altimeter measurements with DME range measurements between air-

craft and between the aircraft and two ground stations (as in one mode

of the Air Force's QRC-334 system). Suppose also that the emitter al-

titude is estimated separately by an independent measurement with known

standard deviation. Denote the (known) ground station locations by



1i1
(x 4 ' y4 - '4) and (x 5 , Y5  .Z5)" The parameter vector to be estimated

can then be taken as

%- .mo' Yo0 Zoo XlI Y., Z., X2 . Y2 PZ2 P x3 s Y31 z3)

and the measurement parameter vector as

- (6128 613, r' 4 , r 15' r 2 4 ' '25' '34' r 3 5, r 1 2 . r 1 3, ?23, O Zl' ,22 T3)

From Eq. (6), the Cram6r-Rao lower bound is

I F (Fu 'I7j)'IFB)"I (115)

where, from Eqs. (89) and (93), F - I, and F, is the matrix on p. 58.
Suppose that the standard deviatioo of the DME range measurements

is 10 ft. that of the TOA Tange differences is 20 ft with a correlation
of 1/2 (i.e., assuming independent time-of-arrival measurement errors

at the three air-.raft), that of the aircraft altitudes is 40 ft, and

that of the emitter altitude, 100 ft. Assuming that all measurements

except TOA range differences are uncorrelated, the non-zero elements

of the measurement covariance matrix £ are E11 " £22 " 400, Z12 E 21
200, £33 11- 1 100, £12,12 - 10,000, £13,13 £14,14 "E15,15 "

1600.

The following figure illustrates the output of a computer program

which calculates tE from Eq. (115) and then the approximate CEP of the

emitter location estimate from Eqs. (26), (27), and (24):
Numbers in a given column are approximate emitter location CEPs for

emitters at the points indicated by the blocked number in the column

when:

Ground stations GS1 and GS2 only are used and

a. Aircraft-to-aircraft distance measurements are omitted

b. All measurements are Included

c. There are TOA measurement errors only--known aircraft

locations

... .....
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mitter CEP (ft)

250-1 - i2 157 222 499 1254 2927 a.

210 152 210 457 1117 2562 b.

200- 12 114 1 62 37 96 227 a.

303 2A8 324 664 1521 3301 d.

L 625 560 835 1769 4044 8632 a.
150

nui

A/C A/ C fC
100 A

50 0 0 0 0
CS1 GS2 GS3 GS4

0 50 100 150 200 250 300 i
---- n mi

Ground stations GS3 and GS4 only are used and

c. There are TOA measurement errors only-known aircraft

locations

d. All measurements are included

e. Aircraft-to-aircraft distance measurements are omitted

As indicated in the figure above, the CEP depends on the relative lo-

cations of the ground stations and the aircraft, so different results

obtain for each configuration of ground stations and aircraft triangle

considered.
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Appendix A

GENERALIZED LEAST SQUARES ESTIMATION

As described in Section 11, the general estimation problem in 1o-
cation finding involves a set of measurements m - (ml, ... , mn) on the

observed parameter vector u = (uil ***" Un) and a set of functional

relationships between 1 and the (possibly) unobserved parameter vector

0- (01p ... , 011 )

P(p, 0) - (f1 (p, ), ... , f (p, 0))*- o (116)

Fl(p, 0) may include relationships on p or 0 alone, i.e., certain of

the f (u, 0) may be independent of v or of 0. The general estimation

problem is to estimate p and 0 subject to the constraints, Eq. (116).

Generalized least squares estimates of u and 0 are the values p

and 0 which minimize the quadratic form

Q= (m - -1(m -•) (117)

subject to the constraints F(p, 0) 0 0. In general, when F(u, B) is

nonlinear, the determination of ý and B require numerical methods. One

widely used iterative procedure is an adaptation of Newton's method,

sometimes called the method of linearization.

Let U0, 00 be initial guesses of p and 0. Approximating the ith

component of F(U, 0) by the first-order terms in the Taylor series

expansion around pw, 00,

n
fi(p. 0) - fi(opo 00) + I-a U0-0. 00

p a
+ 0-). , o -B

k-1 = o
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Definingt F as the r x n matrix

"'(Uo - 8.0)

andF 0 as the r x p matrix

Eq. (118) becomes, in matrix form,

F(, 8) ( F(0 , ° 0) + (I0 + F( SO 0) (119)

New approximations to p and 8 are obtained by first imposing the con-

straint equation F(p, 8) - 0 on Eq. (119) to obtain

0 iF(V, 80 ) + F (V - Vo) + F8(8 - 80) (120)

and then minimizing the quadratic form, Eq. (117), subject to the tUn-

ear constraints of Eq. (120). The latter problem is a generalization

of the usual linear least squares estimation problem. A quite general

solution is given in Ref. 4. When F and F have full rank, the new
A A

approximations to u and 8 are

SF*(F EF )-I[I - F (F*(F EF*) F) F(FEF )](Fm - v)

(121a)

1A more standard notation for F. and FO would be F (°.1 80) and
FS (U°, 80), indicating the values of the arguments at wJich the func-
tions are evaluated. However, this is cumbersome. The values of p
and 8 at which F,, and Fa are evaluated should be clear from the con-
text.
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81 -(F*(F EF )-IF•)-F (F EF*)-i (Fm- v.) (121b)

where v - F o + Fa 800 F(va, o)

Approximate covariance matrices and cross-covariance matrices of

P1 and 81 are

E E - EF (F F) 1lI (1 F (FQF*) F) 1 F)(F EF )]F E

(122a)

Ea8- (F*(F F*)l F)l (122b)

E EF- (F EF*))F-(F (F EF )1  (122c)

If the initial guesses o and 80 are close to 1^1 and 8. minimizing

the quadratic form of Eq. (117) subject to the linear constraints of

Eq. (120) will be approximately equivalent to minimizing the quadratic

form subject to F(., 8) - 0. The result is a new approximation pl 1
8 to 0, 8. The entire procedure may be iterated until convergence

of the sequence (pi *0) is indicated. Conditions under which the
sequence converges to U, 0 are contained in Ref. 5, for example.

Comparing Eq. (122) with Eq. (125) of Appendix B, we see that the
only difference is the value of (u, 8) at which F and FO are evaluated.

When the covariance matrices of p and 8 are small so that V and 8 are
close to P and 0 with high probability, the approximate covariance and

cross-covariance matrices of Eq. (122) will be close to those of the

Cramdr-Rao lower bound for unbiased estimates of p and 8.
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Appendix B

THE CRAMiR-RAO INEQUALITY

Let p(X, 6) be the probability density function of a vector random

variable X with an unknown parameter vector e * (e 1, ... k) Define

32 n•

-ij E(pij)

The matrix

0-(• i, j -1, ... k

is called the information matrix for p(X, 6).

Theorem 1. Ase .Tdr-Rao inequality for unbiased ea• orsa;oP.
Lt a(X), a (X), X) be t statiatioe 8uoh that

E[mI(X)], g(iol, ek)

is j 0 1, .. , t
E((si - Si)(5j - g1)] = U

Suppose ag/ e wexits and define the w~triaee

V- (Vii) iJ 1, t

a= (ai/ae, i = t j 1, 2k

t Reference 2, p. 265.
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If differentiation mauy be passed under the integration eign so

that

- f--is (X)p(X, O)dX

- (x) ap dXae

then

V - 60 g• 0 (123)

i.e., the nvativf~o V - Af$ A is nonnegative definite-t

In Section II, the logarithm of the multivariate normal density
function for the measureaent vector m is (aside from a term independent

of p) proportional to

(M - U) E1 (M -) (124)

vhere the n x 1 measurement parameter vector p in related to the p x 1

independent parameter vector 0 by the r x 1 vector of constraints

0(, ) =0 •

Let uO, B0 satisfy F(1°, B
0 ) 0 and define

�BF 8 0 (r x n)

A ao (r x p)

÷The matrix 4 is any generalized inverse of 0, i.e., any matrix
satisfying 00-0 - 9. If 0 is positive definite, 0- - 1.



-66-

Assuming that F has continuous partial derivatives at 00, 8)),

F has full rank r, FB has full rank p, n k r z p. and that the rq,4,*re-

.-.=t %6uve for the Cramdr-Rao inequality hold, we obtain the following

result.

Theorem 2. With the above assuwnption-, the dispereion matrix E,

of az unbiased estimate , of o, 0 eatiafies the matrix inequaLity

(A 2 B means that A - B is poaitive definite).,

£^ L IL - E(125a)

where

•* -P *-(
E EF E*(F* (F*)' -(I- F(F( ii B) )-I ) ]F (125b)

E "F(U F F)(125s)

Proof.. First, suppose that I is the identity. The total differ-

ential of F(p, 8) - 0 at uo, 80 is

F di + F dB - 0 (126)

Let the columns of the n x n - r matrix U and the columns of the

n x r matrix W be orthonormal, and let the columns of U span the null

tThe proof given here uses properties of the pseudo-inverse of a
matrix. The pseudo-inverse of a matrix A is the unique matrix A+ set-
isfying (a) A+A - A, (b) AA+ At, (c) (AA)* - M, (d) (A+A)*
A+A. The properties of the pseudo-inverse used here are contained in
Ref. 4, for example.
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space of F and the columns of W span the space orthogonal to the null

Define 6 and y by the invertible transformation

uVn W6 + Uy + o (127)

and H(6,e) by

H(6, e) -F(Wd + Uy + o, 8) (128)

where 6 - (8 , -Y") Then H(6, 6) has continuous partial derivatives,
H(O, e) - 0, where * 0* DH* n

S 0)* and = 60 6 6n
singular. By the implicit function theorem,t H(6, e) - 0 has a unique
solution 6 - h(e), i.e., H(h(e), e) - 0, in a neighborhood of 8o' Thus

06 is a vector parameter indexing the normal probability density n(m, v1)

in that neighborhood.

From Eq. (127),

di Wd6 + Udy (129)

Substituting Eq. (129) into Eq. (126), we obtain

F (Wdd + Udy) + Fd1 - 0

F Wd6 + 0 + Fd8 - 0

so that, since F W is nonsingular,

dS - (F V )-F dO (130)

Peaference 6, p. 138.
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Substituting Eq. (130) in Eq. (129),

dv - - W(F W)'IF d$ + Udy

* - W+0F•FdB + Udy

"F+F dO + Udy (131)

or, in matrix form,

d- - (F+P8 , U)de (132)

The information matrix j is

"lEE aeL •Ve ]) j(133)

who e '0a We haveSeIl

ae ae1 ae Be

9 a" -jj)*(, - )

=(F F U ) _13)- U) 1 3- 2)) (1.34)
from Eq. (132). Thus,
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(F -) F (F+Fa, U)

U[ ](,rI (,, *F u,

U*F + F - U

- t i a)zul

-00

since U- d I an.

UaUP (UICY!

*[(IF 7 )4F U)5

"o] (136a)

0 1
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To apply the Cramr-Rao inequality to estimates of v and 0, set

Then, in Theorem 1,

IA0

m-U

' " (136b)"

from Eq. (132). From Eqs. (136a) and (136b),

~F~F 8 )*(137)

where

M (F (F F +1F0)

Performing the indicated matrix multiplications in Eq. (137). we have[ +F E (F +F)* + UU* p4.F 1
- E E(1F8) Es (138)

where,* *,where, from the definition of U, *-0"J * I - F+F (see Ref. 4).
PP'
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Substituting

p.4. (F F)Y 13;

in Eq. (138), we obtain the result stated in the theorem when Z is the

identity.

When E is an arbitrary positive definite matrix, there exists a

nonsingular matrix A such that

EZ AA* (140)

Equation (124) can then be written as

- j(A-1  - A7'u)*(A*' - A71 ) (141)

Setting u Akn, Eq. (126) becomes F Adn + F d0 - 0. The previous

development for E as the identity can then be followed through Eq.

(135a) with n replacing v and F A replacing F To apply the Cramer-
Rao inequality to estimates of U and s, aet

Then,

-A(FA)F+) -A

* ***

A(IA)+FO(A(F U A)+F:a + A A( A)+F E] (142)
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where,

- P ((F A)F 8  (F A) + F)

M(F (F rIF• FB (143)

* * (F pAi)+(Fi A)F )A*

AUU A - A( -(F)+()

- A(Z - (F A) (F A)A)A F U)A

-A(I A (F A)(F A(:)F A) )FA)
- A(I - A*F* (V ZF*)+F A)A*

IEF* (F IF )½7 1 (144)

and

A(F A)+ -A? A) *(1 A(F A))

- E,•(F EF:)-1 (145)

Substituting Eqs. (143), (144), and (145) into Eq. (142) and applying
the Cramdr-Rao inequality given the result stated in the Theorem.
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