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ABSTRACT

Endfire radiation in planar finite arrays of circular apertures in aper-
tures in triangular arrangement is investigated by using a technique con-
sisting of using the results obtained via the usual infinite array model as a
zeroth order approximation of a perturbation procedure. It is shown that
finite arrays can be scanned up to 90 degrees from broadside, still retaining
substantial radiation. The endfire radiation can be enhanced through an
appropriate design of the element feed network. With minor modifications
the method can be simply applied to the approximate investigation of the

radiation of an array on a cylinder (having a large radius in terms of wave-
lengths) in the axial direction,
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ENDFIRE RADIATION FROM PLANAR AND LARGE
CYLINDRICAL ARRAYS

1. Background

The analysis of planar and cylindrical periodic arrays is usually based
on the infinite array model[1-6]. In this way all the analytical problems
related to '""edge effects' are avoided by simply postulating that the enviren-
ment is the same for each element. It is well known that according to this
model a planar array cannot have any endfire gain. Also for cylindrical
infinite periodic arrays the gain can be shown to go necessarily to zern in
the direction of the cyvlinder axis. It is consequently clear that the infinite
periodic array model becomes useless for those directions for which end-
effect plays a fundamental role, and a formalism which better reflacts the
physics of the phenomena must be sought.

Considering the finiteness of the array makes the analysis very involved,
and leads invariably to facing the problem of the inversion of large matrices
with complex elements. The problem can however be circumvented through
the use of a perturbation technique, based on the recognition that for a large
array the '"eigenexcitations'' of the structure (eigenvectors of the element
scattering matrix) [7] are ''not too different" from those of an infinite
structure (with the same element and spacing).

A technique based on this idea, which does not require any large matrix
inversion, has been recently introduced and applied to the analysis of an array
of uniform slits on a conducting ground plane, considering the radiators as
"one mode" elements [7]. This report extends the results of [7] in three

respects:

® The practical case of circular apertures in a triangular

arrangement is considered.

® A technique for enhancing radiation in directions close to
endfire is developed, based on the idea of modifying mutual
coupling among elements, through the use of matching networks

in the waveguides feeding the elements.
1
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® An approximate simple method for the analysis of the radia-

TR AT N

tion of a finite cylindrical structure for axial scan has been

introduced.

In Section 2 the formalism for planar arrays is very briefly discussed.

T

Computed examples are presented in Section 3, focusing the attention on the

influence of element matching networks on array endfire or quasi endfire

radiation. In Section 4 it is shown how the planar array results can be usefu!
in cylindrical array performance evaluation.

The development in this report is based on the algebraic technique
developed in Reference [7] , which for reasons of brevity, will be assumed

familiar to the reader.

2. Edge Effects in Planar Periodic Arrays

The structure investigated consists of a periodic array having as

e ok i

elements circular waveguides terminated on a ground plane. The elements
are arranged in a triangular grid and the array is infinite in y direction and
3 has a finite length in x direction. The lattice geometry is indicated in
Figure 1. The elements in each infinite column are assumed to be in phase:
thus only scan in a plane orthogonal to the array edge will be considered.
Free array excitation is considered, i.e., the elements are excited by a
set of incident waves in the element waveguides.

The polarization is in the plane of scan and the waveguides are filled
with a dielectric material having a dielectric constant € = 2. 5. A matching
network, located far enough from the aperture not to interfere with the
evanescent waveguide mode, completes the idealized element.

In order to simplify the analysis, the functional form of the element
3 electris transverse field distribution is assumed independent of scan condi-
tion and equal to that of the fundamental waveguide mode polarized in the x
direction. Thus, the element interactions are 2 3sumed to effect only the
element relative complex voltage levels. For small elements and polariza-
tion in the plane of scan this approximation has proved to be very good in
infinite array analysis, and it can be safely conjectured that this will be true

in the finite case also. The relative complex levels of the element voltage
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are opieined by asip Lo seckalque of transforming the field probiem into a
netxork protlz=m. 7 ho :yoeoach consists of considering each (infirite)
colump ae 8 single 2lesvcui ©f an equivalent linear array, aud determining
the relative set of self 199 novua? admittances via the Fourier Transform
method {8]. Denote by #, “he excitation of an element of the ith column

‘the excitation of all the cther eletnents of the same coluian being the same).

The set of the gquantities a, can be cnncisely indicated as a vector column
2 = {ai} {i=3i...N-1) (1)

in the input space of the array having a diznensionality N equal to the number

of array columns. The element voltages similarly are denoted by the vector
V related to a by:

v o= NTouenty Y2, 2)
where standard normalization has been used (see for example [8]).

In Equation (Z) g is the unit matrix of order N and YL is the admittance
looking into the element waveguides, assumed equal for each element. Tktus,
Y L depends upon the internal admittance of the equivalent generator feeding
the element and upon the element matching netwo~k. The elements of the
Nth order matrix Y are the admittances between columns (as discussed in
some detail in the—appendix) given by:

(3}
+00 400 2¢ 2 2¢ 2
c kG +w’é ey
S z: _n(i-t) 0 ) jui-t)d
Yit " kp h (-1) / W € du
IMn==00 -00
mu
v = T

where & and 6 g 3T¢ the polar components of the Fourier Transforms of
the fundimental waveguidc mode (nominally polarized in the x direction)
whose expression is given in the appendix, w is the wavenumber in the z

direction related to the two coordinates u, v of the wavenumber plane by:

w = «lk-z-uz-v2 (4)
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(the appropriate branch of Equation (4) being chosen in order to satisfy
radiation condition), k and 5 are free space propagation constant and charac-
teristic impedance. The various integrals in Equation {3) must be calculated
for v = mn/h, as the notation indicates.,

To avoid the direct matrix inversion Egquation (2), through a series of

manipulations (described in detail in [7]) the following Neumann series is

obtained:
N-1 +,.
om (i)a -1 =1 ° +
_l/'__ ) Z m{i) y_ +Y(1) ¥ _-I\-d_-(g Yg+g) %‘ngtE’ %-a- (5)
i=0 g
where m(i} are the set of vectors
. -1/2 . . . .
m(i) = N exp (-j2 mik/N) (i, k=0,1. .. N-1) (6)

M is a matrix whose columns are the vector m(i). Y(i) is the active admit-
tance for a uniform excitation and a phase progression equal to 2mi/N for an
infinite reference array with the same elements and spacing. D is a diagonal
matrix whose elements different from zero are given by Y (i), (-.:uitably

ordered) and:

+

o
it

(I

lI=<
o

Ll e ) (7)

Once the aperture voltages are found, the element active admittances and
array patterns are determined through standard procedures (see for example
[7D.

Since this investigation aims at determining the scan limitations of a
finite array, the attention will be mainly focussed on endfire or quasi endfire
scan. It is apparent that the realized gain pattern of the array in the direc-
tion »f scan (gain referred to the power of the 'free excitation' :.e.,
including mismatch loss) depends essentially upon the nature of the network
located in the element waveguide. In an infinite array it is possible to match
the structure for radiation in any assignad direction (different from endfire).

In a finite array instead the input admittance is different for each element,
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and a perfect match of the array can be obtained only by using different
matching networks for different elements. However, it is physically clear
that placing in each element transmission line equal networks which would
yield perfect match at a direction close to grazing angle for an infinite array
will improve endfire or quasi end:ire radiation, This is obtained, of course,

at the expense of broadside gain.

3. Endfire Radiation in a Planar Array

Consider an array with a number of columns N = 26. The element size
and lattice are those of Figure 1. The "free' array excitation a consists
of terms having equal magnitude for each column with a linear phase taper
from one column tc the other. Different choices of the element tuning net-
work (equivalent to a shunt susceptance and a perfect transformer) are
considered, yielding perfect impedance matches for different scan angles
in an infinite reference array (i.e., with the same element and lattice l).
In Figure 2 the magnitudes of the aperture voltages of the elements versus
element positic:'s have been shown for broadside match. Three different
scan directions have been considered. A long ''spatial transient" is present
for 80-and 90-degree scar conditions. The aperture voltages for endfire
scan vary along the array tending to the short-circuit condition typical of an
infinite array. The phase of the voltages is essentially linear with only little
difference from that of the free excitation, and thus has not been indicated.
Figure 3 shows the magnitude of the reflection coefficients for the same
match condition and three scan directions. For endfire radiation the moduli
of tl.e reflection coefficients increase going toward the edge from which the
radiation occurs. All the elements in this scan condition are badly mis-
matched as erpected. Figures 4 and 5 show two array patterns (for this
match condition) for broadside and endfire scan. Figures 6 through 9 show
the effect of a different matching network. The reference infinite array is

matched for scan at 80 degrees from broadside. It is apparent that now the

lThe evaluation of the active admittance in the finite refevence array
necessary for the calculation of the parameters of the tuning network
is done through well known methods recently developed [5-6].

5
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array is matched in a much better way for extreme scan angle. The element
active reflection coefficient now decreases when approaching t:'e radiating
edge (Figure 7). Figures 8 and 9 show the radiation patterns for broadside
and endfire scan. For this match condition the difference of gain scanning
from broadside to endfire is about 3.7 dB.

The difference of behavior between the two element match conditions is
clearly illustrated by the curves of gain envelope versus scan angle in

Figures 10 and 11.

4. Finite Arrays on Cylinders - An Approximate Analysis of the Axial
Radiation

The "infinite array' method of analysis consists of considering a
cylindrical array as the excited section of an infinite structure periodic in
both the longitudinal and azimuthal directions [10]. This model neglects
endfire effects and therefore is of no use in predicting the radiation pattern
for directions close to the cylinder axis. Here below a very simple method
is presented which is believed to yield reasonably accurate performance
predictions for radiation patterns in directions belonging to the axial
symmetry plane of the array.

Consider a structure consisting of N rings of elements on a cylindrical
surface. The elements are the same and are arranged with the same lattice
as in the planar array previously considered for the planar case. Suppose
that only a region azimuthally confined between the two angles -4, and ¢, is
excited. The analysis of the radiative properties of this structure can be
performed through a procedure requiring the inversion of matrices of Nth
order only. As discussed in detail elsewhere [9], this is obtained by
decomposing the original problem into a set of simpler reduced problems
concerning the analysis of linear arrays having as '""elements'' entire rings
of radiators excited with constant amplitude and linear phase taper. These
reduced problems can be in turn approached by using the technique described
in Section 2, avoiding in this way even the direct inversion of the Nth order
matrices. The procedure will not be described in detail because in most
cases it can be replaced by a useful simple approximate technique, based on

the recognition that for a cylinder with a large radius both the realized gain
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pattern and the pattern of the isolated elements are, in the axial plane,
practically identical to their counterparts for a planar array. Consequently,
in the axial plane the cylindrical array pattern can be obtained from that of
a finite planar array simply by multiplication by a factor ay depending upon
the azimuthal angular extension Z¢o of the array. This factor takes into
account the polarization effects arising from the fact that axially polarized
elements located in different azimuthal positions give differently polarized
contributions to the radiation field on the cylinder axis.

Suppose that the array aperture has a rectangular shape, limited by the
angular abscissa ¢, and ~$ symmetric with respect to the axial scan
plane. Consider a planar array having the same elements and lattice, and
a number of columns equal to the number of array rings. When all the
elements are phased to contribute in phase in the scan direction the pattern
of the conformal array in the axial plane s approximately obtained by

multiplying the planar array pattern by the factor

sin ¢,

¢

2 .
o (Os) = cos Bs+s1n 95 (8)

(o]

Os being the angle from broadside in the plane of scan. Expression (8) is
determined on the basis of simple geometrical considerations. In inany
cases for large cylinder radii and relatively small ¢o's, the expression
(Equation (8)) is very close to unity.

Figures 12 and 13 show the gain envelope versus scan angle for a 273-
element cylindrical array with a rectangular aperture and an angular exten-

sion Z¢o = 49 degrees. The element size and lattice are those of Figure 1.
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APPENDIX

Denote by Eo (x, y) the transverse electric field distribution on the
reference element, whose center is at the origin of the x, y coordinate
system. Thus, the electric transverse field of the ith column can be

written

+00

E(i) (x,y) = Z E, [x-1id, y - 2m+i)h] (Al)

IM==00

where d and h are the distances between columns and between rows,

respectively. Introduce the Fourier Transformé {u, v) of _]Eo(x, y):

400 o0
E (x,y) = 21; / f & (u, e V) gy gy (A2)
-00 -0

The transverse electric field of the ith column can be expressed as follows:

+00 {00 B 400
: e PO od+ . mm
E(l)(x. Y)='2"l; / / & (u, vie J(ux+vy;e3(u1 = )% E 6(v-—h—-)dudv (A3)
=00 =00 Imn=«=00

Use has been made in Equation (A3) of the well known Fourier representation
of a periodic delta function.

The mutual admittance Yit bet.wveen two columns i and t is defined here
as the short circuit aperture current of an element in the column i when all
the elements of column t are excited with equal unitary voltages. By using
the results of {5] it is easy to establish the expression (3) for Yit'

The polar components of the fundamental circular waveguide mode

polarized in x direction are given by:
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1 <, - 5
F (xll) -1
s
o
, JI2}
2 _ r a cos p .
o (§¢ (t,p) = = , stz J) et
R = 1

: | L TUR *1
where a is the radius of the element aperture, x'll is the first root of the
4 equation J 'l(x) = 0 and
Bl
? t = uZ + vZ
1

| u

3 cos [ =

, it v

. v
& sinp = _

ki 2 2
3 £ u +v

If in Equation (A3) !i-t| >> 1 (practically > 3) the following asymptotic

| expression can be conveniently used:
+00
| IR - I DY LR NN
1 P, ms= -0 “Tm
f , with:
. -
|

YT
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Figure 5 - Array Pattern, Broadside Match, Endfire Scan
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