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ABSTRACT 

A complete analysis and explicit solution is presented for the problem 

of linear fractional programming with interval programming constraints whose 

matrix is of full row rank.  The analysis proceeds by simple transformation 

to canonical form exploitation of the Farkas-Minkowski lemma and the duality 

relationships which emerge from the Charnes-Cooper linear programming equi- 

valent for general linear fractional programming.  The formulations as well 

as the proofs and the transformations provided by our general linear frac- 

tional programming thoery are here employed to provide a class of cases. 

The argumentation developing the explicit solution is presented, for clarity, 

in an algorithmic format. 



I.     Introduction: 

The   linear   fractional  programming problem  arises   in many contexts   with 

relatively simple constraint  sets  -•  e.g.,   in   the  reduction of  integer  pro- 

grams   to  knapsack  problems.   In attrition games   and   in Markovian  replacement 

problems   as  well  as   in Neyman-Pearson  rejection  region  selection problems. 

Illustrative  examples   are  provided  by G.   Bradley   [5  ]   or F.   Glover  and 

R.   E.   Woolsey   I 12]—   ,   J.   Isbell  and W.   Marlow   [13],   C.   Derman   [ 10] ,   and 

M.   Klein   [ 16] . 

The  linear   fractional  programming problem  in all  generality,   and  with 

all  singular cases  considered,  was  reduced  in   [8 ]   to at most  a pair  of 

ordinary   linear  programming  problems.     This   immediately made  available   all 

of   the algorithms,   interpretations,   etc.,   that  are  associated  with   linear 

2/ programming.     This   includes,   we   should  note,   access   to  any  ordered   field,— 

and   any of   the  algorithms   and  the computer codes   for   linear programming 

problems  which,   by  virtue  of   [8  ] ,   thereby  also become  available   for   any 

problem  in   linear   fractional   form.     Thus,with   the  development   in   [8   ],   the 

work   in   linear   fractional  programming   took  a  different   form from its   previous 

sole  concern with   the  development of special   types   of  algorithms   for  dealing 

with   this   kind  of  problem. 

In   the present  paper,   we  apply our  reduction,   as   given  in   [8   ] ,   to   a 

general  class  of   linear   fractional problems   --  viz.,   those   for which   the  con- 

straint   set   is  given   by 

(1.1) a <  A   x <  b 

3/ so that this part of the model is in "interval programming" form.— 

— Sec also E. Balas and M. Padberg [1 ]. 
2/ — See,   e.g.,   the   development  of   the  opposite   sign   theorem and  related 

developments   in   [7   ]. 

-'     See.  [2 ]-   [4   ]   and   [18]-[19]. 



Here   v/f   shall  assume   that   the  matrix    A    is   full   row  rank and   the vectors 

a,   b   and   x    meet   the  visual   conditions   for conformance.     This  means   that   the 

constraint   set   is  a  parallelepiped.      See   the  Final Appendix   in   [7]. 

Subject   to conditions    (1.1),   we  wish  to 

T 
(1.2) maximize   R(x)   s     jl     =    fL^ 2.       ^ constant 

o 

so   that  we  are now concerned  with  a problem of   linear   fractional programming. 

Because     A     is  of   full  row  rank it  has  a right  inverse,     A   ,   and hence we can 

wri te 

(1.3) AA^  -   I. 

Now,   setting 

or 

y  =  Ax 

(1.4)     where 

and 

we   obtain 

Ay  + Pz 

P   HI   -   A^A 

z  is   arbitrary 

cAy + cPz + c 
max R(y,z)   - —T? = £ 

d  A y + d Pz + d ' o 

(1.5) Subject   to 

a <  y <   b 

in  place   of   (1.1)   and   (1.2). 

Because     z     is   arbitrary,—     unless 

(1.6) cTP   =  dTp   =   0 

—       Observe   that  we  have  ruled   out   the  case   in which     R     is   identically 
constant   in   (1,2). 
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we  shall  obtain    max R = <».     In order   to  avoid  repetitious  arguments,   however, 

T T we  defer   the  proof  of   this  until we  have  discussed   the  situation c  P  ■  d P  « 0. 

See  section   IV,   below. 

Waging   this   consideration aside,   we   shall next proceed   to   solve   this 

problem  explicitly   and   in  all  generality  by means  of   the   following   3  character- 

izations:     The  denominator     D(x)   is    (1)   bisignant,   (2)   unisignant   and   non- 

vanishing,   or   (3)   unisignant  and vanishing  on  the constraint   set.      In   (1),   i.e., 

the  bisignant   case,   we  shall   show  that     R(x)   = ».     Furthermore,   we   shall   show 

how  to   identify   this   case  at   the  outset   so   that  it may  be  discarded   from 

further consideration.     This will   leave us with only cases   (2)   and   (3)   to 

examine where  we   shall  proceed   to   transformations   from which   a  one-pass   numerical 

comparison  of   coefficients makes   explicit   the   optimal  value   and   solution. 

After this uas all been done, we shall then return to assumption (1.6) 

in a way that utilizes the preceding developments. Finally we shall supply 

numerical examples to illustrate some of these situations and then we shall 

draw some conclusions for further research which will return to the remarks 

at   the  opening  of   this  section. 

II.     üisianant   Denominators: 

Employing   assumption   (1.6),   our   problem  is 

c   A  y   + c 
(2.1) max R(y)   - -r-2  

d A y + d ' o 

subject   to 

a < y <  b 

in  place  of   (1.5).     Note,   however,   that  here,   and   in   the   following,   we   shall 

slightly  abuse  notation by continuing   to  use   the  symbols     R,   N,   D,   as   in 

(1.1)   and   (1.2)   even   though we mean   the   transformed   function,   as   in   (2.1). 

Let     D,   D     denote   the maximum  and minimum,   respectively,   of     D     over 

the constraint  set.     We note: 



l.omnui   1 : 

(a) D     is   bisignant   if  and  only   If     D >   0  and     D <  0. 

(b) Ü     is   unisignant   if   and  only  if   either     D <  0  or  D > 0, 

In   terms  of    y,     since  we  can choose  each  component  of     y    independently   -• 

see   (1.5)   --  we  can  express     D     and     D     immediately   as 

(2.2) 

D=Ld/.   b.+Sd'.   a.   +d     a max D(y) 

D-Ed'.   a.+Ld'.   b+d     = min  D(y) 

where     d'     s (d A  ).      is   the     j—    element  of     d  A       and  "+" or  "—"  indicates 
J J 

that   the  summation  is   on  only   the positive  or  negative     d   .. 

Let  us   first  consider   the  bisignant   situation.     If we make   the   trans- 

formation of variables 

(2.3) 

yj -aj-Vrd^0 

bj -yj " Vr dj<0 

where   the    k.  >  0    will   be   suitably chosen,   the  constraints   transform  to 
J 

o < k.Cj < bj - .j 

(2.4) or 
b. - a. 
-J I 0 < C, < 6. k 

Without loss of generality, the  6.  are positive, since otherwise  Ci " 0 

and does not enter into the optimization. 

By choosing the  k.  suitably, we obtain the form 

(2.5) R(0 - ± 

Note   that    Z   6.   + L   6.   >   1,      since otherwise     D    would  not be bisignant. 
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One   of   the   following   two  cases must  now hold: 

Case   (i)        for  some     £,   0 <   ^ <   o,     such   that 

D(C)   =  0    we  have     N(C) f*  0, 

or  else 

Case   (ii)      for every C.   0 ^  C ^.  ^> such   that 

D(0   =  0    we   have     N(C) =  0. 

In  case   (i),   since    N(C)     is   continuous,   there   is   a  neighborhood  of £ 

in which     N(S)     is   unisignant.      Since 

(2.6) L I.  + L Q.   =  1 < E  6.  + E 6. 
-t-J-J +J-J 

and 0 <  C .  <   b.      in the constraint set, we can choose  e. > 0, E e. > 0, 
-J-J J-'jJ 

so that 0 <  ? + e <   6,     sgn N(C + e) = sgn N(C - e) 

and D(Q  + e) > 0 > D(£ - e).  By approaching £ along the line segment 

from one of  C + e« C ~ e»  we can make  RCS)"*00. 

In case (ii), we must have  v. = 0  for all  j  such that  d. = 0. 
J J 

For  D(0 = 0  involves specifying only the  £.  for  d. > 0  and  d. < 0. 

If  Y.  ^0  for  d.  =0,  then having made D(0 "■ 0, we can change the 
•^o -"o 

value of  N(C)  by changing  £• •  Thus  D(£) ■ 0 would not imply  N(C) = 0. 
-'o 

We   therefore  drop   the     "+",   "—"     notation   in considering   case   (ii)   and  rewrite 

it   as:      EY-C+Y    =0    whenever     0 <   £,  <   6.     and     EC-   =   !• 
j      J   J J J j     J 

Letting     y.   =  C-Y   .     Y >  Q»      this   becomes, j jo'      o — 

±(^Y.y.+YV)>0      whenever j     J      J o     o    - 

E y.   -   y     =0 
J     J 0 

(2.7) - y-j + ßj y0 > o 

yj > o 

y    >  0 
■'o  — 
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NuLi that the Lmplication extends ro y « 0 since y  "0  implies all 

y , - o.      ■ 

Wo   iu<w  apply   the   Farkas-Minkowski   lemna-to   the pair of  implications   in 

(2.7)     ami   obt ai n 

f Yi   "   M1    -   9.   +  v 
1     J J J 

(2.8) , +      +      + 

J     J o   '       j»     j*     o - 

for   the   tirst   implicatr ion--viz. .      (L y •   Y •   + Y     y   )  ^ 0«      ?OT  t^xe  second 
j     J     J 

one  viz. ,   -   (2: y .   v .   + v     y,,)  > 0,  we obtain, j     j   • j o     o 

(2.9) 

■ V. =   u,     -   9.   +  v. 
J J J 

• V - - u* + E  6. e" + v*  ;    eT,  v"    v" > 0 
o iJJ 0 JJo- 

Adding   the   first expressions  in   (2.8)   and   (2.9), 

(2.10)   or 

0 =   / +  n"   -   (Bj  +  8')  +  (v^ + v") 

e4" +   9"   =   (^+ +  u")  +  (v"!" H   vT) 

Adding   the   second  pair 

(2.11)   or 

0  =   -   (/ +  M.")  + S  6.   O^ +   9")   (v* + v") 
j      J        J J o o 

LL+ + a" = z 6.   (9"!" + eT) + v+ + v' 
^ j     J        J j o o 

Since   each   term  on   the   right   is   non-negative,   we   have 

(2.12) ^+ +   ^'  >  0. 

Next.,   substituting   from   (2.10)   into   (2.11),   we  get 

(2.13)   or 

0  =   -(n++   ^i")   +S   6.   (n.+ +   u.")  +E   6,    (vt + v")  +  v+ + v" 
jJ jJJJ oo 

0 =   (2  6.   -1)   (u,+ + u")  + 2  6    v+ + E  6.   vT + v+ + v'   . 
jJ jJJjJJOO 

— See  Appendix  C   i i    [ 7   ] 
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Sincc  the  right-hand   side  is  a  sum  of   non-negative   terms,   each of   these must 

be  zero.     Moreover, 

u'*' + u"  = 0 since    2  6.   -  I > 0 
3    J 

(2.14) vt =  vT  -  0 since     6.  >  0 
J J J 

v     =  v    = 0 
o o 

By virtue  of   (2.14),   and  going back   to   (2.10), 

(2.15) e+ + eT = 0. 
J J 

+       - + - Further,  with     9.,   9.  >  0    we must   have     9.   =   9.   =  0    for  all   j. 
J   J - J    J 

Therefore,  Y- e M- « ^or  a^  J»  and  Y := ~fi >  so that we have 

? YJCJ + V0      /(Z Q.  - 1) 

R(C) » 

(2.16) 

j J j J 

+ 
=  j.1, = constant. 

In other words, case (ii) can only occur in the trivial instance where the 

numerator is a constant multiple of the denominator.  In this case, each 

coefficient in the numerator is the same multiple of the corresponding 

coefficient in the denominator, and this would have to be true in the original 

N(x),  D(x)  description and hence obvious upon comparing the Initial coefficients, 

Since we have ruled out this very obvious case--see (1.2)--we have only max 

R (x) = o0 when D (x) is bisignant on the constraint set. 

III.  UnisiRnant Denominators: 

v 
The unisignant cases now remain to be considered.  If  D < 0 we multiply 

both N  and  D by -1, (thus not altering the value of  R)  and we are then 
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reduced to  "D" > 0.  With this normalization, we make a transformation of 

variables as in (2.3), 

(3.1) 
bJ " yj = 8J ?J  '  dJ < 0 

where the g. > 0 will be suitably chosen.  The constraint set will now be 

b  - a. 
(3.2) 0 < 5. < 6 - -J 1 

- J- j    gj 

and, first considering the case where  D > 0, the g, can be chosen so that 

the problem is 

Lysh+yo 
(3.3) max R   (?)   -  *  £  $    +  i—     •     0 <   §j  <   6j 

j     j 

In   (3.3)   the  summation  is   only over "+"   and "—" because,   the denominator 

being positive,   optimal values   for  the     §.   such   that    d.   « 0    can  be 

specified  as     §.   * 0    when     Y^ < 0:   C.   =   6.     when     v. >  0,  and   these  new 

constant   terms  are  assumed   to be  already  contained   in     y .     By   the  reduction 

that   we gave  in   Iff],   however,   the  equivalent   linear programming  problem  is 

max     S Y.   Tl.  + Y    T) 
j     J     J o    'o 

subject   to 

(3.4) S Tlj   +  Tlo  =   1 
J 

Tl.   -6,7)    < 0 
J J   o " 

where  we  can  also  note   that   these constraints   imply     T|    > 0. 

The dual   to   (3.A)   is 
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min     u 

subject to 

(3.5) 

u + *i > V. 

J J J 

Uü. > 0 
J - 

We shall employ this dual in an essential manner to obtain our desired one- 

pass argument for obtaining an optimum.  At each step in the procedure, we 

shall have a solution to a less restrictive problem than the dual problem 

and an associated primal feasible solution. 

Suppose the  y's  are renumbered so that  Y1 > Y« > ••• Y • 

The case (i)  Y ^. Yi  has the immediately obvious primal solution T)  =1, 

T] . = 0  and  max R(§) ■ Y • 

In the contrary case, 

(ü) V! > . . • > Yp > Y0 > Yp+1 > • • • > Vn . 

we build  up  an  algorithm based  on  the dual problem in which we  choose    u 

at   the     q—     step   to  satisfy 

(3.6) 

uq      +      ^j  "  Yj '     J  " i »• • • .   q 

q 
uq  -   E     Ö.u/J  =   Y     • 

j-1     J   J 0 

Using the first  q  equations to obtain  u).  in terms of  uq  and substituting 

in the last equation, we obtain 

q 
(3.7) uq     (1  +  2 6,)   = 1 yt6t  + Y. 

and   hence 

1     J 1     j   J 0 
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q 

q    1  J J    0 (3.8) uq = -*  
q 

1 + 26. 
1  J 

.q Tlius,  uM  is a convex combination of  Y » Vi» • • •» V  with proportionality 

constants  1, 6^..., 6 .  Note that if  u^ < y  then u*,   u)^, j ■ 1 q, 

satisfy the first  q constraints plus the "Y " constraint of the dual problem^ 

hence satisfy a less restrictive problem than the dual. 

Taking 

(3.9) TlJ  -  l/d  + i  6.) 
1     J 

and 

(3.10) T1q   -   6/(1  + |  6.),   j   -   1 q 
J J i      J 

Tlj   -  0,      J  >   q   , 

then T|., j = 0,..., n,  is a feasible solution to the primal problem and 

Y Tiq -f- Y "H*1  = u<1'      (By substitution in (3.4) and comparison with (3.8).) 

Hence, whenever we can get u , uu. feasible for the dual problem, we 

will have a primal feasible solution for T|q with the same functional value 

and thus we will have an optimal pair of dual solutions.  This, plus the 

equivalences maintained via (3.1) and our theory from [  ], thus justifies 

the development that we now detail as follows: 

To start, 

(3.11) u1 » (YO + Y161)/ (1 + 61) . 

(Note,  u > Y  since  Yi > Y  and  u  is a proper convex combination o i   o 

of  Y, , Y . ) 1   o 

We check: 

Is u1 ^ Y9 ? 

If yes : 
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we   are   done 

1 * 
u =   u 

1 * 
J j 

V       ; - U , j = 1 

and 

V  -   1/1+6 
1 

If  No; 

^j1" ^j*  =  0'   J  >  ^ 

u    <   Yo.      Chen 

2 u     = 
Y, Y161  +  Y262 

1  +   51  +   62 

Yo !  Y161 
1 +   6n 

l+o. 
)   ( 1  +   51  +   62 

)   +   <   !  +   6i  -^   62   >      V2 

1+6, 
=     u      ( 

1   +   öj^  +   62 
)   +   ( 1  +   6,   + 6,   +   6'   )   Y2 <   Y2, 

since     u    <   y  . 

Next, Is      u     >   v-j      ? 

If  Yes:   We  are done with   the   substitutions   indicated  by   (3.6)   ff, 

If   No: 

2 3 
u < YT  an^ we continue to  u 

This process must stop by  u   at the latest since 

Y„ -»- S Y- 6. 
p       1 

t F =  =  > Y > Y   > . 
1 + ^6.     Yo-Vi- ' ^ \' 
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Thus     max  K(^)   ■  u       where    s     is   the  least positive   integer   such   that 

uS  ^  Ys+l«   and 

s 
Y   + i: Y.   6. 

0 1     J     J 
u    ,     _  

1 +  Z     6. 
1       J 

This concludes the case  D > 0. 

The remaining case has  5=0.  By making a transformation of variables 

as in (3.1), and choosing the  g. > 0  suitably, we obtain 

? VJ ?j + Vo 
(3.12)        R(%)   =    -—   ,  0 < Sj < 6J . 

1   J 

We may dispose of two situations immediately 

(i) Y > 0:  then  R(§) - « as  ?. - 0. 

(ii) Y = 0:  here the dual problems are 

n 
max 
with r> ̂  

n 
=   1 

\ 
-     6.   Tl    < 0 

J     o - 

mm u 
with 

u + ^j >   Yj 

" } 6J mi * 0 

^> 0 V ^ 0 

An optLmal solution pair is  a). = 0,  u = Y-i = max Y. and i|1 ■ 1, 

Tl. = 0,  j > 2.  The maximum of  R(§)  is thus  Yi« 
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The  remaining   instance   is 

(iii) Yo<0:      Y^...^  Vp>   V0>   Vp+1>...>   V, 

The dual linear programs can now be written 

max   Z Y- Tl • + Y Tl min u 
j  J  J    0  0 

n 

with   E "n . 
J   J 

Tl 

with u + OJ. > Y. 
J -  J 

t.Ti     < 0 
j o - S 6. u). -  Y 

J  J   ' o ' 
J 

Tlj > 0 UJ. >  0 
J - 

As before, we define 

"q + wjj = Yj .  j = 1, . . . , q 

It.   *<? 
,  J  J 

IY„| . 

This yields 

uq = (S Y. 6 +  y  )   /   T.     6. . 
i  J  J   0    i   J 

It may be easily verified that 

Z 6. 

uq . u<^1) 
q 
S 6. 

or, what is the same thing,  u   is a proper convex combination of  u 

E 6 

V Jy 
(q-D 

Q   .„■     . r-        *   ^ .i      f ^  r+1 . . . . and  u .  Thus, if  u < Y ,-■ .  than  u < u   <   y   .-,      as m our earlier r+1 'r+1 

argument for  D > 0. 

The steps of our process are as before:  if  u > Y .^  we are done; 

otherwise, we test  u q+1 against  Y .o«  At worst we are done with 
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n    n n 
u  = (S Y. 6. + Y ) / S 6. . 

1  J  J        1  J 

As before,  u = max R(5)  where  s  is the least positive integer such 

that  uS > Ys+1 . 

IV. R (v./-): 

Returning to   (1.5)  we  consider   the remaining  cases   in which either 

(a) dTP  =  0, cTP ^ 0 

(4)     or 

(b) dTP  #  0. 

In case (a) , since  z  is arbitrary we can make cFz» jcPzl-*00, hence 

max R(y,z) -* <».  In case (b), we are in the bisignant denominator situation 

T 
since we can make  d P z -* +CD .     The argument of the bisignant section of 

this paper (with the additional variables, z) now shows that max R = » since 

we have ruled out, a priori, the case in which R = constant. 

V. Examples; 

Some examples may help to fix and sharpen some of the preceding develop- 

ments.  Thus consider 

3 x.. - x_ + 4 
max R(x) =  r  

2 x2 

(5.1)  with 

•1 < x. + x- < 2 

1 <  x2    < 5. 

and   the  variables x   ,   x^,   x_   are   otherwise unrestricted. 



•15- 

Here we  have,   — 1/ 

10       1 

0       10 

A*- 

1 0 

0 1 

0       0 

(5.2) P   =   (I   -  k^  A) 

0 0 -1 

0 0 0 

0 0 0 

= (-1). '' 2 ^ 

To  exhibit   the  development  in  full  detail  we   next write 

c1  Aff  y  =   (3,0,   -1) 

T c     P   z -   (3,0,   -1) 

1 0 

0 1 

0       0 

0 0 

0 0 

0 0 

(yi)  " (3'0) (yl)    =   3y 

c     =  4 
o 

'zi 
(0,0,-3)     fz^\ 

zl 

-3z, 

(5.3) 

dVy   »      (0,2,0) 1 0 

0 1 

0     0 
GO ■ "■" CD 2 y. 

d     P   z   =   (0,2,0) 0     0     1 M 
0    0     0 z? 
0     0     0 CV 

-   (0,0,0,) ^1 > 

cv 
d     =   0 

o 

—     It may   be   observed   that  the     A       choice   is   not  unique. 
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Evidently  in  this  case     d     P   =  0,   as witness   the  next   to  the  last  expression. 

T T On   the  other hand,   c     P  ft 0,   as witness  c  Pz  »   -  3z_   in  the second expression 

for   (5.3).     Hence condition   (a)  of the preceding section obtains and we have 

R -♦ oo  even  though 

-i < yi < 2 
(5.4) i 

1 <  72 <  5- 

This occurs because  z  is arbitrary and can be freely chosen In 

(5.5) 

TA#      ,     T,, cAy+cPz  + c 
max R  (y,z)  s-r~3 =; i 

d A y + d P   z + d 

Sy.   -  3z3  + 4 

which   is   the  specialization of   (1.5)   to this  case.     Of course,   the  result 

R -* «  in   (5.1)   can be  confirmed by direct  Inspection,   since negative values 

of     x.,     may  be  selected  along with  Increasingly positive values  of     x.. 

as   required  in order  to maintain the  first Interval programming constraint. 

This   last  remark  suggests   that  an adjunction such  as 

(5.6) 

will convert (5.1) to a problem with a finite maximum.  This yields an  A 

for an interval programming format with the full row rank condition fulfilled 

as in 

0 <  x3 <  1 

(5.7) 

10 1 

0 10 

0       0       1 

># 
1 0 

0 1 

0       0 

On  the  other  hand,     A     is  also of full column rank  so   that we  also have 

A  = A   and 

.# P = I - A  A » 0. 

Hence both of the conditions specified in (1.6) are fulfilled -- viz. 
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T      T 
c P - d P - 0 

T        T 
for any  c   and  d . 

The problem to be solved is now written 

max R (y) ^ 
c  A  y + c  ' o 

T  # 
d  A y + d 

3y1 - 4y3 -t- 4 

2 yo 

(5.8)  with 

-1 < Yi < 2 

i < y2 < 5 

o <y3< i 

*     *       * 
Evidently the solution to this problem is  y. » 2,  y^ = 0 and  y2 = 1 

so that 

max R (y) = "ö" -  5 

To obtain the corresponding components of  x we simply utilize (l.A) with 

P = 0  to obtain 

\ 

(5.9) 

V. 
x3 I 

A  y 

1     0     -1 ^ f2^ 
0     10 

0     0       1 

1 

I o ! 

As may be seen, these x values satisfy (5.1) with (5.6) adjoined.  They are 

evidently also maximal with R (x) »  5 since x„ can no longer be negative 

and x^ and x.. are at their lower and upper limits, respectively. 

Ir* some cases the solutions, as above, may be obvious but, of course, 

this cannot always be expected.  Recourse to the preceding development, however. 

will produce the wanted results in any case, however, as we Illustrate by 

now developing the above examples, along with the related background materials, 

in some detail as follows: 
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Bccausü the denominaior is unifignant we utills« aection III. Observing 

that d. > d - 2 in ehe denominator and hence Is non-negative^wt have recourse 

only tu the first part of (3.1) on page 8 In order to write 

^i " ai " gi h 

(6.1)        y2 ' Ä2 * g2 ^2 

^3 * a3 * *3 '1 

where,  respectively,    a. • •!, «j " ^    and    •j * ®.V** (5»t)«    A« development 

from (3.1) to (3.2) on page 8 applies to thla case aa, 

with 
b,  - a 

-n-  i       gl 8l 

b2 " a2        5-1 (6.2) 0 < ?, < 62 ■    Z a    *    -5—i "2-2 g, g. 

b3 ' •s        I - 0 

The insertion of (6.1) into the functional then produces 

3 (gi gi * V '4 (83 h •♦'V •*-4 

2 (g2 %i + s2) 
(6.3) *   *       ■ 

3 g, ^ - 4 g3 §3 + I 

2 (g2 ?2 + I) 

via (5.8). Choosing 

(6.4) R1 - 1/2, g2 - I. g3 - 1/2 

and setting 

(6.5) 7^3/2, V2 • 0, Yj - -4/2, Y0 • l/I 
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gives the denominator form wanted for (3.3) •■: 

2 5l  2 ^  2 
max R(§) 

52 * l 

(6.6) with    o < 51 < 6 

0 < 5, < 2 

The transformation   I. • T] /T)     from our previously developed theorem [ 3] 

then produces  the following example for (3.A): 
3 ^o max   j ,ni+ 0T12 ■2 ^3 + " 

with 

(6.7) 

\ + Tlj + Tlj + T^ - 1 

\ -6Tlo<0 

Tl2 -4^ < 0 

•n3 -2^ < 0 

V V ^3 - 0 

where the g values of (6.4) combine with (6.2) to give 6,-6, 6,-4 

and 63 » 2, as required for the application of (3.4). The corresponding dual, 

which our previous theory also gives access to, is 
min   u 

with 

(6.8) 

u + al >-l 
u + "2 > 0 

u + m3 > "2 

u -6«^- ^2 ' ^a * 2 

This, of course, is the application of (3.5) to the present example. 

. ■- 
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■ 

Since   Yj ■ ^   exceed!   Y0 ■ 5   wt are In Che flCuetion o£ case (11) 

CoUmring (3.5).    Thus, preserving our eubecrlpt idenCiflcaCione fron (6.5), 

wt have 

(6.9) V^Y^YJ^VJ 

in our present situation. We therefore tee that the first application of the 

suggested algorithm should suffice. (See the remarks which conclude the 

case D > 0 in section III). 

Applying (3.11) now produces 

(6.10) ul - ( ± + I -6)/(I + 6) - ±| > Y0 - I 

Evidently this also formally satisfies the condition that    u   equals or 

exceeds the immediate successor of    y.    in (6.9).    Hence, we have 

(6.11) 

1       *      19 u    -u   .g 
1        * 

"l " "»l " Yl - 
*        3 u     -f- 19       2 

14      14 

1       *     « 
u>2 ■ u)2 

1      *    « 
U)     ■   m     ■   0 

which satisfy the constraints of (6.8)» as may be verified, with 
it 

min u - u    ■ 19/14. 

Moving to the primal problem via  (3.9), 

o      1 + 61 1 + 6 7 

(6.1  ) . 
•n1 1 6 6 

1l'l + 61    "    1 + 6    "    7 

and all other T\    » 0. See (3.10). 

Inserting these values for the corresponding T). in (6.7) we see that all 

constraints are satisfied with 

^xi  3  6.1  1  19 
2 ''l "^ 2 " 2 * 7 ^ 7 * 2 " 14 » 
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* the same as the value of  u , thereby confirming optimality.  In fact, as 

our theory [ ] prescribes, we need merely apply the expressions 

with all other  T|. = 0 and then reverse the development from (6.6) to (6.7) 

in order to verify that this value is also optimal for 

2 ' 6   2    19 max R(5) =  g        - Yt 

with 

(6.13) 

0 < §. - 6 <  2 " ^"1^  - 6 
-    l "    81 

0 < |0 - 0 < 
5 " 1   - 4 

0 < §3 - 0 < i-=-S  - 2 
J        83 

Evidently we can now directly effect substitutions in (6.1) and obtain 

yl " gl Cl + al ' 3 " 1 " 2 

(6.14) y2 • g2 52 + a2 - 0 + 1 - 1 

y3 " 83 53 + a3 " 0 + 0 " 0 

Then we can proceed exactly as in (5.9) to obtain the values  x. = 2, 

X9 *■ 1«  x~ = 0 which we previously observed to be optimal. 
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Conclusion! 

Before proceeding any further we should probably point up, again, the 

crucial role played by the general theory (including the transformations 

and proof procedures) which we introduced in [8] for making explicit contacts 

between linear fractional and ordinary linear programming--in all generality-—^ 

and exact detail. These transformations are also utilized in the present 

paper and the theory is also extended via the duality (and other) characteri- 

zations given in the preceding text. These are Joined together here for 

the proofs in algorithmic format kind we have Just illustrated by example and 

commentary, other uses can undoubtedly also be made of this theory and the 

preceding extensions via the passage (up and back) between linear fractional 

and ordinary linear programming that is now possible. 

Our general theory has been used by others, too, to extend or simplify 

parts of linear fractional programming en route to effecting the contacts with 

ordinary linear programming that are thereby obtained. The work of Zionts [22] 

should perhaps be singled out as being most immediately in line with the 

R = • results presented in this paper. Zionts' development is directed only 

toward simplifying matters by focusing on eliminating cases for linear frac- 

tional programming which are either deemed to be unwanted or of little interest 

for practical applications. 

The developments cease as soon as the contacts with ordinary linear 

programming are identified via our theory, which he like others utilizes for 

this purpose. 

We have effected the developments in this paper in a way that makes 

contact with interval linear programming.-' An opening for further two-way 

i/see [21, [3], [k]. 



-23- 

flows is thereby also provided. The resulting Junctures should also help 

to guide subsequent developments in the more special situations that now seem 

to invite consideration in the future. Finally, the possibilities for dealing 

with specially structured problems (such as those observed at the start of 

the present paper) should also be observed explicitly in this conclusion, 

partly because the theory we have now developed and presented should also be 

a helpful guide to these additional cases which are important in their own 

right. Thus we can now conclude here by referring back to our opening remarks. 

■ 



ADDENDUM 

Although the development in this paper proceeded, for clarity, by 

algorithmic format, we summarize below the explicit solution in tabular 

format for direr-t theoretical interpretation and utilization. 

Summary of Solution 

Denominator 

Blsignant 

Unisignant 

''a) positive 

(b) non-negative 

Transformed 
Numerator 

Vo > 0 

V = 0 o 

Vo < 0 

R* 

u  ~  , least s with u ^V . ■. 
1    +2   ^ 

00 

us =    Yo + T   y2b2 , least with U
S

SYS+1 

I    % 
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