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CHAPTER 1

INTRODUCTION

1. General Remarks

The problem of optimal control of uncertain systems has tradi-
tionally been treated in a stochastic framework in the sence that the un-
certain quantities are modeled as random vectors and random processes
with statistical properties which are assumed known. The controller
selected is the one for which the expected value of a suitable cost func-
tional is minimized. In this framework some mathematically elegant
results have been obtained, notable cases being the separation theorem

for a linear system, linear measurements and quadratic cost functionalf‘n)’

(G1), (Sul) and the separation theorem for a linear system, linear mea-

surements, Gaussian disturbances and nonquadratic cost functional.'(su)'
(Wios) Specification of the a priori statistics of all the uncertain quantities
involved must be made in any such problem. In many practical situations
however these statistics are not available, and cannot be obtained either
because of physical constraints or due to prohibitive cost. In such cases
however the designer may have information of less detailed structure con-
cerning the uncertain quantities, such as for instance bounds on the mag-
nitude or energy of the uncertain quantities. In other words the designer
may be given a set where the uncertain quantities are known to belong.

A possible design approach under these circumstances would then be to

select the controller from some admissible class which performs best

when the uncertain quantities assume their worst possible values within

-G
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the givew: set. In its simplest form the corresponding decision problem
is descr.bed by a triplet (U,Q,J), where U is the set of controllers under
consideration, Q is the set in which the uncertain qﬁantities are known

to belong and J:UxQ — [ -0, +] is a given cost function. The objective

is to find

T = inf sup J(u,q) (1.1)
uveU qeQ

and, if it exists, the minimizing controller u in U.
Problems of the gcneral form of equation (1.1) can also arise in
the context of other situations, In some cases the nature of the problem
calls for a pessimistic or worst case approach such as when specifieé
tolerances must be met with certainty. For example in a chemical p’;'ocess
control problem it may be necessary to gu'irantee that the state will stay in
a specified region of the state space, or equ Vilently avoid a critical region
of the state space where process instability may occur. In other cases a
worst case analysis is performed in order to proviq’®c a comparison with
the performance of a design adopted on the basis of othé&r considerations.
Optimal uncertain control problems that can be redu'ced to the form

of equation (l.1) are referred to as Minimax Control Problems and are

the object of study of this thesis.

The modelling of uncertainties as quantities that are unknown except
that they belong to prescribed sets has received attention before, dating to
Wald's statistical decision theory.(wal) In the context of Wald's theo:y
the decision problem (U, Q, J) mentioned earlier is viewed as a game against
Nature and a saddle point of this game in (possibly) randomized strategies

is sought. Whenever a saddle point in pure strateg.'.: ¢xists, i.e., whenever

WP

had
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inf sup J(u,q) = sup inf J(u,q) (1.2)
uelU qeQ qeQ uelU

Wald's approach is equivalent to the worst case approach. When however
the equality (1.2) does not hold Wald's theory recommends randomization
in the spaces of strategies U and Q, and the worst case viewpoint is lost.

(Sw1l)

Wald's theory was applied by Sworder to discrete-time control systems
with limited success since randomization within the admissible set of con-
trollers was not considered appealing from the practical viewpoint of an
engineer.

The consideration of the minimax approach to the optimal control
of discrete-time uncertain systems without the randomization suggested

(F1), (F2)

by Wald's theory was recommended by Feldbaum and systemati-

cally studied by Witsenhausengw”’ (w2)
Problems of system state estimation for the case where the un-
certain quantities are described by their membership in given sets have

(W), (W3) g0 ma(S1), (S2), (53)

also been considered by Witsenhausen,
and others.(sc”’ (H1) Such problems, though important in their own right,
arise in connection with minimax control problems for which the controller
has available only a noise-corrupted measurement of an output of the sys-
tem rather than an exact measurement of the system state. Although the
emphasis in this thesis is in the feedback control of uncertain systems,
some state estimation provlems will also be considered which have a direct
relation to feedback control problems. In the next section we shall state

the basic problem considered in the thesis and outline the general approach

which we will adopt towards its solution.




2. The Basic Problem

The objective of this thesis is the study of the following problem:

Problem 1.1: Given is the discrete-time dynamic system

X4l = fk(xk,uk,wk), k=0,1,...,N-1 (1.3)

where xkeRn, k=0,1,..,N is the state vector, ukeRm, k=0,1,...,N-1,

is the control vector, wkeRr, k=0,1,...,N-1, is the input disturbance
vector, and fk:Rn x R® x RY — Rn are known functions.

Available to the controller are measurements of the form

‘
hk(xk,vk)*, k=1,2,...,N-1 (1.4)

Zx

where, for all k

1,2,...,N-1, zkeRs is the measurement vector, vkeRp

is the measurement noise vector, and hk :R™ x RP — R® are known functions.

The uncertain quantities lumped in a vector qeRm'I\IrHl\l'l)p

q = (xé.w:),w'l.....wi\‘_l,v'l,v'z,...,vh_l)' (1.5)

are known to belong to a given subset Q of gONr+(N-1)p

qeQ (1.6)

We restrict attention to this form of measurement equation without
loss of generality. A measurement equation mntaining the control
vector explicitly

| e = gk(xk' LR Vk)
can be reduced to the form (1.4) by introducing additional state variables
through the equation

xk=u

k-1
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Attention is restricted to control laws of the form

L cRK(E+m)  pm, k=0,1,...,N-1
taking values

u = uk(zl,zz....,zk,uo,ul,...,uk_l). k=0,1,...,N-1

where o is interpreted as a constant vector (po = uo). It is required to

find (if it exists) the control law in this class for which the cost functional

J(P'o’p'l""“N-l) = 8sup F[xl'xZ’"'xN’“o'“l(zl'uo)’""
qeQ ( )
1.7

I

is minimized, subject to the system and measurement equation constraints

N(ntm) _ (-00, o] is given, '

pN_l(zl, s .,uN_z)]

(1.3),(1.4) and where the function F:R
It should be noted that in the statement of the above problem we take

into account implicitly the presence of state and control constraints, since

we allow the function F in the cost functional (1.7) to take the value co. We

simply specify that the function F takes the value o whenever some constraint

is violated. Thus, for example, state and control constraints of the form

k€ X Uk-19Yk-1

accounted for by adding to the function F the function

€U , where Xk, Uk-l’ k=1,2,..,N, are given sets, are

N
ifl{“"i“‘i) +6lp (2 weu U 1}

where 6(y| Y) denotes the indicator function of a set Y (6(y|Y) = 0if yeY,

5(y|Y) = o if ydY).
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The Problem 1.1 can, in principle, be solved by dynamic program-
ming, and the appropriate algorithm will be presented in this thesis. How-
ever it is in general very difficult from this algorithm to characterize ef-
ficiently the optimal controller wiiich solves Problem 1.1. Thus special
cases with increased structure will be considered in order to obtain addi-
| tional results related to the characterization of the optimal controller and
in order to gain increased understanding into the structure of the solution.

One of the major difficulties in solving the genersl Problem 1.1

results from the fact that the value of the current state of the system (1. 3)

is not available to the controller but instead only partial information is

i known about it via the measurements (1.4). This fact results in that, in
general, the optimal control law will bc a function of all the prior mé‘a- ‘

" surements, i.e., in general the controller will need to store all the prior
measuremants or, possibly, the value of a complicated function of these
measurements. However, as in the corresponding stochastic situation,

r whenever an exact measurement of the current state is available to the con- ’

troller, i.e., in equation (l.4) we have
hk(xk, vk) = X (1.8)

and in addition the input disturbances w, are individually constrained at each
time

r
wkE WkC R

and the function F in equation (1.7) is of the additive form

N

F(xl,xz. Co XN U Uy, 'uN-l) = kZzllgk(xk,uk_l)
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then it can be shown that the optimal control law is of the form u, = p.k(xk).
In other words the control law need only be a function of the current state,

with a substantial simplification resulting. Alternatively expressed, under
the circumstances described above, the value of the current state contains
all information about the past history of the system which is necessary for
the specification of the optimal control.

The special case of Problem 1.1 where equation (1.8) holds is re-
ferred to as the minimax control problem with perfect state information and
receives considerable attention in this thesis. A large part of the thesis,
Chapters 2 and 3, are devoted to problems with perfect state information.
This serves a double purpose. In addition to studying a class of problems
which is of interest in its own right, we obtain results which are useful for
deriving optimal or suboptimal solutions for some minimax control problems
with imperfect state information. This is true in particular for the problem
of the reachability of a target tube which will be considered extensively in

the thesis.

3. Contributions and Organization of the Thesis

The problems considered in this thesis can be divided into three
broad categories. Minimax control problems with perfect state information
are considered in Chapters 2 and 3, minimax control p.ublems with im-
perfect state information are considered in Chapters 5 and 6, and state
estimation problems are examined in Chapter 4.

In Chapter 2 a minimax control problem with perfect state information

is considered for the case of a linear system and a cost functional with some
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convexity properties. This problem in a somewhat less general form was

(W1),

considered first by Witsenhausen. (wW2) Some new results concerning

existence of optimal control laws are obtained, and the investigation of

necessary conditions for optimality is carried out in depth. A minimax j
principle is derived for this problem which holds however only under some
restrictive assumptions. When specialized to the case of a deterministic
optimal control problem this minimax principle yields a minimum principle
for which the cost functional is not required to be differentiable.

In Chapter 3 the problem of reachability of a target tube is considered
for the perfect state information case. This problem can be viewed as a
special case of the problem considered in Chapter 2. Necessary and suf-
ficient conditions for the existence of a solution are obtained. These con-
ditions can also be derived with little effort from Witsenhausen's results.(w”'
(w2) In addition a new ellipsoidal approximation algorithm, which appears
to have some potential for practical applications, is derived and its properties

are investigated.

In Chapter 4 the problem of the system state estimation is examined

for a set-n.embership description of the uncertainty. Attention is restricted
to linear systems and two different set-membership descriptions of the un-
certainty, the cases of energy constrints and instantaneous ellipsoidal con-
straints on the uncertain quantities. Some new estimation algorithms are
obtained for both cases. In particular, for the case of instantaneous ellip-

soidal] constraints for the uncertain quantities, an estimator is obtained which
(S1)

offers distinct advantages over the estimator proposed by Schweppe.

: Furthermore we use a new approach towards the solution of the problem which

, allows us to treat some problems not considered as yet in the literature in-
|

cluding the smoothing problem.

4
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In Chapter 5 the general case of Problem 1.1 is examined and the
dynamic programming algorithm for its solution is developed. This algo-
rithm differs in its form and is more general thanthe algorithm of

(W1)

Witsenhausen although the same basic ideas are involved. Subsequently
the notion of a sufficiently informative function, which parallels the notion
of a sufficient statistic of stochastic optimal control,is formulated for the
first time. Some results are then derived which illustrate the dual function
of the optimal controller as an estimator and an actuator. This parallels
the dual estimation-actuation interpretation of the function of the optimal
controller in the analogous problem when the uncertainties are modeled as
random vectors or stochastic processes.

Finally in Chapter 6 the problem of the reachability of a target tube
with imperfect state information is considered for the case of a linear system.
The material in this chapter is new. For the special case of energy con-
straints on the uncertain quantities the optimal controller is completely

characterized, and its separation in an estimator and an actuator is explicitly

demonstrated. The case of instantaneous ellipsoidal constraints on the un-

} certain quantities is also considered, and a suboptimal algorithm is derived
i which offers some practical implementation advantages.

For the development of some of the results of Chapter 2 it is nec-
essary to appeal in a nontrivial way to the theory of convex functions.(Rl)
Since portions of this theory are comparatively recent and not very widely

known, the required results have been summarized in Appendix I. It should

be noted that this theory is used only in Chapter 2, and is not necessary for

the developments in the remainder of the thesis.




CHAPTER 2

LINEAR MINIMAX CONTROL PROBLEMS
WITH PERFECT STATE INFORMATION

1. General Remarks

In this chapter we consider a minimax control problem with perfect
state information. As was mentioned in the previous chapter the fact that
the controller has available at each time a perfect measurement of the sys-
tem state results in a substantial simplification in the solution of the prob-
lem. For example the dynamic programming algorithm, which is the basic
method for solving minimax control problems, becomes greatly simplified
for this case. Furthermore, in this chapter we make some additional as-
sumptions which enable us to obtain some deeper analytical results. We
assume that the dynamical system involved is linear, and that the cost func-
tional has some convexity properties. This will allow us to consider in de-
tail questions of existence of solutions and necessary conditions for optimality.
In addition it will be shown for this case that if the sets where the input dis-
turbances are known to belong are polyhedra, the computational requirements
of the dynamic programming algorithm can be further significantly reduced.
The results mentioned above rely heavily on the additional structure of lin-
earity for the system and convexity for the cost functional, and do not appear
to be available without them. In this way the problem of this chapter should
be considered as the special case of the minimax control problem 1.1 which
is most amenable to somewhat deeper analysis, and for which the obtained
results are considerably stronger than in the general case. Yet this special

case is sufficiently general to be of interest in its own right, and the cor-

-15-
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responding results provide insights into the solution of other more gen-
eral minimax control problems.
For the development of some of the results of this chapter we will
need to draw heavily on some comparatively recent and not very widely
known results of "he theory of convex functions.(Rl) The related theory
has been outlined in Appendix I and will be used mainly after Section 3 of
this chapter. This theory will not be needed later in the thesis. The
reader who is interested in subsequent chapters can proceed to those chapters
after section 3 without loss of continuity.
In the next section the minimax control problem of this chapter will

be formulated and its solution by dynamic programming will be shown sub-

sequently in Section 3. In Section 4 the properties of the dynamic program-
ming algorithm will be investigated and sufficient conditions for existence of
optimal control laws will be derived. In Section 5 necessary conditions for
optimality will be obtained. In particular a minimax principle is proved
which however holds under somewhat restrictive assumptions. When spe-
cialized to deterministic optimal control problems this minimax principle
yields a minimum principle for which the cost functional is not assumed

differentiable.

2: Problem Formulation

The object of study in this chapter is the following problem.

Problem 2.1: Consider the linear discrete-time dynamic system:

= A;x, +B,u +Gw k=0,1,...,N-1 (2.1)

Xk+l Kk k" k kWK’
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where xkeRn, k=0,1,..,N, is the state vector, u eRm, k=0,1,..,N-1,

k
is the control vector, wkeRr, k=0,1,...,N-1, is the disturbance vector,
and Ak' Bk’ Gk' k=20,1,...,N-1 are given matrices,

It is assumed that the initial state xo is known and that the disturbance

vectors w belong to given nonempty sets WkC RY
Wi EW, , k=0,1,...,N-1 (2.2)

Attention is restricted w0 control laws of the form

n m

p.k:R - R, k=0,1,...,N-1 (2.3)

taking values

u = p.k(xk). k=0,1,...,N-1 (2.4)

It is required to find (if it exists) the control law in this class for which the

cost functional

N
J(“o’pl""“N-l) = sup ? {fk(xk)+gk-l[“k-l(xk-l)]}
Wkewk k=1
k=0,1,..,N-1 (2.5)

is minimized, subject to the system equation constraints (2.1), and where
the functions fk:Rn — (-0, 4]}, gk_I:Rm - (-0, 0}, k=1,2,...,N,

are given closed proper convex functions.

In Definition A.4 of Appendix I, a closed proper convex function
f:R" - (-0, +oo] is defined to be an extended real valued convex function
which is lower semicontinuous and such that -0 < f(x) for all xeR" and with
f(x) < +oo0 for at least one x€R™. Closed proper convex functions are reviewed

in more detail in Appendix I. One of the advantages of using extended real
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valued functions in the cost functional (2. 5) is that state constraints and
control constraints of the form xkexk, ukeuk where Xk, Uk are given
convex sets can be conveniently incorporated in the cost functional rather
than stated explicitly. This is accomplished by adding under the summation
sign in the right hand side of equation (2. 5) the indicator functions

_ (o ifx.ex
8(x, | X, ) = { k%K

+oo  if xkl Xk

0 if u, €U
6 (u U = { . k™ "k
+o if uklUk

Since the theory of extended real valued convex functions is well estab-
lished,‘Rl) introduction of the extended real line does not create difficulties
as long as one is careful to avoid the meaningless sums o - 00 and -d +oo.
The optimal controller in Problem 2.1 is required to be in féedback
form. As a consequence, local variational analysis is very difficult for this
problem and dynamic programming remains the only method to proceed for
solution. The development of the dynamic programming algorithm for

Problem 2.1 is the object of the next section.

3. Solution by Dynamic Programming

Let us denote by Tx the optimal value of the cost functional (2. 5)

(o]
Jxo = '1::: J(Pon"'lo'-"PN_l) (2'6)
k=0,1,..,N-1

The dynamic programming algorithm to be described in the following pro-~

position provides the optimal value jxo at the last step of a recursive se-

R . 5
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quence of minimization and maximization steps. Furthermore the optimal
control law (if it exists) can be obtained from the sequence of the minimi-

zation steps in a much simpler way than directly from the equation (2, 6).

Proposition 2.1: Assume that for the functions Hk defined below we have

-0 < Hy(x,) for all xkeRn andk=0,1,...,N-1. Then the optimal value

T of the cost functional (2. 5) is given by
o

?x = T (x) (2.7)
[o]

where the function Jo :R" — (-0, +o] is given by the last step of the re-

cursive algorithm
JN(xN) = fN(xN) (2.8)

Ep ) = sup J  (x+Gw), k=01,...,N-1 (2.9

wee Wy
Hy (x,) = i:f {Ek+1(Akxk +Byu, ) + gk(uk)}, k=0,1,..,N-1 (2.10)
k
Jk(xk) = Hk(xk)-l-fk(xk), k=1,2,...,N-1 (2.11)
I (x,) = H (x) (2.12)

Proof: Since -0 < HN-l(xN-l) for all xN_leRn. we have that for every

€ > 0 there exists a function by, :R? — R™ guch that

ENlAN12%N-1 PBNC1PN-1, e N Fenc B NGy, e oy )

I

inf {EnlAN_1xN.1 *BNC EN- O] ¥ ey le o ey 1) He
¥N-1

Hy_ (No) * € (2.13)
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By using equations (2. 6) and (2.9) we have

N
Tx, * ;"f w;‘gv lf;l{fk("k)”3k-1““k-1"‘k-1’”
k kK O
bo.l'..,N-l k=o,1,..,N-1
N-1
= inf inf szgv k?l {fk(xk) + gk_llp.k_l(xk_l)]}
g PN-1 %k -
k=0,1,..,N-2 k=0,1,..,N-2

+EN[AN 1 2*NC) P BNaiPNa O ey DNy sy

N-1
inf eup k?l{fk(xk) LR RN ),
H e Mk -
k=0,1,..,N-2 k=0,1,..,N-2

IA

+ENIAN_1%N-1  BNCiPN-1e -1 P eno NGy e Binog )]

Using (2.13) to strenghthen the above inequality we obtain

N-1
Jxo < inf sz.%_ ki‘-‘al{fk(xk)-i-gk_l[ p.k_l(xk_l)]}
P W
k=0,1,..,N-2 k=0,},..,N-2
+ HN-l(xN-l) +€
N-l{ y
= inf sup inf T AU (x )+g, [k _ (x )}
: meW, .y kel KK kel Pl Tl
k k N-1

k=0,1,oo,N'2 k=0, 1,..,N-2

+ En[AN_1%*N-) T BNCiPN- N teneno )] tE

(by using the minimax inequality)

N-1
My EN-1 W&k =
k=0,1,..,N-2 k=0,1,..,N~2
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+ €

* EnlAN*Noy P BNotNa 1 NG )T *eno e i)

Since the above relations hold for every € > 0 we conclude that

N-1
T - ing z {f, (x,) + -]
% [y »;;%,-k {k=1 k) 7 e the P D i }

k=0,},..,N-2 k=0,1,..,N-2

By repeating the above procedure we eventually obtain

Jxo = Ho(xo) = Jo(xo) . E.D.

We remark that the value of the function Hk ¢l 2 point x, ! -s the
usual interpretation of the ''cost-to-go'' from the point X, at time k. This

value can be a real number or oo but by the assumption -0 < Hk(x for all

)
xkeRn it cannot be -oo.

The occurance of the equality Hk(xk) = -0 for some xktsRn indicates
a degeneracy in the problem statement and in particular in the cost func-
tional chosen. It implies the existence of control laws which result in a
value of ''cost-to-go' which is arbitrarily small starting at state x) at time
k, thus indicating that the optimization problem is not well posed. The

assumption -oo < Hk(xk) for all x_ € R™ and all k can be guaranteed to hold

k
under quite general assumptions which will be stated in the next section.

The occurance of a value Hk(xk) = 00 for some xkeRr1 has an interesting
interpretation in the case where the constraint sets Wk for the disturbance

vectors are bounded. It should be recalled that the extended real valued

functions fk and - in the cost functional (2. 5) specify constraint sets for
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the state and the control vectors. It must be xkexk and ukeUk for all k

where the sets Xk and Uk are given for all k by

X

k {xklfk(xk) < m}

U {u, g (u,) < o}

k

A value Hk(xk) = oo implies that, starting from the state X at time k, for
every control law that the controller uses subject to the control constraints,
there exist disturbance vectors within the given sets Wk which will cause a
violation of a state constraint at some later stage. It should be noted that if
there do not exist any state constraints, i.e., the functions fk are real valued,
and in addition the sets Wk are bounded then we will have Hk(xk) < o ;for all
xkeﬁn and all k. .

The value of the optimal control law ﬁ'k at a point x, can be obtained

from the dynamic programming algorithm as
i (%) =y (2.14)

where ﬁk is a point (assuming it exists) where the infinum in equation (2.10)
is attained for the fixed point X) . In the case where for the fixed point X
the infimum in (2.10) is attained at more than one point the equation (2. 14)
still holds with ﬁk being any one of those points.

Aside from the dimensionality problem, common to every algorithm
of this nature, an additional drawback of the dynamic programming algorithm
is the maximization indicated in equation (2.9). It will be shown later that,
under some quite general assumptions, the functions Jk are convex. There-

fore if the set Wk is a compact polyhedron the search for the supremum in
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equation (2.9) can be confined to the finite set of the vertices ((R1), Th.
32.2) of Wk thus partly alleviating the computational requirements. In
some cases however the sets Wk are only indirectly known via their support
functions. This will often occur, for example if the discrete time system
(2.1) results from sampling a continuous time linear system.(wz) In this
case approximation of the sets Wk by a polyhedron is possible with any
desired degree of accuracy. If however this approximation is considered
undesirable,use of a dual algorithm (Wid) based on equations which will be
presented in the next section may be advantageous.

In any case the DP algorithm provides a good starting point for ob-
taining existence results and necessary conditions for optimality. In the
following section its properties will be investigated. In particular properties
of the functions Ek+l’ Hk’ Jk' k=0,1,...,N-1, of equations (2.9) through
(2.12) will be deduced. In addition tne question of existence of optimal con-

trol laws will be considered.

4. Properties of the Dynamic Programming Algorithm
and Existence of Optimal Control Laws

Properties of the dynamic programming algorithm will be investigated

under assumptions which cover most special cases of the general Problem

2.1 which are of practical interest. Under these assumptions, the question

of existence of an optimal control law will be answered satisfactorily. It

should be noted that the statemnent '"an optimal control law exists', as we will
use it here, means that for every point xkeRn and for every k, k=0,1,...,N-1,
there exists a vector ukeRn such that the infimum in equation (2.10) is attained. r

This does not exclude the possibility that this infimum is oo. With this inter-
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pretation if for some xkeRn we have Ek+l(Akxk+Bkuk) + gk(uk) = 0o, for
all u, € K" then, from equation (2.10), Hk(xk) = o0 and the infimum in (2.10)
1s attained for every ukeRn, This in turn according to our terminology
implies existence of an optimal control law in as much as the point X, is
concerned.

The point of view that we adopt concerning the existence of an optimal
control law coincides with the usual point of view whenever the given initial
condition X is such that the optimal value of the cost functional jxo is finite.
As explained in the previous section, whenever the sets Wk are bounded, a
value Tx = oo may occur due to the presence of state constraints xkeXk im-

o
plied by the functions fk in (2.5) where

X, = {xk|fk(xk) < o}

There may also exist control constraints ukeUk implied by the functions 8

in (2.5)
U = o fgyluy) < )

A value jxo = oo indicates that for every control law p.k(xk), k=20,1,..,N-1,
there exist disturbance vectors wkewk, k=20,1,...,N-1, which will cause
either a violation of a control constraint or a violation of a state constraint
at some stage during the operation of the closed-loop system. In other words
a value jxo = oo indicates that there does not exist a control law which can
guarantee the satisfaction of all the constraints of the problem. The question
of the existence of such a control law will not be considered in this chapter.

This question however is central in the problem of the reachability of a

target tube and will be answered in the context of that problem in the next chapter.
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In order to avoid some rather uninteresting but analytically irri-
tating situations we will make the following assumption which will hold

throughout the remainder of this chapter.

Assumption 2.1:

(a) Each of the functions Jk' Ek’ Hk of equations (2. 8)

through (2.12) is not the constant +oo function.

(b) The sets Wk, k=0,1,...,N-1, are compact.

Before we proceed with stating the assumptions under which we will
examine the problem of existence of an optimal control law, let us consider
the circumstances under which the minimum of a convex function f:R" —
(-o0, ] may not be attained. If f is lower semicontinuous the only such
situation arises when f decreases monotonically along some direction with the
result that either the functior is not bounded below or the infimum of the func-
tion is finite but 'attained at infinity.'" Typical examples are the functions
f(x) = x and f(x) = e * with xeR. Thus in order to prove the existence of a mi-
nimizing vector it is necessary to impose some conditions which will guar-
antee that the function will not decrease monotonically (recede) along some
direction. Such conditions involve the notion of a direction of recession of a
closed proper convex function. This notion is introduced in Definition A.10
of Appendix I and its importance in providing existence results for optimiza-
tion problems is stressed in Proposition A.23 of Appendix I. The assump-
tions concerning the cost functional (2. 5) which we will make involve this
notion., We shall consider the following special cases.

Special Case R: In the cost functional (2. 5) every direction of recession of

B e p——

each of the functions fk’ k=1,2,..,N, and - k=20,1,...,N-1, is a direc-

tion in which this function is constant.
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Notice that a closed proper convex function f with no direction of

recession is characterized by the fact that its nonempty level sets
Fa = {x|f(x) < al, a: real number

are compact, a requirement satisfied by the functions fk' B of many cost
functionals of the form (2.5) which are of interest in practice. However
we allow the functions fk and g to have directions in which they are con-
stant in order to retain the possibility to weight in the cost functional only
certain components of the state and control vectors. The case fk(xk) =
xLka where Q is only positive semidefinite symmetric matrix is a typical
example of such a situation. The basic property of a function belonging to
the special case R is that there does not exist any halfline {z|z = x+\y, X\ > 0}
originating at some point x€R" and pointing in the direction of some vector
ye€ R" along which the function is monotonically decreasing. This excludes
the possibility that either the value fk(xk) or the value gk(uk) decreases
monotonically as either X) OT up become arbitrarily large (in norm) along
some direction.

A second special case which we will consider is the following:

Special Case C: The functions B! k=0,1,...,N-1, of the cost functional (2. 5)

have a recession function of the form

(8, 0)(z) = 40 forz 40,  (g.0M)0)=0, k=0,1,...,N-1

The notion of the recession function of a closed proper convex function

is introduced in Definition A.9 of Appendix I. Essentially the condition

(8k°+)(z) { 4o forz 4 0, (gk0+)(0) -0

i i - oAl e &




______

<2

requires that the penalty to the controller for using control vectors large

in norm is sufficiently great. For example a function 81 does not satisfy
this condition if it is uniformly Lipschitz continuous. On the other hand

the requirement of the special case C is satisfied if the set Uk = {uk |gk(uk) <
o} is compact or if for instance gk(uk) = ui(Ruk where R is a positive definite
symmetric matrix,

Throughout this chapter we shall use the assumption:

Assumption 2.2: The cost functional (2. 5) satisfies the requirements of

either Special Case R or Special Case C.

We are ready now to prove the following proposition which states that
under our assumptions convexity and lower semicontinuity are preserved in

the dynamic programming algorithm and that optimal control laws exist.

Proposition 2.2:

(a) Under the Assumptions 2.1 and 2.2 the functions Jk’ Ek' Hk
of equations (2. 8) through (2.12) are closed proper convex
functions for all k. This implies in particular that the as-
sumption -oo < Hk(xk)’ for all xkeRn in Proposition 2.1
holds for all k.

(b) The supremum in equation (2.9) is atiained.

(c) An optimal control law exists.

Proof: Consider first the function

EN(x) = su% fN(x + GN-le- 1)
YN-1€"N-]
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By Proposition A.10 of Appendix [ and using also Assumption 2.] the func-
tion EN is a closed proper convex function. The supremum is attained for
every x since the function ?N(WN_I) = fN(x+GN_1wN_1) is lower semicon-
tinuous by Proposition A.12 of Appendix I and the set wN-l is compact.

Notice also that for all wN-lewN-l the function of x EN,

(x) = fN(x +
+ -1

YN

GN-IWN-I) has the same recession function EN o = fNO"', and thus

W
' ¥N-1

by Proposition A.10 of Appendix I EN0+ = fN0+. Thus if every direction of
recession of fN is a direction in which it is constant the same is true for the

function EN 5

Consider now the function HN-l

l .

Hy_(xy_y) = inf {E(Ay_xy ) + By jun.y) +enop(un. )

u
all (2.14)
By equation (A.2) of Appendix I the function Hy_, is given by
Hy.) = [ENO(-By_j)en_1lAN. (2:15)

where the notation in the above equaticn is introduced in Propositions A. 4
and A.6 of Appendix I. By using Proposition A.13 of Appendix I we have
that both in the special case C and in the special case R the function HN-I
is a closed proper convex function and that the infimum is attained in equa-
tion (2.14). Also in the special case R every direction of recession of the
function HN-l is a direction in which HN-I is constant. The same is true
for the function JN-I = HN-l +fN-l since by Proposition A.9 we have

+

In-10 N-1

fN-l is a direction in which fN-l is constant. Thus the proposition is proved

for k = N and all the necessary facts have been established so that we can

= H ot + fN-10+ and every direction of recession of the function
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proceed in exactly the same manner to prove the proposition for k = N-1
and recursively for all k. Q. E.D.

The equation (2.15) shows that the '"cost-to-go' function H can

N-1
be obtained from the functions E\ and gN-1 through operations that have

been extensively studied in the literature.(Rl) This fact is very helpful in

the search for sufficient conditions for existence of optimal control laws.

For example stronger sufficient conditions can be derived in the case where
the functions fk and By of the cost functional (2. 5) are polyhedral. By making
use of the results of Section 19 in (R1) it can be readily proved that the Pro-
position 2.2 holds for this case under assumptions that are weaker than
Assumption 2. 2.

The equation (2.15) can be used also for calculating the conjugate

funcrions H: and J: via Propositions A.14 and A.15 of Appendix I. We have:
x ko * * * *
Hy(x') = cl{A}[E_,, (x*) + g, (-Bix )} (2.16)
%* * * ok
3, %) = cl{H (x*)0f (x )} (2.17)

where the closure operation cl{- } and the infinal convolution operation 0
are introduced in Definition A.5 and Proposition A.4 of Appendix I. The

conjugate E:+l of the function Ek+l is given by
* * *
E, (x7) = conv{Ip  (x* - o(Glx*|w, )} (2.18)

where o(° IWk) is the support function of the set Wk and the convex hull
operation is as in Definition A.3 of Appendix I. The equation (2.18) follows

directly from Proposition 25 in (W2).
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The equations (2.16), (2.17) and (2.18) can form the basis for a
dual algorithm for calculating the optimal cost similar to the one proposed
in (W2). The implementation of this algorithm will not be discussed in

this thesis. A special case has been analyzed in detail in (W2).

5. Necessary Conditions for Optimality

In dynamic optimization problems necessary conditions for optimality
are usv-' '+ expressed in terms of the costate vector and the related adjoint

equation. This is true for the case of the Pontryagin Minimum Principle(pl)'

(Atl) as well as the Minimax Principle of Zero Sum Differential Games as
described by Isaacs.aal) In both these cases at points of an optimal trajectory
where the 'cost-to-go' function is differentiable, the costate vector is equal
to the gradient of the ''cost-to-go'" function. In light of this fact it is not
surprising that the necessary conditions for optimality which we derive for
the minimax problem of this chapter involve vectors in the¢ subdifferentials
(generalized gradients) of the ''cost-to-go'' functions Jk’ Hk of the equations
(2.8) through (2.12). The notion of the subdifferential 3f(x) of a convex
function of at a point x is introduced in Definition A.12 of Appendix I and some
of the pertinent facts are summarized in subsequent propositions. It should
be noted that the use of subdifferential theory in the analysis is necessitated
by the fact that the ''cost-to-go'' functions Jk and I-Ik will in most cases be
nondifferentiable even if the functions fk and 8 in the cost functional (2. 5)
are real valued and differentiable. This is mainly due to the maximization
indicated in equation (2.9) as will be shown later.

We now prove the following necessary conditions in order that the

supremum and infimum in the equations
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Ek+l(x) = sup Jk+l(x+kak), k=0,1,..,N-1 (2.9)

Wi EW,

H(x,) = inf {Ek+1(Akxk +B,u,) + gk(uk)), k=0,1,..,N-1
Yk (2.10)

are attained at given points.

Propos.tion 2.3: For a fixed point x€R" let Wkewk be a point where the

supremum is attained in equation (2.9). Then for all vectors x:+l€aJk+l(x+

Gk;k) we have

3 -— %
SXps1r GWy > = max <x, ., G
wktwk

>
kWK
.3

where aJ 1(x+C.'i k) denotes the subdifferential of the function J at the

k+l
point (x + kak)’

Proof: Let xk+l k+l(x+Gk;k)' By Proposition A.18 of Appendix I we have
3 +G,W,) = <xp . x+GW > - T0, (x* 2.1
k1 X GF) = <X XG> - Ty (Xy) (2.19)

By equation (2.18) we have

* % * * *
Epp1(x4) = convin b 1) -0 (Gixy g W)

A

* *
T Biean) = 7Gx W)
Using the above inequality in equation (2.19)

: * %* *
k1O W) S <x 4G x> - B (e ) - o (Glxp W)

On the other hand
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* * * * * *
< D> e =
i T M L L {<xixye 41> = Bpyy ()
k+1

Ek+l(x) = Jk+l(x + kak) (2.21)

Combining the inequalities (2.20) and (2.21) we obtain

kak G

max <x
wke Wk

% % 3
X+l > 2 ol(Gix 1w = k+1* CVi

which proves the desired equation. Q.E.D.

Consider now the function ﬁk defined by

H, (x) = ‘:nf {Ek+l(x +Bu )+ gk(uk)} (2.22)
k
It is clear that if for a fixed point xkeRn the infimum in equation (2.10) is at~
tained at a point Gk then the infimum in equation (2.22) is attained at the same
point ﬁk when x = Akxk' Notice that for all xkeRn we have Hk(xk) = ﬁ(Akxk)
and that ﬁk = Ek+l D(-Bk)gk. a relation which is proved in the same way as
equation (A.2) in Appendix I. From Propositions A.14 and A.15 it follows
~ N ~
then that the conjugate convex function Hk of the function H, is given by
*, k% L PR
Ro(x) = B (x") +g(-Blx) (2.23)

We now have:

Proposition 2.4: For a fized point xkeRn let ﬁk be a point where the infimum

is attained in equation (2.10). Then for all vectors x*eaﬁk(Akxk) we have

% - - . *
<x , Bkuk> + gk(uk) = ram {<x", Bkuk> + gk(uk)}
k
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where ﬁk is the function defined in equation (2.22).

Proof: Let x eaﬁ [Ax ). By Proposition A.18 we have

Hk(xk) = ﬁk(Ak k) = <Ak Kk X y ! ﬁ (x ) !

or by equation (2.23)
* * * * ¥
H (x,) = <Agx,x > - By (x") - gy (-Bix") (2.24)
On the other hand by the optimality of ﬁk

_ E :
H(x ) = Ep 1 (Ax + Buy) + g (u)

* * * -
a:}‘: {<Akx + Bkuk.x > - Ek+l(x )} + g, (u)

* % * - * =
> <Akxk,x > - Ek+l(x ) + <Bkuk,x >+ gk(uk) (2.25)
' Combining relations (2.24) and (2.25)

* - - * %*
<x ’Bkuk>+ gk(uk) 5 -gk('Bi(x )

inf {<x B > + gk(uk)}
Yk

which proves the desired equation. Q.E.D.

Notice that if the matrix Ak is invertible then by Proposition A.20

of the Appendix
-1
3 (A x,) = AL TaH (%)
and the necessary condition of Proposition 2.4 becomes

1= l (] 1 * *
<Ay X B> + g (Gy) - i {<a) "x Byu> +gy (w )}, Vx €3H, (x)
k
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A sufficient condition for the infimum to be attained at a given point

in equation (2.10) is given by the following proposition:

b 3
Proposition 2. 5: Assume that for some vector X4l and some vector z we

have x:HeaEkH (z) and that for a vector Gk
< ., B a> + (ﬁ):min{<x* B,u,> + g, (u, )}
k+1’ Tk T Bk'Yk ¥ k+l’ “kPk T Bk\Vk
k
Then we have

ﬁk(z - B, ) = E,, (2) +g, () (2.26)

i.e., the infimum in equation (2.22) is attained at the point ﬁk whenx = z -
Bkﬁk. In addition we have x;+l€aﬁk(z - Bkﬁk).

Proof: We have ﬁk(z - Bkﬁk) S Epyyf2)+ gk(ﬁk) and by using equations (2.22)
and (2.23)

B, u

K> - F(z- B

%
X410 2"

%* * o -
2 <Xy 402> = By (2) +<-Blx 0> - g (uy)

% * * 3 _ ~ % %
Ept1®ia1) 8 -Bx ) = B (ey)

sup (e - B> - H(z - B&,))
z

Hence equality holds in the above algebra implying equation (2.26) and that

* ~ -
Xp 4 €OH, (2 - Bkuk)} Q.E.D.
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It is interesting to make the following observation in Propositions
2.3 and 2.4. Consider a fixed point ikeRn, and let ﬁk be a vector where

! the infimum is attained in equation (2.10). Let also ;k be a point where

the supremum is attained in equation (2.9) for x = Ak;‘k + Bkﬁk. Then for

*
any vector x such that

% - - - —
x €3H, (A X, ) N 3Ty 41 (AX, + B, U + G w) (2.27)

we have from Propositions 2.3 and 2. 4 that

+ G w,>

% - -
<x ’Bkuk Vi + gk(uk)

. *
= min max {<x, By, + Gw> + gk(uk)} (2.28)
U, wkewk

or equivalently
% " - — -
<x , Akxk + Bk“k + kak> + gk(uk)

= min max {<x*. Ak;‘k + By + G w > + gk(uk)}
e wkewk

Notice that the expression within bmaces in the above relation is the
familiar Hamiltonian. It is evident that if along an optimal trajectory one
could guarantee for every k the existence of vectors x* such that the relation
(2.27) holds and find a law for propagation of these vectors (i.e., an adjoint
equation) then the Proposition 2.3 and 2.4 would be pieced together into a
Minimax Principle. The remainder of this section will be devoted to an
effort in this direction.

We first give the definition of a minimax sequence and a minimax

I trajectory:
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Definition 2.1: A sequence of control and disturbance vectors

{uo,wo ul’wl.....uN-l.wN-l}

is called a minimax sequence and the corresponding trajectory {io,i

l. LN
).(N} given by

= Ax, +Bu +G w

X1 = A T By F Gwye s k=91,...,N-1

is called a minimax trajectory if for all k

H () = Hi(Ax ) = E (A + Bu ) + g (u))

i:f{Ek A% + B+ gk(uk)} (2.10)
k

Epsp(ax, + Buuy) = Jp o Ga4)

seup Jk+l (Akxk + Bkuk +kak)
A

A minimax trajectory results during operation of the system (2.1)
when an optimal control law is used and when disturbances are selected
(by Nature) in an optimal fashion. It is evident from the Definition 2.1 and
the dynamic programming algorithm of Proposition 2.1 that if a minimax
sequence and a corresponding minimax trajectory could be found then the

optimal cost for Problem 2.1 would be obtained as

N
jxo = Jolxp) = kfl{fk"-‘k) teg (o))

and the problem would be at least partially solved. In what follows we obtain
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a necessary condition in order fora control and disturbance sequence to
be a minimax sequence under some special assumptions.
We shall make the following assumption concerning the convex func-

tions H, ﬁk defined by equations (2. 8) through (2.12) and equation (2.22)

Assumption 2. 3:

(a) For all k the range of the matrix Ak contains a
vector in ri(dom ﬁk)
(b) For all k we have
ri(domf, ) N ri(dom H) # ¢

where the relative interior of the effective domain ri(dom:) of a convex

function is defined in Definition A.7 of Appendix I.

The assumption (a) above is needed in order to guarantee by Proposi-

tion A.20 of Appéndix I that
M. (x,) = ALH, (A x,)

where ﬁk is the function defined in equation (2.22), a relation essential for
the proof of Proposition 2.8. This assumption will hold for most problems.
In particular it will hold if the matrix Ak is invertible or if the functions fk

are real valued in which case it can be easily seen ihat the functions I-!k
will also be real valued and hence dom Hk = ri(dom Hk) = R", The reason
for introducing assumption (b) above is to guarantee by Proposition A.19 of the

Appe ndix I that
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a relation also essential in the proof of Proposition 2.8. This assumption
will again hold for most problems and in particular it will hold if the func-
tions fk are real valued.

Assume now that {ﬁo, v-vo.ﬁl, v-vl, . ot ’GN-I' ;’N-l} is a minimax se-
quence and {;‘o;;‘l' TTe ';‘N} is the corresponding minimax trajectory. The
necessary conditions of Propositions 2.3 and 2.4 hold for the vectors ﬁk

and \Trk. Some preliminary facts concerning the subdifferentials aﬁk(Akik),

Ty +1(;‘k 41) Will be proved now in the following two Propositions:

Proposition 2.6: Forallk=10,1,...,N-1 we have

M (A X )CIE, (A%, +BG)

Proof: Letx'€3ff, (A %, ). By the subgradient inequality (A.4) in Appendix I
we have ‘
- - *
Ho(z) > B (A X)+<z- A X, x>, VzeRr" (2.29)

Since from equation (2.22)
H (A ) = By (A7, + B, + g (5)

Hk(z) < Ek+1(z + B.‘(L ) + gk(uk)

us:ng the above relations in (2.29) we obtain

- _ _ o, )
Eps1(z + B 2 Ep (A + By +<z-Ayx, x>, Y z¢R

Bl . * - - _
which implies that x EaEk_H (Akxk + Bkuk). Q.E.D.
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Proposition 2.7: For a fixed point x let Wk(x) be the set of points where

the supremum is attained in equation (2.9). Then

3E,,(x) Dkonv{x¥ed I, (x +G W, )| w e W, (x)) (2.30)

and if xe int (dom Ek +l) we have

3E,,,(x) = conv {x*eaJk X+ G W)W € W (x) (2.31)

where conv{‘} denotes convex hull of the set within braces.

= * m
Proof: Let wkcwk(x) and x eaJk+l(z +kak) then

-— -— *
Tes1(B+G W) 2 T (x+G W, ) +<z-x,x >, VzeR" (2.32)

Since Jk+l(x+Gk;k) = Ek“(x) and Jk+1(z +Gka) < Ek“(z) from the relation

(2.32) we obtain

3
Ek+l(z) > Ek+1(x) + <g-x,x >, Vzer"
implying that x*caEk +1(x) and therefore
BEk“ (x) DaJkH(X + Gk;k) ’ V-\;kewk(x)
Since BEk“(X) is a closed convex set
E 3 — — —
3E, 41(x) D conv{x €T 41 (x +G W, ) | wkewk(x)}

To prove the equality (2.31) observe that the functiong(x, wk) = Jk+1(x +

kak) satisfies all the assumptions of Proposition A.22 of Appendix I. The

equality (2.31) follows directly from the conclusion of this proposition. Q. E.D.

From Propositions 2.6 and 2.7 it cannot be guaranteed that the set

intersection indicated in relation (2.27) is a nonempty set, and in fact
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examples can be found where
ARAXINT, (A X +BU +Gw) =¢
If however the equality
3E  (AX, +BLu) = 3T (A x, +Bu +Gw) (2.32)
holds, then from Proposition 2.6 we obtain
dfA X)) Tes1 @i X, * B, + G w,)
in which case, assuming aﬁk(Akik) # ¢ , the minimax condition of equation

(2.28) would hold for every x*ea ﬁk(Akik).

By Proposition 2.7 the equation (2.32) is satisfied for every point
x = (Ak:'ck + Bkﬁk)tint (domE, _,) for which the supremum in equation (2.9)
is attained at a single point. It may be satisfied also for other points on
the boundary of dom Ek+l . Points (Akxk + Bkuk) for which equation (2. 32)

is satisfied will be called nonsingular according to the following definition.

Definition 2.1: For fixed k, k=1,2,..,N, a point x is called nonsingular

if for every vector ;k such that the supremum in equation (2. 9) is attained,

we have
IE 41 () = 3Tpeqy (x # Gpewy)
A point x which is not nonsingular will be called singular.

It should be noted that in view of Proposition 2.7, every point x at

which E is differentiable is by necessity nonsingular, assumming that

k+l
3Ty x+Gw)# .
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We shall also need to distinguish initial states X, for which the

subdifferential aJo(xo) is nonempty by the following definition.

Definition 2.2: The initial state x will be called regular if the subdifferential

aJo(xo) is nonempty.

Notice that by Proposition A.17 of the Appendix all initial states
X,€ ri(dom J ) are regular whereas all initial states for which J (x ) = o

are not regular.
We are now ready to prove the following necessary condition for a

minimax sequence.

Proposition 2.8: Let {ao’;'o’ﬁl'wl’ v ’GN-I';N-I} be a minimax sequence

and let {xo';‘l' ceey J-{N} be the corresponding minimax trajectory. Assume

that the initial state x is regular and that the points (Akik + Bkﬁk), k=0,1,..,

; : * % * k% %
N-1 are nonsingular. Then there exist vectors X)1Xgs ooy Xnp P Pos e+ o0 PN
satisfying the adjoint equation
* * *
x, = Ai:xk+l+pk . k=1,...,N-1 (2.33)
with
%* -

* -
p ey (%),  k=1,2,...,N-1

and such that

%k =
X1 By t Gew> + gy (uy)

: * _
= min mea;:’ {<xk+l’ Bkuk + kak> + gk(uk)}, k=0,1,..,N-1
Yk Wk (2.34)
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Proof: By the fact that X, is a regular point we have aJo(xo) #4’. Since
i = '
by the Assumption 2.3 we have aJo(xo) Aoa Ho(ono) we conclude that
* . iy
d Ho(ono) ¥¢. Take e3) to be any vector in aHo(AOxo). By Proposition
2.5 and the fact that the point (ono + Boﬁo) is nonsingular we have

dH, (A x )CIE (A x + Boﬁo) =3 Jl(il)

and therefore by Propositions 2.3 and 2.4 the minimax condition of equation

(2.34) is satisfied for k = 0. By the Assumption 2.3 we have
aJl(xl) = A'la Hl(Alxl) + afllxl)

and thus we can find vectors x; and p’; such that
% * *
o s A )
*x S -
and xzea Hl(Alxl). p;ea fl(xl). Again by Proposition 2. 5 and the fact that

+ B,u,) is nonsingular we have

the point (A]xl 1%

dH (A)x )CIE (A X, + B u)) = 3T,(x,)

and therefore by Propositions 2.3 and 2.4 the minimax condition of equation

(2.34) is satisfied for k = 1. By proceeding in a similar manner we construct
* ok * k% * —-

the sequence XyoXgy e oo Xpp Py P+ > PN-1° For these vectors the adjoint

equation (2.33) as well as the minimax condition (2. 34) is satisfied. Q. E.D.

The Proposition 2.8 states that a minimax principle holds along a
minimax trajectory provided this trajectory does not go through singular
points and the initial condition is regular. This is reminiscent of the mini-
max principle of differential games which holds provided the optimal trajec-

tory does not go through singular surfaces.
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Except for the assumption concerning nonsingular points every
other assumption used in the proof of Proposition 2.8 is required in order
to rule out rather pathological cases which seldom occur in practice. Hovr-
ever the assumption that the trajectory does not go through singular points
is a formidable one. Except for particulady well behaved problems,
singular points are a common occurance and invariably minimax trajec-
tories corresponding to some initial states will go through these points.
One can prove in fact that if x, is an initial state which is such that there
exists a minimax trajectory starting from X, which does not go through

singular points then we must have

JL(xo) = Jo(xo) = ]’xo (2.35)

where :fx = Jo(xo) is the optimal cost of Problem 2.1 corresponding to X,
o
and J L(xo) is given by

N
Jp(x,)) = sup inf I {g e + g, lm _ (x, _))
wkcwk B k=1

k=o.l,oo.N4 k=0. l'oo.N-l

The equation (2.35) implies the existence of a saddle point in the zero-sum
game where the players are the controller and nzture and the payoff function
is

N

kfl {fk(xk) + 8k- l[ k- l(xk- 1 )}

Since we have JL(xo) < Jo(xo) with strict inequality holding in general for
a "large'' set of initial states, the equation (2.35) illustrates the limitations

of Proposition 2. 8.
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It appears that, in general, it is a formidable task to determine the
set of initial states which are such that their corresponding minimax trajec-
tories do not go through singular points. The same is true for determining
whether a particular point is singular or not. Thus even if a candidate for
a minimax sequence is found through Proposition 2. 8 it may be very dif-
ficult to verify whether in fact it is a minimax Qequence.

In conclusion the necessary conditions presented in this section should
be expected to provide a complete solution to only a limited class of problems.
The class of problems for which the singular points either do not exist at all
or can be detected by graphical or analytical methods.

One class of problems where singular points do not occur is the case

where the functions fk of the cost functional (2. 5) are linear

fk(xk) = <xk,ck>, k=1,2,...,N-1

where <:, +> den-tes inner product and c) are given vectors in R". If the
functions Bl k=0,1,..,N-1 satisfy the requirements of special case C
then it can be easily proved that the functions Ek’ Hk’ Jk of the DP algorithm

are linear functions. In particular the functions Ek are differentiable, and

therefore singular points do not appear. A minimax sequence for this prob-
lem can be obtained by making use of the minimax condition of Proposition
2.8.

The minimax principle of Proposition 2.8 however can be used in still
a different way. Assume that a sequence ‘{Go’ ;’o’ ﬁl, w';'vl, Aol GN-I' V-VN-I} with
a corresponding trajectory {xo, ;‘l’ cee, J-(N} has been found via the miniinax
condition (2.34), and that one cannot verify whether indeed this sequence is

minimax sequence. Let
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N

Txo = Z Ul + gy By )]

be the value of the cost corresponding to the sequence. Then one can easily

prove by making use of Propositions 2.3, 2.4, and 2.5 that the inequality

T <7, (2.36)
[¢] [o]

holds, where fo is the optimal value of the cost functional (2.5). In some
o
cases now minimax problems are solved in order to determine the optimal

value Tx and compare it with the worst-case performance, say J o ofa
o o
controller selected on the basis of other considerations. The reasoning

used is that if the difference (Jx - Tx ) is relatively small then it can be
o o
concluded that the worst-case performance of this suboptimal controller is

not unduly poor. Since, by using the relation (2.36), we have

a ""small' value of (Jx - Tx ) can guarantee that the worst-case perform-
o o

ance of the controller under consideration is acceptable.

6. Discussion and Sources

The basic approach towards the solution of the problem of this chapter
is dynamic programming. The computational requirements for this algorithm
depend on the dimension of the systermn and the nature of the sets W in which
the disturbance is known to belong. If the sets Wk are compact polyhedra
with a relatively small number of vertices the computational requirements

are only slightly greater than those for a deterministic optimal control prob-

lem with the same state and control vector dimensions.
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In some cases a dual algorithm involving the conjugate convex func-
tions of the ''cost-to-go'' functions can offer computational advantages,
particularly if the sets Wk are only indirectly known via their support
functions.

New results in this chapter are the existence results of Proposition
2.2 and some of the necessary conditions in Section 4. The minimax prin-
ciple of Proposition 2. 8 should not be considered as a powerful tool for
solving a wide variety of problems. It can be useful however in some
cases and it is of theoretical interest since, together with the developments
preliminary to its proof, it provides insight into the mechanism of optimality
for the problem of this chapter.

Two special cases of Problem 2.1 are of interest in deterministic opti-
mal control theory. In the first case the sets W consist of a single point v-vk,
Wk = {\Trk} , k=0,1,...,N-1, For this optimal control problem the Pro-
position 2.2 yields existence results that to the author's knowledge, are
stronger than those available in the literature. Some of the results on

(L1)

existence of optimal controls in Lee and Markus are along the same
lines. For the same case the Proposition 2. 8 yields a Minimum Principle

which holds for a linear discrete-time system and a convex but not differ-

entiable cost functional. This Minimum Principle is a sufficient as well

as necessary condition for optimality as can be easily verified by using
Proposition 2.5. Notice that for this case there exist no singular points
due to the nature of the sets Wk. A similar Minimum Principle for a linear
continuous-time system and a convex but not differentiable cost functional
has already appeared in (Hel). Necessary conditions along similar lines

can also be found in (R2), (Lu2), (B3). A second special case of interest in




e

deterministic optimal control theory is the case where the system is de-

scribed by the equation

xk+l = Akxk + kak’ k = 0.1' .QI’N-l (2- 36)
and it is required to find
_ N
J_ = sup Z f (x,) (2.37)
Xo  w,eW, k=lE K

k" "k
k'-"o,l.c o,N'l

where fk' k=1,2,...,N are real valued convex functions. This problem
can be recognized as the special case of Problem 2.1 with the functions

8 defined as

gk(uk) = o for uk¥ 0, gk(O) = 0, o= @ L, & gendi-il

For this problem Proposition 2. 8 yields a Maximum Principle which can be
proved without the assumption that the optimal trajectory does not go through
singular peints, and that the initial state is a regular point. The proof is
based on Propositions 2.3 and 2.7 and an argument similar to the one used
for the proof of Proposition 2.8. This Maximum Principle holds for a linear
system and a nondifferentiable convex functional and provides a necessary,
but not sufficient, condition for optimality for the problem of equations (2. 36)
and (2.37). It can be easily generalized for the case of system (2. 36) where

it is requireﬁ to find

N
J_ = sup Z {fk(xk) + hk-l(wk-l)}

X g
(o} wkewk k=1

k=o,l,..,N'1

where hk’ k=0,1,...,N-1, are any continuous real valued functions on RT.
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Open-loop discrete time minimax control problems can be viewed

as single-stage feedback problems (N=1), and therefore for the case of
a linear system and a convex cost functional they can be considered as a
special case of Problem 2.1. In addition to the results of this chapter
the necessary conditions in (Dal), (Da2), (Bral), (D1), (D2), (D3) and the
computational algorithms in (D1), (Sal), (Psl), (B3) can be used for the
solution of such problems. Some of the material in these references is

applicable to nonlinear and nonconvex open-loop problen:.s as well.

Linear discrete-time minimax control problems with perfect state

(W1), (W2) who developed

information were considered first by Witsenhausen
the dynamic programming algorithm and its dual for the case of the cost
functional J(p.o, Byseees “N-l) = ‘:;gw fN(xN). He considered in detail
k=0,1,..,N-1

the implementation of the dual algorithm for this case and gave a necessary
condition which parallels Proposition 2.4 of this chapter. He also observed
that a minimax principle in general does not hold due to the presence of
singular points.

The dynamic programming algorithm of this chapter can be extended
to much more general minimax control problems as will be seen in Chapter 5.
All the other results of this chapter rely on linearity and convexity. Their

extension however to continuous-time linear systems appears to involve

great technical difficulties.




CHAPTER 3

REACHABILITY OF A TARGET TUBE WITH
PERFECT STATE INFORMATION

1. General Remarks

In this chapter we consider a special case of the problem of the
previous chapter which will be referred to as the pmblem of the Reach-
ability of a Target Tube by the state of the system when the controller
has available at eacii time a perfect measurement of the system state.
The motivation for considering this problem arises from two basic prob-
lems of deterministic control theory, the controllability problem, and
the tracking (servomechanism) problem. The controllability problem
is concerned with transfering the state of a system from an initial state-
time pair to a final state-time pair. The tracking problem is concerned
with keeping the state trajectory of the system ''sufficiently close' to a
prescribed trajectory.

The problems considered in this chapter can be viewed as the
analogs of these two problems when there are disturbances driving the
systern. In accordance with the general approach of this thesis we as-
sume that these disturbances are unknown except for the fact that they
belong to given sets. Under these circumstances, the most natural
analog of the deterministic controllability problem is that of steering
the system state at the final time into a desired target set under all
possible combinations of disturbances. In other words, we would like to
design a feedback controller in such a way as to guarantee that the final
state of the system will always lie in a prescribed target set despite the

presence of uncertainties. In a similar vein, a natural analog of the

-49-
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tracking problem under these same conditions is to keep the entire state
trajectory in a "tube' containing the desired trajectory under all possible

disturbances. We refer to these two problems as those of '""Reachability

of a Target Set" and ""Reachability of a Target Tube'. Possible applica-
tions of these two problems can be expected in the control of systems
under uncertainty when either a set-membership description of the un-
certain quantities is more readily available than a probabilistic one, or
where specified tolerances must be met with certainty.

In the next section we formulate the problem of Reachability of
a Target Tube which involves a linear discrete-time system. The prob-
lem of Reachability of a Target Set under the same circumstances can be
viewed as a special case of the problem of Reachability of a Target Tube
and will not be considered explicitly. The solution of the problem by dy-
namic programming will be given in Section 3 by making direct use of
the results obtained in Chapter 2. In Sections 4 and 5 we shift the em-
phasis to the development of algorithms which have potential for practical

applications. We consider the case where all the given sets are ellipsoids

in the appropriate Euclidean spaces and we develop ar. ellipsoidal approxi-

mation algorithm which results in a control law which is a linear function

of the system state, thus offering attractive implementation advantages.

2. Problem Formulation

e e

We will consider the following problem:

Problem 3.1: Given is the linear discrete-time dynamic system:

Xe41 = A F Bpu +Gewy, k=0,1,...,N-1 (3.1)
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where X, € Rn. k=0,1,..,N, are the state vectors, u€ Rm, k=0,1,..,N-1,
are the control vectors, Wk€ Rr, k=0,..,N-1, are disturbance vectors, and

A ,B,G ,6k=0,1,..,N-1 are given matrices of appropriate dimension.

k' k’ k’

The initial state X, is known and the disturbance vectors Wi belong to
given compact sets WkC'Rr, wke Wk, k=0,1,...,N-1.
Attention is restricted to control laws of the form

n_.U

p.k:R K’ k=0,1,...,N-1
taking values
uk = “k(xk)’ k= o,l’ouo,N-l

where UkCRm, k=0,1,..,N-1, are given closed convex sets. It is required
to find (if it exists) a control law in this class such that for all k the state
X141 of the closed-loop system

X4l = Akxk + ka.k(xk) + kak (3.2)
is contained in given closed convex sets xk+1’ k=0,1,..,N-1, for all pos-

sible values of the disturbance vectors W

We shall say that the target tube {Xl, b SRR XN} is reachable if
there exists such a control law.
It is easy to see that the Problem 3.1 is a special case of the Prob-

lem 2.1 of the previous chapter with the cost functional defined as

N
J(p'oip'ln--'op'N_l) = sup 2_ {6(xk|xk)+6[“k-l(xk-l)luk-l]} (3°3)
WkEWk k=1
ks 0, 1, .=l

where 6(x|X) denotes the indicator function of the set X (6(x| X) = 0 if
xeX, 6(x|X) = o if x¢ x)
With this definition the target tube {Xl. XZ,...,XN} is reachable if the optimal

value Tx of the cost functional (3.3) is 0. It is not reachable if -fx = 0.
) o

———




-52-

It should be noted that the problem of this section. has also been
considered in a somewhat more general form in (Bl). The approach used
in this reference is purely geometrical and does not rely on the solution

of the Problem 2.1.

3. The Dynamic Programming Algorithm

Application of the dynamic programming algorithm cf{ Proposition 2.1

of the previous chapter yields the optimal cost

- %
Jxo = J (x)) = 6(x°|X°) (3.4)
from the recursive equations

Ek+l(X) = G(XITk_'_l), k= 0,2,-..,N'1

I %)) = s(xklx;), k=01,...,N

where the sets Tk and X; are given by the relations

> ol (3.5)

T g - {x|(x+G W)X} .}, k=0,1,...,N-1 (3.6)
Xlt = {xk|(Akxk+Bkuk)€Tk+1, for some ukEUk}nXk, k=1,2,..,N-1

(3.7)

X: = {xo“ono +Byu, JeT,, for some uero} (3. 8)

If x € X:, by equation (3.4), the optimal cost is 0 implying the exis-
tence of a control law that achieves reachability of the target tube {Xl, XZ""
XN}. If xodx: then the target ‘ibe is not reachable.

Some of the properties of the sets Ik and Xl’: of equatins (3.5) through
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(3.8) can be obtained by making use of propositions derived earlier in
Chapter 2. Thus by Proposition 2.2 these sets are convex whenever nonempty, and
if the sets Uk are compact they are also closed. If.in.additionthe matrices Apr k=
0,1,...,N-1, are invertible then it can be proved that the sets Tk and
X: are compact. Also since the support function and the indicator func-
tion of a closed convex set are conjugate to each other the support func-
tions of the sets Tk and X: can be obtained by making use of the equations
(2.16), (2.17) and (2.18) of the previous chapter.

A control law that achieves reachability can be obtained as follows.

#* : - _ e
To every x, € xk associate a vector p.k(xk) = uke Uk such' that

(Axy + Biujle Ty

By definition of the set X;: such a vector exists. It can be seen that if the
target tube {X,, X,,..., XN} is reachable from the initial state of the sys-
tem, then if we use a control law defined as above the state xy will belong
to the set X: for all k,and thus definition of the control law for vectors
outside the set X: is redundant.

For purposes of future reference the tube {Tl' TZ’ 5640 1 TN} will be

called effective target tube. The tube {X:, X*, e X;} will be called

modified target tube and in fact it specifies the region of state space where

the state will lie when a control law that achieves reachability is used.

For practical applications it is important that the sets Tk and X:

of the effective and modified target tube can be characterized by a finite

set of numbers. This is possible when the given sets Xk and Uk are convex
%
polyhedra. The sets ’I‘k and Xk are in this case polyhedra and thus can be

characterized by a finite number of bounding hyperplanes. The corres- l
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(B1)

ponding algorithm is however beset by the fact that the number of
bounding hyperplanes increases at every step of the algorithm. In ad-
dition the implementation of a control law that achieves reachability can
be quite cumbersome.

In the case where the given sets are not polyhedra, characteriza-
tion of the sets Tk’ X: of the effective and modified target tubes by a
finite set of numbers is in general infeasible. One can however conceive
of constructing sets that internally approximate the sets Tk’ X;: and which
can be characterized by a finite set of numbers. One such possibility is
to approximate the sets 'I‘k and X: for each k by ellipsoids TkCTk,
?:CX: since an ellipsoid is completely characterized by its center and
a weighting matrix. Then in order for the original target tube {Xl » Xopeen
XN} to be reachable from the initial state X it is sufficient (but not nec-
essary) that x € f:. This approximation approach is the basis for an el-
lipsoidal approximation algorithm given in the next section, where results
on the optimal control of linear systems with quadratic cost criteriaare

used not only to obtain ellipsoidal approximating sets but also to derive

control laws which are linear.

4, An Ellipsoidal Approximation Algorithm

Consider the special case of Problem 3.1 for which the constraint

sets are the ellipsoids described by:

X, = Ix IxCLCx <1}, k=1,2,...,N-1 (3.9)

< 1} (3.10)

Xy = Doyl xje¥xy
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U = {ukluLRkukf 1}, k=0,1,...,N-1 (3.11)
w, = {wlwQw <1}, k=0,1,...,N-1 (3.12)

where the matricesY, Rk' Qk are given positive definite symmetric ma-
trices forallk=20,1,...,N=-1, and the matrices Ck are given, We also
assume that the matrices Ak in the system (3.1) are invertible.*

We first internally approximate the set 'I'N of equation (3.6) by an ellipsoid.

To this end, we state the following 1emma the proof of which can be found in (Sl;)

Lemma 3.1: Consider two ellipsoids El’ E, in R" with support functions
o'(xlEl) = (x'le)I/z, o'(xIEz) = (x'sz)l /2. Their vector sum El + EZ
is contained in the ellipsoid E with support function

six|E) = {x1p7l, + (1-p)lq,1!/2

where B is a free scalar parameter with 0 < g < 1,

For ellipsoid TN to be contained in the set T, of equation (3.6)

it is sufficient thatTN.-l- Gy.1Wn.) ©¥ne The support functions of the ellipsoids

GN-le-l and XN for the case considered in this section are, o(x| GN-le-l) =

1/2 1/2

(x'GN-lQI-\Il-IGi\l-lx) and o‘(xlXN) = (x"y-lx) . By Lemma 3.1 if follows

that the relation TN + GN-le- 1 C X) is satisfied if the support function of

'I‘N is given by

%
Notice that if the discrete-time system (3.1) results from sampling of a
continuous-time linear system the matrices A, will always be invertible.
However, it is easy to see that in what follows invertibility of the ma-

trices Ak is not necessary if the matrices CLCk are positive definite for
all k.
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o(x|Ty) - (x'r;,'x)”z

where the matrix F;q is given by

-1

-l _a-l -1
Fy = (1-P) V7B Gy QN Oy (3.13)

and pN is a free parameter such that 0 < pN < 1. If the given constraint
sets are such that the set TN has a nonempty interior, there exists a

scalar pN with 0 < pN <] such that the matrix FN of equation (3.13) is
positive definite and the ellipsoid

TN = {xIx'FNxf_ 1)

is contained in the set TN’

By using the ellipsoid TN a set contained in the set x;_l of equation

(3.7) is now defined as the set of points XN-1 with the property that both

C

C <1

XN-1EN-1CN-1*N-1 £ (3.14)

and
(AN_1*N-1 ¥ BN_1UN-)) € Ty for some uy €Uy .

The second requirement becomes in this case that

x'Fyx < 1 for some Uno) with uyy | R 1 (3.15)

BN-1UNag S

and with
x = AN-lxN-l + BN-I“N-I (3.16)

The set of points XN-1 satisfying relations (3.14),(3.15) and (3.16) clearly

contains the set of points xN-] with the property that for so: e un_ € R™




'N-ICN-ICN-I'N-! *“N-IRN-I“N-I + x'FNx <1 (3.17)

X s AN-I"N-I + BN-I“N-I (3.18)
By well known results on the linear quudratic regulator problem of optimal

control“‘” the set of p~inte XN satiefying the equations (3.17) and (3.18)

for some uN- 1€ R" s given by

» '
XN-1 " ENRUE IV IR VR (3.19)

where the positive definite matrix KN-I is given by the discrete Riccati

equation

- -1 -1 -1
Knop = AN (FN + By RynCiBhoy) Aoy * ©N-1Cn.p  (3-20)

Furthermore a control law which achieves reachability is given by

un-1 ® ANafNoy) ® -(Ryyy #BR PGBy )T Bl Py o
(3.21)

By proceeding with similar approximations we define sets
TN-I'K;‘I-Z' e 'TI'Y:' If some ellipsoid Tk is empty, then the algorithm
breaks down. This of course does not imply that the original target tube is
not reachable, since approximations were involved in obtaining Tk‘ In this
case if we wish to proceed with the ellipsoidal algorithm we will have to
start with a "'largsr' target tube or ''larger' control constraint sets. We
summarize the algorithm below:

An internally approximate modified target tube {f:.?; Sy ,Y;} and

effective target tube {TI'TZ’ Al 'TN} are given recursively by the equations:

-—
X, = IxlxKx <1}, k=12,...,N (3.22)




T, {xIx'F x <1}, k=1,2,...,N (3.23)
rloa-sakt-eite, .Qtar ) (3.24)
k k" k “k-1"k-1"k-1 '

) =] -1 -1
Kot 7 AP * B R Bl A * G € (3.25)
Ky ° 4 (3.26)

and the free parameters pk. k=1,2,...,N, are such that 0 < ﬂk < ] and
the matrices F‘k are positive definite for all k.

A sufficient condition for reachability is that the set

-—
X, {xolxéKoxo < 1} (3.27)

contains the initial state X where

K = a(F'+B'R7IB ) lA (3.28)
o o' 1 o0 o o

Furthermore a contrcl law that achieves reachability is given by the equation

- -1 -
Me(x,) = -(R +B/F B ) BIF Ax., k=01,...,N-1(3.29)

We remark that another contmwl law that achieves reachability is the
control law with a dead zone given by equation (3.29) if xitAichHAkxk > 1
(i.e., if Akxk( Tk+l)’ and p.k(xk) = 0 otherwise. In certain applications the
use of a dead zone can be particularly beneficial.

It should be mentioned that a similar ellipsoidal algorithm can be
obtained for the case where the given sets Xk+1, Uk' Wk, k=0,1,...,N=1,

are ellipsoids which are centered at given points other than the origin.
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The case where the system (3.1) is time-invariant, the given
constraint sets are constant and the final time N approaches infinity ‘4
highly interesting. The behaviour and the convergence propertivs of the
ellipsoidal algorithm under these circumstances will be examined in the

next section,

5. Infinite Time Behaviour of the Ellipsoidal Algorithm

Consider now the case where the system (3.1) is time -invariant

= Ax, + Bu

X\ 41 k K+ aw

k (3.30)

the given constraint sets are constant, i.e., Rk = R, Qk = Q, Ci(Ck -V,
for all k, and the final time N approaches infinity.

The ellipsoidal algorithm of equations (3.22) through (3.26) under

these circumstances, and assuming a constant scalar p with 0 < g <1, i.e.,

pk = @ for all k, is given by the equations:

X, = (e IxpK x, < 1) (3.31)
T, = {x|xF, x < 1} (3.32)
where
FRlo= -k - pTlca o) (3.33)
K., = ANF.' +BR7'B) 1A +¥ (3.34)
Ky =¥ (3.35)

N

under the assumption that the matrix F;(l is positive definite for all k.
Assume that for some scalar p with 0 < f < 1 the algorithm of

equation (3.31) through (3.35) possesses a positive definite steady state




|
|
|
|
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(] n
olution K-m given by

) -1 |
K. = AF._ +BR™'B)A+V (3.36)
for which the matrix
Floooa-mk! -plcale) (3.37)
- - '

is positive definite. Then if the initial state belongs to the set 'f‘ =
(xlx'K_mx < 1) the state of the system (3.30) can be made to stay indefi-
nitely in the tube (X", X , ...} by application of the linear time invariant

control law

k(x) = -(R +B'F__B) 'BF__Ax (3.38)

Since we will have X C X = {x|xWx < 1} infinite time reachability of the
given target tube {X, X, ...} is achieved.

It should be noted that in the actual operation of the closed-loop
system the initially given tube {X, X, ...} loses its significance since the
system state will always remain in the internal tube {?*, f*, ...} the sets
-f* of which will differ significantly from the sets X of the initial tube both
in ''size' and ''orientation'. Thus in any infinite time design prwcedure the
given set X and the corresponding matrix ¥ take the role of a design para-
meter which can be adjusted to obtain different steady state solutions K-oo
of the algorithm.

A question of importance is under what circumstances the algorithm
of equations (3.33) through (3.35) will converge to a steady state solution
K. o satisfying the equations (3.36) and (3.37). Clearly given the system

(3.30) and the matrix Q specifying the disturbance constraint set W, the
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matrices R and ¥ must specify a sufficiently ''large'' control constraint

set and a sufficiently "large'' target tube relative to the size of the dis-
turbance set and the nature of the matrices A, B and G of the system. Thus
if the matrices R and ¥ specify relatively small constraint sets the algo-
rithm of equations (3. 33) through (3.35) should not be expected to converge
to a steady state and guarantee reachability from some initial states. Now
in any practical situation the designer is given the system (3. 30) and the
matrix Q specifying the set W where the input disturbance belongs, and
usually there is a certain degree of freedom in adjusting the control con-
straints, and particularly the matrix 4 specifying the target tube which

in view of the comment of the previous paragraph plays the role of a de-
sign parameter. In this sense a possible design procedure is to initially
select the matrices R und ¥ and in case the algorithm does not converge

to a steady state solution, to decrease these matrices by multiplication by
factors less than one and repeat the procedure until convergence and satis-
faction of the designer. It is important however to know under what cir-
cumstances there exist matrices R and ¥ such that the algorithm converges
to a steady state, and furthermore under what conditions such matrices can
be obtained by repeatedly multiplying any initially selected matrices Rl and
‘Ylby factors of less than one. This is the object of the next proposition
which states that the design procedure outlined above is successful provided
the system (3.30) is stabilizable, i.e., if there exists a matrix L such that
the matrix (A - BL) is stable (has eigenvalues within the unit disk of the
complex plane). Notice that the system (3.30) is stabilizable provided the

pair (A, B) is controllable (but not conversely)(won.
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Proposition 3.1: Assume that the system (3.30) and the positive definite

symmetric matrix Q are given and that the system (3.30) is stabilizable.
Then given any positive definite symmetric matrices “’l and Rl of appro-
priate dimension, there exists a scalar pl. 0< bl < 1 such that for
every scalar f, 0 < g < pl there exist scalars .l'bl depending on § such
with 0 < a < a

that for all matrices ¥ = avl, R = bR 0<b<b,, the

1 1’
algorithm of equations (3. 33) through (3.35) converges to a positive def-
inite symmetric steady state solution K-co satisfying equations (3.36) and

(3.37).

The proof of the above proposition follows similar, yet a little
more complicated, arguments with a proof of convergence of usual Riccati |
equations to a steady state lolution(woz). Due to its length this proof will
be presented in Appendix II.

Another important question concerning the infinite time ellipsoidal
algorithm is whether the resulting linear time-invariant control law makes

the closed-loop system asymptotically stable. This question is answered

in the affirmative in the following proposition.

Proposition 3.2: Assume that the algorithm of equations (3.33) through

(3.35) converges to a steady state solution K-oo' where K-oo is a positive
definite symmetric matrix for which the matrix F-m of equation (3,37) is
also positive definite. Then the closed-loop system resulting from appli-

cation of the linear time-invariant control law of equation (3.38) is asymp-

totically stable.

The proof of the above proposition will also be given in Appendix II.
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An immediate consequence of the above proposition is that tran-
sients due to initial etates will vanish eventually during the operation of
the closed-lonp system. More accurately for any € > 0 it can be guar-

anteed that after a sufficient number of steps the state will be confined

in the set Y‘ + €B, where B is the unit ball in R". and this will occur .

for any initial state X, in R".

6. Discussion and Sources

The problem of the reachability of a target tube was examined in
this chapter with emphasis in the development of an ellipsoidal approxima-
tion algorithm that appears to have potential for practical applications.

The attractive feature of the ellipsoidal algorithm is that it pro-
vides a linear control law which in the infinite time case makes the closed-
loop system asymptotically stable. Furthermore for the infinite-time
case the existence result of Proposition 3.1 guarantees that the algorithm
is applicable to every linear time-invariant system which is stabilizable.
Thus the ellipsoidal algorithm appears to offer practical advantages as a
design method for many regulation and tracking problems which involve a
linear system, and for which the statistics of the uncertain quantities are
unknown and difficult to measure, or for which specified tolerances must
be met with certainty.

A number of questions concerning the performance of the algorithm

remain as yet unresolved. One such question concerns the quality of the

approximation involved in the algorithm. If appears to be very difficult
to obtain precise estimates of the approximation which are applicable to

large classes of systems. Thus some further research and simulations
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are required in this area. Another question, and in the author's opinion
the most important, touches upon the merits of the whole minimax design
philosophy. Minimax designs are in general concervative, optimal against
the worst case. In the particular case of the ellipsoidal algorithm the
result is that the feedback gains of the controller tend to be large in mag-
nitude, a feature which in some cases may be undesirable. Furthermore
this situation is adversely effected by the approximations involved. Only
simulations and practical experience can give some answers to this ques-
tion,

Many of the results of this chapter have been reported in (Bl). The
approuch used in this reference ie purely geometrical and is applicable to
a large class of problems. It not required that the system is linear and
that the given sets are closed, convex or compact. In fact not even the
linear vector space structure of the space of definition of the system is
necessary. However the ellipsoidal algorithm is applicable only to the
class of problems considered in this chapter. The Propositions 3.1 and
3.2 have not appeared earlier. It is interesting to note that the equations
of the ellipsoidal algorithm are very similar to Riccati equations related

(Rh”. In fact

to linear multistage games with quadratic cost functional
the proofs of Propositions 3.1 and 3.2 were to a large extent motivated
by this similarity.

The problem of the reachability of a target set is the special case
of the Problem 3.1 where the sets Xk for all k except k = N are equal to
the whole space R™. This problem for a linear discrete-time system,
closed-loop control and perfect state information was first considered

(W1),(w2) .

by Witsenhausen in the framework of a more general minimax
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control problem. The same problem for a continuous-time system but
an open-loop controller was also considered by Delfour and Mitter in (Del).
Problems related to those of this chapter that require attention
are the case of a nonlinear system and the case of a continuous, linear
or nonlinear, system. The results iniBl) cre applicable to nonlinear
discrete-time systems however no practical algorithms applicable to
nontrivial systems are available at this moment. The case of a continuous-
time linear system is considerably more difficult to handle than the case
of a discrete-time system. Some results obtained by the author in this
area are not as yet conclusive,
Finally we note that the problem of the reachability of a target tube
with imperfect state information, including the case where instead of the
entire state only a linear output of the system is measured exactly, will be

considered in Chapter 6.
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CHAPTER 4

STATE ESTIMATION PROBLEMS FOR A SET
DESCRIPTION OF THE UNCERTAINTY

1. General Remarks

In this chapter we digress from minimax control problems in order
to consider some state estimation problems which involve a set-membership
description of the uncertainty. Such problems, though important in their
own right, are essential for the solution of minimax control problems with
imperfect state information. Although the concepts to be presented are
applicable to much more general situations we will lhe concerned exclusively

with the case of a linear discrete-time dynamic system

xk+l = Akxk"'Bka. k= 0,1,...,N-1 (401):

to which there are available noise-corrupted measurements

z2, = Cpxp * v (4.2)

where X € R" is the system state, w,¢€ RY is an input disturbance vector and
v € RP is the measurement noise vector. We assume that there is no control
input to the system. The algorithms that we derive however can be trivially
modified to take into account the effect of any known deterministic input by
virtue of the linearity of the system and measurement equations.

In a stochastic estimation problem involving the system (4.1) with
the measurements (4.2) the uncertain quantities, i.« , the initial state and
the input and n ...urement noise vectors, are modelled as mutually inde-
pendent randon vectors with known probability density ‘unctions. In this
case all informa:ion about the system state at any time that is provided by

the measurements iz contained in the probability density function of the state

-66-
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conditioned on these measurements. This conditional probability density
function is then used, explicitly or implicitly, to determine an estimate
of the system state which is best in some prescribed sence.

In the case considered here, the uncertain quantities are not mod-
elled as random vectors, but are considered instead to be unknown except
that they belong to given subsets of appropriate vector spaces. Under
these circumstances, all information about the system state at any time

that is provided by the measurements may be summarized in t'.e set of all

states consistent with both the measurements received and the constraints
on the uncertain quantities. Once this set of possible states is characterized
a point estimate can be selected using some criterion such as the minimax
error criterion for example. In what follows however we will be concerned
exclusively with the characterization of the set of possible states or some
approximation thereof. Since for the special cases that we will consider this
set will be an ellipsoid, if a point estimate is desired the center of the ellip-
soid is the natural candidate.

Two distinct types of constraints on the uncertain quantities will be
considered. The first is the energy-type constraint

-1 N

-1 -1
[ [] ! <
xo‘l’xo + kZ=21 (v.rk_le_lwk_1 + kak vk) 1

where V¥, Qk' R, are given positive definite symmetric matrices for all k.

k
For this constraint we show that the set of posasible states at any time con-
sistent with the output measurements is an ellipsoid whose center and

weighting matrix are generated by equations identical to those associated

with the best linear estimator (Kalman filter) fora certain stochastic esti-
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mation problem. We shall demonstrate a one-one correspondence be-
tween estimation problems where the uncertain quantities satisfy an energy
constraint and linear minimum variance stochastic estimation problems.
Once this correspondence is established we will be able to use available
results in stochastic estimation theory to derive estimators for the energy
constraint case for a number of problems of interest including the filtering,
prediction and smoothing problems.

The second type of constraint that we consider is the more practically
important case where the uncertain quantities are constrained at each instant
of time to lie in ellipsoids, i.e.,

-1
-1 -1 )
x0Wx_ <1, wi Q@ w,_,<1 wR'v <1, k=12,..,N

In this case the set of states consistent with the measurements is not an
ellipsoid and it is not, in general, characterized by a finite set of numbers.
However, an ellipsoid bound to it can be detemnined by bounding the instant-
aneous constraints by an energy constraint and using the results derived for
that constraint. The resulting estimator for the case of the filtering and the
prediction problem is similar to that proposed by Schweppe(Sl) but it has
two important advantages: first the gain matrices do not depend on the
particular measurements received and are therefore precomputable and,
second, it reduces to a constant system as the final time beccmes infinite,
In all other respects it is comparable to that proposed by Schweppe. Further-
more our approach permits the derivation of an estimator for the smoothing

problem which has not been previously considered in the literature.
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2. Formulation of the Problem with an Energy Constraint

In this section we formulate a general estimation problem involving
a linear discrete-time dynamic system and a combined energy constraint
on the uncertain quantities. This problem includes as special cases the

filtering, prediction, and smoothing problems.

Problem 4.1: Consider the linear discrete-time dynamic system

X4l Akxk+Bkwk, k=90,1,...,N-1

to which there are available noise-corrupted measurements

z, = Ckxk+vk

where X € R" is the system state, wke RT is the input disturbance vector,

Vi€ RP is the measurement noise vector, and the matrices A,, B,, C, have

k' "k’ Tk
the appropriate dimensions. The initial state X, and the disturbances Wy

V) are assumed unknown except that they satisfy the energy constraint

-1 N
-1 -1
L]
xt Wx + zl(w;(_lok_lwk_l +viR ‘v, ) < 1 (4.3)

ke kT k
where v'Qk-l' Rk’ k=1,2,..,N, are given positive definite symmetric
matrices. Let i, k be arbitrary integers, 0<i< N, 0<k <N, It is re-
quired to find the set xilk of possible system states x, at time i which are
consistent with the constraint (4. 3) and the measurements Z),2p

ot zk
up to time k.

We remark that if i = k this problem is usually called the filtering
problem, if i > k it is called the prediction problem, and if i < k it is called

the smoothing problem.
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In the next section we will obtain a general solution to the above
problem by associating it with a stochastic estimation problem, the solution
of which is weil known. We will then use this general solution to obtain

estimators for the special cases of filtering, prediction, and smoothing.

3. A General Solution to the Problem with an Energy Constraint

Given any estimation problem where the uncertain quantities are
unknown except that they lie in some given set it is possible to give a precise
characterization of the set xilk of possible states x, at time i consistent with
the measurements Z)iZyseens 2y in terms of the given constraint set and
the system and measurement equations. This characterization is usually
quite elaborate but for the Problem 4.1 it takes a particularly useful form.
A great deal of insight can be obtained through it, and most importantly it
leads to a direct correspondence with linear minimum variance stochastic
estimation problems. We will first introduce some notation.

Let ue Rn+N(r+p) be the vector consisting of all the uncertain quan-

tities according to the relation
= (x:’. WL, W'l,...,W'N-l,Vl',Vz'..-.,Viq)' (404)

Let us also combine all measurements received up to time k into

one vector

Ck= (2, 2hs ..oy 1) (4. 5)

Both the state of the system x; at any time i, and the vector ;k can

be obtained from the vector u of equation (4.4) by a linear transformation

x. = Lu (4. 6)




(4.7)

where the n x [n +N(r+p)] matrix Li and the kp x [ n + N(r+p)] matrix Dk

are given for all i and k by

= [9G,0,®( 1B, ..., D, i-1)B_,, B, 1,0,...,0]  (4.8)

5
cl¢(1.0), C,B., 0,0...,0 0,..,01,0,..,00,..,0

D, = z0(20),cz<b(21)15 GB,,0,...,0 0,..,00,1,0,..,00, ..,
c k,0) C &k, 1)B, k, 2 ,0,..,00,..,0,10,..,0
S, 00 @k, 1)B, Rk, 2)8,.., 68 ), 0 |

(4.9)
where the transition matrix Q(i,j) is given by
&4, j) = Ai_lAi_Z...Aj for j < i
®u,i) = 1

and where the dimensions of the zero and identity matrices in the above
equations are consistent with the multiplications indicated in equations (4. 6)
and (4.7).

The energy constraint (4.3) implies that the vector u of equation (4. 4)
belongs to the ellipsoid

1

{ulu'M™"u < 1} (4.10)

where the positive definite matrix M is defined as

Q,
M - °-QN_1 (4.11)
- R
X
0 "Ry




s
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Now, for fixed measurements Ck. the set xilk which solves the |

Problem 4.1 can be conveniently characterized as ‘

X = {xlx= Ly, . -Du, ueu) (4.12)

k k

A
By defining the set Uk of all possible vectors u consistent with the mea-

surement vector Ck 1

|
Gk = {u] Ck = D,u, ue U} (4.13) |

we have from equation (4.12) that the set Xil'k is given by the equation

A
X = LU (4.14)

ilk k

Thus the set xi Ik can be obtained by a linear transformation on the

A
set U, which is the set intersection of the set U with the linear variety

k
(manifold) {u] ;k 5 Dk“} defined by the measurements. Since the set U is

an ellipsoid in the space Rn+N(r+p)

A
the set intersection Uk is also an ellip-
soid and the set xilk is also an ellipscid since by equation (4. 14) it is
obtained through a linear transformation on an ellipsoid. We proceed to

characterize the center and weighting matrix of the ellipsoid xil in the

k
following proposition.

Proposition 4.1: Th2 ellipsoid xilk which scives Problem 4.1 is given for

alli,k, 0<i<N, 0< k<N by

X.. = ix| (""?ilk,"zi.llle""’"\ilk) < 1 -8k (4.15)

ilk

where the matrix zilk is given by

l

z - Li[ M - MD{( (DkMD' ) DkM] L; (4.16) ;

ilk k

A —rr
the n-vector X |1 18 given by

o




7B

A
b 4

ik = LyMDi(DMD}) 1L (4.17)

and the nonnegative scalar 62(k) is given by

§2(k) = Ck(n MD}) 1§ (4.18)

In the case where the matrix zilk is only positive semidefinite but not positive
definite the ellipsoid x‘lk is characterized by its support function

1/2 ™ *1/2

o (x"|x, e = <x* .xl >+ [1-62(K)] (x12 %) (4.19)

It should be mentioned that, as will be shown later, the matrix zilk is invert-
ible provided the matrices Ak in the system equation (4.1) are invertible.
Proof: Since the equation (4, 19) implies the equation (4.15) whenever the
matrix Z, ik is invertible, it will be sufficient to prove

1/2 * o 1/2

c(x lxlk)- llup<x,x> <x,:&|>+[l -8 (k)] Ik )

X |

~
We will first characterize the support function of the ellipsoid Uk of equation

(4.14)
A =
0, = {ulb, = Dy, uMlu<1) (4.14)
k k k -
Conusider the space Rn+N(r+p) with the norm
lull = (umlyl/?

With this norm the set U = {ulu'M'lu < 1} becomes the unit ball in pAN(r+p)

and the set Gk of equation (4.)4) is the intersection of the unit ball with the

linear variety {u] gk = Dku}. Let Gk be the (unique) vector of minimum

norm on this linear variety given by the projection theorem(Lul)

i

. = MD} (D _MD}) ‘C (4.20)
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It can be seen from equation (4. 9) that the matrix Dk has full rank and
therefore the matrix (DkMDic) is invertible thus justifying the notation
used above.

A
The set Uk is now given by:

2 A2
G = tal hu-801% < 1-08%, 8 - pyu)

and can be also characterized as

A
”2)1 /sz

A A A
U, = uk+(l-||uk

k

A
where Ek is the 1ntersection of the unit ball with the nullspace N(Dk) of the

matrix Dk' From the above equation we have for the support function of Gk

A
o) = <o’ Q>+ - IGIAY? sup  <mu> @a2n)
hul< 1
ueN(D, )

By using Theorem 5.8.1 in (Lul) we have

su <u*.0> = ||G*||
lull2<
ueN(ﬁk)

where 6* is the projection of the vector u* on the subspace N(Dk). Using

again the projection theorem we obtain
* *) -1 *1/2
116711 = {u™'[M-MD} (D, MD})" "D, Mlu}

Using this relation in (4.21) we have

ow'ily) - &5, 8>+0- ||Gk||2)”z{u*'[M -MD;((DkMDL)'IDkM]u*}”z

A
Using the fact that kilk = LiU in the above equation, we have

k
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* & A
o(x |xi|k) = o(Lix |U,)

A

o A 12,1/2, %, -1 *,1/2
= <x, L& >+ (1= 19 19" “6 ' L,M - MD} (D, MD} )" "D, M] Lix "}

Now from equations (4.16),(4.17), (4.18) and (4.20) we obtain

c(x*ixilk) = <t R +[l-Gz(k)]l/z(x*'zilkx*)l/z

which was to be proved. Q.E.D.

The equations (4.17) and (4.16) for the center Qilk and the weighting
matrix zilk of the ellipsoid xilk appear to quite formidable in view of the
complicated expressions (4. 8) and (4.9) for the matrices Li and Dk' Y © we
will be able to obtain efficient recursive algorithms for the computation of

Qilk and E“k by associating the Problem 4.1 with the following linear mini-

mum variance estimation problem.

Problem 4.1': Consider the Problem 4.1 where the vectors Xoo Wos Wi ey Wy o
VirVar e VN instead of satisfying the energy constraint (4.3), are independent

random vectors with zero mean and covariances

E{x,x'} =¥, E{w, ;w}_ |} = Q

i E{viv'i} =R, i=1,2,...,N

i-1’ i

Find the linear minimum variance estimate §i|k of the system state x, at time
i given the measurements T PYRRRTE and also find the covariance of the

estimation error

A | ]
o = Bl X 00 - %, )

By using the relations (4.6) and (4.7) it can be seen that the above

problem is equivalent to finding the linear minimum variance estimate
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A
x. . of the vector x,
ilk i
x, = Lu (4.6)
given the measurement
§ - pDu (4.7)

where u is a zero mean random vector with covariance M given by equation
(4.11). The solution of this problem is well known and given in many sources
(Lul), (Brl)' The estimate Qilk is given by equation (4.17), i.e., by the
same expression as the center of the ellipsoid xilk in Proposition 4.1. The
covariance matrix zilk is given by equation (4.16), the same expression which
gives the weighting matrix of the ellipsoid Xil'k in Proposition 4.1. Thus
there is a one-one correspondence between Problem 4.1 and the stochastic
estimation Problem 4. 1' which is reflected inidentical expressions for the
center Qilk and weighting matrix zilk of the ellipsoid xilk on one hand, and

the linear minimum variance estimate ’?ilk and error covariance zilk in
Problem 4.1' on the other. Now from the well known results in stochastic
estimation theory the esatimate ’?ilk and erro? covariance .zllk are computed

by efficient recursive algorithms (Kalman estimators) which do not require
storage of the measurements. ‘The same algorithms are applicable and can
be used for obtaining the center ’?ilk and weighting matrix Zilk'of the ellipsoid
Xilk-solution of Problem 4.1.

Concerning the scalar éz(k) of equation (4. 18) the following recursive

relation can be proved for all k

82(k) = 6%(k-1) + (2, -C A, R .1 MCE . CH+R)z-ca £ )
k™ Uk Mk-1"k-1]k-1" k7K |k-1 k Pk-1]k-1

(4.22)
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This relation can be used to calculate the scalar éz(k) recursively without
requiring storage of all the measurements up to time k. The equation (4.22),
the continuous counterpart of which has been proved in (B2), can be proved

" in & number of ways. One possible method is by direct manipulation from
the equation (4. 18) using the equations (4.8), (4.9) and (4.11). This method
is straightforward but too lengthy and tedious to be profitably displayed
here. Another method to prove the equation (4.22) is by considering the
filtering case of Problem 4.1 and by casting it as an optimal tracking prob-

lem as was done m(BZ)‘ ‘The equation (4.22) follows directly from the solu-

tion of this tracking problem.

The preceding discussions have demonstrated that the ellipsoid Xilk-
solution of Problem 4.1 can be characterized from Proposition 4.1 by using
results of stochastic estimation theory (Kalman estimators) for the recursive
computation of the center ?‘ilk and the weighting matrix zilk and by using
equation (4.22) for the computation of the scalar Gz(k). In the next section
we shall explicitly characterize the solution of the Problem 4.1 for the case
of the filtering problem.

We finally note that the correspondence between the Problems 4.1
and 4.1' can be extended to some related problems not explicitly considered
here. Such is the problem where there is no ermr in the measurement
equation (4.2), i.e., z) = Ckxk' In this case the energy constraint (4.3)

becomes

. -1
! <
#Q¥ 5+ B W% £ !

The Proposition 4.1 can be easily shown to hold with the matrices Li’ Dk’ M
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appropriately modified. Under these circumstances however the matrix
Dk need not have full rank and consequently the matrix (DkMDi() may not
be invertible. In this case it can be proved similarly as in Proposition 4.1
that the center §1| K of the ellipsoid xilk’ the weighting matrix zilk and the

scalar Gz(k) in equation (4.19) are given by

zi,k = Li(M - SkaM)Li

where the matrix Sk is any solution of the equation

S, D, MD! = MD!

k™ k k k
and

A

Xk = LyMDLYy

2
67(k) = yi(DkMDi(yk

where the vector Vi is any solution of the equation

D MDly, = &

The correspondence with a stochastic estimation problem similar to Problem

4. 1' which involves no measurement noise can still be established and the

(T1), (T2)

results for this problem - can be used for the solution of the esti-

mation problem with an energy constraint but no measurement noise.

4. Filtering for the Case of Energy Constraints

In this section we will utilize the general solution of Problem 4.1
as given by Proposition 4.1 and the one-one correspondence with the sto-
chastic estimation Problem 4.1' that was demonstrated in the previous

section to write down explicitly and in recursive form the solution for the

SN
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filtering case. Entirely similar equations can be written for the prediction

1 and smoothing calel(Bz)' (Frl), (Ral) Although it is possible to write the

(

solution for the general case Al) for simplicity we will assume in this and

subsequent sections that the matrices Ak in the system (4.1) are invertible
| for all k. This assumption will guarantee the existence of all the inverses

| that will appear in the expressions that follow.

Proposition 4.2: The solution of Problem 4.1 in the filtering case is the
ellipsoid xk| K 8iven for allk, 0 < k < N, by the equation

Xelk = {"'("'Qk"zifk("'gk) < 1-8%) (4.23)

where the positive definite symmetric matrix Ekl K is given recursively by ‘

the Riccati equation

1 1

Zils ~ (z;|11-1 +CIR;°Cy)” (4.24)
Zilie1 = Aia1Ficn]e-18i1 * BiaQ4 Bl (4.25)
Zolo =Y (4.26)
E the vector Qk is the solution of the equation
f X4y = AR+ zi+1|i+lci+1Ri.-:l(zi+l -CipAR)) (4.27)
f %,6=0 (4.28)

and the nonnegative scalar Gz(k) is given by the equation

k

2 ) A L R
6°(k) = {El(zi'Ci‘“‘i-l?fi-l"(ciziIi-lci+Ri) (2,-C,A,_ % 1) (4.29)
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Proof: The proof follows directly from Proposition 4.1 for i = k, by uti-
lizing the correspondence with the stochastic estimation Problem 4.1'

demonstrated in the previous section, and by using also equation (4.22).

5. Formulation of the Problem with Instantaneous Constraints

While the preceding sections show it to be of theoretical interest,
the model for the uncertainty described by the energy constraint (4.3) is
of limited use as far as practical applications are concerned. A situation
which appears more often in practice is that in which the uncertain quan-
tities are individually constrained at each point in time. In this section
we formulate such a problem which is then solved in Sections 6 and 7 using
the results of the preceding sections. In particular, we bound the instant-
aneous constraints by a single combined energy constraint and apply the
results of Section 4. We concentrate our attention to the filtering case.
Similar estimators can be derived for the prediction and smoothing prob-
lems by using the same approach. The resulting estimator is shown to be
simpler but otherwise comparable to the one proposed by Schweppe(s”

with the additional advantage that it possesses a steady-state strucure.

Problem 4.2: Consider Problem 4.1 in which the single energy constraint

(4.3) on the uncertain quantities is replaced by the three individual instant-

aneous constraints

~1
1 < .
xo\p x, < 1 (4.30a)
-1 -
wi(Qk Wi < 1, k=0,1,..,N-1 (4.30b)
-1
VLRk Vk 5 1. k = l. 2. * 0y N (4. 30C)
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where ¥, Qk' Rk are positive definite symmetric matrices. As in Prob-
lem 4.1, find the set xilk of systern states at time i that are consistent
with both the measurements 2122y, e 0s 2y UP to time k and the constraints

(4.30).

6. The Filtering Problem with Instantaneous Constraints

Contrary to the case of energy constraints, it is very diffiailt o
obtain the exact solution of Problen 4.2. As mentioned earlier the energy

n+N(r+p). Since the

constraint (4.3) defines an ellipsoid in the space R
measurements Z10Zgre s Ty define a linear variety in this space and since
the intersection of an ellipsoid with a linear variety is also an ellipsoid, the
set of possible system states xilk' obtained by a linear transformation on
this ellipsoid intersection, is also an ellipsoid, as found in Sections 3 and 4.
The individual iustantaneous constraints (4.30) do not, on the other hand,
define an ellipsoid, and thus the intersection of the linear variety defined

n+N(r+p) satisfying (4.30)

by the observed measurements with the subset of R
is not in general an ellipsoid. Consequently, the set of system states at
time i consistent with the measurements TR PYRENE W is not in general an
ellipsoid: it is a convex set that, in contrast to the ellipsoidal case, cannot
in general be characterized by a finite set of numbers,.

Thus one is forced to seek approximate solutions to Problem 4.2.

(S1) is to compute a bounding ellipsoid to

The approach taken by Schweppe
the set xi|k' Since an ellipsoid in R" is completely characterized by an
n-vector (its center), and an nxn weighting matrix, the storage problem is

reduced to more manageable proportions. Schweppe considered the filtering

and prediction probiems for a discrete-time system in (S1), and gave a
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recursive algorithm for the center and weighting matrix of a bounding
ellipsoid to the set of possible states. The approach used was to bound
recursively the set of possible states at each time instant by an ellipsoid.
This algorithm was later extended to a continuous-time system using a
discrete-to-continuous limiting argument. (S2) The following lemma gives

the filtering algorithm that is presented by Schweppe in (Sl).

Lemma 4.1: A bounding ellipsoid to the set of system states xklk of Prob-

lem 4.2, is given for allk, 0< k< N, by:
* Agyel oA
xklk = {x|(x x,) z'oklk(x x,) < 1}

where the positive definite matrix zklk is given recursively by the equations

2 - N |

) = 1-8500-p)Ef | +pCIR]Cy) (4.32)
-] -1

Blicr = (=B A5 iAo *Pi BBl (4.33)

z"o'o =V (4.34)

the vector ’?k is the solution of the equation

A A 2 «l -1 A
Xip1 = A% e80T B inCinRin (B -Cinn AyX)
(4.35)
with the initial condition F
A -
X, = 0 (4.36)

and the nonegative scalar éiz is given for all i by

2 -1 -1 -1
67 = (2= CoA R -0 C g CL 4o R T (2-CiA; (R, )

(4.37)
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where the scalars pi-l' p;» arTe free parameters with 0 < pi_l <1,

0<p,<1,i=12,...,N.

The estimator of the above lemma has the same basic structure as

the stochastic Kalman filter. It should be noted, however, that the gain

matrix p, ,(1- 6i2+l)-lzi+l |i+lc'i+lRi-:l depends on the measurements
received at a particular run and must be calculated from the equations
(4.32) through (4.34) on-line. Furthermore, even for a time-invariant
system, this estimator does not possess a steady state structure due to
the fact that the solution of equations (4.32) through (4. 34) does not converge
to a steady state as time increaunes.

These disadvantages are avoided in the estimator we now derive.
The approach is again to bound the set of possible states consistent with
l the observations by an ellipsoid. In contrast to (S1), we do this indirectly
by bounding the instantaneous constraints (4.30) with an energy constraint of
the form (4.3) and then using the results of Section 4 to produce an ellipsoidal

bound on X We will restrict our attention to the filtering problem. En-

k|k®
tirely similar arguments can be used to derive estimators for the prediction
and smoothing problems.

An energy bound for the instantaneous constraints (4.30) is given in

the following lemma:

Lemma 4.2: The set Ukc Rn"'k(!"“P) where

_ 1 )
U = By ove oo g Wi < 1wl jaiiwy ) <1,

R lv. <1,i=1,2,..,k)
1 1 1 -
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is contained in the set
o= la,x'¥! § v Q!
k= W oW p Ve vidapx ¥ x4+ 2 (ay L gwi Q0w

i=1

-1
+a; ViR{'v; < 1} (4.39)

where a,, a,.. ,, a2, ., i=1,2,..,k, are any nonnegative real numbers
1 204=1" 78,4
with
k

+Z (a
i=1

a +a = 1 (4.40)

1 2,i-1% 33, 1)

Proof: Multiply (4.30a, b, c) by aj, a; . 133 0 respectively, sum the

last two fromi=1toi= k and use (4.40).Q.E.D.

Having bounded the instantaneous constraints (4.38) by the energy
constraint (4.39), we are now in a position to apply the results of Proposi-
tion 4.2 to give a bounding ellipsoid to the set xk| K’ The equations that
result by application of Proposition 4.2 become simpler if we write a, az. i1

and a, in the following form:

a; = (1-B )1-p )(1-B))(1-p,)_ _ _(1-B _,)(1-p)

B(1-p)(1-B,M(1-p,). - _(1-§__,)1-g)

[
|

3,1 = A1-B)(-py)- - -(1-B | )1-p) (4.41)
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It is easy to see that for the parameters aj, a, . 1y a; ;as defined

k
by equations (4.41) we have a, + le(a.Z i1t as i) = 1.

By combining now Lemma 4.2 under the identifications (4.41) with
Proposition 4.2 we have after straightforward manipulation the following

solution to Problem 4.2 for the filtering case.

Proposition 4. 3: A bounding ellipsoid to the set of system states xk| K of
Problem 4.2 is given for all k, 0< k < N, by the equation
}
* _ -1 A 2
X = el -Qk)-zklk(x-xk) <1 -6%%K)} (4.42)

where the positive definite symmetric matrix Ekl K is given recursively by

the equations

Z..
ili

) -1
= [(1-p)E][; | +#,CIR] c1 (4.43)

= (1- -1 -1
Zilieg = Py ) A B iAo YR B9 B, (444)

T =y (4.45)

olo
the vector Qk is the solution of the equation

- S Aigi +p AR (4. 46)

-1
i41 i+1%3+1 ] i41C 111 Ri41 541 - Ciny
with the initial condition

= 0 (4.47)

and the nonnegative scalar Gz(k) is the solution of the equation
2,. 2,.
6°() = (1-; ) N1-p)6"(i- 1)

A -l A
+ e CA R I0-R)TICE | C el R) T -G R

} (4.48)

.
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with the initial condition
2
§°(0) = 0 (4.49)

and pi-l’ Py i=1,2,..,N, are any real numbers with 0 < pi-l <1,
0< Py <1,
It can be seen that the estimator of the above proposition has a similar
structure with the stochastic - Kalman filter as well as with the estimator
of Lemma 4.1. However, it has the important advantage over the latter that

-1

the gain matrix {p Ci+lRi+l} is precomputable once the parameters

i+1Z1+1] i+l
pi_l, p; are seclected. Furthermore, as will be discussed in the next section,
for a time-invariant system the estimator of Proposition 4.3 can be imple-
mented as a time-invariant system if the final time N approaches infinity.

In practical applications this last advantage can be of extreme importance.

A vital question concerns the comparison of the quality of approxi-
mation to the set of possible states provided by the two estimators. It turns
out that the approximation is comparable in the following sense. Let
{B"), p'l, . .Bi\‘_l,ph} be a set of parameters used in the estimator of Lemma
4.1 and {ﬁo,pl. o ’pN-l'pN} be a set of parameters used in the estimator of
Proposition 4.3. Then if we select* fori=1,2,..,N
Pi1

N (4. 50)
U s, ) 48,

Py
p! - (4.51)

Pon-efa-n1a-p, ) 48, Mi-p) +

This fact was brought to the author's attention by F. Schlaepfer.

et bttt

Prove g g
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where 62(i-l) is the measurement dependent term of equation (4.48) in
Proposition 4.3, the estimate ellipsoids x:lk provided by the two esti-
mators are identical for all k and for all sets of received measurements
for which equations (4. 50) and (4. 51) hold.

Another important question concerns the quality of the approxi-
mation of the bounding ellipsoid lek produced by the estimator of Propo-
sition 4.3 to the exact set of possible states xklk' This is a question
largely unresolved to this date. It appears to be very difficult to obtain
estimates of the approximation involved which will be applicable to a large
class of problems. For any given problem howeverto is possible to esti-
mate exactly the approximation in any direction as it willbe discussed in

Section 8. A related problem which will also be discussed in Section 8 is the

question of the optimal selection of the parameters pi-l and Py

7. Constant Systems and Infinite Time Intervals

In this section we consider the special case of Problem 4.2 where
the system and the disturbance ellipsoid sets are constant, i.e., Ak = A,
Bk = B, Ck = C, Qk = Q, Rk = R for all k. If we select the parameters ﬁk'
Pi to be also constant (i.e., pk =B, P =P for all k), the equations (4.43),

(4.44) for the matrix zklk in Proposition 4.3 become
Bl : [(1-p)q:ik_l +pC'R™ Iy ! (4. 52)
-1 -
Blkor = (P 'AZ A"+ BaBY (4.53)

with initial condition Zo lo =¥ . These equations can be put into the usual

discrete-time Riccati equation form
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_ el rlay-1
2k|k (zk|k_l + C'R*"'C)
- A¥ *) *
zk]k-l = A zk-l] 1A +BQB!

by defining the matrices A*, Q*, R*,as

A = a-p) 2007124, Q¥ -8 a-p)lQ, R = 5 iR
'{ It is well known(Tl)

(4. 54)

(4.55)

(4.56)

that the solution Ekl K of equations (4.54), (4.55) con-
verges to a positive definite symmetric matrix Em as k — o if the pair
(A*. C) is completely observable and the pair (A*, B) is completely control-
lable. The pair (A*. B) is completely controllable if and only if the pair
(A, B) is completely controllable i.e., the constant system (4.1) is com-

pletely controllable. This can be seen by the fact that the matrix A¥ isa

scalar multiple of the matrix A and therefore the subspace spanned by the

column vectors of the matrix A™B is the same as the subspace spanned by

the column vectors of the matrix A*™B for all m = 0,1,...,n-1,

the initial transient vanishes as time goes to infinity.

a time-invariant system gives the estimate ellipsoid

Similarly,
the pair (A*. C) is completely observable if and only if the pair (A, C) is com-
pletely observable. Thus, for a completely controllable and observable
time-invariant system, the gaip {Ekl kC'R""l} in the estimator of Proposi-
tion 4.3 after an initial transient will converge to a steady state constant
gain {EmC'R*-l}. For practical reasons, one would like to implement the
estimator as a time-invariant system using the steady-state gain for the
whole time interval, i.e., starting at the initial time k = 0. This is possible

since, as we will prove below, the approximation that results by neglecting

Using the identifications (4.56), the estimator of Proposition 4.3 for

it —

-1-———331‘-
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lek = {x|(x- Qk)'zlzllk(x-ﬁk) < 1 - 53) (4.57)
where
%=1 o]
Zelk-1 = “‘*“31<-1|1<-1A*"L BQ"B" (4. 59)
A A *-1 A
Xl = AP e C'RT (zyy - CAX)) (4.60)
82(k) = (1-B,_;N1-p )s3(k-1) -

+z - CA& Mem  C 4R g, - cal (4.61)

k-1

with

=¥, & =0 530 = o0 (4. 62)

Z o

olo

If I |k — Zop and D k-1 -.'}“éo as k — o and we implement the estimator as
a time-invariant system using the steady-state gain {zooC'R*'l} the resulting

estimate ellipsoid will be given by

Yiele = {"l("'9k)"~“:(x-9k) < 1-68) (4.63)
where
Perr = A9k+2mC'R*'l(zk+1- CAR) (4. 64)
B0 = (1-81-p1520-1) + (2,-CA, | NCE, RN, -caf, )
(4. 65)
with
¥, = 0, 30 = o (4. 66)

Using the fact that zklk -z, and Eklk-l — Sin as k — oo, it will now be

proved that 91( — Qk and 3‘2(k) — Gz(k) as k — o, i.e., that the estimate




-90-

ellipsoid Yk| K of equation (4.63) '"converges'' to the set le K of equation
(4.57) as k =~ . To this end let zklk =2 _ +H_where H — 0ask — co.
Then from equations (4.60) and (4. 64) we have

A

A -1 A %=1
sl Ty = (A-Z_CR* cA)R, -§) + H C'R* (2

A
K+l " CAxk) (4.67)

r*-1

Now note that the matrix (A - EmC' CA) is stable (has eigenvalues within

the unit disk), since by equation (4. 56)

1/2 1., a0k

. (A*-z_C'R*1lca¥)
[o o]

1/2

A-Z_C'R*'CA = (1-8) '“(1-p)

and the matrix (A*- EdOC'R*-ICA*) is stable by a well-known property of the
Riccati equation. Furthermore, the driving term HkC'R*'l(zk_‘.1 - CAQk)
goes to zero as k — oo since Hk —~ 0as k = oo and (zk+1 - CA”‘\k) is bounded.

Therefore, the solution of equation (4. 67) goes asymptotically to zero as

k“mandhence?k——ﬁkask—vm.

Also from equations (4.61) and (4. 65)

E(kt1) - Pt1) = (1-B)(1-p) [85(k) - F2k)] + €y, (4.68)
where

= A *, -1 A
€et1 = (Zrpn T CAXINCE ) C + Rz - CAXY)

- CAJY)

- cAP )(CE_c' + Rz,

- (Z41

+1
since 0 < (1-B){1-p) < 1 the solution of the equation (4.68) goes to zero as g

Since Qk - Qk and zk+l|k — Em as k — oo we have €4l — 0 as k — o and

ke = ¢ Henced (k) —= 5°{k) as k - . }

Thus, in applications where the system is constant and the final time
approaches infinity, one can use the steady-state time-invariant estimator

and be assured that the error that results from neglecting the initial trans-

ient of the solution of the Riccati equation vanishes as time increases.
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8. Discussion and Sources

Two state estimation problems which involve a linear system and a
set-membership description of the uncertainty were examined in this
chapter. For the case of an energy constraint on the uncertain quantities the
set of possible states consistent with the measurements was shown to be an
ellipsoid which was characterized by recursive estimators similar to
Kalman estimators used in stochastic estimation problems. The results
for the energy constraint case were then used to obtain bounding ellipsoid
estimators for the, more often appearing in practice, ¢ .. of instantaneous
ellipsoidal constraints on the uncertain quantities. Th:se estimators have
the same basic structure as the Kalman estimatoi: and ~ff. v distinct ad-
vantages over existing schemes(sn’ (SZ).

The basic practical advantage of the estimators proposed in this
chapter is that they provide intelligent designs with a minimal amount of
information. Instead of requiring precise statistics of the uncertain quan-
tities only bounds on the magnitude or energy of the uncertain quantities
are necessary. Since the estimators have the same basic structure as
Kalman estimators the approach used here in effect suggests an intelligent
way of selecting the gain matrices of the estimator with a minimal amount
of information.

One of the questions yet largely unresolved concerns the quality of
the approximation involved in the algorithms for the instantaneous constraint
case. Related to this question is the problem of optimal selection of the
free parameters ﬁi and P; that appear in the algorithms. There are two

difficulties related to this problem. First a criterion for optimization must
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be chosen. Second an optimization algorithm must be devised based on
this criterion. Even choosing a good criterion is a difficult question.
For instance a method which appears at first sight to be reasonable is to
find the parameters ﬂi.pi for which the trace of the weighting matrix ENl N
at the final time is minimized. An algorithm for selection of the parameters
so as to optimize this criterion was derived by the author yet for somne
simple examples the resulting selection of the parameters led to an indeed
poor design. Presently there exists no optimization algorithm for selecting
the parameters ﬁi’pi' and some trial and error must be used for their selec-
tion. For the case of a time-invariant system and an infinite time interval
this is not very troublesome since in this case only two parameters §8,p
must be selected with 0<f8< 1, 0<p <1,

Given now any bounding ellipsoid estimator of the form appearing in
Proposition 4.3, and any set of measurements Z)1Zpreer2Z) 2 comparison

of the bounding ellipsoid X:l K with the exact set of possible states X can

k|k
be made in any direction x* by comparing the value of the su rt function
Y y P g PpPo

A

%) *1/2
xk )

c(x*lx;‘lk) = <x™ 0 > 4 p1-62001 2 B |1X

with the value of the support function cr(x*l xk| k). This latter value can be
calculated from

*
sup <x ,xk>

%1€ Kl

subject to the constraints

X. ES Aixi“'BiWi » i 0,1,..,k'1

z. = Cx. +v., , ) (P g
it i

e At e mstelihaatime e e
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-1
¥ x <1
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-1 ]
]
wiQ, wy s 1, '

wrly <1, i=1,2,..,k
1 1 1. =

a linear program with linear and quadratic constraints. A comparison of
these values for a number of directions of interest and for a variety of sets
of measurements can be informative concerning the quality of the approxi-
mation of the estimates provided by the given bounding ellipsoid algorithm.
We mention that the question of parameter selection and of the quality of
approximation have been discussed by Schlapfer(sc” Some simulations
can also be found in the same reference.

Similar results to those obtained in this chapter can be derived for a
variety of problems not explicitly considered here. One such problem was
briefly discusrned in Section 3 and concerns the case where there is no mea-
surement noise in equation (4.2) and the energy constraint is of the form

N-1

-1 -1
x"’v X, + ifo W;Qi W <1

The estimator for this problem is very similar to the corresponding sto-

(T1) and can be used to obtain a bounding ellipsoid algo-

chastic estimator
rithm for the related instantaneous constraint case where there is no mea-
surement noise by using a similar bounding operation to the one in Section
6. Another problem that can be treated similarly is the static estimation

(S2).

problem which does not involve a dynamic system.
The continuous time counterparts of the estimators of this chapter

have already appeared in (B2). The approach used in this reference was
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to associate the estimation problem for the energy constraint case with
the standard tracking problem of optimal control theory in which time is
reversed. This anproach can also be used for most of the problems con-
sidered here, and has the advantage that it demonstrates in a direct way
the duality oetween linear estimation problems and linear quadratic optimal
control problems. However the approach used here is more efficient in
that it is applicable to more general cases. In particular it is applicable
to those problems for which the estimate ellipsoid is degenerate (has a
weighting matrix which is positive semidefinite but not positive definite).
Furthermore it proves explicitly the one-one correspondence between
estimation problems with an energy constraint description of the uncer-
tainty and linear minimum variance stochastic estimation problem. The
reader familiar with.the Hilbert space formulation of stochastic estimation

(Lul)

problems will have no difficulty observing from the proof of Proposi-

tion 4.1 that the solutions of Problem 4.1 and Problem 4.1' involve dual
applications of the projection theorem which result in identical equations.
Estimation problems involving a set-membership description of the

(W1)

uncertainty were first considered by Witsenhausen in the framework
of minimax control problems with imperfect state information. The set
description approach towards the estimation problem gained attention fol-

(S1), (S2) who demonstrated that by using ellip-

lowing the work of Schweppe
soidal approximations, algorithms with potential for practical applications
could be devised. The results of this chapter were in fact largely motivated
by Schweppe's work. Extensions of Schweppe's algorithms to distributed
parameter systems were obtained by Schlaepfer!sc” Such extensions should

be possible for the results of this chapter as well. An estimation problem




-95.

which does not involve ellipsoids is the one which involves a linear discrete-
time system and instantaneous polyhedral constraints for the uncertain
quantities. Such constraints are interesting because the resulting set of
possible states consistent with the measurements can be characterized
precisely by a finite set of bounding hyperplanes. However the number of
these bounding hyperplanes increases with time thus possibly creating a
serious storage as well as computational problem. A method for obtaining
polyhedral approximations to the set of possible states using only a fixed
number of bounding hyperplanes is discussed by Hnyilidzang)
Finally it should be noted that the results presented in this chapter
rely heavily on the linearity of the system, and it appears to be quite dif-
ficult to obtain extensions to nonlinear estimation problems. However such

problems have not been sufficiently explored up to now and are worthy of

attention.




CHAPTER 5

MINIMAX CONTROL PROBLEMS WITH
IMPERFECT STATE INFORMATION

1. General Remarks

We now turn our attention to minimax control problems with im-
perfect state information. We will consider the general Problem 1.1
which was introduced in Chapter 1. The special case of this problem where
the system is linear, the cost functional has some convexity properties, and
the controller has available an exact measurement of the system state has
been examined in Chapter 2. The additional structure of this special case
allowed us to obtain results that are considerably stronger than those that
can be deduced for the general Problem 1.1. For this iatter problem if is
very difficult to obtain results concerning existence of solutions or neces-
sary conditions for optimality. Furthermore the solution of the problem by
dynamic programming, which will be presented in Section 3, becomes ex-
tremely complicated in general. This is due mainly to the fact that, as will
be demonstrated, the optimal controller performs the dual function of state
identification and system actuation. The complexities of this situation are

(F1),(Al) wo will be

well known from stochastic optimal control problems.
able to obtain insight into the dual function of the optimal controller through
the notion. of a sufficiently informative function which parallels the familiar

(S} of stochastic optimal control. The notion

notion of a sufficient statistic
of a sufficiently informative function will be introduced in Section 4, and it
will be used for demonstrating the separation of the optimal controller into

an estimator and an actuator., The special case of a linear system where
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the uncertain quantities satisfy an energy constraint will be further inves-
tigated in Section . For this case it will be shown that the estimator part
of the optimal controller can be easily and efficiently characterized. Still
for this case the actuator part of the optimal controller cannot in general
be easily characterized although we shall demonstrate the characterization
of this actuator for the special case of a reachability problem in the next
chapter.

In the next section we restate and briefly discuss the Problem 1.1

which is the object of study of this chapter.

2% Problem Formulation

We shall consider tne following problem:

Problem 5.1: Given is the discrete-time dynamic system

xk+l = fk(xk'uk"wk). . k‘-‘ 0,1,...,N-l (5.1)

where X, € Rn, k=20,1,...,N is the state vector, u GRm. k=0,1,...,N-1,

k
is the control vector, wke Rr, k=0,1,...,N-1, is the input disturbance
vector, and fk :Ranmx Rr = Rn are known functions.
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