THE UNIVERSITY
OF WISCONSIN

AN 728244

MATHEMATICS RESEARCH CENTER

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

Address:

Mathematics Research
Center
The University of Wisconsin
Madison, Wisconsin 53706
US.A.

\'V{



BEST
AVAILABLE COPY



THE UNIVERSITY OF WISCONSIN
MATHEMATICS RESEARCH CENTER

Contract No.: DA-31-124-ARO-D-462

SOME TECHNIQUES FOR CONSTRUCTING
MUTUALLY ORTHOGONAL LATIN SQUARES

W. T. Federer, A, Hedayat, E, T, Parker L J J S
B. L. Raktoe, Esther Seiden, and R. J. Turyn PR TN AT
This document has been approved for public g ‘ H ';
release and sale; its distribution is unlimited. 1 i ‘
MRC Technical Summary Report #1030 U S sy,
June 1971 -t

Received December 17, 1969

Madison, Wisconsin 53706



AR 70-31 5.classified

Secunty Clasaific ation

NSy ERE—
DOCUMENT CONTROL DATA-R&D

(Security clevsilicetion of title, body ol ebetrnci and indeesing letion muet be d whon the everell report te .-numcq
1. ONIGINATING ACTIVITY (Cerparele sulher) 28. AEPORYT SECUNRITY CLASSIFICATION

Mathematics Pesearch Center Unclassified

University of Wisconsin, Madison, Wis. 53706 [* .“Nu;ne

). RLPORY TITLE

SOME TECHNIQUES FOR CONSTRUCTING MUTUALLY ORTHOGONAL LATIN
SQUARES

4. DESCMIPTIVE NOTES (Type of report end inelusive dates)
Summary Report: no specific reportin

8. AUTHONA(S) (Firet name, middie Initiel, laet neme)

W. T. Federer, A, Hedayat, E. T. Parker, B, L. Raktoe, Esther Seiden,
and R, J. Turyn

eriod.

s NEPORY DAYTE 7e. TOTAL NO. OF PAGKS 7. NO, OF REFC
June 197: 119 56
[6a. CONTRACYT OR GRANT NO. %a. ORIGINATOR'S REFPORT NUMBE RIS
Contract No. DA-31-124-ARO-D-462
b PROJECT NO. #1030
None S S —. |
e . a’;nm:lolv NO(8) (Any ather numbers hat oy be assigned
. None

19. DIBTRIBUTION STATEMENT

Distribution of this document is unlimited.

1. SUPPLEMENTARY NOTES (2, SPONSONING MILITARY ACTIVITY
None Army Research Office-Durham, N.C.
frrervaney '

The methods of confounding, fractional replication, analysis of
variance, group, projectiny diagonals, orthomorphism, oval, code,
pairwise balanced design, product composition, sum composition and

computer construction of a set of mutually orthogonal latin squares are

discussed,

DD /\2.1473 Unclassified

ty Classification

AGO 500



TABLE OF CONTENTS

Section and Title

I. Introduction and Some Terminology, W. T. Federer and
A, Hedayat . . v« v v v v v v e e e e e e e e e e e e e

II. Factorial Confounding Construction of O(n, t) Sets
II.1. Complete Confounding, W. T. Federer and B. L. Raktoe
II. 2. Partial Confounding, W. T. Federer . . . . . . . . . ..

III. Fractional Replication Construction of O(n,t) Sets,
W. T. Federer . . . . . . ¢« v ¢ 0 v o v e e v et e e e e e

IV.  ANOVA Construction of O(n,t) Sets, W. T. Federer . . . . . .
V. Group Construction of O(n, t) Sets, A. Hedayat . . . . . . . .
V.0. Introduction . . . . . . . . . .. v v v v v
V. 1. Definitions and Notations . . . . . . . . . .. ... ..
V.2. Construction of O(n,t) Sets Based oﬁ aGroup . .. ..

V. 3. Construction of O{n,t) Sets Based on t Different Groups
ofOrder n. . . . . v« v v v v o i s e e e e e e e

V.4. ConcludingRemark . . . . . . . .. . v ..

VI. Projecting Diagonals Construction of O(n,t) Sets, W. T.
Federer . . . . . . & v i v i e e e e e e e e e e e e e

VII. Relations Between Complete Confounding and Simple

Orthomorphisms, B. L. Raktow. . . . . . . . . . . . .« . ..
VIII. Some Remarks on "Orthomorphism" Construction of O(n,t)

Sets, E. T. Parker . . . . . . .« « o v v v v v oo e e
IX. Oval Construction of C(n,t) Sets, Esther Seiden . . . . . ..

X. Code Construction of O(n,t) Sets, R. J. Turyn and
W. T. Federer . . . . « « « v v v v v v v v v o v e e e

13

18

25

33

33

34

34

49

52

54

58

72



XI.

XII.

XIII.

XIV.

XV.

XVI.

XVII.

Pairwise Balanced Design Construction of O(n,t) Sets,
E. T. Parker . . . v v v v v et e e e e e e e e e e e e

Product Composition of O(n,t) Sets, A. Hedayat. . . . ..

Sum Composition of O(n,t) Sets, A. Hedayat and
Esther Seiden . . . . . v ¢ v v v v v v i e e e e e e e e

XIII. 1. Introduction . . . . . e e e e e e e e e e e e e e
XIiI.2. Definitions .. . .. . .. . .. e e e e e e
XIII. 3. Composing Two Latin Squares of Order nl and n

XIII.4. Construction of O(n,2) Sets by Method of Sum
Composition + - + « + ¢ ¢« ¢ ¢« v oo o0 o v

Computer Construction of O(10,t) Sets, E. T. Parker. . . .

Equivalences of O(n,t) Sets with other Combinatorial

Systems, A. Hedayat . . . . « « « ¢ v v v v v v v 0 o 0 o
XV. 0. SUMMAIY « v+ v ¢ o o s o o o o o o o » e e e e e
XV.l1. Introduction . . . . . ... ... ... 60 a o 0 o
XV. 2. Notation . . . . . . « . « . 5 c o0 000000 0 0
XV. 3. The Results . . . . . v v v v v v v v v o v v v o
Acknowledgements. . . . . . . . . . 0 o e e e ..
Literature Cited . . . . . . . © 500 aao00000D0O0 0 o0

75

79

82

82

82

83

86

101

104
104
104
105
107
113

114



ABSTRACT

Various methods of constructing a set of mutually orthogonal latin squares
are presentedand the theoretical aspects of various methods are discussed.
Illustrative examples of constructing latin squares and sets of mutually ortho-
gonal latin squares are given. The methods of consiructing latin squares and
sets of orthogonal latin squares are complete and partial confounding, frac-
tional replication, analysis of variance, group, projecting diagonals, orthe-
morphism, pairwise balanced design, oval, code, product composition, and
sum composition., The methods of construction designated as partial confound-
ing, fractional replication, analysis of variance, and sum composition appear
not to have been discussed previously in the literature. The methods of
complete confounding and of projecting diagonals have been discussed; the
actual construction procedure has been illustrated with several examples,

The sum composition method has interesting consequences in combinatorial
theory as well as in the construction of orthogonal latin squares. Lastly,
equivalences of fourteern combinatorial systems to orthogonality in latin squares

has been investigated and described.






SOME TECHNIQUES FOR CONSTRUCTING MUTUALLY
ORTHOGONAL LATIN SQUARES

Ww. T. Federerl, A. Hedayatz, E. T. Parker3
B. L. Raktoe4, Esther Seidens, and R. J. Turyn6

I. Introduction and Some Terminology

The purpose of this paper is to present a set of methods for constructing
mutually orthogonal latin squaes and to exhibit some squares produced by each
of the methods. The set of methods presented herein was discussed in a series
of informal seminars held during the weeks of July 14-18 and 21-25, 1969, by the
authors at Cornell University. The motivation for these discussion was derived
from results obtained by Hedayat [1969] and from the optimism of the authors.

New procedures for constructing a set of mutually orthogonal latin squares and
new views of present methods of construction were desired in order to advance the

theory of mutual orthogonality in latin squares.

Professor of Biological Statistics, Cornell University and Visiting Professor,
Mathematics Research Center, University of Wisconsin (on sabbatical leave
1969'70)-

2 Assistant Professor, Cornell University.

Professor of Mathematics, University of Illinois, and Visiting Professor,
Cornell University (July, 1969).

& Associate Professor, University of Guelph and Visiting Associate Professor,
Cornell University (January to August, 1969).

Professor, Michigan State University, and Visiting Professor, Cornell Uni-
versity (June, July, August, 1969).
6

Mathematician, Raytheon Corporation, and Visiting Professor, Cornell Uni-
versity (July, 1969).

Sponsored by the United States Army under Contract No.: DA-31-124 -ARO-D-
462.




As may be noted from the table of contents, the different sections were
written by different authors. An attempt was made to have a consistent notation
and a uniform style. Although much more work is required to finalize the method
in several of the sections enough is known about the method to use it to con-
struct a latin square of any order or to construct a set of two or more mutually
orthogonal latin squares. Also, a number of equivalences may be noted for some
of the methods.,

The theory of mutual orthogonality in latin squares has application in the
construction of miny classes of experiment designs and in many combinatorial
systems. The latter subject is discussed in section XV where the equivalences
of varicus combinatorial systems are presented. With regard to the former sub-
ject, there is an ever present need for new experiment designs for new experi-
mental situations in order for the experimenter not to have to conduct his ex-
periment to fit known experiment designs,

Some of the riotation and terminology that will be utilized is presented
below,

Definition I,1. A latin square of order n on a set Z with n distinct elements

is an n X n matrix each of whose rows and columns is a permutation of the set

2 -

Example:
11213
2131 1isa latin square of order 3 on Z= {t,2,3} .
31112

R #1030



Definition I, 2. Two latin squares L1 = (aij) and LZ = (bij) of order n are

said to be orthogonal if the nz ordered pairs (aij’ bij) (i,j = 1,2,...,n) are

all distinct., Note that L, and L., need not be defined on the same set,

1 2
Example:
1]2 AIB|lC
311 and |[C|A | B
311 |2 B|I|CIA

Definition I, 3, The members of a set of t latin squares Ll’ LZ’ 050 g Lt of

order n are said to be mutually (pairwise) orthogonal if Li is orthogonal to
Lj’ i+j, i,j =1,2,...,t . Hereafter by an O(n,t) set we mean a set con-

sisting of t mutually orthogonal latin squares of orc'r n.,

Example:
112134 (2134 12134
21133 Al . JPBEe
3Tal112° 21 a3’ [al3(211]
3211 Bleali 2 211143

Latin squares and orthogonal latin squares have at least 187 years of history.
Hedayat [1969)], Section IX has presented a reasonably good picture of this
history which will not be repeated here, It is planned to prepare a historical
account of developments related to orthogonality in latin squares and to publish

this material together with a bibliography elsewhere.

#1030



II, Factorial Confounding Construction of O(n,t) Sets

II.1. Complete Confounding

A factorial treatment design consists of all possible combinations of two
or more factors each at two or more levels, The set of all combinations of m
factors each at n levels is denoted as an nm factorial; for n a prime power
the main effects and interaction effects in an n" factorial are ina 1l:l cor-
respondence with the points of the finite projective geometry PG(m-1,n) ., For
example, the nZ factorial consists of two main effects, say A and B with

levels (A)i and (B)j respectively, i,j =0,1,2,.,..,n-1, and n-1 two factor
u u

interactions AB S, s =1,2,,..,n-1 with levels (AB s) for u, +u u, =
ui+usu i s j

j

Ugs Ups Upgeeey Uy where the u, are elements of the Galois field GF(n) ,

i

and the n+1 effects are ina 1l:l correspondence with the points of PG(l,n).
Each of the n+1 effects is associated with a set of n-1 single-degree-of-
freedom~contrast parameters making a total of (n+l)(n-1) = nz-l parameters;
if the mean is adjoined to the set of contrasts then the nZ single-degree-of-
freedom-contrast parameters are in a 1l:l correspondence with the points of the
finite Euclidean geometry EG(2,n) ., Therefore, the n2 combinations uiuj are
in @ 1l:1 correspondence with the nZ single~degree~of~freedom-contrast param-
eters in EG(2,n) .

For n =4, the levels of the main effects and interactions are given by

¥ 2

j and (AB Sz.x+uu’ where u0=0,u1=1, u, =x, u =l+x =x are
s |

(A)i’ (B)
i
the marks of GF(4), i,j =0,1,2,3, and s =1,2,3 , Let (A)i be the rows

and (B), be the columns of a latin square of order 4 as follows:

)

S #1030



columnl = (B)0 column 2 = (B)l column 3 = (B)2 column 4 = (B)3
row l = (A)0 00 0l 02 03
rowa = (1-\)1 lQ 11 12 13
row 3 = (A)2 20 21 22 23
row 4 = (A), 30 31 32 33

In the above only the subscript of the combination uiuj and of the effects A and

Thus, = (A)0 consists of

B is given for each row=column intersection. (A)u

0
the n=4 subscripts 00,01,02,03 of the combinations UgUgs UgUys Uglps Ugls e

The remaining levels are similarly defined,

A symbol in a latin square corresponds to those combinations uiuj for
: u
which uy + usuj for interaction effect AB s’ is a constant, with each constant

corresponding to one of the n symbols in the latin square of order n . Also,

n-1 latin squares of order n 'may be formed for s =1,2,..., and n-l; this
set of latin squares forms an O(n,n-1) set, For n =4 the O(4,3) setis

formed as follows (additional detail may be found in Mann [1949], chapter VIII,

Kempthorne [1952], pages 331-340, and Federer [1955], chapters VII, IX and XV):

U000+ll+22+33"1 00=1 0l1=1I1 02=1II1 03=1V
u u, 01 + 104 23 +32—+11 10=11 11=1] 12=1V} 13=11I1
(BB 1) !
ui+u1uj= UZ 02+ 13+ 20+ 31 —1III 20=1IT1321=1V | 22=1 23=11
U303+12+21+30“'IV 30=IV | 31=1II1 | 32=11| 33=1
-5-

#1030



U 00 +13+21 +32~+¢ P Y 6 g

u u103+10+22+31—-p g Y o
(a8 )

ui+u2uj= U, 0l +12+20+ 33~y Y o p )

U302+ 11 +23430—~56 | 6 B o Y

UOOO+12+23+31-'W w Z X Y

u U 02+ 10+ 21 +33-X X Y w Z
(AB °)

ui+u3uj= UZ 03 +11 420+ 32—+Y Y X Z w

U3 01 +13+422+30~2 | 2 w Y X

where the first column to the right of the brace represents the u, obtained from

the subscript,

In the above the complete confounding scheme of sources of variation in
the O(4, 3) set and the effects in the factorial may be illustrated in the following
analysis of variance table wherein the total sum of squares has been orthogonally

decomposed into the sums of squares related to the above confounding scheme as

follows :

Source of variation Degrees of freedom

Correction for mean |

Rows = A effect 3

Columns = B effect 3

Bl

Roman numbers = (AB ") effect 3
%2

Greek letters = (AB ) effect 3
Us

Latin letters = (AB ") effect 3

Total 16

Instead of relating the mutually orthogonal latin squares of order 4 to a

4
4% factorial we may relate them toa 2 factorial in the following manner, i, e.,

we consider EG(4,2) and GF(2) with elements 0 and 1 . Let the 16 row-cclumn

intersections be numbered as follows:

-6- #1030



,
Sk 3

column
row 1 2 3 4
1 0000 0001 0010 0011
2 0100 0101 0110 0111
3 1000 1001 10106 1011
4 1100 1101 1110 1111

where the subscripts in the above table represent the combination agbh

the factors a,bh,c, and d with two levels (0 and l) each.* The rows correspond

c.d of
1]

to factorial effects A,B, and AB and the columns correspond to factorial effects
C,D, and CD . (This tform of constructing latin squares has been used by Fisher

and Yates [1957] for latin squares of order 8 and by Federer [1955]). Then, let

the symbols in the 3 latin squares be represented by the following scheme:
Factorial generators Combinations latin squares

(AC)O, (BD)O, (ABCD)O 0000 + 0101 + 1010 + 1111 =1 I I1 11 v
(AC)O, (BD)I’ (ABCD)1 0001 + 0100 4+ 1011 4+ 1110=1I | II I v 11
(AC)I’ (BD)O, (ABCD)l 0010 + 0111 + 1000 + 1101 = III | III |IV | I I1
(AC)l, (BD)I, (ABCD)O 0011 + 0110 + 1001 + 1100 = IV | IV [III | 1II I

n

(AD),, (ABC),, (BCD); 0000+ 0110+ 1011 +1101 =W )] W | Z | X ¥
(AD),, (ABC),, (BCD); 0010 + 0100 + 1001 + 1111 =X | X Y |W z
(AD),, (ABC)y, (BCD), 0001 + 0111 +1010+1100=2 | Y |X | Z2 | W
(AD),, (ABC),, (BCD), 0101 +0011+ 1000 +1110=Y | 2 |W Y |X
(ACD),, (BC),, (ABD), 0000 + 0111 + 1110 + 1001 = « a |y |6 |B
(ACD), (BC),, (ABD), 1010 + 0100 + 0011 + 1101 = B B vy | @
(ACD),, (BC),, (ABD), 1000 + 0110 + 1111 + 0001 = y Y |a |B |6
(ACD),, (BC), (ABD), 0010 + 0101 + 1011 + 1100 = & &5 1p |a |y

* Note: Some authors use lower case letters to denote the factors and capital
letters to denote effects or levels of effects; we follow that usage here.

#1030 d7s



The correspondence of the latin squares obtained from complete confound-

4
ing considering a 42 factorial and considering a 2
in the following analysis of variance table:

Source of variation

factorial is demonstrated

degrees of freedom

Correction for mean s 1
Rows = A effect inr factorial 3
A effect in 24 factorial 1
B n n 24 n l
AB n n 24 n l
Columns = B effect in 42 factorial 3
C effect in 24 factorial
D []] n 24 1]
CD n 1] 24 n
L
Roman numbers = &4 1 effect in 42 factorial 3
AC effect in 24 factorial
BD 1] n 24 1]
ABCD n 1] 24 1] l
u
Greek letters = AB 2 effect in 42 factorial 3
ACD effect in 24 factorial 1
BC 1] n 24 1] l
ABD 1] & 24 1] l
, £3 2
Latin letters = AB  effect in 4 factorial 3
AD effect in 24 factorial 1
ABC n " 24 n l
BCD n n 24 n
Total 16

It should be noted here that the effects in the 24 map directly into the

2
42 projective geometry or PG(l,2 ). Likewise, even though one more set of

generators is available, viz,

#1030



Gernerators interaction

Roman numbers = AD, BC ABCD
Greek letters = AC, ABD BCD
Latin letters = BD, ABC ACD

the three orthogonal latin squares produced are the same ones. Since the third
effect above is obtained as the product of two generators (exponents mod 2) we
need consider only two generators. Multiplying these by CD (exponents mod 2)
we obtain the generators of the preceding scheme. Hence, even though two dif -
ferent complete confounding schemes are available there is a simple one-to-one
mapping of one set into the other set. Although nothing interesting turns up here,
it would be intgresting to study the various complete confounding schemes in the

jatin square of order 9 as related to the 34 factorial.
As a second illustration of the use of complete confounding to construct

latin squares, let us consider a latin square of order 6 . Using the notation

and concepts of Raktoe [1969] on mixed prime factorials as related to rings and
elements of ideals in the rings we designate the 6‘2 as a 22(3)'2 factorial and
represent a combination by ghij where g,h are members of the ideal I (3) and

i,j are members of the ideal I (4) . The effects in the 2'2 and in the 32 factorials

are denoted respectively by:

IS s

g2 ot

a3
c*p?

The remaining interactions are given below in the analysis of variance table:

#1030 ’ -9~



Source of variation

Correction for mean

Degrees of freedom

1

Rows = 1\304 5

A3

C4

A3 X CJ4
Columns = B3D4 5

B3

D4

B3 X D4
Treatments or symbols = ABBBC "D4 5

A3B3

C4D4

A3B3 X CJ4D‘1

Remainder 20
C4D2 2
A3 X D4 2
A3 X C4D4 2
a*x c*p? 2
B3 X 04 2
B3 X C4D4 2
B3 X C4D2 2
1\383 X C4 2
1\3B3 X D4 2
A383 X C4D2 2
Total 36

#1030



Let us now set up the 6 rows and the 6 columns of a latin square of order

6 with the corresponding designation of the 36 combinations as follows:

Columns
Rows (B3D4)O (B3D4)1 (B3D4)2 (B3D4)3 (B3D4)4 (B3D4)5
(A3C4)O 0000 0304 0002 0300 0004 0302
(A3C4)l 3040 3344 3042 3340 3044 3342
(1\304)2 0020 0324 0022 0320 0024 0322
(1«\3C4)3 3000 3304 3002 3300 3004 3302
(1«\3C4)4 0040 0344 0042 0340 0044 0342
(A3C4)5 3020 3324 3022 3320 3024 3322

3.3 4 4
Now let the levels of A'B C D correspond to the symbols in a latin

square of order 6 as follows:

Levels Combination for which 3g+3h+4i+4j, mod 6, is constant Symbol
3.3 4 4

(ABCD )0 0000 + 3342 + 0024 + 3300 + 0042 + 3324 -» 0
3.3 4 4

(AB°CD )l 0304 + 3040 + 0322 + 3004 + 0340 + 3022 - 1
33 4 4

(A°B°C D )2 0002 -+ 3344 + 0020 + 3302 + 0044 + 3320 > 2
3.3 4 4

(ATB"C'D )3 0300 + 3042 + 0324 + 3000 + 0342 + 3024 > 3
33 4 4

(A'B"C'D )4 0004 + 3340 + 0022 + 3304 + 0040 + 3322 > 4
3.3 4 4

(ABCD )5 0302 + 3044 + 0320 + 3002 + 0344 + 3020 -> 5

#1030 -11-



This produces the following latin square of order 6:

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

Alternatively we could have used levels of A3B3C4D2 to construct the

following latin square of order 6:

Levels Combinations for which 3g+3h+4i+2j, mod 6,is constant Symbol
(A3B3C4D2')0 0000 + 3344 + 0022 + 3300 + 0044 + 3322 , 0
(A3B3C4D2)1 0302 + 3040 + 0324 + 3002 + 0340 + 3024 1
(A3B3C4D2')2 0004 + 3342 + 0020 + 3304 + 0042 + 3320 2
(A3B3C4DZ)3 0300 + 3044 + 0322 + 3000 + 0344 + 3022 3
(A3B3C4D2)4 0002 + 3340 + 0024 + 3302 + 0040 + 3324 4
(A3B3C4DZ)5 0304 + 3042 + 0320 + 3004 + 0342 + 3020 5

latin square of order 6

0 5 4 3 2 1
1 0 5 4 3 2
2 1 0 5 4 3
3 2 1 0 5 4
4 3 2 1 0 5
5 4 3 2 1 0

-12= #1030



Thus, the above square is simply a column permutation of the previous one. As
there are no other sets of 5 degrees of freedom leading to a latin square of order
6 (i.e. A3, B3

2
22 factorial and C4, D4, C4D4, and C4D exhaust all sets of 2 degrees of

, and .13‘383 exhaust the three single degrees of freedom from the

freedom from the 32 factorial ), it is not possible to obtain a latin square of

order 6 orthogonal to either of the preceding ones using complete confounding

schemes.

5.6 6 55 62
For a latin square of order 10 we may use levels of ASB CD,ABCD,

A53506D8, or AsBsC‘JD‘4 to form four different latin squares of order 10.

II. 2, Partial Confounding

In the last section use was made of complete confounding of effects in a
factorial with the rows, columns, and symbols in a latin square. In this section
some of the factorial effects will be partially confounded with row (column or
symbol) contrasts, i.e. contrasts among levels of an effect will be completely
confounded with a subset of the row (column or symbol) contrasts and will be
unconfounded with the remaining contrasts, and vice versa. In complete con-
founding no subset of contrasts among the levels of a factorial effect can be
separated from contrasts among the rows (columns or symbols). (See, e.g.,
Yates [1937] and Federer [1955] ). For example, the latin sq;lare of order 4
could be considered as a 24 factorial as in the preceding section, with the

following scheme of confounding:

Columns
Rows l=(C)O 2=(C)l 3=(D)0 4=(D)l
L (A),,B), 0000 0011 0010 0001
2 (A)O’(B)l 0101 0110 0100 0111
3 (), (Bl 1000 1011 1010 1001
4 (A)l’(B)l 1101 1110 1100 1111

#1030 ~]13=



If we set up the latin square symbols for the aboveas then

(3]
g

R
-

the symbols correspond to the following combinations:

a 0000 + 0110 + 1001 + 1100 = (ABCD)0 + other effects

B:  0011+0101+1010 + 1111 = (ABCD), + " "
y: 1000 + 1110 + 0010 + 0111 = (ABCD) + " "
§: 0001 +0100 + 1011 + 1101 = (ABCD), + " "

It is known that this latin square has no ~r*hogonal mate (Hedayat [1969] ).
This means that no orthogonal partition of the remaining sum of squares can be

made which forms a latin square,

If on the other hand, the latin square used is , the combinations

corresponding to the Greek letters are:

a: 0000 + 0110 + 1010 + 1111 = (ABCD)0 + other effects

B 001l + 0101 4+ 1001 + 1100 (ABCD)O + " "

Y 0010 + 0111 + 1000 + 1110

(ABCD)l + (AC)l + other effects

6: 0001 + 0100 + 1011 + 1101 = (ABCD)I + other effects

-14- #1030



This square has two mutually orthogonal mates and hence there must be partitions
of the sums of squares into orthogonal components which correspond to the symbols
in a latin square.

Instead of inserting symbols in the latin square of order 4, denote the
symbols in the latin square by the following partial confounding scheme, where

a fractional replicate is a subset of a complete factorial:

i) add the two 1/8 replicates generated by ((A)g, (D)y, (BC),)and
((A)l’ (C)l’ (ABD)I) to obtain the 4 combinations (0000 + 0110) +
(1010 + 1111) and denote these 4 combinations as symbol a ,

i1) add the two 1/8 replicates generated by ((D')l, (AB)I’ (AC)O) and
((AB)O, (C)o, (AD)I) to obtain combinations (0101 + 101l1) + (1100 +
0001) and denote these 4 combinations as symbol 8 ,

ii1) add the two 1/8 replicates generated by ((A)l, (D)o, (ABC)I) and
((A)o, (C)l, (BD)y) to obtain combinations (1000 + 1110) + (0010 +
01l1) and denote these 4 as symbol vy,

iv) add the two 1/8 replicates generated by ((AB)O, (AC)l, (D)l) and
((AB)l, (C)o, (BD)l) to obtain the combinations (1101 + 00ll) +

(0100 + 100l1) and denote these 4 as symbol 6.

This procedure results in the following latin square of order 4:
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Obviously, one could take any pair of 1/8 replicates such that the 4 combina-
tions are in different rows and in different columns to form the combinations for
a given symbol,

The above type of partial confounding results in the class of latin squares
denoted as half-plaid latin squares (See Federer [1955] chapters IX and XV and
Yates [1937]). If partial confounding were utilized in rows as well as in columns
the resulting square would be denoted as a plaid latin square (so~called because
of its resemblence to plaid cloth if the effects confounded were of different colors).
The three types of squares are illustrated below for a latin square of order 6 where

the factorial effects are as described in statistics books (e.g., Federer [1955]):

Complete confouinding of effects

Columns
1= 2= g 4 = 5= 6 =

Rows (A)o, (C)o (A)o, (C)l (A)o, (C)2 (A)l, (C)o (A)l’ (C)l (A)Z’ (C)2
1 = (B),, (D), 0000 0010 0020 1000 1010 1020

2 = (B)o,(D)l 0001 0011 0021 1001 1011 1021
3= (B)o,(D)2 0002 0012 0022 1002 1012 1022

4 = (B)l’(D)O 0100 0110 0120 1100 1110 1120

5 = (B)l’(D)l 0101 0111 0121 1101 1111 1121

6 = (B)l’(D)Z 0102 o112 0122 1102 1112 1122

Partial confounding of effects with columns
Columns

Rows 1=(C, |2=(C) |[3=(C), |4=(CD), |5= (CD), |6 = (CD),
1 = (B)o,(D)o 0000 0010 0020 1000 1010 1020

2 = (B)o,(D)l 0001 0011 0021 1021 1001 T0TT

3 = (B)g, (D), 0002 0012 0022 1012 1022 002

4 = (B)l,(D)o 1100 1110 1120 0100 0110 0120

5 = (B)l,(D)l 1101 1111 1121 0121 0101 0111

6 = (B)l’(D)Z 1102 1112 1122 0112 0122 lOlOZ
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Partial confounding in both rows and columns

Columns
Rows 1'=(C), [ e=1(C) [3=1(C),|4=(CD),]5 = (CD) 6 = (CD),
1 = (D), 00 10 20 00 10 20
2 = (D), 0l 11 21 21 01 11
3= (D), 02 12 22 12 22 02
4 = (c:DZ)0 00 11 22 00 22 11
5 = (CD‘)l 02 10 21 21 10 02
6 = (CD°), 01 12 20 12 01 20

In the last table above only the subscripts for combinations of factors c
and d have been inserted, There is some difficulty in inserting subscripts for
factors a and b such that these effects are orthogonal to both rows and columns,
In any event, this problem requires further study to determine if half-plaid latin
squares and plaid latin squares lead to latin squares not of the same type as given
by complete confounding. If the three types of latin squares of order 6 can be

produced by partial and complete confounding, this would be an interesting result,
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I1I. Fractional Reolication Construction of O(n, t) Sets

Any latin square may be considered as an n-l

3
fraction of an n~ factorial

where the rows represent levels of one factor, the columns represent the levels

of the second factor, and the symbols in the latin square represent the levels of

the third factor.

3
the 9 combinations represent the 1/3 fraction of a 3

The above is the 1/3 fraction of a 33

As an illustration, consider the latin square of order 3 where

Columns
Rows 0 1 2
0 000 012 021
1 102 111 120
2 201 210 222

corresponding to (ABC)

factorial as follows:

h+i+j=0,mod 3 ,

Since this is a regular fraction we may write out the aliasing structure in this

fraction as follows:

M + ABC

2 2
A +AB C +BC
B+ABZC + AC
C+ABC‘2 + AB

2

AB™ 4 ACZ + BCZ

where the effects connected with a plus sign are completely confounded with each

other,

the third factor, c.

say

In the above latin square the symbols 0,1,2 correspond to the levels of

a,B,Y,

2
correspond to the levels of AB , the resulting square

Now if we set up a second latin square in which the symbols,

will be

2 .
i
orthogonal to the first one, The square corresponding to levels of (AB )1+2j,mod 3

000 + 111 + 222
021 + 210 + 102
201 + 012 + 120

@ 1y
By
YIB|a
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The class of fractional replicates constituted as an n'-1 fraction of an n3
factorial becomes an important one to study as it relates to construction of mutu-
ally orthogonal latin squares, In particular, all 2'-3 fractions of a 29 and all
3'-2 fractions of a 36 with all possible aliasing structures could produce several
sets of mutually orthogonal latin squares. This could have interesting conse-
quences in finite geometry.

The structure of the left-hand set of parameters in an aliasing structure

will have a pattern; for example, for n = 4, 5, and 7, the patterus are:

n=4 n=>5 n=717
M + ABC M + ABC M + ABC
A A A
B B B
C C C
AB2 AB2 AB2
AB3 AB3 AB3
AB4 AB4
AB5
A86

Note that although ABC was completely confounded with the mean, any one of
the other three-factor interaction components ABuCV, u,v=12,.,,,n-1 could
have been utilized equally well, Also, note that the levels of C corresponding
to symbols produce a latin square , and that the levels of effects below the
factor B produce a set of n-1 mutually orthogonal latin squares,
In general we want to look at all possible n"1 fractions of an n3 factorial,

i.e,, the subset of(n2> combinations for which the levels of C are the symbols
n

in a latin square and to study their patterns especially for n = 7,8, and 9, All
possible fractions, or rather all forms of the aliasing structure, could be classi-
fied into all types of t mutually orthogonal latin squares, Of(n,t) for t = 1,2,
««.,n=1, Perhaps this is the manner in which the geometries of various values
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of n can be exhaustively studied. In fractional factorial notation we want to
study all possible aliasing patterns for one latin square, for two latin squares,

etc. as given by:

M
A * sk

B +W Eo, etc.
C

X

where _go is the n2 + n=-2 vector containing the interaction effect parameters,
W is the 4 X (n2 +n - 2) matrix of aliasing coefficients, X is one of the

two factor interaction effects in Qo corresponding to a column of zero co-
efficients in W, and Q; and W* correspond to B and W with the param-
eter X deleted. For n= 3, By = (AB, a8%, ac, ac?, Bc, BC?, ABc, ABC®

ABZC, ABZCZ) and W is equal to

0 0 0 00 0} 0 o0 0
0 0 0 01 0 0 0 0 1
0 01 0 0 0 0 0 1 0
1 0 0 000 0 ! 0 O

Since there are three columns containing all zeros X could be either I\B2 .
ACZ, or BC2 . Selecting X as ABZ, say, there would be no columns in W*
which contain all zeros. Thus, to obtain an O(n,2) set from a given O(n,l)
set, at least one column in W should be all zeros. Likewise, to obtain an

*
O(n, 3) set from a given O(n, 2) set, at least one column in W should contain

all zeros.
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We now wish to illustrate the use of fractional replication procedures to

construct latin squares which are mateless and which have orthogonal mates.
To illustrate let us consider the four standard latin squares of order 4 which are

(Fisher and Yates [1957] ):

o[ 1]z2]3 o1 [z]3 o]t [2]3] [ol1]z]5
112{3]0 1 13 10 {2 110 |3] 2 110 |3 2
2131011 2 10 13 |1 213 1l o 21310 1
310112 3121110 312 (0] 1 31211 0
Square | Square II Square II1 Square 1V

It is known (Hedayat [1969] ) that the first three squares are mateless (There is
no transversal through 000.) and that the last square belongs to an O(4, 3) set.
Now number the rows as 0,1,2,3 and denote these as levels of the factor
a; number the columns as 0,1, 2,3, and denote these as levels of factor b,
and the symbols in the latin squares by 0,1,2, 3, the levels of the factor ¢
Then, in factorial notation the above 16 combinations form a one-fourth fraction
of a 43 factorial treatment design. The aliasing scheme for the fractional
replicate given as square IV is

‘ M + ABC
A +BC +AB2c? + aB%C?
B +AC + AB°C +AB°C
C +AB +ABC? +aBC’

and 3 means u_, from GF(4) and where the

where u, = 1, 2 means U, 3

1
effects connected with a plus sign are completely confounded with each other.
The completion of the remaining two aliasing structures results in the complete

aliasing structures for this 4-1 fraction of the 43 factorial; these two are:

#1030 -2]-



2
AB2 + A03 + BC2 + ABSC
3 2 3 2 3
AB  + AC +BC +AB C
2 3
If we usc the levels of AB~ and of AB™ to form two latin squares, these two
with square IV form an  O(4, 3) set of mutually orthogonal latin squares,
Now, let us return to the set of four standard squares given above and
we note that only four combinations in square IV are replaced to obtain squares

I, II, and III. These are:

additional combinations | combinations replaced in IV
Square I 112, 130, 310, 332 110, 132, 312, 330
" II 113, 120, 210, 223 110, 123, 213, 220
"I 213, 230, 320, 331 220, 231, 321, 330

The aliasing structure (without the coefficients is givenon the following page for
all four standard latin squares of order 4, The 1/4 replicate given by square IV
forms a regular fraction, The remaining three fractional replicates are such that

none of the additional effects are unconfounded with the effects M, A, B, or C of

the original latin squares of order 4, Since this is true no linear combination

of these effects will be unconfounded, In order to form a latin square which is

orthogonal to the given one it is necessary that there be a set of effects which

is unconfounded with the effects in the given square. This is impossible for the

three squares I, II, and III and hence the squares are mateless, as is well-known,
It would be interesting to ascertain the aliasing structures for the six

standard latin squares of order 5 belonging to the O(5,4) set and for the fifty

standard latin squares of order 5 for which are known to be mateless (Hedayat
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Aliasing structure of effects in the four 1/4 fractional replicates

of a 43 factorial for four standard latin squares of order 4

Square I Square II Square III Square 1V

Effect Effect Effect Effect
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T U U
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No. of

means identical effect C means complete confounding
P  means partial confounding blank means unconfounded

#1030 “Bg-



as® + ac’ + 8c? + aB3c?
AB3 + AC2 + BC3 + ABZC3
If we use the levels of ABZ and of AB3 to form two latin squares, these two
with square IV form an  O(4, 3) set of mutually orthogonal latin squares.
Now, let us return tc the set of four standard squares given above and
we note that only fourcombinations in square IV are replaced to obtain squares

I, II, and III. These are:

additional combinations |combinations replaced in IV
Square I 112, 130, 310, 332 110, 132, 312, 330
g II 113, 120, 210, 223 110, 123, 213, 220
"I 213, 230, 320, 331 220, 231, 321, 330

The aliasing structure (without the coefficients is givenon the following page for
all four standard latin squares of order 4. The 1/4 replicate given by square IV
forms a regular fraction. The remaining three fractional replicates are such that

none of the additional effects are unconfounded with the effects M, A, B, or C of

the original latin squares of order 4, Since this is true no linear combination

of these effects will be unconfounded, In order to form a latin square which is

orthogonal to the given one it is necessary that there be a set of effects which

is unconfounded with the effects in the given square. This is impossible for the

three squares I, II, and IIl and hence the squares are mateless, as is well-known,
It would be interesting to ascertain the aliasing structures for the six

standard latin squares of order 5 belonging to the O(5,4) set and for the fifty

standard latin squares of order 5 for which are known to be mateless (Hedayat
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Aliasing structure of effects in the four 1/4 fractional replicates

of a 43 factorial for four standard latin squares of order 4
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[1969] ). After a study of these fractions, one should continue such a study for
n=7,8,and9, Itis suggested that one consider a 26-'2 fractioh instead of a

4 ! fraction for n = 4 and a 29-3 fraction instead of an 83-l fraction for

n = 8. Thereason for this is that there is much more theory available for

s =2 inthe s" series than for any other value of s . Also, one may use the
generalized defining contrast which has been developed by Raktoe and Federer
[1969] to a considerable advantage in writing out aliasing structures in these
cases. Investigation of the regular and irregular fractional replicates obtainable
for various values of n could lead to considerable advances in the theory of

mutually orthogonal latin squares,
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IV. ANOVA Construction of O(n, t) Sets

There should be some procedure which would utilize the orthogonality of
single degree of freedom contrasts in the analysis of variance (ANOVA) and
which ~ould be utilized to construct orthngonal latin squares. For example, one
could make use of orthogonal polynomial coefficients for row and column con=
trasts and then construct mutually orthogonal latin squares from these. To illus-
trate, consider the latin square of order 4 used previously wherein the row-column

4 .
intersections are numbered as a 2 factorial, i.e.:

Column
Row 1 2 3 4

1 0000 0001 0010 | 0011

0100 0101 0110 | 0111
1000 1001 1010 | 1011
1100 1101 1110 | 1111

S wln

The relation between the 16 contrasts using orthogonal polynomial coefficients

and the 24 factorial is given below, where RL, RQ, and R_ are linear,

C

quadratic, and cubic polynomial contrasts among rows and C_, C., and C

L’ Q

are linear, quadratic, and cubic polynomial contrasts among the columns:

C

#1030 -25=



Source of variation

C.F. M,

Row contrasts

A= -R -2R,
B = -2R +R
AB = R

Q

Column contrasts

J {
¥
)

1 Rows linear = R

quadratic = RQ = AB

cubic = R_=2A-B

= - - = = 2
C CL ZCC Columns linear CL C +2D
D= -ZCL + CC quadratic = CQ = CD
CD = CQ cubic = CC 2C-D
Y
Roman numbers = (AB ")
AC = RLCL + 4RCCC 1 RL CL
BD = 4RLCL + RCCC ( 1 RCCC
= 1 R. C
ABCD RQCQ 9 o Ca
)
Greek letters = (AB ) 3
-2 + 1) (] R.C
ABD = RQC RQCC 1Cq
BC = ZRLC - ZRCCC $ M <
4RLCC RCCL 1 1 RQCC
ACD = (-RL-ZRC)CQ I.J 1 RCCL
Us
latin letters = (AB ) 3
AD = ‘.R C -ZRCCC RLCC+
4RCCL 1 \ 1 RLCC
ABC = RQ(-CL- ZCC) 1 1 RQCL
BCD = (=2R
( L+ RC)CQ 1’ 1 RC CQ
Total 16
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The individual degree of freedom contrast matrix for the above 16

combination is:

:ST Te1I030¥0]

Z 9Yj JOJ XTIjPW }SeIIUOD WOopaalj JO aaibap arburs burpuodsaiioo ayf,

/4
+ 1 € = 1 6 6- € 13 6- 6 €- = € €- + OOOM
- + + o € €- € € € 1 g + = = + OOOM
e-| = + | €| 6| €| e-| 6| 6| €= ¢ | 6 | ¢ | + | - | -] To°
= € ¢- + + € - + ¢- € = = € ¢- + OOOM
+ - - + - + + - - + + - + - - + OOOM
€ + = €= €- = + € €- = + € € + = €- .HOOM
-l 6| 6| € | -] e | e-| + | +# | =] €] -1 | 6| 6 | e-| PNy
€ €- € + = = + = + + = 1 € ¢ €- OO.HM
6 € €~ 6- € + - €- €- - + 3 6- € 6 .HO.HM
= € €= + = € + = 3 €- + = € ¢- + OO
+ - - + + - - + + - - + + - - + OO
€ + = €- € + = € + = 1 € + = €- .HO
- - = = € € € € 1 t €- €- + + + + OM
+ + + + - - - - = - - = + + + + Oy
€ € € € + + + + - - - - €- 1 €- €- .HM
+ + + + + + + + + + + + + + + + ues N
TETT| OTTT| TOTT} OOTT |[T10T1 |oTOT J100T 0001|1710 |OTTO}1010| 00TO {1100 0100 |[1000 _OOOO isenuod
uoTIRUTqUOD
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Source of variation daf
C.F. M. 1
Row contrasts 3
A= —RL- ZRC 1 1 Rows linear = RL = A+ 2B
B = -ZRL+RC 1 1 quadratic = RQ = AB
= " = - =
AB = RQ 1) ‘_1 cubic RC 2A-B
Column contrasts 3
C= -CL- ZCC 1 1 Columns linear = CL = C+ 2D
D= -ZCL + CC 1 1 quadratic = CQ = CD
CD = CQ 1 1 cubic = CC = 2C-D
%
Roman numbers = (AB ) 3
AC = RLCL + 4RCCC 1 ( 1 RL CL
BD = 4RLCL + RCCC 1 1 RCCC
A = C 1 1 R.C
BED = Bg% Q “Q
)
Greek letters = (AB ) 33
ABD = -2R.C. +R.C 1) 8 R.C
QL Q C L Q
BC = ZRLCL - ZRCCC+ , ?< <
4RLCC-RCCL 1 1 RQCC
ACD = (-RL- .ZRC)CQ 1 L1 RCCL
U3 J
latin letters = (AB ") 3
AD = ZRLCL-ZRCCC-RLCC+
4
RCCL 1 \ 1 RLCC
ABC = RQ(-CL- ZCC) 1 1 RQCL
BCD = (=-2R
( L+ RC)CQ 1 1 RC CQ
Total 16
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The individual degree of freedom contrast matrix for the above 16

combination is;

IST [e1J0108] vN 93 JOJ XTJ1eW }1SPIJUOD WOopaai] jo aaibop orburs Hurpuodsaiiod ayg
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e-| - + | e | 6| ¢ | | 6| 6| = | 6 | ¢ | + | - | e~| "%
- € e~ + + e-1 ¢ - + €-| ¢ - - € e~ | + 050y
+ - - + - + + - - + + - + - - + OOOm
€ + - €~ ¢-| - + € €~ - + € € + - €= qOOm
e-| 6| 6| ¢ | - | eV e~ + | + | e~ €| - e} 6|6 | e6-] 2oy
€ €~ €~ € + - - + - + + - €~ € € €= Oqu
6 € €~ 6-| ¢ + = e~ ¢€- = 2 € 6= | €= | € 6 ToTy
- € €~ + - € €- + - € €~ + - € €=~ # OO
+ - - + + - - + + - - + + - - + OO
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The corresponding single degree of freedom contrast matrix for the 24
factorial is:

o
T S S S S S
—
(=]
ol I S S Y I S T R TR S T B |
—
—
Sl ++++ 1+ 1 0+ 0+ 0 010 + 1
—
(=]
Sl ++++ 0 0+ 0 0+ 00+ 0+
—
p—
ol rrr v+ ++ 0000+ + 0
p—
(=]
Sl T Fr v+ 0+ + 000000+
ey
—
Sl++ 1 v+ 00+ + 0+ +
—
(=]
Sl++r 100 0+ + 01 +++ + 10
y—d
gl =
Sl =+ r + 1 +++ 01+ 0 ++0 00 +
«-| ©
2
a =
=1 = I e A R T R I T B
S
(=]
=~ I R B
(=]
(=]
= B B L R B B B
p—
p—
S+ 1 1+ +++ 0+ 0+
(=]
(=]
—
=3 [ e R I I I R I
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(=]
=3 L R L o I I S BT
(=]
(=]
=28 I S S
o)
0 A
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o 0AQ C
S 10 0 0222820349
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O
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The particular contrast matrix utilized is not unique, as has been
demonstrated above., All orthogonal contrast matrices resulting in latin squares

could be considered, For example, other sets of contrasts among rows (or columns)

could be:
1 2 3 4 1 2 3 4
Mean| + + + + Mean{ + + 4+ 4
Rl - 4+ 0 0 Rl - 4+ 0 0
R2 0 0 - +4jor RZ + + =2 0
R3 + + - = R3 + 4+ + =3

The interaction of row and column contrasts possibly could be utilized to allocate

the symbols in the latin square,

We wish to illustrate the method of constructing latin squares using
orthogonal polynomial coefficients. We shall first consider the construction of
three mutually orthogonal latin squares of order 4 and then we shall consider the
construction of a single latin square of order 6. In the preceding table on
orthogonal polynomials for n = 4 denote all combinations with a plus sign as
belonging to (RLCL)1 and those with a minus sign as belonging to (RLCL)0 c
Do likewise for the R.C. and R _.C_, effects. Then, the four latin square

QQ ccC

symbols are obtained as follows:

"
>

= 0 4+ 1010 + 1111
(RLCL)I’ (RQCQ)I’ (RCCC)1 0000 + 0101 + 101¢

C.),= 0001+ 0100+ 1011 +1110 =B

» (ReCelg

RpCL» RgCrlg
(RCp)gs (RyCqlos (RSC )y

= 0 001 4+ 1100 = D
RQCQ)I’ (RCCC)O 0011 + 0110 + 1001 + 11

= 0010 + 0111+ 1000 4+ 1101 = C

(R.C.)

1Sl ¢
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This results in the following latin square of order 4

A B C D
B A D C
C D A B
D C B A

Likewise, if we use the following polynomial contrasts we obtain .the two mutually

orthogonal mates of the above square:

(R Cy)p» (RGClgs (RC)g = 0001 + 0110 + 1000 + 1111
(R Cn)s (RGCL)y, (RSCp), = 0010 + 0101 + 1011 + 1100
(R;Cq)gr RCilgs (RCp); = 0011 + 0100 + 1010 + 1101
(R Colgr RoC)ps (RGCp)y = 0111 + 1001 + 1110 + 0000

"
o < © R

and

(RLCC)I’ (RQCL)I’ (RCCQ)l = 0011 + 0101 + 1000 + 1110 =1
(RLCC)I’ (RQCL)O, (RCCQ)O = 0001 + O111 + 1010 + 1100 =1II
(RLCC)O, (RQCL)O, (RCCQ)I = 0000 + 0110 + 1011 + 1101 = III

(RLCC)O, (RQCL)I’ (RCCQ)O = 0010 + 0100 + 1001 + 1111 =1V

The above results in the following two latin squares of order 4

8 a B Y 111 11 v 1
y B o 6 v I I { 11
o 6 Y B I v 11 111
g Y 8 P 11 111 I v

The above method of constructing mutually orthogonal latin squares using
polynomial coefficients works for latin squares of order n where n = 2P . We
need another procedure for other values of n and shall now construct a latin
square of order 6 from the orthogonal polynomial coefficients in the table of
single degree of freedom contrasts for 36 combinations. If we observe only

the signs of contrasts we note that the 36 combinations may be classified into
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six sets of four with like signs and two additional sets of six. The latter two
sets will be used to build up the six sets of four into six sets of six as follows

where all combinations with a plus sign go in the one level and all those with a

minus sign go in the zero level (see page 32):

(RyCp))s (R3C3)ys (RyCy)ys (RgCy)y + 2 from (R\Cy)y, (R,C,) (R5C4)), (RyCY) ), R Cp))

(RyCz)gr R3C3)5s (R3Cy)) (RyCgy + "

(RyCalys (R3C3)gs (RUCygs R5Cylg+ "

(R,Cp)g (R3C3))y (RyCY)yy R G, + 2 from (R)C))ys (R, Cp)ys (RyC)y (R,C))H(R;Cy)y
(RyS3)gr (R3C)ys (RyCy)ys (RgCg)y "

(R, C3)1» (R3C3)4s (RyCylys (RyC;), + "

From these sets we obtain

(12 + 21 + 34 + 43) + (00 + 55) = A
(02 + 20+ 35 + 53) + (11 + 44) = B
(01 + 10 +45 +54) + (22 + 33) = C
(04 + 15 440 + 51) + (23 + 32) = D
(03 + 25 +30 + 52) + (14 + 41) = E
(13 + 24 431 + 42) + (05 +50) = F

This results in the following latin square of order 6:

00 A 10 C 20 B 30 E 40 D 50 F
01 C 11 B 21 A 31 F 41 E 51 D
02 B 12 A 22 C 32 D 42 F 52 E
03 E 13 F 23 D 33 C 43 A 53 B
04 D| 14 E 24 F 34 A 44 B 54 C
05 F 15 D 25 E 35 B 45 C 55 A

The pair of treatments in the second set of parentheses, e.g. (00 + 55), was
picked from the set of six in such a manner as to have i and j in the combina-

tion ij, contain 0, 1, 2, 3, 4, and 5 since each letter must appear once in

each row and once in each column.

It would be interesting and perhaps enlightening to carry out the above
procedure for n =10 and 12 and to exhaustively study the complete set of 35

contrasts for n =6,
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V. Group Construction of O(n, t) Sets

V.0. Introduction
The construction of O(n,t) sets based on groups and their

associlated mappings such as automorphism, complete mapping, and orthomorphism
is the oldest and still the most popular method for n not of the form 4t + 2 .
Euler [1782] implicitly utilized some properties of finite groups of order 2t + 1
and 4t for his construction of O(2t+1,2) and O(4t,2) sets, respectively., It
was MacNeish [1922] who, for the first time, explicitly (however, not rigorously)
utilized group properties for his construction of O(qm, qm-l) sets and O(n, \)
£ £ {

q ¢ q
I 2 ’ r
'y=1. The

sets, where q is a prime, m is a positive integer and if n = q d

is the prime power decomposition of n then \ = min(qf , qi yeees 9y
field construction of O(qm, qm- 1) sets found independently by Bose [1938]

and Stevens [1939] is based on the additive group of GF(qm) and its related
cyclic group of automorphisms, The O(n,n-1) sets for n = 3,4,5,7,8 and 9
exhibited by Fisher and Yates [1957] are based on cyclic group and abelian groups.,
Several beautiful applications of group theory to the existence and non~-existence
of O(n,t) sets have been found by Mann [1942, 1943, 1944], The 0(12,5) sets
found by Johnson et al. [1961] and Bose et al. [1960] are based on abelian
groups of order 12, Hedayat [1969] and Hedayat and Federer [1969] have found

a series of results on the existecnce and non-existence of O(n,t) sets through the
group theory approach, The reader interested in this subject will find the fol-

lowing references together with the references given to these papers very useful:

Paige [1951], Hall-Paige [1955], Singer [1960], Bruck [1951], and Sade [1958].

#1030 -33-



The author has no doubt that the reader can find many more interesting papers

directly or indirectly related to this rich subject.

V.1, Definitions and Notations

There are several forms of definitions of latin squares and orthogonal
latin squares, The following forms are useful for the results which will follow:
Definition V,1.1, A latin square of order n on an n-set Z is an. n X n matrix
whose rows and columns are each a permutation of the set Z Every latin square
of order n may therefore be identified with a set of n permutations (p1 s3Pysees ,pn)
where p i is the permutation associated with the ith row,

Definition V.1. 2. Let L1 be a latin square of order n on an n-set Zl ,

i=1,2,...,t . Then, the set S = {Ll’ L,yeee, Lt} is said to be a mutually

2

orthogonal set of t latin squares if the projection of the superimposed form of
the t latin squares on any two n-sets Zi and Zj, 1#+j, forms a permutation
of the cartesian product set of Zi and Zj . Such a set is denoted as an

O(n,t) set., (See also definitions I.2 and I.3.)
Definition V.1, 3. If L = (P;, P,y .0n, Pp) and L, = (P, Popyun, Py)

are two latin squares of order n on an n-set Z, then we may define LlLZ to

be L, = (P ) (see definition V.1.1). The generalization

3 ,...’P

nfarr P12P22 nf2n

to the product of t > 2 latin squares follows immediately.

V.2, Construction of O(n,t) Sets Based on a Group

We shall divide the problem into three parts based on whether n is a
prime, or a mixture of prime powers., The proof of the subsequent results can be

found in the references related to this section.
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V.2.1. n =g aprime. Recall that any prime ordered group is cyclic.

Theorem V,2.1,1, Let G = {PI’PZ’ . pq} be a cyclic permutation group of de~

gree q and order q . Then, 8 = {Ll, L)oo, Lq-l} is an O(q, q-1) set,

sl i
Whel'e Li—(Pl,Pz,lcl,Pq) .

Demonstration V.2.1.1. Let g = 5, Select any arbitrary generator such as

(;i‘;‘ii) which generates a cyclic permutation group G and, hence, a latin

square L1 . Then,

315 2 1f4 ARIBER s[1{4]2]3 4[3[1[5]2
2| 4f 5| 3] 1 4| 3{1]|5(2 3[s|2[1]4 s[1[4]2]3
Li={5] 1423, r,=[3[5]2f1[4], L,={4f3]|1]|5[2], L=|2[4[5]3]1
4|3[1]5]2 5[1]4]2]3 214(5([3]1 3[s[z[1]4
1{2[3]4]5 1] 23| 4]5 1[2]3]4]5 1]2[3]4]s

For those who do not like to work with permutation groups we present the following

theorem:

Theorem V.2.1.2. Let L(r) bean n X n sguare with ri +j (mod q) in its (i,j)th

cell, i,j=0,1,...,9-1. Then, 85 = {Ld), L), ..., L@=1)} is an O(q, q-1)

set if q is a_prime.

Demonstration V.2.1.2, Let g = 5; then,

0j112]3]4 011123]4 0[1{2]3]4 011123 |4
112(3})14]0 2|31410}1 314|012 41011{2 (3
L()y=]2|3|4|0]1]|,2)54|0]1{2|3]|, L(3)=[1]|2]|3|4|0],L4) =[3 [4]o0f1 ]2
314]01]2 112{3(410 410111213 21314101
41011123 3]4j011]2 21314101 11213}4 10
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Note that L(!l) in theorem V,2,1.2 is based on the cyclic permutation

o012... q-1

12 3 Py 0 ) and L(i) = Li(l), 1 = 2,3,000,q-l . Hence

gioup generated by (
theorem V., 2,1, 2 is a special case of theorem V. 2,1.1 .

V.2,2, n = qm where q is a prime and m any positive integer. Note that

this case in particular for m = 1 includes case l. We shall present three
theorems for this case. The first two are based on cyclic groups and the third
one is based on any group which admits an automorphism of order t .

Theorem V.2,2,1. Let G = {Pl’ Poyeesy Pn} be a_cyclic permutation group of

degree n and order n . Then, S, = {Ll’LZ""’Lx} is an O(n,\) set

1 i
PUREEFR o8

2
Demonstration V,2.2,1, Let n= 3 =9, Select any arbitrary generator such

123456789
345167892

where n = qm s, A\ =qg-1, and L1 = (P:, P

as ( ) which generates a cyclic permutation group G and hence,

a latin square L, Then, since \ = 2,

31451 16[7]8]9]2 51163789214
511 |(6|3|7]|8|7]2]4 715181619 (2|4]11}3
6[(3]7]|5[8}19|2]4]1 91712]8]4]1]|3]5]6
7151816[19]2]4)11]3 419|112 )|3[5]|6]7 |8
Ll =1816]|9]|7]2]4]|1]3]5| and L2 =1314[5]|1|6]|7]|8]9 |2
917 12|8|4|1[3]|5]6 613171518]912]4]1
2|84 |9]1|3|516]7 8161971214 )1]3]5
4 |91 12]|3[5(6]7]8 281419 |1]3}5]|6]7
112 ([(3]|4|5|6|7[8]9 1{2(3[4|5]|6]|7|8 |9

is an 0O(9,2) set,
Conjecture., The set SZl is orthogonally locked, meaning that there does not

43

exist a latin square L=' such that S21 U {L*} isan O(n,\ +1) set.
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Note that for n even this conjecture is correct since any latin square
of even order based on cyclic permutation group is urthogonally mateless,
An analogous theorem to theorem V, 2,1, 2 for this case is:

Theorem V,2.2.2, Let L(r) bean n X n square with ri+ j (mod n) in its

(1,j) cell, i=0,1,2,...,n-1. Then §,, = {Ld), L2), ..., L(\)} is an
O(n,\) set if n = qm and A\ =g-1,

2
Demonstration V,2,2.2. Let n=q = 3 then,

o1 {2(3]4a]5|/6]7]8 of1|2(3(4]5]|6]|7]8
1{2(3|4{5]6|7(8]0 2134|567 |8|0]1
2|3 |4|5|6|7]8|0]1 4fs5(6|7|8]o|1{2]3
3|afs5]{6|7]|8lof1}2 6l7l8jol1]2|3}4]s
L(l)= {4 |5]|6|7|8|0]|1|2]3)and L2)= |8 |0|1 |2]|3|4|5]6]7
56|7|8|of1]2]3]4 1|2|3(4|5]|6f7]8]0
6|7 (8|lo|1]2[3|4]5 3]4(5 |67 |8 ]0]1]2
7{8lol1|2|3]|4|5]6 567 l8]o]12]3]4
gloj1l2|3]la|5]6]|7 718lof1|2(3]4]5]6

is an 0(9,2) set. Note that theorem V. 2, 2,2 is a special case of theorem V.2.2.1

01l 2... n-l

1 2 3... 0)

viz L(l) is based on the cyclic permutation group generated by (

*

and L) = L)), i=2,...,n .

Theorem V,2.2,3, Let G = {a1 = e the identity, a,,...,a } be a group of
n

order n and a an automorphism on G such that ozi(a

)+a, l<i<t ,
j j - -

a, ¥e

J

)y §S-= {Ll’ LZ’ cey Lt} is an O(n,t) s=i, where
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e az o0 0 an
i i i
a (az) a (élz)él2 a (az)an
i i i

Li = o (a3) o (a3)a2 o (a3)arl
i i i
a (an) a (an)az o (an)an

i=1,2,...,t .

2) If in particular t = n-1, then one can simplify the construction of an

0(n, n-1) set from the following key latin square by a cyclic permutation of its

last n-1 rows,
e a(x) az(x) o0 at(x)
a(x) a(X)a(x) a(x)az(x) . a(x)at(x)
L, az(x) aZ(X)a(x) ozz(x)ozz(X) 00 aZ(X)ozt(X)
dt(x) at(x)a(x) dt(x)az(x) cee at(x)at(x)

for any x _in G except the jdentity element.

We see, therefore, that by means of theorem V, 2, 2. 3 one can construct
an O(n,t) set if we can find a group G and an automorphism o« of order t .,
In particular, if t = n-1 the whole task of construction reduces to the construc-

tion of L_ as described above, If n = qm

0 then because every elementary
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abelian g=-group G of order n admits an automorphism « of order n-1, we
m m

can construct an O(q ,q -1) setbasedon G and o, Here we present a

general method of constructing such an automorphism for any n = qm . In par=-

ticular, we shall exhibit such an automorphism for the following n:

n=2, m=2,3...,9

n=3, m=2,3.,,.,6

n=5", m=2,3,4

n=7m, m=2,3

n = 112,132,172,192,232,292, and 312 .

This will then perhaps be the largest table that has ever been produced so far
for O(n,n=~1) sets,
Note that there is no loss of generality if we limit ourselves to the follow-

ing elementary abelian g~-group of order n = qm .

G = {tby by vuu b), b, =0,1,2,...,07L, §=1,2,...,m} .

The binary operation on Ga= is addition mod q componentwise, viz,, (bl b2 .ee

] (] ) - = )
bm) + (b1 b2 bm) S (c1 cm) where ci = bi + bi (mod q) . Note that

2
the elements of G* are simply the treatment combinations of m factors each

at g levels. The reason why we have chosen this particular elementary abelian
g~-group is that it has a well-known structure to those who are concerned with ex-
periment design construction, Note also that G::< is the direct product of m
Galois fields, each of order q .

The generator set for every elementary abelian g~group of order qm con-

sists of m elements, and for uniformity, we may choose the following ordered
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generator set for G .

g = {(loo ..., 0), (01,00... 0), ... (00 ..., 0l0), (00 ... O1)} .

E

Note that the structure of every automorphism a on G is completely
defined if we know the image of each element of g under « . G is a vector

space of dimension m over GF(q).

Before proceeding further we need the following well=-known result:

Theorem V.2.2.4, Let G be an elementary abelian g-group of order n = qm .

Then, Automorphism group of G is isomorphic to the (multiplicative) group of all

non-singular m X m matrices with entries in the field of integers mod q .

The construction of an automorphism of order n-1 for G is equivalent

1

to the construction of an m X m matrix A such that An- = [ but 1'\.t +#1 if t

is not a multiple of n-1 over the field of integers mod q .

We know from linear algebra that if ¢ is a linear map on a vector space
V and if x ¢ V such that x# 0 but ¢(x) = x, then 1 is an eigenvalue of ¢.
Moreover, if {xl, Ny eens xt} is the set of eigenvalues of ¢, then {xsl y N :,
00O g xts} is the set of eigenvalues of ¢S . Therefore, for our problem we must

find a linear map on G* with a set of eigenvalues )‘i having the property that

for each i, )\is #1 (modq) forall s=~1,2,.,..,n=2 and x?'l = 1. To do so

let F bea GF(qm) and let B be a generator of the multiplicative cyclic group
m , i n-1

of GF(q ), i.e. P #1, i=1,2,...,n-2 while =1 ., Let f(x) bea

monic irreducible polynomial over GF(q) for B . Note that f(x) has degree m.

B is sometimes called a primitive root or mark of F. Now, if we let A be the

companion matrix for B, then it is easy to see that A has the desired property.
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Example

Let us findan automorphism of order 3 for G = {(00), (01), (10), (A1)}.
It is sufficient, by previous arguments, to finda 2 X 2 matrix A of order 3
2
over the field of integer mod 2. Let GF(2") = {0,1,8, B+ 1} with the follow-

ing addition (+) and multiplication (.) tables

. 0 1 B B+ 1 L 0 1 B [ p+1
0 0 1 B |p+1 0 0 0 0 0
1 1 o {p+1] p 1 0 1 B |+ 1
B B |B+1] o 1 B 0 B [ p+ 1] 1
p+1iip+1| p 1 0 B+1]0|p+1| 1 B

Note that B is a primitive root for GF(ZZ) and f(x) = x‘2 +x + 1 is a monic
irreducible polynomial for B, since f(B) = 0(mod2). The companion matrix

associated with f(x) is

01
A= 11 .
As a check
2 1 1 1 1 3 1 2 1 0
A = = over GF(2), A" = =
1 2 1 0 0 1 01
over GF(2).

Let us now determine the image of the ordered generator set g = {(10), (ol)}

under A .
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01 (10) 0(10) + 1 (0l) (ol)
Ag=t by Sliamsr on) Tian | ¢
Therefore, A(l0) = (01), A(0l) = (ll), and since (ll) = (10) + (01}, (00) = 2(l0)
+ 2(01), we have A(ll) = (10), A(D0) = {00} .
Now, we have a group G* of order 4 and an automorphism of order 3

on G . We can now construct an Q(4,3) set ., Since e = (00), and if we let

x = {10) in theorem V. 2. 2, 3, we obtain:

(00} A(lo) AZ(IO) A3(10)

A(l0) A(l0) A(l0) A(l0) AZ(lO) A(lo) A3(10)

a2aoy | Alpomgey | a%uosauo) | A2noiluo)

A3(10) AS(IO)A(IO) A3(10)A2(10) AS(IO)A3(10)

(00) (o) (11) (10)
{ol) {00) (10) (1)
: an (lo) (00) (ol
(10) (1) (o1) (00} .

The other two latin squares are obtained by a cyclic permutation of the last three

rows of LO . Thus,

(00) { (01) (L1) | (10) (00) (01) { (1) { (10)

(roy { (11) | {o1) | (00) (1) | (10) | (00} | (O1)

(01) | {00) [ (10) | (11) (10} | (i1) § (ol) | (00)

(thy) {10) ) (00) | (O}) (01) | (00 | (10} 1 (A1)
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To simplify the notation we set (00) = 1, (01) = 2, (11) = 3, (10) = 4 to obtain:

m_l

We are now ready to exhibit a generating matrix of order n-1 = g

with entries from GF(g) for those n promised before.

o
—_— r~ ]
M r~ o N —
O — wn
r ]
OO0 O — —
—
CcCoocoo o OO0 O0OO0 —~0 o
[ 1
co0oo -~ cCoo0oOo—~O OO0 ~0 0O
g fo = -1loo ~o0c o cocoo—~0 o OO0 O0O—~00 0O
o}
2|l7oco0 ©o—~0co0~ OO0~ 00O OO0 ~0 0O O —~
—
Q loo—~ mOO0OO O~ 0 00O OO 0000 O ~
E=J | S |
Q OO0 OO —~ —~ 0000 — O~ 000000 —
O L |
FO OO0 —~ —~— 000000 O —~
]
IS0 000000~
o ITe) ~ o
o N N [\ a
o
o Ve o un
m — Ne} wn
'®) a
( 1
OO 00O O —~O
70000.'.0 O O OO O —0O O
( o0~ 0_ oo —~00 Co0oo0o —~00O0
o (B o —~0 o0 co ~0 Q00 OO0 0 OO —~
]
© OO0 ~0C 0O O —~
(o O — —_ 0O O -~ O~ O O O O
o | )
m OO0 —~ —~— 0 00O ~ O~ 0000 O ~
. )
G OO0 OO0 O —~ —~~ O OO OO O OO
L J o COO0 00O —~
{ )
~N « N} o0
o o o [\ (]
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| )
(] O o~ Ao 0 o [e o] o [e o] o
o ~N < [V ] A gV § (Y] O gV § (Xe]
m ~N — —_— — [2p] ~ o~
[ 1
00 —~O
- — 1
9 ©o—~0 o©oo—~0O0 o — o — — r ) — )
[(0] —_— —_— N —_ -_— P -_ N -_ )
5 —_ 0 — oO—~ 00O — oo
o — ) o un o < o ™ o N
s ocCO0O—~ —~O0O0OC - cown C ) e L ) C ) L ) L )
) )
O OO0 O —~
~ ~ ~ N o
o 7o) 9 ~N — [g) o~ ~ —
= o o w0 r~ — — — ~ )
| )
O o0 o o0 <« < ~ o0 00 o
o 0 ~N ~N ~ < o0 ~N «
nru. ~ N o [\ wn 0
OO0 OO0 - O
1 ( ) O g
...O.. o O —~ O O o C —~0O0 OO - ™M j
] p—
o _ll_ o — oo OO +0O0 0O -~ o — 0 o0 2_15._11._12_
O —_ O
[
5 01_ — 0 O —~ O~ OO0 0O o~ — 0 O ™M oibadh (2 ) (2.7 (°N
O 0o~ —~— 00 00— 0003r|h
OO0 00O —~
N < o N < 32} o~ N o
= gl o gl [fs) 0 ~ ~ ™ o~
-— gV § gV ]

Let

To shed more light on the given procedure we go through another example.

. Then

2
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G" = {(000), (001), (010), (011), (100), (101), (110}, (111)}

010

g = {(100), (010), (001)} and A={0 0 1

1 01
010 (100) (010)
Ag=|0 01 o10) | = | (oo1)
1 01 (001) (101)

Let x in theorem V,.2,2.3 be (100). Then,
A(100) = (010) ,
A2(100)= (001) ,
3
A~(100)= (101) ,

A4(100)= (111)

5

A”(100)= (110) ,

28100)= (011) , and

A7(100)= (100) .

Therefore, we obtain L, as follows:

(000) | (010) [ (001) | (101) { (111) {(t10) |(011) | (100)

(010) | (000) | (011) | (111) | (101) { (100) | (001) | (110)

(001) [ (o11) [ (0o0) | (100) | (110) | (111) {(010) | (101)

(101) | (111) | (100) | (000) | (010) | (011) | (110) | (001)
Lo = Lawy [ aon | o) ¢ (

(110) | (100) | (111) | (011)
(011) | (001) | (010) | (110)
(100) | (110) | (101) | (O11)

001) | (000) | (101) | (0l10)

111)
000)

(

( (
( (
( (

010) | (000) | (001) | (100) | (011)

( ( (
(100) | (101) | (000) | (
( ( (

011) | (010) | (111)

Setting (000) = 1, (010) = 2, (001) = 3, (l0l)= 4, (I111)=5, (110) = 6

’

(011)=7, (100) = 8, then L, ina compact form will be:
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112134 (|5]|6]|7 |8
21| 7514|8316
317118165 (2|4
L0= 4158|127 ]6]3
5141612 |1|3|18}7
6185|7131 |4]2
71312684 }1|5 .
816|413 ]7]2]5]!1

Now, we can derive Ll’ LZ’ 560 p L6 from L0 by a cyclic permutation of the

last 7 rows of LO, for example,

1]2]l3lals5]|6]7]s 1{2]3]4]5 [6]7]8
glelals|7]l2]5]1 73(2]6 |8 |4]1]5
2t1l7]|5|4ls|3]e glelals |7 [2]5]1
3|7|1]8]6]5]|2]4 21|75 |4]8|3]6

L= Jal|s|sli]al7z]els|"t"|3]7|1]8]e6|s5]2]4] °
sfalelal1|3]8]7 4|s|sf1[2]7]e]3
6(8|5|7|3|1|4]2 68 |s5{7[3]1]4]2
73| 2|6|8|4]|1]5 68|57 (3|1 ]4]2

and so on. Note the way L1 is derived from L _: except for the first row of

0 L]
th
becomes the (i+1) row

L. and L., which are identical, the ith row of L

0 1’
of L

0

and the last row of L. becomes the second row of L

1’ 0 1 In general Lj

is derived from Lj—l in the same fashion as L] is derived from L0 .
m, m, m

V.2. 3. n= ql q2 qr r, where qi is a prime such that qi¢q if 1#]j

j
and m, is a positive integer, i = 1,2,...,r .
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m m m
2
Theorem V. 2, 3.1, Let n = ql ! q2 ves Q rr be the prime power decomposition
m
of n . Then, there exists an O(n,y) set based on a group, where vy= min(ql l,
mZ mr
Ay seeerdp ol g

m,
Construction, Let n1 = qi ! . Then, by the method of theorem V, 2,2, 3 construct

an O(ni, n-1) set §, = {Lil’ Ligs ooy Ly -1}’ i=1,2,...,r . Now, let
i
8, = {LH, Liz,...,Liy}, i=1,2,...,r . Then, H = {Al,Az,...,Ay} is

an O(n, y) set where Aj = Llj ® L2j Qe QL ® denotes the Kronecker product

rj °

operation,
Demonstration V.2.3.1. Let n =12 = 2% 3 . Then, y= 2,
11213 112 3
= = = 1
s, = Ly=|2|3|1|, 1,=1(31]2| ,
31112 21311
112]3]4 1121314 121314
2 4 4
SZ - L21 _ 1 3 , LZZ - 4 1312]1 , L23 _ 3 1{2
3faf1f2 2{1]4]3 al3fz2]1
413121 3(411]2 ]a‘. 1143
( d s, hen, the read |
Sl = {Lll’ le} an S2 say {LZl, LZZ} . Then, the reader can easily

verify that

H={A=L)®L, 4 =1,3L,}
is an O(12, 2) set,
Remark., Let n and y be the same as in theorem V,2.3.1., Then it can be shown

that automorphism method fails to produce more than y mutually orthogonal latin
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squares, We shortly show that this inherent defect is due to the mapping not
to the group structure,

Definition V. 2.1. Consider for each positive integer n an abstract group G of

order n with binary operation *, Let Q2 be the collection of all one=to-one
mappings of G into itself. Then two maps ¢ .and § in Q are said to be

orthogonal if forany g in G,

(02) % W2 =g
has a unique solution 2 in G . In particular if o is an identity map then ¢
is said to be an orthomorphism map. A t-subset of 2 is said to be a mutually
orthogonal set if every two maps in this t=subset are orthogonal,

Let L(+) bean nX n square. We make a one-to-one correspondence
between the rows of L(*) and the elements of G . Thus, by row x we shall
mean the row corresponding to the element x in G . Similarly we make a one-
to-one correspondence between the columns of L(*) and the elements of G.
The cell of L(-) which occurs in the intersection of row x and column y is
called the cell (x,y).

Theorem V,2,3.2, Let o be in Q. Put in the cell (x,y) of L(*) the element

(ox) *y of G. Call the resulting square L(c). Then L(c) is a latin square

of order n on G. Moreover if {o-l, LPYREPT o-t} is a set of t mutually ortho-

gonal maps then {L((rl), cees L(ut)} is an O(n,t) set,

Demonstration V.2.3.2., Let G = {0, 1, 2} with the binary operation X, + X, =

x3(mod 3), X, In G . Then the maps ¢ and § with the following definitions

are orthogonal,
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¢(0) =0 $(0) = 0
c(l)y=1 w(l) = 2
o(2) =2 p@) =1 .

The corresponding latin squares to ¢ and ¢ are:

o|1]2 of1]2
Lie)= |1]2]o] , L= |2]of1
2|01 1{2|o

which are orthogonal,

V. 3. Construction of O(n,t) sets based on t different groups of order n

Up to now we have been concerned with the construction of O(n,t) sects
using a group of order n which admits certain mappings. In this section we want
to show that for some n's and t's one can construct O(n,t) sets basedon t
difterent groups each of order n . This approach proved useful because it lead
to the construction of an O(15, 3) set. We should mention that our motivation
to searchalong theselines has stemmed from the following theorem, with a nega-
tive flavor, proved by Mann [1944] .

Theorem V. 3.1, It is impossible to construct an O(5,2) set based on two dif-

ferent permutation groups,

For a while we thought that this theorem might be true for all other orders.
However, it was found that, fortunately, this is not the case as the following two

theorems show:

Theorem V. 3.2, It is possible to construct O(7,2) sets based on two different

cyclic permutation groups of order 7 .
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Proof: {Ll, Lz} is an Q(7,2) set where

112314567 1]213|4]|5]6]|7
31716111425 213|4(5]6]|7]1
615213111714 314|516 |7]|1]2
L1= 214 |716|3]|5]|1f , L2= 4156 |7 |1]2]3
71151216143 516171112]3}|4
5134|712 ]1]6 67| 112]3]|4}5
416 |1]|517]13(2 71112 13|4(5]6 .

Ll and LZ are based on two different permutation groups as can easily be seen

from the different structure of their rows, To be specific Ll is based on the

1234567
3761425
1234567
2345671)'

) and L2 is based on the

Note that, since L1 and

L2 are based on cyclic permutation groups, then by theorem V, 2.1,1 {Ll} and

cyclic permutation group generated by (

cyclic permutation group generated by (

{LZ} can be embedded in O(7,6) sets, However, whether or not {Ll, LZ} can
be embedded in a larger set is an open problem.

Theorem V, 3.3, It is possible to construct O(15, 3) sets based on three dif-

ferent cyclic permutation groups of order 15,

We remind the reader that every group of order 15 is cyclic,

Proof: {Ll’ LZ’ L3} is an O(15, 3) set where
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ol t})2] 3! 4|56 78] 9]tofl11 fia]izlia
7 4| 8 12l sf12 iafiof ol1a f 11 31 &6
2 [T (13(1ol14(8l 211 (3]l ol 71 61 41 9l s
114 3] ol 6n3] 8 4 1ol 71121 5 111 110] 2
4] 619l 72 s[3fual1 ofuel 11 21141 ol 8
11 sfofte] 219l 3Tialol 1l 4] 8] 6] 2113
14 2] o] 1 s8lolol 61721411 1135 [12] 3]
L, = 6] 8| 7 13Jofiol s ialit J1af 31 2] 1] 9
sfisfizfit] 317 ol 21114 6 o [ 81 410
2 3| 114 9ltizl 71 8l4l6] 51 [13]1un] o
Bl 94| 6]to [t [12 13 1|5 21 o] 3 14 7
13Jio 1t 5] o4l 1| 3Nhal2] 81 72191 6l12
3Jofaf 2] 74 9681312 o] 5]1
9 7161 8l12ta it Jtolsh3a] 3] 1 1ol 21 a
w1z sfis] 1feltal o2l 3T 9] 471811
36 oraad by (o I 2 3 45 6 7 8 9 10 11 12 13 14)
7 4 8 911 2 5121310 0 14 1 3 6/ °*

Whether or not {Ll, L,, L3} can be embedded inan O(15,t), t >3, set
is an open problem (see Hedayat [1970])),
V.4, Concluding Remark

Johnson et al, [1961] and Bose et al. [1960] independently found, by an
electronic computer, five mutually orthogonal latin squares by first finding five
mutually orthogonal maps for an abelian group of order 12, The O(l2, 5) set
exhibited below is the set found by Johnson et al. [1961] . Note that the top
square is obtained, after a proper renaming, as the direct product of a latin square
of order 2 and a cyclic latin square of order 6 being both orthogonally matecless.
Moreover, every other square is obtained by proper row permutations, determined
by an orthomorphism, from the top square,

Final Remark. The group method fails to produce an O(n,t) set, t>2 for any

n of the form 4t + 2, This is so because the Cayley table of any group of order

n = 4t + 2, which is a latin square of order n, is orthogonally mateless,
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VI. Projecting Diagonals Construction of O(n,t) Sets

.f\ very simple procedure (sort of the "man-on-the=-street" approach) of
constructing balanced incomplete block and partially balanced incomplete block
designs for v = kz items in incomplete blocks of size k has been utilized
since the late 1940's by the author and has its counterpart in constructing O(n,t)
sets, First we shall illustrate its use in incomplete block experiment design
construction, and then we show how it applies to the construction on O(n,t) set.
The theoretical basis for this method may be derived directly from the preceding
section,

The procedure becomes apparent through an example, Suppose that v = 9
and k = 3, After writing the first square as illustrated below, take successive
diagonals of the preceding square and use them to form the incomplete blocks of

a square, thus:

Square 1 Square 2 Square 3 Square 4
11213 1 5|9 11618 11417
4]151]6 21 6|7 21419 21518
71819 3148 35 1%% 31619

As we have noted this is a resolvable balanced incomplete design with the para-

meters v=9 =k, k=3, r=4=k+1, b=12=k(ke), and x

1, where

the rows of the above squares form the incomplete blocks.,

2

To form a partially balanced incomplete block design for v = k= in in-

complete blocks of size k one may use any 2, any 3, ..., any k arrangements

(or squares)., To illustrate the formation of a partially balanced incomplete block
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design for v= 6 = k(k=l), r=2,3,...,k, and k' = k-1 = 2 simply delete the
last set of k numbers, i.e. 7,8, and 9 from the last k = 3 arrangements. The
deletion of certain symbols from the set 1,2,...,v is known as 'variety cutting".
For k2 = 25 and k = 5 partially balanced incomplete block designs may be
constructed for v = 10 and k* = 2, v=15and k+ = 3, andv=20andk' = 4

by the above ''variety cutting'' procedure.

Also, the successive diagonals method is useful for v = k2 in incomplete
blocks of size k for any odd k . For example, for v = 225 and k = 15 four
arrangements or squares may be quickly constructed by the above method, Like=
wise, the "variety cutting" procedure may be utilized to obtain 2 or 3 arrange-
ments for v = 15p, 2 < p < 15, varieties in incomplete blocks of size p

The above method has its counterpart in constructing mutually orthogonal
latin squares and this possibility is briefly mentioned in Fisher and Yates [1957]
in this context, Again the method becomes apparent through an example, First
write the latin square in standard order and of the form given below for the first
square, then project the main right diagonal of the preceding square into the first
column of a square, and then write the symbol order in the same manner as in the
first square, As a first example, let the order of the latin square be 3; the

squares are:

first square second square third square
1121 3 1 2 3 112 3
213 1 3 1 2 1| 2 3
311 2 2| 3 1 1 ]2 (3
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Thus, the main right diagona. of the first square is 1,3,2 which becomes the
first column of the second square, Then, write the first row as 1,2,3, the
second row as 3,1,2, and the third row as 2,3,1. For the third square',
which is not a latin square, the right main diagonal of the second square is
1,1,1 and this becomes the first column of the third square; the rows are then
completed, If we then take the right main diagonal of the third square, we ob=-
tain the first square,

As a second illustrative example, the five squares for order n = 5 which

are constructed by successively projecting diagonals, are:

first square second square third square
1(213[4 |5 1(12}1314|5 11213(4]5
213145 |1 3145112 41511213
31451 |2 51112]|3] 4 2|13141)5]!
4151112 |3 213141511 5/112]|3}4
511123 |4 als5|1]z]3 3[4[5(1]z2

fourth square fifth square

1| 2| 3| 4] 5 1231415

5112|314 112]3]415

4| 5111213 112131415

314|512 112131415

21 31415]1 112|3]415

The tfifth square is not a latin square but may be utilized to construct the first
square through use of the method of successive projections of the main diagonals,

The method may be utilized for any odd order n and will produce ql-l

orthogonal latin squares for n = q 9, ... 9 where q, <q and q1 qQ; ... 9

i+l s
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is the prime power decomposition of n ., Thus, for n = 15 = 3(5) a pair
(ql-l = 3=-1 = 2) of orthogonal latin squares is easily produced, For n = 35 =
5(7), a quartet of mutually orthogonal latin squares is readily produced by the

projecting diagonals method,
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VII, Relations Between Complete Confounding and Simple Orthomorphisms

We shall illustrate the ideas by going through a complete example taking

n=12-= 22 X 3, For this purpose we take the ring of 12 elements (obtained

by utilizing Raktoe's [1969] results) as follows:

Q‘&ZL _1_3 GF(3 i
0 0 0 0
1 = 3 1 = 4
X 3x 2 2
x+1 3x+3

R, =1, @1, = {0,1,2,3,4,5, 3x, 3x+l, 3x+2, 3x+3, 3x+4, 3x+5}

R;, is a commutative ring under addition and multiplication (mod (6,

3x2 + 3x + 3) in the following sense:

e.g.: (a). (3x+3)+ (3x+4) = 6x + 7 = l; here we have to reduce

only mod 6 to get the answer,

9xZ +15x + 4

(b). (3x+l) « (3x+4)

3x2+3x+451
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Explicitly, to facilitate arithmetic, the addition and mutliplication of these 12

elements are:

+ 2 3 4 5 3x 3x+1 3x+2 3x+3  3x+4  3x+5

0 2 3 4 5 3x 3x+1 3x+2  3x+3  3x+4  3x+45

1 3 4 5 0 3x+1 3x+2 3x+3  3x+4  3x+5 3x

2 4 5 0 1 3x+2 3x+3 3x+4  3x+5 3% 3x+1

3 0 1 2 3x+3 3x+4 3x+5 3x 3x+1 3x+2

4 2 3 3x+4 3x+5 3x 3x+1 3x+2  3x+3

5 4 3x+5 3x 3+l 3x+2  3x+3  3x+44

3x 0 1 2 3 4 5

3x+1 2 8 4 5 0
3x+2 4 5 0 1
3x+3 0 1 2
3x+4 2 3
3x+5 4

0 2 3 4 5 3x 3x+1 3x+42  3x+3  3x+4  3x45

0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 3x 3x+1 3x+2  3x+3  3x+4  3x+45

2 4 0 2 4 0 2 4 0 2 4

3 3 0 3 3x 3x+3 3x 3x+3 3x 3x+3

4 4 2 0 4 2 0 4 2

5 1 3x 3x+5 3x+4  3x+3  3x+2  3x+]

3x 3x+3 3 3x+3 3 3x+3 3

3x+1 3x+4 5 3x 1 3x+2
3x+2 3x+1 3 3x+5 1
3x+3 3+3 3 3x
3x+4 3x+41 5
3x+5 3x+4
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Now, associate with a latin square of order 12 the 32><42 = [3X 4] X [3x 4]

= 12 X 12 lattice square with the following breakdown of the 143 degrees of

freedom corresponding to a four-factor factorial:

4
A 2 c3 3
gt 2 D> 3
N 3ol 3
NG c3p* 3
3_3x+3
< c’D 3,
N
.
’ & 3 4 3 4.4 3 423 s
INfe 6 B*c 6 | a*sc 6 | a*?c 6
N 6 Bp3 6 | a%g?p’ 6 | a%e®p3 6
4
atcipl 6 s*c3p3 6 | a*pic3p3 6 | a*s?c3p3 6
ROEIE o™ o | attein™ 6 | a%2ci® ¢
A4C3D3x+3 6 B4C3D3x+3 6 A4B4C3D3x+3 6 A43203[)3x+3 6

For any row or column confounding we need to confound effects totaling up to 1l
degrees of freedom. There are natural candidates available. In fact, we may
choose for our first lattice square the confounding scheme in many ways, A

scheme resulting in a pair of orthogonal latin squares is the following:
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Using the complete confounding approach as outlined above, one can construct
2

min [(27-1), (3-1)] = 2 mutually orthogonal latin squares and no more as can

easily be observed from the degrees of freedom table,

From the multiplication table of our ring R we observe that 1, 5, 3x+l,

12°

3x+42, 3x+4 and 3x+5 are the 6 non-zero divisors (i.e, elements with multiplica-
tive inverses). Following Bose, Chakravarti and Knuth [1960] , we consider

simple automorphisms in R,, of the form:

12

a(r) = r*r
where r* is a given fixed element having a multiplicative inverse (because only
these elements are capable of producing autoniorphisms of Rlz) . Let now our
aim be to produce two orthomorphisms which in turn will produce an 0O(12, 2)
set, For this purpose consider the automorphisms:

Ifr) =

a(r) = r .r .

Now [ is orthogonal to a which implies the condition that r in the equation

X
[r er=-r] =c has a unique solution for every ¢ of R, (see Mann [1949],

12

*
pp. 103-105), In our setting this means that r(r -1) =c has a unique solution,

* * -
i.e., r(r +5) =c has a unique solution which in turn implies that (r + 5) -

exists in RIZ .

Substituting in the values of r* we see that:
-1

[1+5] does not exist in R12

[5 + 5] -1 " " " " "

[ (3x+1] + 5] -l does not exist in R,
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- -]
[(3x+42) 4 5] 7 = [ 3x41] Xists 1 Rld

1
[ (3x44) 4 5] does not exist in R

[ (3%45) 4 5] e | 3544 -l xists in R

12

Hence we have obtained two pairs of orthomorphisms namaoly:

Ifr) = r 1 r
and

afl(r) = (3x42)r o ()= (3450

The O(1Z, 2) set presented above using complete confounding corresponds to

the first pair of maps, It may be casily shown that si Hd I tho tyy
a(r) = r - r lead to O(2, 2) scts or in general lo an O, a L. wha
n1 n n _k n,
a = min (p1 = Jy p2 =l 500 g pk -1) and n = || P, ' 50 that plete con-

1=1
founding approach is equivalent to thc construction of a sct of a4 orthomorphisnis,
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VIII. Some Remarks on "Orthomorphism" Construction of O(n, t) Sets

In 1959 and/or 1960 E, T. Parker showed by a combination of classifica-
tion of cases (with considerable elimination of isomorphic repetition accessible
to cut down on computer time, followed by computer runs) that there are obtain-
able only 5 orthogonal latin squares of order 12, all restricted to be copies of
the non-cyclic Abelian group with latin squares related by row permutations,
(Some researchers [6, 31] call this the method of orthomorphisms. Parker considers
this no method, but only based on freaks of luck; further, Parker feels that
"orthomorphism" admits no precise definition, )

Parker made another finding, also by hard classification of cases followed
by computer runs, which Marshall Hall feels is more important than that cited
above, No pairof order-12 orthogonal squares of the type mentioned can be ex-
tended to @ complete set of any sort; i, e., further orthogonal latin squares are
allowed to be completely general,

What might be obtainable for orthogonal squares of order 20 in like
fashion, row=-permuting the non-cyclic Abelian group of order 20, is an interest-
ing matter for speculation — conceivably one might even produce a complete set
(19 orthogonal squares equivalent to a plane). Knuth and Parker discussed the
problem about 1963, and concluded that exhaustive search is out of the question;
still a fortunate sample of cases might produce an attractive result.

In 1960 Parker looked at the row=permutation ("orthomorphism" of Bose
and Mendelsohn) approach for the group of order 15, and proved by Hasse-

Minkowski invariants that a comylete set could not be so obtained, He dropped
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further work; but some persistence could quite possibly yield as much as five
orthogonal squares of order 15,

A hybrid attack on order 15 or 20 might be undertaken by an ambitious
investigator, (The facts for order 12 mentioned above rule out chances here, )
One might produce sets of orthogonal latin squares of row-permuted group type,
using automorphisms of the group latin squares to eliminate — or, that failing,
reduce — isomorphic repetition., It would not be shrewd to program a computer
to produce all transversals of a group latin square, for running time and output
would be excessive; then for any hint of efficiency it would be necessary to turn
about and do a reduction on the computer output, After a set of row=permuted
latin squares (possibly exhaustive for order 15, but almost certainly only a
sample for order 20 ) large enough that computer searching would require
realistic amounts of time, one might proceed with the next step, Produce all
transversals of the set of orthogonal squares by computer, then fit these together
in all possible ways (again by computer) to form orthogonal mates of the preceding
set of orthogonal latin squares, Unlike Parker's assertion above about complcte
sets of order-15 squares, there is no known argument implying impossibility of

producing 14 orthogonal latin squares of order 15 by this hybrid attack,
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iX. Oval Construction of O(n, t) Sets

The approach to construction of finite projective planes used here differs
from the ones known in the literature. The main idea is to make use of the
maximum number of points no three on one line in a finite projective plane of
even order callad henceforth an oval. The oval cannot consist of more than
n+2 points in a plane of order n . This is obvious since through each point
pass n+1 lines and the lines through any point of the oval can contain at most
one more point of the oval, Onthe other hand, if a plane of order n does include
an oval consisting of the maximum number of points, namely n+2, then the
lines of the plane can be classified into two categories in respect to this oval.
One category consists of lines intersecting the oval in two points called secants,
the other of lines having no points of the oval called non-intersectors. The
number of secants is clearly (nde)(n+l) and the number of non-intersectors

2

is Mg_'l_l .  Through each of the nz-l points which do not belong to the

' n+2
oval there would have to pass =5— secants and non-intersectors,

n
2 2

Hence, n must be even,
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It is well-known that removing one line from the plane, usually called
the line at infinity, the remaining n2 + n lines can be arranged into 2n lines
passing through two points at infinity which are arbitrary up to notation and
coordinatization of the plane, and nz-n lines belonging to n=-1 mutually
orthogonal latin squares. If the line at infinity is chosen to be a secant and
there are 2n lines, the lines pass through the two points of the oval such

that each of the n-1 latin squares consists of % secants and < non-

n IS

intersectors passing through each of the n-1 points at infinity other than the

points of the oval. The 2n lines correspond to the rows and columns of the latin

square,

Using the described method, it vsas assumed that a plane of order 10

exists. Under this assumption 21 lines could be exhibited arbitrarily up to

notation, Out of these lines one was taken to be the line at infinity and the

remaining 20 used to coordinatize the plane. Then by trial and error twenty

more lines were found which formed two orthogonal latin squares, The method

used to construct these squares differs from the one described in the literature,
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Unfortunately no more squares could be found using this method and a high speed

computer established that the two squares did not yield an additional mutually

orthogonal mate. Clearly it could happen that the choice of the first two was

unfortunate, The same method was applied to the plane of order 12 , Here

the trial and error method failed to produce even two orthogonal squares, It

may be worthwhile to remark that the construction of the plane and consequently

the search for orthogonal latin squares does not require the assumption that

the oval consists of the maximum number of points n + 2 . However, if the

plane does not include an oval consisting of n + 2 points the lines could not

be classified into two categories only and this complicates the construction of

the plane, Let us illustrate the method in the case n equals 10, Itis

easy to show that in this case the oval must consist of at least 6 points,

However, the case of an oval of 6 points would be ignored since in this

case every quadrangle would have to have collinear diagonals. On the other

hand, a plane of order ten must be non-Desarguessian and hence must contain
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a nondegenerate quadrangle with noncollinear diagonals, Suppose that the

plane contains a quadrangle with noncollinear diagonals and suppose that the

plane contains an oval consisting of seven points then the 104 points of the

plane which do not belong to the oval could be classified into three categories:
(i) points lying on 3 secants, 1 tangent 7 nonintersectors

(ii) " o2 " 3 " 6 "

(ii1) " L " 5 " 5 "

Let us name the number of points in each category by x, y, 2 respectively.

Clearly x+y + 2z =104,
Counting the intersections of the secants and the tangents we get the

further equations:

3x+y =105

3y + 10z = 525

The unique solutions of this system of equations are x =20, y =45, z = 39,

One could start the construction of the plane under the present assumption and

investigate the possibilities of obtaining orthogonal latin squares in this way.,
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X. Code Construction of O(n,t) Sets

Given an n-symbol alphabet, e.g., 1,2,...,n, and a set of k-tuples

of the n symbsls, we denote the set of all k-tuples by C . This set may

k,n

be thought of as a vector space or as a k-dimensional hypercube with edges of

length n . Any subset of C is denoted ac @ block code with a block length

k,n

of k . The elements of the subset are denoted as code words. The number of

symbols by which any two code words differ is called the Hamming distance,

If any pair of code words in the subset differs by a Hamming distance of at

least r, the block code is called a distance r code. A distance r code is

called an (r-1)/2-error correcting code because fewer than (r=-1)/2 changes

leaves the word closer to its original form than to any other code word in the
subset, For similar reasons, a distance r code has also been designated as

an (r-l)-error-dectecting code.

In an interesting paper, Golomb and Posner [1964] discuss the relation-
ships between a subset of n2 code words and an O(n,t) set and relate these
to ideas developed from a consideration of a set of n2 super rooks of power t
Ou th nt+2 chessboard such that no two super rooks attack each other, The
ne.w concepts of rook domains and rook packing were found to be very useful in
providing a geometrical view of the results,

Any subset of n2 words from C3,n which forms a single-error-detecting

code may be used to construct a latin square of order n as any pair of the

triples differs by at least two symbols, Likewise, any subset of n2 words
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from Ct+ with a Hamming distance of t + 1 may be utilized to construct

2,n
an O(n,t) set, These results are embodied in the following theorem (from
Golomb and Posner [1964]):

Theorem X,1. The following three concepts are equivalent:

i) an O(n,t) set.

2
ii) A set of n nonattacking super rooks of power t on the nt+2 board.

For even t, also the following, a set of nz super rooks of power t/2 on the

t+2 .
n board such that no cell is attacked twice; that is, such that the rook

domains are nonoverlapping.

iii) A distance t + 1 code of block length t + 2 with nz words from an

n-symbol alphabet,

For those interested in code construction, reference may be made to
Mann [1968] and Peterson [1961] and the literature citations therein, We shall
merely illustrate the method of construction of an O(n,t) set from nz words
of length t + 2 and Hamming distance t + 1 through an example, let n =3
and t =2 . Then the n2 = 9 code words with length 4 and Hamming distance
3 and the corresponding latin squares are:

latin squares of order 3

0o 1 2 0 1 2
0000 0111 0222 0 0 1 |2 0 0 (1] 2
1012 1120 1201 to produce 1 11 2110} and 1 2 |01 1
2021 2102 2210 2 21 0 {1 2 1 {21 0

where the first symbol corresponds to row number, the second to column number,
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the third to symbols in the first latin square, and the fourth to symbols in the
second latin square. The two latin squares form an O(3,2) set. Note that any
pair of the quadruples differs in at least three symbols,

The analogy of the above with many of the concepts from fractional repli-
cation and orthogonal arrays is immediately apparent, The equivalences of many
of the results in these fields need to be systematically noted much in the same
manner that Golomb and Posner [1964] note various equivalences among O(n,t)
sets, error-correcting codes, and n'2 nonattac king rooks on an nt+'2 chess-

board.
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XI. Pairwise Balanced Design Constructicn of O(n,t) Sets

Central to the constructions of orthogonal latin squares of Bose and
Shrikhande [1959] and of Parker [1959, 1960] is the following which might be
called a "Folk theorem, " being credited to no specific investigator: From a set

2
of t orthogonal latin squares of order n one may produce a set of n ordered

(t+2)-tuples on n symbols such that each pair of distinct positions contains

each ordered pair of symbols (exactly once); the converse construction can also

be carried out. (Some, such as Bose, prefer to call the set of (t+2)-tuples an

orthogonal array. ) There is nothing difficult to prove in this construction. Two
arbitrary positions in the (t+2)-tuples are identified with row and column indices
in matrices, and each other position with entries in one of ti.> matrices. The
equivalence between orthogonality of latin squares and the conditions on the
(t+2)~-tuples is then fairly apparent,

Parker [1960] contributed the following to the construction of orthogonal

latin squares. If there exists a pair of orthogonal latin squares of order m, then

there exists a pair of orthogonal latin squares of order 3m + 1.,

Let the 3m + 1 symbols be Xl,. 00 ,,Xm and the residue classes (mod 2m + 1),

Form the (latin square) array
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Foreach i, 1 < i< m, eachrow of A an ordered quadruple. In turn, the
list of quadruples is built up by adding each integer (mod 2m + 1) to all four

positions at once, the X, symbols being unchanged by the addition. The set

i
of 4m(2m + !) ordered quadruples just described contains in each pair of distinct
positions exactly one occurrence of each ordered pair made up of an X1 and a
residue class in either order, and of each ordered pair made up of two distinct
residue classes. The required set of ordered quadruples is completed by adjoin=-
ing: i) all ordered quadruples (j,j,j,j), j =0, ..., 2m; ii) a set of ordered
quadruples on the xi symbols corresponding to a pair of orthogonal latin squares
of order m guaranteed by the hypothesis to exist.

Bose and Shrikhande (1959, published 1959 and 1960 partly in a 3-author
paper with Parker) developed a sequence of constructive theorems which led in
steps to disproof of Euler's conjecture for all orders 4t + 2 > 6 , Their central
theorem given here does not exhaust their methods, but virtually all their results
rest on this theorem, We begin with a definition, A pairwise balanced design,
PB(n; kl" 50 ,kt) is a collection of subsets of a set of n elements, each sub-
set having number of elements one of the ki’ and such that each pair of distinct
elements in the set of n occurs in a unique subset of the PB. (Note: unlike
in balanced incomplete block designs, the subsets of a PB are not restr!cted to

have equal numbers of elements,) Now for the main theorem of Bose and Shrikhande,

fa PB(n; k

P ,kt) exists, and for each i, 1<i<t, asetof m orthogonal

latin squares of order ki exists, then a set of m=1 orthogonal latin squares of

order n exists., Loosely speaking, the sets of ordered tuples for each subset
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of the PB are constructed and these fit together to form a set of ordered tuples
for the full set of n elements. The decrease from m to m=-1 orthogonal latin
squares occurs because in fitting the pieces together to form the large set of
ordered tuples, it is necessary that each set of ordered tuples formed from a
subset of the PB include each (i,i,...,i), where i ranges over the elements
of that subset, (It is sufficient that this condition be fulfilled in the construc-
tion. Thus the theorem might be stated in slightly stronger form: "If .., 1<i<t,

a set of m orthogonal latin squares of order ki with a transversal exists, then

a_set of m orthogonal latin squares of order n exists.") Now for a more nearly

formal version of the proof, If there exists a set of m orthogonal latin squares
of order n, then there exists a set of the appropriate sort of nz ordered
(m+l)-tuples with each symbol repeated in an (m+l)-tuple m+1 times., (The
condition mentioned is satisfied with (m+2)-tuples if the set of orthogonal latin
squares has a transversal,) One need simply put together the ordered tuples on
each subset of the PB in turn, subject to the important condition that within
each subset of the PB, each tuple of repetitions of each symbol be included.
Carrying this out on the alphabet of the symbols in each subset of the PB, one
has the construction for the set of orthogonal latin squares in the conclusion;
each ordered tuple of a repeated symbol among the n is used only once,

A representative and very interesting example (Bose and Shrikhande in-
formed Parker that this was the first case of disproof of Euler's conjecture pro-
duced in their joint work at a blackboard) yields 5 mutually orthogonal latin

squares of order 50 via the PB construction. One forms the affine plane of
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order 7, then adjoins exactly one ideal point on each line of one class of paral-
lel lines. This yields a PB(50; 8,7). Since there exist 6 orthogonal latin
squares of each order 8 and 7, there exist 6~1= 5 orthogonal latin squares
of order 50,

There is a limitation on the Bose-Shrikhande PB construction. Aside from
trivial PB designs, having a single subset of all elements, any PB has a sub-
set with at most one more element than the square root of the number of elements
in the large set. Thus other techniques are requisite to produce more than '\/n—

orthogonal latin squares of order not a prime-power,
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XII. Product Composition of O(n,t) Sets

About 70 years ago, for the first time, Tarry [1899] in his half-page note
asserted that if there exists an O(a, 2) set and if there exists an O(b, 2) set
then there exists an O(ab, 2) set. He exhibited the following O(l2,2) set, by
composing two O(3, 2) and O(4,2) sets, to demonstrate the truth of his asser-
tion. Note that in the following square the set of first integers belong to one
latin square and the set of second integers belong to the second latin square.

No more description is given by Tarry.

2-3 1-1 3-2 |8-12 7-10 4-11 |11=-6 10-4 12-5| 5-9 4=7 6-8
3-1 2-2 1-3 |9-10 8-11 7-12 |12-4 11=-5 10=-6| 6=7 5-8 4=9
1-2  3-3 2-1 |7-11 0-12 8-10 {10-5 12-6 11-4| 4-8 6-9 5=7
11-9 10-7 12-8 |5-6 4-4 6=5 2=-12 1-10 3-11}] 8=3 7=-1 9=2
12-7 11-8 10-9 |6-4 5-5 4-6 3-10 2-11 1-12| 9-1 8=2 7-3
10-8 12-9 11-7 |4-5 6-6 5-4 1=-11 3-12 2-10f 7=-2 9-3 8-l
5-12 4-10 6-11f1=-3 10-1 12=2 8-9 7-7 9-8 | 2-6 1-4 3-5
6-10 5=-11 4-12{12-1 11-2 10-3 9-7 8-8 7-9 | 3-4 2-5 1-6
4-11 6-12 5-10{10-2 12-3 11-1 7-8 9-9 8-7|1-5 3-6 2-4
8-6 7-4 9-5|2-9 1-7 3-8 5-3 4=1 6-2 |11-12 10-1012-11
9-4 8-5 T7-6 |3-7 2-8 1-9 6-1 5=2 4-3 [12-10 11-11 10-12
7-5 9-6 8-4 |1-8 3-9  2-7 4-2 6-3 5-1 |l0-11 12-12 11-10

Tarry did not observe any generalization of his method. Perhaps this was
due to the fact that he, like so many other researchers, was only concerned with
sets of type O(n,2) . Probably he was not aware of the existence of a larger set.

About 23 vyears later MacNeish [1922] demonstrated:
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1) The existence and a construction of an O(n,n-1) set for n a prime or
prime power integer.
2) A generalization of Tarry's procedure viz,, if there exists an O(a,r) set and

if there exists an O(b,r) set then there exists an O(ab,r) set.

a a a

3) By a successive application of 1) and 2) he showed that if n = pl1 pz2 boc ptt

is the prime-power decomposition of n then there exists an O(n,r) set where

“i
= min{pi -1, i=1,2,...,t} .

MacNeish could not embed his O(n,r) set generated in 3) in a larger
set. This unsuccessful attempt, reinforced by F'iler's conjecture, led MacNeish
to prove (erroneously) geometrically that O(n,z) sets do not exist for z>r ,
and therefore, as a confirmation of Euler's conjecture. The preceding argament
of MacNeish is known as MacNeish's conjecture in the literature, By constructing
an O(2l,3) set Parker [1959] gave a counter example to MacNeish's conjecture.
Later Bose, Shrikhande, and Parker [1960] completely demolished Euler's con-
jecture except for n = 6 , It should be mentioned that MacNeish's conjecture
has not been totally disproved yet. For instance, no one as yet as far as we know,
has constructed an O(15,4) set (an O(15,3) set is given in section V for the
first time) or an O(20,3) set, We believe that MacNeish should be given sub-
stantial credit for his non-erroneous contributions. It is to be regretted that
MacNeish is often cited in the literature only for his false conjecture.

Even though Tarry and MacNeish did not attach any name to their pro-

cedure, it is not difficult to see that it is the method of Kronecker product of

matrices, Therefore, we can state, more formally, their results as follows:
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Theorem (Tarry-MacNeish)., If {Al, Ay, Ar} is an O(n,r) set and if
{Bl’ Byyvees Br} is an O(m,r) set, then {A1®Bl, A,®B,,...,A® Br} ,

where @ denotes the Kronecker product operation of matrices, is an O(nm,r)

set.

The preceding arguments clearly support the choice of the title for this
section and is in contrast to the choice of the name for the procedure given in

section XIII,
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XIII. Sum Composition Construction of O(n, t) Sets

XIII. 1. Introductioq

Perhaps one of the most useful techniques for the con-
struction of combinatorial systems is the method of composition. To mention
some, here are few well-known examples: 1) If there exists a set of t ortho-

gonal latin squares of order n, and if there exists a set of t orthogonal latin

1

squares of order n_, then there exists a set of t orthogonal latin

29

squares of order nln2 . 2) If there are Steiner triple systems of order v1 and

lv2 . 3) If H1 and H2 are
two Hadamard matrices of order n and n2 respectively, then the Kronecker

] and H2 is a Hadamard matrix of order nln2 .

squares of order n and n, exist, then a Room square of order njn,
5) 1f BIB (Vv ,k,\ ) and BIB (v,,k,\,) existand if f(xzv:)zk, then

VZ’ there is a Steiner triple system of order v= v

product of H 4) If Room

exists.

] 2v:) denotes the maximum number of con-

straints which are possible in an orthogonal array of size A\ zv:, with vz levels,

6) As a final example, the existence of orthogonal

BIB (v k,\ )\2) exists where f(\

V2!

strength 2, and index xz c

arrays (\ 1vt 9 Vs t), i=12,...,r implies the existence of the orthogonal

1)

array (th, q,v,t), where A\ = \ A ...kr, VE VY,V and q = min(ql,q

12 2’

LI ] qr) L]
The reader will note that each of the above examples involved a product
type composition. The method that we will describe utilizes a sum type compo-
sition, by means of which one can possibly construct sets of orthogonal latin

squares for all n> 10,

XIl1.2. Definitions

In the sequel by an O(n,t) set we mean a set of t mutually orthogonal

latin squares of order n.

-82 - #1030



a) A transversal (directrix) of a latin square L of order n on an n-set X

is a collection of n cells such that the entries of these cells exhaust the set
Z and every row and column of L is represented in this collection, Two trans-
versals are said to be parallel if they have no cell in common,

b) A collection of n cells is said to form a common transversal for an O(n,t)

set if the collection is a transversal for each of these t latin squares,
Two common transversals are said to be parallel if they have no cell in common,
Example. The underlined and parenthesized cells form two parallel common

transversals for the following O(4,2) set.

1 2 (3) 4 1 2 (3) 4
(2) 1 4 3 (4) 3 1
3 (90 1 2 2 (1) 4 3
4 3 2 (1) 3 4 1 (2)

XIII.3. Composing Two Latin Squares of Order n and n,

A very natural question in the theory of latin squares is the following:

Given two latin squares L, and L. of order n, and n. (n

1 2 1 2

In how many ways can one compose Ll and L2 in order to obtain a latin square

L3 of order m, where m is a function of n and n2 only? This question

can be partially answered as follows. First, it is well-known that the Kronecker

S :
§ & nz) respectively.

product L irrespective of the

3 = L1 ® L2 is a latin square of order m = n

1"2

Secondly, we show that if L, has a

combinatorial structure of L1 and L \

2 .

certain combinatorial structure, then one can construct a latin square L of
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order n = n, +n

1 2 Naturally enough we call this procedure a "method of sum

composition",

Even though our method of sum composition does not work for all pairs
of latin squares, it has an immediate application in the construction of ortho-
gonal latin squares including those of order 4t + 2, t > 2, We emphasize that
the combinatorial structure of orthogonal latin squares constructed by the method
of sum composition is completely different from those of known orthogonal latin
squares in the literature, Therefore, it is worthwhile to study these squares
for the purpose of constructing ‘new finite projective planes,

We shall now describe the method of "sum composition", Let L1 and L2

be two latin squares of order n, and n n on two non-intersecting

1 22 M0

1
sets 21 = {al, LI anl} and 22 = {bl,bz, cee, bnz} respectively, I L

has n, parallel transversals then we can compose Ll with L‘2 to obtain a

latin square L of order n = ny * n, . Note that for any pair (nl, nz), there

with the above requirement, except for (2,1), (2,2), (6,5)

2,

1

exists L1 and L

and (6,6).

2

To produce L put L1 and L2 in the upper left and lower right corner

respectively. Call the resulting square C,, which looks as follows:

l,

1 L

2

Name the n, transversals of L, in any manner from 1 to n Now f{ill the

2 1 2’

cell (i, n, + k), k=12,... Ny, with that element of transversal k which

appears inrow i, i=1,2,,.,.,n Fill also the cell (n1 +k,j), k=1,2

1° ,”',nz,
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with that element of transversal k which appears in column j, j =1,2,... U

Call the resulting square CZ . Now every entry of C2 is occupied with an

element either from Zl or 22, but C2 is obviously not a latin square on

Zl U 22 . However, if we replace each of the n entries of transversal k

with bk’ it is easily verified that the resulting square which we call L is a

latin square of order n on 21 U 22 ;

The procedure described for filling the first nl entries of the row (column)

n1 + k with the corresponding entries of transversal k is, naturally enough,

called the projection of transversal k on the first n, entries of row (column)

1

n1+k.

We shall now elucidate the above procedure via an example, Let Zl =

{1,2,3,4,5}, =, = {6,7,8},

6 7 8
andL2=786 .
8 6 7

Note that the cells on the same curve in L1 form a transversal,

12345 123451 2 3
5123 4 5 12 3 4|4 5 1
451 2 3 451 2 3|2 34

C, = a
| 3451 2 nd G 1345 1 2[5 1 2
2 3 45 1 2345 1|3 45
6 7 8 1 35 2 4|6 7 8
7 8 6 52 41 3|7 8 6
8 6 7 4135 2|8 6 7
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And finally

6 7 8 4 5[1 2 3
7 82 3 6(4 51
8516 712 3 4
3 4678|512
L= 2 6 78 113 45
1 352 46 7 8
52 41 3|7 8 6
4 1 35 2|8 6 7

which is a latin square of order 8 on Z, uz_ ={1,2,...,8}.

2

Remark., Note that it is by no means required that the projection of transversals
on the rows and columns should have the same ordering. Indeed, for the fixed

set of ordered n, transversals, we have n choices of projections on columns

!
2 2
and nZ! choices of projections on the rows. Hence we can generate at least

2
(nzl) different latin squares of order n = n, + n, composing L

1 2 and L‘2 o

1
XIII. 4, Construction of O(n,2) Sets by Method of Sum Composition. In order

In order to construct an O(n, 2) set for n = n, +n,, we require that n

| -
there should exist an O(nZ,Z) set, and an O(nl,Z) set with 2n

>2n and

1 2

2 parallel

transversals, It is easy to show that any n > 10 can be decomposed in at least

one way into n1 + n, which fulfill the above requirements. We now present two

theorems which state that for certain n one can construct an O(n,2) set by the
method of sum composition,

Theorem XIII. 4,1. Let rx1 = pa > 7 for any odd prime p and positive integer

a, excluding n = 13, Then there exists an O(n,2) set which can be constructed

by composition of O(nl,Z) and O(nz,Z) sets for rx‘2 = (nl-l)/Z and

n=n1+n2 .
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We shall first give the method of construction and then a proof that the

constructed set is an O(n,2) set,

Construction. Let B(r) be the nlx n, square with element mi+ arj in its (1,j))

cell, a 0#r in GF(nl), i,j =1,2,...,n Then it is easy to see that

i? aj, 1

{B(1), B(x), B(y)}, ¥ =x-1, X#y, isan Ofn),3) set, Considerthe n cellsin B(l)

with @ + aj = k a fixed element in GF(nl) . Then the corresponding cells in

B(x) and B(y) form a common transversal for the set {B(x), B(y)}. Name this
common transversal by k . It is then obvious that two common transversals k1

and k., k, # k, are parallel and hence {B(x), B(y)} has n, common parallel

2’ 7l 2 .

transversals. Now let {Al’AZ} be any O(n,,2) set, which is knowntoexist on
a set Q non-intersecting with GF(nl) . Forany M\ in GF(nl) we can find

(nl- 1)/2 pairs of distinct elements belonging to GF(nl) such that the sum of
the two elements of each pair is equal to A\ . Let {S} and {T} denote the
collection of the first and the second elements of these (nl- 1)/2 pairs respec-
tively, Note that for a fixed \ the set {S} can be constructed in (nl- 1)(n1- 3)

...l distinct ways., Now fix \ and let L1 denote any of the (nz! )2 latin

squares that can be generated by the sum composition of L(x) and A, using

1

elements of {S}. Let L., be the latin square

transversals determined by the n 2

2

derived from the composition of L(y) and AZ using the n, transversals de-

termined by the elements of {T} and the following projection rule: Project trans-

versals t, i=1,2,..,. yN, on the row (column) which upon superposition of

1’

L2 on L1 this row (column) should coincide with the row (column) derived from

the projection of the transversal A-t shortly we shall prove that { LI,LZ}

1.
forms on O(n,2) set,
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The preceding arguments shows that {Ll’LZ} can be constructed non-
isomorphically in at least (nl-3)(n2! )Z[nl(nl-l)(nl-3). ..1l] ways. For instance
in the case of n, = 7, there is at least 12096 non=-isomorphic pairs of ortho-
gonal latin squares of order 10, Therefore, Euler has been wrong in his con-

jecture by a very wide margin,

Note that we can construct infinitely many pairs of orthogonal latin squares

of order 4t + 2 by the method of theorem XIII, 4.1, For p=7 mod 8 and o« odd

pa=(8t+5)/3 . Hence n1+n2=4t+2.

Proof: The constructional procedure clearly reveals that:

A, Ll and L2 are latin squares of order n on GF(nl) Uq.

B. Upon superposition of Ll on LZ the following are true:

bl’ Every element of Q appears with every other element of @,

bZ' Every element of Q appears with every element of GF(nl) c

b3. Every element of GP(nl) appears with every element of Q.

Therefore, all we have to prove is that every element of GP(nl) appears with
every other element of GF(nl) . To prove this recall that B(x) is orthogonal to

B(y) . However, since we removed the n_ transversals from B(x) determined

2

by the n_, elements of {S} and n_, transversals from B(y) determined by the

2 2

n, elements of {T} therefore the following 2n

2 pairs have been lost,

2"

(xozi + aj, ya, + aj) with o, + a; =y for any vye GF(nl), Y# N\,

i
We claim that the given projection rules guarantee the capture of these lost pairs

by the ann1 bordered cells, To show this note that the superposition of the
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projected transversal s from B(x) on the projected transversal t = A =s from

B(y) will capture the n, pairs

1

(xai + aj, yai+ aj) witn @ + aj =k = [y(\=s) + S]/(H Y)

if these transversals have beer projected on row border and the nl pairs

(xa, + @, o + aj) with a, + = =k = [s(y=1) + (s=\)(x-1)] /(y=x)

i i

if these transversals have been projected on column border, Now because

k +k' =X\ andif slaé s, then klaék2 and klatkz hence the 2n2nl pairs

which have been resulted from the projection of transversals determined by {S}

and {T} will jointly capture the 2n lost pairs and thus a proof.

2"
We shall now clarify the above constructional procedure by an example,

Example, Let n = 7, GF(7) = {0,1,2,...,6}. Thenfor x = 2,y = xml = 4

we have

{B(1), B(2), B(4)} =

012 3456 0123456 0123456
1 234560 2 345601 4560123
2 345601 4 560123 1 234560
345601 2 6 01 2 3 45 56 0123 4
4560123 1234560 2 34560 1
5 6 012 34 345601 2 6 012 3 45
6 01 23 45 5 6 01234 345601 2

For n2=(n1-1)/2=3let 2, = {7,8,9} and
789 789

{A,AZ}-897,978. Finally for x» =0, {S}= {1,2,3} and
9 78 89 7

{T} = {6,5,4} weh

ave {Ll’ LZ} =
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078 9 45¢6[{1 23 01237809I|65 4
78956011234 456789 3|210
8 9 6 01 27|13 4 5 1 27 89 60]5 43
9 01 2 378|456 57892 34|l 06
1 23 4789|560 7895¢6011}4 32
345 7 89 2|6 01 8 912 3 41710 6 5
5 6 789 3401 2 9 45607 83 21
21 0 65 4 3]7 89 30 4 s Z6lIF 8r
4 32106 5|89 7 6 30415 2|9 7 8
6 54 32 10/978 26304151897
the reader can easily verify that {Ll’ LZ} is an 0O(l10,2) set,

Remarks.

1) The method of theorem XIII, 4,1 fails for nl = 13 only because there is no

O(6,2) set, Otherwise, there will be no orthogonality contradiction on the other

parts of L1 and L2 with their 6 X 6 lower right square missing,

2) In the case of n, = 7, ifwelet {S}= {0,1,3} and {T} = {2,4,5} thenthe
requirement y = X = is not necessary, However then we do not have a unified

projection rule for the formation of L, as was provided for the case y = x ° by

2
theorem XIII. 4.1, To give the complete list of solutions let (al,az,a3) and

(b),b,,b;) be any two permutations of the set {8,9,10}. If we project trans-

versals (0,1, 3) on the rows (al,a 2,a3) and columns (bl’bz’b3) in the forma-

tion of L then the following table indicates what permutation of transversals

1’
{2,4,5} should be projected on the rows (al,az,a3) and columns (bl,bz,b3)

in the formation of L Obviously these permutations will be a function of the

2 .
pair (x,y) .
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Pair Rows Columns
(x,v) al,az,a3 bl’bz’b3
(2,3) 4,2, 5 4,2,5
(2,3) 2,5, 4 2,5, 4
(2,4) 2,5, 4 4,2, 5
(2,5) 4,2, 5 4,2, 5
(2,6) 2,5, 4 2,5, 4
(3,4) 2,5, 4 2,5, 4
(3,5) 2,5, 4 4,'2, 5
(3,5) 4,2, 5 5, &, 2
(3,5) 4,2, 5 2,5, 4
(3,5) 5, 4, 2 2,5, 4
(3,6) 4,2, 5 2, 5, 4
(3,6) 5, 4, 2 4, 2,5
(4,5) 2,5, 4 2, 5, 4
(4,6) 5, 4, 2 4, 2,5
(4,6) g S 2, 5, 4
(4,6) 5, 4, 2 5, 4, 2

(This table is by no means exhaustive, )
The reader may note that whenever y = x-1 in the above table the given
solution(s) are different from the one provided by the method of theorem XIII. 4. 1.
Thus we can conclude that any pair of orthogonal latin squares of order 7

based on the GF(7, can be composed with a pair of orthogonal latin squares of
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order 3 and make a pair of orthogonal latin squares of order 10 ., In addition,
since we have six choices for (al,az,a3) and (bl’bz’b3) hence from every

line in the above table we can produce 36 non-isomorphic O(10,2) sets or

16 X 36 = 576 sets for the entire table. Since all these pairs are non-isomorphic
with all previous pairs, produced by theorem XIII. 4.1, thus by the method of sum
composition one can at least produce 12,672 non-isomorphic O(10,2) sets,

We believe that for other values of n there are sets of {S} and {T}

together with proper projections which makes the restriction y = X ~ unnecessary.

Theorem XIII, 4.2, Let n, = 2” > 8 for any positive integer « . Then there

exists an O(n,2) set which can be constructed by composition of O(nl,Z)

and Of(n,,2) sets for fig = nl/Z and n = n +n, .

We shall here give only the method of construction. A similar argument
as in theorem XIII. 4.1 will show that the constructed set is an O(n,2) set.
Construction., In a similar fashion as in theorem XIII. 4.1 construct the set
(B(1), B(x), B(y)} over GF(2%). Let also {A/,A,} beany Ofn,,2) set, which
always exists, on a set  non-intersecting with GF(ZQ) . Forany \ # 0 in
GF(Z“) we can find nl/Z pairs of distinct elements belonging to GF(ZQ) such
that the sum of the two elements of each pair is equalto \ . Let {S} and {T}
denote the collection of the first and the second elements of these nl/Z rairs
respectively. Note that for a fixed A the set {S} can be constructed in

nl(nl-Z)(nl-4). ..l distinct ways. Now form L from the sum composition of B(x)

1

and Al and L, from the sum composition of B(y) and A

5 using the same pro-

2
jection rule as given in theorem XIII, 4.1, Now {Ll’LZ} is an O(n,2) set.
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{0,1,2,...,7} with the following addition (+)

GF(8)

Let n =8,

Example.

and multiplication (X ) tables:

~MC ~ N O
LCIOC O~~~ N™ T
o O~ —~ N O P
ot or~—~aum
MO "y N O I~ —
NIO g on 0 O~ —
O — N 0O~
Ol ocoocoocoo
X|lo—~ o 0o~
~een e O - O
SloNnn—u0o~mo @
njfnnr~ T O NO M~
Pl YN —~ O N~ O
Nt~ —~ 0NN
NN O~ P -
~— oV T N~ G
ol ~ N » ¥ v O~
+lOo—~ & T O ™~

= 7 we have

1

Thenfor x = 2, y = X

{B(l}, B(2), B(7)} =

2 3 45 67 01 2 3 4567
2 6 07 5 4 75 3 26

1

0

34567
4

26075 4

4

1

3

1

3 725

6

6 5 2 1 06 43725
1 0 276 2 6 07 5 41
5746 20 3

6

34701
4

3

1

3
6 5 2
0 27 6

5

3

6 5 2
002 7 6
57 46 2 0 3

1

3470
4 3 5

347 01

4 3 5

1

1

1

57 30 4

1

2

1

1

57 4 6 2 0 3
6

4 0

1

753 26

6214 7 3 0 4

7581206

5 7 30 4

1

2

0 6 4 3725

1

4 0

1

{A,B,C,D} and

For n, = nl/Z = 4 et Q

QO

<O N0

(a,A,}

= {5,7,6,2} we have {Ll’LZ}::

{0’1’3’4} and {T}

{s}

Finally for N = 5,
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Cllal =N, |
) ™ =t \D
N O wn 3
1637
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O =t~
O N3

which is an O(l12,2) set,
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Discussion, The necessary requirements for the construction of an O(n,t) set,

n=n +n

1 29 t < n,» by the method of sum composition are: The existence of an

O(nl,t) set, nl_>_ tn,, with at least tn2 common parallel tranéversals, and an

O(nz,t) set, These conditions are obviously satisfied whenever ny and n2

are prime powers,

While for some values of n there exists only a unique decomposition ful-
filling the above requirements, for infinitely many other values of n there are
abundant such decompositions.

It seems that if there exists an O(n2,2) setand if n = n, + n,, n 22n

l

then one can construct an O(n,2) set by the method of sum composition if n

2

1
is a prime power, To support this observation and shed some more light on the

method of sum composition we present in subsequent pages some highlights of the
results which we hope to complete and submit for publication shortly.,

In the following for each given decomposition of n we exhibit an O(n,2)
set which has been derived by the method of sum composition, We shall represent
the pairs in a form that the curious reader can easily reconstruct the original sets.

Hereafter the notation L, 1L, means that L is orthogonal to L

1 2 1 2
1) 12=9+3

ABC4567809|123 123456A8BC|897
BCA123456|978 978312BCA|645
CAB789123|564 $64897CAB|l123
231564ABC|897 645ABC312(789
897231BCAj456 231BCABY97/564
564897 CABj{312 n 789CAB4LS56|312
312ABC978l645 ABC231564/978
978BCA645/231 BCA78:123§§§
645 CAB312{789 CAB G645 97

159672834/ABC 492573681|aBC
726348591|BCA 3571682409|CAB
483915267|CAB 8169247 35|BCA
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the only decomposition which fulfills the necessary require-

14 = 11 + 3,

2)

ments,

8/4073m62951.CBA
M62951814073BAC
95186.073M62ACB
C76.196308A32m5
BC30852VU.7/4A961
ABCW7A.19630528
7ABC630852m1914
63ABC2m71419850
52mA3C96308417
4116ABC52m7083
o D e o Y e S o
2m7419ABC85306
1963085ABCI4m72
0852m741ABCG39
-4
2839A.m50617CAB
1728394m506BCA
061728394M5ABC
mABC5186.073629
95ABCO73m6218/4
8/40ABC6295173m
73M6ABC1840295
62951ABC73m8140
N - ® 3O~ <@ O N Rag W
14073m62ABC8951
3m629518ABC407
O om =20~ o0 O ERE e N
BCA.073m629A518
A30m62951814073

15 =12 + 3, 15 = 11 + 4 are the only decompositions which fulfill the neces-

3)

However, we consider here the latter decomposition since

sary requirements,

we can utilize the properties of Galois field GF(il).

_95_

#1030



..96_

v~-—c~oonsconn~n<0n
mnwwn~oomsconn<
oomseonwwn-qnodn
wwn.—aoomscandnno
snoo~:~~<ponncwm
ncsmooﬁNQQDQmNn
oaacsmoo-actnNnvsn
nonnmcsmoo<v~w-—a~
<n0nwn0~csno~o~ov~
nc:anUannmesono-a
¢3<nonn~anao-‘no
no¢<nun-—at~~¢>nv~go
anmctnonoo-angoen
~v~an<nono~o¢ma3
ooﬁnNcoctnonnasnc
-t
ncnowooc:\go_.nnond
N MmN OO O O < m
ﬁNncmONnoSon<nU
o~~ncnov~ac«3<non
3<QDGO~ONcom~mnv~
mo<non3—annv~ﬂ~1~oa
as~<nono~eonmhm
hmo~<non~nnc~oa3
ows—anacpuneaennao
mnooeas-rctnunnoeosﬁ
ccwsﬁnnc:nonhmoﬂ
QIANOON\?\D<ﬂUQSHn
oaows~nnv~<nmo~c
nunnmo~coa<2~nn
<non¢>3~nmv~oo~c~b

#1030



O o
[} (-] a
a Y- L 4 N
Q i - )
m
S 4 ™~ (=}
b O N
-y o "a} (=] [} (12} () S 4 (-} M~ N
m O a -] L N ~ o~ o L M - D
-t =] ]
. m (8] N < ~N ~
° (2] a ["a] ™~ (3 o ~
E; =)
o .: N O
A QO o
o <
O [ g} (-] @ N (32 ] [ N O < Q O
o m
| [-,] [ <] o (=] ["g] o
[}
[0} . O a =) L] o~ ~ o~ a
™ P ] -} () o [ 2] m o ~N M~ N
- o ™~ N Q
[—‘ (&) a N < (-] d O d (22} o < (g ™~ ~
["a] o
-] [ O - (3] [} o w o N

#1030
Sol=




A B CDE 910112 01 2|4 6 7 8 5
A B CDE 2 3 4 5 67 8 91012 0 111

01 2 3 45 6 A B CDEI112{7 91011 8
B CDE 8 9101112 0 1 2 A|3 5 6 7 4

7 8 9101112 A B C D E 5 6|0 2 3 4 1
1 2 3 45 A B CDEI1NI12 0/6 8 910 7

8 91011 A B CDE 4 5 6 71121 2 3 0
2 3 4 A B CDUEIWI1112 0 1|5 7 8 9 6
910 A B C D E 3 4 5 6 7 811 0 1 212
C DE1 2 3 4 5 6 7 8 A B|91112 010

D E 7 8 9101112 01 A B C|2 4 5 6 3
E 01 2 3 45 6 7 A B CD|8101112 9

6 7 8 9101112 0 A B C D E|1 3 4 5 2
512 6 0 7 1 8 2 9 310 411|Cc D E A B
11 512 6 0 7 1 8 2 9 310 4|B C D E A

411 512 6 0 7 1 8 2 9 310/A B C D E
12 6 0 7 1 8 2 9 310 411 5(E A B C D

10 411 512 6 0 7 1 8 2 9 3|D E A B C

Therefore, the following O(18,2) set is constructed
3

b

3 4 5 6 7

E 9101112 0 1 2 3 A B C D|4 5 6 7 8
101112 0 1 2 3 4 A B C D E|5 6 7 8 9

n
~

set with 6 common transversals corresponding to the O(l15,3) set in section V can be combined
from the decomposition 18 =13 + 5,
i

5) We do not know if an O(14,2) set with 8 common parallel transversals exists or if an O(15,2)

with an O(3,2) set to form an O(18,2) set.
A B CDE S5 67 8 910112{0 1 2 3 4
B CDE 6 7 8 9101112 0 A|l 2 3 4 5
C DE 7 8 9101112 0 1 A B|[2 3 4 5 6
1 2 3 45 6 A B CDEI112 0/7 8 910
345 6 7 A B CDEUO1l 2|8 9101112
5 67 8 AB CDE1l 2 3 4(9101112 O
7 8 9 AB CDE 2 3 45 6101112 0 1
910 A B C DE 3 45 6 7 8j1112 0 1 2
11 A B CDE 4 5 6 7 8 91012 0 1 2 3
0121110 9 8 7 6 5 4 3 2 1/]A B C D E
21 0121110 9 8 7 6 5 4 3|/B C D E A
4 3 21 0121110 9 8 7 6 5! D E A B
6 5 4 3 210121110 9 8 7{D E A B C
8 7 6 54 3 21 0121110 9/E A B C D

D E 8 9101112 0 1 2 A B

12 0 1 2 3 4 5 A B CDEILL|6 7 8 910
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Therefore, the following 0(22,2)

We do not know if an O(15,2) set with 14 common parallel transversals
22 =19 + 3,

corresponding to the O(l5,3) set in section V can be combined with an
O(7,2) set to form an O(22,2) set or if there exists an O(18,2) set

with 8 common parallel transversals.
sets are derived from the decompositions 22 =19 + 3 and 22 =17 +5 ,

a:
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22 =17 + 5,
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XIV. Computer Construction of O(l10, t) Sets

In about fifteen years the effectiveness of computers in searching for
orthogonal sets of latin squares of order ten has increased strikingly. Still
the problem is so large that there seems to be little reason for optimism that the
order ten problem can be completed by computers. Mecre precisely, if (as most
conversant with the problem consider quite plausible) no O(10,3) set of
orthogonal latin squares of order ten exists, then the number of cases to con-
sider scems too large for an exhaustive proof by computer to be achievable, The
number of latin squares of order ten is astronomical,

About 1953 Paige and Tompkins [1960] programmed SWAC to search for
squares orthogonal to a fixed latin square of order tan. A few hours of running
produced no orthogonal square, and was regarded as a bit of experimental evi-
dence for the truth of Euler's conjecture. Calculations based on the progress
made in the search led to the extrapolation thatover fifty million years of computer
time would be required to search for all squares orthogonal to a latin square of
order ten put into SWAC intially. (At about the same time a similar program was
written and similar results obtained with MANIAC at Los Alamos; this attempt
has not been reported in print.)

In 1959, after Euler's conjecture had been disproved for all orders
4L + 2 > 6, Parker programmed UNIVAC 1206 to search for squares orthogonal
to a latin square of order ten., The running time was sharply less than for SWAC
or MANIAC, about thirty minutes for the majority of latin squares, This was

accomplished by generating and storing all transversals of the input latin square,
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then searching tor all ways to form latin squares from the list of transversals.
(A transversal, or directrix, is a set of cells of a latin square, one in each row,
one in each cclumn, and one containing each digit,) The striking gain in speed
over the earlier efforts occurred largely because the number of transversals of

a typical latin square of order ten is roughly 850, much less than 10! ; and,
of course, the search was several levels deep. (SWAC and MANIAC were pro=
grammed to build up starts of latin squares toward orthogonal mates by filling in
cells to form rows,)

There were two main outcomes from considerable running of Parker's 1206
program: 1) O(l10,3) sets of latin squares are not numerous; more precisely,
only a small fraction, if any, order ten squares could possibly extend to O(l0, 3)
sets, Some 400 latin squares were run. Some were random, some were com=-
puter output fed back as input and hence known to have an orthogonal mate, and
some were considered interesting candidates for intuitive reasons by Parker and
others. Not once did an exhaustive search for orthogonal mates of an input latin
square discover a pair orthogonal to one another. Mild evidence may be claimed
supporting the opinion that no O(l0,3) set exists, 2) Of a computer-generated
sample of 100 random latin squares of order ten (program by R. T. Ostrowski),
62 have orthogonal mates. Thus, unlike O(l10,3) sets, O(l0,2) sets of squares
are quite common. Euler's intuition for order ten was not only wrong, but in this
sense wrong by a large margin. It was this finding which tempted Parker for a
time to believe that repeated runs of the program should have a good chance of

producing at an O(l0,3) set, but many failures dimmed this optimism,
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In 1967 John W, Brown programmed IBM 7094 to decide whether an input
latin square of order ten can be extended to an O(l10,3) set. The running time
was one half minute, Almost needless to say, transversals again were generated.
Searching for patterns of transversals toward extension to an O(10,3) set pro-
duced a speed gain over the previous program for orthogonal pairs. Brown
endeavored to get every drop of speed from the machine. As before, hundreds

of input order-ten latin squares produced no O(i0, 3) set,
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XV. On the Equivalence of O(n,t) Sets With Other Combinatorial Systems

XV, 0, Summary

In this section we have densely summarized some of the results obtained
by author and at least fourteen others in order to demonstrate the importance of
the theory of mutually orthogonal latin squares., We have shown that fourteen
well=known and important combinatorial systems with certain parameters are
actually equivalent to a set of mutually orthogonal latin squares. A schematic
representation of these equivalences has been demonstrated in four wheels which
we have called "Fundamental Wheels of Combinatorial Mathematics",
XV.1. Introduction

The theory of mutually orthogonal latin squares owes its importance to the
fact that many well-known combinatorial systems are actually equivalent to a
set of mutually orthogonal latin squares; viz,, finite projective plane, finite
Euclidean plane, net, BIB, PBIB, orthogonal arrays, a set of mutually orthogonal
matrices, error correcting codes, strongly regular graphs, complete graphs, a
balanced set of f-restrictional lattice designs, difference sets, Hadamard
matrices, and an arrangement of non attacking rooks on hyperdimensional chess
board. These combinatorial systems are unquestionably potent and effective in
all branches of combinatorial mathematics, and in particular, in the construction
of experimental designs. Therefore, a statement that the theory of mutually

orthogonal latin squares is perhaps the most impo't"tant theory in the field of

experiment designs is not in the least exaggerated as far as this author is con-

cerned.
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Our purpose in this section is to demonstrate the relation of a set of
mutually orthogonal latin squares with the above mentioned combinatorial systems.
We shall present the essence of the known results available only in scattered
literature in one theorem which we consider to be a "fundamental theorem of
combinatorial mathematics". For the definitions of these combinatorial systems
and the proof of the forthcoming theorem see the list of references given at the
end of this paper,

XV. 2, Notation

For the sake of conciseness we introduce the following notations:

0) Of(n,t) denotes a set of t mutually orthogonal latin squares of order
n .

1) MOM(n,t) denotes a set of t mutually orthogonal n X n matrices,

2) OA(n,t) denotes a set of orthogonal arrays of size nz, depth t, n
levels, and strength 2,

3) Net(n,t) denotes a net of order n and degree t .,

4) Code(n,r,t;m) denotes a set of n code words each of length r such
that any two code words are at least at Hamming distance >t on an
m-set Z with m distinct elements. W= remind the reader that such
a code is also called (t-l)=error detecting code or (t=1)/2=error cor=
recting code because such a code is capable of detecting up to t=-1
errors and correct up to (t-l)/2 errors in each transmitted code word,

5) PBIB(b,v,r,k,xl,xz) denotes a partially balanced incomplete block
design with b blocks each of size k, v treatments with r replication

of each, and association indices xl and )\2 8
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6) SR-Graph (A) denotes the strongly regular graph with incidence
matrix A,

7) Non #(n,t) denotes an arrangement of n mutually non attacking
rooks on the t-dimensional n X n chess board.

8) PG(2,s) denotes a finite projective plane of order s (not necessarily
Desarguesian),

9) ¢€(2,s) denotes a finite Euclidean plane of order s

10) BIB(b,v,r,k,\) denotes a balanced incomplete block design with b
blocks each of size k, v treatments with r replications of each, and
association index \ ,

11) K-Graph (A) denotes the complete graph with incidence matrix A .

12) DIF(v,k,\) denotes a difference set with parameters v, k, and \ .

13) BLRL(s) denotes a balanced set of f-restrictional lattice design for
s treatments. Note that a l-restrictional balanced lattice design is
simply a BIB design.

14) HAD(n) denotes a symmetric normalized Hadamard matrix of order n .

Hereafter we also adopt the following two notations:

i) A <=>B means A implies B and B implies A ,

ii) A =>B means A implies B . Whetheror not B implies A is

unstated.
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XV. 3. The Result

Theorem

(a) For any pair of positive integers n and t we have:

1) O(n,t) => MOM(n,t+2)

2) O(n,t) <> OA(n,t+2)

3) O(n,t) < Net(n,t+2)

4) O(n,t) <= Code(nz,t+2, t+l;n)

5) Of(n,t) = PBIB(nZ,n(t+2),n,t+2,O,l)

6) O(n,t) <=> SR-Graph (A) where A is the incidence matrix associated

with PBIB in 5),
7) O(n,t) <= Non #(n°,n'*?).
(b) If t=n-1 then also:
8) O(n,n-1) <= PG(2,n)
9) O(n,n-l) <= £(2,n)
10) O(n,n=-]) <= BIB(n2+n+l, n2+n+l, n+l, n+l,1)

2
11) O(n,n-=1) <= Code(n +n+l,n2+n+l, 2n;2)

12) O(n,n-l1) <==> K-Graph (A) where A is the incidence

matrix associated with BIB in 10)

2
13) O(n,n-1) <=> DIF(n"+n+l, n+l,1)

(¢) If n= pm where p is a prime and m is a positive integer then also the

following:

14) o(p™,p"=1) <=> BLRL(p™) .
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(d) If n=2r and t = r=2, r >3 then the following are also true;

15) O(2r,r-2) =-—.>HAD(4r2)
16) O(ér,r-2) =-=>BIB(41'2 -1, 4r2-1, Zrz-l, Zrz-l, rz-l)

17) O(er,r-2) == Code(4r2-l, 4r2-1, ZrZ;Z)

18) O(2r,r-2) = Code(8r2, 4r2, 2r2;2)

19) O(er,r-2) = DIF(4r2-1, 21’2-1, rz-l) .

A complete schematic representation of this theorem can be demonstrated
in four wheels which will be called "fundamental wheels of combinatorial mathe-
matics". For the sake of compactness we shall omit the associated parameters
with each system in these wheels except for O(n,t) . By knowing the values
of n and t in the given O(n,t) sets,then the reader can easily find the
associated parameters with other systems in the wheels from the proper part of

the above theorem.
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For any positive integer n ,

Wheel 2,
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For any prime P and positjve integer m ,
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Wheel 4, For any positive integer r > 3 ,

(see also wheel 1)
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