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ANTENSA OPTIMIZATION CRITERIA

David K. Cheng

ABSTRACT
This is the final report for Contract No. F30602-68-C-0067 (ARPA
Order No. 1010) monitored by the Rome Air Development Center. The effec-
tive period of this Contract was from 22 September 1969 to 22 March 1971,
l'our techinical reports have been issued on the results obtained
under this Contract. They are:

(1) Tech. Rpt. No. 1: "Spacing Perturbation Techniques for Array
Optimization," RADC-TR-68-19, November 1967.

{2) Tech. Rpt. No. 2: "Array Optimization Criteria," RADC-TR-68-579,
November 1968.

(3) Tech. Rpt. No. 3: "Beam Synthesis Techniques for Large Circular
Arrays with Many Directive Elements," RADC-TR-69-411, October 196Y.

(4) Tech. Rpt. No. 4: "Sidelobe-Reduction and Interference-Suppression
Techniques for Phased Arrays Using Digital Phase Shiiters,"
RADC-TR-70-51, February 1970,

The present report is divided into two parts. Part (A) summaries the
essential optimization techniques for antenna arrays, including a method
which makes only phase adjustments. Part (B) presents a new integral-
equation approach for optimizing arrays with mutual coupling. This
approach is particularly advantageous when an array contains many long

dipole elements,
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PART (A). OPTIMIZATION TECHNIQUES FOR ANTENNA ARRAYS

1. INTRODUCTION

An antenna is an essential part of any electronic system which transmits
or receives electromagnetic energy in a wireless fashion. Without an antenna,
electromagnetic energy will be localized, and interaction at a distance be-
tween unconnected points in space does not occur. An antenna can be considered
as a transducer which converts electromagnetic waves in space to current or
voltage variations in a circuit, or vice versa. It must be an efficient radi-
ator (or collector) of electromagnetic energy, and it should direct the energy
to certain desired directions and suppress it in other specified directions.
Thus, one must be concerned not only with the conversion efficiency of an an-
tenna, but also with its spatial response, or radiation pattern. In an en-
vironment which does not involve nonlinear media, a reciprocity relation holds
such that the properties (pattern, gain, impedance) of an antenna used for re-
ceiving are identical with those when it is transmitting. For simplicity we
shall then refer all discussions to radiation properties.

A radiating element of electromagnetic energy may take many different
forms. It may be a piece of conducting wire, a dielectric rod, a metallic
horn, or a slot on the side of a waveguide. The radiation pattern of a
single element is fixed for a given frequency of excitation and contains, in
general, a main beam and a number of smaller sidelobes. In practical appli-
cations there is quite often a need for either improving the directive properties
or controlling the sidelobe structure of the radiation pattern. Two methods are
available for this purpose: one method is to use an appropriately shaped re-

flector or lens fed by a radiating element, and the other is to ¢mploy a



number of radiating elements properly arranged in space to form an antenna
array. When it is necessary to steer (scan) the main beam of the radiation
pattern, the requisite motion of heavy reflector-or lens-type antennas en-
tails both mechanical and structural problems. Moreover, the possible rate
of scan is severely limited. On the other hand, beam-steering for an antenna
array can be accomplished electronically by sdjusting the relative phage of
excitation in the arraey elements with no need for mechanical motion, result-
ing in a phased array. We shall concern ourselves only with phased array
antennas in this report.

The radiation pattern of an array antenna obviously depends on both the
array geometry and the pattern of the individual array elements Aside from
such circuit properties as impedance and efficiency, the parameters which
characterize antenna performance are all based on the shape of the radiation
pattern. Performance optimization then is a procedure for the maximization or
minimization of certain measures on the radiation pattern. One well-known re-
sult in this regard is the Chebyshev array which makes use of the properties
of Chebyshev-Akhiezer polynomials [1}, [2). A Chebyshev array is optimum in
the sense that for a specified sidelobe level the width of the main beam of
its radiation pattern is a minimum. Conversely, for a specified beamwidth
all the sidelobes of a Chebyshev array are of equal height and are at a lowest
level The o-iginal Chebyshev design considered by Dolph {l) was limited to
linear broadside arrays of isotropic elements uniformly spaced at a distance
equal to or larger than a half-wavelength. It has since been extended in

various ways (see, for instance, [3]). Recently methods for determining the



current distribution, the minimum required number of controlled elements,
and other properties of optimum rectangular arrays with a steerable main
beam and constant sidelobes have been formulated [4,17].

Besides the beamwidth-sidelobe relationship, an important performance
index for any antenna is its directive gain, or directivity Directivity is
defined as the ratio of the radiation intensity (radiated power per unit
solid angle) in the direction of the main beam to the average radiation
intensity. To put it another way, the directivity of an antenna or an array
is the ratio of its maximum radiation intensity to the radiation intensity
of an isotropic (omnidirectional) source* radiating the same total power.

It measures the ability of concentrating the radiated energy in the main-
beam direction. Our attention in this report will be directed toward the
various techniques for maximizing the directivity of antenna arrays.

The performance of an antenna system as a receiving device is often
constrained by the presence of a spatially distributed background noise as
well as by the noise generated in the receiving system. A useful perfor-
mance index of a receiving array is the signal-to-noise power ratio (SNR)
at the system output. The problem of finding the complex weighting fac-
tors of the individual array elements such that the SNR is maximized for a
signal coming from a given direction and a noise of a given power spectral

density and a given spatial distribution is of considerable importance. It

*
It should be noted that an isotropic source radiating uniformly in all
directions is physically unrealizable for vector fields.



can be shown [5,6] that techniques similar to those for the maximization of
directivity are applicable for SNR maximization. The formulation becomes

more involved when the element space-frequency response, the signal power
spectral density, the internal noise power spectral density, the spatial noise
cross-power spectral density, and the receiver or filter frequency response are
to be considered [7]. We shall not attempt to discuss the more general case in
this report.

The problem of maximizing the directivity of a linear array with equally
spaced isotropic elements was first studied by Uzkov in 1946 [8]. He demon-
strated that the maximum obtainable directivity for an array with N elements
spaced at a half-wavelength (A/2) apart is N and that it tends to N2 as the
spacings approach zero. Bloch, Medhurst and Pool [9] examined the maximum
directivity of a linear array of half-wave dipoles from the point of view of
self and mutual resistances of the elements., Gain optimization under a speci-
fied constraint was investigated by Uzsoky and Solymar [10], and Lo, Lee and
Lee [5]. In 1964 Tai [11] published many interesting curves showing the opti-
mum directivity of various types of uniformly spaced broadside arrays, linear
arrays with maximum radiation in the direction of the array normal. The
optimization problem was generalized by Cheng and Tseng [12], [13] to include
arrays of non-isotropic elements arranged in an arbitrary configuration with
a main beam pointing at an arbitrary direction. By making use of a theorem on
the properties of a ratio of two Hermitian forms in matrix algebra, the optimi-
zation proczdure was formalized in a concise manner. It turned out that

Krupitskii in U.S.S.R. [14] had used the same theorem to prove the existence



and uniqueness of a solution for exciting an array of discrete radiators for
maximum directivity.

In the following we shall first express, in Section II, the directivity
and signal-to-noise power ratio of an array of discrete elements as a ratio
of two Hermitian forms. The optimization principle for a ratio of Hermitian
forms is then reviewed and applied to antenna arrays in Section III, With a
given array configuration where the element positions are not to be changed,
the excitation amplitudes and phases in the array elements can be adjusted
for the optimization of a performance index. If the array has a total of N
elements, the optimization procedure involves the determination of 2N parame-
ters. Typical results for linear and circular arrays will be presented. For
linear arrays the spacings between the array elements represent another con-
venient set of parameters that can be adjusted to improve the performance
index further. A spacing-perturbation technique which can be used in con-
Junction with the adjustments in excitation amplitudes and phases is dis-
cussed in Section IV. This process of excitation and spacing adjustments
may be repeated until the improvement obtained by further adjustments is no
longer significant.

In practice it is perhaps inconvenient to adjust the element spacings.
Even adjustments in excitation amplitudes are difficult and expensive to
make. Techniques for maximizing the directivity of a fixed array by keeping
the amplitudes equal and adjusting the phases only are therefore of interest,.

These techniques are explored in Section V,



The adjustment of the excitation amplitudes, phases, or spacings of
an array in order to achieve a maximum directivity changes the array radi-
ation pattern., In practice it is often desirable to control some aspects
of the array pattern. For example, one may wish to have a maximum direc-
tivity in one direction while requiring a null in certain other directions
in order to minimize interference. The method of optimization under con-
straints is discussed in Section VI.

Initially, as we develop the optimization procedure, we shall assume
that all the elements in an array are identically polarized and have the
same radiation pattern (element pattern). Once the element pattern is
specified, the physical structure of the array elements is no longer
important in our problem, and it is immaterial whether the elements are
dipoles, horns, slots, or other apertures. This assumption neglects the
implications of mutual coupling. For large arrays with many elements this
assumption gives acceptable results, although the element pattern must first
be found. However, for arrays with a small number of closely spaced elements
or in cases where more accurate results are desired, mutual-coupling effects
must be taken into account. Section VII reviews the moment method for opti-
mizing the directivity of arrays of wire antennas without neglecting mutual
coupling. The moment method provides numerical solutions by first converting
the governing integro-differential equations into matrix equations.

Finally, in Section VIII, we discuss various other factors which are

relevant in the optimization of discrete antenna arrays.



I11. GENERAL FORMULATiON

Consider an array of N discrete, similarly oriented, identical elements
arranged arbitrarily in a 3-dimensional space, as shown in Fig. 1. Denoting
the excitation in the nth element located at (rn,en,on) by In exp(jwn), we may

write the array factor for electric field intensity as

N
E(6,¢) = nzl In exp[j(wn + ktn cos an)] 1)
where
cos a = sin 0 sin en cos(¢-¢n) + cos 0 cos 6 (2)

k = 2n/) is the wavenumber, and A is the operating wavelength. Let g(6,¢)

denote the element power-pattern function which is normalized such that

8(0,,0,) = 1 (3)

in the direction (eo.¢°) of the main beam. The directivity of the array

is then
Radiation intensity in direction (eo,oo)
D= Average radiation intensity
2
] |EC8 »0,) . “

2m n '

ZI;J d¢ ( |1~:(e,¢)|2 g(6,¢) sin 0d"

4

0 0

We now define two N-element column vectors J and fo' with J repre-

senting the set of complex element excitation functions:

-7-



I1 exp(jwl)

198 exp(jwz)
J = [Jnl = . (5)

I, exp(dyy)

=3 -

and Eo representing the set of phase factors due to differences in distance:

rexp(-jkr1 cos ay,) ]

exp(-jkr2 cos 002)
Fo= [F )= ' (6)

exp(-jktN cos QON) ’

- -

where cos a__(n=1,2,...,N) is obtained from (2) by setting 0 = eo and

on(
b = @o. From (1), (4), (5) and (6) it is readily verified that the direc-

tivity can be written as

14y
Do — (1)
1783

where + on a matrix indicates the adjoint, or the conjugate transpose, of

the matrix. A and B are N by N square matrices defined as

A= [amn] - Eo go (8
and
= \
B [bmn] (9)
with
27 n
1| ’
bmn o G J d¢ J g(8,%) eXP[-jk(tmcos o =T cos an)] sin 06d9 (10)
0 0



It is obvious that matrices A and B are both Hermitiar, i.e., éf = A

~

&L

® *
(anm = amn)’ and B' = B (bmn = hmn). Hence D in (7) is a ratio of two Hermitian

forms.1 In addition, B is positive-definite, which implies that for any J ¥ Q.
.,.

J'BJ > 0. This is proved in reference [13]. Since the elements of matrices
A and B are known when the array geometry, the operating wavelength and the

scan angle are given, the optimization problem reduces to the determination of
the excitation matrix J such that D in (7) is maximized.

In receiving systems the output signal-to-noise ratio, instead of the
directivity, is of interest. The output SNR may be defined as the ratio of the
power received per unit solid angle in the direction of the signal to the aver-
age nolse power received per unit solid angle. It is only necessary to replace
the power-pattern function g(6,¢) in (4) by a more general weighting function

w(6,¢) which includes the spatial distribution :f noise power. We write

w(0,¢) = g(6,¢) T(6,9) , (11)
where T(6,¢) is the spatial distribution function of noise power. Here we
understand noise to be a combination of interference, clutter, atmospherics,
and random noise. It is cledr that replacing g(6,¢) by w(6,¢) does not change
the nature of the cptimization problem. In fact, the expression for SNR reduces
to that for D when T(6,¢) = 1. We expect a suppression of the sidelobes in the
directions of high noise power for SNR improvement [6]. In the next section

we state the theorem for maximizing D bty adjusting J.

1Sometimes Hermitian forms are written as general inner products; for instance,

. N N *
JIAJ= ] ] J a J =<J, AJ>
7Y melp=p ™ ™MN -

They are quadratic forms in Hilbert space in the variables Jn.

-9-



III. OPTIMIZATION BY EXCITATION ADJUSTMENTS

A theorem in matrix algebra on the properties of a ratio of two Hermitian
forms [15] is useful for the maximization of directivity by excitation adjustments.
It may be stated as follows:

Theorem 1 - If a quantity D is expressible as a ratio of two Hermitian

forms as {n (7) and 1f B is nonsingular and positive definite, then

the largest eigenvalue Ay of the "regular pencil" of matrices A - AB

is the maximum obtainable D when J 1s the eigenvector satisfying the

homogeneous equation

AJ=X BJ . (12)

For our case, the following corollary, proved in [13], makes the optimization
procadure particularly straightforward and simple.

Corollary - If A in (7) 1is expressible in the form of (8), then

(a) the largest and only nonzero eigenvalue of the regular

pencil A - 1B is

T |
= = F1
AM DM Eo B Fo' (13)
and
(b) the elgenvector corresponding to AM is
-1
hm B L, (1)

Equations (13) and (14) sulve the problem of optimization by excitation
adjustments for an arbitrary array. For a given array configuratiom, it
is only necessary to determine the elements of the matrices Eo and B, in

accordance with (6) and (10) respectively.

~-10-



For a linear array with elements located arbitrarily at distances dn

from a reference point,

a = exp[-jk(dn - dm)sin 60] (15)

where 60 denotes the main-beam direction measured from the normal to the

array, and

27 m
1
bmn = E]’-f do J{ g(6,¢) exp[-jk(dn-dm)sin e]de . (16)
0 0

If the array elements are isotropic, g(8,¢) = 1, and are equally spaced,

dn-dm a (n-m)d, (15) and (16) reduce to

[-1
]

exp[jk(m-n)d sin 60] (17
and

b = sin k(m-n)d (18)

mn (m-n)d

As an example, it has been shown [12] that an endfire array with 8
isotropic elements equally spaced at 0,425\ apart has a directivity of 12.5
with a uniform amplitude and cophasal excitation.* Optimization by the above
procedure results in a directivity of 22,0, The amplitude is tapered (center-
to-edge ratio: 1.69) and the phase shift between adjacent elements is roughly

170°. Other examples of linear-array optimization by excitation adjustments

*An excitation is said to be cophasal when the relative phases in the elements
are adjusted such that the contributions of all the elements add in phase in
the main-beam direction. Thus, for an endfire array with 0.425) spacing, the
progressive phases in the neighboring elements differ by 0.425 » 360°or 153°,

-11-



will be given in Section IV when spacing-perturbation techniques are dis-
cussed.,
Besides the linear array, the circular array represents another class
of arrays with a simple geometry and important practical applications. Figure
2 shows a general circular array with nonuniformly spaced elements in the xy-plane.

Substituting o, = /2 in (3), we obtain

cos o = sin 8 cos (¢-¢n) o (19)
Since r,=p =0 for all n, bmn in (10) simplifies to
27 ™
b = f% f d¢ J g(8,9) expl-jkp  cos(¢~¢ ) sin 8} sin 6d6,  (20)
0 0
where
Ppn = 20 |sine -4 )/2| (21)
and

sin ¢m - sin ¢n

¢mn = tan (cos ¢m - cos ¢n) * (22)

For a circular array of N uniformly spaced isotropic elements,

g(e,‘b) = l, ¢n = 2nTT/N, and

P = 20|sin (m-n)n/N| . (23)
We have, from (20),
sin (kp_ )
i o (24)
mn ko
mn

The expressions of bmn for some directive elements with typical power-

pattern functions have also been given [13],

-12-



Figure 3 compares the maximum directivity D, with the directivity

M
Du under a uniform-amplitude and cophasal excitation for a 12-element
circular array as a function of the array diameter. We note that DM is
everywhere higher than Du and that DM increases very rapidly when the

array diameter is less than 2) (a superdirective situation).. Since super-
directive arrays require very large currents of opposite signs in neighbor-
ing elements, resulting in excessive heat loss and very low radiation in-

tensity in the direction of the main beam, it is appropriate to define a

main-beam radiation efficiency n. A practical optimum design then would

be a suitable compromise between D, and n. We define

M

2
. [ECe s ¢

= x 100% . (25)
NZIﬁ
n=l
By the use of Schwarz's inequality, it 1s easy to show that [13] n equals
100% only for uniformly excited cophasal arrays and becomes very small under
superdirective situations. The main-beam radiation efficiency turns out to be
the reciprocal of the tolerance sensitivity used by Uzsoky and Solymar [10] to
measure the mean-square variation of the maximum field with respect to the
mean-square deviation of the excitation. The values of n under the condi-
tions for DM are also plotted in Fig. 3.
It has been pointed out [16] that the optimization problem becomes

easler by applying an orthogonalization process for arrays possessing a cyclic
symmetry. For large circular arrays with many uniformly spaced elements, the

tedium of inverting a large B matrix (in (14)) can be circumvented through the

introduction of a rotational operator [31].

-13-



IV. OPTIMIZATION BY SPACING ADJUSTMENTS

In the preceding section optimization was achieved by adjusting the
excitation amplitudes and phases in the fixed elements of a given array. If
the element positions are also allowed to vary, we acquire an additional
dimension of freedom (which represents an additional N-1 degrees of freedom
for a linear array with N elements), and we expect to be able to improve on
the results obtained by excitation adjustments only. A spacing-perturbation
technique exists which is useful for optimizing the directivity in a given
direction or the signal-to-noise ratio in a given noise environment [6].
This technique will be developed in this section,

Consider a linear array of N identical elements symmetrically located
about the origin along the x-axis. Let (90, ¢°) be the direction of the
main beam, and Inexp(j¢n) and Inexp(-j¢n) be the excitations in the nth and

-nth elements respectively, where
¢ =kdsin 6 cos ¢ +y_ . (26)
n n 0 o n

In (26), dn is the distance of the nth element from the origin, and wn is
the phase shift from cophasal operation. Note that, except for the assumed
symmetry about the origin, there 1s no restriction on element spacings which
may be nonuniform and the elements themselves need not be omnidirectional.

*
If N is odd and equals 2M-1, the array factor is

*
Only very minor modifications are needed when N is even. The formulation
is entirely parallel.

-14-



M

E(u =I +2 ] I cos(du+y) (27)
n=1
where
u = kd(sin 6 cos ¢ - sin eo cos ¢O) (28)
én = dn/d (29)

and d, a normalizing distance, may be any choice of convenience. For ex-
ample, 1f one starts with an equally spaced array, it would be natural to
make d the uniform spacing between neighboring elements. We write the
output signal-to-noise ratio in the direction of the signal (6 = eo, 9= ¢,
u=0) as

|EC0) |
27 m
1 2
HJ d¢ J |E(u)|” w(8,¢) sin 6d6
0 0

SNR = (30)

where w(6,¢) is a weighting function defined in (11). Our problem is to
find the set of normalized element positions {Gn} such that SNR is maxi-
mized for a given set of excitation amplitudes and phases. Note that this
becomes a directivity maximization problem when w(8,¢) = g(6,¢).

Let {63} denote the original normalized element positions, and

én = ég + X (31)

where X represents the spacing perturbation for the nth element and
x << L. Substitution of (31) in (27) yields approximately
M

CwOy Lo O 0
E(u) = E"(u) - 2 nil Inxnu sin(énu + wn) (32)

-15-



where E°(u) is the original, unperturbed array factor with 62 substituted

for Sn in (27). Using (32), we can write (30) in the following form:

o 2
SNR = ——lE{0)

|
a-2x'8+xCx (33
where o .
1 o 2
a == do |[E"(u) | w(e,4) sin 6do (34)
0 0
ﬁ' = [xl.xz, SRR Y xN] (35)

1s the transpose of the column matrix of spacing perturbations x; B is a

column matrix of typical element

rZTr n
1 o
8 = z—n-} dé f I uE® (u)w(6,9)
0 0

o
sin (Gnu + wn) sin 6de; (36)

and C = [Cmn] is an NxN square matrix with

27 1
1 2
Cmn = ;-f d¢ J ImInu w(6,¢)
0 0

sin (6:u + wm) sin (G:u + wn) sin 646 , (37)

It can readily be shown that C is symmetric and positive definite.
Use can then be made of the following theorem which is proved in the

Appendix.
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Theorem 2 - If a quantity SNR can be expressed in terms of an Nxl
real column vector X as in (33), where a is a constant, B is another
Nx1l real column vector, and C is an NxN positive definite, symmetric,

square matrix, then

o 2
Max  SNR = —E-@L1 (38)

(x=%y) 5= 38

and
x =GB, (39)

Equations (38) and (39) give the results of a first-order per-
turbation., After the components of §M have been determined from (39),
one can then use (Eo + fM) as the new normalized element-position column
matrix and perform asecondorder perturbation to obtain further improvement
in the performance index. This process can be repeated until it becomes
evident that further iteration yields a negligible improvement. The final
values of {Gn} determine the element positions for a maximum SNR for the
given excitation. Now this perturbed nonuniformly spaced array can be
further optimized by proper amplifications and phase shifts in the array
elements using the method developed in the preceding section [6]. A
second local maximum will be reached, which may possibly be further im-
proved by holding the excitation unchanged and again perturbing the spacings.
The cycle may be repeated until further adjustments are no longer worthwhile.

We illustrate the application of the above technique with a broadside
array of 7 isotropic elements. It is desired to optimize the array for

maximum SNR in a noise environment, T(u) specified by Fig. 4 with a=15,
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u - (1/4)(2=d/)) and u, = (1/12)(23d/2). The normalizing distance, d,

is chosen to be 0.885) which corresponds to the spacing for maximum direc-
tivity in a uniformly spaced linear arrvay with 7 isotropic elements. The

results for the (a) space-perturbed, (b) excitation-adjusted (by amplifi-

cation), and (c) optimized arrays are listed in Table 1. We note that

large improvements in SNR are possible by optimization through either

Table 1. SNR Optimization for Seven-Element Broadside Array

1 ,2nd 1 ,2nd
TGyt ) 400
R ENE (-2 | (d.-a.02 | (d.-a.)2| sur
0l 14 2] %3 1" %7% 2-%1%% 3”97
Uniform array |1.00/1.00{1.00}/1.00 1.77 1.77 1.77] 16.0
P e T 2ab 0 e 1.65 1.76 2.10 19.8
array
Exc.~-adjusted
perturbed array 1.00/0.8910.67|0.239 same 28 above 78.1
Optimized array |1.00(0.86]0.59}0.40 1.66 1.72 1.74]181.9

spacing perturbation or excitation adjustments, and that the SNR of the
optimized array is about 11.4 times that of the original uniform array.

Of course, the array optimized for a maximum SNR is not the same as the one
for a maximum directivity. The directivity of the SNR-optimized array in
Table 1 (sketched in Fig. 5(a)) is 10.6, whereas a directfvity-optimized

broadside array of 7 isotropic elcments has a directivity of 10.63 {6].
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The radiation patterns of the SNR-optimized array are plotted in Fig. 5(b),
vwhere the spatial distribution of the noise or interference power is also
shown. It is interesting to see that, at the expense of a slightly wider
main beam, the sidelobes of the optimized array are everywhere lower than
those of the uniform array. In particular, the first sidelobe, which
normally occurs in a region where the noise power is high, is much sup-

pressed and its position slightly shifted.
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V. OPTIMIZATION BY PHASE ADJUSTMENTS

In Section 11l we discussed the method for maximizing array directivity
by adjusting the excitation amplitudes and phases in the array clements. Ac-
curate amplitude adjustments require the use of precision amplifiers or attenu-
ators, or specially designed directional couplers. It is hence of both theo-
retical and practical interest to develop a technique for optimizing the
directivity of uniformly excited arrays requiring only phase adjustments. The
elimination of the need for amplitude adjustments would result in a simplified
feed structure and a reduced cost.

Directivity maximization under the constraint of a uniform amplitude
in all the array elements can be formulated by Lagrange multiplier methods in
sceveral ways. However, it was found that the resulting equations were not
amenable to a stable solution even by iterative methods, because of con-
vergence problems. On the other hand, a perturbation procedure similar to
that employed in Section IV for spacing adjustments can be used for the phase-
adjustment problem [18]. The essential steps of this procedure will be
developed in the following.

Consider a linear array of 2M+l symmetrically located, equally spaced,
identical elements, all with the same excitation amplitude I. The array
factor is then, from (27),

M
E(u) = I[1+2 | cos(nu+ vl (40)
n=l
where u is defined in (28) and Yn is the phase shift from cophasal operation.

We may write
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o
Uy = Vgt X (41)

vwhere wz is an assumed initial value and X, << 1l is a small perturvation.
Ordinarily it is convepient to start from a cophasal excitation, {i.e., w:—O.
Substituting (41) in (40), we obtain approximately
M
E(u) = E°(u) - 2I nzl x sin(nu + wg) . (42)

Using (42) in (4), we can express the directivity of the array in the

following form:

1 2
zlE(GO' °0)|
a

D= — 0 (43)
1 - %8 +x¢ x
where
5' = [x_M, veer X_jy Koy Xpy oeeey xM] (44)

and as 91' and 21 are similar to a, 8, and C in (33). ) is ident:.cal

to a in (34), and the elements of 8, and S can be obtained from (36)

1 1
and (37) respectively with I = I = I and the argument (qu + wn) of the
sine functions replaced by (nu + wg). Element power-pattern function
g(9,¢) replaces weighting function w(0,¢) in computing directivity.

It is now obvious that the same Theorem 2, which is proved in the
Appendix and found useful for optimization by spacing adjustments, can be

used for maximizing D in (43) by phase adjustments. The required phase

changes in the array elements are determined from
X =C"8 (45)

which represents a first-order perturbation from the initial values

{wz}. One may then treat {wz + xi} as the new initial values and perform
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a second-order perturbation. This process may be repeated until it is
apparent that a maximum directivity has been obtained.

Although the preceding formulation for optimization by phase adjust-
ments starts with a linear array, it is clear that the procedure can be
applied to an arbitrary three-dimensional array. In particular, for a
circular array of N elements with radius p in the xy-plane, a phase per-
turbation as indicated in (41) results in an array factor

N
E(8,0) = E°(8,¢) = 2I | x sin(a_+ ) (46)

n=1 n
with

A, = kplsin ® cos(¢-¢n) - sin 6 cos(¢o-¢n)] 47)

where o denotes the location of the nth element and (eo,¢o) is the direc-
tion of the main beam. We note that (46) is entirely similar to (42).
Substitution of (46) in (4) will yield a directivity expression in the form
of (43), and hence the same optimization procedure follows. The optimum
directivity, Do’ obtained by phase adjustments only for a circular array
with 12 uniformly spaced short dipoles is plotted in Fig. 6 as a function
of array diameter. In the same figure are also plotted DM the maximum
directivity when both amplitudes and phases are adjusted, and Du’ the
directivity under a uniform-amplitude and cophasal excitation. We note that
the Do curve lies everywhere between the DM and Du curves. For most array
diameters less than 3) (element spacing less than 3A/4) an improvement of
about 2 dB in directivity is possible by phase adjustments alone. When the
array diametar is very small, the directivity of the phase-adjusted array
increases rapidly, indicating a superdirective situation which is absent in a

uniform cophasal array. The main-beam radiation efficiency of a superdirective

arcay tends to be very low, as has been pointed out in Section III.
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VI. OPTIMIZATION WITH CONSTRAINTS

In previous sections we discussed techniques for maximizing the
directivity or the signal-to-noise ratio of an antenna array without con-
straints; that is, without imposing at the sare time a requirement on any
other performance index of the array. We have already seen that a maximum
directivity for an array with closely spaced elements is accompanied by a
low main-beam radiation efficiency. In practice, we may desire that a
maximum directivity be obtained together with a prescribed value for main-
beam radiation efficiency. The existence of constraints cr auxiliary con-
ditions effectively reduces the total number of independent variables which
can be adjusted for optimization. In such cases, a procedure using Lagrange
multipliers can be applied to determine the stationary value of directivity
[19]. This approach has been employed [5]) to maximize signal-to-noise ratio
under a constraint on a Q-factor. The Q-factor is a quantity which is pro-
portional to the ratio of the directivity and the main-beam radiation ef-
ficiency. It turns out that this approach results in a rather involved
numerical procedure. We shall not go into it further here.

A more useful class of optimization problems with constraints per-
tains to the maximization of some performance index while controlling the
array pattern in certain definite ways. For instance, one may wish to have
a maximum directivity in the direction of some distant transmitter or receiver
and, at the same time, to minimize the interference from some other directionms.
This is equivalent to the problem of directivity maximization with controlled

locations of certain pattern nulls, and can be reduced to that of maximizing
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the ratio of two Hermitian forms, as studied in Section III, through the
introduction of a constraint matrix,

The array factor in (1) can be written as the inner product of the
space vector F = [exp(-jkrncos an)] and the excitation vector J defined
in (5); i.e.,

E(8,0) = <E,;> < E'd . (48)

Pattern nulls in the directions (61, ¢i) are specified by homogeneous

equations
+ N
Ei J = nzl Inexp[j(wn + krn cos ain)] =0, (49)

1=1,2,..., M < (N-1)

where a, are obtained from (2) by setting 6 = 61 and ¢ = ¢i. A geo-
metrical interpretation of (49) is that the excitation vector J which
we seek to maximize the directivity in the directirn (60, ¢o) is now
required to be simultaneously orthogonal to M independent constraint

vectors F The N-dimensional space is divided into two mutually or-

i
thogonal subspaces: an M-dimensional subspace containing the constraint
vectors and an (N-M)-dimensional subspace where the excitation vector J
must lie. The mathematical procedure [21] for maximization under con-
straints consists of (a) finding an appropriate set of M mutually or-
thogonal vectors that occupy the ;ame subspace as the constraint vectors

El’ 52, ceey EM’ (b) obtaining an additional orthogonal (N-M) vectors

which at the same time are orthogonal to the first M vectors,(c) forming
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from steps (a) and (b) an N by N normalized constraint matrix which is
the unitary matrix for coordinate transformation, (d) transforming the
directivity expression as a ratio of two Hermitian forms to the new
orthogonal coordinate system, and (e) maximizing the directivity in the
same manner as outlined in Section III,

The Gram-Schmidt procedure [19] provides a method for determining
an orthonormal basis for a vector space in which any set of spanning vec-
tors is known. This method can be used to find the constraint matrix in
steps (a) and (b). Assuming P to be the normalized constraint matrix

which is also the transformation matrix, we write

~ o~

PJ=J . (50)
The directivity in (7) becomes, after the coordinate transformation,

®AaRDI J

| e 3e
< - (51)

@ 82",
Inasmuch as each of the first M mutually orthogonal vectors is a linear
combination of the constraint vectors, the first M rows of gc in (50) are
linear combinations of the homogeneous constraint equations (49) and are
therefore zeros. Hence the first M entries in gc and the first M rows

and M columns of éc and gc can be discarded, resulting in an abridged form
for directivity [ 20]:

J+ A_J

Da =:_1§_.'2‘_“i , (52)

J_ B _J
~a ~a ~a

where éa and ga are the abridged (N-M) by (N-M) matrices and ga is the
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abridged (N-M)-element column vector. The remainder of the optimization
process then follows in exactly the same manner as that pertaining to thLe
unconstrained D in (7), Section III, except that the rumerical problem is
now simpler because the matrices involved are of a lower rank It is
obvious that the maximum obtainable directivity with constraints will be
less than that without constraints on account of the reduced freedom.
Typical results on maximum directivity with null placements and with re-

duced radiation level in an angular sector have been published [20].
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VII, CONSIDERATION OF MUTUAL COUPLING

One tacit assumption implied in the optimization techniques which we
have considered thus far is that all the elements in an array have the same
radiation pattern. This is tantamount to assuming that mutual-coupling
effects are negligibl=, For large arrays with many elements this assump-
tion is acceptable if our interest lies in array directivity and not in the
current distribution or the exact radiation pattern of each element. The
consideration of mutual-coupling effects in array optimization greatly com-
plicates the problem. To the author's knowledge, no work has been published
on array synthesis or optimization for mutually coupled aperture-type radi-
ators, With wire antennas the method of moments can be used to obtain
numerical answers [23-26]. In this section we will outline the optimization
prccedure for arrays of wire antennas when mutual coupling is not neglected.

The moment method for solving electromagnetic problems consists mainly
of three steps; namely, the formulation of the governing integro-differential
equations, the expansion of the unknown functions in terms of a set of linearly
independent basis functions, and the testing of the expanded equation by form-
ing inner products with a set of linearly independent set of weighting func-
tions [26). The result is a set of simultaneous equations which can be
solved by matrix methods. The choice of the basis and weighting functions
depends on the desired accuracy and the ease in evaluating the coefficients
in the simultaneous equations. One convenient technique in the choice of

basis functions is to divide the domain of the unknown function into small
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intervals or subsections. Simple basis functions such as pulses or triangles
are defined to exist over one or a few such subsections and to be zero else-
where. The simplest weighting functions are Dirac delta functions defined
at discrete points at which the expanded governing equations are to be satis--
fied. This is the point-matching or sampling method.

For thin wire antennas, the currents and charges on the wires can be
approximated by current and charge filaments along the antenna axes. We
consider an array of thin linear antennas parallel to the z-axis. From the

Maxwell's equation for time-harmonic fields in a homogeneous medium

VxH=Jue E+J (53)

and H = % 7 x A, we have

= 1 1= = = =
E-jwe(quVXA-J), (54)
Now
T« T «AaT7.A- VA (55)
and
2. .2, = -
(V¢ + k) A= -7, (56)
where k% = wuc. Combination of (55) and (56) with (54) yields
- 1 - = = 2-
Eaqur F7 R+ D), (57)

Since J has only a z-component, we can rewrite (57) as a scalar equation

2
13 2
E, = Jo (—a22 + KA (58)

For thin linear antennas, the tangential electric field Ezp at the center

of a typical pth subsection is then [25]
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1
E2p - Jue (322

2 1(z"expl-jk|r_ - r'|]
) 2 f P dz' , (59)

all 4n|;p -t

antennas
where ;p is the position vector to the center of the pth subsection under
consideration, and r' is a vector from the origin to a point on an antenna
at which the current i1s I(z'). If each of the N antennas in the array is

divided into S subsections of length Azq which carries a constant current Ig,

(59) can be approximated by a summation:

M 2 exp[-jk|Tt_ - r'|}
e L e [ 2R L
= - p!
q=1 dz A“q 4n|r - ¢'|

In (60), M = NS. The quantity in the wavy brackets is the electric field
at the center of subsection p due to a unit current in subsection q and
can be written as qu/Al, where equal subsections (AQq = A)) are assumed

for simplicity. Thus,

E (A4) = V = Z 61
2p &) qzl pq Iq * (61)

or, in matrix form,
VeZl, (62)

where V = [VP] and I = [Iq] are M by 1 column matrices and Z = [qu]
is an M by M square matrix. Z may be called a generalized impedance
matrix and depends only on the geometrical configuration of the array.

In the terminology of the method of moments, (62) is the result of

(a) using pulse basis functions each of which exists over only one sub-
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section, (b) using an integral-type inner product, and (c) using Dirac delta
functions as weighting functions. The differential operator in (60) may ba
approximated by a second-order difference operator and computer subroutines
for the calculation of qu are available [25]. 1In a radiation problem Vis
a column matrix of known voltages which are all zero except for the exci-
tation voltages at feed points. Column matrix I determines the current

distributions on the wire antennas:

1ezlyvayy. (63)

With I kaown, all field quantities of interest can be determined.
The array directivity defined in (4) can be expressed in terms of the

total power input to the array, P if the antenna wires are assumed to

in’

be perfectly conducting. The electric field in the far zone of an array

consisting of z2-directed wire antennas is

Eg = - Juhg = JuA, sin 0 (64)
Thus,
anrzls(eo)lzlz
D=
CPin
2nr2|wAz sin 60|2
- 7 . (63)
in

where ¢ is the intrinsic impedance of the medium. The time-average input
power to the array is

1 *
Pin =7 Re ] (Vg 150, (66)

Since nonzero voltages exist only at the feed points, (66) can be written
as
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(67)

where !1 is a column matrix reduced from V by retaining only the N (number
of wire antennas in the array) nonzero feed-point voltages, and !1 1s an N=N
admittance matrix reduced from Y by deleting all elements that do not cor-
respond to the feed subsections.

In the far zone, the magnetic potential can be approximated by

M
o B(AR) - 3
A, nr exp(-jkr) q£1 Iqexp[jqu cos uq] (68)

where mq is the angle between the position vector to the qth subsection
carrying current Iq and that to the field point. Using the matrix repre-

sentations of F as in (6) and of 1 as in (62), we can write (68) as

A = 2L o n k) BT (69)

2 4nr

or in reduced matrices as

o L(88) .o t
Az e exp(-jkr) 51 11!1 c (70)
For simplicity we write
t ot
ShYh. (71)
Wicth (67), (70) and (71), D in (65) becomes
2 .t t
(wudf sin 6 )" V. G, G, V
5= o ~171 %1 -~1 (72)
4ng LY, + Y%
~1 2 ~1
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It can be shown (23] that the excitation voltage matrix required for making

D in (72) a maximum is

*
Y, + Y -1
1 ~1
v, = 55— g (73)
and ®
2 Y, +Y
- (wudt) + ,~1  ~1 p
DM 4rn Ql [ 2 191. (74)

The directivity optimization problem with voltage excitation is now com-
pletely solved, and the effect of mutual coupling has been taken into
consideration. As can be seen, the main task in obtaining numerical
solutions lies in the determination of the admittance matrix xl'

Using the above procedure, Cummins (23] determined the maximum di-
rectivity in the princ’pal H-plane of a circvlar array of 4 uniformly spaced
center-fed wire antennas. Figure 7 shows the variation of maximum directivity
(DM) versus antenna length (2h/)2) with array diameter (d/)) as the parameter.
The points marked by crosses correspond to the maximum directivity of a
circular array of 4 isotropic sources as computed by the method outlined
in Section II1.

The solution of the dual problem of an array excited by a set of

current sources follows an entirely similar procedure [23].
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VIIl. OTHER CONSIDERATIONS

We discuss here several related aspects of the array optimization
problem which either can be treated by an extension of some of the pre-
ceding techniques or need special attention.

(a) Maximization of Power Gain - When the anLznna wires are not
perfectly conducting, resistive losses occur and power gain is no longer
the same as directivity or directive gain. Electromagnetically speaking,
Ezp in (61) on the surface of subsection p is no longer zero, but is equal
to the product of Ip and Zi, the intermal impedarce per unit length of the

wire conductor.

vp - Ezp(m) - zpplp . (75)
where
z;p = zi(Az) (76)
and
1/2
- (Jup s -
zi ( 0 ) (o) (77)

In (77), o and § are respectively the conductivity and the skin depth of the
wire conductor at the operating frequency. Hence, if the generalized im-
pedance matrix Z for perfectly conducting wires has been found, the only
modi fication needed for a moment solution with finitelvy conducting wires
is the addition of Z;p - Zi(Ai) to the diagonal elements of Z.

1t is obvious that the achievable maximum power gain for a given array
configuration is lower than the maximum directivity because of the resistive

losses. Numerical results have also shown [23) that for arrays with closely
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spaced elements the required excitations for maximum power gain are not

the same as those for maximum directivity.

(b) Arrays with Random Errors - Under practical applications random
errors exist in excitation amplitudes and phases as well as in element posi-
tions. It is then of interest to examine the effect of random errors in
these design parameters on the optimization procedure. This has been done
for arrays with an arbitrary geometrical configuration [27-30). Correla-
tions are allowcd to exist between the errors in the array parameters and
no restrictions are necessary either on the magnitude or on the probability
distribution of the random errors. The dependence of the expected direc~
tivity or SNR, the main-beam radiation efficiency, the optimum excitation
amplitudes and phases and the radiation pattern on the variance and cor-
relation distance of parameter errors has been studied [29,30]. It was
found that the excitations calculated on the basis of no random errors do

not yield a maximum expected directivity when parameter errors exist.

(c) Techniques for Large Acrays - In the numerical solution of the
array optimization problem by the method of moments in Section VII, it is
necessary to invert the generalized impedance matrix Z, as defined in (62).
The order of the matrix Z is MsNS, which is the product of the number of
wire antennas in the array and the number of subsections for each antenna
(assuming equal antenna lengths). Hence M can be very large for large
arrays with many elements, especially when the elements are of a length
which is an appreciatle fraction of the operating wavelength. The feasi-

bility of inverting large matrices is constrained by computer memory
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capacity and the cost. Alternative techniques which will relax these con-
straints are therefore of great importance.

For circular arrays with many unifermly spaced elements, the inver-
sion of the relevant large matrix is facilitated through diagonalization
by a change of basis with a unitary transformation matrix {31). The columns
of the transformation matrix are th: eigenvectors of a rotational operator,
With this technique the inversion of the large matrix can be evaluated by
stralghtforward matrix multiplication.

For array configurations with no rotational symmetry other methods
must be sought. The far-zone electric field due to an array of N parallel

2-directed dipoles is

- h
-8 r N jBr_*h jB 2'cos 8
E(8,6) "'11.':'%" J e T J 1(2')e sin 6 dz' , (78)
n=1
-h

vhere 8 1is the phase constant, ;n is the vector from the origin to the
center of the nth dipole, and 4 is the unit vector from the origin to

the observation point. The first step in the optimization problem is the
insertion of (78) in the expression for the performance index of interest.
In order to maximize the performance index, it 1is necessary to use an appro-
priate expansion for the currents In(z'). The moment method discussed in
Section VII used expansion functions defined over subsections, which re-
sulted in M by M matrices. An alternative 1is to use the three-term theory

for cylindrical antennas developed by King and his associates [32]. This
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has been done, and it has been found that, by using some special properties
of the integrals involved, accurate numerical solutions of array optimiza-
tion problems can be obtained by working with matrices of order N (not 3N
as first suspected, where N = M/S). Details of this technique together

with numerical results will be reported in Part (B).
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APPENDIX to PART (A) - PROOF OF THEOREM 2

Let
Peg- 2}"5 +x'Cx, (A-1)

which is the denominator of the quantity in (32)., It is necessary to

prove that if C 1s positive definite P will be minimum at

5y = S8 (a-2)
and min P = a - g'g'l_g . (A-3)
(x=%)
Proof: If C is positive definite, it is known that [15)
1ol ' ' 2
(8'C "B)(x'Cx) > (x' B) (A-4)
or
x'Cx 2 fl (%' 0, (A-5)
B'CT8
where the equality sign applies when
-1
xexm<e #-2)

Let ¢ = g'g'l 8> O, and b = 5' 8. We have, from (A-1l) and (A-5)

~

2
PaAZb+xcx>A-2+, (A-6)
But 2
A-2b+2—-A-c+%(c-b)2;A-c. (A-7)
Combining (A-6) and (A-7), we obtain
|-1
P-A-8'C8, (A-8)

where the equality sign holds with (A-2); hence theorem 2 is proved.
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PART (B). INTEGRAL-EQUATION APPROACH FOR

OPTIMIZING ARRAYS WITH MUTUAL COUPLING

I. INTRODUCILION

In Part (A) we have discussed various techniques for optimizing some
chosen performance indices of antenna arrays. When the array elements are
parallel wire antennas, the method of moments can be used for optimization
which includes the effect of mutual coupling. As explained in Part (A) -
Section VII, it was found convenient to incorporate the method of sub-
sections to convert the governing integro-differential equations into
matrix equations by using pulse expansion functions and impulsive weight-
ing functions. For an N-element array each subdivided into S segments, an M by
M (MsNxS) generalized impedance matrix results which must be inverted .n the
optimization procedure. This inversion process presants practical diffi-
culties when N and S are large, because of limitations in computer memory
capacity and in allowable cost. In this Part (B), we present a new approach
for array optimization with the consideration of mutual coupling that re-
quires the inversion of only an N by N matrix. Since computer time (cost)
required is proportional to the cubic power of the rank of the matrix, we
achieve a saving by a factor of 83. If S equals 10, for example, this
means a 1000-fold saving, a considerable factor indeed.

The approach we take starts with an integral-equation formulation for

the array in terms of the unknown current distributions on the array elements.
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Instead of using the methods of moments and subsections, we expand the
current distribution functions as superpositions of suitable sinusoidal
functions. In particular, we make use the three-term theory developed
by King and his associates [32). The subsequent theoretical development
is quite involved, but we have succeeded in a considerable reduction in
the order (and rank) of the matrices involved. Numerical solutions for

typical arrays can be obtained with a few dollars' worth of computer time.
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I11. INTEGRAL-EQUATION FORMULATION

We consider an array of N parallel, z-directed, center-fed dipole
antennas each of radius a and half-length h. The typical nth dipole is
center-driven by a delta-function generator of strength Vn. The dipole

¢ conductor is ascumed to be perfectly conducting and Ba << 1, where 8 is the
phase constant. The integral equation for the nth dipole in terms of the

currents in all the array elements is [32]

N :h Vn
z | Im(z')Kmn(z,z')dz' - - %3 [Cncos Bz + i—-sin 8lz|) (79)
me] _ﬁ
where -38r
K (2,7) = &= (80)
mn
£ [(z-2")% + bm]uz (81)
{ a , m=n
b = (82)
m dmn ’ mfn
Letting z=h in (79), we have
N rh Vn
D 1 (2K (h,zdz' = - 4= (Ccou 8h + 3 stn gn).  (83)
=) _a
Eliminating Cncos Bh from (79) and (83), we get
N ,h
T (2')[K_ (z,2") cos 8h - K__(h,2') cos 8z)dz'
m=] -h m
'%6‘% sin 8 (h - |z|). (84)
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Equation (84) can be rewritten as

where

and

N h

21 [ I (2')K} (z,2') cos gh dz'

™% b
- %5 [Vnsin 8 (h-l2z]) + un(cos Bz - cos Bh)] , (85)
K;n(z,z') - Kmn(z,z') - Kmn(h,z') (86)

N h
U = -360 m§1 J I (z')K (h,z'")dz" . (87)
=h

With n=1,2,...,N, we obtain N simultaneous integral equations from

(85).
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111. THE THREE-TERM THEORY

King's three-term theory approximates the currents Im(z) with three
parts: one part is a sinusoid maintained directly by the driving voltage,
and the other two parts are i shifted cosine and a shifted cosine with
half-angle arguments which are induced by coupling between different parts

of the antennas.

3
(k)
I (2) = kgl AS, (2) (88)
where
Sl(z) = gin 8 (h - |2z]) (89)
Sz(z) = cos Bz - cos Bh (90)
S,(z) = cos & 8 Ly (91)
3(2 cos 7 8z - cos 3

The integral on the left side of (85) possesses the following approximate
properties for the currents in (88) - (91) for different ranges of Bbmn

values [33]:

(a) For Bbmn <1,

h
ryge! ' '
! lm(z )kmna(z,z ) cos Bh dz v) Im(z). (92)
-h
where the function K;na(z,z') denotes the real part of K;n(z,z').

(b) For Sbmn 21,

h
4
J Sl(z')KénR(z,z') cos 8h dz' 3 wé Sz(z). (93)

-h
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(¢) For all values of ebmn'

h

[ Sz(z')K;nR(z,z') cos B8h dz' & wssz(z) (94)
-h

h

J 83(2')Kénk(z'z') cos 8h dz' & wzs3(z) (95)
=h

h

I Im(z')K;nI(z.z') cos Bh dz' & w583(z). (96)
=h

where the function K;nl(z.z') denotes the imaginary part of K;n(z,z').
The proportionality constants wi. W&. wa. wz and W; in approximations
(92) - (96) are best determined where the distribution functions in the
integrands are at their maximum values,

Under normal circumstances 8b _ > 1 for m¢n and 8b ., = Ba << 1.
Substituting (88) - (91) in the left side of (85) and using (92) - (96),
ve have

(a) men, by, =8ac< 1,

h
[ Aél) Sl(z')KAn(z.z') cos 8h dz'
=h
1) Q) 1) () .
- Ah wnnR Sl(z) + An wAnI SJ(z) @7
h
J Aéz) Sz(z') Kan(z.z') cos Bh dz'
-h
(2) ,(3) (2) ,(2)
* An v nnR 82(2) + An Lt'\nl 83(2) 98)
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h
J{ Ar(xa) Sa(z')l(:'m(z,z') cos 8h dz'
=h

IRE R )

a Yan S3(2). (99)

(b) mfn, sb_ = 8d_ > L.

h
f A;l) 5,(2")K! (z,2') cos h dz'
=h
= a1 s @) w1 Bs o) 4 1 Bg () (100)
(h
J A;z) Sz(z')K';m(z.z') cos 8h dz'
=h
(2), ,(3) 1 (2)
'Am [wl;mR Sz(z)*’\bml 53(2)] (101)
h
J a8 s (29K! (2,2') cos Bh dz' = alY wé:J)Sa(z), (102)
=h
The proportionality constants in (97) - (102) are:
h
cos ih ! ' cos LsRl cos BRZ ' )
T J Sl(z ) R - x5 Jdz' , B8h < n/2
=h
g'(l) - (103)
mnR h
cos BR3 cos BR2
cos 8h [ Sl(z')[ R - =X Jdz' , B8h > n/2
; 3 2
-h
with
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2 1/2

Ry = (-z")® + b 11/ (105)
Ry = [(h-z'-1/0)2 + b2 172 (106)
8 h cos SR cos BR
Voan Tooelt J 8,@") [—— - ——ldz" (107)
i 1 2
h cos BR cos BR
1(3) _ _cos gh , 1 2.,
YmR "~ T-cos gh J 520 57 el (108)
~h
h sin B8R sin B8R
(1) _ _=cos Bh 1 2.,
Y l-cos 8h/2 J Sl(z')[ R i ldz (109)
A 1 2
h sin BR sin BR
1(2) _ _-cos gh i 2
YanI = T-cos 8h/2 J S,z =g ——=]dz' (110)
i 1 2
h -JBR,  -38R,
1(3) _ _cos Bh e e
Ym " T-cos 8h/2 J 532D [P - S lee (111)
-h

When B8h = n/2, expressions (109) - (111) become indeterminate and com-
ponent current functions different from those given in (89) - (91) must
be chosen. This special case will be discussed in Section V.

We arv now ready to substitute the above in (85) and equate the

coefficients of Sk(z), k=1,2,3, We obtain 3 sets of equations (n=1,2,...,N):
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N
@, () _ 1
mzl Am YmnR 60 vn

N N
I S CITC T I

¥
pel M mnR =1 mnR 60 n
mén
N
1), Q) (2) ,(2) (3),.(3)
mzl [Am YonI + Am u’nmI + Am wmn 1=0.
In (113),
N h
U = - 360 mzl i I(z)K _(h,z')dz'

N
.. (1), (1) (2),(2) (3),(3)
160 mzl (An Tupn’ () + A%y~ (h) + A"y -7 (h))

where
h

w;:)(h) = [ Sl(z')Kmn(h.z')dz'
=h
h
D) = f 5,(2')K__ (h,z')dz"
=h

h

vy f S,(z')K__(h,z")dz" .

-h

With (115) - (118), we can rewrite (113) as
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(113)

(114)

(115)

(116)

(117)
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N

I aWra -6 e - W)
m=1

N N
+ ] AP Dy a7 a9, (119)
m=1 m=l

where Gmn is a Kronecker delta. For an N-element array, n=1,2,...,N,
and each of (112), (119), and (114) represents N simultaneous equations,

It is therefore convenient to use a matrix notation.
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I1V. MATRIX EQUATIONS

Defining Nx1 column matrices [A(l)], [A(z)}, [A(3)], and [V], we

can write (112), (119), and (114) as

ot yay 2 Loy (120)

1 (2)_ (1) (1) (3)_, (2) (2) 3) 3)
(-8, 00 g Wy ya®y 0 (00, @ 0y 11a@y 2 (1 D w104y (21
S [T T RS PSS N TIPS N (122)

Equations (120) - (122) can be inverted and rewritten as

a7 = (p v (123)
@) - v (124)
(A = vy, (125)
where
(V) = &5 1y 271 (126)

(2)) o o(8) =11, (@)} pad)
(P27 = (o™ 1 e 11p Y )

(V) w - (0 e DMy 1 (D=2 @)Dy 99
and

G = B e e By e - D) (128)

(800 = —faee 3t @0 Wy oy Dy Oy (D (199
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The current distribution in the mth dipole in (88) can also be

extended to the N-element array and written in a matrix form.

(11 = 5, aP] + 5, (aP) + 5,1, (130)

Combining (123) - (125) with (130), we obtain

(1) = [Y)[V) (131)

vwhere the mnth element of the admittance matrix [Y] is

(1)

-, sz(z)p(z) + S3(z)P(3) : (132)

Ymn(z) = Sl(z)P ey .

With (131), we are finally ready to attack the optimization problem.
But, before we do this, we shall take care of the case for 8h = n/2

(half-wave dipoles) which would make (109) - (111) indeterminate.
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V. HALF-WAVE DIPOLES

It is obvious that, when B8h = n/2, we could not have proceeded from
(85) as we did in Section III, We must start from the basic integral

equation (79). When z is set to equal h, (83) becomes

h
N
m§1 J I_(2)K! (h,z')dz' = - éﬁ v . (133)
-h

Subtracting (133) from (79), we get

h

v
Z I Im(z')K;n(z,z')dz' - - %a [Cncos Bz - 35 (sin Blz| - 1)), (134)
-h

where K;n(z.z') has been defined in (86). Cn can be found from (134)
by setting z = 0 in (79).

h

N
c, = 430 mzl f I (z)K _(0,2')dz' (135)
-h

Combining (134) and (135), wve obtain

N h
mgl J 1)K (z,2')dz’
-h
- - éa'[Vn(sin 8lz] - 1) + Uy cos Bz) , (136)
where . " n=1,2,...,N
U = 160 mzl J I(z)K_(0,2")dz", (137)
-h

Equations (136), instead of (85), must now be solved.
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Thr three-term expansion for current distribution in (88) - (91) must

also be modified. We write

(k) <
1 (2) = RZI B, Sy(2) (138)
with
Si(z) = gin Bfz] -1 (139)
Si(z) = cos 82 (140)
S:"(z) = cos -%- Bz - cos % (141)

Following the same procedure outlined in Section III, we obtein, instead

of (112) - 114),

N
(1) (1) _ _ 41
mzl Bm xmnR 60 vn (142)
N N
(1) _+(2) 2) _.(@3) o I
mzl Bm XmnR + mzl Bm XmnR © T 60 Un (143)
mfn
N
IO IO TN O RN NP
m=1
In (143)
e cos B8R cos BR
xl;ll(\lll)-- J 51(2)1 ,(zl- = 2)42" (145)
-h "1 2
B cos RR cos £R
x &) . fSi(z')l —L - —— )42 (146)
-h 1 2
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h
1 (3) f y cos BR cos BR

A 2<z')[Tl—l - ——2jaz (147)
=h

(1) -1 sin BRl 8in BR2

xénI "T- cos m/4 f Si(z')[ R, - R, ldz! (148)
=h
h
'(2) -1 ' sin BR sin BR2 '
Xmn1~ = 1l - cos /% f S (@) [——= R - R, 1dz
~h
- , h —jBR -_']BR2
' = — YL YL & '
Xon ~ = 1l - cos n/4 f J 3(z I Rl N R2 ldz' (150)
~-h
where R. ang R2 have been defined ip (104) ang (105). Also
h
360 mZ T2k (0,2")4z"
m=1
where
x 0y - f S1(2")K_(0,2)dg (152)
1 mn
-h
h
‘2)<0) - f 5;(2)K__(0,2')dz" (173)
=h
30y = f S3(2)K_(0,2")dz" (154)
~h

In matrix form, (142) - (144) can pe solved to give

-52-



817 = 11y (155)
8] = @] (156)
87 = @@ v1, (157)

where
Q] = - -};3 [xl;éi)l'l (158)
Q] = [¢éb)]'l[¢éa)][Q(l)] (159)
(@1 = - P17 e WPy - 1 P17 P1e® asoy

and

(6821 = xg2? @10 17 21 + 10 R - w0 (261)
(021 = - 1 - 6, - %P o1 - B @101 g
Combining (149) -~ (151) with (138), we have (162)
[1] = [¥'][V] , (163)

where
t' (2) 812’ + 52(2)0{?) + s3(230{? (164)

Equations (163) and (164) for half-wave dipoles correspond to (131) and

(132) respectively.
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VI. MAXIMIZATION OF DIRECTIVITY

The far-zone electric field of an array of N parallel, z-directed,

center-fed dipoles is

N  jBr @
E(9,¢) = 1gg_e-j8r e U

1
Jus f In(z')ejsz €08 ® in o dz' , (165)

n=1 -h

where 8 1s the phase constant, ;n is the vector from the origin to the
center of the nth dipole, and G is the unit vector from the origin to the
observation point. Equation (165) can be rearranged and written in a

matrix notation.

h

[ o) a2, (166)
-h

e J8F

E(9,¢) =

where both [H]) and [I] are Nx1 column matrices, The typical elements of

[H) is H :
i -jB; .Q
H o <jwh sin 6 e n

B o (e-1B2’cosd, (167)

Substituting (131) in (166), we obtain

e-jBr o +
E(8,¢) = { j 1) [¥)dz" } v]
-h =
-jBr ;
-t vl , (168)
where h
M]" = J )7 (Y] de (169)
-h
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is a 1xN row matrix. Of course, (163), instead of (131), would be used
if Bh = 1/2, The only effect would be to change [Y] in (169) to [Y'].

Now, the array directivity is, from (65),
2 2
r"|EC6 .90 |

D(eo.¢o) = 60 P (170)
in
where Pin is the time-average input power to the array.
=1 f
Pin =3 Re {[I]z=0- [v]}
=2 Re {[v] [¥]'_ -[v]}
2 z2=0
=1t
= 5 VI IYR1Iv], (171)

The elements of [YR] are the real part of those of the driving point

adniittance matrix [Y]z=0' With (168) and (171), D(60,¢°) in (170) becomes

(1" 10 17 [v)

30 (v1'{¥g) (v]

D(Go.¢o) =

where [Mo] is [M] in (169) evaluated for the direction (6°,¢o). Equation
(172), as (7), is a ratio of Hermitian forms, and Theorem 1 in Section III,
Part (A), can be used to find the maximum directivity DM(60,¢°), and the

required voltage excitations [V]. We have

1 + -1
Dy = 35 (M1 [¥g] [Mol (173)
and
=1
[V]M - [YR] [Mol . (174)
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The optimization problem is now completely solved. The required
matrix [YR] is obtained easily from the admittance matrix [Y] (or [Y']
if 8h = n/2), whose formulatlon has been developed in the previous sec-

tions. We note that [YR] is of a dimension NxN for an N-element array

irrespective of the length of the dipoles.
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VII. NUMERICAL EXAMPLE

The integral-equation approach formulated above for optimizing arrays
with mutual coupling is applied to a four-element circular array for which
some important results on directivity optimization have been obtained by
using the method of moments. Although this approach applies to larger arrays,
it was thought advisable to check with some known results first in view of the
rather involved analytical process. Once the formulation and the results have
been verified for the four-element array, the extension to larger arrays is
straightforward and needs only slight changes in the computer program.

The array has four parallel, z-directed, dipoles, each of diameter 2a
and length 2h, uniformly spaced around a circle of diameter d. The coordinate
system is selected such that one dipole coincides with the z-axis, a second
one lying in the xz-plane, and a third one lying in the yz-plane. The follow-

ing parameters are chosen:

2a/) = 0,0025
2h/) = 0.36 (h/a = 144)

d/» = 0,61,

The directivity of t!iis array in the principal H-plane (0 = 90°) is
maximized for each value of ¢ by adjusting the amplitudes and the phases of
the excitation voltages Vn. n=1,2,3,4, The results are plotted as the curve

in Fig. 8, which coincides almost exactly with that obtained by Cummins [23],
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who used the method of moments and the method of subsections described

in Section VII, Part (A). The Fortran program used for computing the
maximum directivity in Fig. 8 is appended to show its relative simplicity.
In spite of the complexity of the formalism, the cost of computing the
entire curve in Fig, 8 on an IBM 360/50 computer was only about five

dollars.
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VIII. CONCLUSION

The obvious advantage of the integral-equation approach in solving the
directivity maximization problem for an array of dipole antennas, as compared
to the method of moments using subsections, is the S-fold reduction in the
order of the matrix to be inverted, where S is the number of subsections for
each dipole. This results in a saving in computer time (cost) by a factor
of 53’ in addition to relaxing the requirements on memory capacity.* Besides
the directivity, quantities such as the current distribution on each dipole,
the self and mutual impedances, the radiation pattern, etc., can all be
calculated without difficulty.

For arrays with many elements (N very large), practical computing dif-
ficulties will arise even if the antennas are not divided into subsections.
In such cases, other techniques are needed to simplify the computing procedure.
Because of the existence of rotational symmetry in a uniformly spaced circular
array, it is possible to circumvent the necessity of inverting any matrix by the
introduction of a rotational operator [17). Hence, the number of elements in a
uniform circular array, no matter how large, represents no real constraint on the
feasibility of obtaining numerical solutions. On the other hand, linear arrays
possess no circular symmetry; thus the technique of using a rotational operator
does not apply and other methods must be sought when N is very large. Special
methods for handling pattern synthesis and performance optimization of very large

arrays constitute an important area for further research.

*For the particular example in Section VII, symmetry about the plane (xy-plane)
bisecting the dipoles reduces the effective order of the matrix handled by the
method of moments by a factor of 2., Symmetry property about the plane contain-
ingthe diametrically opposite elements simplifies the computation for both the
moment method and the integral-equation method.
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APPENDIX TO PART (B)

FORTRAN PROGRAM FOR COMPUTING DIRECTIVITY OF A FOUR-ELEMENT
CIRCULAR ARRAY AS A FUNCTION OF AZIMUTH ANGLE

- e W N e P v s T W 8 @V WV W, o e v -l - g s e wed

SRRt e CORMP (A4 oRC gligty L)
Coir b By LRl ) o0 (1 o1 ) (20 (Mygin)

oIy I TE
DTS KA Eoh BPRT &
RE(Te)=(0,,0,)

-

T T RET L

10 RC(1 ) =wClTod) 408 (T oK)SRC (Ko d)

RETU

| A

SUFRDITT-'F ATV n g A gi)

COre R vl Af(iagrt) ¢ AR (ifgr) gR Y g (L ) (ST (4 W) '.'.l (!"")"<"'(“'l')

TFAL T TV T 3 07
h'=(”o']o)
ML 10A =)o

T Ton =T,
Tr(l-4) 1040305, )06
l!):w "x"'(‘..‘)=(“0 'no)

LHARR AR IS

C1=2.u10000%F LAV ((KT=1 )= {11 ) )/FLUAT (1) 23, 141092A03
Vg bt T o (T g b (VG ) s (CHS(CY Y43 T8 {CH) )

T TR INET 7T )
G T Y06
104 Be(Ted)=(ne,0,)

TR | T
IME 1 F=dgmi
PO 1 a1

CI=FLTTIT™Y
Ca=ST(C3)

107 €222, 00005F L 0AT ((J=-1)301=1))/rLuUpT(n)%3,)41592653

BN B ER LIS LA S RAE san RIv e I8 DA
T1(ds D)= nS(C2 =158 (C2) )/ 0o

1 CopitT i

18 L0 o IS Tn o R
(AR LANNN 3 BT
RNEL,0)=(0,40.)

T 1T =1 e

10 Pl )= 0T o) +S)IT ¢K}5RN (K, )

fwr 1Y T=1,n™

R DB ER I
AR(I"\')=(""OO)
iy 11 K=V, ia

IT AT IV ET T (T o T T T o T T 90T

ReTHR
F )

BRI NS X R MM

CLIPL EY stA AR (G &) o i h (b g&) JAG {4 &) AN (0 a) 00 (44b])
lA"‘("-I'-,o“‘ (6Lob) 24 (O gb) ol (G4}

,————

| aas B araraes i B £ IrLCH IFNCESE EOFL S Bradl vl SFILOS BPACARA SOFE IS St SOICRCE M
FoRE (7 06) o 02(B46) %0 (%hy6) ]

Lo (b ote) ot [ {bol) gl 0 (h eta) K (G, 0} Y P36 o)

| SRR IO SR

128 2l mrormliestd ary: 3 RCRIFTARE TS S KA S A A KRR FRA R R EARKRLEAAA LR

IPHAS (H#) o 25N (6) giit T T g ArS 4SS ([ en ) 4 TT (D)
" CrhPLEY S YY(“v“)v“hoD7oOH(ﬁ,oUE(“)qV|(Qv“)vVlvV(“’vGAI”

ISl a0l ol
HLErT=n,14
Pz, At

T3 1=
12411200, 70T
H{te) )= = T/1GY,

tht § 1=V e9d

e =

-
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o oM ot B it e oo

P

4

R

3 " ke Py . B 9 o

e 7 ¥2=1.7
Hhip 1 1=V,4

= 02w T=1)
H=Z guHL el /JELOAT (11)
(23 YR |

=0,
S=0, )
My 2 11s1.7)

ARGA=Z. T3, VaTasnlnmg
RR=S 1. (1, 8:003)
RI=CNS (N, »¥ 07T

Toegleloniing
BS5=C1S (A¥I13)
To=bl kst ivar (1Y)

El:’.z.":";?"'i'(ql’lj.,::,' 7
ﬂ2=(HLFNT—Z)$¢7+“(¢1.1)$*2

TS of sl BREICENE IS (AN i i |
RYZ2=COS(pna)
ABRY =2 %3 VA VARCHET (2))

Rl 2?2 en e ) LT AT 7T
21=2481(1)
RYIV=ONS {3 1407

RITELTR T T3 TaTRET]
ARGHS=HLENT=7]
ROUSSIM{2,.%5 141 A5026%)

HE=STTTART 7]
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B2=8Te (AP )

TIEC ST
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FAa)=(21 =57 «1 /2208 =03/ aui)

FTRY= (Y= 11127 7= )i =01}
FIT)=RAx(R)2/a204=3/ARGY)
GIA) =PRI =nT ) s G

CISTEIRTI=OITRRG7AG7
Gla)=(B1N="%)uRk0 JA0RD
CIR)=({PIN=RY ) {3/ A0E2

Tl TEAC TV G R7
G(1)=POEPRI/ARG?
G{7)=", -

?

SESHAET 7]
T=T+F (K2}
S50)41)=S=H

1

IR R RGRA
DI 3 X=1,43
J=""K

T3 1=1..1

SSUT o+ 1) = (FLOAT (e nan ) wSS (141 3¢ ) =SS %))/ (FLUAT (4unK=1))
TTOL e Y= FLenAT (6ume JuTT (141K )=TT{T2))/(rLOAT (4xv=)))

&

LA 1S YA AR ER N KA EAIEYA
SRIK1,122)=SS(146) A 2R3
on 52 i=1.4

LASS B et L8 Arl.3
INn=1a=2S (11}
IF(IN=1)%3,544%4

i N ¢
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Fig. 1 - Referencc coordinates of an arbitrary array.

¥

Fig. 2 - A circular array.
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